FINAL REPORT
JULY 1997

REPORT NO. 97-30

TTX COMPANY FLATCAR
CONVERTED TO A
CONTAINER-ON-FLATCAR (COFC)
RAIL IMPACT TEST

Prepared for:
U.S. Army Defense Ammunition Center
ATTN: SIOAC-DET
Savanna, IL 61073-9639

Distribution Unlimited

VALIDATION ENGINEERING DIVISION
SAVANNA, ILLINOIS 61074-9639

DTIC QUALITY INSPECTED S
AVAILABILITY NOTICE

A copy of this report will be furnished each attendee on automatic distribution. Additional copies or authority for reprinting may be obtained by written request from Director, U.S. Army Defense Ammunition Center, ATTN: SIOAC-DEV, 3700 Army Depot Road, Savanna, IL 61074-9639.

DISTRIBUTION INSTRUCTIONS

Destroy this report when no longer needed. Do not return.

***

Citation of trade names in this report does not constitute an official endorsement.

***

The information contained herein will not be used for advertising purposes.
MEMORANDUM FOR SEE DISTRIBUTION

Subject: TTX Company Flatcar Converted To A Container-On-Flatcar (COFC) Rail Impact Test; and Barnes & Reinecke, Inc. (BRI) Palletized Loading System (PLS) Flatrack Transportability Testing

1. Enclosed are the U.S. Army Defense Ammunition Center (DAC) Reports.

2. The POC for Report Nos. 97-30 and 96-36 is Mr. Jerome H. Krohn, SIOAC-DEV, DSN 585-8908, commercial (815) 273-8908.

FOR THE DIRECTOR:

[Signature]

Encl

as

JEROME H. KROHN
Chief, Validation Engineering Division

DISTRIBUTION:

Commander
U.S. Army Materiel Command, ATTN: AMCAM-LP, 5001 Eisenhower Avenue, Alexandria, VA 22333-0001

U.S. Army Armament, Munitions and Chemical Command, ATTN: AMSMC-TM/AMSMC-TMD, Rock Island, IL 61299-6000


U.S. Army Tank-Automotive Research, Development, and Engineering Center, ATTN: AMSTA-TR-R (Phil Barickman), MS 21, Warren, MI 48397-5000


U.S. Army Training and Doctrine Command, ATTN: ATCD-T/ATCD-L, Fort Monroe, VA 23651

Yuma Proving Ground, ATTN: STEYP-MT-ET, Yuma, AZ 85365-9103

SIOAC-DEV (702-3b)

Subject: TTX Company Flatcar Converted To A Container-On-Flatcar (COFC) Rail Impact Test, and Barnes & Reinecke, Inc. (BRI) Palletized Loading System (PLS) Flatrack Transportability Testing

DISTRIBUTION: (CONT)
U.S. Army Aberdeen Test Center, ATTN: STEAC-AE-SM, Aberdeen Proving Ground, MD 21005-5059

U.S. Army Aviation and Missile Command, ATTN: AMSMI-MMC-LS-MDP (Ron Kochevar), Redstone Arsenal, AL 35898-5070

U.S. Marine Corps Systems Command, ATTN: SSCMT, Quantico, VA 22134-5080

U.S. Marine Corps Development and Education Command, ATTN: D093, Quantico, VA 22134

Defense Ammunition Logistics Activity, ATTN: AMSTA-AR-AL, Picatinny Arsenal, NJ 07806-5000

Defense Ammunition Logistics Activity, ATTN: AMSTA-AR-AL(R), Rock Island, IL 61299-6000

Commanding General
Marine Corps Research, Development and Acquisition Command, Washington, DC 20380-0001

U.S. Marine Corps Logistics Base, ATTN: 834-832, Albany, GA 31704-5000

U.S. Army Transportation and Aviation Logistics Schools, ATTN: ATSP-TW, Fort Eustis, VA 23604

U.S. Army Transportation School, ATTN: ATSP-CDT, Fort Eustis, VA 23604

U.S. Army Ordnance Missile and Munitions Center and School, ATTN: ATSK-CMT-Z, Redstone Arsenal, AL 35897-6095

Director
Defense Technical Information Center, ATTN: FDAB, 8725 John J. Kingman Road, Suite 0944, Fort Belvoir, VA 22060-6218


Association of American Railroads/Bureau of Explosives, 50 F Street, N.W., Washington, DC 20001

Senior Inspector
Association of American Railroads/Bureau of Explosives, 309 North Douglas, Arlington Heights, IL 60004

DCD for Combat Support, ATTN: ATCL-C/CM, 3901 A Avenue, Fort Lee, VA 23801-1809
### TTX Company Flatcar Converted To a Container-on-flatcar (COFC) Rail Impact Test

**12. PERSONAL AUTHOR(S)**

A. C. McIntosh, Jr.

**13a. TYPE OF REPORT**

Final

**13b. TIME COVERED**

FROM [ ] TO [ ]

**14. DATE OF REPORT (Year, Month, Day)**

1997 July

**16. SUPPLEMENTARY NOTATION**

**19. ABSTRACT (Continue on reverse if necessary and identify by block number)**

The U.S. Army Defense Ammunition Center (DAC), Validation Engineering Division (SIOAC-DEV), was tasked by DAC, Transportation Engineering Division (SIOAC-DET), to perform a rail impact test on a modified flatcar, supplied by TTX Company (TTX), designed to carry three 20-foot or one 40-foot and one 20-foot containers. These flatcars were first made available to the U.S. Army (USA) to transport ammunition laden containers; however, their use was questioned relating to the protective criteria of 49 CFR for the transportation of hazardous materials. The tested flatcar was modified to meet the transportation criteria of 49 CFR, and, as a result of these rail impact tests, it was found that the flatcar could transport three ammunition laden containers. One of the three ammunition laden containers was the M1 PLS flatrack loaded with boxed ammunition. This flatrack was rail impacted without the use of chains to restrict the outward movement of the flatrack end walls. The dimensional tolerances between the end walls were not exceeded and the rough terrain container handler (RTCH) was able to insert the twist locks into the corner fittings of the M1 PLS flatrack. With the cushioned draft gear, the M1 PLS flatrack passed the rail impact test without chains.
TABLE OF CONTENTS

PART                  PAGE NO.
1. INTRODUCTION              .........................................................1-1
   A. BACKGROUND .................................................................1-1
   B. AUTHORITY .................................................................1-1
   C. OBJECTIVE .................................................................1-1
   D. CONCLUSION .................................................................1-2
2. ATTENDEES .................................................................2-1
3. TEST PROCEDURES .............................................................3-1
4. TEST RESULTS .................................................................4-1
5. PHOTOGRAPHS .................................................................5-1
6. DRAWING  .................................................................6-1
PART 1

INTRODUCTION

A. BACKGROUND. The U.S. Army Defense Ammunition Center (DAC), Validation Engineering Division (SIOAC-DEV), was tasked by DAC, Transportation Engineering Division (SIOAC-DET), to perform a rail impact test on a modified flatcar supplied by TTX Company, to carry three 20-foot or one 40-foot and one 20-foot containers. These flatcars were first made available to the U.S. Army (USA) to transport ammunition laden containers; however, questions arose relating to the flatcars meeting the safety criteria of 49 CFR for the transportation of hazardous materials. The tested flatcar was modified to meet the transportation criteria of 49 CFR, and, as a result of these rail impact tests, it was found that the flatcar could transport three ammunition laden containers.

B. AUTHORITY. These tests were conducted IAW mission responsibilities delegated by U.S. Army Armament, Munitions and Chemical Command (AMCCOM), Rock Island, IL 61299-5000. Reference is made to Change 4, 4 October 1974, to AR 740-1, 23 April 1971, Storage and Supply Operations; AMCCOMR 10-17, 13 January 1986, Mission and Major Functions of the U.S. Army Defense Ammunition Center and School (USADACS).

C. OBJECTIVE. The objective of these tests was to determine if the modified flatcar would meet the transportation requirements with three 20-foot ammunition laden containers. The tests consisted of rail impacts at 4, 6, and 8.1 mph in the forward direction and one 8.1 mph impact in the reverse direction.

A secondary objective was to determine the movement of the M1 PLS flatrack end walls without the use of restraining chains.
D. **CONCLUSION.** The detailed results of these tests are contained in this report. As a result of the tests, it was found that the modifications to the flatcar allow safe transportation of ammunition laden containers.

The conclusion to the secondary objective was that with the use of a railcar with a cushioned draft gear, the M1 PLS flatrack end wall restraint chains were not necessary.
PART 2

29 JULY 1997

ATTENDEES

Roger Robbins
312-984-3774
rgrobbins@ttxco.com
TTX Company
101 North Wacker Drive
Chicago, IL 60606

Stuart F. Trout
312-980-3859
sftrout@ttxco.com
TTX Company
101 North Wacker Drive
Chicago, IL 60606

Robert O'Brein
312-984-3791

TTX Company
101 North Wacker Drive
Chicago, IL 60606

Bruce Keating
312-984-3765

TTX Company
101 North Wacker Drive
Chicago, IL 60606

Dan Healy
Senior Inspector
847-392-6846
Fax: 847-392-9267
dan_healy@aar.com
Association of American Railroads
Bureau Of Explosives
309 N. Douglas
Arlington Heights, IL 60004

Jim Murphy
DSN: 761-3443
703-681-3443
murphyj@baileys-emh5.army.mil
Commander
Military Traffic Management Command
Joint Traffic Management Office
5611 Columbia Pike
ATTN: MTTM-O
Falls Church, VA 22041-5000

William F. Ernst
Associate Director of Engineering
DSN: 585-8922
815-273-8922
ernst@dac-emh1.army.mil
Director
U.S. Army Defense Ammunition Center
ATTN: SIOAC-DE
3700 Army Depot Road
Savanna, IL 61074-9639
ATTENDEES (CONT)

A. C. McIntosh, Jr.
General Engineer
DSN: 585-8989
815-273-8989
mcintoshsa@dac-emh1.army.mil

Quinn D. Hartman
General Engineer
DSN: 585-8992
815-273-8992
hartman@dac-emh1.army.mil

Jerome H. Krohn
Supervisory General Engineer
DSN: 585-8908
815-273-8908
krohn@dac-emh1.army.mil

William R. Frerichs
Supervisory General Engineer
DSN: 585-8071
815-273-8071
frerichs@dac-emh1.army.mil

Gregory Willis
Industrial Engineer
DSN: 585-8075
815-273-8075
willis@dac-emh1.army.mil

Director
U.S. Army Defense Ammunition Center
ATTN: SIOAC-DEV
3700 Army Depot Road
Savanna, IL  61074-9639

Director
U.S. Army Defense Ammunition Center
ATTN: SIOAC-DEV
3700 Army Depot Road
Savanna, IL  61074-9639

Director
U.S. Army Defense Ammunition Center
ATTN: SIOAC-DEV
3700 Army Depot Road
Savanna, IL  61074-9639

Director
U.S. Army Defense Ammunition Center
ATTN: SIOAC-DET
3700 Army Depot Road
Savanna, IL  61074-9639
PART 3

TEST PROCEDURES

A. These test procedures were extracted from TP-94-01, Transportability Testing Procedures, July 1994, of validating tactical vehicles and outloading procedures for shipping munitions by intermodal freight containers, commercial/tactical truck or trailer or railcar.

B. The test loads were prepared using the same blocking and bracing methods specified in the tiedown procedures proposed for use with munitions. A copy of these procedures is contained in Part 6 of this report. The weight and physical characteristics of the load configuration were identical to the live (explosive) ammunition provided for in the tiedown procedure; i.e., weights, physical dimensions, center of gravity (CG), materials, etc. The ammunition packages duplicated that of the live ammunition.

C. Tests conducted for this load configuration are Rail Impact - Commercial Flatrack(s) on flatcar (Test Method No. 1).

D. Test Method No. 1 (Rail Impact Test). The test intermodal commercial flatrack was loaded and secured to a standard flatcar. Equipment needed to perform the test included the specimen (hammer) car, five empty railroad cars connected together to serve as an anvil, and a railroad locomotive. These anvil cars were positioned on a level section of track with air and hand brakes set and with the draft gears compressed. The locomotive unit pulled the specimen car several hundred yards away from the anvil cars, and then, pushed the specimen car toward the anvil at a predetermined speed, then disconnected from the specimen car approximately 50 yards away from the anvil cars which allowed the specimen car to roll freely along the track until it struck the anvil cars. This constituted an impact. Impacting was accomplished at speeds of 4, 6, and 8.1 mph in one direction and at a speed of 8.1 mph in the reverse direction. The 4 and 6 mph
impact speeds were approximate; the 8.1 mph speed was a minimum. Impact speeds were determined by using an electronic counter to measure the time for the specimen car to traverse an 11-foot distance immediately prior to contact with the anvil cars (see Figure 1).
ASSOCIATION OF AMERICAN RAILROADS (AAR)
STANDARD TEST PLAN

5 BUFFER CARS (ANVIL) WITH DRAFT GEAR
COMPRESSED AND AIR BRAKES IN A SET
POSITION
ANVIL CARS TOTAL WT 250,000 LBS (APPROX)

SPECIMEN CAR
IS RELEASED BY
SWITCH ENGINE TO
ATTAIN: IMPACT NO. 1 @ 4 MPH
IMPACT NO. 2 @ 6 MPH
IMPACT NO. 3 @ 8.1 MPH
THEN THE CAR IS REVERSED AND
RELEASED BY SWITCH ENGINE TO
ATTAIN: IMPACT NO. 4 @ 8.1 MPH

FIGURE 1
PART 4

TEST RESULTS

Test No. 1:  

Specimen Load: Three containerized ammunition loads on a modified flatcar.

Flatcar No.: VTTX 92274  
Lt. Wt.: 55,000

USAU 0100487 Flatrack, Boxed Ammunition  
Wt.: 38,820

PLSM01 Milvan, 155MM SLP  
Wt.: 41,280

USAU 0100614 Flatrack, MLRS pods  
Wt.: 28,220

Total Specimen Wt.: 163,320

Buffer Car (five cars) Wt.: 250,000

<table>
<thead>
<tr>
<th>Impact</th>
<th>End Struck</th>
<th>Velocity</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Forward</td>
<td>4.03</td>
<td>No Load Movement.</td>
</tr>
<tr>
<td>2</td>
<td>Forward</td>
<td>6.42</td>
<td>No Load Movement.</td>
</tr>
<tr>
<td>3</td>
<td>Forward</td>
<td>8.10</td>
<td>No Load Movement.</td>
</tr>
<tr>
<td>4</td>
<td>Reverse</td>
<td>8.26</td>
<td>No load Movement.</td>
</tr>
</tbody>
</table>

Note: 1. Flatcar has cushioned draft gear.
2. Car number changes from VTTX 92274 to ATTX 922274.
PART 5

PHOTOGRAPHS
<table>
<thead>
<tr>
<th>U.S. ARMY DEFENSE AMMUNITION CENTER - SAVANNA, IL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHOTO NO. DE972976. This photo shows the side and floor of the TTX railcar along with the PLS flatrack with an MLRS rocket pod load.</td>
</tr>
</tbody>
</table>
PHOTO NO. DE972982. This photo shows the openings in the floor of the TTX railcar exposing the railcar wheels.
CHARACTERISTICS OF CAR

1. Bottom of Container will be 50 3/4" from top of rail.
2. Container Bolsters are non-cushioned.
3. Car is equipped with 12" end of car cushioning.
4. One set of intermediate container bolsters are retractable to allow loading of one 40' container.
5. Reporting marks on car are VTTX with a 161,300 lbs. capacity and load limit.

NECESSARY LOADING CONDITIONS

1. Cars will handle the following combination of containers:
   A. Three 20' Containers.
   B. One 40' and One 20' Container.

2. Intermediate Double Pedestals toward "B" end of car must be retracted before loading a 40' container.

3. Weight Restrictions
   A. 20' Containers to have a maximum gross weight of 53,760 lbs.
   B. 40' Containers to have a maximum gross weight of 67,200 lbs.