GRANT NUMBER DAMD17-96-1-6163

TITLE: New Approaches to Chemoprevention of Breast Cancer

PRINCIPAL INVESTIGATOR: Michael B. Sporn, Ph.D.

CONTRACTING ORGANIZATION: Dartmouth College
Hanover, NH 03755

REPORT DATE: September 1998

TYPE OF REPORT: Final

PREPARED FOR: Commander
U.S. Army Medical Research and Materiel Command
Fort Detrick, Frederick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release;
distribution unlimited

The views, opinions and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision unless so
designated by other documentation.
New Approaches to Chemoprevention of Breast Cancer

Michael B. Sporn, Ph.D.

Dartmouth College
Hanover, NH 03755

Commander
U.S. Army Medical Research and Materiel Command
Fort Detrick, Frederick, Maryland 21702-5012

Approved for public release; distribution unlimited

Triterpenoids, natural products related to steroids and retinoids, represent an important class of new structures for drug discovery, with potential applications in many fields of medicine, particularly cancer. This project involves the development of new synthetic triterpenoids for eventual use as agents for chemoprevention or chemotherapy of breast cancer. Although the naturally occurring triterpenoids, ursolic acid (UA) and oleanolic acid (OA), have been shown to have some anti-carcinogenic activity, they are relatively weak agents. During the past year, we have synthesized over 150 new triterpenoids, and many of these have been assayed as inhibitors of de novo formation of inducible nitric oxide synthase (iNOS) and inducible cyclooxygenase (COX-2), two enzymes highly relevant to the carcinogenesis in the breast. We have also screened these new triterpenoids as inducers of differentiation in NB-4 leukemia cells and as non-cytotoxic suppressors of estrogen-stimulated growth in MCF-7 breast cancer cells. Several new triterpenoids are markedly more active in these assays than their respective parents, UA or OA.
Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the U.S. Army.

Where copyrighted material is quoted, permission has been obtained to use such material.

Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

Citations of commercial organizations and trade names in this report do not constitute an official Department of Army endorsement or approval of the products or services of these organizations.

In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Resources, national Research Council (NIH Publication No. 86-23, Revised 1985).

For the protection of human subjects, the investigator(s) adhered to policies of applicable Federal Law 45 CFR 46.

In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

In the conduct of research utilizing recombinant DNA, the investigator(s) adhered to the NIH Guidelines for Research Involving Recombinant DNA Molecules.

In the conduct of research involving hazardous organisms, the investigator(s) adhered to the CDC-NIH Guide for Biosafety in Microbiological and Biomedical Laboratories.

Michael B. Spry, M.D. 9/23/88
PI - Signature Date
Table of Contents

(1) Front Cover
(2) Standard Form 298
(3) Foreword
(4) Table of Contents
(5) Introduction
(6) Body
(7) Conclusion
(8) References
(9) Appendices

1
2
3
4
5
6 - 21
22
23 - 24
25
There is a major need for new drug discovery in the field of breast cancer, and this project is directed toward that goal. There is a particular need for development of new agents that will inhibit progression of premalignant and early malignant lesions to more aggressive, invasive and metastatic stages, since screening techniques are now identifying large numbers of women with such early breast lesions. Furthermore, advances in genetic testing are leading to the identification of many women with a high risk for future development of breast cancer, for whom at present there is no satisfactory preventive modality.

Triterpenoids of an ursane or oleanane structure are very widely distributed in nature, occurring in hundreds of plants all over the world. Although triterpenoids are widely used for medicinal purposes in many Asian countries, this class of molecules, which resemble steroids in their chemical structure, biogenesis, and pleiotropic actions, has not impacted on the practice of Western medicine. Triterpenoids, like the steroids, are formed in nature by the cyclization of squalene, with the retention of all 30 carbon atoms in molecules such as oleanolic acid (OA) and ursolic acid (UA). Although OA and UA are known to have numerous pharmacological activities, including chemoprevention of cancer in experimental animals (Nishino et al., 1988; Huang et al., 1994), the potency of these naturally occurring molecules is relatively weak. Chemical synthesis of new steroid analogs has provided many useful derivatives that are more potent and specific than natural parent structures. With this as a model, and considering the known anti-carcinogenic activities of OA and UA, we have started a new project to synthesize and characterize a new series of synthetic triterpenoid analogs as potential inhibitors of mammary carcinogenesis, using suppression of the formation of nitric oxide and prostaglandins, as well as induction of cadherins/catenins, as assay systems. In addition to these assay systems, we have also performed preliminary assays on new triterpenoids as non-cytotoxic inhibitors of DNA synthesis in human MCF-7 breast cancer cells.

The inducible enzymes that mediate the formation of nitric oxide and prostaglandins (iNOS and COX-2, respectively) are now the focus of major interest in carcinogenesis studies. Elevated activity of both of these enzymes has been particularly implicated in colon carcinogenesis (Takahashi et al., 1997; Prescott and White, 1996), but there is also evidence for their causative involvement in breast cancer (Thomsen et al., 1995; Liu and Rose 1996). Extensive data exist for the role of the cadherin/catenin system in breast cancer (Anzano et al., 1994).
(6) BODY

a) Experimental Methods

1. Studies on Human Breast Cancer Cells

Cell Maintenance:
MCF-7, T47D, or SK-Br-3 cells were maintained in DMEM/F12 with phenol red, 10% fetal bovine serum (Hyclone), Pen/Strep, in a 37°C, 5% CO₂ humidified incubator.

Treatment for Experiment:
Cells were harvested by trypsinization, resuspended in experimental media (RPMI without phenol red, 10% charcoal/dextran-stripped FBS (Hyclone), Pen/Strep), sedimented and washed once with the same media. Cells were then seeded in experimental media at 1200 cells per well in 96-well plates for MTT assay, 6000 cells per well in 24-well plates for ³H-thymidine incorporation, or 10⁶ cells per 9-cm dish for RNA extraction.

Addition of reagents:
Equal volume of experimental media containing 17 β-estradiol (final concentration = 10 pM), desired triterpenoid compound dissolved in DMSO, or vehicle alone at final concentration = 0.1% was added to the cells. Unstimulated control wells received vehicle in experimental media without 17 β-estradiol. Cells were incubated in compounds for three days (³H-thymidine incorporation and RNA extraction) or five days (MTT assay).

Assays
1) MTT
1/10 volume of 5mg/ml MTT (Sigma) in experimental media was added to the cells. After 3-4 hours incubation at 37°C, the media was aspirated and 100 µl of DMSO was added to each well to solubilize the dye. Absorbance at 570 nm was read using a microtiter plate reader.

2) Thymidine incorporation
5 µCi ³H-thymidine was added to each well. After two hours incorporation time, the media was aspirated, the wells were washed, and the monolayer was fixed with 10% TCA. Nucleic acids were then solubilized with 0.2 N NaOH, 40 µg/ml salmon sperm DNA, and incorporated ³H was measured.

3) Northern blot
Total RNA was extracted using the TRizol method (Life Technologies) and run on a MOPS-agarose gel with 1.85% formaldehyde. RNA was transferred to a nylon membrane, cross-linked, and hybridized to ³²P-labeled probes for two days.
4) Western blot

Total protein was extracted from cells after exposure to compounds for three days. Equal amounts of protein (based on BCA assay) were loaded on polyacrylamide gels and transferred to nitrocellulose. The membranes were incubated with β-catenin antibodies (Transduction Laboratories). Detection was by chemiluminescence using Amersham ECL reagents, and films were scanned by densitometry.

2. Studies on Macrophages

Full details of methods for cell culture of primary mouse macrophages and the macrophage-like cell line, RAW 264.7, are given in the attached article, "Novel Triterpenoids Suppress Inducible Nitric Oxide Synthase (iNOS) and Inducible Cyclooxygenase (COX-2) in Mouse Macrophages," by Nanjoo Suh, Tadashi Honda, Heather Finlay, Aaaron Barchowsky, Charlotte Williams, Nicole Benoit, Qiao-wen Xie, Carl Nathan, Gordon W. Gribble, and Michael B. Sporn, (Cancer Res. 58: 717-723, 1998) which describes the suppression of de novo formation of iNOS and COX-2 by synthetic triterpenoids made with support from this grant. Likewise, methods for assay of mRNA, protein, and enzyme product for both iNOS and COX-2 are presented in detail in this manuscript.

b) Results and Discussion

1. Synthesis of New Triterpenoids

2. Results with Human Breast Cancer Cells

Suppression of DNA synthesis in MCF-7 human breast cancer cells by 7 triterpenoids, without evident cytotoxicity, is shown in Figure 2. At this time, there is no apparent set of structure-activity relationships. Studies on modulation of β-catenin expression have been pursued in SK-Br-3 cells. Figure 3 shows that all-trans-retinoic acid is a potent inducer of β-catenin expression in these cells, as measured by Western blot analysis after 3 days of treatment. However, we have yet to see a strong inductive effect on β-catenin with any triterpenoid that we have tested so far. In fact, as shown in Figure 4, 3-keto-oleanolic acid (3-keto-OA) and 3-epi-ursolic acid (3-epi-UA), when tested at 10
micromolar, appear to have an inhibitory effect on β-catenin expression; furthermore, these two triterpenoids appear to block the stimulatory effect of all-trans-retinoic acid. In contrast, as shown in Figure 4, 3-epi-oleanolic acid (3-epi-OA) has a slight stimulatory activity on β-catenin expression when tested at 10 micromolar. A large number of new triterpenoids remain to be tested in this assay system. One other significant observation that we have made is shown in Figure 5. TP-82, which was shown in Figure 2 as a potent suppressor of DNA synthesis in MCF-7 cells, is shown in Figure 5 to downregulate the expression of the estrogen receptor (ER-alpha) in these cells. Since MCF-7 cells are known to be ER-positive, and the growth of these cells is known to be driven by 17-β-estradiol, this suppression of the estrogen receptor may account, at least in part, for the growth-suppressive activity of TP-82 in the MCF-7 cells. Figure 6 shows the extremely high potency of the new triterpenoid, CDDO (TP-151) in blocking growth of MCF-7 cells (ER-positive). Figures 7-12 show inhibitory effects of TP-151 on various ER-negative breast cancer cell lines.

3. Results with Macrophages

The ability of triterpenoids to suppress de novo formation of two enzymes, inducible nitric oxide synthase (iNOS) and inducible cyclooxygenase (COX-2) is most easily measured in macrophages, using either primary mouse peritoneal macrophages or a mouse macrophage-like cell line (RAW 264.7) as assay systems. The important relevance of iNOS and COX-2 for carcinogenesis (including carcinogenesis in the breast) is discussed in the Introduction. Using either gamma-interferon or lipopolysaccharide (LPS) as inducing agents, we can achieve major inductions of de novo synthesis of both iNOS and COX-2 in the above cells. Two synthetic oleananes, 3,12-dioxoolean-1-en-28-oic acid (TP-69), and 3,11-diooxoolean-1,12-dien-28-oic acid (TP-72) have been shown to be highly active inhibitors of these inductions; the attached article, "Novel Triterpenoids Suppress Inducible Nitric Oxide Synthase (iNOS) and Inducible Cyclooxygenase (COX-2) in Mouse Macrophages," by Nanjoo Suh, Tadashi Honda, Heather Finlay, Aaron Barchowsky, Charlotte Williams, Nicole Benoit, Qiao-wen Xie, Carl Nathan, Gordon Gribble, and Michael Sporn, documents these findings in detail. These data all suggest that further studies on the ability of triterpenoids to suppress iNOS and COX-2 should be pursued, and that we should continue the chemical synthesis and testing program that we have outlined above.

4. Results with Induction of Differentiation in Human Leukemia Cells

We have used the human cell line NB-4 in preference to HL-60, since NB-4 is a true promyelocytic leukemia. Induction of differentiation in NB-4 cells by TP-82, and in synergy with 9-cis-retinoic acid, is shown in Figure 13.
Figure 1

Structures of Growth-Inhibitory Triterpenoids
Figure 2

Suppression of DNA Synthesis in MCF-7 Cells by Triterpenoids

TP-14

TP-15

TP-71

TP-82

TP-92

TP-100

TP-101
Figure 3
Induction of β-Catenin Expression in SK-Br-3 Cells
Figure 4
Effects on β-Catenin Expression by Various Triterpenoids and Retinoic Acid
Down-Regulation of ER-α mRNA by Triterpenoid in MCF-7 Cells

Cells growth-stimulated with 10 pM 17-β estradiol

10 μM TP-82
5 μM TP-82
2.5 μM TP-82
1.25 μM TP-82
Control
Figure 6
Inhibition of Estrogen-Stimulated Growth by Triterpenoids in MCF-7 Breast Cancer Cells (ER-Positive)

Counts 3H Incorporated

10% charcoal-stripped FBS, phenol red-free RPMI
72 hours treatment with compounds and 10 pM 17β estradiol
2 hours thymidine pulse

TP-151 is same as CDDO
Figure 8

MDA-468 ER Neg Breast Cancer Cells: Growth Effects by TP-151 and TGZ

Counts Thymidine Incorporated

DMSO TP-151 1 μM TP-151 0.1 μM TP-151 0.01 μM TP-151 0.001 μM TGZ 10 μM TGZ + 151 0.1 TZ + 151 0.01

1000 cells per well plated in 10% FBS, DMEM/F12 with phenol red
72 hours treatment with compounds
2 hours thymidine pulse

TP-151 = CDDO
TGZ = Troglitazone
Figure 9

21MT-1 ER Neg Cells: Growth Inhibition by TP-151 and Troglitazone

Counts Thymidine Incorporated

5/22/98

1000 cells per well plated in 10% FBS growth media

72 hours in compounds

2 hours thymidine pulse

TP-151 = CDDO
TGZ = Troglitazone
Figure 10

Growth Inhibition of 21-MT-2 ER-Negative Breast Cancer Cells

TP-151 = CDDO
TGZ = Troglitazone
Figure 11

21-NT ER Neg Breast Cancer Cells: Growth Effects by TP-151 and TGZ

1000 cells per well plated in 10% FBS growth media
72 hours treatment with compounds
2 hours thymidine pulse

TP-151 = CDDO
TGZ = Trasylol

Counts Thymidine Incorporated

<table>
<thead>
<tr>
<th></th>
<th>DMSO</th>
<th>TP-151 1 µM</th>
<th>TP-151 0.1 µM</th>
<th>TP-151 0.01 µM</th>
<th>TP-151 0.001 µM</th>
<th>TGZ 10 µM</th>
<th>TGZ + 151 0.1</th>
<th>TZ + 151 0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counts</td>
<td></td>
<td>6000</td>
<td>5000</td>
<td>6000</td>
<td>7000</td>
<td>7000</td>
<td>6000</td>
<td>5000</td>
</tr>
</tbody>
</table>
Figure 12

21-PT ER Neg Breast Cancer Cells: Growth Effects by TP-151 and TGZ

Counts Thymidine Incorporated

- DMSO
- TP-151 1 μM
- TP-151 0.1 μM
- TP-151 0.01 μM
- TGZ 10 μM
- TGZ + 151 0.1
- TZ + 151 0.01

1000 cells per well plated in 10% FBS growth media
- 72 hours treatment with compounds
- 2 hours thymidine pulse

TP-151 = CDDO
TGZ = Troglitazone
NB4 Human Promyelocytic Leukemia Cell Differentiation with 9-cis-Retinoic Acid and TP-82

NB4 human promyelocytic leukemia were incubated for 4 days with test compounds above. NBT (nitroblue tetrazolium) reduction was used as a differentiation marker.
(7) CONCLUSIONS

We have demonstrated the validity of a new approach to inhibition of carcinogenesis. We have shown that it is possible to synthesize new synthetic triterpenoids that are potent inhibitors of the de novo formation of the enzymes, inducible nitric oxide synthase (iNOS) and inducible cyclooxygenase (COX-2), that are known to be important etiologic factors in the development of cancer. During the first year of this project, we have published one manuscript on triterpenoid synthesis, which acknowledges support from this grant. During the second year of this project, we have published two more articles which acknowledge support from the grant. These articles show the biological relevance of new triterpenoids and indicate that chemical synthesis can yield highly potent new agents. Further studies on the synthesis and testing of new triterpenoids should now be pursued, with the eventual goal being to find a triterpenoid that could be used for chemoprevention of breast cancer in women at high risk for development of this disease.
REFERENCES

APPENDICIES

NEW ENONE DERIVATIVES OF OLEANOLIC ACID AND
URSOLIC ACID AS INHIBITORS OF NITRIC OXIDE
PRODUCTION IN MOUSE MACROPHAGES

TadashiHonda, Heather J. Finlay, Gordon W. Gribble, Nanjoo Suh, and Michael B. Sporn

*Department of Chemistry, Dartmouth College, Hanover, NH 03755, U.S.A. and
bDepartment of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755, U.S.A.

Abstract: New derivatives of 3-oxoolean-1-en-28-oic acid and 3-oxours-1-en-28-oic acid were synthesized. Nine of them showed significant inhibitory activity against interferon-γ-induced nitric oxide production in mouse macrophages when assayed at the 1 μM level. 3,12-Dioxoolean-1,9-dien-28-oic acid (3) had the highest activity (IC50, 0.9 μM). © 1997 Elsevier Science Ltd.

Introduction

Many oleanane and ursane triterpenoids are reported to have interesting biological, pharmacological, or medicinal activities similar to those of retinoids and steroids, such as anti-inflammatory activity, suppression of tumor promotion, suppression of immunoglobulin synthesis, protection of the liver against toxic injury, induction of collagen synthesis, and induction of differentiation in leukemia or teratocarcinoma cells. However, there has never been a systematic study of structure-activity relationships in this set of molecules. Bioassay-directed systematic drug design and synthesis of derivatives of oleanolic acid (1) and ursolic acid (2), which are commercially available, are of great value in discovering new structures with significant biological activity.

The high output of nitric oxide (NO) produced by inducible nitric oxide synthase (i-NOS), which is expressed in activated macrophages, plays an important role in host defense. However, excessive production of NO also can destroy functional normal tissues during acute and chronic inflammation. Thus, inhibitors of NO production in macrophages are potential anti-inflammatory drugs. For this purpose we synthesized oleanolic and ursolic acid derivatives and tested them as inhibitors of NO production. We have found a series of new derivatives of 3-oxoolean-1-en-28-oic acid and 3-oxours-1-en-28-oic acid to have significant inhibitory activity against interferon-γ (IFN-γ)-induced NO production in mouse macrophages. In particular, 3,12-dioxoolean-1,9-dien-28-oic acid (3) had the highest activity (IC50, 0.9 μM) in this group of compounds. In this communication, the synthesis, inhibitory activity, and structure-activity relationships are reported for these compounds.

Discovery of Lead Compounds

When we started this project, we had no information about a lead compound. Therefore, about sixty oleanolic and ursolic acid derivatives, e.g., 3-hydroxy-, 3-chloro-, 2-chloro-, C-ring cleaved, and 3-oxo-derivatives (including compounds 4–7), were initially randomly synthesized. In the preliminary screen of these
Scheme 1.

oleanonic acid (5) \(\rightarrow \) b, c, d

 snatch (1) \(\rightarrow \) b, c, d

Scheme 2.

ursolic acid (2) \(\rightarrow \) a

HCl/acetone, b: 30% H₂O₂/acetone, c: K₂CO₃/DMF, d: 30% H₂O₂/NaOH/THF

Derivatives of oleanolic acid

1625
derivatives for inhibition of IFN-γ-induced NO production in mouse macrophages, 3-oxoolean-1,12-dien-28-oic acid (7) was found to show significant activity (IC₅₀, 6.0 μM).

Design and Synthesis of New Derivatives

When 7 is compared with the other derivatives (e.g., 1, 2, and 4–6), it has the following features: first, it is an oleanane; second, it has a 1-en-3-one structural unit in ring A; third, it has a carboxyl group at C-17. On the basis of these features of 7, various derivatives with a 1-en-3-one structural unit in ring A and a carboxyl group at C-17 (3 and 8–17) were designed. The synthesis of these newly designed derivatives and compounds 4–7 are illustrated in Schemes 1 and 2. Oleanonic acid (5) was prepared in quantitative yield by Jones oxidation of 1. Enone ester 6 was synthesized by Jones oxidation of methyl oleanolate (18) (yield, 90%), followed by introduction of a double bond at C-1 with phenylselenenyl chloride in ethyl acetate and sequential addition of 30% hydrogen peroxide (yield, 70%). Enone 7 was synthesized in 88% yield by halogenolysis of 6 with lithium iodide (LiI) in dimethylformamide (DMF). Enone 8 was synthesized in 35% yield by halogenolysis of ester 19 with LiI in DMF, which was prepared by epoxidation of 6 with alkaline hydrogen peroxide (yield, quantitative), followed by sodium methoxide (yield, quantitative). Diosphenol 9 was synthesized by demethylation of the methyl enol ether at C-2 of 19 with hydrochloric acid in acetic acid (yield, 88%), followed by halogenolysis (yield, 18%). Diene 10 was synthesized by alkaline hydrolysis of acetate 21 (yield, quantitative), which was prepared from methyl acetyloleanolate (20) according to a known method, sequential Ratcliffe oxidation (yield, 90%), introduction of a double bond at C-1 (yield, 66%), and halogenolysis (yield, 56%). Deconjugated enone 11 was prepared in 28% yield by Jones oxidation of 10. Bis-enone 12 was synthesized by alkaline hydrolysis of acetate 22 (yield, quantitative), which was prepared from 20 according to our improvement on a known method, sequential Jones oxidation (yield, 91%), introduction of a double bond at C-1 (yield, 97%), and halogenolysis (yield, 43%). Enone 13 was synthesized in 46% yield from C-12 ketone 23 according to the same synthetic route as for 12. Bis-enone 3 was also synthesized in 26% yield from enone 24 according to the same synthetic route as for 12. Enone 14 was synthesized by Jones oxidation of acid 25 (yield, 95%), followed by introduction of a double bond at C-1 (yield, 80%). Epoxide 15 was prepared in 46% yield by epoxidation of 14 with m-chloroperbenzoic acid in methylene chloride. Enone 16 was prepared in 51% yield by introduction of a double bond at C-1 of acid 26 with PhSeCl-H₂O₂. Enone 4 was prepared by introduction of a double bond at C-1 of ketone 28 with PhSeCl-H₂O₂ (yield, 66%), followed by halogenolysis (yield, 88%). Bis-enone 17 was synthesized according to the same route as for 12 in 42% yield from enone 29, which was prepared from 27 according to our improvement on a known method.

Biological Results and Discussion

The inhibitory activities [IC₅₀ (μM)] of compounds 1–17 and hydrocortisone (a positive control) on IFN-γ-induced NO production in mouse macrophages are shown in the Table. Nine of the new derivatives of 3-oxoolean-1-en-28-oic acid and 3-oxours-1-en-28-oic acid showed significant activity at the 1 μM level. Six of them were superior to the lead compound 7. Modification of the A and C ring affected activity strongly. In particular, bis-enone type compounds 3 and 12 showed high activity. Surprisingly, ursolic acid (2) stimulated NO production although ursolic acid derivatives 4 and 17 showed inhibitory activity. None of the synthesized derivatives were toxic to primary mouse macrophages at 40 μM.
These preliminary results revealed some interesting structure–activity relationships as follows:

1. In the A ring, a 1-en-3-one structural unit without a substituent is important for significant activity. For example, 1-en-3-one 7 is much more active in comparison with diosphenol 9, diosphenol methyl ether 8, C-3 ketone 5, and C-3 alcohol 1.

2. In the C ring: (a) a carbonyl group at C-11 and/or C-12 is important; (b) particularly, an insertion of a double bond at the α position of C-11 and/or C-12 ketone enhances the activity. Bis-enone 3 with 1-en-3-one and 9-en-12-one structural units showed the highest activity. Bis-enone 12, C-11 ketone 11, and C-12 ketone 13 also showed high activity, and were more active than 7. Bis-enone 17 which has an ursane skeleton is also more active than 4.

3. At C-17, a carboxyl group (e.g., 7) gives much more activity than a methoxycarbonyl group (e.g., 6). Hydrophilic groups seem to be much better than hydrophobic groups.

4. The oleanane skeleton is more active than the ursane skeleton. 7 and 12 are more active than 4 and 17, respectively.

On the basis of these structure–activity relationships, further lead optimization is in progress. Studies on the mode of action of these derivatives also are in progress.

<table>
<thead>
<tr>
<th>Table. IC_{50} (μM) ⁶ Values for Inhibition of IFN-γ-Induced NO Production in Mouse Macrophages ³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>hydrocortisone</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

a: All IC_{50} (μM) values were determined over the range of 0.1–40 μM for each compound, except for hydrocortisone, using the computer calculation program Tablecurve ⁸ (all were fitted to a log–dose response curve.) Values are an average of two separate experiments.

b: Ursolic acid (2) is strongly toxic to primary mouse macrophages (toxic above 5–10 μM).

Acknowledgments

We thank Drs. Carl Nathan and Qiao-wen Xie for expert advice on the preparation of macrophages and the nitric oxide assay. This investigation was supported by funds from the Norris Cotton Cancer Center and U.S. Dept. of Defense Grant # DAMD17-96-1-6163. M.B.S. is the Oscar M. Cohn Professor. Mass spectral data were kindly furnished by Drs. Tim Barden, Mark G. Saulnier, and Stephen Wright.
References and Notes

3. Briefly, the procedure for this assay is as follows: Macrophages were harvested from female mice injected intraperitoneally four days previously with 4% thioglycollate. These cells were seeded in 96-well tissue culture plates and incubated with 4 ng/mL IFN-γ in the presence or absence of inhibitory test compounds. After 48 hours NO production (measured as nitrite by the Griess reaction) was determined. Full details of the assay are given in reference 21.

4. All new compounds 3, 4, and 6–17 exhibited satisfactory spectral data including high-resolution mass spectra.

13. Deconjugated enone 11 was also produced in 22% yield by halogenolysis with LiI in DMF.

17. Epoxide 15 is thought to be the β-epoxide by the $W_{1/2}$ value of the C-11 proton [δ, 3.05 ppm; $W_{1/2} = 3.4$ Hz (CDCl₃)] in 1H NMR, although its structure has not been confirmed.

(Received in USA 24 March 1997; accepted 20 May 1997)
Novel Triterpenoids Suppress Inducible Nitric Oxide Synthase (iNOS) and Inducible Cyclooxygenase (COX-2) in Mouse Macrophages

Nanjo Suh, Tadashi Honda, Heather J. Finlay, Aaron Barchowsky, Charlotte Williams, Nicole E. Benoit, Qiao-wen Xie, Carl Nathan, Gordon W. Gribble, and Michael B. Sporn*

Department of Pharmacology and Norris Cotton Cancer Center, Dartmouth Medical School (N.S., A.B., C.W., N.E.B., M.B.S.) and Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755; [T.H., J.J.F., G.W.G.], and Department of Medicine, Cornell University Medical College, New York, New York 10021 [Q.-W.X., C.N.]

ABSTRACT

We have synthesized more than 80 novel triterpenoids, all derivatives of oleandrol and ursolic acid, as potential anti-inflammatory and chemopreventive agents. These triterpenoids have been tested for their ability to suppress the de novo formation of two enzymes, inducible nitric oxide synthase (iNOS) and inducible cyclooxygenase (COX-2), using IFN-γ-stimulated primary mouse macrophages or lipopolysaccharide (LPS)-activated RAW 264.7 macrophages as assay systems. Two synthetic oleandrols, 3,12-dioxoolean-1-en-28-oic acid (TP-69) and 3,11-dioxoolean-1,12-dien-28-oic acid (TP-72), were highly active inhibitors of de novo formation of both iNOS and COX-2. Both TP-69 and TP-72 blocked the increase in iNOS or COX-2 mRNA induced by IFN-γ or LPS. In addition, TP-72 suppressed NF-κB activation in primary macrophages treated in combination with IFN-γ and LPS or IFN-γ and tumor necrosis factor. The 3α(E)-epimer of ursolic acid suppressed de novo formation of COX-2, in contrast to naturally occurring 3β(Equatorial)-ursolic acid. Inhibitory effects of TP-69 or TP-72 on iNOS formation were not blocked by the glucocorticoid receptor antagonist RU-486, indicating that these triterpenoids do not act through the glucocorticoid receptor, nor does TP-72 act as an iNOS or COX-2 enzyme inhibitor when added to RAW cells in which synthesis of these two enzymes in response to LPS has already been induced. It may be possible to develop triterpenoids as useful agents for chemoprevention of cancer or other chronic diseases with an inflammatory component.

INTRODUCTION

One of the major needs in cancer prevention is the development of effective and safe new agents for chemoprevention. In particular, there is a unique need for chemopreventive agents targeted at mechanisms known to be involved in the process of carcinogenesis (1). In recent years, there has been a resurgence of interest in the study of mechanisms of inflammation that relate to carcinogenesis and in the use of such mechanisms as the basis for development of new chemopreventive agents.

The concept that inflammation and carcinogenesis are related phenomena has been the subject of many previous studies that have attempted to link these two processes in a mechanistic fashion (2–4). The enzymes that mediate the constitutive synthesis of NO and prostaglandins from arginine and arachidonate, respectively, have relatively little significance for either inflammation or carcinogenesis. In contrast, iNOS (EC 1.14.13.39) and inducible cyclooxygenase (COX-2; EC 1.14.99.1) have critical roles in the response of tissues to injury or infectious agents. These inducible enzymes are essential components of the inflammatory response, the ultimate repair of injury, and carcinogenesis (5–10). Although physiological activity of iNOS and COX-2 may provide a definite benefit to the organism, aberrant or excessive expression of either iNOS or COX-2 has been implicated in the pathogenesis of many disease processes, as diverse as septic shock, cardiomyopathy, acute and chronic neurodegenerative disease, rheumatoid arthritis, and carcinogenesis (11–19).

Immense effort has been devoted to developing new molecules that are direct inhibitors of the enzymatic activity of either iNOS or COX-2. However, an alternative approach is to find new agents that can prevent expression of the respective genes coding for these enzymes. Glucocorticoids and TNFα are such molecules; they both suppress transcription or translation of the respective genes coding for these enzymes. Glucocorticoids and TNFα are such molecules; they both suppress transcription or translation of the respective genes coding for these enzymes.

Although triterpenoids are widely used for medicinal purposes in many Asian countries, this class of molecules, which resemble steroids in their chemical structure, biogenesis, and pleiotropic actions, has not impacted on the practice of Western medicine. Triterpenoids, like the steroids, are formed in nature by the cyclization of squalene, with the retention of all 30 carbon atoms in molecules such as OA and UA (Fig. 1). Although OA and UA are known to have numerous pharmacological activities, the potency of these naturally occurring molecules is relatively weak. Chemical synthesis of new steroid analogues has provided many useful derivatives that are more potent and specific than natural parent structures.

Alternative approaches for the development and evaluation of new triterpenoids. Although triterpenoids are widely used for medicinal purposes in many Asian countries, this class of molecules, which resemble steroids in their chemical structure, biogenesis, and pleiotropic actions, has not impacted on the practice of Western medicine.

Materials and Methods

Reagents

Details of the synthesis of TP-69 and TP-72 are shown in Fig. 1 for structures have been published (30). TP-52 (3α-OH UA) was synthesized by Jones oxidation of UA, followed by Meerwein-Ponndorf reduction. Recombinant mouse IFN-γ (LPS content, <10 pg/ml) was purchased from Genzyme (Cambridge, MA); NF-κB oligonucleotide was purchased from Promega Corp. (Madison, WI); goat polyclonal COX-1, COX-2 antibody were purchased from Santa Cruz Biotechnology (Santa Cruz, CA); TGF-β1 was from R&D (Minneapolis, MN); and enzyme immunoassay reagents for PG E2 assays were from Cayman Co. (Ann Arbor, MI). TNFα was provided by Dr. Jan Vilcek (New York University Medical Center, New York, NY). LPS (from Escherichia coli 0111:B4 γ-irradiated) and all other chemicals were purchased from Sigma Chemical Co. (St. Louis, MO).
Triterpenoids were dissolved in DMSO before addition to cell cultures or enzyme assays; final concentrations of DMSO were 0.1% or less. Controls with DMSO alone were run in all cases.

Cell Culture

RAW 264.7 cells were maintained in RPMI 1640 with 10% fetal bovine serum. These cells were treated with LPS (10 ng/ml) for 6–18 h to induce iNOS or COX-2. To obtain primary macrophages, female CD-1 mice, 5–10 weeks of age (Charles River Breeding Laboratories, Wilmington, MA), were injected i.p. with 2 ml of 4% thioglycollate broth (Difco Laboratories, Detroit, MD). Four days after injection, peritoneal macrophages were harvested and processed as described (31). Cells were seeded in 96-well plates at 2 × 10⁵ cells/well and stimulated with IFN-γ. Triterpenoids were added at the same time.

Measurement of iNOS Enzyme Activity, Protein, and mRNA Levels

NO Production in Mouse Macrophages and RAW 264.7 Cell Line. Nitrite accumulation was used as an indicator of NO production in the medium and was assayed by the Griess reaction (32). One hundred μl of Griess reagent were added to 100 μl of each supernatant from LPS, IFN-γ, or triterpenoid-treated cells in triplicate. The protein determination was performed by Bradford protein assay. The plates were read at 550 nm against a standard curve of sodium nitrite.

Inhibition of LPS-induced iNOS Enzyme Activity. For the assay in intact cells, RAW 264.7 cells were plated in 100-mm tissue culture dishes (4 × 10⁶ cells) and incubated for 12 h with LPS. The cells were washed twice with PBS. Cells were harvested and plated into a 96-well plate (2 × 10⁵ cells/well) and incubated in the absence or presence of test compounds for 12 h further, with no LPS in the medium. The supernatants were removed, and the Griess assay was performed as above. For the assay in cell lysates, RAW 264.7 cells were washed three times with PBS, scraped into cold PBS, and centrifuged at 500 × g for 10 min at 4°C. The cell pellet was resuspended in 0.5 ml 40 mM Tris-buffer (pH 8.0) containing 5 μmol/ml pepstatin A, 1 μmol/ml chymostatin, 5 μmol/ml aprotinin, and 100 μmol phenethylisulfonil fluoride and lysed by three freeze-thaw cycles. Aliquots of the lysate were used for Bradford protein assay. iNOS enzyme activity was measured as described (21). Briefly, 10–20 μg of cell lysate protein were incubated in 20 mM Tris-HCl (pH 7.9), containing 4 μmol PAD, 4 μmol tetrahydrobiotin, 3 mM DTT, and 2 μmol each of L-arginine and NADPH. The reaction was carried out in duplicate for 180 min at 37°C in 96-well plates. Residual NADPH was oxidized enzymatically as described previously, and the Griess assay was performed as above.

SDS-PAGE and Western Blot Analyses of iNOS Protein in Mouse Macrophages and RAW 264.7 Cells. Mouse macrophages or RAW 264.7 cells were plated in six-well plates (4 × 10⁶ cells/well) and treated, respecti-

Measurement of COX-2 Enzyme Activity, Protein, and mRNA Levels

PGE2 Production. RAW 264.7 cells were plated in six-well plates and incubated with compounds for 6 h, and then the supernatant culture medium was collected to determine the amount of PGE2 (Cayman Enzyme Immunoassay kit).

Inhibition of LPS-induced COX-2 Enzyme Activity. RAW 264.7 cells were plated at 1 ¥ 10⁵ cells/well in a 12-well plate and incubated for 6 h with LPS. The cell supernatants were removed, and cells in each well were washed twice with fresh culture medium and allowed to equilibrate in the absence or presence of test compounds for 30 min. The cells were further incubated with 100 μmol arachidonic acid for 15 min, with no LPS in the medium. The supernatants were removed and assayed for PGE2 (35).

Western Blot Analyses of COX-2 in RAW 264.7 Cells. RAW 264.7 cells were treated with LPS for 6 or 18 h. The first steps of the procedure were as described above for Western blots of iNOS. Goat polyclonal COX-1 and COX-2 were used as primary antibodies, and the bands were detected with an enhanced chemiluminescence detection reagent (Amersham).
RESULTS

Triterpenoids Inhibit NO Production in Mouse Macrophages and RAW 264.7 Cells. Active synthetic triterpenoids caused a dose-dependent inhibition of NO production both in mouse primary macrophages, induced with IFN-γ, and in RAW 264.7 cells, induced with LPS. This inhibition of NO production was not due to toxicity, as determined by trypan blue exclusion and adherent cell protein determination. Triterpenoids TP-69 and TP-72 (Fig. 1) were selected from a primary screening of more than 80 derivatives of OA and UA as the most active ones in the suppression of NO production. TP-69 and TP-72 are synthetic enone analogues of OA that have A- and C-ring modifications with one or two enone functional groups. As shown in the dose-response curves in Fig. 2A, IC50 values for TP-72 are 3.9 and 6.7 μM in primary macrophages and RAW 264.7 cells, respectively. The data indicate that TP-72 is markedly more active than its parent molecule, OA. TP-69 also inhibited NO production in primary macrophages (IC50, 4.2 μM) and RAW 264.7 cells (IC50, 7.8 μM; curves not shown). Although TGF-β1 is the most potent known inhibitor of inducible NO formation in primary macrophages (50% inhibition at 8 ng/ml; Refs. 21 and 32), it did not suppress NO formation in transformed RAW 264.7 cells induced with LPS (Fig. 2B). In contrast, triterpenoids inhibited NO production in both transformed RAW cells and primary macrophages, suggesting that the inhibition by triterpenoids in RAW cells is not mediated by the action of TGF-β.

TP-72 Does Not Inhibit Intrinsic iNOS Enzyme Activity in RAW 264.7 Cells. We wished to determine whether the inhibitory effect of a triterpenoid on inducible NO production is a direct effect on the intrinsic enzyme activity of iNOS, or whether this inhibition is mediated by some other mechanism. Dexamethasone is known to inhibit iNOS gene transcription (37, 38). Table 1 shows that the addition of either TP-72 or dexamethasone to RAW 264.7 cells, which had been pretreated with LPS to induce NOS, does not affect iNOS enzyme activity in the intact cell. In contrast, N-methyl arginine, an enzyme substrate analogue, inhibited this enzyme activity (62% inhibition of NO accumulation at 40 μM). Further confirmation of this lack of direct enzyme inhibition by TP-72 was obtained in experiments in which TP-72 was added to lysates of RAW cells that had been pretreated with LPS to induce NOS (Table 2). In these experiments, we performed an enzyme assay for iNOS on the lysates, using arginine as added substrate. There was no inhibition of NO formation (measured as nitrite in the Griess reaction) by TP-72 (20 μM). Thus, assays performed both on intact cells and in cell lysates indicate that TP-72 inhibits NO formation by a mechanism other than direct enzyme inhibition.

Triterpenoids Decrease iNOS mRNA and Protein Levels in Mouse Macrophages and RAW 264.7 Cells. We next investigated whether TP-72 and the related enone, TP-69, might affect levels of iNOS mRNA and the resultant iNOS protein. The data in Fig. 3 show that LPS induces the 4.0-kb iNOS mRNA transcript in RAW cells in a dose-dependent manner, over a range from 1–1000 ng/ml. There is a similar dose-response for the induction of the Mr 130,000 iNOS protein in these same cells. Both the mRNA and protein responses to LPS are markedly attenuated by TP-72 (10 μM). Densitometer scans of the respective blots show approximately 50% inhibition of iNOS protein expression at 1 μM of LPS stimulation. As shown in Fig.
4A, iNOS protein expression is inhibited by TP-69 or dexamethasone after primary mouse macrophages are stimulated by IFN-γ alone (20 ng/ml) or by IFN-γ in combination with TNF-α (100 ng/ml). In contrast to the strong inhibitory effect of the synthetic triterpenoid, TP-69, the naturally occurring parent molecule, OA, was inactive in this assay at an equimolar concentration. Fig. 4B shows that IFN-γ is a strong inducer of iNOS mRNA expression in primary mouse macrophages. TP-69 (30 μM) almost totally blocks this induction, with some inhibition of iNOS mRNA levels seen at concentrations as low as 1 μM. In addition, we examined whether these active triterpenoids might suppress constitutive nitric oxide synthase in endothelial cells. In contrast, neither TP-69 nor TP-72 (each at 10 μM) diminished the level of the constitutive NOS in human endothelial cells, as determined by Western blot analysis (data not shown).

Triterpenoids Do Not Act through a Glucocorticoid Receptor-mediated Mechanism. The glucocorticoid antagonist, RU486, was used to determine whether the inhibitory effects of triterpenoids on NO production were mediated through their interaction with the glucocorticoid receptor. Fig. 5 shows that, as expected, inhibitory effects of dexamethasone were reversed by the addition of glucocorticoid receptor antagonist RU486 (1 μM). In contrast, the inhibitory activity of TP-69 and TP-72 on nitric oxide production could not be reversed by RU486. These data strongly suggest that the actions of triterpenoids on the iNOS system are not mediated by their interaction with the glucocorticoid receptor.

Triterpenoids Decrease Inducible COX-2 mRNA and Protein Levels, but not Constitutive COX-1, in Macrophages. LPS-induced COX-2 protein (M_r ~72,000) and COX-2 mRNA (4.4 kb) in RAW 264.7 cells in a dose-dependent manner. As shown in Fig. 6A, COX-2 protein and mRNA expression induced by LPS (at concentrations ranging from 1–1000 ng/ml) was markedly decreased by concomitant treatment with TP-72 (10 μM). Fig. 6B shows that derivatives of both OA and UA have inhibitory effects on COX-2 protein expression. In addition to TP-72, the oleanane enone, TP-69, also inhibited COX-2 protein expression. The 3-α-epimer of UA, TP-52, suppresses LPS-induced COX-2 protein expression, whereas UA itself does not have an inhibitory effect. The amount of the product of the COX-2 enzyme, PGE_2, in the supernatants from each treatment of the RAW 264.7 cells was determined and corresponded with the COX-2 protein data (Fig. 6B). Thus, LPS markedly increased PGE_2 levels, and OA and UA did not substantially affect this increase, whereas TP-69, TP-72, and TP-52 (assayed at 10 μM) all blocked the inductive effect of LPS on the production of PGE_2. However, as shown above for suppression of NO formation, the inhibition of prostaglandin formation by TP-72 is not a result of the inhibition of enzyme activity itself. When this triterpenoid was added to RAW cells in which synthesis of COX-2 had already been induced by LPS, there was no decrease in prostaglandin production, using added arachidonic acid as a substrate (Table 3). COX-1 protein levels were not affected by any of the treatments (Fig. 6B).

Triterpenoids Suppress the Activation of NF-κB in Nuclear Extracts from Primary Macrophages. Because activation of NF-κB is critical for the induction of both iNOS and COX-2 by LPS or other inflammatory cytokines (39, 40), we determined whether triterpenoids might suppress NF-κB activation in nuclear extracts obtained from primary macrophages induced with IFN-γ, LPS, or TNF-α in cell cultures. As shown in Fig. 7A, TP-72 (20 μM) or dexamethasone (1 μM) inhibited the activation of NF-κB in nuclear extracts obtained from macrophages treated with 10 ng/ml IFN-γ. It should be emphasized that the primary macrophages used in these experiments were elicited in vivo by injection of mice with thioglycollate broth, which is known to contain small amounts of LPS (41). Thus, there is a significant basal (preinduced) level of NF-κB in the DMSO control lane (first lane on left) in Fig. 7A, resulting from the...
use of thioglycollate (41). The priming of these primary mouse macrophages by the suboptimal levels of LPS present in thioglycollate allows for the further induction by IFN-γ shown in Fig. 7A. TP-69 also attenuated activation of NF-κB in primary mouse macrophages (data not shown). To confirm the NF-κB binding proteins in the retarded complexes, antibodies specific to either the p65 or p50 subunits of NF-κB were used to demonstrate the retardation of NF-κB. The mobility of bands was further retarded, particularly by antibody to p65. The data in Fig. 7B show that TP-72 (20 μM) inhibited the activation of NF-κB in nuclear extracts obtained from primary macrophages treated with either 10 ng/ml IFN-γ alone (80% inhibition) or by IFN-γ in combination with 10 ng/ml LPS (50% inhibition) or 10 ng/ml TNF-α (70% inhibition).

DISCUSSION

OA and UA have significant, although relatively weak, anti-inflammatory and anticarcinogenic actions, particularly in vivo (26, 28, 29, 42). However, there has been a paucity of convincing data from cell culture experiments relating to the mechanism of action of OA and UA. It is possible that OA and UA are precursors to more active molecules that are formed by metabolism, as is the case for dietary vitamins A and D. The experiments reported here now show that synthetic triterpenoids are markedly more active than the parent structures. Among some 80 derivatives we have made, we have found several molecules, namely, 3-epi-ursolic acid (TP-52), 3,12-dioxyoolean-1-en-28-oic acid (TP-69), and 3,11-dioxyoolean-1,12-dien-28-oic acid (TP-72), which are significantly more active than OA and UA in suppression of the formation of either NO or prostaglandins. We assayed these new synthetic agents as potential suppressors of iNOS or COX-2 because of the highly relevant nature of these two enzymes for many disease processes. Although numerous agents have been synthesized that are effective inhibitors by acting as substrate analogues for each of these two enzymes, an alternative approach to their control, to block de novo enzyme formation selectively, has been essentially unexplored.

The anti-inflammatory and anticarcinogenic activities of the naturally occurring triterpenoids are relatively weak. Much more potent synthetic analogues are needed if this class of compounds is to be of clinical value. The two synthetic enone derivatives of OA, TP-69 and TP-72, represent a first effort in this direction. Both are highly active in suppressing expression of both iNOS and COX-2 mRNA and protein at concentrations at which their parent molecule, OA, is inactive. TP-69 and TP-72 exert parallel effects on suppression of the expression of both iNOS and COX-2, suggesting that there may be a common mechanistic basis for this action. Suppression of activation of NF-κB by active triterpenoids may partially account for this, because there are known to be NF-κB response elements on the promoters for both the iNOS and the COX-2 genes (40, 43-47).

However, not all genetic regulation of the iNOS or COX-2 systems is transcriptional. It has been shown that both TGF-β and dexamethasone may have potent inhibitory effects on the stability or translatability of iNOS or COX-2 mRNAs (21, 23, 48). Some of the effects of the triterpenoids may be mediated at these levels rather than by a direct effect on transcription itself.

Although glucocorticoids block the induction of iNOS and COX-2, they are limited in their usefulness for therapy of chronic disease...
states because of the side effects resulting from activation of the glucocorticoid receptor. In contrast, our data suggest that triterpenoids exert their effects through a receptor system other than the glucocorticoid receptor. The nature of the putative triterpenoid receptor remains to be defined. The steroid-like structure and activity of triterpenoids indicates that such a receptor might have some relationship to the steroid receptor superfamily. The striking difference that we have shown between UA (3-hydroxy) and its 3-α-hydroxy epimer (TP-52) in their ability to suppress COX-2 synthesis provides particularly strong evidence for receptor-mediated activity, because these two epimers differ only with respect to the conformation of a hydroxyl group (equatorial or axial, respectively) in an essentially planar ring system.

Recently, there have been striking advances that indicate that overexpression of either iNOS and COX-2 may be intimately involved in the pathogenesis of many common debilitating or fatal chronic diseases. These include colon cancer (4, 18, 19, 49), multiple sclerosis (15, 50), Parkinson’s disease (16, 51), and Alzheimer’s disease (52, 53). There is intense effort to develop enzyme inhibitors that differ only with respect to the conformation of a hydroxyl group (equatorial or axial, respectively) in an essentially planar ring system.

ACKNOWLEDGMENTS

We thank Andrew Dannenberg for suggestions for experiments on COX-2, Harvey Heschman for providing COX-1 and COX-2 cDNA probes, Jan Vilcek for TNF-α, Allan Munck for advice on the use of RU486, and Anita Roberts for comments on the manuscript. M. B. S. is Oscar M. Cohn Professor and is indebted to Allan Conney for an introduction to the pharmacology of UA and OA.

REFERENCES

20. Vodovotz, Y., Bogdan, C., Paik,

DESIGN AND SYNTHESIS OF 2-CYANO-3,12-DIOXOOLEAN-1,9-DIEN-28-OIC ACID, A NOVEL AND HIGHLY ACTIVE INHIBITOR OF NITRIC OXIDE PRODUCTION IN MOUSE MACROPHAGES

Tadashi Honda,* BarbieAnn V. Rounds,* Gordon W. Gribble,* Nanjoo Suh,b Yongping Wang,b and Michael B. Sporn*nb

aDepartment of Chemistry, Dartmouth College, Hanover, NH 03755, U.S.A. and
bDepartment of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755, U.S.A.

Abstract: New derivatives with electron-withdrawing substituents at the C-2 position of 3-oxoolean-1-en-28-oic acid were synthesized. Among them, 2-cyano-3,12-dioxooolean-1,9-dien-28-oic acid (CDDO) was 400 times more potent than previous compounds we have made as an inhibitor of production of nitric oxide induced by interferon-γ in mouse macrophages (IC₅₀, 0.4 nM). The potency of CDDO was similar to that of dexamethasone, although CDDO does not act through the glucocorticoid receptor.

Introduction

In a previous communication we reported that oleanolic acid derivatives with a 1-en-3-one functionality in ring A (e.g., 1–3) have significant inhibitory activity against production of nitric oxide (NO) induced by interferon-γ (IFN-γ) in mouse macrophages (IC₅₀, 0.1–1 μM). We also showed that derivatives with electron-releasing substituents at the C-2 position, 4 and 5, lose the activity.¹ Mechanism studies showed that enones 1 and 2 suppress transcription or translation of the inducible nitric oxide synthase (iNOS) and inducible cyclooxygenase (COX-2) genes, and that these compounds do not act through a glucocorticoid receptor.² We therefore focused on the design and synthesis of derivatives with electron-withdrawing substituents at the C-2 position to obtain more active compounds. We have now found that 2-cyano-3,12-dioxooolean-1,9-dien-28-oic acid (CDDO) (6) has strong activity (IC₅₀, 0.4 nM), with a potency similar to that of dexamethasone. In this communication, the design, synthesis, and inhibitory activity are reported for these compounds.

Design and Synthesis of New Derivatives

Initially, compounds 7 and 8 were synthesized according to the route illustrated in Scheme 1. Compound 10 was prepared by formylation of oleanonic acid (9)³ with ethyl formate in the presence of sodium methoxide in
Scheme 1.

a: HCO₂Et / MeONa / THF, b: PhSeCl / AcOEt; 30%H₂O₂ / THF, c: NH₂OH·HCl / EtOH / H₂O,
d: MeONa / MeOH / Et₂O, e: KOH / MeOH, f: Jones, g: HCO₂Et / MeONa / PhH, h: LiI / DMF

THF [yield, 45% (66% based on recovered 9)]. Aldehyde 7 was obtained in 29% yield by introduction of a double bond at C-1 of 10 with phenylselenenyl chloride in ethyl acetate and sequential addition of 30% hydrogen peroxide (PhSeCl-H₂O₂). Nitrile 12 was synthesized via isoxazole 11 from 10 according to Johnson’s method. Isoxazole 11 was synthesized in 99% yield from 10 by addition of hydroxylamine in aqueous ethanol.
Cleavage of isoxazole 11 with sodium methoxide gave nitrile 12 in 98% yield. Compound 8 was obtained in 36% yield by introduction of a double bond at C-1 of 12 with PhSeCl-H_{2}O_{2}. Compound 7 was toxic to cells in culture. Compound 8 was more potent than 3 (see Table). We therefore designed the new target 6 based on both structures of 1 and 8, because 1 is also much more active than 3 (see Table and ref 1). The synthesis of 6 is illustrated in Scheme 2. Compound 14 was prepared in 89% yield from known compound 13 by alkali hydrolysis, followed by Jones oxidation. Compound 15 was prepared in quantitative yield by formylation of 14 with ethyl formate in the presence of sodium methoxide in benzene. Isoxazole 16 was synthesized in 61% yield from 15 by the addition of hydroxylamine. Nitrile 17 was obtained by cleavage of isoxazole 16 with sodium methoxide (yield, 100%), followed by introduction of a double bond at C-1 with PhSeCl-H_{2}O_{2} (yield, 40%). CDDO (6) was prepared in 71% yield by halogenolysis of 17 with lithium iodide in DMF.

Biological Results and Discussion

The inhibitory activities [IC_{50} (µM) value] of compounds 1–8, oleanolic acid, and dexamethasone (a positive control) on production of NO induced by IFN-γ in mouse macrophages are shown in the Table. Compound 8 was more active than 3 but less active than 1. CDDO (6) was a strong inhibitor (IC_{50}, 0.4 nM), equivalent to dexamethasone. However, the inhibitory activity of 6 was not blocked by the glucocorticoid antagonist, RU-486, which reverses the action of dexamethasone.

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC_{50} (µM)</th>
<th>Compound</th>
<th>IC_{50} (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dexamethasone</td>
<td>0.0003</td>
<td>5</td>
<td>37</td>
</tr>
<tr>
<td>1</td>
<td>0.17</td>
<td>CDDO (6)</td>
<td>0.0004</td>
</tr>
<tr>
<td>2</td>
<td>1.4</td>
<td>7</td>
<td>> 1b</td>
</tr>
<tr>
<td>3</td>
<td>7.1</td>
<td>8</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>oleanolic acid</td>
<td>> 40</td>
</tr>
</tbody>
</table>

IC_{50} (µM) values of compounds 1–5, 7 and 8 were determined in the range of 0.01–40 µM (4-fold dilutions); dexamethasone and 6 were assayed in the range of 0.1 pM–1 µM (10-fold dilutions). Values are an average of two separate experiments.

bCompound 7 was toxic to cells above 1 µM and was not active below 1 µM.

These results provide the following interesting structure–activity relationships:

1. A nitrile group at C-2 enhances activity. Compounds 6 and 8 are more potent than 1 and 3, respectively.
2. Hydroxyl and methoxy groups at C-2 decrease activity. Compounds 4 and 5 were much less potent than 3.
3. The above results suggest that electron-withdrawing groups at C-2 increase potency, and electron-releasing groups decrease potency.
4. A 9-en-12-one functionality is also a strong enhancer of potency. Compounds 1 and 6 are more active than 3 and 8, respectively.
5. The combination of a 9-en-12-one functionality, together with a nitrile group at C-2, provides a particularly potent compound for suppression of production of NO.
On the basis of these structure–activity relationships, further lead optimization is in progress. Further biological evaluation of CDDO (6) is also in progress.\(^2\)

Acknowledgments

We thank Drs. Carl Nathan and Qiao-wen Xie for expert advice on the preparation of macrophages and the nitric oxide assay. We also thank Dr. Mary K. Young and Mr. Ron New (UC Riverside) for the mass spectra, and Professor David A. Evans and Mr. Brett D. Allison (Harvard University) for the optical rotation measurements. This investigation was supported by funds from the Norris Cotton Cancer Center, U.S. Dept. of Defense Grant # DAMD17-96-1-6163, and the Oliver and Jennie Donaldson Charitable Trust. M.B.S. is Oscar M. Cohn Professor, and Y.W. is a Howard Hughes Medical Institute Predoctoral Fellow.

References and Notes

9. All new compounds 6–8 exhibited satisfactory spectral data including high-resolution mass spectra and elemental analyses. CDDO (6): amorphous solid; \[\alpha\]D20 +33 (c 0.28, CHCl\textsubscript{3}); UV (EtOH) \(\lambda_{max} \) (log e) 240.4 (4.21) nm; IR (KBr) 2950, 2867, 2235, 1692, 1665 cm\(^{-1}\); \(^1\)H NMR (CDCl\textsubscript{3}) \(\delta \) 8.05 (1H, s), 5.99 (1H, s), 3.10-3.00 (2H, m), 1.49, 1.35, 1.26, 1.17, 1.02, 1.00, 0.91 (each 3H, s); \(^{13}\)C NMR (CDCl\textsubscript{3}) \(\delta \) 199.0, 196.8, 183.6, 168.8, 166.0, 124.3, 114.9, 114.6, 50.0, 47.9, 47.2, 46.0, 45.3, 42.8, 42.4, 35.9, 34.7, 33.5, 33.1, 31.9, 31.7, 30.9, 28.2, 27.2, 26.9, 24.9, 23.3, 22.7, 21.8, 18.5; EIMS (70 eV) m/z 491 [M+ (100), 476 (62), 445 (29), 430 (27), 269 (94)]. HREIMS Calcd for \(C_{31}H_{41}NO_4\): 491.3036; Found: 491.3020. Anal. Calcd for \(C_{31}H_{41}NO_4\cdot1/4H_2O\) C, 75.04; H, 8.43. Found: C, 75.29; H, 8.79.

10. Briefly, the procedure for this assay is as follows: Macrophages were harvested from female mice injected intraperitoneally four days previously with 4% thioglycollate. These cells were seeded in 96-well tissue culture plates and incubated with 4 ng/mL IFN-\(\gamma\) in the presence or absence of inhibitory test compounds. After 48 hours NO production (measured as nitrite by the Griess reaction) was determined. Full details of the assay are given in reference 13.

12. Detailed biological data will be published elsewhere.