EXPORT CONTROLS:
National Security Risks and Revisions to Controls on Computers

Statement of Harold J. Johnson, Associate Director, International Relations and Trade Issues, National Security and International Affairs Division

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

GAO/T-NSIAD-00-104
Mr. Chairman and Members of the Committee:

I am pleased to be here today to discuss export controls for high performance computers. My testimony is based on work that we have conducted over the past 3 years, particularly the reports we issued in 1998 and 1999.¹

U.S. policy with respect to the export of sensitive technology, including computers, is to seek a balance between the U.S. economic interest in promoting exports with its national security interests in both maintaining a military advantage over potential adversaries and denying the spread of technologies used in developing weapons of mass destruction. The United States has long controlled the export of high performance computers² to sensitive destinations, such as Russia and China. These computers have both civilian (dual use) and military applications and technological advancements in computing power have been rapid. The Department of Commerce has primary responsibility for managing the licensing of these dual-use items and weighing the promotion of commercial interests in exporting items against the protection of national security interests. For the past several years, there has been continuing congressional concern about and debate over whether our national security is being harmed by relaxing export controls on high performance computers and over the rationale for subsequent revised controls.

Today, I will discuss our observations about how the executive branch (1) assesses the national security risks associated with the export of high performance computers going to countries of concern and (2) determines when the exports of computers at existing performance levels can no longer be controlled.

RESULTS IN BRIEF

The executive branch has not yet clearly articulated the specific national security interests to be protected in controlling the export of computers at various performance levels, nor has it stated how countries of military concern could benefit from using such computers. Without a clear statement of these interests, it is unclear how the executive branch determines what are militarily critical applications that may affect U.S. national security. In addition, the executive branch has revised export controls on computers because it believes that these machines, at the previously approved levels, had become so widely available in the market that their export is uncontrollable. However, we could not assess the justification for the July 1999 export control levels because the terms “widely available” and “uncontrollable” used to explain the policy change are not clearly defined and are not found in law or regulation.

² The Commerce Department considers a high performance computer to be one that exceeds a defined performance threshold, thus requiring an export license.
BACKGROUND

The U.S. export control system is about managing risk; exports to some countries involve
less risk than to other countries and exports of some items involve less risk than do other
items.

Under U.S. law, the President has the authority to control and require licenses for the
export of items that may pose a national security risk or foreign policy concern. The
President also has the authority to remove or revise those controls as U.S. concerns and
interests change. The U.S. export control system is administered by two agencies. The
Commerce Department, through its Bureau of Export Administration, licenses sensitive
dual-use items (items with both civil and military uses) under the Export Administration
Act of 1979, as amended (P.L. 96-72). The State Department, through its Office of
Defense Trade Controls, licenses munitions items under the Arms Export Control Act
(P.L. 90-629). Since the end of the Cold War, the number of items subject to export
controls has been significantly reduced. For example, while 10 years ago, the Commerce
Department reviewed about 100,000 license applications annually, today that figure is
down to about 12,000 applications per year.

The U.S. government controls the export of high performance computers to certain
countries based on foreign policy and/or national security concerns. High performance
computers and related components (such as, processors) are controlled under the Export
Administration Act, as continued by executive order, and the Export Administration
Regulations. Executive Order 12981 authorizes the Departments of State, Energy, and
Defense to review export applications and to consider export control policy.

Since 1993, the President has revised U.S. export control requirements for high
performance computers four times, including a revision announced in February 2000. A
revised export control policy implemented in January 1996 removed license requirements
for most exports of computers with performance levels up to 2,000 millions of theoretical
operations per second (MTOPS) (an increase from 1,500 MTOPS). The policy also
organized countries into four computer "tiers," with each tier after tier 1 representing a
successively higher level of concern related to U.S. national security interests. A
dual-control system was established for the 50 tier 3 countries, including China, Russia, India,
and Israel: a license for potential military end-users is required at a lower MTOPS
threshold than the threshold for civilian end-users. High performance computer exports to

3 The Export Administration Act terminated on August 20, 1994. Pursuant to Executive Order 12924,
issued on August 19, 1994 (59 Fed. Reg. 43437) the President, to the extent permitted by law, extended the
application of the act indefinitely. In addition, the Nuclear Regulatory Commission licenses exports of
nuclear reactors. Dual-use nuclear exports are licensed by Commerce in consultation with a number of
other agencies.
4 High performance computers are regulated based on their composite theoretical performance as measured
by MTOPS.
5 The policy placed no license requirements on tier 1 countries, primarily those in Western Europe and
Japan. Exports of high performance computers above 10,000 MTOPS to tier 2 countries in Asia, Africa,
Latin America, and Central and Eastern Europe continued to require licenses.
countries in tier 4 (for example, Iran, Iraq, and Libya) were essentially prohibited because of national security and foreign policy concerns about these countries.

The Fiscal Year 1998 National Defense Authorization Act (P.L. 105-85) modified the policy for determining whether an individual export license is needed and required exporters to notify the Commerce Department of any planned sales of computers with performance levels greater than 2,000 MTOPS to tier 3 countries. This level subsequently was increased to 6,500 MTOPS effective January 2000. If the Department of Commerce, Defense, State, or Energy, each of which reviews these notifications, objects to the export within 10 days, the exporter must then submit a license application.\(^6\)

In addition, the act required the President to submit a report to Congress justifying any changes to the control levels for the notification process for the export of high performance computers to tier 3 countries. The act requires the report, at a minimum, to (1) address the extent to which high performance computers with capabilities between the established level and the new proposed level of performance are available from other countries, (2) address all potential uses of military significance to which high performance computers at the new levels could be applied, and (3) assess the impact of potential military uses on U.S. national security interests. We reviewed the report submitted by the President on July 27, 1999, proposing changes to the current export control levels for high performance computers. We reported in November 1999 that the report did not fully satisfy the reporting requirements of the act.\(^7\) In particular, it did not assess the impact of the military uses of high performance computers on U.S. national security concerns.

On February 1, 2000, the President announced changes to the current export control levels for high performance computers. These changes included raising the performance threshold for computer exports that require a license for (1) tier 2 countries from 20,000 MTOPS to 33,000 MTOPS and (2) tier 3 countries from 6,500 MTOPS to 12,500 MTOPS for military end-users and from 12,300 MTOPS to 20,000 MTOPS for civilian end-users. The announcement indicated that the changes for tier 3 military end-users are to become effective in 6 months, while the changes for tier 3 civilian end-users become effectively immediately. The changes also raised the performance threshold for computer exports that require a notification to Commerce for tier 3 countries from 6,500 MTOPS to 12,500 MTOPS. By law, Congress has 6 months to review this decision, after which the change in notification levels will go into effect.

ASSESSING NATIONAL SECURITY RISKS FOR COMPUTER EXPORTS

Under U.S. export control policy, an analysis of establishing or revising controls on computers and other sensitive commodities generally is made in the context of the U.S. government.

\(^6\) In addition to reviewing notifications, State, Defense, and Energy also review export license applications that are submitted directly to Commerce.

\(^7\) *Export Controls: Statutory Reporting Requirements for Computers Not Fully Addressed* (GAO/NSIAD-00-45, Nov. 5, 1999)
desire to limit the spread of technologies useful in both developing weapons of mass
destruction and protecting the military capabilities of the United States and its allies. In
many ways, the threat posed by an export is a relative one; that is, the threat depends on
the U.S. capability to respond to enhancements the export would bring to the potential
adversary's military capabilities. In order to maintain military superiority, the United
States needs not only to control the spread of militarily sensitive technologies, but also to
invest in leading edge technologies. However, this investment leads to the leading
technologies of today becoming the "mass market" items in the future. Therefore, the
United States must also quickly incorporate existing technologies into current and next
generation weapon systems and manage the release of technology into the world market
to "stay ahead of the curve."

While there appears to be general consensus that controlling high performance computers
at some level is important to maintaining U.S. national security, DOD and the executive
branch have not clearly articulated the specific national security interests to be protected
in controlling the export of computers at various performance levels. In addition, they
have not stated how countries of concern could benefit from using such computers.
Without a clear analysis and explanation of the national security interest in controlling
the export of high performance computers, the U.S. government cannot determine (1)
what militarily critical computer applications need to be controlled or (2) the most
effective way of implementing computer export controls. If such an analysis were made,
it might also lead to a conclusion that the current reliance on MTOPS as the sole measure
of a computer's sensitivity would no longer be appropriate. Indeed, with the rapid
changes in computer architectures and the growth of what is called "distributed"
computing, new approaches may be necessary to protect the national security interests in
limiting potential adversaries' use of such machines in their research and development
programs and their deployed weapon systems.

To illustrate the importance of identifying potential national security risks of computer
exports, let me briefly highlight for you some of the military applications of high
performance computers that have been identified in some Commerce- and Defense
Department-sponsored studies. These studies were conducted in 1995 and 1998 to
support decisions on revising export controls over these computers.9

The Joint Strike Fighter has been designed using computers with 4,000 to 6,000
MTOPS of capability. Computers in this range now can be exported to military end-
users in Russia or China without a license. Licenses for military end-users in these
countries are required only for computers with performance levels above 6,500
MTOPs.

8 "Distributed" or "parallel processing" means breaking computational problems into many separate parts
and having a large number of processors tackle those parts simultaneously. Greatly increased processing
speed is achieved largely through the sheer number of processors operating simultaneously, rather than
through any exceptional power in each processor.

9 Building on the Basics: An Examination of High-Performance Computing Export Control Policy in the
1990s (1995) and High-Performance Computing, National Security Applications, and Export Control
 Computers at 8,000 to 9,000 MTOPs are used for algorithm development for shipboard infrared search and track systems and modeling of submarine bottom designs for shallow water operations. While these computers currently require a license for export to military end-users in tier 3 countries, they would not be controlled under newly revised controls announced by the President on February 1 of this year. Under these new controls, only computers with more than 12,500 MTOPs that are to be exported to military end-users in countries like Russia and China would require a license.

Designing submarines involves simulations of transmitting sounds through structures and in water, which are conducted at computer performance levels that are only slightly greater than the thresholds for which tier 3 countries may receive computer exports without a license. A Commerce- and Defense Department-sponsored study identified the use of a 21,000 MTOPS machine for this purpose. Some other related applications, such as acoustic sensor development and associated acoustic modeling, are executed on computers with performance only slightly greater than 20,000 MTOPS.

More generally, the 1995 Commerce- and Defense-sponsored study stated that there are research, development, test and evaluation applications at or above the 20,000 MTOPS level of great national security significance, the proliferation of which should be strictly controlled. With the executive branch’s February export control change, high performance computers up to 20,000 MTOPS will be available to countries like Russia and China without a license. The appendix provides additional information on selected military applications for high performance computers.

DETERMINING WHEN COMPUTER EXPORTS CAN NO LONGER BE CONTROLLED

The previous examples illustrate the basis of our 1998 report’s conclusion that the executive branch should clearly articulate the specific national security interests in limiting computer exports to potential adversaries when revising controls on high performance computers. In this regard, our September 1998 report\(^{10}\) recommended that the Secretary of Defense assess and report on the national security threat and proliferation impact of U.S. exports of high performance computers to countries of national security and proliferation concern. We specified that, at a minimum, the assessment should address (1) how and at what performance levels countries of concern use these computers for military modernization and proliferation activities, (2) the threat of such uses to U.S. national security interests, and (3) the extent to which the export of such machines is controllable. The President’s July 1999 report justifying changes to the control levels for computers did report that computers at all computing levels are important from the lowest performance levels to the highest. This conclusion, however, is general and was not supported by the level of analysis we recommended in our report, and does not address

the serious concerns about the growing availability of high performance computers raised in the Commerce- and Defense Department-sponsored study issued in November 1995.

Although the examples just provided use MTOPS, this should not be construed to mean that MTOPS is the benchmark that should be used. Such a measure does not take into account advances in computer architectures that now allow the development of a large-scale, massively parallel computing resource from a cluster of commodity computing and networking components. In essence, by combining a number of readily available computers and networking components that would not require an export license, an organization can produce a very high powered computing resource. The operating system software that is necessary to utilize this resource is readily available from the Internet. However, a high performance computer by itself does not convey the ability to solve complex problems because application software is also necessary to conduct the proper analyses.

The task I have just described for the executive branch is not an easy one. It involves addressing difficult issues in an area of rapid technological change. Questions about the use of technology, the computer market, and DOD’s own acquisition programs must be answered. Some key questions include the following: Does U.S. national security interest include maintaining a relative computing power advantage in deployed weapon systems (for example, air defense radar or command and control systems)? Are different strategies necessary to respond to the threats posed by the use of high performance computers in research and development and in deployed weapon systems? Will the availability of high performance computers help other countries develop and deploy new weapons or allow them to counter U.S. superiority in certain military applications? Does the growth of distributed computing make the use of MTOPS obsolete as an export control measure by which to restrict computer exports?

Before leaving this topic, I want to point out that a critical analysis of national security applications of concern may lead to conclusions that are very different regarding export control levels than are currently in place or being proposed by the executive branch. Indeed, DOD may conclude that significant national security concerns involve computer performance levels that are higher than current control levels.

While the executive branch has not clearly articulated the national security interests in controlling high performance computers, it has developed a general explanation for its export decontrol decisions. In short, these decisions are based on conclusions that these computers are becoming widely available and, therefore, are uncontrollable.

It is important to note that the President’s 1999 report to Congress concluded that there are militarily significant applications in the new control range, and, if not for their widespread availability, these applications would need to be controlled. These applications include advanced aircraft design, antisubmarine warfare sensor development, and radar applications. Consequently, the new control levels were not based on an assessment that these higher computing performance levels do not involve national
security applications but rather that computers in this performance range are so widely available that they are uncontrollable.

Our November 1999 review of the changes in export control levels indicated that the administration's conclusions that the capabilities of high performance computers and related components, from both domestic and foreign sources, are generally increasing were supported because the United States does not generally control the export of computer processors and components. However, most sources of this supply are U.S. companies. Our earlier 1998 review reported that subsidiaries of U.S. computer manufacturers dominate the overseas high performance computer market and they must comply with U.S. controls. The 1998 study sponsored by DOD and Commerce similarly found that the United States dominates the international computer market, at least in the mid- and high-range performance categories. Under current regulations, computer processors that perform up to 3,500 MTOPS can be directly exported to civilian end-users in many tier 3 countries including China and Russia. Exports of processors to such users in many other tier 3 countries, such as Israel and Saudi Arabia, are not subject to any MTOPS limit that requires a license. Exports of other key components for computer systems with four and eight processors are also not generally controlled; these parts can be shipped to tier 3 countries for civilian end-users, which could then use them to support the assembly of computers.

The administration's latest changes in the control levels for high performance computers were based on a determination that high performance computing capability is becoming increasingly available. For example, the 1999 changes in control levels were based on the conclusion that these capabilities are widely available and are therefore uncontrollable. The President's July 1999 report to Congress explaining these changes stated that due to the rapid advances in processor speeds and related technologies, foreign countries can obtain high performance computers directly or indirectly from a vendor, a reseller, or another third party or assemble such a computer using U.S. processors and components. According to administration officials, the specific export control levels announced in July 1999, and that went into effect in January 2000 for tier 3 military end-users, were based on the expected performance levels of computers using four and eight Intel Pentium processors that are projected to be on the market in July 2000.

While we found evidence to support the report's conclusion that computers with greater capabilities and related components are becoming increasingly available, we could not assess the administration's determination that computers rated below the new control levels are so widely available that they are effectively uncontrollable. An assessment of controllability involves critical evaluations of when and in what quantities an item should be considered so widely available as to be uncontrollable, and is dependent upon the resources applied by government and industry to control such exports. However, "widely available" and "uncontrollable" are terms not defined in current export control laws or regulations. Defense and Commerce Department officials stated that the analysis they prepared in support of the President's report relied on definitions that were developed in

1995 and 1998 studies they jointly sponsored. However, the discussion of the terms in these studies is general and without measurable criteria. Further, there is no mention in the President’s 1999 report to Congress justifying the announced computer control revisions that defines how these concepts have been applied in setting the new export control levels. Thus, except to agree with the general conclusion in the President’s report that the availability of computing power in the commercial marketplace is increasing, we could not determine if the executive branch is correct in concluding that export controls had to be relaxed for high performance computers. Consequently, our 1999 report recommended that the administration develop specific criteria defining both “widely available” and “controllability.”

This discussion brings me to one final point. The Senate bill (S. 1712) to establish a new Export Administration Act uses the term “mass market status” as one determinant for relaxing export controls. This term is defined very similarly to how the administration appears to use the term “widely available” as it relates to high performance computers. Both terms imply that an item is so commercially available that it cannot be controlled, but without providing the quantifiable measures necessary to make such an analysis. S. 1712 does provide a number of general criteria that might be helpful in making decisions about controlling the export of high performance computers. However, in developing the implementing regulations, Commerce may wish to provide more objective and empirical criteria to use in making these decisions. If it does not, then when this rather subjective standard is applied in the future to items controlled under the act, it will be difficult to assess whether this standard was applied appropriately.

Mr. Chairman, this concludes my prepared testimony. I would be happy to respond to any questions you or other members may have.

CONTACT AND ACKNOWLEDGEMENT

For future contacts regarding this testimony, please contact Harold J. Johnson at (202) 512-4128. Individuals making key contributions to this testimony included, F. James Shafer and Jeffrey D. Phillips.
APPENDIX PERFORMANCE LEVELS OF COMPUTERS THAT SUPPORT SELECTED
APPLICATIONS OF MILITARY SIGNIFICANCE

<table>
<thead>
<tr>
<th>Computer performance level (MTOPS)</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,000 to 6,000</td>
<td>Joint Attack Strike Aircraft design; nonacoustic antisubmarine warfare sensor development; advanced synthetic aperture radar computation</td>
</tr>
<tr>
<td>8,000 to 9,000</td>
<td>Bottom-contour modeling of shallow water in submarine design; some synthetic aperture radar applications; algorithm development for shipboards' infrared search and track</td>
</tr>
<tr>
<td>10,457 to 21,125</td>
<td>Nuclear blast simulation</td>
</tr>
<tr>
<td>15,500 to 17,500</td>
<td>Computational fluid dynamics applications to model the turbulence around aircraft under extreme conditions</td>
</tr>
<tr>
<td>20,000 to 22,000</td>
<td>Weather forecasting; impact of blasts on underground structures; advanced aircraft design</td>
</tr>
<tr>
<td>21,125+</td>
<td>Submarine design; shallow water acoustics analysis</td>
</tr>
<tr>
<td>24,000+</td>
<td>Automatic target recognition template development</td>
</tr>
<tr>
<td>= 120,000</td>
<td>Multi-line towed array signal processing</td>
</tr>
</tbody>
</table>

ORDERS BY INTERNET

For information on how to access GAO reports on the INTERNET, send an e-mail message with “info” in the body to

Info@www.gao.gov

or visit GAO's World Wide Web Home Page at

http://www.gao.gov

TO REPORT FRAUD, WASTE, AND ABUSE IN FEDERAL PROGRAMS

Contact one:

• website: http://www.gao.gov/fraudnet/fraudnet.htm
• e-mail: fraudnet@gao.gov
• 1-800-424-5454 (automated answering system)