Calculating the Microstructure of Atmospheric Optical Turbulence

Arnold Tunick

ARL-MR-419

December 1998

Approved for public release; distribution unlimited.
The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
Calculating the Microstructure of Atmospheric Optical Turbulence

Arnold Tunick
Information Science and Technology Directorate

Approved for public release; distribution unlimited.
Turbulent fluctuations in air density can cause significant distortions of an electromagnetic signal or image. Density fluctuations can be described in terms of air temperature, air pressure, water vapor, and CO$_2$ content. We can calculate the refractive index structure constant, C_n^2, with the fine-scale dynamics of heat, moisture, and momentum diffusion. This helps us to quantify the intensity of turbulence-induced refraction. A better understanding of turbulence-induced refraction can provide a means of evaluating sensors under various atmospheric conditions or be used in the development of turbulence-compensation adaptive optic systems. This paper annotates one set of equations for the refractive index structure constant, C_n^2, taken from the literature.
Contents

1. Introduction ... 1

2. Model Equations ... 3
 2.1 Refractive Index Structure Constant .. 3
 2.2 Refractive Index of Air and Its Partial Derivatives .. 4

3. A Model of the Microstructure of Atmospheric Optical Turbulence .. 7

4. Summary ... 8

References ... 9

Distribution .. 11

Report Documentation Page .. 17

Figure

1. CN2 model output compared to scintillometer data taken at 2 m over a horizontal path of 450 m.. 2

Tables

1. Microstructure of atmospheric optical turbulence model physical constants 7
2. Microstructure of atmospheric optical turbulence model input and output 8
1. Introduction

Atmospheric optical turbulence can modify the refractive index in air in a way that can significantly alter the transmission and propagation of an electromagnetic image or signal [1]. Even through weak turbulence, a laser beam can become highly scintillated and exhibit strong intensity fluctuations if propagated over a long distance [2]. Also, optical turbulence can reduce the efficiency of laser systems propagated from the ground to an object in space [3]. In this regard, Walters [4] presented the results of an investigation to develop a data-reduction algorithm for sequences of balloon-borne data aimed at providing vertical profiles of the refractive index structure constant. Walters asserts that knowledge of both turbulence and wind speed profiles could be helpful for the development of turbulence-compensation adaptive optic systems.

Andreas [5] defines the problem of estimating the refractive index structure constant from meteorological point measurements and raises the question of whether or not point measurements can be used to predict a path-averaged assessment of turbulence-induced refraction. He cites Davidson et al [6] for an example of a bulk-layer method applied to estimating overwater optical turbulence. Also, Tunick et al [7] reported on an experiment wherein radiation and energy budget-derived turbulence data are compared to scintillometer-retrieved data taken over a bare soil path of 450 m. The semi-empirical models presented in Rachele and Tunick [8] and Tunick [9] have also made estimates of the refractive index structure constant for comparison to observed turbulence (scintillometer) data. However, these types of first-order difference routines can result in significant and sometimes extreme errors when point data in space and time are used to represent area or path averages (see fig. 1), particularly throughout periods before or after sunrise and sunset.

However, with increasing interest in high-performance computing, modeling the intensity turbulence-induced refraction is being re-investigated through the use of large eddy simulations [10,11]. The refractive index structure constant is recast as a variable that can be determined locally, given values for the heat and momentum flux and gradients of pressure, temperature, wind speed, and specific humidity. As a means of illustrating a calculation of atmospheric optical turbulence of this type, an algorithm could be derived from equations collated from different articles in the open literature and tested using field experiment data. In this report, the algorithm MAOT (Microstructure of Atmospheric Optical Turbulence), derived from equations collated from different articles in the open literature, is presented and the calculation is tested using data generated from observations [12,7].
Figure 1. CN2 model output compared to scintillometer data taken at 2 m over a horizontal path of 450 m.

2. Model Equations

2.1 Refractive Index Structure Constant

Hill [13] gives an expression for the refractive index structure constant as

$$C_n^2 = \frac{\langle [n(x) - n(x + r)]^2 \rangle}{r^2} = \frac{D_n(r)}{r^2},$$

where n is the refractive index in air, (x) and $(x + r)$ denote position in space, and the ensemble mean variance $\langle [n(x) - n(x + r)]^2 \rangle$ is the scalar structure function. Batchelor [14] gives a connection between the function, $D_n(r)$, in r space, and the spectrum for the scalar, $\Gamma_n(k)$, in k space as

$$D_n(r) = 2 \int_0^{\infty} \left[1 - \frac{\sin (rk)}{rk} \right] \Gamma_n(k) \, dk,$$

where k is the wave number. Through dimensional analysis, the scalar structure function and the scalar spectrum can be expressed in terms of the dissipation rate of turbulent kinetic energy, ε, and the diffusive dissipation rate of the scalar variance, χ_n. Hill [13] gives χ_n as

$$\chi_n = 2 d_n \| \nabla n \|^2,$$

where, $d_n = d_h$, assuming that the diffusion coefficients for the scalars refractive index and potential temperature are effectively the same [15]. Then

$$d_n = d_h = \langle u' \theta' \rangle / \langle \partial \theta / \partial z \rangle.$$

The variable ε can be expressed as

$$\varepsilon = (g / \theta) \langle u' \theta' \rangle - \langle u' w' \rangle \langle \partial U / \partial z \rangle,$$

where g is the acceleration due to gravity, $\langle u' w' \rangle$ is the ensemble mean eddy transport of horizontal momentum, $\langle u' \theta' \rangle$ is the ensemble mean kinetic heat flux, $\partial \theta / \partial z$ is the vertical gradient of potential temperature, and $\partial U / \partial z$ is the vertical gradient of the total horizontal wind [16].

The resulting expressions for the scalar structure function and the scalar spectrum are

$$D_n(r) = b_n \chi_n \varepsilon^{1/3} r^{2/3},$$

and

$$\Gamma_n(k) = \beta_n \chi_n \varepsilon^{1/3} k^{-5/3},$$
given the Kolmogorov 2/3- and –5/3-dependencies for \(r \) and \(k \), respectively, where \(b_n \) and \(\beta_n \) are constants (Hill [17,18] gives \(\beta_n = 0.72 \)). When equations (6) and (7) are substituted into equation (2), \(b_n \) is given as

\[
b_n = -\frac{6}{5} \beta_n \int \left[\frac{\cos (x)}{(x)^{3/5}} \right] dx = \frac{9}{10} \Gamma(1/3) \beta_n .
\] (8)

Relationships among the gamma functions, \(\Gamma(p) \), for \(0 < p < 1 \) are given by Weast et al [19]. Finally, the expression for the structure constant in equation (1) can be rewritten as

\[
C_n^2 = 2 b_n d_n \varepsilon^{-1/3}(\partial n/\partial z)^2 ,
\] (9)

where \(b_n = 1.736 \).

2.2 Refractive Index of Air and Its Partial Derivatives

The refractive index of air for the visible and near-infrared (3650 to 6328 Å) region of the electromagnetic spectrum is expressed [20,21] in terms of wavelength (in micrometers), barometric pressure (\(P \), in millibars), temperature (\(T \), in degrees Kelvin), and vapor pressure (\(e \), the partial pressure of the atmosphere due to water vapor content, also in millibars) in the form presented by Andreas [5]:

\[
n_{vi} = 1.0 + \left[m_1 \frac{P}{T} + (m_1 + m_2) \frac{e}{T} \right] \times 10^{-6} ,
\] (10)

where temperature, \(T \), is defined as \(T = \theta (P/P_s)^{(2/7)}; P_s \) is normally defined as sea level barometric pressure,

\[
m_1 = 23.7134 + \frac{6839.397}{130.0 - \sigma^2} + \frac{45.473}{38.9 - \sigma^2} ,
\] (11)

and

\[
m_2 = 64.8731 + 0.58058 \sigma^2 - 0.007115 \sigma^4 + 0.0008851 \sigma^6 ,
\] (12)

where \(\sigma = 1.0/\lambda (\mu m^{-1}) \).

In the infrared region of the electromagnetic spectrum from 78,000 to 190,000 Å [20,22], the refractive index is expressed in the form

\[
n_{ir} = 1.0 + m_1 \frac{(P - e)}{T} + n_{irw} \times 10^{-6} ,
\] (13)

where the refractive index of water vapor is given as

\[
n_{irw} = Q \left[\frac{957.0 - 928.0 (T/T_o)^{0.4} (X - 1.0)}{1.03(T/T_o)^{0.17} - 19.8X^2 + 8.2X^4 - 1.7X^8} + \frac{3.747 \times 10^6}{12,449.0 - X^2} \right] ,
\] (14)
where $Q = 0.2166847 \, \ell / \ell$, absolute humidity is in kg/m³, and

$$X = \frac{10.0 \, (\mu m)}{\lambda \, (\mu m)} . \quad (15)$$

In equations (10) and (13), vapor pressure, e, in millibars, can be expressed [23] in terms of specific humidity, q, in units of grams of water vapor content per kilogram of moist air (dry air and water vapor combined) in the following form:

$$e = \frac{P \, q}{m_w/m_a + (1 - m_w/m_a) \, q} , \quad (16)$$

where specific humidity is defined [24] as

$$q = \frac{e_s \, m_w/m_a}{P} \, \frac{RH}{100.0} \, \exp \left\{ \frac{m_w \, L_v}{R^* \, (1.0 - 1.0)} \right\} , \quad (17)$$

where $e_s = 6.1078$ mbar is the saturation vapor pressure at 0.0 °C; m_w and m_a are the molecular weights of water vapor and of dry air, respectively; $L_v = 2.5008 \times 10^6 + 2.3 \times 10^3 \, T$ (in degrees Celsius) is the latent heat of vaporization; $R^* = 8314.32$ J °K⁻¹kmol⁻¹ is the universal gas constant; and RH is relative humidity in percent.

The derivatives of the refractive index given by equations (10) and (13) take the form

$$\frac{\partial n}{\partial z} = \frac{\partial n}{\partial T} \frac{\partial T}{\partial z} + \frac{\partial n}{\partial e} \frac{\partial e}{\partial z} , \quad (18)$$

so that

$$\frac{\partial n}{\partial T} = \left\{ - m_1 \frac{P}{T^2} - (m_2 - m_1) \frac{e}{T^2} \frac{\partial e}{\partial T} \right\} \times 10^{-6} , \quad (19)$$

where

$$\frac{\partial e}{\partial T} = - \frac{1.0}{T^2} \frac{L_v}{R^*/m_w} \exp \left\{ \frac{L_v}{R^*/m_w} \left(\frac{1.0}{T_o} - \frac{1.0}{T} \right) \right\} \times \left\{ \frac{(e^2 - e)}{P \, q} \right\} . \quad (20)$$

The partial derivative of n with respect to vapor pressure takes the form

$$\frac{\partial n}{\partial e} = \frac{(m_2 - m_1)}{T} \times 10^{-6} . \quad (21)$$

The partial derivative of vapor pressure takes the form

$$\frac{\partial e}{\partial z} = \frac{\partial e}{\partial q} \frac{\partial q}{\partial z} , \quad (22)$$
where
\[
\frac{\partial e}{\partial q} = \frac{m_w/m_a P}{(m_w/m_a + (1.0 - m_w/m_a)q)^2}.
\] (23)

The partial derivative of \(T \) in terms of the scalar potential temperature takes the form
\[
\frac{\partial T}{\partial z} = \frac{\partial \theta}{\partial z} + 2.07 \frac{P_s(P_s/P)^{5/2} \partial P}{(P_s/P)^2}.
\] (24)

Equations (13) and (14) can be rewritten as
\[
n_{ir} = 1 + \left[m_1 \frac{P}{T} + (0.21668f(T) - m_1) \frac{e}{T} \right] \times 10^{-6},
\] (25)

where
\[
[A] = \left[\frac{957.0 - 928.0(T/T_o)^{0.4}(X - 1.0)}{1.03(T/T_o)^{0.17} - 19.8X^2 + 8.2X^4 - 1.7X^8} + \frac{3.747 \times 10^6}{12449.0 - X^2} \right].
\] (26)

The partial derivative of \(n_{ir} \) with respect to temperature can now take the form
\[
\frac{\partial n_{ir}}{\partial T} = -\left[m_1 \frac{P}{T^2} - \frac{e}{T} \left(0.21668[A] - m_1 \right) \frac{\partial [A]}{\partial T} \right] \times 10^{-6},
\] (27)

where
\[
\frac{\partial [A]}{\partial T} = -\frac{0.1751 \left(\frac{T}{T_o} \right)^{-0.83} \left(957.0 - 928.0 \left(\frac{T}{T_o} \right)^{0.4}(X - 1.0) \right)}{\left(1.03 \left(\frac{T}{T_o} \right)^{0.17} - 19.8X^2 + 8.2X^4 - 1.7X^8 \right)^2}
\] (28)

\[-\frac{371.2 \left(\frac{T}{T_o} \right)^{0.6}}{273.15 \left(\frac{T}{T_o} \right)^{0.17} - 19.8X^2 + 8.2X^4 - 1.7X^8}.\]

Lastly, the partial derivative of \(n_{ir} \) with respect to vapor pressure takes the form
\[
\frac{\partial n_{ir}}{\partial e} = \left[\frac{(0.21668[A] - m_1)}{T} \right] \times 10^{-6}.
\] (29)
3. A Model of the Microstructure of Atmospheric Optical Turbulence

The equations presented in sections 2.1 and 2.2 were programmed in FORTRAN to produce a computer model called MAOT. The MAOT model computes the refractive index structure constant, given values for the heat and momentum flux and gradients of pressure, temperature, wind speed, and specific humidity as input. Table 1 gives values for the model’s physical constants. Table 2 gives the results of testing the MAOT calculation for different conditions of atmospheric stability. The model input is generated from observed surface layer data that were reported by Tunick et al [7] except for the last column, which was derived from the micrometeorological data reported by Stenmark and Drury [12].

Values of \(C_n^2 \) have been generally observed to range from about \(10^{-12} \) to \(10^{-16} \text{ m}^{-2/3} \). The values of \(C_n^2 \) for the column labeled Unstable (approximately \(10^{-12} \text{ m}^{-2/3} \)) imply that the turbulence is intense, and considerable image blurring or signal distortion could occur (similar to that seen when one looks over an open field or a paved lot on a hot day). In contrast, the values of \(C_n^2 \) for the column labeled Weakly stable (approximately \(10^{-16} \text{ m}^{-2/3} \)) imply that the intensity of the optical turbulence might be considered negligible, except for where a light beam is transmitted over a long distance. Higher values of \(C_n^2 \) given in table 1 correlate with higher (absolute) values of kinematic heat flux and potential temperature gradient. The lower values of \(C_n^2 \) given in table 1 correlate with higher values of momentum flux and wind speed gradient. This observation makes the point that surface layer stability and turbulence are generally lessened by the effects of wind shear and surface stress.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolmogorov or Corrsin constant</td>
<td>(b_n)</td>
<td>---</td>
<td>1.736</td>
</tr>
<tr>
<td>Acceleration due to gravity</td>
<td>(g)</td>
<td>m/s²</td>
<td>9.8</td>
</tr>
<tr>
<td>Temperature scaling</td>
<td>(T_0)</td>
<td>°K</td>
<td>273.15</td>
</tr>
<tr>
<td>Molecular weight of water vapor</td>
<td>(m_w)</td>
<td>g/mol</td>
<td>18.016</td>
</tr>
<tr>
<td>Molecular weight of dry air</td>
<td>(m_a)</td>
<td>g/mol</td>
<td>28.966</td>
</tr>
<tr>
<td>Universal gas constant</td>
<td>(R^*)</td>
<td>J°K⁻¹kmol⁻¹</td>
<td>8314.32</td>
</tr>
<tr>
<td>Saturation vapor pressure at 0.0 °C</td>
<td>(e_s)</td>
<td>mbar</td>
<td>6.1078</td>
</tr>
<tr>
<td>Reference level pressure</td>
<td>(P_s)</td>
<td>mbar</td>
<td>1013.25</td>
</tr>
</tbody>
</table>
Table 2. Microstructure of atmospheric optical turbulence model input and output.*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Condition of atmospheric stability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Unstable</td>
</tr>
<tr>
<td>Kinematic heat flux</td>
<td>°K m/s</td>
<td>–0.470</td>
</tr>
<tr>
<td>Momentum flux</td>
<td>m²/s²</td>
<td>–0.164</td>
</tr>
<tr>
<td>Potential temperature gradient</td>
<td>°K/m</td>
<td>–0.670</td>
</tr>
<tr>
<td>Wind speed gradient</td>
<td>m/s/m</td>
<td>0.330</td>
</tr>
<tr>
<td>Specific humidity gradient</td>
<td>g/m</td>
<td>–1.133 x 10⁻⁴</td>
</tr>
<tr>
<td>Pressure gradient</td>
<td>mbar/m</td>
<td>–0.10</td>
</tr>
</tbody>
</table>

Model output

| Cn² visible | m⁻²/³ | 1.633 x 10⁻¹² | 3.382 x 10⁻¹⁴ | 8.590 x 10⁻¹⁶ | 1.176 x 10⁻¹³ |
| Cn² IR | m⁻²/³ | 1.763 x 10⁻¹² | 3.479 x 10⁻¹⁴ | 5.283 x 10⁻¹⁵ | 1.154 x 10⁻¹³ |

*Electromagnetic wavelength—visible 0.94 µm
Electromagnetic wavelength—IR 10.6 µm

4. Summary

The propagation of a light beam through the atmosphere is affected by random fluctuations in the refractive index of air [24] and it is these fluctuations or discontinuities that cause optical turbulence. The refractive index structure parameter is the quantitative measure for such turbulence. In this report, I have presented the algorithm MAOT, derived from equations collated from different articles in the open literature. The MAOT calculation was tested using kinematic heat flux and momentum flux data generated from observations. MAOT was regarded as a step taken toward enhancing calculations of refractivity in the surface layer through the diurnal cycle.
References

Distribution

Admnstr
Defns Techl Info Ctr
Attn DTIC-OCP
8725 John J Kingman Rd Ste 0944
FT Belvoir VA 22060-6218

Mil Asst for Env Sci
Ofc of the Undersec of Defns for Rsrch & Engrg R&AT E LS
Pentagon Rm 3D129
Washington DC 20301-3080

Ofc of the Dir Rsrch and Engrg
Attn R Menz
Pentagon Rm 3E1089
Washington DC 20301-3080

Ofc of the Secy of Defns
Attn ODDRE (R&AT)
Attn ODDRE (R&AT) S Gontarek
The Pentagon
Washington DC 20301-3080

OSD
Attn OUSD(A&T)/ODDDR&E(R) R J Trew
Washington DC 20301-7100

ARL Chemical Biology Nuc Effects Div
Attn AMSRL-SL-CO
Aberdeen Proving Ground MD 21005-5423

Army Corps of Engrs Engr Topographies Lab
Attn CETEC-TR-G P F Krause
7701 Telegraph Rd
Alexandria VA 22315-3864

Army Dugway Proving Ground
Attn STEDP 3
Attn STEDP-MT-DA-L-3
Attn STEDP-MT-M Biltsoft
Attn STEDP-MT-M Bowers
Dugway UT 84022-5000

Army Field Artillery School
Attn ATSF-TSM-TA
FT Sill OK 73503-5000

Army Foreign Sci Tech Ctr
Attn CM
220 7th Stret NE
Charlottesville VA 22901-5396

Army Infantry
Attn ATSH-CD-CS-OR E Dutoit
FT Benning GA 30905-5090

Army Materiel Sys Analysis Activity
Attn AMXSY-AT Campbell
Attn AMXSY-CS Bradley
Aberdeen Proving Ground MD 21005-5071

Army Rsrch Ofc
Attn AMXRO-GS Bach
PO Box 12211
Research Triangle Park NC 27709

Army Strat Defns Cmd
Attn CSSD-SL-L Lilly
PO Box 1500
Huntsville AL 35807-3801

Army TACOM-ARDEC
Attn AMSTA-AR-WEL-TL
Bldg 59 Phillips Rd
Picatinny Arsenal NJ 07806-5000

CECOM
Attn PM GPS COL S Young
FT Monmouth NJ 07703

Hdqtrs Dept of the Army
Attn DAMO-FDT D Schmidt
400 Army Pentagon Rm 3C514
Washington DC 20301-0460

Kwajalein Missile Range
Attn Meteorologist in Charge
PO Box 57
APO San Francisco CA 96555

Natl Security Agency
Attn W21 Longbothum
9800 Savage Rd
FT George G Meade MD 20755-6000

Pac Mis Test Ctr
Geophysics Div
Attn Code 3250 Battalino
Point Mugu CA 93042-5000

Science & Technology
101 Research Dr
Hampton VA 23666-1340
Distribution (cont’d)

US Army Aviation and Missile Command
Attn AMSMI-RD-WS-PL G Lill Jr
Bldg 7804
Redstone Arsenal AL 35898-5000

US Army CECRL
Attn CECRL-RG Boyne
72 Lyme Rd
Hanover NH 03755-1290

US Army Combined Arms Combat
Attn ATZL-CAW
FT Leavenworth KS 66027-5300

US Army CRREL
Attn CEREL-GP R Detsch
72 Lyme Rd
Hanover NH 03755-1290

US Army Field Artillery Schl
Attn ATSF-TSM-TA Taylor
FT Sill OK 73503-5600

US Army Intel Ctr and FT Huachuca
Attn ATSI-CDC-C Colanto
FT Huachuca AZ 85613-7000

US Army Nuclear & Chem Agency
Attn MONA-ZB
Bldg 2073
Springfield VA 22150-3198

US Army OEC
Attn CSTE-EFS
Park Center IV 4501 Ford Ave
Alexandria VA 22302-1458

US Army Spc Technology Rsrch Ofc
Attn Brathwaite
5321 Riggs Rd
Gaithersburg MD 20882

US Army Topo Engrg Ctr
Attn CETEC-ZC
FT Belvoir VA 22060-5546

US Army TRADOC Anlys Cmnd—WSMR
Attn ATRC-WSS-R
White Sands Missile Range NM 88002

US Army White Sands Missile Range
Attn STEWS-IM-IT Techl Lib Br
White Sands Missile Range NM 88002-5501

US Military Academy
Mathematical Sci Ctr of Excellence
Attn MDN-A MAJ M D Phillips
Dept of Mathematical Sci Thayer Hall
West Point NY 10996-1786

USATRADOC
Attn ATCD-FA
FT Monroe VA 23651-5170

Nav Air War Cen Wpn Div
Attn CMD 420000D C0245 A Shlanta
1 Admin Cir
China Lake CA 93555-6001

Nav Ocean Sys Ctr
Attn Code 54 Richter
San Diego CA 92152-5000

Nav Rsrch Lab
Attn Code 4110 Ruhnke
Washington DC 20375-5000

Nav Surface Warfare Ctr
Attn Code B07 J Pennella
17320 Dahlgren Rd Bldg 1470 Rm 1101
Dahlgren VA 22448-5100

Naval Surface Weapons Ctr
Attn Code G63
Dahlgren VA 22448-5000

AFCCC/DOC
Attn Glauber
151 Patton Ave Rm 120
Asheville NC 28801-5002

Air Force
Attn Weather Techl Lib
Asheville NC 28801-5002

Hdqtrs AFWA/DNX
106 Peacekeeper Dr Ste 2N3
Offutt AFB NE 68113-4039

Phillips Lab Atmos Sci Div
Geophysics Dirctr
Attn McClatchey
Hanscom AFB MA 01731-5000

Phillips Lab Atmospheric Sci Div
Geophysics Dirctr
Kirtland AFB NM 87118-6008
Distribution (cont’d)

Phillips Laboratory
Attn AFRL-VSBE Chisholm
Attn PL/LYP 3
Attn PL/WE
29 Randolph Rd
Kirtland AFB NM 87118-6008

TAC/DOWP
Langley AFB VA 23665-5524

USAF Rome Lab Tech
Attn Corridor W Ste 262 RL SUL
26 Electr Pkwy Bldg 106
Griffiss AFB NY 13441-4514

DARPA
Attn B Kaspar
3701 N Fairfax Dr
Arlington VA 22203-1714

NASA Marshal Space Flt Ctr
Attn Code ED-41
Huntsville AL 35812

NASA Spct Flt Ctr
Attn Code ED 41 1
Huntsville AL 35812

NASA/ Marshall Spc Flight Ctr
Attn Code ED-41
Huntsville AL 35812

Colorado State Univ
Dept of Atmospheric Sci
Attn R A Pielke
FT Collins CO 80523

Cornell Univ
School of Civil & Env
Attn W H Brutsaert
Hollister Hall
Ithica NY 14853-3501

Florida State Univ
Dept of Meteorology
Attn E A Smith
Tallahassee FL 32306

Iowa State Univ
Attn E S Takle
Attn R Arritt
312 Curtiss Hall
Ames IA 50011

Iowa State Univ
Attn M Segal
Attn S E Taylor
2104 Agronomy Hall
Ames IA 50011-1010

Michigan State Univ
Dept of Crop & Soil Sci
Attn J Ritchie
8570 Plant & Soil Sciences Bldg
East Lansing MI 48824-1325

Penn State Univ
Dept of Meteorology
Attn D Thompsom
503 Walker Bldg
University Park PA 16802

Rutgers Univ-Cook Campus
Envir & Natl Resources Bldg
Attn R Avissar
New Brunswick NJ 08903

Univ of Alabama at Huntsville
Rsrch Instit
Attn R T Mcnider
Huntsville AL 35899

Univ of California at Davis
Dept of Air, Land, & Water Resources
Attn R H Shaw
Davis CA 95616

Univ of Connecticut
Dept of Renewable Natural Resources
Attn D R Miller
1376 Storrs Rd
Storrs CT 06269-4087

Univ of Nebraska
Dept of Agrcltl Meteorology
Attn S B Verma
Lincoln NE 68583-0728
Distribution (cont’d)

University of Kansas
Dept of Physics & Astronomy
Attn J R Eagleman
Lawrence KS 66045

Washington State Univ
Dept of Agronomy & Soils
Attn G S Campbell
Pullman WA 99163

Agrclt Rsrch Svc
Conserve & Prodn Rsrch Lab
Attn A D Schneider
Attn S R Evett
Attn T A Howell
PO Drawer 10
Bushland TX 79012

Dean RMD
Attn Gomez
Washington DC 20314

Dept of Commerce Ctr
Mountain Administration
Attn Sppt Ctr Library R51
325 S Broadway
Boulder CO 80303

Hicks & Associates, Inc
Attn G Singley III
1710 Goodrich Dr Ste 1300
McLean VA 22102

Natl Ctr for Atmospheric Research
Attn NCAR Library Serials
PO Box 3000
Boulder CO 80307-3000

NCAR
Attn T W Horst
Boulder CO 80307-3000

NCAR/SSSF
Attn S P Oncley
Boulder CO 80307-3000

NCSU
Attn J Davis
PO Box 8208
Raleigh NC 27650-8208

NTIA ITS S3
Attn H J Liebe
325 S Broadway
Boulder CO 80303

Pacific Missile Test Ctr
Geophysics Div
Attn Code 3250
Point Mugu CA 93042-5000

Raytheon Company
Equip Div
Attn Sonnenschein
528 Boston Post Rd MS 1K9
Sudbury MA 01776

Sigma Rsrch Corp
Attn S R Hanna
544 Hill Rd
Boxborough MA 01719

USDA Agrcltl Rsrch Svc
Attn W P Kustas
BARC0WEST Bldg 265
Beltville MD 20705

USDA Agrcltl Rsrch Svc
Attn R D Jackson
Attn S B Idso
4331 E Broadway Rd
Phoenix AZ 85040

USDA Forest Svc Rocky Mtn Frst & Range
Exprmnt Sta
Attn K F Zeller
240 W Prospect Stret
FT Collins CO 80526

US Army Rsrch Lab
Attn AMSRL-IS-EA J Harris
Attn AMSRL-IS-EW D Hooch
Battlefield Envir Dir
White Sands Missile Range NM 88002-5001

US Army Rsrch Lab
Attn AMSRL-D J Lyons
Attn AMSRL-DD J Rocchio
Attn AMSRL-CI-LL Techl Lib (3 copies)
Attn AMSRL-CS-AS Mail & Records Mgmt
Distribution (cont’d)

US Army Rsrch Lab (cont’d)
Attn AMSRL-CS-EA-TP Techl Pub (3 copies)
Attn AMSRL-IS J D Gantt
Attn AMSRL-IS-E Brown
Attn AMSRL-IS-EE A D Tunick (15 copies)
Attn AMSRL-IS-EE D Garvey
Attn AMSRL-IS-EE R Meyers
Attn AMSRL-SE-EE Z G Sztankay
Adelphi MD 20783-1197
Calculating the Microstructure of Atmospheric Optical Turbulence

Turbulent fluctuations in air density can cause significant distortions of an electromagnetic signal or image. Density fluctuations can be described in terms of air temperature, air pressure, water vapor, and CO₂ content. We can calculate the refractive index structure constant, \(C_n^2 \), with the fine-scale dynamics of heat, moisture, and momentum diffusion. This helps us to quantify the intensity of turbulence-induced refraction. A better understanding of turbulence-induced refraction can provide a means of evaluating sensors under various atmospheric conditions or be used in the development of turbulence-compensation adaptive optic systems. This paper annotates one set of equations for the refractive index structure constant, \(C_n^2 \), taken from the literature.