Title: Modeling Of Pulsed Thermography In Anisotropic Media

Authors:
- Ignacio Perez
- Rachel Santos
- Paul Kulowitz
- Steven Shepard

Performing Organization:
Naval Air Warfare Center Aircraft Division
22347 Cedar Point Road, Unit #6
Patuxent River, Maryland 20670-1161

Funding Numbers:

Abstract:

Approved for public release; distribution is unlimited.

Security Classification:

<table>
<thead>
<tr>
<th>Unclassified</th>
<th>Unclassified</th>
<th>Unclassified</th>
<th>SAR</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>1. AGENCY USE ONLY (LEAVE BLANK)</th>
<th>2. REPORT DATE</th>
<th>3. REPORT TYPE AND DATES COVERED</th>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1998</td>
<td>Professional Paper</td>
<td>Modeling Of Pulsed Thermography In Anisotropic Media</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. FUNDING NUMBERS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Air Warfare Center Aircraft Division</td>
</tr>
<tr>
<td>22347 Cedar Point Road, Unit #6</td>
</tr>
<tr>
<td>Patuxent River, Maryland 20670-1161</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>10. SPONSORING/MONITORING AGENCY REPORT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>11. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12a. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
</table>

Approved for public release; distribution is unlimited.

<table>
<thead>
<tr>
<th>12b. DISTRIBUTION CODE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>13. ABSTRACT (Maximum 200 words)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. SUBJECT TERMS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. NUMBER OF PAGES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. PRICE CODE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>17. SECURITY CLASSIFICATION OF REPORT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>18. SECURITY CLASSIFICATION OF THIS PAGE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. SECURITY CLASSIFICATION OF ABSTRACT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>20. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SAR</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unclassified</th>
<th>Unclassified</th>
<th>Unclassified</th>
<th>SAR</th>
</tr>
</thead>
</table>

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate only, other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
MODELING OF PULSED THERMOGRAPHY IN ANISOTROPIC MEDIA

Ignacio Perez, Rachel Santos, Paul Kulowitch and Steven Shepard*
Naval Air Warfare Center, Aircraft Division
Materials Division, Patuxent River MD, 20670

Thermal Wave Imaging, Inc.
18899 W. 12 Mile Rd.
Lathrup Village, MI 48076

A simple thermographic model has been developed that accurately describes the surface temperature response of an aluminum panel with flat bottom holes of different depths and diameters to a short heat pulse. This model assumed that a thin layer of material at the surface is instantaneously heated by the pulse, and that subsequent cooling of the surface is due to diffusion of the deposited energy into the bulk of the material. The model accounts for sample thickness, density, specific heat, in-plane and out-of-plane thermal conductivity and defect size and depth. However, heat pulse parameters such as pulse duration and intensity were not included. In this talk we will present experimental and modeling results on graphite epoxy composites with flat bottom holes of different radii and depth. The experimental results were collected with standard pulse thermographic equipment. The experimental data was analyzed with our model. The effects of anisotropy in the thermal conductivity will be presented and discussed.

Dr. Ignacio Perez
Naval Air Warfare Center \Aircraft Division
Code 4.3.4.2, Unit 5, Bldg 2188
Patuxent River MD 20670-5304
Tel. (301) 342-8074
FAX (301) 342-8062

to be presented at the
25th annual Progress in Quantitative Nondestructive Evaluation Conference
Snowbird Conference Center, Snowbird, Utah., July 19 - 24, 1998
Abstracts, Manuscripts, Sessions
Sarah Kallsen or Connie Nessa
qnde1@cnde.iastate.edu
515-294-9749 (phone)
515-294-2367 (fax)
MODELING OF PULSED THERMOGRAPHY IN ANISOTROPIC MEDIA

By:

Dr. Ignacio Perez
Paul Kulowitch
Rachel Santos
Steven Shepard
OUTLINE

- EXPERIMENTAL
- DATA ANALYSIS
- SIMPLE CALORIMETRIC MODEL
- SIMPLE FINITE ELEMENT MODEL
- EXPERIMENTAL RESULTS
- SUMMARY AND CONCLUSION
THERMOGRAPHIC SYSTEM

CAMERA SPECIFICATIONS
Amber Engineering Model AE-4128
128X128 InSb FPA
207 frames/s (max)
Sensitive to 0.01°C

FLASH LAMP SPECIFICATIONS
Speedtron Model 4803CX Capacitors
Speedtron Model 206VF Lamps
Delivers 5KJ per lamp (2) in 5 ms
1/8" Thick Al-7075 panel

3%
21%
43%
62%
72%
80%

1" Diameter Holes
CONTRAST vs DEPTH

Contrast Temp. (a.u.) vs Depth d (Inches)
NO LATERAL HEAT CONDUCTIVITY APPROXIMATION

\[q = m \cdot c \cdot \Delta T \]

\[q_2 = \rho \cdot A_2 \cdot t \cdot c \cdot T_2 \]

\[q_1 = \rho \cdot A_1 \cdot d \cdot c \cdot T_1 \]

\[\Delta T = \frac{Q}{\rho \cdot c} \left(\frac{1}{d} - \frac{1}{t} \right) \]

\[\Delta T = T_1 - T_2 \]

\[Q = q / A \]
\[
\Delta T = \frac{Q}{\rho \cdot c} \left(\frac{1}{d} - \frac{1}{t} \right)
\]

1. THE CONTRAST (\(\Delta T\)) INCREASES LINEARLY WITH THE AMOUNT OF DEPOSITED ENERGY PER UNIT AREA (Q).

2. THE HIGHER THE SPECIFIC HEAT-DENSITY OF A MATERIAL (\(\rho c \uparrow\)) THE SMALLER THE PEAK CONTRAST (\(\Delta T \downarrow\)).

3. THE CLOSER THE DEFECT TO THE SURFACE (d \(\to\) 0) THE HIGHER THE PEAK CONTRAST (\(\Delta T \to \infty\)).

4. AS THE DEFECT DEPTH APPROACHES THE PANEL THICKNESS (d \(\to\) t) THE CONTRAST VANISHES (\(\Delta T \to 0\)).

5. FOR A GIVEN DEFECT DEPTH D, THE THICKER THE PANEL (t \(\to\) \(\infty\)) THE LARGER THE CONTRAST (\(\Delta T \to Q/\rho cd\)).
SIMPLE MODEL CORRELATION
(no lateral heat flow)

CONTRAST vs DEPTH

\[\Delta T = \frac{Q}{\rho \cdot c \cdot \left(\frac{1}{d} - \frac{1}{t} \right)} \]

DEPTH OF RESOLUTION vs ENERGY

- 80% Mass Loss
- 52% Mass Loss
- 35% Mass Loss
- Camera Resolution

Contrast (a.u.) vs Defect Depth (mil)

Peak Contrast (a.u.) vs Lamp Energy (a.u.)
\[
\rho \cdot A_1 \cdot P \cdot c \cdot \frac{dT_1}{dt} = k \cdot A_1 (T_1' - T_1) + k_L \cdot A_p (T_2 - T_1)
\]

\[
\rho \cdot A_2 \cdot P \cdot c \cdot \frac{dT_2}{dt} = k \cdot A_2 (T_2' - T_2) + k_L \cdot A_p (T_1 - T_2)
\]

\[
\rho \cdot A_2 \cdot h \cdot c \cdot \frac{dT_2'}{dt} = k \cdot A_2 (T_2' - T_2'')
\]

\[k = \text{Effective Contact Normal Thermal Conductivity}\]

\[k_L = \text{Effective Contact Lateral Thermal Conductivity}\]
MODEL ASSUMPTIONS

- The energy "Q" is absorbed by a thin layer of thickness "p". The expressions derived in this work are derived in the limit when "p → 0"

- No energy is dissipated radiatively or convectively to the surrounding environment.

- The conductance "K" between elements can has been expressed as "K = k A/l". The lateral and normal conductivities are assumed to be different.
LATERAL HEAT FLOW EFFECTS
(effective contact conductivity model)

\[\Delta T(t) = \frac{Q}{\rho c \cdot d \cdot (1 - a + r)} \left(e^{-\frac{a \cdot k}{d \cdot \rho c} t} - e^{-\frac{1 + r \cdot k}{d \cdot \rho c} t} \right) \]

\[t_{\text{peak}} = \frac{\rho c \cdot d}{k \cdot (1 - a + r)} \ln \frac{1 + r}{a} \]

\[\Delta T_{\text{peak}} = \frac{Q \left(\frac{1}{d} - \frac{1}{t_o} \right)}{\rho c \left(\frac{1}{d} - \frac{1}{t_o} \right)} \cdot \left\{ \frac{t_o}{a \cdot h \left[\frac{a \cdot h}{t_o} \right]^\frac{1}{1 - \frac{a \cdot h}{t_o}}} \right\} \]

\[a = \frac{k_L \cdot A_L}{k_n \cdot A_n} \]

\[h = t - d \]

\[r = \frac{d}{t - d} \]

LATERAL HEAT FACTOR
Fit of Contrasts Curves

\begin{align*}
\Delta T(t) &= \frac{Q}{\rho c \cdot d \cdot (1 - a + r)} \left(e^{\frac{a \cdot k}{d \cdot pc}} - e^{\frac{1+r \cdot k}{d \cdot pc}} \right) \\
\Delta T_{\text{peak}} &= \frac{Q}{\rho c \left(\frac{1}{d} - \frac{1}{t_o} \right)} \left\{ \frac{t_o}{a \cdot h} \left[\frac{a \cdot h}{t_o} \right] \left(\frac{1}{1 - \frac{a \cdot h}{t_o}} \right) \right\}
\end{align*}
LATERAL HEAT FACTOR
(effective contact conductivity model)

Lateral Heat Factor

\[\Delta T_{\text{peak}} = \frac{Q}{\rho c} \left(\frac{1}{d} - \frac{1}{t_o} \right) \left\{ \frac{t_o}{a \cdot h} \left[\frac{a \cdot h}{t_o} \right]^{\frac{1}{1 - \frac{a \cdot h}{t_o}}} \right\} \]
\[\Delta T_{\text{peak}} = \frac{Q}{\rho c} \left(\frac{1}{d} - \frac{1}{t_o} \right) \left\{ \frac{t_o}{a \cdot h} \left[\frac{a \cdot h}{t_o} \right]^{1 - \frac{a \cdot h}{t_o}} \right\} \]

\[
a = \frac{k_L \cdot A_L}{k_n \cdot A_n}
\]

\[
h = t - d
\]

1. THE CONTRAST (\(\Delta T\)) INCREASES LINEARLY WITH THE AMOUNT OF DEPOSITED ENERGY PER UNIT AREA (Q).

2. THE HIGHER THE SPECIFIC HEAT-DENSITY OF A MATERIAL (\(\rho c\uparrow\)) THE SMALLER THE PEAK CONTRAST (\(\Delta T \downarrow\)).

3. THE CLOSER THE DEFECT TO THE SURFACE (\(d \to 0\)) THE HIGHER THE PEAK CONTRAST (\(\Delta T \to \infty\)).

4. AS THE DEFECT DEPTH APPROACHES THE PANEL THICKNESS (\(d \to t\)) THE CONTRAST VANISHES (\(\Delta T \to 0\)).

5. FOR A GIVEN DEFECT DEPTH D, THE THICKER THE PANEL (\(t \to \infty\)) THE LARGER THE CONTRAST (\(\Delta T \to Q/\rho cd\)).
LATERAL HEAT FLOW MODEL
(specific thermal conductivity)

\[\rho \cdot A_1 \cdot p \cdot c \cdot \frac{dT_1}{dt} = k \cdot \frac{A_1}{p + d} (T'_1 - T_1) + k_L \cdot \frac{A_p}{R} (T_2 - T_1) \]

\[\rho \cdot A_2 \cdot p \cdot c \cdot \frac{dT_2}{dt} = k \cdot \frac{A_2}{p + d} (T'_2 - T_2) + k_L \cdot \frac{A_p}{R} (T_1 - T_2) \]

\[\vdots \]

\[\rho \cdot A_2 \cdot h \cdot c \cdot \frac{dT_2''}{dt} = k \cdot \frac{A_2}{h + d} (T'_2 - T_2'') \]

\[k = \text{Thermal Conductivity} \]

\[k_L = \text{Lateral Thermal Conductivity} \]
SPECIFIC THERMAL CONDUCTIVITY

\[K = \frac{k \cdot A}{l} \]

\[\Delta T(t) = \frac{Q}{\rho c \cdot t_0 (d - a \cdot h)} \left(e^{-\frac{a \cdot k}{\rho c d^2 t}} - e^{-\frac{d \cdot k}{\rho c d^2 t}} \right) \]

\[t_{\text{peak}} = \frac{\rho c}{k} d^2 \frac{h}{a \cdot h - d} \ln \frac{a \cdot h}{d} \]

\[\Delta T_{\text{peak}} = \frac{Q}{\rho c \left(\frac{1}{d} - \frac{1}{t_0} \right)} \left\{ \frac{d}{a \cdot h} \left[\frac{a \cdot h}{d} \right]^{-1} \frac{1}{1 - \frac{a \cdot h}{d}} \right\} \]

\[a = \frac{k_L \cdot A_L \cdot d}{k_n \cdot A_n \cdot R} \]

EFFECTIVE CONTACT CONDUCTIVITY

\[K = k \cdot A \]

\[\Delta T(t) = \frac{Q}{\rho c \cdot d \cdot (1 - a + r)} \left(e^{-\frac{a \cdot k}{d \rho c t}} - e^{-\frac{1 + r \cdot k}{d \rho c t}} \right) \]

\[t_{\text{peak}} = \frac{\rho c}{k} \frac{d}{1 - a + r} \ln \frac{1 + r}{a} \]

\[\Delta T_{\text{peak}} = \frac{Q}{\rho c \left(\frac{1}{d} - \frac{1}{t_0} \right)} \left\{ \frac{t_0}{a \cdot h} \left[\frac{a \cdot h}{t_0} \right]^{-1} \frac{1}{1 - \frac{a \cdot h}{t_0}} \right\} \]

\[a = \frac{k_L \cdot A_L}{k_n \cdot A_n} \]
EXPERIMENTAL DATA
(80% mass removal)

1/2" → 80%
80% 60% 40% 20%
1" →
3/4" →
\[\Delta T_{\text{peak}} = \frac{Q}{\rho c} \left(\frac{1}{d} - \frac{1}{t_o} \right) \left\{ \frac{d}{a \cdot h} \left[\frac{a \cdot h}{d} \right]^{1-a \cdot h/d} \right\} \]

Effects of Radii

- Fit 1.00 inch Dia. Hole
- Fit 0.75 inch Dia. Hole
- Fit 0.50 inch Dia. Hole
- Data 1.00 inch Dia Hole
- Data 0.75 inch Dia Hole
- Data 0.50 inch Dia Hole

Contrast Temp. (a.u.) vs. Flaw Depth (mil)
MODEL TIME-RESPONSE PREDICTIONS
(varying defect sizes and locations)

Dia = 1.00"

Dia = 0.75"

Dia = 0.50"
\[\Delta T_{\text{peak}} = \frac{Q}{\rho c \left(\frac{1}{d} - \frac{1}{t_o} \right)} \cdot \left\{ \frac{d}{a \cdot h} \left[\frac{a \cdot h}{d} \right] \cdot \frac{1}{1 - \frac{a \cdot h}{d}} \right\} \]
SUMMARY AND CONCLUSIONS

- Calorimetric model was developed to predict thermal contrast.

- Model accounts for defect size, location, and lateral conductivity effects.

- Calorimetric model correlates well with experimental results.

- Anisotropic thermal conductivity can be modeled.

- Model accuracy should improve as the element mesh is refined.