FINAL REPORT

WORKSHOP ON HYDROGEN STORAGE AND GENERATION
FOR MEDIUM-POWER AND -ENERGY APPLICATIONS

8-10 April 1997
Orlando, Florida

Sponsors:
U.S. Army Research Office
Office of Research and Development, CIA

UNIVERSITY OF SOUTH CAROLINA

Department of Chemical Engineering
This report summarizes the Workshop on Storage and Generation of Hydrogen for Medium-Power and Medium-Energy Applications which was held on April 8-10, 1997 at the Radisson Hotel Orlando Airport in Orlando, Florida. There were 70 participants, representing private industry, national laboratories, the Department of Defense, and academia. The Workshop was sponsored by the U.S. Army Research Office and by the Office of Research and Development of the Central Intelligence Agency. The objective of this workshop was to review and summarize what is known or under development concerning hydrogen storage and generation technologies that are potentially applicable for use in small- to medium-sized PEM fuel cell systems. The Workshop participants were instructed to consider three specific fuel cell power systems: a 300 watt (W) fuel cell with 10 kWh energy storage, a 100 W person-portable fuel cell with a minimum of 1 kWh energy storage, and a 10 W fuel cell with 90 kWh energy storage. These three power systems were suggested by the Workshop sponsors because of anticipated future military and defense applications. In addition, power supplies of this size may also have significant applications in the commercial sector.
FINAL REPORT

WORKSHOP ON HYDROGEN STORAGE AND GENERATION
FOR MEDIUM-POWER AND ENERGY APPLICATIONS

8-10 April 1997
Orlando, Florida

Sponsors:
U.S. Army Research Office
Office of Research and Development, CIA

Submitted by:

Michael A. Matthews
Department of Chemical Engineering
University of South Carolina
Columbia, SC 29208

Peter S. Fedkiw
U.S. Army Research Office
Research Triangle Park, NC 27709

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of Defense position, policy, or decision, unless so designated by other documentation.

Michael A. Matthews
Workshop Chairman
University of South Carolina
TABLE OF CONTENTS

1. Executive Summary .. 1
2. Workshop Charge and Organization .. 9
3. Summary of Plenary Session .. 11
 Speakers' Presentation Materials ... 15
4. Summary of Working Group Discussions ... 363
5. Results and Recommendations of Working Groups
 Working Group 1: Physical/Absorptive Systems ... 368
 Working Group 2: Chemical Hydrides ... 399
 Working Group 3: Thermal and Catalyzed Processes ... 414
6. Attendee List ... 428
7. Appendices
 A1. Report by O. Velev ... 433
 A2. Energy Storage Efficiency for Direct Methanol Fuel Cells .. 466
LIST OF TABLES

Table 1. Summary of Material Characteristics ... 5
Table 2. Summary of Mission Specific Estimates ... 7
Table 3. Workshop Agenda ... 10
Table 4. Working Group 1: Evaluation ... 372
Table 5. Working Group 1: Comparative Aspects ... 373
Table 6. Working Group 2: Evaluation ... 402
Table 7. Working Group 2: Comparative Aspects ... 403
Table 8. Working Group 2: Systems Issues for Chemical Hydrides and Related Materials .. 404
Table 9. Working Group 3: Evaluation ... 417
Table 10. Working Group 3: Comparative Aspects ... 418
1. EXECUTIVE SUMMARY
1. EXECUTIVE SUMMARY

This report summarizes the Workshop on Hydrogen Storage and Generation Technologies for Medium–Power and –Energy Applications which was held on April 8-10, 1997 at the Radisson Hotel Orlando Airport in Orlando, Florida. There were 70 participants, representing private industry, national laboratories, the Department of Defense, and academia. The Workshop was sponsored by the U.S. Army Research Office and by the Office of Research and Development of the Central Intelligence Agency. The objective of this workshop was to review and summarize what is known or under development concerning hydrogen storage and generation technologies that are potentially applicable for use in small- to medium-sized PEM fuel cell systems. The Workshop participants were instructed to consider three specific fuel cell power systems: a 300 watt (W) fuel cell with 10 kWh energy storage, a 100 W person-portable fuel cell with a minimum of 1 kWh energy storage, and a 10 W fuel cell with 90 kWh energy storage. These three power systems were suggested by the Workshop sponsors because of anticipated future military and defense applications. In addition, power supplies of this size may also have significant applications in the commercial sector.

The charge to the Workshop participants as well as the Workshop agenda are given in Section 2 of these proceedings. The Workshop began with a Plenary Session which occupied Day 1 and a portion of Day 2. A total of eighteen experts were invited to speak in the Plenary session. Seven speakers from DoD, CIA, and DOE reviewed both the present research and development status of hydrogen storage and generation systems, as well as the anticipated needs of the defense sector. The remaining eleven invited speakers provided a technological and scientific overview of selected hydrogen storage and generation materials and systems. Section 3 of these proceedings contains a review of the plenary session and copies of all the viewgraphs presented in the plenary session.

At the conclusion of the invited presentations, workshop participants were assigned to one of three working groups for detailed technical discussions and preparation of summary reports. The working group on Physical and Absorptive Storage (Group 1) addressed technologies such as compressed hydrogen gas storage, reversible absorptive storage using metal hydrides, and reversible absorptive storage using carbonaceous materials. The working group on Chemical Hydrides and Related Materials (Group 2) addressed technologies including irreversible hydrolysis of classical chemical hydrides, irreversible solid state decomposition of chemical hydrides, reversible hydrogenation/dehydrogenation of hydrocarbon shuttle compounds, and organosilanes and organoboranes. The working group on Thermal and Catalyzed Processes (Group 3) considered technologies such as partial oxidation of hydrocarbons and alcohols, thermal decomposition of ammonia, and catalytic decomposition of hydrocarbons. The feasibility of using “mesoscopic processors” (chemical process equipment on the order of cm in dimension) to produce hydrogen was discussed in Group 3.

Participants in each working group were encouraged to make additional presentations of technical materials. The working groups were charged with developing estimates of weight and volume required to fabricate a hydrogen generation system for the three fuel cell systems described above. The working groups were also charged with discussing and summarizing additional issues such as safety, likelihood of success, time to implementation, and resources required for development of hydrogen generation devices based on the different technologies. Section 4
of these proceedings contains an overview of each working group prepared by the authors of this report. Section 4 also contains the written summaries prepared by the working groups, as well as additional viewgraphs presented to the working groups.

During the last half-day of the Workshop, the participants re-convened to hear and discuss the results and recommendations developed by the three working groups. The findings of the three working groups are summarized below.

Availability of Technologies for Field-Testing

The stage of development of the various technologies is given below. Findings are grouped according to the participants' views on whether a given hydrogen storage/generation technology is or should be available for field-testing in the short-term (0-3 years), medium-term (3-5 years), or long-term (5+ years). The technical barriers and resources needed to bring the technologies to maturity are discussed later in this report.

Technologies available for field-testing in 0-3 years

- Hydrogen storage in lightweight, pressurized tanks
- Reversible, low-temperature, low capacity metal hydrides
- Reversible, high-temperature, high capacity metal hydrides
- Hydrolysis of classical chemical hydrides
- Solid state reaction of classical chemical hydrides
- Thermal decomposition of ammonia

Technologies available for field testing in 3-5 years

- Pressurized storage in glass microspheres
- Hydrolysis of novel silanes and boranes
- Reversible hydrogenation/dehydrogenation of cycloalkanes using known heterogeneous catalysts
- Absorptive storage on fullerenes

Technologies available for field testing in > 5 years

- Partial oxidation (POx), steam reforming, or combined oxidation/reforming (PrOx) of hydrocarbon or alcohol fuels in mesoscopic processors
- Single wall carbon nanotubes
- Graphite nanofibers
- Reversible hydrogenation/dehydrogenation of cycloalkanes using novel homogeneous catalysts
- Hydrolysis or thermal reaction of ligand-stabilized chemical hydrides

Summary of Material Characteristics

Technologies for storage of hydrogen span a broad range of materials science. Table 1 summarizes the material characteristics of the technologies discussed in this workshop. The first column reports the hydrogen storage yield as kg of hydrogen theoretically available per kg of materials. “Materials” is defined here as the stored hydrogen plus any substrate, co-reactant (e.g., water), or other substance intrinsic to the storage technology. In the particular case of
compressed hydrogen gas storage, the container itself is intrinsic to the technology and its mass included in the calculation of storage efficiency. For the remaining technologies the weight of containers is not reflected in Table 1. The second, third, and fourth columns are equivalent hydrogen storage capacities in terms of Ah/kg (1 kg H₂ = 26,800 Ah), Wh/kg, and Wh/l. The latter two equivalencies assume that the hydrogen is consumed in a fuel cell stack operating at 0.7 V. Columns 3 and 4 show the effective density of the storage materials. The column entitled “Thermal Burden” shows whether heat has to be added or removed in the hydrogen production step. In the case of pressurized hydrogen, for example, hydrogen is released with zero energy input, but a low temperature metal hydride requires several thousand kilojoules to release all the hydrogen theoretically available. The final column is a partial list of required ancillaries (valves, regulators, reactors, pumps, etc.) which are required to assemble a working system.

Summary of Mission-Specific Weight and Volume Estimates

Workshop participants were asked to estimate the weight and volume of a system (materials plus ancillaries) to meet the three specific example applications described above. Their estimates are given in Table 2. It must be remembered that there is a great deal of uncertainty associated with those estimates for technologies that are medium-term and long-term in anticipated availability. Some of these technologies are in the research stages and no prototypes have been fabricated. For the near-term applications, in most cases, working prototypes have been made and tested, and therefore the weight and volume estimates have a stronger basis. While some of the data contained in this table may have been published elsewhere by individual authors, it is stressed that the compilation of data in Tables 2 and 3 has not been submitted for external peer review.

Critical Research and Development Needs

Participants were asked to identify the additional research and development activities which would be required to bring a given hydrogen storage and generation technology to maturity. Because the technologies are in different stages of development, the term “maturity” has to be defined with flexibility. Some technologies are already in the prototype and field-test stage of development, so “maturity” would mean developing a field-certifiable unit meeting all requirements for operability and safety. For technologies which are still in the research stage, maturity means bringing the technology to a point where a prototype storage and delivery system could be built. Certain research and development needs were identified in the working groups as significantly affecting most or all of the hydrogen storage and generation technologies discussed. These are:

- Miniaturization (that is, volume and weight) of components and ancillaries (e.g., pumps, blowers, regulators, heat exchangers, reactors, separators)
- Starting, stopping, and controlling hydrogen delivery (e.g., fundamental understanding of reaction kinetics, improved sensors, control algorithms, control systems)
- Hydrogen purity and removal of contaminants
- Scaling laws (technologies may work for larger power/energy requirements but uncertainty increases for smaller requirements)
• Temperature-related issues (e.g., thermal signature, heat sources or sinks for endo- or exothermic reactions, temperature limits of fuel cell membranes, coupled endo- and exothermic reactions during startup)
• Water management (if required) for the hydrogen source and integration with fuel cell water management
• Toxicity, recycling, treatment, or disposal of materials and any by-products (especially important for novel materials being developed)

Finally, the issue of safety was discussed extensively in the working groups and in the plenary and wrap-up sessions. Whether engaged in basic research or applied systems development, participants expressed uncertainty about how to assess safety during the design of hydrogen storage and production systems. Even though some technologies may require significant additional R&D before field-testing, the basic concepts of system design can usually be outlined at a fairly early stage of development, and the broad safety issues can be anticipated. Therefore, the DoD should consider consulting with operations personnel to develop safety guidelines that will provide clear bounds for the development of hydrogen storage and delivery systems.
Table 1. Summary of Material Characteristics

<table>
<thead>
<tr>
<th>Technology</th>
<th>Theoretical H₂ yield (kg H₂/kg materials)</th>
<th>Ab/kg materials</th>
<th>Wh/kg materials (at 0.7 V)</th>
<th>Wh/L materials (at 0.7 V)</th>
<th>Thermal Burden (J/kg materials)</th>
<th>Required Ancillaries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressurized tanks</td>
<td>< - 0.18</td>
<td>< ~ 4820</td>
<td>< ~ 3380</td>
<td>435 (5 kpsi) 732 (10 kpsi) 958 (15 kpsi)</td>
<td>0</td>
<td>Burst disc, regulator</td>
</tr>
<tr>
<td>Glass Bubbles</td>
<td>0.094 @ 6000 psi (unsupported)</td>
<td>2520</td>
<td>1760</td>
<td>320</td>
<td>0</td>
<td>Release device, e.g., mechanism to crush spheres</td>
</tr>
<tr>
<td>Low temp. metal hydride</td>
<td>0.0175</td>
<td>470</td>
<td>330</td>
<td>1800</td>
<td>+16,800</td>
<td>Heat/cool, low pressure container</td>
</tr>
<tr>
<td>High temp. metal hydride</td>
<td>0.060</td>
<td>1610</td>
<td>1130</td>
<td>1630</td>
<td>+35,000</td>
<td>Heat source, exchanger (320°C)</td>
</tr>
<tr>
<td>Mg-23 at% Ni</td>
<td>0.054</td>
<td>1445</td>
<td>1011</td>
<td>1630</td>
<td>+32,000</td>
<td>“Thermite Heater”</td>
</tr>
<tr>
<td>NaAlH₄</td>
<td>0.060</td>
<td>1700</td>
<td>1300</td>
<td>1480</td>
<td>-55,000</td>
<td>Wafer reaction catalyst</td>
</tr>
<tr>
<td>AlH₃</td>
<td>0.10</td>
<td>2400</td>
<td>1900</td>
<td>2000</td>
<td>-10,000</td>
<td>Regulator, reactor, binder, igniter</td>
</tr>
<tr>
<td>Fullerene</td>
<td>0.07</td>
<td>1680</td>
<td>1300</td>
<td>2000</td>
<td>+41,000</td>
<td>Heater (400°C)</td>
</tr>
<tr>
<td>Single wall nanotubes</td>
<td>0.02 - 0.05</td>
<td>540 - 1340</td>
<td>380 - 940</td>
<td>560 - 1010</td>
<td>~ 0</td>
<td>Bleed valve, lt. wt. tank</td>
</tr>
<tr>
<td>Graphite nanofibers</td>
<td>0.20 - 0.50</td>
<td>5360-13400</td>
<td>3752-9380</td>
<td>1900-4700 @ 0.5g/cm³</td>
<td>~ 0 for 90% release</td>
<td>Lt. wt. tank</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working Group 2: Chemical Hydrides and Related Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silanes-Boranes (hydrolysis)</td>
<td>0.10 ± 0.02</td>
<td>2600 ± 400</td>
<td>1900 ± 300</td>
<td>1650 ± 250</td>
<td>Unknown, but slightly exothermic</td>
<td>Metering pump, container, solvent (H₂O)</td>
</tr>
<tr>
<td>Solid state chemical hydrides</td>
<td>0.08 - 0.1</td>
<td>2680</td>
<td>1876</td>
<td>1876</td>
<td>+33,000</td>
<td>Holding tank (2000 psi) cartridge, temp. management</td>
</tr>
<tr>
<td>Cycloalkanes (dehydrogenation)</td>
<td>0.073</td>
<td>1950</td>
<td>1361</td>
<td>1211</td>
<td>Heat input required, must heat to 150-250°C</td>
<td>Valves, H₂ gas perm. membrane, temp. management</td>
</tr>
<tr>
<td>Classical hydrides (hydrolysis)</td>
<td>0.073</td>
<td>1950</td>
<td>1369</td>
<td>460</td>
<td>+86,820</td>
<td>Valves, room for expansion, temp. management</td>
</tr>
</tbody>
</table>

5
<table>
<thead>
<tr>
<th>Technology</th>
<th>Theoretical H₂ yield (kg H₂/kg materials)</th>
<th>Ah/kg materials</th>
<th>Wh/kg materials (at 0.7 V)</th>
<th>Wh/L materials (at 0.7 V)</th>
<th>Thermal Burden</th>
<th>Required Ancillaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia: 2 NH₃ = 3 H₂ + N₂ (thermal decomp.)</td>
<td>0.176</td>
<td>4560</td>
<td>3190</td>
<td>2459</td>
<td>High temp., heat req’d</td>
<td>Smell; toxicity; adsorption req’d; widely available</td>
</tr>
<tr>
<td>Methanol + ½ O₂ = CO₂ + 2 H₂ (POX)</td>
<td>0.083</td>
<td>2144</td>
<td>1501</td>
<td>1187</td>
<td>Autothermal</td>
<td>Lowest peak temp.; CO clean up req’d.; methanol toxicity</td>
</tr>
<tr>
<td>Methanol + H₂O = CO₂ + 3 H₂ (steam reforming)</td>
<td>0.12</td>
<td>3216</td>
<td>2345</td>
<td>2111</td>
<td>High temp., heat req’d</td>
<td>Toxicity; water req’d; CO scrub</td>
</tr>
<tr>
<td>Propane + 3 H₂O = 3 CO + 7 H₂ (steam reforming)</td>
<td>0.143</td>
<td>4150</td>
<td>2906</td>
<td>2205</td>
<td>High temp., heat req’d</td>
<td>Low pressure feed; 730 C; Additional CO scrub, shift, or POX; sulfur</td>
</tr>
<tr>
<td>Methane + H₂O = CO + 3 H₂ (steam reforming)</td>
<td>0.176</td>
<td>4824</td>
<td>3377</td>
<td>750</td>
<td>High temp., heat req’d</td>
<td>Higher pressure gas; additional CO scrub, shift, or POX; sulfur</td>
</tr>
<tr>
<td>Butane + 4 H₂O = 4 CO + 9 H₂ (steam reforming)</td>
<td>0.138</td>
<td>3711</td>
<td>2598</td>
<td>1971</td>
<td>High temp., heat req’d</td>
<td>Low press. feed; additional CO scrub, shift, or POX; sulfur</td>
</tr>
<tr>
<td>Octane + 8 H₂O = 8 CO + 17 H₂ (steam reforming)</td>
<td>0.132</td>
<td>3484</td>
<td>2439</td>
<td>2195</td>
<td>High temp., heat req’d</td>
<td>Complex mixture; additional CO scrub, shift, or POX; sulfur</td>
</tr>
<tr>
<td>#2 diesel fuel + H₂O (steam reforming)</td>
<td>0.12</td>
<td>3208</td>
<td>2242</td>
<td>2018</td>
<td>High temp., heat req’d</td>
<td>Highest sulfur; highest operating temp.; additional CO scrub, shift, or POX; coking</td>
</tr>
</tbody>
</table>
Table 2. Summary of Mission Specific Estimates

<table>
<thead>
<tr>
<th>Technology</th>
<th>Est. wt.(kg) 300 W, 10 kWh system</th>
<th>Est. wt.(kg) for 100 W, 1 kWh system</th>
<th>Est. wt.(kg) for 10 W, 90 kWh system</th>
<th>Est. vol.(L) for 300 W, 10 kWh system</th>
<th>Est. vol.(L) for 100 W, 1 kWh system</th>
<th>Est. vol.(L) for 10 W, 90 kWh system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Group 1: Physical and Absorptive Storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressurized tanks (1.5 safety factor @ 300 K)</td>
<td>4.22 (5 kpsi)</td>
<td>1.39</td>
<td>27.0</td>
<td>24.4</td>
<td>2.5</td>
<td>219</td>
</tr>
<tr>
<td>Glass bubbles on film roll @ 9000 psi</td>
<td>4.65 (10 kpsi)</td>
<td>1.44</td>
<td>30.8</td>
<td>15.3</td>
<td>1.5</td>
<td>137</td>
</tr>
<tr>
<td>Low temp. metal hydride</td>
<td>5.05 (15 kpsi)</td>
<td>1.48</td>
<td>34.4</td>
<td>12.4</td>
<td>1.2</td>
<td>111</td>
</tr>
<tr>
<td>Mg-23%Ni w/thermite and tanks (~same for other high temp. metal)</td>
<td>9.1 (excl. release device)</td>
<td>1.1</td>
<td>80</td>
<td>32</td>
<td>6</td>
<td>272</td>
</tr>
<tr>
<td>Fullerene</td>
<td>30.5</td>
<td>3.1</td>
<td>270</td>
<td>12</td>
<td>1.12</td>
<td>108</td>
</tr>
<tr>
<td>Single wall nanotubes (See Note Below)</td>
<td>15</td>
<td>1.5</td>
<td>142</td>
<td>10.7</td>
<td>1.07</td>
<td>96</td>
</tr>
<tr>
<td>Graphite nanofibers</td>
<td>16.5 (8 kg containment)</td>
<td>1.65</td>
<td>85</td>
<td>7.4 (30% tank vol)</td>
<td>0.74</td>
<td>51</td>
</tr>
<tr>
<td>Graphite nanofibers</td>
<td>29-11.7 (12 ang-20 ang & 10% tank wt)</td>
<td>2.9-1.2</td>
<td>257-109</td>
<td>24-13 (7.5% tank with 80% max packing)</td>
<td>2.4-1.4</td>
<td>1215 - 218</td>
</tr>
<tr>
<td>Graphite nanofibers</td>
<td>4.1-5.6 (-3 kg tank)</td>
<td>3.1-3.3</td>
<td>12.6-27</td>
<td>2.1-5.2 (0.5 g/cm³ loading)</td>
<td>0.2-0.5</td>
<td>19-47</td>
</tr>
<tr>
<td>NaAlH₄ (incl. H₂O)</td>
<td>11</td>
<td>1.2</td>
<td>110</td>
<td>13</td>
<td>1.6</td>
<td>75</td>
</tr>
<tr>
<td>AlH₃ (dry)</td>
<td>11</td>
<td>1.2</td>
<td>100</td>
<td>11</td>
<td>1.1</td>
<td>65</td>
</tr>
<tr>
<td>Working Group 2: Chemical Hydrides and Related Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classical Hydrides (hydrolysis)</td>
<td>7.3</td>
<td>0.73</td>
<td>65</td>
<td>9.5</td>
<td>0.95</td>
<td>85</td>
</tr>
<tr>
<td>Silane/Borane (hydrolysis)</td>
<td>5.3 ± 0.8</td>
<td>0.53 ± 0.08</td>
<td>47 ± 8</td>
<td>6 ± 1</td>
<td>0.6 ± 0.1</td>
<td>54 ± 8</td>
</tr>
<tr>
<td>Solid-state chemical hydrides</td>
<td>7 kg (reactants), 1 kg (hardware)</td>
<td>0.7</td>
<td>63</td>
<td>7</td>
<td>0.7</td>
<td>63</td>
</tr>
<tr>
<td>Cycloalkanes (dehydrogenation)</td>
<td>7.4</td>
<td>0.74</td>
<td>66</td>
<td>8</td>
<td>0.8</td>
<td>74</td>
</tr>
</tbody>
</table>

Note: Theoretical calculations predict decreased hydrogen packing density as nanotube diameter increases.
Table 2. (continued). Summary of Mission Specific Estimates

<table>
<thead>
<tr>
<th>Technology</th>
<th>Est. wt.(kg) 300 W, 10 kWh system</th>
<th>Est. wt. (kg) for 100 W, 1 kWh system</th>
<th>Est. wt. (kg) for 10 W, 90 kWh system</th>
<th>Est. vol. (L) for 300 W, 10 kWh system</th>
<th>Est. vol. (L) for 100 W, 1 kWh system</th>
<th>Est. vol. (L) for 10 W, 90 kWh system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Group 3: Thermal and Catalyzed Processes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesoscopic hardware/fuel</td>
<td>0.3-0.4/5.5</td>
<td>0.15-0.24/0.55</td>
<td>0.08-0.1/49.5</td>
<td>0.05-0.08/0.79</td>
<td>0.025-0.035/70.7</td>
<td></td>
</tr>
<tr>
<td>Ammonia hardware/fuel</td>
<td>1.7/4</td>
<td>0.731/0.4</td>
<td>0.16/36</td>
<td>0.9/4.9</td>
<td>0.3/0.5</td>
<td>0.1/45</td>
</tr>
<tr>
<td>Hot Spot hardware / fuel</td>
<td>0.5/8.8</td>
<td>0.2/0.88</td>
<td>0.1/79</td>
<td>0.5/10</td>
<td>0.2/1</td>
<td>0.1/90</td>
</tr>
<tr>
<td>Mini-hybrid POx based on current hardware (1 yr) system/fuel</td>
<td>1.4/5.5</td>
<td>0.5/0.55</td>
<td>0.06/49.5</td>
<td>1.1/7.86</td>
<td>0.4/0.79</td>
<td>0.06/70.7</td>
</tr>
<tr>
<td>Mini-hybrid POX based on next generation hardware (3 yrs) system/fuel</td>
<td>0.6/5.5</td>
<td>0.2/0.55</td>
<td>0.06/49.5</td>
<td>0.5/7.86</td>
<td>0.2/0.55</td>
<td>0.05/70.7</td>
</tr>
<tr>
<td>Steam reforming hardware/fuel</td>
<td>5.6/5.5</td>
<td>2.6/0.55</td>
<td>0.5/49.4</td>
<td>3.5/7.86</td>
<td>1.63/0.79</td>
<td>0.3/70.7</td>
</tr>
</tbody>
</table>
2. WORKSHOP CHARGE AND ORGANIZATION
2. Workshop Charge and Organization

Small and medium-power polymer electrolyte membrane (PEM) fuel cells may find new uses in military systems, space systems, transportation, and in consumer applications. Both portable and stationary power sources are of potential strategic and commercial value. A key limitation to the adoption of PEM fuel cell power sources is the hydrogen source. The objective of the Workshop was to review the current state of development of hydrogen storage and generation for medium-power (≤ 300 W) and medium-energy (≤ 100 kWh) applications. An additional objective was to identify critical research needs and promising opportunities for additional research and development. The emphasis on small- to medium-power and energy applications was chosen by the Workshop sponsors because of military and strategic needs such as person-portable power systems, field-portable battery recharging stations, and long-life, low-power unattended surveillance operations.

The Organizing Committee for the Workshop was chaired by Professor Michael Matthews of the University of South Carolina Department of Chemical Engineering. The other Organizing Committee members were Dr. Ralph White, Chairman of the Department of Chemical Engineering and Director of the Center for Electrochemical Engineering at the University of South Carolina, Dr. Peter Fedkiw of U.S. Army Research Office, and Mr. Joseph Stockel of the Office of Research and Development of the Central Intelligence Agency. The Workshop consisted of a number of invited speakers, joined by additional experts from government, industry, and academia. Through a combination of prepared presentations and organized working groups, a complete survey of the present status of hydrogen storage and generation was obtained. The speakers for the 2-1/2 day workshop are listed in Table 3.

To guide the invited speakers and other workshop participants in focusing their comments, three generic systems were identified: (1) a 300 W fuel cell with 10 kWh energy storage; (2) a 100 W, 1 kWh system with a maximum weight of 3 kg; and (3) a 10 W, 90 kWh system. The 300-W fuel cell is a prototype of a power plant which would serve as a stationary battery charging station for soldiers in the field. Such a power plant would be light enough to be rapidly deployed in the field, and attitude sensitivity would not be an issue. The person-portable fuel cell would power electronic devices for an individual soldier; consequently, both the fuel cell and the hydrogen source must be insensitive to attitude and must withstand the rigors of combat. The third system could serve as a power supply for a remote surveillance installation.
Table 3. Workshop Speakers

Day 1 - Tuesday, April 8

<table>
<thead>
<tr>
<th>Speaker</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dick Paur, ARO</td>
<td>Workshop Goals & Objectives</td>
</tr>
<tr>
<td>Jim Stephens, CECOM</td>
<td>Overview, Field Applications and Specifications</td>
</tr>
<tr>
<td>Deryn Chu, ARL</td>
<td>ARL Fuel Cell R&D Program</td>
</tr>
<tr>
<td>Jay Stedman, Consultant</td>
<td>System Considerations</td>
</tr>
<tr>
<td>Joe Stockel, ORD</td>
<td>Hydrogen Storage Research</td>
</tr>
<tr>
<td>Jim Ohi and George Thomas, DOE</td>
<td>DOE Hydrogen Storage Programs</td>
</tr>
<tr>
<td>Roger Pyon</td>
<td>DARPA Hydrogen Storage Programs</td>
</tr>
<tr>
<td>Brian James, Directed Technologies, Inc.</td>
<td>Pressurized Hydrogen Storage</td>
</tr>
<tr>
<td>Michael Monsler, W. J. Schafer Assoc.</td>
<td>Energy Film</td>
</tr>
<tr>
<td>Ottmar Dengel, Royal Systems</td>
<td>Chemical Hydrides: Solid State H₂ Generation</td>
</tr>
<tr>
<td>Subash Narang, SRI</td>
<td>Novel Organosilanes for Hydrogen Storage</td>
</tr>
<tr>
<td>Xiaou Liu, MER</td>
<td>Hydrogen Storage Using Decalin</td>
</tr>
<tr>
<td>Dave Bloomfield, Analytic Power</td>
<td>Thermal Decomposition of Ammonia</td>
</tr>
<tr>
<td>Bob Wegeng, PNL</td>
<td>Compact Fuel Processors/ Microsystems Technologies</td>
</tr>
<tr>
<td>Jonathon Frost, Johnson Matthey (UK)</td>
<td>Partial Oxidation of Hydrocarbons</td>
</tr>
<tr>
<td>Brian Barnett, A. D. Little</td>
<td>Small Scale Flexible Fuel Processors</td>
</tr>
</tbody>
</table>

Day 2 - Wednesday, April 9

<table>
<thead>
<tr>
<th>Speaker</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jim Reilly, Brookhaven National Lab</td>
<td>Metal Hydrides as Hydrogen Storage Media</td>
</tr>
<tr>
<td>John Van Zee, USC</td>
<td>Fullerenes for Hydrogen Storage</td>
</tr>
<tr>
<td>Nelly Rodriguez, Northeastern University</td>
<td>Graphite Nanofibers for Hydrogen Storage</td>
</tr>
<tr>
<td>Break-Out Sessions</td>
<td>Session 1: Absorptive and Physical Storage</td>
</tr>
<tr>
<td></td>
<td>Session 2: Chemical Hydrides and Related Materials</td>
</tr>
<tr>
<td></td>
<td>Session 3: Catalyzed and Thermal Processes</td>
</tr>
</tbody>
</table>

Day 3 - Thursday, April 10

<table>
<thead>
<tr>
<th>Speaker</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workshop Wrap-Up</td>
<td>Session 1: Report</td>
</tr>
<tr>
<td>Mark Debe, Michael Heben</td>
<td>Session 2: Report</td>
</tr>
<tr>
<td>Oliver Murphy, Omourtag Velev</td>
<td>Session 3: Report</td>
</tr>
<tr>
<td>Frank Rose, Dave Bloomfield</td>
<td>Session 3: Report</td>
</tr>
</tbody>
</table>
3. SUMMARY OF PLENARY SESSION
3. Summary of Plenary Session

Dr. Richard Paur of the U.S. Army Research Office (ARO), co-sponsor of the Workshop, reviewed the workshop goals and objectives. The U.S. Army and other military branches have numerous applications for small power sources on the order of less than one kilowatt-hour (kWh) energy storage. Presently the DoD uses batteries for many small-power applications, but the cost of these and the problems of disposal are significant. The ARO has invested heavily in development of small proton exchange membrane (PEM) fuel cells, and has observed considerable improvements in minimizing the weight and volume of the fuel cell stack. Several prototypes have been built and field demonstrations have been conducted. It is the judgment of many that developing compact, lightweight systems for hydrogen storage and generation is the limiting factor in advancing the implementation of PEM fuel cell power sources. The objectives of the Workshop were to bring together a select group of experts in chemistry, materials science, and engineering from government, industry, and academia to discuss the current state-of-the-art in hydrogen storage and generation. Workshop participants were directed to focus their discussions around three representative small- to medium-sized power sources: 300 watt (W) fuel cell with 10 kWh energy storage, a 100 W person-portable fuel cell with a minimum of 1 kWh energy storage, and a 10 W fuel cell with 90 kWh energy storage. The technical issues associated with developing hydrogen sources to meet these needs were to be discussed, and quantitative estimates of the size and weight of devices were to be estimated as accurately as possible. The goals were to generate new ideas, identify the most promising technologies, and to create synergism so that new systems for storage and generation of hydrogen might be developed.

James Stephens of the U.S. Army Communications and Electronics Command (CECOM) reviewed the field applications and specifications for small fuel cell systems. (Person) portable power systems were defined as producing less than 500 W power, while mobile power falls in the range of 500 W to 1.1 MW. Batteries are presently viewed as too heavy and costly and new sources of battlefield energy are strongly desired. It is anticipated that the first field use will be for niche applications, and that general PEM fuel cell use will follow with further development. PEM fuel cells must be competitive with batteries in terms of weight, cost, and safety. Fuel cell developers should consider systems which augment battery power, and should not focus just on replacement because it is not likely that batteries will be completely replaced. Stephens presented a number of operational requirements which individual soldier power systems must satisfy, such as low weight, durability, reliability, and a user-friendly interface. It is anticipated that the average power demand will be 5 W, with peak power of 20 W, which should be available for missions of up to 7 days (20 hours on, 4 hours off). Another application discussed by Stephens is for unmanned aerial vehicles. Electric power is required for propulsion (<15 kW) as well as for payload operations (50-200 W). In addition, there are needs for power sources for special operations (set and forget missions), sensor suites with long mission durations, small unit operations, and soldier power. It is critical that equipment developers understand that hydrogen supply logistics must match mission requirements; the mission requirements will not be altered to fit the logistics and performance of the power source.

Deryn Chu of the U.S. Army Research Laboratory discussed fuel cell research at ARL. A major driving force is cost; another is simplifying operations. The Army spent $77.2 million on over 300 different types of batteries in 1996. The Army has been given a directive by Army Chief of Staff General Dennis J. Reamer to reduce this cost by 50%. Research at ARL falls under either the 6.1 or 6.2 programs. Presently most of the research is on materials development for
hydrogen fuel cell stack in the 50-150 W power range. The focus has been on improving the electrode/electrolyte interface. Under the D-650 program, ARL is evaluating stack/system performance of a 25 W air-breathing stack and a 100 W stack. They have an SBIR on developing a 50-150 W stack. ARL is also conducting research on materials for direct methanol fuel cells with Johns Hopkins University, examining the effects of surface preparation and different platinum and ruthenium catalysts.

Joe Stockel of the Office of Research and Development, CIA, described his recent projects in hydrogen storage and generation. The missions of interest often concern remote and unattended operation, with long periods of low power consumption followed by large spikes. Among the projects supported were studies of the synthesis of fullerenes and catalytic routes for hydrogen loading (MER Corporation), and development of novel liquid organosilanes which hydrolyze in water (SRI).

George Thomas of Sandia National Laboratory described the broad range of hydrogen storage research which DOE is conducting, which is mostly aimed at larger-scale transportation and utility applications. Reversible metal hydrides and compressed hydrogen are two of the technologies of interest to DOE.

Roger Pyon (DARPA) has supported the development of small hydrogen generators based on the irreversible reaction of chemical hydrides (CaH₂, LiH) with water. AF Sammer has developed units which produce 50 or 100 liters of hydrogen gas. The 100-liter hydrogen system weighs 1 kg and has a volume of 0.92 liters. DARPA has also supported Energy Conversion Devices (ECD) in the development of Mg-based reversible alloy metal hydride storage materials which have a capacity of 5-6 weight percent hydrogen. Hydration occurs at 100 °C and dehydration at 250 °C.

Following the presentations by DoD, DOE, and CIA personnel, Mr. Jay Stedman gave a presentation on the systems aspects of hydrogen fuel cells. Materials scientists, research engineers, and component developers must be aware of the issues involved in coupling a hydrogen source to a fuel cell stack. Furthermore, all parties must be aware of the particular needs and constraints of the user, particularly of the electronic warrior. Among the technical challenges described were: integration of water management between the fuel cell and the hydrogen source (if the source uses or produces water); heat rejection or adsorption; vaporization and condensation of water in transfer lines and components; transient power requirements, response time and start/stop capability; temperature limits on materials and components; thermal signature; shock and vibration resistance; contaminants in "battlefield air"; and orientation sensitivity. It was noted that very small fuel cells are competing with lithium ion batteries, so use of a "special" fuel for the hydrogen source is not necessarily ruled out.

Brian James of Directed Technologies gave the first of several presentations focused around specific technologies. Directed Technologies has been evaluating light-weight, high-pressure composite tanks for storage of compressed hydrogen. These tanks are lined with a thin, metallized polymer liner. The shell is of composite material and the endcaps of high density polyethylene, for example. Pressures of 5,000 to 15,000 psi have been realized. The required safety factor (burst pressure/operating pressure) must be established by the users. Depending on the pressure and size of the storage required, hydrogen storage efficiencies of four to sixteen weight percent have been realized. Efficiency decreases rapidly with the container size because
the weight of ancillaries such as regulators and valves does not decrease proportionally with volume of the tank.

Michael Monsler of W.J. Schaeffer Associates described the use of glass microspheres for hydrogen storage. This approach uses hollow spheres in the 25-200 micron diameter range which are permeable to H₂ at high temperatures but are impermeable at ambient temperatures. Spheres are filled by heating to 250 °C under a high pressure hydrogen atmosphere. Cooling entraps the hydrogen. Pressures of up to 9,000 psi are envisioned. W.J. Schaeffer is exploring means to release the hydrogen by crushing the microspheres mechanically. One of the potential advantages of this approach is safety; the microspheres themselves can be transported in bulk containers which are not pressure vessels.

Ottmar Dengel of Royal Systems presented an extensive list of solid-state mixtures (e.g., NH₄Cl + LiAlH₄) which release hydrogen gas upon thermal ignition. The reaction is quite exothermic, many compounds and mixtures are unstable, and therefore only a few formulations are commercially feasible for producing hydrogen generators. A prototype based on NH₄Cl + LiAlH₄ has a theoretical yield of 8.4 weight percent hydrogen (excluding ancillaries).

Subash Narang of SRI described a chemistry for generating hydrogen based upon liquid-phase organoboranes. Development and testing of these compounds has been supported by the Office of Research and Development of the CIA. Much of their work has concentrated on synthesis of the compounds, but preliminary reactions with water (sometimes modified with caustic, alcohols, surfactants) have produced hydrogen in yields in excess of 98%. It appears that the reaction rate can be controlled by addition of different substances to water. Hydrogen storage capacities of 4-9% by weight are possible, depending on the specific organosilane chosen. These compounds are liquids at ambient temperatures and therefore systems using small liquid metering pumps to start, stop, and control the reaction appear feasible.

Xiao Liu of MER Corporation described research on storing hydrogen via the catalytic hydrogenation and dehydrogenation of cyclic hydrocarbons. Two-ring hydrocarbons such as decalin are preferred to single-ring and three-ring compounds. Under low pressure, with the aid of a heterogeneous catalyst, hydrogen is released at temperatures in excess of 200 °C. Residual hydrocarbons were separated from hydrogen in the gas phase with the aid of a membrane separator. The best catalyst identified for this reaction is a supported platinum. This process is reversible, and in principle the hydrocarbon shuttle molecule can be used indefinitely. The reaction is endothermic, and therefore some parasitic hydrogen would be consumed to maintain the required reaction temperature.

David Bloomfield of Analytic Power reviewed a number of materials and hydrogen storage technologies, including pressurized gas, solid state reactions, alcohol and hydrocarbon reforming, and the thermal decomposition of ammonia. The cost per kWh of these technologies was presented, along with data comparing fuel cells to the BA5590 battery. Analytic Power is presently developing a thermal ammonia reformer for prototype testing by the U.S. Navy.

Robert Wegeng of Pacific Northwest Laboratories discussed an advanced concept for portable power generation based on compact (cm-size scale) fuel processors, termed “mesoscale processors.” This represents a potential paradigm shift in that the weight of the components (reactors, pumps, heat exchangers) would become small compared to the weight of the fuel. Pacific Northwest Laboratories is engaged in a microtechnology program to develop unit operations on
They have begun work on partial oxidation reactions, with plans to study JP-8 and diesel fuels.
SPEAKERS’ PRESENTATION MATERIALS
OVERVIEW, FIELD APPLICATIONS, AND SPECIFICATIONS FOR 5 - 500 WATT FUEL CELL SYSTEMS

PRESENTED TO WORKSHOP ON HYDROGEN STORAGE AND GENERATION FOR MEDIUM-POWER AND -ENERGY APPLICATIONS
APRIL 8, 1997
JAMES STEPHENS, US ARMY CECOM
(703) 704-2006
jstephens@belvoir.army.mil
The Power Spectrum

<table>
<thead>
<tr>
<th>Portable</th>
<th>Gray Area</th>
<th>Mobile Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 500 Watts</td>
<td></td>
<td>> 500 Watts to 1.1 MW</td>
</tr>
</tbody>
</table>

- **Battery Domain**
 - Too Heavy
 - Too Costly
- **Exploring Alternate Technology**
 - Niches First
 - General Use Later
- **Hydrogen Supply Key**
 - To Fuel Cell Success
- **Must Compete Well**
 - With or Augment Batt.

"Power Revolution a Necessity"
"New Sources of Battlefield Energy Would Have Revolutionary Consequences"

Source: Army After Next "Emerging Strategy"
Deputy Chief of Staff for Doctrine, TRADOC
REQUIREMENTS: SYNOPSIS

- FEATURES CRITICAL TO SO SOLDIERS: SMALL, LIGHT, CHARGE INDICATOR AND RECHARGEABLE
- INCREASE POWER DENSITY/MAINTAIN COST
- EQUIPMENT LIMITATIONS CAN NOT DICATE MISSION PLANNING/ACCOMPLISHMENT
- LIGHTWEIGHT POWER IS AN ALL-OPERATIONS PROBLEM: WAR, OOTW/PEACEKEEPING, AND TRAINING
- POWER SOURCES REQUIREMENTS ARE NOT SOF-UNIQUE, THUS LEVERAGING NEEDED
- LIGHTWEIGHT POWER IS 3RD HIGHEST TECHNOLOGY PRIORITY OF CINCSOC
Individual Warfighter System
Size, Weight, and Power

- Soldier Mounted
- < 1 kg
- < 5 watts
- No keyboard
- Very user friendly interface
- Single battery
- Minimal wires
- Plug and play for different applications
- Physically robust
SMALL UNIT OPERATIONS - POWER REQUIREMENT SUMMARY

- AVERAGE POWER DEMAND - 5 WATTS
- PEAK POWER DEMAND - 20 WATTS
- MISSION LENGTH - 7 DAYS
- MISSION DAY PROFILE
 - 20 HOURS ON
 - 4 HOURS OFF
- TOTAL ENERGY DEMAND - 700 WHRS
Soldier Power System Requirements

Small, light weight, soldier portable
Continuous power for extended periods
Necessary power for standard and future equipment
Undetectable: silent, odorless, easily concealed
Safe: stable materials, less hazardous
Easily supported, maintained
Durable, rugged, NBC *survivable*
Modular, interconnective capability
Operate under all conditions: ECM, smoke, aerosols, fog, rain, haze, dust, wind, snow, icing, NBC, heat, cold, etc.....
Compatible with full protective posture
Decontaminable w/o efficiency loss

(Source: MNS for Soldier Power System)

Dismounted Battlespace Battle Lab
- MISSION CANNOT BE CONSTRAINED BECAUSE OF POWER LIMITATIONS (PERFORMANCE)
- SOLDIER MOBILITY MUST NOT BE HAMPERED (WEIGHT)
- UNITS MUST BE ABLE TO TRAIN AS THEY FIGHT (COST)
- SOLDIERS MUST HAVE SAFE POWER (SAFETY)

POWER...

WHEN WE NEED IT...
WHERE WE NEED IT!!
UNMANNED AERIAL VEHICLES
POWER REQUIREMENTS SUMMARY

- POWER REQUIRED < 15 Kw (EST)
- FUEL CELL ENERGY DENSITY > 400 WHRS/KG
- MISSION LENGTH/LOITER - DAYS / YEARS @ 20 TO 30 km.
- FUEL CELL / SOLAR PANEL / ELECTROLYZER / BATTERY HYBRIDS ENVISIONED
- POWER REQUIRED FOR:
 - PROPULSION < 15KW
 - SOLAR POWERED ELECTROLYZER ?
 - PAYLOAD 50 - 200 WATTS
SUMMARY OF POTENTIAL APPLICATIONS FOR MEDIUM-POWER AND -ENERGY FUEL CELLS

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>POWER (W)</th>
<th>ENERGY (WHRS)</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIAL OPS</td>
<td>50</td>
<td>2500 - 30,000</td>
<td>SOME SET/PRESET MISSIONS.</td>
</tr>
<tr>
<td>SMALL UNIT OPERATIONS</td>
<td>5 / 20 P</td>
<td>800</td>
<td>LIGHTWEIGHT</td>
</tr>
<tr>
<td>SENSOR SUITES</td>
<td>5 / 50 / 100</td>
<td>240 - 30,000</td>
<td>LONG MISSIONS</td>
</tr>
<tr>
<td>SOLDIER POWER</td>
<td>50 / 150</td>
<td>1200 - 2500</td>
<td>MUST COMPETE WITH/AUGMENT BATTERIES</td>
</tr>
<tr>
<td>UAV</td>
<td>< 15 (EST)</td>
<td>> 400 WHRS/KG</td>
<td>ROBUST HYBRID</td>
</tr>
</tbody>
</table>
CONCLUSIONS

- HYDROGEN SUPPLY LOGISTICS MUST MATCH MISSION REQUIREMENTS
- PEM FUEL CELLS WITH PROPER HYDROGEN SOURCE CAN COMPETE NOW IN NICHE APPLICATIONS
- FUEL CELLS WILL COMPLIMENT / AUGMENT BATTERIES BUT NOT REPLACE
The Status of Polymer Electrolyte Membrane Fuel Cells (PEMFCs) Research and Development Program at Army Research Laboratory

Deryn Chu and Sol Gilman
AMSRL-SE-DC
Electrochemistry Branch
Sensor and Electronics Directorate,
Army Research Laboratory,
2800 Powder Mill Road, Adelphi, MD 20783-1197

The U. S. Army requires extremely lightweight power sources for a variety of portable electronic and other applications. The army consumes many thousands of primary batteries each year to provide power for hundreds of person-portable circuits for communications, sensing, target acquisition and night vision. High energy density primary lithium batteries have been developed and successfully used for many of these applications. After discharge, the primary lithium cells require safe disposal which, besides being costly, involves environmental hazards. Because most of those batteries are of the lithium/sulfur dioxide chemistry which contains lithium salts, organic solvents and sulfur dioxide and thereby threatens the environment until subjected to costly pre-treatment.

Polymer electrolyte membrane fuel cell (PEMFC) is most favored as a portable power supply device primarily because of its light weight and high power density. A PEMFC power source is being developed for a wide variety of applications that now use batteries. These applications range from laptop computers to electric vehicles. PEM fuel cells in conjunction with hydrogen storage offer even higher energy density than lithium cells and can, therefore, enable further reduction in size and weight over lithium batteries. The PEM fuel cell system can be used with a replaceable fuel (e.g., hydrogen stored as metal hydride) cartidge for any practical number of operations without any environmental concern. Small fuel cell systems, if successfully developed, can supplant primary batteries by directly providing power or through use as a silent charger for rechargeable batteries. Rechargeable batteries, in such usage, will last for hundreds of charge/discharge cycles and will correspondingly greatly reduce battery disposal problems.

In the Army Research Laboratory, hydrogen and direct methanol PEM fuel cells have been covered under present fuel cells research and development program. Our present emphasis is on applications which require only one to several hundred watts of power and could be carried by one person, thus employing PEMFCs for other ambient-temperature technology. We have focused on both fundamental and practical research with the ultimate goal of developing PEMFCs which will efficient and economical for both military and commercial applications.

With the hydrogen PEM fuel cell area, three thrusts have been approached. These includes (1) polymer electrolyte membrane, (2) membrane-electrode assembly and (3) stack and system development. (1) Polymer electrolyte membrane: In order to reduce the cost of the fuel cell for “dual use” applications, a new low cost membrane needs to be developed. New membranes based on the sulfonic acid salt of poly (p-Phenylen-ether sulfone) (PES) and the sulfonic acid salt of poly (ether-ether ketone) (PEEK) have been synthesized and evaluated under fuel cell
experimental conditions [1]. Modified Nafion membranes made from lower equivalent weight resins have also been synthesized and characterized [2]. The effects of crosslinking Nafion by electron beam irradiation of Nafion in the presence of various monomers have been studied. Many different types of polymer membranes have also been tested as a electrolyte for a single fuel cell experiment. The best performing membrane is Nafion 112 [3].

Membrane-electrode assembly: The membrane electrode assembly (MEA) is a key component for the PEMFC system. The Army Research Laboratory has developed a new technology to prepare MEA and to improve single cell performance [4]. The MEA prepared in this laboratory has operated at low temperature (50 °C) and ambient pressure with low flow rates of fuel and oxidant (20 cc/min) delivering more than 1A/cm² at 0.72 V for a single cell [3].

Stack and system development: A novel non-bipolar design for ultralight PEM fuel cells has been initiated [5]. This design is based on assembled a single integrated common polymer electrolyte membrane. Individual cells would be series connected, but share a common electrolyte and gas flow fields. The 100 watt PEMFC stack was successfully tested under different experimental conditions. The stack, without fuel purging, can deliver about 100 watts power output (5 Amps at 20 V) for a short period time (~5 hours). The performance then diminished rapidly. This rapid decrease in performance is probably due to impurity problems. However, other possible reasons such as water management and fuel “cross-over” were not ruled out. The stack, with fuel purging, can deliver 100 watts power output for a longer time. It is apparent that the hydrogen purging parameter is a critical issue for the PEM fuel cell system for power output [6-7]. The results of our study will advance the development of hydrogen fueled PEMFC stack systems.

The only practical fuel at the present time is hydrogen. Using hydrogen for fuel presents severe storage and transportation problems which would be minimized through the use of a liquid fuel such as methanol. Methanol has attracted interest as a fuel because it is inexpensive, widely available, and easily stored and transported liquid. The direct utilization of methanol in fuel cells is a very promising route to the achievement of lightweight high energy density power sources for a variety of applications including power for vehicles, central stations and military communications. Effective catalysis of the electrode processes is a key barrier in all cases. For the first two applications, the problem can be by-passed to some degree by raising the operating temperature or by reforming the fuel. Not so for the communications application which requires low operating temperatures and ultimate in system simplicity.

With present the state-of-the-art fuel cell electrocatalysts, approximately one-third of the available energy is lost at the anode and an equal loss occurs at the cathode. The latter occurs when methanol dissolves in the electrolyte and diffuse to the cathode. This, in turn, may cause a so-called “chemical short” (simultaneous methanol electro-oxidation and O₂ electroreduction) which could have a significant effect on fuel cell power density and fuel efficiency. In order for the direct methanol PEMFC to become a practical energy-production device, the serious problem of anode irreversibility and methanol “cross-over” to poison cathode electrode must be solved. In the Army Research Laboratory, we have addressing both problems in our fuel cells research and development program.

In the area of anodic electrocatalysis, we have developed a procedure for fabricating well-characterized high surface area Pt/Ru catalysts and has shown which phase of such polycrystalline
preparations is most effective in the electrode process [8]. The bifunctional mechanism has been proposed to explain the enhancement of methanol electro-oxidation on Pt-Ru alloy. Therefore, optimization of the Pt-Ru electrocatalyst composition and morphology is important for the development of a high performance direct methanol fuel cell. The BET surface area of Pt-Ru electrocatalysts increases with increasing Ru content up to ~70 atomic percent and then reaches a plateau value. When a comparison is made on the basis of electrode geometric surface area, a ~50 a/o ruthenium electrocatalyst provides the highest activity for methanol electro-oxidation. The methanol electro-oxidation rate is 0.5 orders with respect to methanol concentration (between 0.1 and 2M) for the Pt-Ru (~50:50) alloy electrocatalyst.

The real surface area of Pt-Ru alloy compositions versus the methanol electro-oxidation activity is unknown. The standard method of estimating the surface area is to determine the charge associated with anodic stripping of adsorbed hydrogen. However, this technique cannot be used on catalysts such as Ru or Pt-Ru alloys, which absorb hydrogen into the metal lattice [8-9]. We have standardized scanning tunneling microscopy (STM) based fractal technique to determine the surface area of polycrystalline Pt. Properties of fractal geometry, and principles of statistics were used for internal calibration. The results were verified using conventional charged density measurement through anodic stripping of adsorbed hydrogen. A near-perfect correlation was found between these two independent techniques. The surface area of Pt-Ru alloy electrocatalysts were also determined using the STM-based fractal technique [10].

The search for more efficient methanol tolerant electrocatalysts for O₂ electro-reduction requires a better understanding of the basic process. We have successfully elucidated the mechanism by which methanol diffusing from the anode interferes with oxygen electro-reduction and raise the overpotential of that process [11]. This study indicates that development of more selective cathode electrocatalysts for a direct methanol fuel cell is very important. The search for more efficient methanol-tolerant electrocatalysts for O₂ reduction has been initiated.

References:
Overview of Army Research Laboratory Fuel Cells Research and Development Program

Deryn Chu and Sol Gilman

Electrochemistry Branch
Direct Energy and Power Sources Division
Army Research Laboratory
Fort Monmouth, NJ 07703-5601

Workshop on Hydrogen Storage and Generation for Medium-Power and Energy Applications

Orlando, FL
April 8-10, 1997
“Last year the Army spent $77.2 million on 300 different types of batteries, Gen. Dennis J. Reimer (the chief of staff of the Army) has given me a target of reducing battery-related expenditures by 50 percent.....”

General Johnnie E. Wilson
Commanding General, AMC
Armed Forces Journal International
August 1996
Overview of ARL Fuel Cells Research and Development Program

(I) Hydrogen Fuel Cell

(II) Direct Methanol Fuel Cell

Support and interaction with ARO, CBDCOM, CECOM (TPA) and DARPA
Objectives: Develop small, simple, lightweight power source with energy density 400 Wh/kg for longer individual soldier applications.

Improve state of the art PEM fuel cells technology by providing better materials/components/designs at a lower cost.
Hydrogen-fueled Fuel Cell Research and Development Program

- In-house materials-oriented 6.1/6.2 R&D
- D-650 Program (supported by Army Materials Command)
- SBIR Program
- Contractual Programs (DuPont and JPL (E. Yen))
- CRDAs Program with CECOM (north) and H-Power corp.
In-house materials-oriented 6.1/6.2 R&D

- D-650 Program Supported by Army Materials Command
- SBIR Program
- Contractual Programs (Du pont and JPL (E. Yen))
- CRDAs Program with CECOM and H-Power corp.
In-house materials-oriented 6.1/6.2 R&D

Objective: Improve state of the art PEM fuel cells for individual soldier systems and battery charger applications by providing better materials/components/designs at a lower cost

Fuel cell stack power in the 50-150 watts range for soldier system in support of CECOM’s current development goals

Approach: Improve electrode/electrolyte interface
Develop lightweight monopolar cell stack concepts and novel materials
Hydrogen-fueled Fuel Cell Research and Development Program
In-house materials-oriented 6.1/6.2 R&D

Nafion 117, 115, 112, 105

Temp: 50°C

Cell Voltage, Volts

Current Density, A/cm²
lightweight monopolar cell stack design

(U.S. patent pending Serial No. 08/320611 filed 10/6/94 R. Mammane, M. Binder and S. Gilman)
Hydrogen-fueled Fuel Cell Research and Development Program

• In-house materials-oriented 6.1/6.2 R&D

⇒ • D-650 Program

• SBIR Program

• Contractual Programs (Du pont and JPL (E. Yen))

• CRDAs Program with CECOM and H-Power corp.
D-650 Program

Objective: To evaluate PEM fuel cells stack and system performance

Status:
- 25 watts air-breath Fuel Cell Stack
- 100 watts air-pumped Fuel Cell Stack
- Ballard will deliver a 100 watts fuel cell system to ARL on Sept. 97
DIRECT ENERGY AND POWER DIVISION
US ARMY RESEARCH LABORATORY

Hydrogen-fueled Fuel Cell Research and Development Program

- In-house materials-oriented 6.1/6.2 R&D
- D-650 Program Supported by Army Materials Command
- SBIR Program
- Contractual Programs (DuPont and JPL (E. Yen))
- CRDAs Program with CECOM and H-Power corp.
Hydrogen-fueled Fuel Cell Research and Development Program

SBIR Program: Lightweight PEM Fuel Cell Stack Development

Objective: To develop lightweight monopolar or bipolar hydrogen-fueled stacks using novel materials and designs

- Fuel cell stack power in the 50-150 watts range for soldier system in support of CECOM’s current development goals

Status:
- 11 SBIR Phase I contracts ($70 K each) have been completed
- 3 SBIR Phase II Programs ($600 k for 2 year Program) in PEM Fuel Cells awarded.
- Deliverables include a 50W and 150W PEM Fuel Cell Stacks.

Contractors:
- Analytical Power Corp., Lyntech Inc., and MER corp.
Hydrogen-fueled Fuel Cell Research and Development Program

- In-house materials-oriented 6.1/6.2 R&D
- D-650 Program Supported by Army Materials Command
- SBIR Program

→ Contractual Programs (Du pont and JPL (E. Yen))

- CRDAs Program with CECOM and H-Power corp.
Contractual Programs

- Jet Propulsion Laboratory (E. Yen, JPL)
 Synthesized and evaluated membranes based on the Sulfonic Acid Salt of Poly(P-Phenylene-ether sulfone) [PES] and the Sulfonic Acid Salt of Poly(ether-ether ketone) [PEEK]

- DuPont
 Synthesized and characterized Nafion membrane made from lower equivalent weight resins, Studied effects of crosslinking Nafion by electron Beam irradiation of Nafion in the presence of various monomers
Hydrogen-fueled Fuel Cell Research and Development Program
Contractual Programs

Jet Propulsion Laboratory (E. Yen, JPL)

\[(\text{PEEK}) \xrightarrow{\text{concentrated } H_2SO_4} (\text{H-SPEEEK}) \]
Approaches:

- Use of low equivalent weight monomer
- Use of irradiation (with/without) added reagents to introduce functional groups and to induce cross-linking
- Measure conductivity, water absorption
- Construct/evaluate small fuel cells
Hydrogen-fueled Fuel Cell Research and Development Program

- In-house materials-oriented 6.1/6.2 R&D
- D-650 Program Supported by Army Materials Command
- SBIR Program
- Contractual Programs (Du pont and JPL (E. Yen))

CRDAs Program with CECOM and H-Power corp.
Hydrogen-fueled Fuel Cell Research and Development Program

CRDAs Program with CECOM (North)

SINCGARS Testing Profile

1. Transmit load: 20 watts, 1 minute
2. Receive load: 6 watts, 9 minutes
3. Nominal battery potential: 15 V
4. End of life potential: 9 V
5. Testing regime is a cyclic profile of 1 min transmit (20 W) followed by 9 min receive (6 W). This cycle regime is then continued until a 9 V cutoff is reached.
Methanol/PEM fuel cells offer the possibility for relatively simple, small, and high energy systems

Objective: Improve overall performance in direct methanol PEM fuel cell

Status:
- In-house materials-oriented 6.1
- Microelectronics Research Cooperative Program (MRCP) with Johns Hopkins University
In-house materials-oriented 6.1

Internal work has been oriented toward electrocatalyst characterization
- Searched for more efficient catalysts for methanol electro-oxidation
- Investigated continuous series of Pt-Ru methanol oxidation catalysts
- Identified optimal compositions and mechanism
- Methanol-Oxygen interaction at a Pt-rotating disk electrode
- Methanol “cross-over” to the cathode

- Develop new methanol-tolerant electrocatalysts for the cathode
- Investigate electrode/electrolyte interface effects on methanol crossover
Direct Methanol Fuel Cell Research and Development Program
Investigated continuous series of Pt-Ru methanol oxidation catalysts
Direct Methanol Fuel Cell Research and Development Program
Identified optimal compositions

(A) and (B) show the relationship between Pt–Ru atomic ratios and current density for different conditions.
"Bifunctional Catalyst Mechanism"

\[
\text{CH}_3\text{OH}_{\text{sol}} \rightleftharpoons \text{CH}_3\text{OH}_{\text{ads.}} \rightarrow \text{Pt-CO}_{\text{ads.}} + 4 \text{H}^+ + 4 \text{e}^- \\
\text{Ru} + \text{H}_2\text{O} \rightleftharpoons \text{Ru-OH}_{\text{ads}} + \text{H}^+ + \text{e}^- \\
\text{Pt-CO}_{\text{ads.}} + \text{Ru-OH}_{\text{ads.}} \rightleftharpoons \text{CO}_2 + \text{H}^+ + 4\text{e}^-
\]
BET Surface Areas and Particles Size of Unsupported Pt-Ru Alloy Electro catalysts

<table>
<thead>
<tr>
<th>Composition of Pt-Ru alloy</th>
<th>Bet surface area (m²/g)</th>
<th>Particle size diameter (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt:Ru (85:15)</td>
<td>4.7</td>
<td>615</td>
</tr>
<tr>
<td>Pt:Ru (73:27)</td>
<td>12.5</td>
<td>239</td>
</tr>
<tr>
<td>Pt:Ru (48:52)</td>
<td>21.8</td>
<td>151</td>
</tr>
<tr>
<td>Pt:Ru (27:73)</td>
<td>27.7</td>
<td>133</td>
</tr>
<tr>
<td>Pt:Ru (11:89)</td>
<td>27.5</td>
<td>154</td>
</tr>
</tbody>
</table>

\[S_{A_{BET}} = \frac{6}{D_s} \rho (\text{Pt} + \text{Ru}) \]

\(\rho \): alloy density \([\rho_{(\text{Pt} + \text{Ru})} = \text{w/o Pt} \times \rho_{\text{pt}} + \text{w/o Ru} \times \rho_{\text{Ru}}]\)
Direct Methanol Fuel Cell Research and Development Program
Methanol-Oxygen interaction at a Pt-rotating disk electrode

(A): 0.5M H$_2$SO$_4$ Sat. N$_2$
with 1M CH$_3$OH

(B): 0.5M H$_2$SO$_4$ Sat. O$_2$
with 1M CH$_3$OH

(C): 0.5M H$_2$SO$_4$
Sat. with O$_2$
Direct Methanol Fuel Cell Research and Development Program

Methanol-Oxygen interaction at a Pt-rotating disk electrode

Potential (V vs. RHE)

I (mA)
Direct Methanol Fuel Cell Research and Development Program
Methanol "cross-over" to the cathode for a single fuel cell

![Graph showing the relationship between current density and cell voltage for different temperatures.](image-url)
MRCP with Johns Hopkins University

(I) Electro catalyst
 - Surface preparation and bulk alloy processing of Pt and Pt-Ru alloys
 and to determine the real surface areas of Pt-Ru electrocatalyst
 - Searches for more efficient electrocatalysts

(II) Membrane
 - Prepares new membrane electrolyte with lower methanol "cross-over"
 rate
97.2 Army SBIR topic title: "Innovative Fuel Cells"

- Use of alternate fuels
 e.g. methanol, ammonia, hydrocarbons

- Design of novel fuel storage/delivery systems
 e.g. lightweight hydrogen generators

- Substitution of lightweight/less costly/more efficient materials
 e.g. new/composite PEM, improved/novel catalysts
SYSTEM CONSIDERATIONS

PRESENTED TO:
WORKSHOP ON HYDROGEN STORAGE
AND GENERATION FOR MEDIUM-
POWER AND -ENERGY APPLICATIONS

James K. “Jay” Stedman
April 8, 1997
Discussion Topics

● System Optimization Factors
● Thermals and Heat Transfer
● Water Balance
● System Integration
● Environmental Factors
● Hydrogen Conditions and Logistics
System Optimization

- Power & Energy Requirements
- Optimization Criteria
- Hydrogen Storage Mode
Power & Energy Requirements

- a. 300 watts for 33 hours
- b. 100 watts for 10 hours
- c. 10 watts for 1 year

Implications:

- simple systems (especially c.) (conventional thinking)
- a. & b.- many starts, easily refueled, user friendly
- c.- remote operation, special everything OK
Optimization Criteria

- Weight and Volume Vs. Efficiency
 - Single or Multiple Missions

- Cost
 - Materials Cost and Production

- Reliability and Life
 - Operating Stress
 - Redundancy
 - Weight, Volume, Cost
Hydrogen Storage Mode

- Subject of Workshop
- If Need Heat-Use What's Available
- If Exothermic-Combine With Endothermic
- Consider Safety of Chemical Hydrides
- Consider Refueling of Gas Tanks
- Consider Flexibility of Load Profile and Mission Duration
Thermals and Heat Transfer

- Endothermic/Exothermic and Quantity
- Temperature Limits on Reaction
- Environment Temperature Range
- Heat Transfer Medium
- Power Turndown
Water Management Issues

- H2 Source Stoichiometry - Moles of H₂O Consumed/Moles H₂O Produced by Fuel Cell
- Water Addition to Source- Form and Control
- Water Recovery Hardware and Control
 * Environmental Temperature Limits
 * Fuel Cell Operating Conditions
 * Weight and Volume Could Be Significant
System Integration

- Higher Efficiency from Thermal Integration
 - vaporization-condensation
 - vapor transfer for humidification
 - heat rejection--adsorption

- Electrical Control-Power Conditioning
 - same box
 - common elements
System Intergration

- Up Transients with H2 Generators
 - Storage
 - gaseous
 - metal hydride
 - Battery/Capacitor
- Down Transients
 - Thermal mismatch problem
Environmental Factors

- Temperature Limits = -25 to +125°F
 - Fuel cells make water (water freezes at 32°F)
 - Do your Best
- Shock & Vibration
 - real requirements
 - testing required
- Battlefield Air—What is it?
- Orientation—+-45°
User Considerations

- small fuel cells compete with lithium batteries - special fuel OK
- logistics a concern, especially for the foot soldier application
- need to offer significantly better performance to gain acceptance of new concept.
Required Hydrogen Characteristics

- Pressure- Slightly Over One Atmosphere
- Humidity-for missions a. & c. non required, for b., maybe (HPD)
- Purity-need testing: data shows Ca, Mg, i.e., bivalent metals reduce membrane conductivity. Dust, soot, etc-also bad.
- For short missions ?? Don’t do anything heroic until testing shows a need.
DARPA Hydrogen Storage Programs

April 8-10, 1997

Hydrogen Storage and Generation Technologies Workshop

Roger Pyon
DARPA Program Objectives

- Development of high energy density (by weight and volume) hydrogen storage sources.

- Applications
 - Field Portable Power
 - Land Vehicles
 - Remote Sites
 - Unmanned Undersea Vehicles
Current Programs

Small Business Innovative Research (SBIR) phase 2 efforts

- A. F. Sammer - Chemical Hydride
- Energy Conversion Devices - Metal Hydride
- Materials & Electrochemical Research - Fullerene Hydride
Objective

- Development of a chemical hydride hydrogen storage/generation system

Approaches

- Hydrogen generation by reaction of CaH₂ & LiH with water
- Replaceable hydride cartridges
- Load responsive

Status

- 50 and 100 L chemical hydride generator demonstrated
- Hydrogen delivery rate of 10 to 250 ml per minute (Designs available which would provide up to several L/min and/or 10,000 L capacity)
- 100 L CaH₂ system provides 167 Whrs @ single cell voltage of 0.7 V
- The complete 100 L system weighs 1 kg and has a volume of 0.92 L
100 L Generator

Hydride cartridge cut-away
Objective

- Development of a metal hydride hydrogen storage/generation system

Approaches

- Magnesium based alloys for the storage of hydrogen in the form of metal hydrides
- Demonstration of low adsorption and desorption temperatures

Status

- Magnesium based alloy with hydrogen storage capacity of 5-6 wt. % demonstrated
- Hydrogen formation at 100 °C and desorption at 250 °C
- Over 2000 adsorption/desorption cycles demonstrated on a 5 gram sample
- Reported alloy yield of 50%
- Resistant to CH₄ and CO poisoning
Objective

- Development of hydrogen storage/generation system in fullerene structures

Approaches

- Reversible chemical absorption and desorption of fullerenes
- Physical hydrogen gas adsorption on tubular fullerenes at cryogenic temp and desorption at room temp
- Use of catalyst to reduce activation energy required in absorption and desorption process

Status

- Chemical hydrogenation of fullerenes
 - 5.7 wt. % in solid state
 - 6.9 wt. % in liquid state at 180 °C and 500 psi
- Chemical de-hydrogenation
 - Solid state de-hydrogenation achieved with catalyst but requires high temperature and pressure
 - Liquid state de-hydrogenation is limited by the choice of solvents
Pressurized Hydrogen Storage

8-10 April 1997

Workshop on Storage and Generation of Hydrogen

Prepared By:

Brian D. James
4001 N. Fairfax Drive, Suite 775
Arlington Va 22203
(703) 243-3383 voice
(703) 243-2724 fax
Comparison of Tank Performance Factors
($P_{\text{burst}} \times V_{\text{internal}} / W_{\text{tank}}$) for Various Materials

All data except "Graphite/Bladder" have been extracted from Figure 4 of the Feasibility Study of Onboard Hydrogen Storage for Fuel Cell Vehicles (Interim Report), DOE, January 1993.

Legend:
- IDEAL
- DOE/Ford T1000G
- DOE/Ford T700S

Materials:
- Steel
- Aluminum
- Titanium
- E-Glass/Aluminum
- S-Glass/Aluminum
- Aramid/Aluminum
- Graphite/Aluminum
- Graphite/Plastic
- Graphite/Bladder

Mitlitsky-FC_Seminar-961120-13
A Bladder Was Fabricated Which Held Adequate Pressure for Use as an Inflatable Mandrel
A Lightweight Bladder Was Used as an Inflatable Integral Mandrel for Fabricating a Pressure Vessel

Inflated bladder on winding axis

Final composite layer wound onto vessel

First composite layer wound onto bladder

First Prototype with Rex Haddock and Fred Mittlitsky
Hydrogen Pressure Tankage Assumptions

H₂ Storage:
1 kWh => 0.05270 kg (0.1162 lbs) H₂
5 kWh => 0.2635 kg (0.5810 lbs) H₂
10 kWh => 0.5270 kg (1.162 lbs) H₂
45 kWh => 2.372 kg (5.23 lbs) H₂
90 kWh => 4.744 kg (10.46 lbs) H₂

Based on 0.7 volts per cell in PEM fuel cell with no parasitic loads i.e. 57% lower heating value (LHV) system efficiency

Operating Pressure:
34.5 MPa (5,000 psia)
51.8 MPa (7,500 psia)
69 MPa (10,000 psia)
103.5 MPa (15,000 psia)

Safety Factor (Burst Pressure/Operating Pressure) = 1.5 and 2.25

Fiber and Resin:
T-1000G carbon fiber
Ultimate tensile strength 6.37 Gpa (924 ksi) derated to 81% to account for variability in fibers and manufacturing
Fiber density = 1.8 g/cc
Resin density = 1.2 g/cc
Fiber volume fraction = 58%
Performance Factor for fibers/resin alone = 2.3 X 10⁶ inches
Performance Factor = (Operating Pressure X Safety Factor X Internal Volume)/ (tank weight)
10% additional fiber and resin weight to approximate fiberglass overwrap for abrasion and impact resistance

Tank Liner (gas barrier): metalized 5 mil thick composite of LDPE and PET

Tank Internal Length to Diameter Ratio = 3

Boss Weight (total):
0.24 kg (0.52 lbs) for 1 kWh, 5 kWh, and 10 kWh systems based on Al construction, 6 inch diameter plate with 2 inch diameter port
0.46 kg (1.02 lbs) for 45 kWh and 90 kWh systems based on Al construction, 4 inch diameter plate with 1 inch diameter port

Pressure Reducer: 0.5 kg (1.1 lbs)

Flow Metering Assembly: 0.36 kg (0.8 lbs) total weight
Consists of: piezo-electric valve
DC-DC converter
small battery
Hydrogen Storage Gravimetric Efficiency

T-1000G Carbon Fiber
Safety Factor = 1.5
Internal Length/Diameter = 3

18,970 Wh/kg H2 at 57% LHV system efficiency
(0.7 volts/cell and no parasitic losses)
Hydrogen Storage Volumetric Efficiency

T-1000G Carbon Fiber
Safety Factor = 1.5
Internal Length/Diameter = 3

18,970 Wh/kg H2 at 57% LHV system efficiency
(0.7 volts/cell and no parasitic losses)
Advanced Pressurized Hydrogen Tankage System
(Safety Factor = 1.5)

T-1000G Carbon Fiber
Safety Factor = 1.5
Internal Length/Diameter = 3

System Volume, liters

System Weight, kg

5,000 psia
7,500 psia
10,000 psia
15,000 psia
90 kWh
45 kWh
5 kWh
1 kWh
10 kWh
0 5 10 15 20 25 30 35

250
200
150
100
50
0
Advanced Pressurized Hydrogen Tankage System
(Safety Factor = 1.5)

T-1000G Carbon Fiber
Safety Factor = 1.5
Internal Length/Diameter = 3

System Volume, liters
System Weight, kg

- 1 kWh
- 5 kWh
- 10 kWh
- 15,000 psia
- 10,000 psia
- 7,500 psia
- 5,000 psia
Advanced Pressurized Hydrogen Tankage System
(Safety Factor = 2.25)

T-1000G Carbon Fiber
Safety Factor = 2.25
Internal Length/Diameter = 3

System Volume, liters

System Weight, kg
Advanced Pressurized Hydrogen Tankage System
(Safety Factor = 2.25)

T-1000G Carbon Fiber
Safety Factor = 2.25
Internal Length/Diameter = 3

System Volume, liters

System Weight, kg

1 kWh
5 kWh
10 kWh
15 kWh
20 kWh
25 kWh
30 kWh

5,000 psia
7,500 psia
10,000 psia
15,000 psia
Compressed Hydrogen Tankage System

Weight, Volume, and Dimensions

T-1000G Carbon Fiber
Safety Factor = 1.5

5,000 psia System

<table>
<thead>
<tr>
<th></th>
<th>1 kWh</th>
<th>10 kWh</th>
<th>90 kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total System Weight (kg)</td>
<td>1.39</td>
<td>4.22</td>
<td>26.96</td>
</tr>
<tr>
<td>Usable H2</td>
<td>0.05</td>
<td>0.53</td>
<td>4.74</td>
</tr>
<tr>
<td>Fiber</td>
<td>0.15</td>
<td>1.54</td>
<td>13.88</td>
</tr>
<tr>
<td>resin</td>
<td>0.07</td>
<td>0.75</td>
<td>6.71</td>
</tr>
<tr>
<td>liner</td>
<td>0.01</td>
<td>0.07</td>
<td>0.29</td>
</tr>
<tr>
<td>bosses</td>
<td>0.24</td>
<td>0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>pressure reducer</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Flow Metering Assembly</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Internal Volume (liters)</td>
<td>2.31</td>
<td>23.03</td>
<td>207.27</td>
</tr>
<tr>
<td>External Volume (liters)</td>
<td>2.45</td>
<td>24.38</td>
<td>219.23</td>
</tr>
<tr>
<td>External Dimensions (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Length</td>
<td>30.85</td>
<td>66.37</td>
<td>138.05</td>
</tr>
<tr>
<td>Total Diameter</td>
<td>10.47</td>
<td>22.51</td>
<td>46.80</td>
</tr>
</tbody>
</table>

10,000 psia System

<table>
<thead>
<tr>
<th></th>
<th>1.44</th>
<th>4.65</th>
<th>30.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total System Weight (kg)</td>
<td>1.44</td>
<td>4.65</td>
<td>30.75</td>
</tr>
<tr>
<td>Usable H2</td>
<td>0.05</td>
<td>0.53</td>
<td>4.74</td>
</tr>
<tr>
<td>Fiber</td>
<td>0.18</td>
<td>1.83</td>
<td>16.43</td>
</tr>
<tr>
<td>resin</td>
<td>0.09</td>
<td>0.88</td>
<td>7.95</td>
</tr>
<tr>
<td>liner</td>
<td>0.01</td>
<td>0.06</td>
<td>0.28</td>
</tr>
<tr>
<td>bosses</td>
<td>0.24</td>
<td>0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>pressure reducer</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Flow Metering Asbly</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Internal Volume (liters)</td>
<td>1.37</td>
<td>13.66</td>
<td>122.74</td>
</tr>
<tr>
<td>External Volume (liters)</td>
<td>1.54</td>
<td>15.26</td>
<td>137.07</td>
</tr>
<tr>
<td>External Dimensions (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Length</td>
<td>26.12</td>
<td>56.19</td>
<td>116.86</td>
</tr>
<tr>
<td>Total Diameter</td>
<td>9.03</td>
<td>19.38</td>
<td>40.27</td>
</tr>
</tbody>
</table>

15,000 psia System

<table>
<thead>
<tr>
<th></th>
<th>1.48</th>
<th>5.05</th>
<th>34.36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total System Weight (kg)</td>
<td>1.48</td>
<td>5.05</td>
<td>34.36</td>
</tr>
<tr>
<td>H2</td>
<td>0.05</td>
<td>0.53</td>
<td>4.74</td>
</tr>
<tr>
<td>Fiber</td>
<td>0.21</td>
<td>2.10</td>
<td>18.90</td>
</tr>
<tr>
<td>resin</td>
<td>0.10</td>
<td>1.02</td>
<td>9.14</td>
</tr>
<tr>
<td>liner</td>
<td>0.01</td>
<td>0.05</td>
<td>0.23</td>
</tr>
<tr>
<td>bosses</td>
<td>0.24</td>
<td>0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>pressure reducer</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Flow Metering Asbly</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Internal Volume (liters)</td>
<td>1.05</td>
<td>10.48</td>
<td>94.11</td>
</tr>
<tr>
<td>External Volume (liters)</td>
<td>1.24</td>
<td>12.35</td>
<td>110.83</td>
</tr>
<tr>
<td>External Dimensions (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Length</td>
<td>24.11</td>
<td>51.86</td>
<td>107.84</td>
</tr>
<tr>
<td>Total Diameter</td>
<td>8.46</td>
<td>18.17</td>
<td>37.74</td>
</tr>
</tbody>
</table>
Thiokol’s Approach

- Fuel storage products that allow more fuel to be stored in the same space at lower cost
- Conformable Storage
- Thin Walled Cylinders

![Diagram of fuel storage options](image)

Available Vehicle Storage Envelope

Unused Envelope

Cells Are Optimized for Size, Number, and Stress Reduction

Smaller Tanks Required to Fill Space

Tank Does Not Fit in Envelope

Low Cost/Thin TCR Overwrap

Thin LCP Liner
High Pressure Tankage Issues

1) Demonstration of full Metalized Bladder Liners
2) Appropriate Safety Factor (1.5 vs. 2.25)
3) Fast Fill Heating Rise
4) Safety
 - Burst
 - Shrapnel
 - Los Angeles MTA Incident
5) Light Weight High Pressure Pressure-Reducers and Solenoid Valves
Energy Film: A Safe Portable Source of Hydrogen

Dr. Michael Monsler
Dr. Charles Hendricks
Mr. Thomas Walsh

Workshop on Hydrogen Storage and Generation Technologies

Orlando Florida
April 8-10, 1997
An Introduction to W. J. Schafer Associates Inc.

- WJSA provides technology advice to governments and industry in four key business areas
 - Information Technology, Modeling and Simulation
 - Research and Technology Development
 - Energy and Environment
 - Defense and Space Systems
- WJSA has six main offices in Boston, Washington DC, Huntsville, Albuquerque, Los Angeles and San Francisco, and 6 smaller satellite offices
- WJSA is an employee-owned small business with 200 employees and $31M in annual revenues.
• Small PEM fuel cells (< 200 W) are becoming available to power battlefield electronics for the footsoldier
• They lack a safe convenient source of hydrogen. At present, compressed gas tanks are heavy and bulky to use and recycle
• The goal is to;
 - replace the standard ARMY BA 5590 battery, in missions where high power demand causes extremely short battery life
 - store 10-120 grams of H₂ and deliver it at up to 10 gms/hr in all military environments, safely and reliably
• The customer is the US Army CECOM, Ft. Belvoir VA
• Phase I contract is for $99K, 6 month duration.
• For a safe and convenient H₂ storage medium, WJSA proposed to use glass microspheres filled to 9000 psi and affixed to a polymer substrate in a uniform layer. Energy Film would be packaged and transported like photo film.
• Hydrogen would be released to the Fuel Cell in a controlled manner by pulling the Energy Film through rollers and crushing the microspheres at a known rate.
The Concept of Energy Film for H₂ Storage and Transport

Surface completely covered with H₂ containing microspheres

Sprocket Holes

Plastic film cannister

Glass microspheres filled with H₂ to 9000 psi and glued down to film

Polymer film

on one or possibly both sides
Storage of Hydrogen in Glass Microspheres

- Hydrogen is stored at high pressure in a jillion (10^{11} per kg) small independent spherical cavities
 - Pressure limits can be very high, perhaps 10,000 psi
 - Storage is passive, at room temperature, for long term
- The hydrogen released is very pure - will not poison fuel cells
- The fuel tank or container for a bed of glass microspheres
 - Can conform to any shape
 - Is at low pressure, and should be inexpensive
- The hydrogen can be released by either...
 - Heating the microspheres to 200-350 C, with less heat required than needed for an equivalent hydride bed
 - Or by crushing the microspheres to release all the stored H\textsubscript{2}, when recycling is not needed
- Glass microspheres have been used to store H\textsubscript{2} in Inertial Confinement Fusion (ICF) for over 20 years
 - WJSA uses a droplet generator process to make microspheres of very uniform mass, high concentricity, and low defect density
 - Commercial shells used for insulation, fillers, etc. have too many defects to be good pressure vessels
The microspheres are very small, very thin wall glass shells.

\[0.5 - 1.5 \mu m\]

25 - 200 \mu m
The strength of glass is the key physical property determining the energy storage capacity

Failure strength of glass is very sensitive to the presence of microscopic surface cracks, and the method of processing, but not a strong function of composition

<table>
<thead>
<tr>
<th></th>
<th>MPa</th>
<th>kpsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical glass strength:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>From theory of brittle solids(1):</td>
<td>~ 35,000</td>
<td>~ 5000</td>
</tr>
<tr>
<td>Typical measured glass strength values(2):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary glass products (bottles, etc.)</td>
<td>14 - 70</td>
<td>2 - 10</td>
</tr>
<tr>
<td>Freshly drawn glass rod</td>
<td>70 - 140</td>
<td>10 - 20</td>
</tr>
<tr>
<td>Abraded glass rod</td>
<td>14 - 35</td>
<td>2 - 5</td>
</tr>
<tr>
<td>Wet, scored glass rod</td>
<td>3 - 7</td>
<td>0.4 - 1</td>
</tr>
<tr>
<td>Armored glass</td>
<td>350 - 500</td>
<td>50 - 73</td>
</tr>
<tr>
<td>Freshly drawn glass fibers</td>
<td>700 - 2100</td>
<td>100 - 300</td>
</tr>
<tr>
<td>Experimentally achieved glass strength values:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial glass microspheres fail at</td>
<td>~ 7000</td>
<td>~ 1000</td>
</tr>
<tr>
<td>Glass microspheres made at LLNL failed at</td>
<td>~ 350</td>
<td>~ 50</td>
</tr>
<tr>
<td>Glass microspheres(3) failed at</td>
<td>~ 1000</td>
<td>~ 145</td>
</tr>
<tr>
<td></td>
<td>800 - 1600</td>
<td>120 - 240</td>
</tr>
</tbody>
</table>

References:

1. E. Orowan, *Z. Krist.*, A89, 327-343 (1934)
Thinner shells have more volume available for hydrogen, but they hold far less pressure.

Fraction of Volume Available for H2

Aspect Ratio

Maximum Fill Pressure, psi

Aspect Ratio

Glass Strength
150,000 psi
100,000 psi
50,000 psi

Aspect ratio = diameter / thickness
Packing Fractions of both a Volumetric Bed and a Planar Layer of Microspheres

Max. theoretical volumetric packing fraction for a close-packed bed of spheres

\[p_f_{\text{bed}} = \frac{\pi}{3 \cdot \sqrt{2}} \]

\(p_f_{\text{bed}} = 0.74 \)

Max. theoretical volumetric packing fraction of a single planar close-packed layer of spheres

\[p_f_{\text{layer}} = \frac{\pi}{3 \cdot \sqrt{3}} \]

\(p_f_{\text{layer}} = 0.605 \)

Fraction of volume of a single microsphere available for H2

\[f_{H2}(ar) = \left(1 - \frac{2}{ar} \right)^3 \]

\(f_{H2}(ar1) = 0.857 \)

Fraction of a single microsphere that is glass

\[f_{\text{gl}}(ar) = 1 - f_{H2}(ar) \]

\(f_{\text{gl}}(ar1) = 0.143 \)

Derating of the theoretical packing fraction

\[\eta_{pf} = 0.95 \]

Fraction of bed volume available for H2

\[f_{bv}(ar) = \eta_{pf} \cdot p_f_{\text{bed}} \cdot f_{H2}(ar) \]

\(f_{bv}(ar1) = 0.603 \)

Fraction of planar layer volume available for H2

\[f_{pl}(ar) = \eta_{pf} \cdot p_f_{\text{layer}} \cdot f_{H2}(ar) \]

\(f_{pl}(ar1) = 0.492 \)
To calculate the properties of EF, assume a thin mylar substrate with two layers of GMS and adhesive.

For the calculation, these two cases are equivalent.

Substrate 10 microns thick
Adhesive 3 microns thick
Shell diameter 100 microns
The volumetric energy density of Energy Film improves with shell aspect ratio and diameter.

Assumes p = 9000 psi and diameter = 100 microns

Assumes p = 9000 psi and aspect ratio = 40
The H_2 mass fraction of Energy Film increases with shell diameter, and has a broad maximum with respect to aspect ratio.

Assumes we operate at the highest fill pressure allowed by the strength of glass for each aspect ratio.

Thinner shells weigh less, but hold less pressure, and therefore less energy.
The H2 mass fraction of Energy Film (for a fixed pressure), increases with aspect ratio until a limit determined by the strength of glass.

In this case the pressure is held fixed at \(p = 9000 \) psi, and the aspect ratio is limited to 46 by the strength of glass.
Example: Design a cartridge of Energy Film for a particular mission

Energy & Environment Group

Electrical power to be generated in PEM FuelCell	\(P_e = 150 \text{ watts} \)
Fuel Cell efficiency	50 %
Discharge time @ full power	\(T = 4 \text{ hours} \)
Electrical energy stored	\(E_e = 600 \text{ watt-hr} = 2.16 \text{ MJ} \)
Mass of stored Hydrogen	\(M = 30.47 \text{ gm} \)
Conversion rate, \(H_2 \) to electricity	19.7 \text{ watt-hr/(gm} \ H_2)
Hydrogen usage rate needed	7.62 \text{ gm/hr}
Glass microspheres	\(d = 100 \text{ microns} \)
Diameter	\(ar = 40 \)
Aspect ratio	\(p = 9000 \text{ psi} \)
Fill pressure	Substrate thick. = 10 microns
Energy Film parameters	Total thickness = 210 microns
(Mylar with 2 layers of microspheres)	Width = 10 cm = 4 in.
Width of film (no sprocket holes)	\(v = 0.6 \text{ cm/sec} \)
Film pull-rate required	Length = 86 m
Length of film required	Height = 10 cm = 4 in.
Size of a roll of Energy Film	Diameter = 15.2 cm = 6 in.
Weight of the roll only	Mass = 532 \text{ gm} = 1.17 \text{ lb}
Weight inc. plastic spool and container (60 gm)	Mass = 592 \text{ gm} = 1.3 \text{ lb}
Fraction of hydrogen by weight	5.1 % \(H_2 \)
Some lessons-learned in making the coated substrate for Energy Film

- We have performed experiments on several combinations of tapes and adhesives - and found many combinations that don't work
- Box tape (with preapplied uniform adhesive layer) looked promising in early experiments
 - But adhesive migrates over top of shells, stays sticky
 - Need an adhesive that sets, yet stays flexible
- Diluted Contact Cement works OK
 - Difficult to make a uniform application of thin layer
 - If too thick, get heavy clumping of shells
 - We will try a flexible UV setting epoxy next
- Can't use a roller to press down shells onto adhesive - get excessive breakage
- Photo film stock is not usable - will lead to low energy density
 - It is unnecessarily thick (~ 140 microns)
 - Sprocket holes seem unnecessary (unutilized surface area)
 - Go to Mylar or Kapton (10-20 microns)
- A double-sided coating of microspheres is unlikely to work
 - Microspheres break from rubbing and rolling of film
 - But more than one layer on a single side of film seems feasible
We have successfully filled shells at ~ 2000 psi and released the hydrogen by crushing

- We constructed a high-pressure hydrogen filling apparatus to fill shells at elevated temperature (~ 350 C)
- We have experimented with our own shells and with 3M Scotchlite™ Glass Bubbles (30-100 micron diameter, ~ 1 micron wall)
- Using commercial bottled hydrogen limited to 2200-2400 psi, we filled several CCs of glass microspheres by stepping up the pressure slowly, such that each pressure increment stays below the buckling limit of thin shells.
- After a few trials in which we crushed the majority of shells by filling too fast, we are now getting nearly a 100% yield in the filling process.
- We confirmed the storage and release of hydrogen by breaking an individual glass shell under water and measuring the bubble volume.
- When brought back down to room temperature, the shells contain H_2 at about 1100 psi.
- We have added a small high-pressure generator capable of reaching much higher fill pressures (12,000 psi), but have not used it yet.
The power required to pull the energy film through the crushing rollers is negligible compared to the hydrogen energy release rate

- We measured the force needed to pull the Energy Film (2.5 cm wide) through the rollers at approximately 1 cm/sec.
- 90-110 grams force was required. For our nominal 10 cm wide Energy Film, this translates to...
 - An energy required to overcome friction and break the shells of
 - \(E_{\text{pull}} = 3.92 \text{ joules/meter of film} \)
 - A nominal heating value of energy stored in Energy Film (@ 9000 psi) of
 - \(E_{\text{store}} = 25,077 \text{ joules/meter of film} \)
 - If we were to use electricity generated in the fuel cell (50% effic.) to run a DC motor (60% effic.) to pull the film, the recirculated power fraction would be
 \[f = \frac{E_{\text{pull}}/0.60}{E_{\text{store}} \times 0.50} = 5.2 \times 10^{-4} \]
- Because the pulling force did not vary much with film substrate and the roller-bearing friction is trivial, we believe that the dominant energy loss mechanism is the shell-crushing process
- Since the pulling-power requirement is so small, rather than recirculate electricity generated by the fuel cell to run a motor, we may use a simple clock spring to pull the film
- The clock spring would be wound or cocked automatically in the film loading process - so the fuel cell efficiency would not be affected.
Calculations confirm that the energy required to crush a shell is comparatively small, and that filled shells are easier to break since they are already near the stress limit.
The H$_2$ generator would be part of the fuel cell apparatus, not part of the energy film cartridge

- Conceptually, the H$_2$ generator may look like a camera body. It would be an integral part of the fuel cell hardware.
- The roll of Energy Film is loaded into the H$_2$ generator like loading a camera. Inexpensive lightweight commercial analogies of this mechanism exist.
- Loading the Energy Film cocks a clock spring which drives the pulling spool.
- The H$_2$ generator pulls the Energy Film through the rollers, liberating H$_2$ at the desired rate.
- In Phase II, we will design, build and demonstrate a prototype of the H$_2$ generator, coupled to a FC.
This is the experimental H\textsubscript{2} generator

- It is a steel vacuum chamber in which the film can be pulled through crushing rollers at a measured rate
- A Residual Gas Analyser (RGA) will be attached to measure the amount of H\textsubscript{2} liberated per length of energy film
The vacuum system is ready for the installation of the experimental H₂ generator and the RGA

- The experimental H₂ generator will be attached to this vacuum pumping station
- The Residual Gas Analyser (RGA) will also be attached to this vacuum system
- The amount of hydrogen gas liberated will be measured as a function of length of film pulled through the crushing rollers
- We will also measure the amount of CO, CO₂, H₂O and other contaminants which may evolve
Energy Film may have some distinct advantages over the alternatives for the U.S. Army

- A HUGE # of SMALL INDEPENDENT CONTAINERS offers GREATER SAFETY- WJSA believes that a bullet penetrating a Energy Film Cartridge will liberate the H₂ of only the struck microspheres, unlike a gas cylinder which would empty completely and immediately
- REDUCED WEIGHT - WJSA believes that there is a tremendous logistic advantage in not having to carry empty gas cylinders or hydride beds back from the field for recharging
- GREATER CONVENIENCE - WJSA believes that because Energy Film is non-hazardous and can be made disposable (just sand and biodegradable plastic), it would be preferred in the field.
- REDUCED COST - WJSA does not know how much Energy Film will cost in mass production, but imagine the limit...potentially as low as Saran Wrap and sand. (H₂ compression costs will dominate)

Are a soldier's razor blades taken back for resharpenning? How about their food and drink packages? Why recycle and recharge heavy energy packages?
Objectives of Phase II SBIR

Perfect process for mass-producing uniform glass shells in quantity
Demonstrate filling and handling of shells up to 10,000 psi
Team with a firm like 3M or Polaroid with commercial experience in coatings and polymer films - a manufacturing partner
Make 100s of meters of energy film with much thinner substrate and adhesive thicknesses - optimize energy storage density
Demonstrate a ‘clockspring’ driven or a low-power electrical film-puller
Design and construct a fully functional H₂ Generator prototype that seals tight, can be easily loaded and unloaded, generates a given hydrogen flowrate
Demonstrate a complete 600 watt-hour system, with an H₂ Generator integrated with a 150 watt PEM fuel cell provided by the Army
Operate system reliably for hours at a time
Assess cost, safety, efficiency and utility of integrated Energy Film concept in field operation
Chemical Hydrides

Solid State Hydrogen Gas Generation System

by
Ottmar H. Dengel
and
Werner F. Beckert

Royal Systems

for
Workshop on Storage and Generation of Hydrogen
8 - 10 April 1997
Orlando Florida
Topics of Presentation:

• Hydrogen Gas Generating Composition
• Requirements for a Hydrogen Gas Generator System
• Hydrogen Gas Generator Design
• System Weight Considerations
<table>
<thead>
<tr>
<th>H₂ - Generating Formulation</th>
<th>H₂ yield per reactant weight</th>
<th>Stability</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₄BH₄</td>
<td>20.7%</td>
<td>dec. -40°C</td>
<td>unstable</td>
</tr>
<tr>
<td>NH₃BH₃</td>
<td>19.6%</td>
<td>dec. ~100°C/50°C</td>
<td>Mix: fine solids, high burn rate, high T</td>
</tr>
<tr>
<td>BH₂(NH₃)₂BH₄</td>
<td>19.6%</td>
<td>dec. <95°C</td>
<td>Mix: fine solids, high burn rate, high T, unstable</td>
</tr>
<tr>
<td>NH₃B₃H₇</td>
<td>17.8%</td>
<td>dec. 74°C</td>
<td>Mix: fine solids, high burn rate, el.stat.</td>
</tr>
<tr>
<td>N₂H₄ x 2BH₃</td>
<td>16.9%</td>
<td>dec. ~100°C</td>
<td>Mix: fine solids, high burn rate, high T, CO/NH₃</td>
</tr>
<tr>
<td>Mg(BH₄)₂ x 2NH₃</td>
<td>16.0%</td>
<td>dec. ~100°C</td>
<td></td>
</tr>
<tr>
<td>Li + H₂O</td>
<td>4.0%</td>
<td>not stable</td>
<td>not pursued</td>
</tr>
<tr>
<td>LiH + H₂O</td>
<td>8.0%</td>
<td>not stable</td>
<td>not pursued</td>
</tr>
<tr>
<td>LiBH₄ + H₂O</td>
<td>10.5%</td>
<td>not stable</td>
<td>not pursued</td>
</tr>
<tr>
<td>NH₄F + LiBH₄</td>
<td>13.5%</td>
<td>dec. ~40°C</td>
<td>unstable (DSC)</td>
</tr>
<tr>
<td>NH₄F + NaBH₄</td>
<td>10.7%</td>
<td>dec. ~45°C</td>
<td>unstable (DSC)</td>
</tr>
<tr>
<td>NH₄F + LiAlH₄</td>
<td>10.7%</td>
<td>dec. 76°C</td>
<td>unstable (DSC)</td>
</tr>
<tr>
<td>N₂H₄Cl₂ + LiBH₄</td>
<td>9.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₄Cl + LiBH₄</td>
<td>10.6%</td>
<td>dec. 60°C</td>
<td></td>
</tr>
<tr>
<td>NH₄F + NaAlH₄</td>
<td>8.7%</td>
<td>dec. 107°C</td>
<td></td>
</tr>
<tr>
<td>Li₃AlH₆ + NH₄F</td>
<td>11.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li₃AlH₆ + NH₄Cl</td>
<td>9.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N₂H₄ x 2BH₃</td>
<td>13.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N₂H₄ x 2BH₃</td>
<td>13.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N₂H₄ x 2BH₃</td>
<td>10.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₄Cl + 2LiAlH₄</td>
<td>8.5%</td>
<td>dec. ~100°C</td>
<td>onset of dec at 75°C</td>
</tr>
<tr>
<td>NH₄Cl + NaAlH₄</td>
<td>7.4%</td>
<td>dec. ~170°C</td>
<td>very stable</td>
</tr>
<tr>
<td>NH₄Cl + 3LiAlH₄</td>
<td>8.4%</td>
<td>unknown</td>
<td>being evaluated</td>
</tr>
<tr>
<td>NH₄Cl + 1.2LiAlH₄</td>
<td>7.3%</td>
<td>unknown</td>
<td>being evaluated</td>
</tr>
<tr>
<td>NH₄Cl + NaAlH₄ + 2LiAlH₄</td>
<td>7.6%</td>
<td>unknown</td>
<td>being evaluated</td>
</tr>
</tbody>
</table>
Figure 1
Hydrogen Yield vs. Thermal Stability

1. NH₄BH₄ (pure cpd)
2. NH₄B₃H₆ (pure cpd)
3. NH₃BH₃ (pure cpd)
4. BH₂(NH₃)₂BH₄ (pure cpd)
5. NH₃B₃H₇ (pure cpd)
6. N₂H₄ · 2BH₃ (pure cpd)
7. Mg(BH₄) · 2NH₃ (in formulation)
8. LiBH₄ + NH₄F (in formulation)
9. LiAlH₄ + NH₄F (in formulation)
10. NaAlH₄ + NH₄Cl (in formulation)
11. 2LiAlH₄ + NH₄Cl (in formulation)
TABLE III

Calculated Values for Formulations Under Consideration

<table>
<thead>
<tr>
<th>Reaction Equation</th>
<th>ΔH Kcal</th>
<th>ΔH/mole H$_2$</th>
<th>Theor. density before/after</th>
<th>Theor. Yield L/g</th>
<th>Theor. Yield g/100g</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH$_4$F + LiBH$_4$ → LiF + BN + 4H$_2$</td>
<td>-48.2</td>
<td>-12.1</td>
<td>1.17/2.43</td>
<td>1.52</td>
<td>13.6</td>
</tr>
<tr>
<td>NH$_4$F + NaBH$_4$ → NaF + BN + 4H$_2$</td>
<td>-40.3</td>
<td>-10.1</td>
<td>1.04/2.44</td>
<td>1.20</td>
<td>10.7</td>
</tr>
<tr>
<td>NH$_4$F + LiAlH$_4$ → LiF + AlN + 4H$_2$</td>
<td>-85.7</td>
<td>-21.4</td>
<td>0.96/3.47</td>
<td>1.19</td>
<td>10.7</td>
</tr>
<tr>
<td>NH$_4$F + NaAlH$_4$ → NaF + AlN + 4H$_2$</td>
<td>-74.1</td>
<td>-18.5</td>
<td>1.14/2.86</td>
<td>0.98</td>
<td>8.8</td>
</tr>
<tr>
<td>NH$_4$F + 4LiH → LiF + Li$_3$N + 4H$_2$</td>
<td>+5.4</td>
<td>+1.4</td>
<td>0.91/2.23</td>
<td>1.30</td>
<td>11.6</td>
</tr>
<tr>
<td>NH$_4$Cl + LiBH$_4$ → LiCl + BN + 4H$_2$</td>
<td>-36.9</td>
<td>-9.2</td>
<td>1.12/2.13</td>
<td>1.19</td>
<td>10.6</td>
</tr>
<tr>
<td>NH$_4$Cl + NaBH$_4$ → NaCl + BN + 4H$_2$</td>
<td>-38.2</td>
<td>-9.6</td>
<td>1.30/2.20</td>
<td>0.98</td>
<td>8.8</td>
</tr>
<tr>
<td>NH$_4$Cl + LiAlH$_4$ → LiCl + AlN + 4H$_2$</td>
<td>-74.4</td>
<td>-18.6</td>
<td>1.20/2.52</td>
<td>0.98</td>
<td>8.8</td>
</tr>
<tr>
<td>NH$_4$Cl + NaAlH$_4$ → NaCl + AlN + 4H$_2$</td>
<td>-72.0</td>
<td>-18.0</td>
<td>1.37/2.52</td>
<td>0.83</td>
<td>7.4</td>
</tr>
<tr>
<td>NH$_4$Cl + 4LiH → LiCl + Li$_3$N + 4H$_2$</td>
<td>+16.7</td>
<td>+4.2</td>
<td>1.16/2.04</td>
<td>1.05</td>
<td>9.4</td>
</tr>
<tr>
<td>N$_2$H$_5$Cl$_2$ + 2LiB$_4$H$_4$ → 2LiCl + 2BN + 7H$_2$</td>
<td>-130.2</td>
<td>-18.6</td>
<td>1.08/2.13</td>
<td>1.06</td>
<td>9.4</td>
</tr>
<tr>
<td>N$_2$H$_5$Cl$_2$ + 2NaBH$_4$ → 2NaCl + 2BN + 7H$_2$</td>
<td>-137.4</td>
<td>-19.6</td>
<td>1.25/2.19</td>
<td>0.87</td>
<td>7.5</td>
</tr>
<tr>
<td>N$_2$H$_5$Cl$_2$ + 2LiAlH$_4$ → 2LiCl + 2AlN + 7H$_2$</td>
<td>-209.2</td>
<td>-29.9</td>
<td>1.16/2.52</td>
<td>0.87</td>
<td>7.7</td>
</tr>
<tr>
<td>N$_2$H$_5$Cl$_2$ + 2NaAlH$_4$ → 2NaCl + 2AlN + 7H$_2$</td>
<td>-189.5</td>
<td>-27.1</td>
<td>1.32/2.52</td>
<td>0.74</td>
<td>6.6</td>
</tr>
<tr>
<td>N$_2$H$_5$Cl$_2$ + 8LiH → 2LiCl + 2Li$_3$N + 7H$_2$</td>
<td>-26.9</td>
<td>-3.8</td>
<td>1.11/2.04</td>
<td>0.93</td>
<td>8.3</td>
</tr>
<tr>
<td>NH$_4$Cl + 2LiAlH$_4$ → LiCl + AlN + LiH + Al + 5.5H$_2$</td>
<td>-71.9</td>
<td>-13.1</td>
<td>1.09/2.02</td>
<td>0.95</td>
<td>8.5</td>
</tr>
<tr>
<td>NH$_4$Cl + 3LiAlH$_4$ → LiCl + AlN + 2LiH + 2Al + 7H$_2$</td>
<td>-69.4</td>
<td>-9.9</td>
<td>1.05/2.11</td>
<td>0.94</td>
<td>8.4</td>
</tr>
<tr>
<td>NH$_4$Cl + 4LiAlH$_4$ → LiCl + AlN + 3LiH + 3Al + 8.5H$_2$</td>
<td>-66.9</td>
<td>-7.9</td>
<td>1.03/2.23</td>
<td>0.93</td>
<td>8.3</td>
</tr>
<tr>
<td>NH$_4$Cl + NaAlH$_4$ + LiAlH$_4$ → NaCl + LiH + AlN + Al + 5.5H$_2$</td>
<td>-69.5</td>
<td>-12.6</td>
<td>1.21/2.18</td>
<td>0.85</td>
<td>7.6</td>
</tr>
<tr>
<td>NH$_4$Cl + NaAlH$_4$ + 2LiAlH$_4$ → NaCl + 2LiH + AlN + 2Al + 7H$_2$</td>
<td>-67.1</td>
<td>-9.6</td>
<td>1.14/1.96</td>
<td>0.86</td>
<td>7.6</td>
</tr>
<tr>
<td>NH$_4$Cl + NaAlH$_4$ + 3LiAlH$_4$ → NaCl + 3LiH + AlN + 3Al + 8.5H$_2$</td>
<td>-64.6</td>
<td>-7.6</td>
<td>1.1/1.8</td>
<td>0.86</td>
<td>7.7</td>
</tr>
<tr>
<td>NH$_4$Cl + 1.2NaAlH$_4$ → NaCl + AlN + 0.2NaH + 0.2Al + 4.3H$_2$</td>
<td>-69.4</td>
<td>-16.1</td>
<td>1.34/2.49</td>
<td>0.81</td>
<td>7.3</td>
</tr>
</tbody>
</table>
Hydrogen Gas-Generating Composition

\[1 \text{NH}_4\text{Cl} + 3 \text{LiAlH}_4 \]

Reaction Chamber (number mols per 100g)

<table>
<thead>
<tr>
<th>Component</th>
<th>Reaction Chamber</th>
<th>Exhaust Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>1.19626 Al⁺</td>
<td>0.59705 AlN⁻</td>
</tr>
<tr>
<td>LiCl</td>
<td>1.19626 LiH⁻</td>
<td>0.00000 LiCl⁻</td>
</tr>
<tr>
<td>LiH</td>
<td>1.55E-08 Li⁺</td>
<td>2.34E-11 H⁻</td>
</tr>
<tr>
<td>AlCl</td>
<td>7.26E-13 HCl⁻</td>
<td>7.93E-12 AlH⁻</td>
</tr>
<tr>
<td>NH₃</td>
<td>4.61E-13 Li₂⁻</td>
<td>9.55E-15 Al⁻</td>
</tr>
<tr>
<td></td>
<td>0.59705 AlN⁻</td>
<td></td>
</tr>
</tbody>
</table>

Exhaust Gas (number mols per 100g)

<table>
<thead>
<tr>
<th>Component</th>
<th>Exhaust Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>1.19626 Al⁺</td>
</tr>
<tr>
<td>AlN⁻</td>
<td>1.19626 LiH⁻</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>0.59705 LiCl⁻</td>
</tr>
</tbody>
</table>
Hydrogen Gas-Generator Predicted Features

<table>
<thead>
<tr>
<th>Composition</th>
<th>Exhaust Temperature</th>
<th>Concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°K</td>
<td>°C</td>
</tr>
<tr>
<td>1NH₄Cl + 1LiAlH₄</td>
<td>1069</td>
<td>796</td>
</tr>
<tr>
<td>1NH₄Cl + 2LiAlH₄</td>
<td>828</td>
<td>555</td>
</tr>
<tr>
<td>1NH₄Cl + 3LiAlH₄</td>
<td>645</td>
<td>372</td>
</tr>
<tr>
<td>1NH₄Cl + 4LiAlH₄</td>
<td>537</td>
<td>264</td>
</tr>
</tbody>
</table>
Recommended Formulation for Prototype Demonstration

\[
\text{NH}_4\text{Cl} + 3\text{LiAlH}_4 \rightarrow \text{LiCl} + \text{AlN} + 2\text{LiH} + 2\text{Al} + 7\text{H}_2
\]

Theoretical Yield 8.4%
Hydrogen Gas-Generating Composition

\[1 \text{NH}_4\text{Cl} + 3 \text{Li AlH}_4 + 1 \text{Mg(BH}_4)_2 \cdot 2\text{NH}_3 + 4\% \text{Fe}_2\text{O}_3 + 3\% \text{Kraton} \]

\[\rightarrow \text{LiCl} + 2\text{LiH} + \text{AlN} + 2\text{Al} + 2\text{BN} + \text{Mg} + 14\text{H}_2\]

Theoretical Yield 10%
Requirements for a Hydrogen Gas Generator System

- Mechanical Properties/Porosity of Pressed Pellet
- Burning Rate
- Product of Reaction(Residue/Particulates)
- Temperature of Reaction
- Temperature of Reaction Chamber
Recommended Formulation for Prototype Demonstration

\[\text{NH}_4\text{Cl} + 3\text{LiAlH}_4 \rightarrow \text{LiCl} + \text{AlN} + 2\text{LiH} + 2\text{Al} + 7\text{H}_2 \]

Side Reactions:

\[\text{Fe}_2\text{O}_3 + 2\text{Al} \rightarrow \text{Al}_2\text{O}_3 + 2\text{Fe} \quad -193.5\text{kcal} \]
\[\text{NH}_3 + \text{Al} \rightarrow \text{AlN} + 1.5\text{H}_2 \quad -65\text{kcal} \]
\[3[\text{CH}] + 4\text{Al} \rightarrow \text{Al}_4\text{C}_3 + 1.5\text{H}_2 \quad -43\text{kcal} \text{ (Kraton)} \]
Hydrogen Gas-Generating Composition

\[\text{1NH}_4\text{Cl} + 3\text{LiAlH}_4 + 4\% \text{Fe}_2\text{O}_3 + 4\% \text{C}_3\text{H}_4 \]

Reaction Chamber (number mols per 100g)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Mols/100g</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2</td>
<td>3.94546</td>
</tr>
<tr>
<td>LiCl*</td>
<td>0.54928</td>
</tr>
<tr>
<td>LiAlO2&</td>
<td>0.03757</td>
</tr>
<tr>
<td>LiH</td>
<td>7.2E-08</td>
</tr>
<tr>
<td>AlH</td>
<td>1.81E-11</td>
</tr>
<tr>
<td>HCl</td>
<td>1.37E-12</td>
</tr>
<tr>
<td>LiH&</td>
<td>1.06299</td>
</tr>
<tr>
<td>Al4C3&</td>
<td>0.07967</td>
</tr>
<tr>
<td>Li2Cl2</td>
<td>0.00000</td>
</tr>
<tr>
<td>Li</td>
<td>3.47E-08</td>
</tr>
<tr>
<td>CH3</td>
<td>1.42E-11</td>
</tr>
<tr>
<td>Al</td>
<td>2.82E-14</td>
</tr>
<tr>
<td>Al&</td>
<td>0.74429</td>
</tr>
<tr>
<td>CH4</td>
<td>0.06049</td>
</tr>
<tr>
<td>LiCl</td>
<td>0.00000</td>
</tr>
<tr>
<td>H</td>
<td>4.79E-11</td>
</tr>
<tr>
<td>AlCl</td>
<td>4.78E-12</td>
</tr>
<tr>
<td>NH3</td>
<td>7.62E-15</td>
</tr>
<tr>
<td>Fe&</td>
<td>0.05009</td>
</tr>
<tr>
<td>Li3Cl3</td>
<td>0.00000</td>
</tr>
<tr>
<td>C2H4</td>
<td>2.96E-11</td>
</tr>
<tr>
<td>Li2</td>
<td>1.68E-12</td>
</tr>
</tbody>
</table>

Exhaust Gas (number mols per 100g)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Mols/100g</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2</td>
<td>4.06313</td>
</tr>
<tr>
<td>LiCl&</td>
<td>0.54928</td>
</tr>
<tr>
<td>CH4</td>
<td>1.65E-03</td>
</tr>
<tr>
<td>LiH&</td>
<td>1.06299</td>
</tr>
<tr>
<td>Al4C3&</td>
<td>0.09929</td>
</tr>
<tr>
<td>Li2Cl2</td>
<td>1.43E-13</td>
</tr>
<tr>
<td>Al&</td>
<td>0.66584</td>
</tr>
<tr>
<td>Fe&</td>
<td>0.05009</td>
</tr>
<tr>
<td>LiCl</td>
<td>8.03E-14</td>
</tr>
<tr>
<td>Al3Cl3</td>
<td>1.55E-14</td>
</tr>
</tbody>
</table>
Hydrogen Gas-Generating Composition

\[1\text{NH}_4\text{Cl} + 3\text{LiAlH}_4 + 4\% \text{Kraton} \]

Pellets Pressed for:

- Burn Rate Measurements: \(~0.05 \text{ inch/sec (100psi)}\)

- Gas Generation Demonstration (Parr Bomb)
 - Hydrogen
 - Ammonia
Hydrogen Generator Parr Bomb Test

- Reactant Pellet
- Nichrome Wire
- Holding Pan
- Vent
Figure 3
Reactant Cartridge
(Royal Systems Design)

- Removable Cap
- Heat Paper
- Felt Metal Screen
- Percussion Primer

Hydrogen-Generating Composition
Hydrogen Gas Generator Reaction Process

Heat Paper

Residue/Porous Clinker
LiCl + AlN + 2LiH + 2Al

Reaction Zone: Hydrogen & Intermediate Products

Reactant Mixture
NH$_4$Cl + 3LiAlH$_4$
Ignition of Hydrogen Gas-Generating Composition

Ignition for End-Burning Configuration

Heat Paper (KDI - Score)

- Zirconium & Barium Chromate embedded in Glass Fiber
 processed into adhesive sheet approximately 1 mm thick
- Supplied Wet
- Specifications:
 Burning Rate: 17.78 cm/sec
 Heat Release: 37.12 cal/cm² (385 cal/g)
 Ignition Temperature: approximately 245 °C
Figure 2
Hydrogen Gas-Generating System
(Royal Systems Design)
Figure 5
System Weight vs. Reactant Weight
Hydrogen Gas Generator System
(Valves not included)

- Reactant Weight
- Reactant Chamber & Reactants
- Total System Weight for 2000 psi

Desired System Weight
1.25 kg = 2.76 lbs

<table>
<thead>
<tr>
<th>Reactant Weight</th>
<th>Volume Holding Tank</th>
<th>Hydrogen (10% yield theor.)</th>
<th>Watt Hours (10% yield)</th>
<th>Hydrogen (7.8% yield actual)</th>
<th>Watt Hours (7.8% yield)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0g</td>
<td>596 cm³</td>
<td>2,384 cm³</td>
<td>40g</td>
<td>31.2g</td>
<td>624</td>
</tr>
<tr>
<td>100g</td>
<td>1,192 cm³</td>
<td>145.48 inch³</td>
<td>800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200g</td>
<td>72.74 inch³</td>
<td>20g</td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300g</td>
<td>30g</td>
<td>15.6g</td>
<td>23.4g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400g</td>
<td>2,384 cm³</td>
<td>145.48 inch³</td>
<td>40g</td>
<td>31.2g</td>
<td>624</td>
</tr>
</tbody>
</table>

System Weight in lbs.

0g 100g 200g 300g 400g
NOVEL ORGANOSILANES AS A UNIQUE HYDROGEN SOURCE FOR UNATTENDED FUEL CELLS WITH LOW THERMAL SIGNATURE

SRI International proposes to develop a novel hydrogen subsystem for a fuel cell power source capable of six months to five years of unattended life. Most current portable fuel cells are based on metal hydrides as the source of hydrogen. However, some of these hydrides are toxic, pose a severe explosion hazard, and must be stored in very heavy or very expensive storage devices. Also they are highly inefficient or require heating to higher temperatures to release hydrogen.

SRI’s novel approach is to generate hydrogen from the catalytic reaction of high energy density organosilanes with water in a nonpassivating, homogeneous liquid phase. The organosilanes selected will not pose serious handling problems. Suitable organometallic catalysts will also be developed to moderate or promote the reactivity of organosilanes.

The proposed silanes will be incorporated into a lightweight subsystem for fuel cell power sources capable of six months to five years of unattended life. Because these silanes have theoretical energy densities higher than any other metal hydride or hydride alloy used so far, they represent a superior source of hydrogen. In addition, they are liquid and therefore are not expected to suffer any passivation during hydrogen production. We will select silanes and catalysts to develop a system with a low thermal signature of hydrogen production, and any produced water will be recycled for hydrolysis so that water disposal will not be necessary. In our opinion, these features make the proposed silanes largely superior to any metal hydride or hydride alloy.

Silanes are an excellent source of hydrogen and have a higher energy density than either the metal hydrides or the hydride alloys. Although silane (SiH₄) is a pyrophoric gas, silane derivatives obtained by introducing aromatic or ethynyl groups into silanes have drastically reduced reactivity and can be handled conveniently. The reactivity of an organosilane depends on the nature of other functionalities present in the molecule and can thus be tailored to specifications to a certain extent.

We propose to synthesize organosilanes that will be stable, efficient sources of hydrogen for unattended fuel cells. These organosilanes must (1) either be a liquid or form a low melting eutectic with another silane, (2) not be pyrophoric, (3) have a moderate
reaction with water (in the presence of a catalyst) to liberate hydrogen, and (4) not suffer from passivation during hydrogen production.

A few silanes that meet the criteria given above have been selected for the production of hydrogen for the fuel cells. Most of these silanes have been synthesized and spectrally characterized and show a high efficiency of hydrogen production. For example, ethenyl silane, ethynyl silane, and phenyl silanes are excellent sources of hydrogen. Because these silanes are liquids, they react in a homogenous fashion with water in the presence of a catalyst to provide a clean, efficient source of hydrogen for remote fuel cells.

Our approach will be to synthesize silanes by conventional synthesis methods, taking into consideration the cost and efficiency of the synthesis procedures. All the proposed syntheses are either well documented in the literature or will be conducted according established synthesis procedures.

Several catalysts will be evaluated for promoting hydrogen generation for the highest possible power rate required for the desired application. Metalorganic catalysts, strong acids (e.g., triflic acid), or bases will be tested as catalysts and evaluated for their efficiency.

Kinetics studies will be performed to determine the rate of hydrogen production as a function of silane structure, catalyst, and rate of mixing. We will examine the efficiency of hydrogen production and perform a thorough study of any passivation issues. The system will be optimized so that all the water produced in the fuel cell for power production is completely used for hydrogen generation.

A complete subsystem for hydrogen production to be incorporated into a lightweight fuel cell stack will be eventually developed. This subsystem will also be used for our kinetics studies.

The tabulation below compares some of the selected silanes with metal hydrides for their efficiency of hydrogen production.

<table>
<thead>
<tr>
<th>Silanes</th>
<th>Efficiency Hydrogen Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\text{H}_3\text{Si})_2\text{C}=(\text{SiH}_3)_2)</td>
<td>9.4</td>
</tr>
<tr>
<td>(\text{C(SiH}_3)_4)</td>
<td>9.8</td>
</tr>
<tr>
<td>(\text{H-C=C-SiH}_3)</td>
<td>7.2</td>
</tr>
<tr>
<td>(\text{H}_3\text{Si-C=C-SiH}_3)</td>
<td>8.6</td>
</tr>
<tr>
<td>(\text{C}_6\text{H}_5\text{SiH}_3)</td>
<td>4.4</td>
</tr>
<tr>
<td>(\text{C}_6\text{H}_4 (\text{SiH}_3)_2)</td>
<td>6.2</td>
</tr>
<tr>
<td>Compound</td>
<td>Value</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>(C_6H_3(SiH_3)_3)</td>
<td>7.2</td>
</tr>
<tr>
<td>(C_6(SiH_3)_6)</td>
<td>8.6</td>
</tr>
<tr>
<td>Metal hydrides</td>
<td></td>
</tr>
<tr>
<td>(NaBH_4)</td>
<td>7.3</td>
</tr>
<tr>
<td>(NaAlH_4)</td>
<td>6.4</td>
</tr>
</tbody>
</table>
NOVEL ORGANOSILANES AS A UNIQUE HYDROGEN SOURCE FOR UNATTENDED FUEL CELLS WITH LOW THERMAL SIGNATURE

by
SUBHASH NARANG
SUSANNA VENTURA
MARY REPPY
DURGA ANNAVAJULA
KK BHASIN
SUNITI SHARMA

SRI INTERNATIONAL

PROJECT SPONSOR OFFICE OF RESEARCH AND DEVELOPMENT
CENTRAL INTELLIGENCE AGENCY

COTR
JOSEPH STOCKEL

Presented at the Workshop on Hydrogen Storage and Generation for Medium Power and Energy Applications, Orlando, Florida, April 8 -10, 1997
SILANES FOR HYDROGEN PRODUCTION

- SRI'S APPROACH IS TO GENERATE HYDROGEN FROM THE CATALYTIC REACTION OF HIGH ENERGY DENSITY ORGANO SILANES WITH WATER IN A NON PASSIVATING HOMOGENEOUS LIQUID PHASE

High-energy density silanes for hydrogen production will be synthesized. Selection criteria for the proposed silanes include (1) high efficiency of hydrogen production (2) safe handling (3) moderate controlled reaction with water and (4) no passivation during hydrogen production.

Task 2. Selection of Catalysts.

Several catalysts will be evaluated for promoting hydrogen generation for the highest possible power rate required for the desired application. Organometallics, strong acids and bases will be evaluated.

We will study the rate of hydrogen production as a function of the silane structure, catalyst and rate of mixing. Efficiency of hydrogen production and any passivation issues will be evaluated.

Task 4. Microcalorimetry.

We will use microcalorimetry to measure the heat of hydrolysis reaction of the selected silanes. This study will help us to select silanes with low thermal signature.

Task 5. Subsystem Development.

We will develop and test a subsystem for hydrogen production to be incorporated into unattended fuel cells.
ORGANO SILANES

- AIR STABLE
- STABLE IN WATER?
- LIQUID
- STOICHIOMETRIC REACTION WITH WATER
- EFFICIENT HYDROGEN PRODUCTION AT ROOM TEMPERATURE
- REACTION APPEARS TO BE THERMONEUTRAL?
- NON PASSIVATING SYSTEM
- CAN BE INCORPORATED IN A COMPACT SUBSYSTEM
- THROTTLING OF HYDROGEN PRODUCTION POSSIBLE?
PROPOSED SILANES
(EFFICIENCY OF HYDROGEN PRODUCTION)

\[\text{H}_3\text{SiC} \equiv \text{C} \text{SiH}_3 \]
(8.6)

\[\text{H}_2\text{C} \equiv \text{C} (\text{SiH}_3) \]
(7.2)

\[(\text{H}_3\text{Si})_2\text{C} \equiv \text{C} (\text{SiH}_3)_2 \]
(9.4)

\[\text{H}_3\text{Si} \text{SiH}_3 \]
(9.8)
EFFICIENCY OF HYDROGEN PRODUCTION

\[
C(SiH_3)_4 + 6H_2O \rightarrow C(SiOO_{1/2})_4 + 12H_2
\]

STOICHIOMETRIC WEIGHTS OF REACTANTS AND PRODUCTS:

\begin{align*}
(136) & \quad (108) \\
(220) & \quad (24)
\end{align*}

EFFICIENCY OF HYDROGEN PRODUCTION = 100X (WEIGHT OF H₂) / (WEIGHT OF REACTANTS)

\[
= 100 \times \frac{24}{136 + 108} = 9.8\%
\]
EFFICIENCY OF HYDROGEN PRODUCTION

\[\text{NaBH}_4 + 4\text{H}_2\text{O} \rightarrow \text{NaOH} + \text{B(OH)}_3 + 4\text{H}_2 \]

(37.8) (72) (8)

EFFICIENCY OF HYDROGEN PRODUCTION = \(100 \times \frac{8}{37.8 + 72} \) = 7.3%

\[\text{LiBH}_4 + 4\text{H}_2\text{O} \rightarrow \text{LiOH} + \text{B(OH)}_3 + 4\text{H}_2 \]

(21.7) (72) (8)

EFFICIENCY OF HYDROGEN PRODUCTION = \(100 \times \frac{8}{21.7 + 72} \) = 8.5%
EFFICIENCY OF HYDROGEN PRODUCTION

Silanes

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(SiH₃)₄</td>
<td>9.8</td>
</tr>
<tr>
<td>(H₃Si)₂C = C(SiH₃)₂</td>
<td>9.4</td>
</tr>
<tr>
<td>H₃Si-C = C-SiH₃</td>
<td>8.6</td>
</tr>
<tr>
<td>C₆(SiH₃)₆</td>
<td>8.6</td>
</tr>
<tr>
<td>HC = CSiH₃</td>
<td>7.2</td>
</tr>
<tr>
<td>C₆H₃(SiH₃)₃</td>
<td>7.2</td>
</tr>
<tr>
<td>C₆H₄(SiH₃)₂</td>
<td>6.2</td>
</tr>
<tr>
<td>C₆H₅SiH₃</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Metal hydrides

<table>
<thead>
<tr>
<th>Compound</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiBH₄</td>
<td>8.6</td>
</tr>
<tr>
<td>NaBH₄</td>
<td>7.3</td>
</tr>
<tr>
<td>NaAlH₄</td>
<td>6.4</td>
</tr>
<tr>
<td>Compound</td>
<td>Specific Capacity</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>C(SiH₃)₄</td>
<td>2.63</td>
</tr>
<tr>
<td>HC(SiH₃)₃</td>
<td>2.57</td>
</tr>
<tr>
<td>(H₃Si)₂CC(SiH₃)₂</td>
<td>2.51</td>
</tr>
<tr>
<td>H₃SiCCSiH₃ & C₆(SiH₃)₆</td>
<td>2.29</td>
</tr>
<tr>
<td>C₆H₃(SiH₃)₃</td>
<td>1.94</td>
</tr>
<tr>
<td>HCCSiH₃</td>
<td>1.93</td>
</tr>
<tr>
<td>C₆H₄(SiH₃)₂</td>
<td>1.67</td>
</tr>
<tr>
<td>C₆H₅SiH₃</td>
<td>1.48</td>
</tr>
</tbody>
</table>
SPECIFIC CAPACITY

BASIS OF CALCULATION: AMOUNT OF MATERIAL REQUIRED TO PRODUCE ONE EQUIVALENT OF HYDROGEN

\[
\text{LiBH}_4 + 4\text{H}_2\text{O} \rightarrow 4\text{H}_2 + \text{LiOH} + \text{B(OH)}_3
\]

STOICHIOMETRIC WEIGHTS OF REACTANTS AND PRODUCTS:

(21.7) (72) (8) (23.9) (61.8)

AMOUNT OF MATERIAL REQUIRED TO PRODUCE ONE EQUIVALENT OF HYDROGEN:

\[
\frac{(21.7) + 72}{8} = 11.7\text{gm} = 26.8\text{Ah}
\]

SPECIFIC CAPACITY (Ah/gm) = 2.29
SPECIFIC CAPACITY OF ORGANOSILANES

\[\text{C(SiH}_3)_4 + 6\text{H}_2\text{O} \rightarrow \text{C(SiO}_2\text{)}_{\frac{1}{2}} + 12\text{H}_2 \]

STOICHIOMETRIC
WEIGHTS OF
REACTANTS AND
PRODUCTS:

(136) (108) (220) (24)

SPECIFIC CAPACITY (Ah/gm) = \(\frac{26.8}{[(136 + 108)/24]} = 2.63 \)
DISILYL ACETYLENE

LiC ⇌ CLi + SiCl₄ $\xrightarrow{\text{THF/MONOGLYME}}$ Cl₃SiC ⇌ CSiCl₃

Cl₃SiC ⇌ CSiCl₃ + LiAlH₄ $\xrightarrow{\text{Ether, RT}}$ H₃SiC ⇌ CSiH₃
TETRA SILYL METHANE

\[\text{C(SiH}_3\text{)}_4 \]

\[
\begin{align*}
\text{SiH}_3 + \text{SnCl}_4 & \rightarrow \text{SiH}_2\text{Cl} \\
\text{C} + \text{SnCl}_2 + \text{HCl}
\end{align*}
\]

\[
\begin{align*}
\text{CBr}_4 + \text{PhSiH}_2\text{Cl} + 4\text{Mg} & \rightarrow \text{C(SiH}_2\text{Ph)}_4 + 4\text{MgCl} \\
\text{C(SiH}_3\text{)}_4 & \xrightarrow{\text{LiAlH}_4} \text{C(SiH}_2\text{Br)}_4 \xrightarrow{-78\text{C}} \text{HBr} \\
\text{HC(SiH}_3\text{)}_3 & \xrightarrow{-\text{SiH}_4} \text{LiAlH}_4
\end{align*}
\]
ALTERNATIVE SYNTHESIS OF TETRA SILYL METHANE

$\text{CL}_4 \xrightarrow{\text{BrSiH}_3} \text{C(SiH}_3\text{)}_4$

SIMILAR PROCEDURE FOR

DISILYLACETYLENE
TETRA SILYLETHYLENE
ALTERNATE SYNTHESIS OF TETRA SILYL METHANE

\[\text{SiCl}_4 + 3\text{Si(OCH}_3)_4 \xrightarrow{\text{AlCl}_3} 4\text{ClSi(OCH}_3)_3 \]

\[\text{C(Si(OCH}_3)_3)_4 + \text{LiAlH}_4 \xrightarrow{\text{TETRA HYDRONAPHTHALENE}} \text{C(SiH}_3)_4 \]
TRISILYL METHANE

\[
\text{PhSiH}_3 + \text{SnCl}_4 \rightarrow \text{PhSiH}_2\text{Cl} + \text{SnCl}_2 + \text{HCl}
\]

\[
\text{PhSiH}_2\text{Cl} + \text{Br}_3\text{CH} \xrightarrow{\text{THF, Mg}} \text{HC(SiH}_2\text{Ph)}_3
\]

\[
\text{HC(SiH}_2\text{Ph)}_3 + \text{HBr} \rightarrow \text{HC(SiH}_2\text{Br)}_3
\]

\[
\text{HC(SiH}_2\text{Br)}_3 + \text{LiAlH}_4 \rightarrow \text{HC(SiH}_3)_3
\]
1,4-DISILYLBENZENE

\[
\begin{align*}
\text{SiH}_3 & \quad \text{SiH}_3 \\
\text{LiAlH}_4, \text{ EtOH, 0°C} & \\
\text{Si(OMe)}_3 & \quad \text{Si(OMe)}_3 \\
\text{THF, 60°C} & \\
\text{Br} & \quad \text{Br}
\end{align*}
\]
1,3,5-TRIS(SILYL BENZENE)
HEXASILYLBENZENE

OCH₃

Si₂H₂Cl

H₂SiCl₂
DIMETHOXY ETHANE

OCH₃

MgBr

Mg, THF

OCH₃

Br
ALTERNATIVE SYNTHESIS OF HEXASILYLBENZENE

\[\text{t-BuLi, } -125^\circ \text{C, 1,4-DIOXANE} \]

\[\text{Br-SiH}_3 \]

\[\text{Si(CH}_3)_3 \]

\[\text{H}_3\text{Si} \]

\[\text{Si(CH}_3)_3 \]
HYDROLYSIS EXPERIMENTS

PHENYL SILANE

\[
\text{SiH}_3 + \text{H}_2\text{O} \xrightarrow{\text{ROOM TEMPERATURE}} \text{HYDROGEN GENERATION} < 5\%
\]

\[
\text{SiH}_3 + 10\% \text{NaOH/WATER} \xrightarrow{\text{ROOM TEMPERATURE}} \text{HYDROGEN GENERATION} > 98\%
\]
HYDROLYSIS EXPERIMENTS
TRISILYL METHANE

\[\text{HC(SiH}_3\text{)}_3 + \text{H}_2\text{O} \rightarrow \text{<5% REACTION} \]

\[\text{HC(SiH}_3\text{)}_3 + \text{NaOH} \quad \text{(20% IN WATER)} \rightarrow \text{<5% REACTION} \]

\[\text{HC(SiH}_3\text{)}_3 + \text{NaOH} \quad \text{20% IN} \quad \text{ROOM TEMPERATURE} \quad \text{A 1:1 MIXTURE} \quad \text{OF WATER AND METHANOL} \]

\[\rightarrow > 75 \% \text{HYDROGEN GENERATION} \quad \text{(VERY FAST REACTION)} \]
HYDROLYSIS EXPERIMENTS
TRISILYL METHANE

$\text{HC(SiH}_3\text{)}_3$ 20% REACTION
$^+\text{NaOH}$ 20% IN WATER
0.1% LAS

$\text{HC(SiH}_3\text{)}_3$ 20% IN WATER, THF

$\text{HC(SiH}_3\text{)}_3$ 20% IN WATER, THF, 0.1% LAS

166
MODEL REACTIONS

HYDROLYSIS OF HEXYLSILANE, C₆H₁₃SiH₃

H₂O + C₆H₁₃SiH₃ → NO REACTION

20% NaOH + C₆H₁₃SiH₃ → NO REACTION

CH₃OH + C₆H₁₃SiH₃ → NO REACTION

isoC₃H₇OH + C₆H₁₃SiH₃ → NO REACTION
HYDROLYSIS OF HEXYLSILANE, C₆H₁₃SiH₃

20% NaOH + CH₃OH \rightarrow >98% HYDRGEN GENERATION, Very Fast

20% NaOH + isoC₃H₇OH \rightarrow >98% HYDROGEN GENERATION, Moderate

20% NaOH + 0.2% Surfactant \rightarrow 60% HYDROGEN GENERATION, Slow
FUTURE WORK

- SYNTHESIZING BIGGER AMOUNTS OF TETRA SILYL METHANE
- KINETICS OF CONTROLED HYDROLYSIS OF ALKYL AND PHENYL SILANES
- USE OF CATALYST TO TAILOR THE KINETICS OF HYDROLYSIS
- INCORPORATING THE SILANES IN TO THE SUBSYSTEM
- INVESTIGATION OF HIGHER ENERGY DENSITY BORANES
BORANES

HYDROGEN EFFICIENCY BY % WEIGHT OF REACTANTS
(STOICHIOMETRIC WATER)

\[
\begin{align*}
\text{C(BH}_2\text{)}_4 + 4\text{H}_2\text{O} & \rightarrow \text{C(BO)}_4 + 8\text{H}_2 \quad \frac{(100\times16)}{(63.2 + 72)} = 11.83 \\
\text{C}_6\text{(BH}_2\text{)}_6 + 6\text{H}_2\text{O} & \rightarrow \text{C}_6\text{(BO)}_6 + 12\text{H}_2 \quad \frac{(100\times24)}{(148.8 + 108)} = 9.34 \\
2\text{BH}_3.\text{N(SiH}_3\text{)}_3 + 7\text{H}_2\text{O} & \rightarrow \text{B}_2\text{O}_3 + 2\text{NH}_3 + 2\text{SiO}_2 + 16\text{H}_2 \\
\text{C(SiH}_3\text{)}_4 + 6\text{H}_2\text{O} & \rightarrow \text{C(Si(OO}_{1/2}\text{)})_4 + 12\text{H}_2 \quad \frac{(100\times32)}{(241.6 + 126)} = 8.70 \\
2\text{BH}_3.\text{O(SiH}_3\text{)}_2 + 9\text{H}_2\text{O} & \rightarrow \text{B}_2\text{O}_3 + 4\text{SiO}_2 + 18\text{H}_2 \quad \frac{(36\times100)}{(92\times2 + 9\times18)} = 10.4 \\
2\text{BH}_3.\text{O(BH}_2\text{)}_2 + 7\text{H}_2\text{O} & \rightarrow 3\text{B}_2\text{O}_3 + 14\text{H}_2 \quad \frac{(28\times100)}{(56\times2 + 7\times18)} = 11.7
\end{align*}
\]
Hydrogen Storage Using Decalin

X. Lu, W. Li, A. Franco, and R.O. Loutfy

Materials and Electrochemical Research Corporation, Tucson, AZ 85706

Abstract

In this study, the feasibility of high-density hydrogen storage system using decalin has been investigated. Decalin-naphthalene system has 7.25% by weight theoretical hydrogen capacity, and hydrogen charge-discharge on the system is based on the catalytic hydrogenation and dehydrogenation processes. Experimental results showed that hydrogen can be reversibly charged and discharged to/from decalin system at moderate temperatures, over 77% decalin-naphthalene conversion can be achieved at 260°C.

Background

Research work indicated that for a small to medium fuel cell power generation system (up to few thousand watt), the ideal hydrogen storage methods are the ones based on the chemical hydrides [1-3]. Chemical hydrides can be divided into solid chemical hydrides and liquid hydrides. Typical solid hydrides are lithium borohydride (LiBH₄), lithium aluminum hydride (LiAlH₄), and organo-silane (C₆H₅SiH₃); while typical liquid hydrides are methylcyclohexane (C₆H₁₁CH₃) and decahydronaphthalene (C₁₀H₁₈, usually called decalin).

The advantage to use chemical hydride for hydrogen storage is the high densities. All the chemical hydrides mentioned above can release about 6 to 8.5% by weight hydrogen gas, and the volumetric densities range from 47 to 65 kg H₂/m³, which are higher than liquefied hydrogen system (~45 kg H₂/m³) as shown in Table I. These storage capacities are far better than those of metal hydrides which only have less than 1.5% by weight of hydrogen capacities [4].

Table I. Hydrogen storage based on chemical hydrides and on liquefied H₂

<table>
<thead>
<tr>
<th>Storage Mode</th>
<th>Gravimetric Density (wt%)</th>
<th>Volumetric Density (kg/m³)</th>
<th>Temperature (℃)</th>
<th>Reversibility</th>
<th>Cost of Hydride* ($/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Hydride</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LiBH₄ + 4H₂O</td>
<td>8.54</td>
<td>56.9</td>
<td>un-controlable</td>
<td>No</td>
<td>4,336.</td>
</tr>
<tr>
<td>Liquid Hydride</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₁₀H₁₈ (Decalin)</td>
<td>7.25</td>
<td>64.96</td>
<td>~250</td>
<td>Yes</td>
<td>34.38</td>
</tr>
<tr>
<td>Liquid Hydride</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₆H₁₁CH₃ (Methylcyclohexane)</td>
<td>6.12</td>
<td>47.12</td>
<td>~250</td>
<td>Yes</td>
<td>42.01</td>
</tr>
<tr>
<td>Liquefied Hydrogen</td>
<td>~20</td>
<td>40–50</td>
<td>-253</td>
<td>Yes</td>
<td>—</td>
</tr>
</tbody>
</table>

* Aldrich Catalog, 1995-1996
The hydrogen storage using decalin is based on the catalytic hydrogenation and dehydrogenation process. Therefore, the hydrogen storage system is a reversible one, being able to be recharged by catalytic hydrogenation. The reversible chemical reaction of decalin dehydrogenation-hydrogenation is illustrated as follows:

\[
\begin{align*}
\text{C}_{10}H_{18} \text{(Decalin)} & \quad \text{Low H}_2 \text{ Pressure} \quad \text{C}_{10}H_{8} \text{(Naphthalene)} \\
& \quad \text{High H}_2 \text{ Pressure} \\
& +5H_2
\end{align*}
\]

Compared with systems based on solid chemical hydrides, other liquid organic hydrides, and metal hydrides, the hydrogen storage system based on decalin has the following advantages (see Table I for the comparison):

1. Higher storage capacities, especially the volumetric density.
2. Much easier to control hydrogen release rate, release pressure, and to turn on and off the hydrogen supply when required.
3. No complicated auxiliary systems are required.
4. Reversible of hydrogen charge and discharge processes, no chemical wastes are generated.
5. Less expensive, the cost of liquid hydrides is more than 100 times less than that of solid chemical hydrides.

Results and Discussion

To study hydrogen charge-discharge properties, a mini-batch catalytic reactor was designed and constructed to study decalin hydrogenation and dehydrogenation processes. A Johnson-Mattey thin membrane hydrogen filter was purchased for hydrogen/liquid hydride vapor separation. However, due to delay of filter shipment, a water cooling condenser was used for most of the experimental runs. It was found that with the membrane for hydrogen separation, the conversion of decalin to naphthalene is higher when other experimental conditions are the same.

In a typical decalin dehydrogenation run, 40 ml decalin and 0.5 - 1.0 g catalyst were used, the reaction temperature ranged from 240 to 260 °C, and the reaction was run for 3 to 5 hours. The hydrogenation of naphthalene was done in the same mini-reactor right after the dehydrogenation of decalin with reaction temperature of 180 °C and hydrogen pressure of 10 atm. Various catalysts such as Pt, Ni, Pd and Rh supported on carbon or alumina have been used. It was found that although the Ni and Pd based catalysts are effective, the Pt on carbon catalyst is the best. The following results are all based on the reaction runs using 5% Pt on carbon catalyst.

For the dehydrogenation of decalin, at 260 °C, about 18.5 liter hydrogen can be released from 40 ml decalin within 3 hours, which corresponds to a 64% conversion. Over 77% conversion can be achieved within 5 hours. The dehydrogenation reaction was
found to be strongly temperature dependent. From the reaction runs at different temperature, the activation energy for decalin dehydrogenation was estimated to be 28.3 kJ/mole H₂, which means to release one mole of hydrogen gas from decalin, less than 28.3 kJ energy is required. This energy is equivalent to 9.96% of the higher heating value (HHV) of hydrogen gas. The flow rate during hydrogen release has also been regulated and no significant effect on the dehydrogenation process was observed.

To test the recyclability of the hydrogen charge-discharge of the decalin-naphthalene system, dehydrogenation and hydrogenation reaction cycles were conducted. A total of eleven cycles have been completed so far. The results showed that hydrogen can be reversibly released from and charged to the decalin hydrogen storage system. No significant performance deterioration was observed after 11 recycle runs.

Conclusions

It has been demonstrated that liquid-hydride decalin is feasible for high density hydrogen storage applications. The gravimetric and the volumetric densities of hydrogen on decalin are 7.25% and 65 kg/m³, respectively. Effective hydrogen discharge can be achieved by using Pt based catalyst at 260°C, while hydrogen charge can be done at 180°C under 10 atm hydrogen pressure. The system has been shown to be simple, recyclable and inexpensive. While the results are encouraging and promising, more research work is needed before a practical hydrogen storage system can be developed.

Acknowledgment

The support of the United States Department of Defense through the U.S. Army Research Office under SBIR contract No. DAAG55-97-C-0009 is gratefully acknowledged.

References

Hydrogen Storage Using Decalin

Workshop on Hydrogen Storage and Generation
Orlando, Florida April 8-10, 1997

MER Corporation, Tucson, Arizona
Outline

- Background
- Experiment
- Hydrogen Release
- Hydrogen Charge-Release Cycles
- Energy Balance and System Specifications
- Conclusions
Background

- Hydrogen storage using chemical hydrides has advantages of high capacity and low cost compared with metal hydrides
- The hydrogen storage capacities on chemical hydrides are comparable to those of liquefied hydrogen option
- Liquid organic hydrides are more economical and practical than solid chemical hydrides
Comparison of hydrogen storage based on chemical hydrides and on liquefied H₂

<table>
<thead>
<tr>
<th>Storage Mode</th>
<th>Gravimetric Density (wt%)</th>
<th>Volumetric Density (kg/m³)</th>
<th>Temperature (°C)</th>
<th>Reversibility</th>
<th>Cost of Hydride* ($/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Hydride</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LiBH₄ + 4H₂O</td>
<td>8.54</td>
<td>56.9</td>
<td>uncontrollable</td>
<td>No</td>
<td>4,336.00</td>
</tr>
<tr>
<td>Liquid Hydride</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₁₀H₁₈ (Decalin)</td>
<td>7.25</td>
<td>64.96</td>
<td>~250</td>
<td>Yes</td>
<td>34.38</td>
</tr>
<tr>
<td>Liquid Hydride</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₆H₁₁CH₃ (Methycyclohexane)</td>
<td>6.12</td>
<td>47.12</td>
<td>~250</td>
<td>Yes</td>
<td>42.01</td>
</tr>
<tr>
<td>Liquefied Hydrogen</td>
<td>~20</td>
<td>40~50</td>
<td>-253</td>
<td>Yes</td>
<td>--</td>
</tr>
</tbody>
</table>

* Aldrich Catalog, 1995-1996
Liquid Organic Hydrides

- Among liquid organic hydrides, two-benzene-ring-structured decalin (decahydronaphthalene $C_{10}H_{18}$) is superior to one-benzene-ring-structured or three-benzene-ring-structured organic hydrides.

- Why? 1) Lower vapor pressure (<4 atm at 260°C, over 20 atm for $C_6H_{11}CH_3$); 2) Higher hydrogen storage capacity; 3) Liquid phase at hydrogenation and dehydrogenation temperature (Anthracene is in solid phase at hydrogenation temperature).
Principle

- The principle of hydrogen storage using decalin is based on catalytic dehydrogenation and hydrogenation:

\[
\text{C10H18(Decalin)} \xleftrightarrow{\text{Low H2 Pressure}} \text{C10H8(Naphthalene)} + 5\text{H}_2
\]
Experiment

- A mini-batch catalytic reactor was designed and constructed to study decalin hydrogenation and dehydrogenation processes
- A Johnson-Mattey thin membrane hydrogen filter was purchased for hydrogen/liquid hydride vapor separation. However, due to delay of filter shipment, a water cooling condenser was used for most of the experimental runs
Schematic of mini-catalytic reactor
Experiment-Cont'd

- Proper selection of catalysts is crucial to achieve decalin dehydrogenation at lower temperature and achieve higher decalin-naphthalene conversion

- Although Ni and Pd based catalysts are also effective for decalin dehydrogenation, only Pt based catalysts can achieve over 65% decalin conversion within 3 hours at 260°C
Experiment-Cont’d

• The catalyst of 5% Pt on carbon support is effective for decalin dehydrogenation

• Typical dehydrogenation experimental run conditions:
 5% Pt on carbon support
 40 ml decalin, 0.5-1.0 gram catalyst,
 240-260°C, 3-5 hours
Hydrogen Release

- With 260°C dehydrogenation temperature, about 18.5 liter hydrogen can be released from 40 ml decalin within 3 hours, or 64% decalin to naphthalene conversion. Over 77% conversion can be achieved within 5 hours.
Hydrogen release rate and cumulative amount with water cooling condenser

[Graph showing hydrogen flow rate and cumulative hydrogen release over dehydrogenation time with a note: 1 gram Pt/C, 40 ml decalin]
Hydrogen release rate and cumulative amount with hydrogen membrane filter
Hydrogen Release-Cont'd

• Hydrogen release from decalin strongly depends on the dehydrogenation temperature

• Hydrogen release flow rate can be regulated without significant effect on the process
Hydrogen release versus temperature
Hydrogen release with restricted flow rate
Hydrogen Charge-Release Cycles

- Decalin can be reversibly dehydrogenated and hydrogenated
- Hydrogenation experiment was carried out after decalin dehydrogenation using the same mini-reactor
- The hydrogenation was carried out at 180C with 10 atm hydrogen pressure
Hydrogen Charge-Release Cycles-Cont’d

- 11 dehydrogenation-hydrogenation cycles have been performed so far, no significant performance deterioration was observed
Dehydrogenation cycles

--- Orlando Meeting, MER Corporation ---

19
Hydrogenation cycles

![Graph showing cumulative hydrogen input over time with different cycles indicated.]
Energy Balance and System Specifications

- Hydrogen release is an endothermic process, for each mole of hydrogen release, $\Delta H_f/5$ energy is required
- $Ea(De-Hy)$ was estimated from experimental results
Energy Balance and System Specifications- Cont’d

- $E_a(\text{De-Hy})$ from experiments is 28.3 kJ/mole hydrogen, therefore, to release one mole hydrogen gas from decalin, less than 28.3 kJ energy is required

- This energy is equivalent to 9.96% of higher heating valve (HHV) of hydrogen gas
Energy Balance and Specifications-Cont’d

gravimetric density 7.25%
volumetric density 65 kg/m³
 Ah/kg 1,944
 Wh/kg 1,361
 Wh/L 1,211
thermal burden <28.3 kJ/mole H₂
Energy Balance and Specifications—Cont’d

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt for a 300W, 10kWh</td>
<td>7.35 kg</td>
</tr>
<tr>
<td>Vol. for a 300W, 10kWh</td>
<td>8.26 liter</td>
</tr>
<tr>
<td>Wt for a 100W, 1kWh</td>
<td>0.735 kg</td>
</tr>
<tr>
<td>Vol. for a 100W, 1kWh</td>
<td>0.826 liter</td>
</tr>
<tr>
<td>Wt for a 10W, 90kWh</td>
<td>66.15 kg</td>
</tr>
<tr>
<td>Vol. for a 10W, 90kWh</td>
<td>74.32 liter</td>
</tr>
</tbody>
</table>
Conclusions

- Liquid-hydride decalin is feasible for high density hydrogen storage applications
- The gravimetric and volumetric densities of hydrogen on decalin are 7.25% and 65kg/m³
- Hydrogen release can be achieved by using Pt based catalyst at 260C, while hydrogen charge can be achieved at 180C with 10 atm H₂ pressure
- The system is simple, recyclable and inexpensive
- More research work is needed before a practical system can be developed
SOURCES & SCALING LAWS

FUEL SYSTEMS WEIGHT & COST DISTRIBUTION

PRESSURIZED GAS
CHEMICAL HYDRIDE
 HYDRIDE GUN
 DIGITAL REACTOR
 HYDROLYSIS
AMMONIA
HYDROCARBON
FUEL SPECIFIC WEIGHT AND COST

CURRENT RETAIL

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>WHR/LB</th>
<th>CENT/kWH</th>
<th>WHR/in³</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ Conversion = 40%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2 GAS</td>
<td>7565</td>
<td>2353</td>
<td>4.62</td>
</tr>
<tr>
<td>NaBH4/NH4C1</td>
<td>668</td>
<td>1873</td>
<td>23.79</td>
</tr>
<tr>
<td>Mg + 2H2o</td>
<td>282</td>
<td>17714</td>
<td>17.33</td>
</tr>
<tr>
<td>CaH2 + H2O</td>
<td>391</td>
<td>15596</td>
<td>26.82</td>
</tr>
<tr>
<td>METHANOL</td>
<td>660</td>
<td>379</td>
<td>18.87</td>
</tr>
<tr>
<td>DIESEL</td>
<td>469</td>
<td>34</td>
<td>14.63</td>
</tr>
<tr>
<td>NH3</td>
<td>1077</td>
<td>93</td>
<td>29.97</td>
</tr>
<tr>
<td>Propane</td>
<td>889</td>
<td>34</td>
<td>18.78</td>
</tr>
<tr>
<td>Butane</td>
<td>876</td>
<td>319</td>
<td>18.31</td>
</tr>
<tr>
<td>BA5590</td>
<td>70</td>
<td>34483</td>
<td>3.33</td>
</tr>
</tbody>
</table>
SCALING LAWS

FUEL CELL WEIGHT = A + B*POWER
H2 SOURCE WEIGHT = (C + D*TIME)*POWER
SYSTEM WEIGHT = A + (B + C + D*TIME)*POWER
SYSTEM COST = A + (B + C + D*TIME)*POWER

Soldier Power System
Weight & Cost Scaling

[Diagram with graph showing relationship between System Weight and System Cost]
<table>
<thead>
<tr>
<th>FUEL SYSTEM SCALING LAWS</th>
<th>WEIGHT</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/kW</td>
<td>lb/kWH</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>9.52</td>
<td>6.00</td>
</tr>
<tr>
<td>Hydrides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrolysis</td>
<td>44.56</td>
<td>2.55</td>
</tr>
<tr>
<td>Digital Reactor</td>
<td>10.89</td>
<td>2.66</td>
</tr>
<tr>
<td>Hydride Gun</td>
<td>40.59</td>
<td>1.49</td>
</tr>
<tr>
<td>Ammonia</td>
<td>12.80</td>
<td>1.35</td>
</tr>
<tr>
<td>Butane</td>
<td>51.79</td>
<td>1.32</td>
</tr>
</tbody>
</table>
Ratio Fuel Cell Power System to Battery Weight
Function of Power Level & Time

![Graph showing the ratio of Fuel Cell Power System to Battery Weight as a function of Power Level & Time. The graph displays data points for different power levels and time intervals, with a legend indicating the Digital Reactor Air Cooled Type 5.1 Power System.](image)

Ratio Fuel Cell Power System to Battery Cost
Function of Power Level & Time

![Graph showing the ratio of Fuel Cell Power System to Battery Cost as a function of Power Level & Time. The graph displays data points for different power levels and time intervals, with a legend indicating the Digital Reactor Air Cooled Type 5.1 Power System.](image)
C072 Hydrogen Source
250 whr 3000 psi

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$</td>
<td>%</td>
</tr>
<tr>
<td>Tank</td>
<td>275.00</td>
<td>31.3%</td>
</tr>
<tr>
<td>Adaptor</td>
<td>108.00</td>
<td>12.3%</td>
</tr>
<tr>
<td>Valve</td>
<td>59.00</td>
<td>6.7%</td>
</tr>
<tr>
<td>Elbows</td>
<td>15.00</td>
<td>1.7%</td>
</tr>
<tr>
<td>Regulator</td>
<td>185.00</td>
<td>21.0%</td>
</tr>
<tr>
<td>CGA Ftg.</td>
<td>27.00</td>
<td>3.1%</td>
</tr>
<tr>
<td>Gauge</td>
<td>15.00</td>
<td>1.7%</td>
</tr>
<tr>
<td>Burst Disk</td>
<td>176.00</td>
<td>20.0%</td>
</tr>
<tr>
<td>CGA Caps</td>
<td>20.00</td>
<td>2.3%</td>
</tr>
<tr>
<td></td>
<td>880.00</td>
<td>2.93%</td>
</tr>
</tbody>
</table>

750 whr Supply

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$</td>
<td>%</td>
</tr>
<tr>
<td>Tank 561</td>
<td>320.00</td>
<td>35.2%</td>
</tr>
<tr>
<td>Tank Fitting</td>
<td>60.00</td>
<td>6.6%</td>
</tr>
<tr>
<td>On/Off Valve el</td>
<td>83.70</td>
<td>9.2%</td>
</tr>
<tr>
<td>CGA Adaptor & N</td>
<td>135.00</td>
<td>14.9%</td>
</tr>
<tr>
<td>Regulator</td>
<td>125.00</td>
<td>13.8%</td>
</tr>
<tr>
<td>Burst Disk</td>
<td>169.79</td>
<td>18.7%</td>
</tr>
<tr>
<td>Gauge</td>
<td>14.91</td>
<td>1.6%</td>
</tr>
<tr>
<td></td>
<td>908.40</td>
<td>5.79%</td>
</tr>
</tbody>
</table>
Soldier Power System 500 watt NH3

Component Cost Breakdown

<table>
<thead>
<tr>
<th>Components</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td></td>
</tr>
<tr>
<td>Cracker</td>
<td></td>
</tr>
<tr>
<td>Burner Inlet Pump</td>
<td></td>
</tr>
<tr>
<td>Solenoid Valve Run</td>
<td></td>
</tr>
<tr>
<td>Solenoid Valve Start</td>
<td></td>
</tr>
<tr>
<td>Pressure Trans. (Ametek)</td>
<td></td>
</tr>
<tr>
<td>Female Quick Disconnect</td>
<td></td>
</tr>
<tr>
<td>Male Quick Disconnects</td>
<td></td>
</tr>
<tr>
<td>Pressure relief valve</td>
<td></td>
</tr>
<tr>
<td>Regulator#1 (Wilkerson)</td>
<td></td>
</tr>
<tr>
<td>NH3 Tank</td>
<td></td>
</tr>
<tr>
<td>Shell Caps (Ammonia)</td>
<td></td>
</tr>
<tr>
<td>Anode Inlet</td>
<td></td>
</tr>
<tr>
<td>Black P.P. 1/8"fnpt x 1/4" tube</td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td></td>
</tr>
<tr>
<td>Getter</td>
<td></td>
</tr>
<tr>
<td>Al Tee Fitting 1/8" FNPT</td>
<td></td>
</tr>
<tr>
<td>Al Tee Fitting 1/4" FNPT</td>
<td></td>
</tr>
<tr>
<td>Tubing Teflon PFA 1 Ft.</td>
<td></td>
</tr>
<tr>
<td>Black P.P. 1/8"mnpt x 1/4" tube</td>
<td></td>
</tr>
<tr>
<td>Black P.P. Tee</td>
<td></td>
</tr>
<tr>
<td>P.E. Adapter 1/8"mnpt X 1/4" mnpt</td>
<td></td>
</tr>
<tr>
<td>P.E. Fitting To Barb.</td>
<td></td>
</tr>
<tr>
<td>LABOR</td>
<td></td>
</tr>
</tbody>
</table>

Analytic Power Corp
Beckert/Dengel reaction:

\[\frac{m}{n} (\text{NH}_4)_n X + Y(\text{ZH}_4)_m \rightarrow YX_{\frac{m}{n}} + m\text{ZN} + 4m\text{H}_2 \]

- where: \(X \) inorganic anion
- \(Y \) is an alkaline or alkaline earth metal
- \(Z \) is a trivalent metal forming complex hydrides: Al or B.
- \(m \) valence of \(Z \) and \(n \) valence of \(X \)

Example let \(X \) be chlorine, \(Y \) be sodium and \(Z \) be boron.

\[(\text{NH}_4)\text{Cl} + \text{NaBH}_4 \rightarrow \text{BN} + 4\text{H}_2\]
System Schematic of Hydride Gun
<table>
<thead>
<tr>
<th>Hydride Gun</th>
<th>Volume</th>
<th>Weight</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pellet</td>
<td>3.14 in3</td>
<td>51.49 gm</td>
<td>$10.48 $135.39</td>
</tr>
<tr>
<td>Type</td>
<td>1 in</td>
<td>51.49 cm3</td>
<td></td>
</tr>
<tr>
<td>Diam</td>
<td>4 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>77.41 whr</td>
<td>46.45 liter H2</td>
<td></td>
</tr>
<tr>
<td>MISSION</td>
<td>2.5 kWh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pellets</td>
<td>32</td>
<td>129.18 in3</td>
<td>3.67 lb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hydride Gun</th>
<th>weight</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Fuel</td>
<td>3.67 lb</td>
<td>15.9%</td>
</tr>
<tr>
<td>Ign. Chmbr.</td>
<td>2.90 lb</td>
<td>14.1%</td>
</tr>
<tr>
<td>SCI Tank</td>
<td>1.25 lb</td>
<td>12.9%</td>
</tr>
<tr>
<td>External Fixts.</td>
<td>0.84 lb</td>
<td>29.9%</td>
</tr>
<tr>
<td>Magazine</td>
<td>0.60 lb</td>
<td>4.7%</td>
</tr>
<tr>
<td>Press. Reg.</td>
<td>0.30 lb</td>
<td>8.4%</td>
</tr>
<tr>
<td>Plumbing</td>
<td>0.14 lb</td>
<td>14.1%</td>
</tr>
<tr>
<td>Z. Filter</td>
<td>0.06 lb</td>
<td>0.0%</td>
</tr>
<tr>
<td>Glow Plug Igniters</td>
<td>0.05 lb</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Total	9.80 lb	5.5%	$2,134
Tot. Wt. H2 (lb):	0.33 lb		
Wt% H2:	3.37%		

215
Hydride Gun Weight Breakdown
Analytic Power Corp.

Percent of Weight

<table>
<thead>
<tr>
<th>0%</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Fuel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Igtn. Chmbr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCI Tank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Fixts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magazine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Press. Reg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumbing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z. Filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glow Plug Igniters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Weight 9.8 lb
2.5 kWH Mission

Hydride Gun Cost Breakdown
Analytic Power Corp.

Percent Cost

<table>
<thead>
<tr>
<th>0%</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Fuel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Igtn. Chmbr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCI Tank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Fixts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magazine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Press. Reg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumbing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z. Filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glow Plug Igniters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Cost $2,134
2.5 kWH Mission
CROSS SECTION THRU "ACTION"
LiAlH₄/NH₄Cl Pellet Dispenser

Front View

Incoming Pellets

Side View

Rotator
Fuel Box Cost Distribution
2500 whr

Cost $

1 LIAIH4
29 pellet counter display
6 pellet igniters
2 NH4Cl
9 card extenders
8 circuit boards
7 reactor housing
20 pressure control switch
11 insulation
12 board connectors
24 pressure relief valve
15 pressure transducer
21 pressure transducer
16 on/off switch
14 power source
22 pressure gauge
26 female quick disconnect valve
27 male quick disconnect valve
28 external cable
5 Kraton thermoplastic rubber
4 mineral oil
3 toluene
13 board relay
18 fuel low indicator (yellow)
17 on/off indicator (green)
10 card guides
19 auto shutoff indicator (red)
25 teflon tubing

Total Cost $2,273
<table>
<thead>
<tr>
<th>Cost $</th>
<th>0.0</th>
<th>0.1</th>
<th>1.0</th>
<th>10.0</th>
<th>100.0</th>
<th>1,000.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell Caps (Hydrogen Reactor)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shell Cap (Water Supply)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium Boro Hydride</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solenoid Valve (Water)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactor Shell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Shell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure Trans. (Ametek)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bladder For Water Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulator #2 (Airtrol)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure relief valve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solenoid Valve (H2 Exit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female Quick Disconnect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male Quick Disconnects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.S. Tee Fitting 1/4" FNPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.S. Tee Fitting 1/8" FNPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulator#1 (Wilkerson)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve for inlet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porous Plastic Tubing (H2 Exit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black P.P. 1/8" fnpt x 1/4" tube</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.S. adapter 1/4" mnpt x 1/8" fnpt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetic Acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubing Teflon PFA 1 Ft.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black P.P. 1/8" mnpt x 1/4" tube</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 Container</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Inlet Valve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black P.P. Tee</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.E. Adapter 1/8" mnpt X 1/4" mnpt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.E. Fitting To Barb.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubing vinyl 1 Ft.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hydrolysis Reactor NaBH4 - H2O

<table>
<thead>
<tr>
<th>Weight lb</th>
<th>0.001</th>
<th>0.01</th>
<th>0.1</th>
<th>1</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SodiumBoroHydride</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactor Shell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Shell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulator#1 (Wilkerson)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetic Acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.S. Tee Fitting 1/4" FNPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shell Cap (Water Supply)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shell Caps (Hydrogen Reactor)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure Trans. (Ametek)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female Quick Disconnect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solenoid Valve (Water)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bladder For Water Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porous Plastic Tubing(H2 Exit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male Quick Disconnects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.S. Tee Fitting 1/8" FNPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 Container</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure relief valve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulator #2 (Airtrol)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.S. adapter 1/4" mnpt x 1/8" fnpt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solenoid Valve (H2 Exit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubing Teflon PFA 1 Ft.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black P.P. 1/8"fnpt x 1/4" tube</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve for inlet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Inlet Valve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black P.P. 1/8"mnpt x 1/4" tube</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubing vinyl 1 Ft.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black P.P. Tee</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.E. Adapter 1/8"mnpt X 1/4" mnpt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.E. Fitting To Barb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Compact Fuel Processors Based on Microsystem Technologies

Robert S. Wegeng
M. Kevin Drost

Battelle Memorial Institute
Pacific Northwest National Laboratory
Manportable Power Generation: Characteristics of an Ideal Solution

- Low weight
- Long duration
- Minimize impact on logistics
- Low thermal signature
Based on SUO Requirements

Mesoscopic Power Cell

- Liquid Fuel Storage
- Mesoscopic Fuel Processor
- Mesoscopic Fuel Cell
- Lithium Polymer Battery

5 We Base, 10 We Peak, 1 kilogram; 7 Day Mission
Outline

- Introduction
- Background
- Concept Details and Development Status
- Technical Challenges
- Summary
Why Microtechnology?

• Size and weight:
 Microstructures enable the utilization of
 – Enhanced heat transfer rates, and
 – Enhanced mass transport rates,
 thus providing higher capacities per unit
 volume/weight

• Selectivity:
 Improved product yields through precise control
 of process conditions

• Cost:
 Microfabrication techniques support mass
 production of integrated systems
Sizes/Characteristics of Microcomponents

Europe: Microsystems Technology and Microreaction Technology
DARPA's Defense Science Office: Mesoscopic Machines
Potential Paradigm Shift

An important paradigm shift that would occur with such mesoscopic systems is that the overall weight would now be dominated by fuel, rather than hardware.

This would have broad impact across a variety of DoD applications requiring electrical power or propulsion.

Observation attributed to Prof. Alan Epstein, MIT, in DARPA DSRC Report on Mesoscopic Machines
Microchannel Heat Exchangers

Heat and Mass Transport Advantages in Engineered Microchannels

Performance
- 20 kW per cubic centimeter

Performance
- 100 W per square centimeter
- High convective heat transfer coefficient
 - 13,000 - 15,000 W/m²-K (liquids)
 - 20,000 - 30,000 W/m²-K (boiling)
- Low pressure drops (1-2 psi)
Microchannel Chemical Reactors

Heat and Mass Transport Advantages in Engineered Microchannels

Performance
- 30 w/cm² heat transfer rate
- 85-93% efficiency
- Rapid thermal response (1 minute)
PNNL Microtechnology Program

- Develop micro components that can perform unit operations
- Assemble unit operations into systems

Micro Thermal Systems

- Heat Pump
- Heat Engine

Micro Chemical Systems

- Chemical Separator
- Chemical Reactor
Manportable Power Generation Concept for SUO

- Liquid Hydrocarbon Fuel: 16 W_t
- Fuel Processor: 11 W_t
- Fuel Cell: 6 W_e
- Battery: 5 - 10 W_e
- Hydrogen Storage

Ambient Power
Fuel Processing System - - Example Flow Sheet

Water Gas Shift Reactor

\[CO + H_2O \rightarrow CO_2 + H_2 \]

POx Reactor

\[CH_3OH + 0.5O_2 \rightarrow CO + H_2 \]

PrOx Reactor

\[CO + \frac{1}{2}O_2 \rightarrow CO_2 \]

Methanol Vaporizer

Fuel Cell

Power

Air

Anode Exhaust

Cathode Exhaust

Methanol (I)

Methanol (v)

Air
Example Mesoscopic Fuel Processor Configuration

- Fuel Vaporizer Sheet
- POX Reactor Sheet
- Air Preheat HX Sheet
- Water Gas Shift Reactor Sheet
- Steam Superheat Sheet
- PROX Reactor Sheet
- Steam Generator HX Sheet
- Fuel Gas Cooler HX Sheet

Fuel from Tank
Air from Compressor
Water
Clean, Cool Fuel Gas

Microchannel Reactors Not Yet Demonstrated
POx Test Assembly
POx Test Run

- Fraction of CH₂OH Reacted
- POX Air Outlet Temperature (deg. C)
- Based on H₂ Data
- Based on CO Data

- Fraction of Total Reactor Effluent Gas Flow
- Temperature
- H₂ + CO
- CO₂
- CH₄OH

Time (minutes)
0 10 20 30 40 50
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Time (minutes after midnight)
0 10 20 30 40 50
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

RG97040024. 13
Vaporizer Status

- Demonstrated for automotive application at 1/8th of full scale
- Thermal efficiency ~75%
- Higher efficiency possible
- Full-scale version: 1" x 4" x 6"
Manportable Power Generation Concept for SUO

Mesoscopic Power Cell - Weight*

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight (grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Cell</td>
<td>150</td>
</tr>
<tr>
<td>Fuel Processor</td>
<td>160</td>
</tr>
<tr>
<td>Fuel</td>
<td>200</td>
</tr>
<tr>
<td>Controls/Electronics</td>
<td>70</td>
</tr>
<tr>
<td>Structural</td>
<td>240</td>
</tr>
<tr>
<td>Battery</td>
<td>180</td>
</tr>
<tr>
<td>Total</td>
<td>1000</td>
</tr>
</tbody>
</table>

A comparable battery system would weigh about 10 kg
Multiple Deployment Scales

- Automotive power generation
- Shipboard power generation
- Transportable power generation platforms
- Field-deployable hydrogen production systems
- Mesoscopic power cells
Mesoscopic Power Cell - Technical Challenges

Liquid Fuel
- Fuel quality

Mesoscopic Fuel Processor
- Hydrogen production
- CO removal/conversion
- Thermal management
- Fouling

Mesoscopic Fuel Cell
- Thermal management
- Micromachining
- Peripherals

Lithium Polymer Battery
- Manufacturability
Future Plans

- Continue to investigate utilization of high-energy density liquid hydrocarbons (e.g., JP-8, diesel fuel)
- Continue to investigate operational characteristics and system dynamics for POx-based system platform
- Investigate alternative system flowsheets and components, including steam reforming and membrane separations
Summary

- Mesoscopic fuel processing systems may be small in comparison to the energy storage medium (liquid hydrocarbons or hydrogen)

- System weight can be further reduced by including a battery to meet peak power requirements

- Deployment modes for manportable power generation include:
 - Integrated fuel processors/fuel cells (mesoscopic power cells)
 - Field-deployable fuel processing to support hydrogen-based units
Partial Oxidation of Hydrocarbons

Jack Frost

Workshop on Hydrogen Storage and Generation
Orlando, Florida April 1997
Hydrocarbon Reforming

Methods

- Hydrogen from hydrocarbons
- Thermal
- Steam reforming
- Non catalytic partial oxidation
- Catalytic partial oxidation
- Autothermal reforming
- Fuel selection
Partial Oxidation
Catalytic partial oxidation of methanol

- Partial oxidation
 \[\text{CH}_3\text{OH}(l) + \frac{1}{2}\text{O}_2 \rightarrow \text{CO}_2 + 3\text{H}_2 -160\text{kJ/mol} \]

- Steam reforming
 \[\text{CH}_3\text{OH}(l) + \text{H}_2\text{O}(l) \rightarrow \text{CO}_2 + 3\text{H}_2 +133\text{kJ/mol} \]

- Rapid start up
- Compact and flexible
- Heat integration
- CO formation
Examples of current and past activity

- Sud-Chemie / VW
- Rolls Royce
- British Gas
- CJB
- Haldor Topsoe
- AD Little
- Argonne National labs
- JPL
- Johnson Matthey
Original Design: Performance Characteristics

Reaction Stoichiometry

\[\text{CH}_3\text{OH} + 1/2 \text{O}_2 \rightarrow 2\text{H}_2 + \text{CO}_2 \]

Reformate composition

40% H₂, 18% CO₂, 2% CO, 40% N₂

Start-up time

15-30 minutes

Steady state output

10-20 l.h⁻¹ of hydrogen from 1l reactor

Other fuels successfully reformed:

- natural gas (methane)
- propane (LPG)
- n-hexane
- petroleum ether
- lead-free gasoline

Catalyst Technology
Specific Output
(litres per hr per litre-cat)

Stage 3
Recent design

Stage 2
Interim design

Stage 1
Original design

YEAR
1985 1990 1995

10000
1000
100
10
1

Hot-Sorb™
Stream in Reactor 1
PMR Start Up

T < 400°C MeOH:O2 ratio = 3.7
T > 400°C MeOH:O2 ratio = 4.4

Hydrogen Output
20s to 75%
< 60s to 100%

- H2 Output
△ Bed Inside Temperature

Commercial in Confidence
Steady State Performance of Single Unit

100% Conversion

Yield %

Reformate composition %

H₂ output l.h⁻¹

Time (minutes)

H₂, CO₂, CO
Steady State Performance of Single Unit

Fuel-rich conditions

Yield %

Reformate composition %

H₂ output l.h⁻¹

Lean excursions

Time (minutes)
JM Preferred Design

Based on proven technology

Uses an array of compact, highly productive, fast light-off, hot-spot, reactors

- Feed Inlet
- Hydrogen Outlets

Dimensions:
- Height: 13 cm
- Diameter: 5 cm
Features

- proven reactor technology;
- modular design;
- rapid heat loss from reactor;
- incoming feed heated by outgoing gases;
- simple servicing and module replacement.
4 KMR Unit Reformer

6.0 cm

12.5 cm

6.6 cm

Commercial in Confidence
Current Hot-Spot Unit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>245 cm³</td>
</tr>
<tr>
<td>Total internal mass</td>
<td>250 g</td>
</tr>
<tr>
<td>Catalyst mass</td>
<td>30 g</td>
</tr>
<tr>
<td>Start-up time</td>
<td>20 s to 75% output</td>
</tr>
<tr>
<td></td>
<td>>60 s to 100% output</td>
</tr>
<tr>
<td>Reaction mechanism</td>
<td>Partial oxidation and steam reforming</td>
</tr>
<tr>
<td>Reaction stoichiometry</td>
<td>2.3 mol H₂/mol CH₃OH</td>
</tr>
<tr>
<td>H₂ concentration</td>
<td>55%</td>
</tr>
<tr>
<td>H₂ output</td>
<td>625 l.h⁻¹</td>
</tr>
<tr>
<td>Catalyst specific H₂ output</td>
<td>11,000 l.h⁻¹ l⁻¹</td>
</tr>
<tr>
<td>Reactor-specific H₂ output</td>
<td>2,550 l.h⁻¹ l⁻¹</td>
</tr>
</tbody>
</table>
Fuel Cell Reformate System

Fuel Processor

Hot-Spot™ reactor

CH₃OH + AIR + WATER

CH₃OH

55% H₂
22% CO₂
21% N₂
2% CO

Fuel Cell

Anode

Cathode

Clean Up Reactor

Selox

54% H₂
24% CO₂
21% N₂
10ppm CO
1% H₂O

Exhaust

Air

Characteristics

H₂ output 625 l.h⁻¹
Internal mass 250g
Catalyst mass 30g
Light-off <1 min
Hot Spot Reformer: Gas Clean-Up

JM proprietary SELOX reactor
In tests using wet synthetic reformate (5% CO, 15% CO₂, 40% H₂, 40% N₂)

- CO attenuated to < 5ppm
- reformate space velocity: 14000 h⁻¹
- operating temperature: 220°C
- only 2.5% of total available H₂ consumed

Scale-up prediction:
25l (30kW) Hot Spot reformer requires 5l SELOX reactor
Conclusions: Current Hot-Spot Reactor

- compact
- partial oxidation + steam reforming = high output
- low thermal mass = rapid start-up
- excess energy available for extra steam reforming
- radical modular reformer design

Future directions:

reforming of alternative fuels
tailoring to specific applications
BASE CASE

CATHODE OFF-GAS

AIR

80°C

CATHODE

COMBUSTOR

780°C

FUEL CELL

ANODE OFF-GAS

ANODE

H₂ PRODUCT

H₂ 0.467 mol/min
CO 10 ppm

CO CLEAN-UP

REACTOR

180°C

H₂: 47.3%
H₂O: 15.7%
CO: 2.1%
CO₂: 17.5%

MANIFOLD

VAPOURISATION

PRE-HEAT

AND MIXING

VAPOUR FEED

MEOH: 0.21 mol/min
H₂O: 0.25 mol/min
O₂: 0.047 mol/min
TotalFlow: 0.684 mol/min

HOTSPOT™

REFORMER
THERMALLY NEUTRAL CASE

CATHODE OFF-GAS
AIR
80°C

FUEL CELL
CATHODE
AIR
80°C
ANODE OFF-GAS

H₂ PRODUCT

CO CLEAN-UP REACTOR

H₂: 44.5%
H₂O: 15.2%
CO: 2.1%
CO₂: 17.2%

H₂: 0.458 mol/min
CO < 10 ppm

HOTSPOT™ REFORMER

REFORMATE
180°C

MANIFOLD
VAPOURISATION, PRE-HEAT AND MIXING

AIR
80°C

H₂O (l)
15°C

MeOH (l)
15°C

VAPOUR FEED
MeOH: 0.218 mol/min
H₂O: 0.232 mol/min
O₂: 0.060 mol/min
TotalFlow: 0.736 mol/min
Person portable power

- Current HotSpot +CO clean up
 - Hydrogen yield @1kW, 1.13kg, 0.85 litre
 - Allowing for H₂ utilisation and parasitic power
 - Hydrogen yield @0.5kW
 - Scale to 300W usable power
 - 0.77kg and 0.51 litre

- Design improvements due soon
 - 0.53kg and 0.51 litre
Person portable power

- Ancillary items
- Fuel tank methanol + water
 - 1kWh - 1.53l; 10kWh 15.3l; 90kWh 137.7l
- Air blower
- Pumps
- Cooler before fuel cell
- Exhaust treatment
Partial Oxidation
Summary

• System weight and volume determined by the fuel tank

• 300 W 10kWh system
 - Approx 15 kg and 16 litre including fuel and water

• 100W 1 kWh system
 - Approx 2 kg and 2 litre including fuel and water

• 10W 90kWh system
 - Approx 130 kg and 130 litre

• Water recirculation could half the wt and volume
The Arthur D. Little Fuel Processor converts common fuels to hydrogen for a variety of applications.
Fuel Processor Technology 50 kW Fuel Processor

Integrated construction cuts cost, weight, and volume while minimizing thermal loss.

50 kW Conceptual Layout

Features:
- POX Reactor
- Ni Catalyst
- HTS Reactor
- LTS Reactor
- Air Preheater
- Steam Generator

 ![Diagram of a fuel processor technology](image-url)
The Arthur D. Little Fuel Processor has demonstrated several critical performance achievements.

- Over 3,000 hours of operation at 10-50 kW_{e}
- Operation with fuels of major interest
 - Natural gas
 - Propane
 - Alcohols
 - JP-8
- On-line fuel switching with no hardware change
- Integration with PROX to achieve 50 ppm CO on gasoline
ADL Fuel Processor Technology Gasoline Results

The petroleum fuel processor program has been successfully completed, leading to heightened Automotive Industry interest in this DOE funded work.

- All key design objectives met:
 - Low-cost steam generator
 - Redesigned air preheater
 - Integral sulfur removal bed

- Baseline testing has been successfully completed
 - 1-3 atm, 50 kW\textsubscript{e} max, 7:1 turndown

- Integration and testing with PROX has been successfully demonstrated

The feasibility of operation on multiple fuels such as renewable ethanol and normal reformulated gasoline has been demonstrated in this program.
Small-Scale Fuel Processors Design Features

The fuel processing modules incorporate new design features to performance in the range of 50-300 watts

- Basic physical phenomena are same as in well-demonstrated larger-scale equipment

- High surface/volume characteristics allow highly favorable design strategies not practical in larger capacities

- Reactant flow paths modified to reduce thermal losses and pressure drops (often issue with very small-scale systems) to negligible levels
Small-Scale Fuel Processor Sectional Views (Preliminary)

A family of low-cost, small-scale hybrid POX fuel processors have been developed for atmospheric operation on multiple fuels.

Modules drawn include hybrid POX reformer, shift reactors, PROX, and associated hardware.
Promising PROX catalyst testing is being conducted on a micro-reactor at Arthur D. Little.

Catalyst characteristics:

High catalyst activity at 120° C \[\left(\frac{2 \text{ mmol CO}}{\text{sec g catalyst}} \right) \]

Low hydrogen consumption (< 1 %)

Activation energy (8 kcal/mol)

At least 20 times more active and more selective than conventional catalysts based on Pt

The technology is in the process of being fabricated/tested at scale appropriate for 50-300 watt fuel processing systems.
ADL is giving particular attention to the "auxiliaries" required for practical operation in meso-scale units (below 100 watts)

- "Auxiliaries" are those components needed to supply
 - Partial oxidation air
 - Fuel pumps and valves
 - Controls

- Very low flow rates require technology strategies quite different from those used in larger capacities

- ADL considering multiple technology options:
 - Meso-scale Scroll pumps and blowers
 - Piezo-Electric Whisper Fans
 - Metering pumps

Commercial, high-efficiency versions of these critical auxiliaries are, in general, not readily available at the lower end of the power range.
Fuel Processing at ADL

Complementary technology development programs add further value to our fuel processor programs.

- Low-cost, efficient hydrogen storage technology (metal hydride/phase change material)
- Scroll compressor/expander
- Preferential oxidation of CO (novel catalyst under development)
- Low-cost control system based on automotive components
- Cost and performance models for fuel processing systems and their interface with fuel cell stacks
ABSTRACT

METAL HYDRIDES AS HYDROGEN STORAGE MEDIA

J. J. Reilly
Department of Applied Science
Brookhaven National Laboratory
Upton NY, 11973
USA

Presented at the Workshop For Hydrogen Storage and Generation Technologies for Medium Power and Energy Applications
April 8-10, 1997

Hydrogen is a potentially cheap and non-polluting fuel which can be used in many different types of energy converters, including fuel cells. However, a major problem, which must be solved before it can be widely and commonly used in this context, is the difficulty involved in storage and portability of hydrogen. Currently hydrogen is stored as a compressed gas or as a cryogenic liquid; while the latter may be a suitable storage option in high-technology areas (for example, aircraft fuel), neither method appears very suitable for more mundane applications. An attractive alternative to conventional methods is storage as a metal hydride. Such compounds derive their advantage from the volumetric density of hydrogen in them (which exceeds that of liquid hydrogen) and the relative ease and safety with which they can be handled.

Unfortunately, although over 40 elemental metals will react directly with hydrogen to form a binary metal hydride (a compound of one metal with hydrogen), all, excepting magnesium hydride, MgH₂, and vanadium hydride, VH₂, can be eliminated from consideration for use as a common, hydrogen storage compound. They are too stable, too unstable, or too expensive. Thus most attention has been directed toward the use of certain metal alloy hydrides which are formed by the direct and reversible reaction of hydrogen with an intermetallic compound. Three well known intermetallic hydrides which are of interest in this context are magnesium nickel hydride, Mg₂NiH₄, Lanthanum nickel hydride, LaNiH₆, and iron titanium hydride, FeTiH₂. Some pertinent properties of candidate H storage compounds are listed in the accompanying Tables.
While MgH$_2$ has by far the greatest storage capacity of the hydrides listed, it is also the most stable and requires a relatively high temperature as well as high heat input to evolve hydrogen at usable pressures. These properties would incur formidable problems which would require expensive solutions in practical storage systems. Mg$_2$NiH$_4$ is only a marginal improvement over MgH2 in this respect. By contrast, both LaNiH$_6$ and FeTiH$_{1.9}$ have dissociation pressures in excess of 1 atm at 25°C and have relatively low heats of decomposition. These are important advantages which offset their lower hydrogen content. Indeed, these properties have been decisive, and both LaNiH$_6$ and FeTiH$_{1.9}$ or similar materials have demonstrated their utility as hydrogen (energy) storage media in both stationary and automotive applications.

Acknowledgment: This work was funded by the Office of Transportation Technologies and the Office of Basic Energy Sciences, U. S. Department of Energy under contract No. DE-AC02-76CH00016 and DE-FG03-93ER14381.
Table 1: Material Characteristics

<table>
<thead>
<tr>
<th>Technology</th>
<th>Theoretical H₂ yield kg H₂/kg materials</th>
<th>Practical Storage cap. kg H₂/kg materials</th>
<th>Ah / kg materials</th>
<th>Wh / kg materials (at 0.7V)</th>
<th>Wh / L materials (at 0.7V)</th>
<th>Thermal Burden kJ/kg H₂</th>
<th>Required Heat/Cool System</th>
<th>Ancillaries Heat Source (Sink)</th>
<th>Temperature, °C Source</th>
<th>Sink</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeT₃H₂ Mn = 105.7</td>
<td>0.0192</td>
<td>0.0175</td>
<td>469</td>
<td>328</td>
<td>1794</td>
<td>16862</td>
<td>~30</td>
<td><30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaNi₅H₆.₆</td>
<td>0.0152</td>
<td>0.0137</td>
<td>367</td>
<td>257</td>
<td>1671</td>
<td>15062</td>
<td>~40</td>
<td><40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg₂Ni₁H₄</td>
<td>0.037</td>
<td>0.0316</td>
<td>847</td>
<td>593</td>
<td>1524</td>
<td>32217</td>
<td>~280</td>
<td><280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgH₂</td>
<td>0.076</td>
<td>0.070</td>
<td>1876</td>
<td>1313</td>
<td>1904</td>
<td>38702</td>
<td>~310</td>
<td><310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VH₂</td>
<td>0.022</td>
<td>0.020</td>
<td>536</td>
<td>375</td>
<td>1782</td>
<td>17573</td>
<td>~30</td>
<td><30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tech.</td>
<td>Est. wt. (kg) for a 300W, 10kWh system, 30 h dis</td>
<td>Est. vol. (L) for a 300W, 10kWh system, 50% voids</td>
<td>Est. wt. (kg) for a 100W, 1kWh system 10 h dis</td>
<td>Est. vol. (L) for a 100 W, 1kWh system 50% v.</td>
<td>Est. wt. (kg) for a 10W, 90kWh system, 9000 h dis</td>
<td>Est. vol. (L) for a 10 W, 90 kWh system 50% voids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeTiH₂</td>
<td>30.5</td>
<td>11.2</td>
<td>3.05</td>
<td>1.12</td>
<td>274</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaNi₅H₆</td>
<td>38.91</td>
<td>12.0</td>
<td>3.89</td>
<td>1.20</td>
<td>350</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnNi₅H₆</td>
<td>39.5</td>
<td>12.0</td>
<td>3.95</td>
<td>1.20</td>
<td>356</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg₂NiH₄</td>
<td>16.9</td>
<td>13.1</td>
<td>1.68</td>
<td>1.31</td>
<td>152</td>
<td>117</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgH₂</td>
<td>7.62</td>
<td>10.5</td>
<td>0.76</td>
<td>1.05</td>
<td>68.5</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Mission-Specific Estimates
<table>
<thead>
<tr>
<th>Time to implement</th>
<th>Research/Resources</th>
<th>Probability of Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short = 1-3 yrs</td>
<td>Short</td>
<td>99+</td>
</tr>
<tr>
<td>Medium = 3-5 yrs</td>
<td>Relatively modest</td>
<td>99+</td>
</tr>
</tbody>
</table>

- FeTi type
- LaNi₅ type
- Mg,Ni
- Mg,Ni₂

- Short
- Medium
- Large
METAL HYDRIDES AS HYDROGEN STORAGE MEDIA

J. J. Reilly

Department of Applied Science
Brookhaven National Laboratory
Upton NY, 11973

Presented at the

Workshop For Hydrogen Storage and Generation Technologies for Medium Power and Energy Applications
April 8-10, 1997
METAL HYDRIDES

. GAS/SOLID SYSTEMS: ENERGY STORAGE, FUEL CELLS, HEAT ENGINES, HEAT PUMPS

. ELECTRO-CHEMICAL: REPLACEMENT FOR Cd ELECTRODE IN NICAD BATTERIES

. SLURRIES: HYDROGEN RECOVERY, HEAT PUMPS, HYDROGENATION CATALYSTS

MET-HYD
<table>
<thead>
<tr>
<th>Hydride</th>
<th>Wt % H</th>
<th>(N_H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiH</td>
<td>12.7</td>
<td>5.9</td>
</tr>
<tr>
<td>AlH₃</td>
<td>10.1</td>
<td></td>
</tr>
<tr>
<td>CaH₂</td>
<td>4.2</td>
<td>5.1</td>
</tr>
<tr>
<td>MgH₂</td>
<td>7.6</td>
<td>6.6</td>
</tr>
<tr>
<td>NaH</td>
<td>4.8</td>
<td>5.1</td>
</tr>
<tr>
<td>TiH₂</td>
<td>4.0</td>
<td>9.1</td>
</tr>
<tr>
<td>ZrH₂</td>
<td>2.2</td>
<td>7.3</td>
</tr>
<tr>
<td>LaH₃</td>
<td>2.1</td>
<td>6.8</td>
</tr>
<tr>
<td>UH₃</td>
<td>1.3</td>
<td>8.4</td>
</tr>
<tr>
<td>H₂ Liquid</td>
<td>100</td>
<td>4.2</td>
</tr>
</tbody>
</table>

\[N_H \times 10^{22} = \text{number of H atoms/cm}^3\]
\[\text{HEAT RELEASED} \quad M + \frac{X}{2H2} \quad \text{HEAT ABSORBED} \]
<table>
<thead>
<tr>
<th>HYDRIDE</th>
<th>HEAT OF FORMATION</th>
<th>KCAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiH</td>
<td></td>
<td>-21.7</td>
</tr>
<tr>
<td>CaH₂</td>
<td></td>
<td>-41.6</td>
</tr>
<tr>
<td>MgH₂</td>
<td></td>
<td>-18.5</td>
</tr>
<tr>
<td>TiH₂</td>
<td></td>
<td>-29.9</td>
</tr>
<tr>
<td>ZrH₂</td>
<td></td>
<td>-39.7</td>
</tr>
<tr>
<td>UH₃</td>
<td></td>
<td>-30.8</td>
</tr>
<tr>
<td>LaH₂</td>
<td></td>
<td>-49.7</td>
</tr>
<tr>
<td>HYDROGEN CONTENT OF VARIOUS STORAGE MEDIA</td>
<td>% BY WEIGHT</td>
<td>GRAMS H/ml</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>ALLOY CLASS</td>
<td>MgH₂</td>
<td>0.101</td>
</tr>
<tr>
<td></td>
<td>Mg₂Cr₂NiH₄</td>
<td>0.081</td>
</tr>
<tr>
<td></td>
<td>TiCr₁.₈H₃.₆</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>FeTiH₂</td>
<td>0.096</td>
</tr>
<tr>
<td></td>
<td>LaNi₅H₆</td>
<td>0.089</td>
</tr>
<tr>
<td></td>
<td>AB</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>AB5</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>LIQUID H₂</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>H₂ 100 atm</td>
<td>100</td>
</tr>
</tbody>
</table>

Table Note:
- DC_TABLE
HYDROGEN CONTENT OF VARIOUS STORAGE MEDIA

<table>
<thead>
<tr>
<th>HYDRIDE</th>
<th>ΔH_f/mol H$_2$ kJ</th>
<th>H storage cap. % by weight</th>
<th>Ah/kg @0.7V</th>
<th>Wh/L @0.7V</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgH$_2$</td>
<td>-81.0</td>
<td>7.0</td>
<td>1313</td>
<td>1904</td>
</tr>
<tr>
<td>Mg$_2$NiH$_4$</td>
<td>-64.2</td>
<td>3.16</td>
<td>593</td>
<td>1524</td>
</tr>
<tr>
<td>TiCr$_1.8$H$_3.6$</td>
<td>-20</td>
<td>2.5</td>
<td>469</td>
<td>\approx1600</td>
</tr>
<tr>
<td>VH$_2$</td>
<td>-41</td>
<td>2.0</td>
<td>375</td>
<td>1782</td>
</tr>
<tr>
<td>FeTiH$_2$</td>
<td>-31(avg.)</td>
<td>1.75</td>
<td>328</td>
<td>1794</td>
</tr>
<tr>
<td>LaNi$_5$H$_6$</td>
<td>-33</td>
<td>1.37</td>
<td>257</td>
<td>1671</td>
</tr>
<tr>
<td>LIQUID H$_2$</td>
<td>100</td>
<td>100</td>
<td>18760</td>
<td>1313</td>
</tr>
<tr>
<td>H$_2$ 100 atm</td>
<td>100</td>
<td>100</td>
<td>18760</td>
<td>188</td>
</tr>
</tbody>
</table>
SEQUENCE OF ELEMENTARY STEPS

- PRODUCTION OF H* ON ALLOY SURFACE (CHEMICALLY OR ELECTROCHEMICALLY).

- H DIFFUSION INTO SUBSURFACE β PHASE.

- $\alpha \rightarrow \beta$ CONVERSION AT β/α INTERFACE.
LaNi$_5$ Reaction Pathway
Hydride Formation/Decomposition

α Phase

A $\xrightarrow{+H_2}$ B

D $\xleftarrow{-H_2}$ C

β Phase
POSSIBLE ALLOY/H REACTIONS

\[AB + \frac{X}{2}H_2 \rightleftharpoons AH_X + B \]

\[AB + \frac{X}{2}H_2 \rightleftharpoons ABH_X \]

\[3AB + \frac{X}{2}H_2 \rightleftharpoons A_2BH_X + AB_2 \]

\[AB + (X + Y)/2H_2 \rightleftharpoons AH_X + BH_Y \]

\[A_2B + \frac{X}{2}H_2 \rightleftharpoons A_2BH_X \]

\[2A_2B + 3\frac{X}{2}H_2 \rightleftharpoons 3AH_X + AB_2 \]

\[ABC + \frac{X}{2}H_2 \rightleftharpoons ABCH_X \]
Diagram redrawn from ref. 1 which reviews data through 1980. This ref. contains information on crystal structures, lattice parameters, thermodynamics and metastable phases, and should be consulted if detailed information is required.

(1) Murray, J.L.
"The Fe-Ti (Iron-Titanium) System."
BULL. ALLOY PHASE DIAGR.: 2, (3), (1981); pp 320-334
\[
\text{FeTi} + \frac{1}{2}\text{H}_2 \leftrightarrow \text{FeTiH} \\
\Delta H_{298} = -28 \text{ kJ/mol H}_2 \\
\Delta G_{298} = 3.5 \text{ kJ/mol H}_2
\]

\[
\text{FeTiH} + \frac{1}{2} \text{H}_2 \leftrightarrow \text{FeTiH}_2 \\
\Delta H_{298} = -33.3 \text{ kJ/mol H}_2 \\
\Delta G_{298} = 5.7 \text{ kJ/mol H}_2
\]
Figure 6

313K

Pressure, atm H_2

Atom Ratio $H/(Fe + Ti)$
La-Ni

Portion 0-50 at. pct Ni, Hansen Fig. 488 except for MP of La from Elliott Table A and MP of LaNi, ref. (1). Portion 50-100 at. pct Ni, ref. (1), except LaNi1.4 of ref. (1) was later shown to be La2Ni3, ref. (2).

(1) Buschow, K.H.J. and Van Mal, H.H.
"Phase Relations and Hydrogen Absorption in the Lanthanum-Nickel System."
JLCM; 29 (1972); pp 203-210

(2) Van Yucht, J.H.N. and Buschow, K.H.J.
"The Crystal Structure of La2Ni3."
JLCM; 46 (1976); pp 133-138
\[\text{LaNi}_5 + 3\text{H}_2 \leftrightarrow \text{LaNi}_5\text{H}_6 \]
\[\Delta H_{298} = -33 \text{ kJ/mol H}_2 \]
\[\Delta G_{298} = 0 \text{ kJ/mol H}_2 \]

\[\text{LaNi}_5 + \text{H}_2 \leftrightarrow \text{LaH}_2 + \text{Ni} \]
\[\Delta H_{298} = -142 \text{ kJ/mol H}_2 \]
\[\Delta G_{298} = -100 \text{ kJ/mol H}_2 \]
HYDROGEN CONCENTRATION (AT H mol LaNi$_5$)
$P_{eq, atm}$ vs. $H/LaNi_5$ at 313K
MOLAR VOLUME (V_H) OF HYDROGEN AB$_5$ HYDRIDE

LaNi$_5$ + 3H$_2$ \rightarrow LaNi$_5$H$_6$

86.06 Å3 \rightarrow 107.06 Å3

EXPANSION OF UNIT CELL = 21 Å3

$V_H = 3.5$ Å3
LaNi$_5$ CRYSTAL STRUCTURE

- Lanthanum
- Nickel I
- Nickel II
$2 \text{Mg}_2\text{Cu} + 3 \text{H}_2 \rightleftharpoons 3 \text{MgH}_2 + \text{MgCu}_2$

$\Delta H_{298} = -17.4 \text{ kcal/mol H}_2 = 52.2 \text{ kcal}$

$\Delta G_{298} = -7.3 \text{ kcal/mol H}_2 = 21.9 \text{ kcal}$

$\Delta H_{562} = +1.6 \text{ kcal/mol H}_2 = 4.8 \text{ kcal}$

$\text{Mg}_2\text{Cu} + 2 \text{H}_2 \rightleftharpoons 2 \text{MgH}_2 + \text{Cu}$

$\Delta G_{298} = -5.5 \text{ kcal/mol H}_2 = -11.0 \text{ kcal}$

$\Delta G_{562} = +3.2 \text{ kcal/mol H}_2 = 6.4 \text{ kcal}$
\[\ln P = -1.8678 \text{vol} + 94.2180 \]

FIGURE 2-2-1-5
Desorption Isotherms

P_H (atm)

LaNi$_x$

$X = 5.50$

$X = 5.30$

$X = 5.25$

$X = 5.14$

$X = 5.00$

$X = 4.90$

Desorption Isotherms at 40°C

Hydrogen concentration (atH/mol LaNi$_x$)
The diagram, redrawn from ref. 1 which reviewed the literature through 1983, is largely that of Hansen Fig. 503 with minor modifications. See ref. 1 for information on crystal structure, thermodynamics, metastable phases and magnetic characteristics.

\[\text{Mg}_2\text{Ni} + 2\text{H}_2 \leftrightarrow \text{Mg}_2\text{NiH}_{4.0} \]

\[\Delta H_{298} = -64.2 \text{ kJ/mol H}_2 \]
\[\Delta G_{298} = -27.9 \text{ kJ/mol H}_2 \]

\[\Delta G_{562} = +1 \text{ kJ/mol H}_2 \]

\[2 \text{Mg}_2\text{Ni} + 3\text{H}_2 \leftrightarrow 3\text{MgH}_2 + \text{MgNi}_2 \]

\[\Delta G_{298} = -27.9 \text{ kJ/mol H}_2 \]
\[\Delta G_{562} = +9.0 \text{ kJ/mol H}_2 \]
$\text{Mg}_2\text{Ni} + 2\text{H}_2 \rightleftharpoons \text{Mg}_2\text{NiH}_4$

Diagram:

- **Dissociation Pressure, atm H$_2$**
- **Composition, H/(Mg + Ni)**

Graph with lines for 349°C, 322°C, and 298°C.
\[\text{Mg}_2 \text{Ni} + \text{Mg} \quad (70 \text{ wt } \% \text{Mg}, 30 \text{ wt } \% \text{Ni}) \]

\[\text{Mg}_2 \text{Ni} + 2 \text{H}_2 \rightleftharpoons \text{Mg}_2 \text{NiH}_4 \]

\[\text{Mg} + \text{H}_2 \rightleftharpoons \text{MgH}_2 \]

DISSOCIATION PRESSURE ATM H\(_2\)

COMPOSITION H/(Mg+Ni)
PSE + G PEAK SHAVING DEMONSTRATION
FLOW RATE scfm
8.0 3.2

TOTAL H₂ DISCHARGED = 13.4 lbs

RESERVOIR PRESSURE, psia

AVERAGE BED TEMPERATURE, °C

ELAPSED TIME, hrs

OVERNIGHT INTERRUPTION
PSE&G FeTiH$_x$ RESERVOIR

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>kg Alloy</td>
<td>400</td>
</tr>
<tr>
<td>Total Ah</td>
<td>1.7E5</td>
</tr>
<tr>
<td>Total Wh @ 0.7V</td>
<td>1.2E5</td>
</tr>
<tr>
<td>Wh/L of Res. V.@.7V</td>
<td>826</td>
</tr>
<tr>
<td>Charge Rate</td>
<td>2.4E4 Ah/h</td>
</tr>
<tr>
<td>Discharge rate</td>
<td>3.5E4 Ah/h</td>
</tr>
<tr>
<td>Fuel Cell</td>
<td>12.5 kW P&W</td>
</tr>
</tbody>
</table>
Fullerenes for Hydrogen Storage

Fullerene-Based Porous Carbon Electrodes

and

Conducting Fullerene-Based Nanotube Materials

(CFNM)

J.W. Van Zee

Center for Electrochemical Engineering
Department of Chemical Engineering
University of South Carolina

J.W. Van Zee, "Fullerene-Based Materials" for the Workshop on H₂ Storage and Generation Technologies for Medium -Power and Energy Applications, April 9, 1997
Collaborators

- J.M. Tour, Department of Chemistry & Biochemistry
 University of South Carolina

- Y.P. Sun, Department of Chemistry
 Clemson University
Literature Reports

- C_{60}H_2
 J. Electrochem. Soc.,
- Heben et al. in Fullerenes
- Smalley et al. -70% single walled nanotubes
 - Science
Objectives

- Synthesize Conducting Fullerene-Based Nanotube Materials (CFNM)
 - Soot, Nanotubes, Fullerenes, Porous Carbon
 - Metal-like Conductivity
 - Hydrogen Storage Capacity > 5% by wt.
- Characterize Electrochemical Behavior of Material
- Fabricate Electrodes & Hydrogen Storage Material
Objective: Synthesize CFNM Materials

- Systematic Synthesis Program-Doping
 - Rare earth & transition metal elements
 - Intermetallic Compounds -AB₅
Objective: Characterize

- Chemical Yields - Function of Metal
 - Independent Variables:
 - Current, Gap Voltage, He Flowrate, Pressure
 - Temperatures of Feed Gas & Bath Water

- Dependent Variables:
 - Graphite consumption, Total Mass Deposited
 - Soot, Nanotube and Fullerene Yield
Schematic 1. Synthesis Reactor

Diagram Description:
- **HELIUM CYLINDER**
- **FLOW METER**
- **VOLTMETER**
- **VACUUM PUMP**
- **WATER IN**
- **WATER OUT**
- **MERCURY MANOMETER**
- **25 mm rubber tubing**
- **rubber septum**
- **graphite electrode**
- **1 L Pyrex® reactor vessel**
- **copper mounting rod**
- **oil manometer**
- **arc**
- **SHUNT VOLTMETER**
- **SUBMERSIBLE PUMP**
- **DC ARC WELDER**
- **AC METER**
- **220V/50 A AC OUTLET**

Scale: 1 cm = 1 cm

Notes:
- J.W. Van Zee, "Fullerene-Based Materials" for the Workshop on H₂ Storage and Generation Technologies for Medium-Power and Energy Applications, April 9, 1997
- Center of Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208
Objective: Characterize

- Dependent Variables Physical Properties
 - BET surface area, conductivity, thermal degradation profile, heat capacity
 - Qualitative: TEM & SEM photographs
Objective: Characterize

- Electrochemical Behavior
 - cyclic voltammetry
 - galvanostatic charge/discharge
Electrochemical Behavior

- Charging the CFNM

\[
\begin{align*}
\text{H}_2\text{O} + \text{e}^- & \rightarrow \text{H}_{\text{ads}} + \text{OH}^- & U = -0.83 \text{ V} \\
\text{H}_{\text{ads}} + \text{H}_{\text{ads}} & \rightarrow \text{H}_2 \\
\text{F} + \text{H}_{\text{ads}} & \rightarrow \text{FH}
\end{align*}
\]
Separation of Soot

- Arc-generated = Soot, Nanotubes, & Fullerenes

- TGA Results: 3% loss from 90-500C
 - 7% loss from 500-800C

- Oxidize in Air = soot gone but low yields

- Use CoS and NiS to increase nanotube yield

- Chemical Separations & Nanotube functionalization
Chemical Hydrogenation of Fullerenes

- Birch reaction on CFNN material
 - Results: Carbon/Hydrogen Ratio = 3/1 3% of total carbon

- Birch reaction on Fullerene - Literature
 - Results: C_{60}H_{36} = 4 %

- Birch Reduction on Polyfullerenes
 - Results 3-4%
Table 1. Starting Metal Complex, Composite Electrode Properties, and Soot Properties.

<table>
<thead>
<tr>
<th>Metal Complex</th>
<th>Trace Elemental Composition of Remaining Ligand in Graphite/Metal(0) Electrodes<sup>a</sup></th>
<th>Metal(0) Particle Size in Graphite/Metal(0) Electrodes by XRD (nm)<sup>c</sup></th>
<th>Metal(0) Particle Size in Graphite/Metal(0) Electrodes by TEM, average, range (nm)<sup>e</sup></th>
<th>Single-Walled Nanotubes Observed in Soot? (size in nm)<sup>s</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Co<sub>2</sub>(CO)<sub>8</sub></td>
<td>---<sup>b</sup></td>
<td>13</td>
<td>7.9, 1.4-24.1</td>
<td>yes (1.0-1.4)</td>
</tr>
<tr>
<td>Ag(NO<sub>3</sub>)<sub>3</sub></td>
<td>N = 338 ppm</td>
<td>41</td>
<td>7.6, 1.8-24.4</td>
<td>no</td>
</tr>
<tr>
<td>Fe(NO<sub>3</sub>)<sub>3</sub>-9H<sub>2</sub>O</td>
<td>N = 415 ppm</td>
<td>36</td>
<td>11.6, 1.7-31.0</td>
<td>yes (1.0-1.4)</td>
</tr>
<tr>
<td>CoCl<sub>2</sub>-6H<sub>2</sub>O</td>
<td>Cl = 88 ppm</td>
<td>---<sup>d</sup></td>
<td>8.9, 1.1-58.3</td>
<td>yes (1.0-1.4)</td>
</tr>
<tr>
<td>CuCl<sub>2</sub>-2H<sub>2</sub>O</td>
<td>Cl = 1.36 %</td>
<td>39</td>
<td>8.8, 1.7-37.7</td>
<td>no</td>
</tr>
<tr>
<td>LaCl<sub>3</sub>-7H<sub>2</sub>O</td>
<td>Cl = 2.74 %</td>
<td>---<sup>d</sup></td>
<td>---<sup>f</sup></td>
<td>no</td>
</tr>
<tr>
<td>NiCl<sub>2</sub>-6H<sub>2</sub>O</td>
<td>Cl = 456 ppm</td>
<td>33</td>
<td>6.2, 1.9-23.3</td>
<td>yes (1.4-1.6)</td>
</tr>
<tr>
<td>PtCl<sub>4</sub></td>
<td>Cl = 0.46 %</td>
<td>36</td>
<td>11.1, 2.2-35.0</td>
<td>yes (1.6-1.8)</td>
</tr>
</tbody>
</table>
Effect of Charge Time on H_2 Capacity

J.W. Van Zee, "Fullerene-Based Materials" for the Workshop on H_2 Storage and Generation Technologies for Medium-Power and Energy Applications, April 9, 1997

Center of Electrochemical Engineering
Department of Chemical Engineering
University of South Carolina
Columbia, SC 29208
10 mA/cm² Charge Curves

![Graph showing charge curves for MER C Binder, Activated Carbon/Teflon, and C₆₀/Teflon over time.](graph.png)
10 mA/cm² Discharge Curves

J.W. Van Zee, "Fullerene-Based Materials" for the Workshop on H₂ Storage and Generation Technologies for Medium-Power and Energy Applications, April 9, 1997

Center of Electrochemical Engineering Department of Chemical Engineering University of South Carolina Columbia, SC 29208
10 mA/cm² Charge Curves

J.W. Van Zee, "Fullerene-Based Materials" for the Workshop on H₂ Storage and Generation Technologies for Medium-Power and Energy Applications, April 9, 1997
Summary of H2 Storage Capacity

<table>
<thead>
<tr>
<th>Material</th>
<th>mAh/g</th>
<th>wt %</th>
<th>g/cm³</th>
<th>Wh/l</th>
<th>Wh/Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present CNM</td>
<td>54</td>
<td>0.2</td>
<td>1.1</td>
<td>49</td>
<td>54</td>
</tr>
<tr>
<td>Birched CNM</td>
<td>804</td>
<td>3.0</td>
<td>1.1</td>
<td>731</td>
<td>804</td>
</tr>
<tr>
<td>Future CNM</td>
<td>2,140</td>
<td>8.0</td>
<td>1.1</td>
<td>1,950</td>
<td>2,140</td>
</tr>
</tbody>
</table>
GRAPHITE NANOFIBERS: A CATALYTICALLY ENGINEERED MATERIAL

M. S. Kim, C. Park, A. Chambers, R. T. K. Baker and Nelly M. Rodriguez
Department of Chemistry, Northeastern University, Boston, MA 02115, USA

ABSTRACT

Graphite nanofibers are a newly developed material produced from the decomposition of selected carbon containing gases over certain metallic surfaces at temperatures ranging from 400-800°C. The solid consists of graphite platelets perfectly arranged in various orientations with respect to the fiber axis, where the degree of crystalline perfection of the deposited fiber is dictated by the chemical nature of the catalyst particle, the composition of the reactant gas and the temperature. One of the most outstanding features is the presence of large number of edges, which in turn constitute sites readily available for chemical or physical interaction. From the physical point of view, graphite nanofibers vary from 5 to 100 μm in length and are between 5 to 50 nm in diameter. From in-situ electron microscopy studies it has been possible to determine the key steps leading to the formation of graphite nanofibers. When a hydrocarbon is adsorbed on a metal surface and conditions exist which favor the scission of a carbon-carbon bond in the molecules then the resulting atomic species may dissolve in the particle, diffuse to another set of faces and ultimately precipitate at the interface to form a graphite nano-structure. Surface science studies have revealed that dissociative chemisorption of the hydrocarbon only occurs in particular faces possessing certain crystallographic orientation and that the reaction can be enhanced by certain adatoms or by the presence of coadsorbed molecules such as CO. It is believed that a combination of electronic and geometric effects are operative that not only promote the dissociation of the hydrocarbon, but also alter the mode of adsorption of the hydrocarbon on the metal surface. Preliminary data obtained in our laboratory has demonstrated that when these structures are exposed to hydrogen at moderate pressures, they are capable of absorbing and retaining large quantities of the gas at room temperature. It is clear from this data that graphite nanofibers are an exciting new type of material that has tremendous potential as a hydrogen storage medium.
Graphite Nanofibers: A Catalytically Engineered Material

M. S. Kim, C. Park, A. Chambers, N. M. Rodriguez and R. T. K. Baker
Factors Involved in Nanofiber Growth

Metal-Gas Interface

Diffusion of Carbon through Metal

Precipitation of Graphite Platelets at the Metal-Carbon Interface

C_2H_4/CO
Metal-Gas Interface
C_2H_4 over Modified Metal Surfaces
Ethylene over Metal Surfaces

C_2H_4 \[\rightarrow\] CO or H$_2$

C_2H_4 \[\rightarrow\] C$_2$H$_4$/H$_2$
Gas/Metal Particle Interactions

- Surface science studies have established that the interaction of a given gas molecule with a metal surface is frequently limited to certain crystal faces.

- This phenomenon is governed by geometric arrangements of the metal atoms in concert with the bond distance of the gaseous molecules, as well as the establishment of electronic interactions.

- When a gas is chemisorbed on a metal surface, a concomitant weakening of the intermetallic bond strength occurs, and this induces mobility in the surface atoms of the solid - surface reconstruction.
Hydrocarbon/Metal Interactions

- When metal particles are undergoing reaction, distinct crystallographic faces are generated, some of which are capable of dissociative chemisorption of the hydrocarbon, but are unable to precipitate dissolved carbon atoms, and another set of faces that exhibit the reverse properties.

- A corollary of this phenomenon is that certain metal faces remain free of solid carbon and available for continued reaction with the hydrocarbon.

- The presence of the carbon deposit structure effectively preserves the shape of the metal particle in the reactive state during subsequent cooling.
Metal-Carbon Interface
Graphite Precipitation on Ni\(^{(111)}\)

Carbon Nanofiber Structure

C_2H_4 / CO

Four faces where hydrocarbon decomposition occurs.

Two faces where carbon precipitation takes place.
Carbon Nanofiber Structure

- **Two faces** where hydrocarbon decomposition occurs.
- **Four faces** where carbon precipitation takes place.
Carbon Nanofiber Structure

- One face where hydrocarbon decomposition occurs.
- Several faces where carbon precipitation takes place.
Variations in Particle Morphology

- Particle shapes are influenced by temperature, nature of adsorbate gas and support structure.
- Cross hatching denoted faces where hydrocarbon dissociation occurs.
Graphite Nanofibers in Hydrogen Storage
Ideal Hydrogen Storage Medium

- The failure to produce a practical gas storage system has prevented hydrogen from reaching the commercial forefront as a transportation fuel.

- The ideal system should be:
 - lightweight,
 - compact,
 - usable at moderate temperatures,
 - relatively inexpensive,
 - reusable without the need for regeneration,
 - safe.

- Graphitic nanofibers appear to fulfill most of these criteria.
Hydrogen Storage Systems

<table>
<thead>
<tr>
<th>Storage System</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressed gas</td>
<td>economical</td>
<td>hazardous, bulky</td>
</tr>
<tr>
<td>Metal hydrides</td>
<td>compact, safe</td>
<td>expensive, heavy</td>
</tr>
<tr>
<td>Liquid hydrogen</td>
<td>high density</td>
<td>cooling/insulation</td>
</tr>
<tr>
<td>Cryo-adsorption on various solids</td>
<td>moderate size/ moderate cost</td>
<td>cooling/insulation</td>
</tr>
<tr>
<td>Non-cryogenic: Graphite Nanofibers</td>
<td>compact, light economical</td>
<td>supply</td>
</tr>
</tbody>
</table>

Adapted from J. S. Noh, R.K. Agarwal, and J. A. Schwarz, Int. J. Hydrogen Energy 12, 693 (1987)
Hydrogen Diffusion in Graphite

{1121}

{1011}
Adsorption/Desorption of H₂

- The adsorption process appears to be controlled by diffusion of H₂ between the graphite layers.
- It is evident that the capacity far exceeds that of a monolayer storage. These high values suggest that the phenomenon occurs via a capillary condensation process, and that once H₂ is trapped inside the structure, the molecular size of the gas reverts to that of the covalent state.
- The π-electrons of the graphite basal plane are believed to play a key role in enhancing the sticking coefficient of H₂ within the structure.
Adsorption/Desorption of H₂

- Upon reduction of the pressure to atmospheric conditions, a large fraction of the stored H₂ is released.
- There is, however, ~15% that is strongly held within the nanofiber structure and is only released upon heating to temperatures in excess of 500°C.
- During the adsorption step, it is possible that the nanofiber structure undergoes swelling and upon release of the H₂, the initial structure is regenerated.
- Examination of the nanofibers that have been subjected to up to two cycles by HRTEM, indicates that the structures have maintained their integrity.
4. SUMMARY OF WORKING GROUP DISCUSSIONS
4. Summary of Working Group Discussions

The attendees were assigned to three working groups: Physical/Absorptive Systems, Chemical Hydrides and Related Materials, and Thermal and Catalyzed Processes. The Working Groups were each assigned a Chair and a Scribe. The working groups were charged with discussing the technologies assigned to the group and hearing additional technical presentations from attendees. After discussions and presentations, the Working Groups were further charged to complete several tables summarizing the material characteristics, required ancillaries, time to implementation, significant issues and barriers, and the three mission-specific estimates of system weight and volume for each technology. Finally, the Chair and Scribe for each group were asked to prepare the summary tables and a short written discussion of the Working Group findings. What follows here in Section 4 is an overview of the working group findings prepared by the authors of this report. Section 5 contains the written report and summary tables prepared by the Chair and Scribe of each of the three Working Groups. Also included in Section 5 are copies of additional visual materials presented by participants in the working groups.

The Working Group on Physical and Absorptive Storage considered nine technologies, grouped into four categories as follows:

Ambient temperature, pressurized hydrogen gas storage
- Lightweight, high-strength cylinders
- Engineered glass microspheres

Reversible metal hydrides
- Low-temperature dehydrogenation (ambient to ~ 100 °C)
- High-temperature dehydrogenation (> ~ 250 °C)

Carbon-based absorbents
- Fullerenes
- Carbon nanotubes
- Carbon nanofibers

Irreversible chemical hydrides
- Hydrolyzable chemical hydrides
- Thermally-decomposable chemical hydrides

Pressurized tank technology uses light-weight carbon-graphite composite fiber wrapped tanks, with a metallized plastic liner. These tanks have been pressurized to 15,000 psi. Tank technology has been demonstrated in the commercial sector (for fuel-cell powered municipal buses, for example) as well as for the DoD, and could be implemented in a short time (1-3 years). Among the strengths of this technology are: pressurized tanks are very efficient on a mass basis (hydrogen densities exceeding 0.10 kg H₂ per kg of system weight); the load following and response time characteristics are good and delivery is thermoneutral.

Improvements in the pressurized tank technology can be achieved with the development of small, fully-metallized plastic liners and lighter-weight regulators and valves. The necessary valves and restrictors are the heaviest components for such systems, and pressurized tanks are very efficient on a mass basis (hydrogen densities exceeding 0.10 kg H₂ per kg of system weight), however, the volumetric efficiency is not as high as metal hydrides and some other ma-
terials due to the low density of compressed hydrogen. The bulkiness and large profile associated with a hydrogen tank could present major difficulties for a man-portable system. The time to refill a hydrogen tank in the field and the necessary transportation infrastructure for field applications are also weaknesses. The overwhelming concern associated with this technology is safety. The potential for explosion should a hydrogen vessel be pierced is significant in combat situations. With a technology this close to commercial application, the DoD may wish to consider a comprehensive safety review of pressurized tank technology in the context of battlefield needs. This could identify applications in which the technology is appropriate and those in which it is inherently unacceptable.

Delivery of gaseous hydrogen is essentially thermoneutral, unlike the dehydrogenation of reversible metal hydrides which may require significant heat input, or the irreversible reactions of chemical hydrides which release significant heat. However, rapid refilling of hydrogen tanks does require cooling because the hydrogen temperature increases markedly during refilling. The potential for explosions should a hydrogen vessel be pierced is serious under combat situations. Workshop participants viewed a photograph of a composite wound container which had taken a live round without exploding, but it was also stated that firing a tracer round into the container resulted in detonation.

Engineered glass microspheres are hollow pressure vessels on the order of 50 microns which hold hydrogen under high pressure. The microspheres are filled by heating them in excess of 250 °C under a high-pressure hydrogen atmosphere. Safety considerations are much improved compared to a single pressurized tank. The 3M Corporation presently manufactures such microspheres in bulk. It is proposed that controlled delivery of hydrogen could be accomplished by embedding them on an adhesive tape, for instance, and feeding the tape to a mechanical crusher. This is a promising concept but no prototype hydrogen release system has been built. Also, there is at present no infrastructure for large-scale manufacturing and filling of the microspheres. This technology could be developed in a medium time frame (3-5 years) with research on scale-up and quality control in the manufacturing of the microspheres, and development of efficient means for the filling with and releasing of hydrogen.

The physics and chemistry of both low-temperature and high-temperature reversible metal hydrides are fairly well known and have been the subject of several decades of scientific research. Low-temperature metal hydrides have poor weight efficiencies (low hydrogen loading) but (depending on the alloy) will release hydrogen at 50-80 °C and at low pressures. High-temperature hydrides have much higher hydrogen storage capacities (6 weight percent, not including containers and ancillaries) but must be heated well in excess of 100 °C to release hydrogen. This implies that significant heat must be provided. For both low- and high-temperature hydrides, the kinetics of dehydriding are an important issue when it comes to starting, stopping, and controlling a fuel cell with varying load demand. The crucial research needs are to engineer a heat source and to control the kinetics of hydrogen liberation to meet demands.

Carbon fullerenes with 6 weight percent hydrogen loading have been experimentally achieved. Like reversible metal hydrides, significant heat input is required to liberate hydrogen gas. Another critical issue is manufacturing capability and cost: additional research and development will be needed to reduce the manufacturing cost; a near-term goal is to reduce the cost to approximately $25/kg. Fullerenes can be hydrogenated electrochemically or catalytically, but the choice of solvent, catalyst, pressure and temperature appear to greatly alter the hydrogen
loading and dehydrogenation kinetics. These materials are much less understood than metal hy-
drides and therefore the time to possible implementation is longer, at least 3-5 years.

Single wall nanotubes are related to the fullerenes and are graphite sheets joined to form
long cylinders. Experiments have shown 5-10 weight percent hydrogen storage capacity. The
mechanism of hydrogen storage is thought to be the entrapment of absorbed hydrogen within the
nanotubes. The notable issues of cost, manufacturability, hydrogen loading and release, are es-
sentially the same as for carbon fullerenes.

Graphite nanofibers are individual graphitic bundles grown by decomposition of ethyl-
ene/CO (or other hydrocarbon/CO mixtures) on metal catalyst particles. One research group at
Northeastern University has reported hydrogen storage on these materials. It is claimed that up
to 50 weight percent hydrogen can be absorbed by the fibers when they are exposed to several
hundred atmospheres of hydrogen for 24 hours, and that 80% recovery of this hydrogen is att-
tained at room temperature by decreasing the pressure to ambient conditions. These claims are
revolutionary, but verification is needed. Should these claims be substantiated, additional re-
search and development is needed on synthesis and scale-up to commercial production capacity.

The Working Group on Chemical Hydrides and Related Materials considered four broad
categories of materials. Within each category, several similar materials can be identified which
store and release hydrogen by similar mechanisms. The four categories considered were:

• Hydrolysis of organosilanes and organoboranes
• Solid-state decomposition of chemical hydrides
• Reversible hydrogenation and dehydrogenation of cycloalkanes
• Hydrolysis of classical chemical hydrides

Organosilane chemistry is being developed by SRI, and allows generation of hydrogen by
catalytic reaction with water in a homogeneous liquid phase. Ethenyl silane, ethynyl silane, and
phenyl silane presently appear to be good candidates for hydrogen storage. Depending on the
particular organosilane used, the theoretical mass yield of hydrogen ranges from 6.2 to 9.8
weight percent, assuming 100% conversion of the reaction and no excess of reactant. The heat
of reaction appears to be low. The systems proposed are liquid-phase which may greatly sim-
plify the metering and control of hydrogen production. The time to potential implementation is
at least 3-5 years, and requires additional research and development on fundamental kinetics,
actual hydrogen yields, thermochemistry, stability, safety, toxicity, by-product disposal, and
system design. No production infrastructure exists for large-scale manufacturing of these com-
pounds, and therefore the cost of materials is still a significant unknown.

Solid state decomposition of classical chemical hydrides (e.g., LiBH₄, LiAlH₄) is a
chemistry that is well-known. It is possible to accomplish the reaction in essentially 100% yield
and with little excess reactant, leading to storage capacities of approximately 8-10 weight per-
cent. The reaction mixture combines the chemical hydride with ammonium chloride or similar
halide salt, and the mixture is stabilized with a polymer binder. This renders the reaction mixture
stable for storage and transport, unlike the neat chemical hydrides which are sensitive to air and
moisture. The reaction must be initiated with a high temperature ignitor such as a squib fuse or
pyrotechnic. Once initiated, the reaction cannot be stopped and is highly exothermic.
The production scenario is to package the solid reaction mixture in a number of discrete packets and selectively ignite the reactants as hydrogen is needed. Hydrogen is produced rapidly and a surge tank or equivalent arrangement is required for load-leveling. This would raise some of the same safety concerns as were discussed under “pressurized gas storage.” Commercial units for production of hydrogen from this mechanism are now available from Royal Systems, and it is believed that modifications will allow them to be used for unattended operation of low-power remote sensing stations. The thermal signature and safety of such devices for man-portable applications are significant issues. The reactions are irreversible so the reaction products would have to be disposed or recycled. The main avenue for further development would appear to be incremental improvements on existing system designs, and careful comparison of the properties of the various chemical hydride candidates to select the optimum chemistry.

Cyclic organic compounds such as decalin and methylcyclohexane are liquids which can store and release hydrogen by the reversible hydrogenation and dehydrogenation of the ring structure. This process takes place at elevated temperatures in the presence of a catalyst. MER Corporation is evaluating well-known heterogeneous hydrogenation/dehydrogenation catalysts based on supported nickel, palladium, or platinum, with platinum being the most effective. The University of Hawaii is evaluating a novel class of homogeneous catalysts which incorporate P-C-P “pincer” ligands around iridium. This reaction is thermodynamically limited and must take place at elevated temperatures (> 200 °C), although catalytic activity was reported at temperatures as low as 100 °C. Thermal signature and the energy required to produce and maintain these temperatures is a major concern, as are the kinetics and control of the reaction. Theoretical hydrogen yields are slightly in excess of 7 weight percent, and the raw materials (cyclic hydrocarbons) are readily available. The materials are inherently recyclable, although long-term degradation after many uses has to be determined. Among the major issues would be development of miniature “chemical plants” to accomplish the production of hydrogen at the small scales of interest in this workshop.

Classical chemical hydrides such as CaH₂, LiH, LiBH₄, LiAlH₄, NaBH₄, and NaAlH₄ produce hydrogen upon contact with liquid water. The reaction is strongly exothermic and is favored thermodynamically, but in many cases the kinetics are inhibited by the high pH and the insolubility of the reaction products. The reaction is irreversible, so the by-products must be recovered and either recycled or disposed. Some variation on the well-known Kipp generator is used to contact the water and the hydride. Commercial units are available from A.F. Sammer, and the Snorkeler fuel cell system also has a hydrolysis unit available as one hydrogen source. The NaAlH₄ chemistry described by RTI in Working Group 1 is of the same general concept as was considered by Working Group 2.

The weight and volume efficiencies of these materials appear competitive with other known technologies in that 7-8 weight percent hydrogen can be produced from a stoichiometric reaction. However, in practice excess water is almost always required. Attitude sensitivity is an issue with these systems, as is safety. Most of the hydrides are moderately to very unstable when stored in humid air. The strong exothermic nature of the reaction and the instability of some materials has led researchers at the University of South Carolina to use organic ligands to stabilize the compounds, at the cost of additional molecular weight. Research at the U.S. Air Force Academy concerns a proprietary chemical hydride with a theoretical hydrogen yield exceeding that of LiAlH₄. Because commercial units are available this approach to hydrogen storage and delivery could be considered more mature than others, but field implementation still re-
quires solutions to the problems of safety, attitude sensitivity, and metering and control of the reactants. Appended to these Workshop proceedings is a review of work conducted at Texas A&M University where these considerations are discussed in more detail. At present, improvements in this approach will most likely be due to incremental improvements in engineering design and packaging, and to identifying the optimum chemical hydride compounds.

The Working Group on Catalyzed and Thermal Processes examined seven different liquid or gaseous fuels which would be reprocessed to produce hydrogen gas. These fuels were ammonia, methanol, propane, methane, butane, gasoline, and diesel fuel. All fuels except ammonia would produce carbon monoxide which will poison present PEM fuel cell catalysts, so elimination or reduction of CO is a significant issue in all systems except the ammonia reformer. Residual ammonia must also be eliminated from any stream fed to the fuel cell.

Ammonia reforming by thermal decomposition was the subject of an invited presentation by Analytic Power. The thermal decomposition products are hydrogen and nitrogen, but the decomposition must take place at very high temperatures in order to reduce the ammonia residual to ppm levels or less. Unreacted ammonia in the effluent will poison the PEM catalyst, so a combination of high conversion efficiency and an ammonia scrubber for the reactor effluent are necessary. Ammonia has a very high theoretical H₂ yield. It can be stored as a liquid under modest pressure and is very inexpensive due extensive use in large-scale industries. Unlike all the other liquid fuels discussed in this working group, ammonia reforming produces no carbon monoxide which is another PEM catalyst poison. Analytic Power has contracted to deliver a small-scale thermal ammonia reformer within one year of the date of this workshop.

Methanol, ethanol, gasoline, and other hydrocarbon fuels can be converted to hydrogen and by-products either by partial oxidation (POX), or by a combination of partial oxidation and steam reforming (PROX). In this working group, both routes were discussed under the heading “Mesoscopic Fuel Processing,” a term employed by researchers at Pacific Northwest Laboratories to describe unit operations (heat exchangers, reactors, fuel cells) which have been miniaturized to a scale of cm in dimension. Arthur D. Little has developed a fuel processor which will convert natural gas, propane, gasoline, methanol, ethanol or diesel fuel to hydrogen. Further reduction of the product gas with steam produces 50 ppm CO in the outlet gas. The ADL system is not portable because the unit operations have not been miniaturized.

Large-scale hydrocarbon reforming plant technology is well-known, so a significant issue in this area is the miniaturization of process units to meet the mission requirements of the DoD. It was the consensus of the working group that the mesoscopic fuel processors described by PNL are at least 2-3 years away from laboratory demonstration. The working group felt that power plants of 100 W and above were likely to be developed, but that the likelihood decreased as the power requirements grew smaller because of the uncertainty of scaling down process equipment and the ancillary equipment required.
5. RESULTS AND RECOMMENDATIONS OF WORKING GROUPS
WORKING GROUP 1: Physical/Absorptive Systems
Physical/Absorption Working Group

The participants in Session 1 were:

Mark Debe, Chair 3M Company
Mike Heben, Scribe National Renewable Energy Lab
Thomas George Sandia National Laboratory
Brian James Directed Technologies
Michael Monsler W.J. Schaeffer Associates
Jim Ohi National Renewable Energy Lab
Jim Reilly Brookhaven National Laboratory
Nelly Rodriguez Northeastern University
Jim Stephens CECOM, U.S. Army
John Van Zee University of South Carolina
Ricardo Schwarz Los Alamos National Laboratory
Alan Bartolome U.S. Army, Ft. Meade, MD
Henry DeRonck International Fuel Cells
Jack Evert 3M Company
Michael Heben National Renewable Energy Lab
Art Kaufman H-Power
Myung Lee Savannah River Site
Fred Mitlitsky Lawrence Livermore Natl. Lab.
S.R. Narayanan Jet Propulsion Lab, Battery Group
Krishna Sapru Ovonics/Energy Conversion Devices
Kenneth Stroh Los Alamos National Laboratory
John Cleland Research Triangle Institute
Valentin Serebrennikov MAGNIC International, Inc.
Xiao Lu MER Corporation

The Physical/Absorption Working Group considered ten technologies belonging to four classes of materials for hydrogen storage. These include pressurized tanks, pressurized glass microspheres, four types of metal hydrides, and three types of carbon based materials. Material characteristics and mission-specific weight and volume estimates are summarized in Tables 1 and 2, found in the Executive Summary. Tables 4 and 5 outline evaluations of the individual technologies and issues associated with each system and are presented at the end of this section.

Pressurized Tank

The pressurized tank technology has been developed to an advanced degree and was considered to have the highest proven H2 yield potential, approaching 0.18 kg H2 per kg of containment and peripherals (Table 1). This is based on carbon-graphite composite fiber-plus-resin overwrapped tanks with lightweight plastic liners, and a safety factor (burst pressure/operating pressure) of 1.5 for tanks pressurized at 15,000 psi. Fabrication issues for this technology include demonstration of fully metallized polymer bladder liners, determination of the appropriate safety
design factor (1.5 versus 2.25), availability of lightweight pressure reducers and solenoid valves for high pressure operation, and cost (Table 4). Implementation issues include safety (burst and shrapnel hazards), fast filling heating rise (40% increase in tank temperature), thermal cycling and the need to have a central (mobile) station available for refilling (Table 5).

Glass Microspheres

The glass microsphere technology is also storage by pressurized containment, however the containers are hollow glass bubbles (microspheres) with diameters on the order of 50 micrometers (0.002 inches) with wall thicknesses of about 1 micrometer. It is believed possible to pressurize bubbles up to 9000 psi with sufficiently high glass strength and sufficiently low aspect ratio (diameter/wall thickness). With packing factors around 0.55, the internal volume of the bubbles available for hydrogen storage is approximately 0.47 of the outer container, giving hydrogen storage per unit volume equivalent to a pressurized tank approaching 4200 psi. However the outer containment does not have to be able to withstand much more than ambient pressure. This is considered to offer a significant safety advantage. The theoretical hydrogen yield of containerless or unsupported bubbles holding 9000 psi at 300 K would be 0.087 kgH₂/kg of bubbles, or 8.7 wt% (Table 1).

One possible means for delivery and release of the hydrogen was described in which the bubbles are coated on a thin tape support and rolled into a cartridge. The hydrogen is released by fracturing the bubbles, e.g. by passing the tape through a pair of crushing rollers, at the rate required by the fuel cell and its load, using feedback control of a drive motor. When the tape is expended, it can be replaced easily by a new cartridge. The hydrogen release can be quickly stopped and started as often as necessary, and operated at ambient temperatures and pressures.

The primary issue centered on demonstrating the potential for large-scale manufacturing processes for both filling the bubbles and for fabricating bubbles of sufficient quality to withstand maximal hydrogen pressures of >6000 psi (Table 4). Filling involves heating the bubbles in high-pressure hydrogen. The permeability of hydrogen through the glass walls is a strong function of temperature and increases dramatically above about 250°C. Cooling the bubbles while under pressure locks the hydrogen inside. At room temperature the shelf life of the hydrogen-filled microspheres is years, but could be an issue for storage in hot environments for long periods of time.

Metal Hydrides

Two subclasses of hydrides were considered; reversible (low- and high-temperature metal hydrides) and irreversible (chemical and thermal hydrides). With the low- and high-temperature metal hydrides, increasing the hydrogen pressure or lowering the alloy temperature will cause the latter to absorb hydrogen. Decreasing the hydrogen pressure or raising the alloy temperature will cause hydrogen to be released. Plots of dissociation pressure versus reciprocal temperature conveniently fall into two groups for most metal hydride alloys, viz. high and low temperature. The high-temperature alloys are characterized by lower atomic weights and stronger (ionic) metal-hydrogen bonds, and therefore have the highest weight percent hydrogen. The low-temperature alloys have lower hydrogen yields, being characterized by covalent bonds and higher atomic weights.

Low-Temperature Metal Hydrides (reversible)- Low-temperature metal hydrides have been extensively studied for hydrogen storage. LaNi₅ is an intermetallic hydride considered most useful for hydrogen storage for PEM fuel cells, operating in the 50-80°C range. Hydrogen is stored
when the alpha phase (LaNi$_5$) converts to the beta phase, LaNi$_5$H$_6$, reaching a containerless theoretical hydrogen yield of 1.75 wt % (Table 1). All such reactions are exothermic, causing the compounds to heat up when loaded and cool when the hydrogen is extracted, so heat must be provided to release the hydrogen. A typical dissociation pressure at 50°C would be 4 atmospheres, requiring low pressure containment. No significant issues were identified other than the relatively low hydrogen storage capacity. The relatively low temperatures and pressures imply modest system integration issues (Table 5).

High-Temperature Metal Hydrides (reversible)- High-temperature metal hydrides offer considerably higher theoretical hydrogen storage yields (up to 6 wt%) than the low-temperature variety, but at the expense of additional ancillary heat sources and exchangers to facilitate dehydriding at temperatures in excess of 320°C (Table 1). A primary material example of this class which was considered is Mg - 23atm% Ni, with a theoretical yield of 5.4 wt% (no containment). A proposed means for supplying the dehydriding heat is a Thermite type heater, embedded in the metal hydride container. Typical dissociation pressures are close to 1 to 3 atmospheres so only modest pressure containment is required. The most significant issue identified was lack of stop/start flexibility because the high temperature generation device cannot be shut down after initiation. Research or resource needs identified were to develop advanced catalysts and heat sources.

The next two hydride cases discussed by Group 1 concern NaAlH$_4$ and AlH$_3$. These materials may have been more appropriately addressed Session 2, but were considered here with the metal hydrides. The source material is effectively consumed in the irreversible hydrogen release reaction.

NaAlH$_4$ + water (irreversible) - Hydrogen is spontaneously released when water contacts NaAlH$_4$. The proposed system discussed was a wafer or doughnut shaped solid pellet, with which contact with water could be controlled by a pressure release valve. The hydrogen is generated rapidly so the system has a rapid response time. The effect of the hydrogen pressure control valve is to limit the amount of water able to contact the surface of the pellet due to hydrostatic movement of the water column, which makes the device orientation dependent, unless designed with a bladder of some type. The theoretical hydrogen yield is 6 wt % without containment. The largest issues were believed to be system integration related, including supply of the water (Table 4).

AlH$_3$ (irreversible) - Igniting AlH$_3$ (dry) can potentially liberate 9 wt % hydrogen. The high hydrogen storage comes at the expense of control of the hydrogen release rate. Pressure regulator, reactor, binder and igniter were identified as required ancillaries (Table 1). System integration issues, ignition mechanisms and burn kinetics were discussed as areas of needed research/resources (Table 4).

Carbon-Based Storage Materials

Fullerenes- Carbon molecular species C$_{60}$ and C$_{70}$, and other related closed-cage compounds collectively known as fullerenes, can be chemically hydrogenated at temperatures near 400°C with H$_2$ and elevated pressures. Fullerenes are currently synthesized by several methods including arc-discharge with an anticipated future cost of $25/kg for large-scale production. A containerless storage density of 7.7 wt% is a theoretical maximum corresponding to a stoichiometry of C$_{60}$H$_{60}$, while a density of 6 wt% has been experimentally achieved with a H$_2$ pressure of 3500 psi at 350°C (Table 1). Future goals in this area include reduction of the hydrogenation pressure.
and the hydrogenation/dehydrogenation temperatures. These reactions may be facilitated through the use of catalysts and the inclusion of solvents. Scale-up of production is a focal point for future work, as is system integration (Table 4). Integration issues include the need for a heater to liberate H₂ and the need for remote H₂ recharging.

Single Wall Nanotubes—Single wall carbon nanotubes are relatives of the fullerene-family of carbon nanostructured materials. They consist of individual curved sheets of graphite which are seamlessly joined to form cylinders with diameters of 1 to 2 nm. These structures are currently grown in high-yield (~90%) using laser vaporization techniques, but can also be produced with other methods. The ends of the tubes are normally capped by fullerene hemispheres which can be removed by oxidation. Once opened, hydrogen can diffuse into and condense within the interiors of the nanotubes at room temperatures. The binding energy for hydrogen is ~ 5 times higher inside the tube than for H₂ adsorbed on a graphitic plane.

Theoretical storage densities are a function of nanotube diameter and range between 2 and 5 wt% without considering a container (Table 1). Experiments on powders containing small quantities of nanotubes indicate storage densities between 5 and 10 wt% on a nanotube weight basis. Scale-up of nanotube synthesis is being pursued in numerous laboratories and advances will be necessary for nanotubes to become a viable H₂ storage option. Since the material acts as a sponge for H₂, heat management is not expected to be a problem and storage pressures will be low. A supply of H₂ at a relatively low pressure (e.g. 100 psi) will be required for refueling.

Graphite Nanofibers—Graphite nanofibers are grown by the decomposition of a gaseous mixture of C₂H₂/CO on a metal catalyst particle at temperatures around 600°C. Carbon deposited on one side of the particle, diffuses through the metal and precipitates as platelets of graphite on the opposite side of the particle. It is proposed by the inventors that hydrogen diffuses into the fibers, between the graphite platelets, rapidly and effectively by a capillary condensation process. It is claimed that up to 50 wt % (Table 1) hydrogen can be absorbed by the fibers by exposing them to several hundred atmospheres of hydrogen for 24 hours. Recovery of 80-85% of the hydrogen is reported to occur upon reduction of the pressure to near atmospheric conditions. The remaining 15% is said to be recoverable by heating to over 500°C. (The hydrogen loading and release properties have not been reported in peer reviewed literature). If the hydrogen storage yields (50 wt %) are valid, then this material represents by far the best option for hydrogen storage, implying an incredible association of 12 hydrogen atoms per carbon atom in a non-chemically bound state. Other issues identified include production scale-up, surface treatment and understanding the effect of contaminants (Table 4).
Table 4: Evaluation

<table>
<thead>
<tr>
<th>Technology</th>
<th>Time to implementation</th>
<th>Research/Resources Needed</th>
<th>Probability of Success for Stated Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressurized tanks (1.5 safety factor @300 K)</td>
<td>Short</td>
<td>Full metallized polymer bladder, light weight hardware</td>
<td>Likely</td>
</tr>
<tr>
<td>Glass bubbles on film roll @9000 psi</td>
<td>Medium</td>
<td>Bubble scale-up, batch high-pressure filling, H₂ release mechanism</td>
<td>Likely</td>
</tr>
<tr>
<td>Low-temperature metal hydride</td>
<td>Short</td>
<td></td>
<td>Likely</td>
</tr>
<tr>
<td>High-temperature metal hydride (Mg-23% Ni with thermite)</td>
<td>Short</td>
<td>Catalysts, thermite</td>
<td>Likely</td>
</tr>
<tr>
<td>NaAlH₄ (with water)</td>
<td>Short</td>
<td></td>
<td>Likely</td>
</tr>
<tr>
<td>AlH₃ (with air)</td>
<td>Short</td>
<td>Ignition, kinetics</td>
<td>Likely</td>
</tr>
<tr>
<td>Fullerene</td>
<td>Medium</td>
<td>Production scale-up</td>
<td>Possible</td>
</tr>
<tr>
<td>Single wall nanotubes</td>
<td>Long</td>
<td>Production scale-up, effect of contaminants</td>
<td>Possible</td>
</tr>
<tr>
<td>Graphite nanofibers</td>
<td>Short</td>
<td>Production scale-up, surface treatments, effect of contaminants</td>
<td>Likely</td>
</tr>
</tbody>
</table>
Table 5. Comparative Aspects.

Rankings: 3 = Significant issue; 2 = Moderate issue; 1 = Small issue; 0 = Not Applicable.

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>Pressurized tanks</th>
<th>Glass Bubbles</th>
<th>Low-temperature metal hydride</th>
<th>High-temperature metal hydride (Mg-23% Ni)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Shelf life/ stability under storage</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2. Response time/ load following</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3. Start-Stop flexibility and response time</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4. Safety</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5. Reload time</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6. Environmental restraints (operating T range; air quality required; orientation sensitivity; recyclable or disposable)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7. System integration constraints (Thermal match to fuel cell; water balance; parasitic power requirement)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8. Thermal signature</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9. Manufacturability</td>
<td>1</td>
<td>3 (filling)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10. Cost</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11. Refueling</td>
<td>3</td>
<td>NA</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 5 (continued). Comparative Aspects.

Rankings: 3 = Significant issue; 2 = Moderate issue; 1 = Small issue; 0 = Not Applicable.

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>NaAlH₄ / AlH₃</th>
<th>Fullerenes</th>
<th>Single wall nanotubes</th>
<th>Graphite Fibers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Shelf life / stability under storage</td>
<td>0/1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2. Response time/ load following</td>
<td>0/1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3. Start- Stop flexibility and response time</td>
<td>1/1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4. Safety</td>
<td>1/1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5. Reload time</td>
<td>0/0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6. Environmental restraints (operating T range; air quality required; orientation sensitivity; recyclable or disposable)</td>
<td>1/0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>7. System integration constraints (Thermal match to fuel cell; water balance; parasitic power requirement)</td>
<td>1/2</td>
<td>1</td>
<td>3 (release pressure)</td>
<td>1</td>
</tr>
<tr>
<td>8. Thermal signature</td>
<td>0/0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9. Manufacturability</td>
<td>0/0</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>10. Cost</td>
<td>1/1</td>
<td>3</td>
<td>3</td>
<td>1 - 2</td>
</tr>
<tr>
<td>11. Refueling</td>
<td>NA/NA (reactor reusable)</td>
<td>3</td>
<td>0</td>
<td>2 - 3</td>
</tr>
</tbody>
</table>
Metal Hydride Hydrogen Storage
for
Small Portable Power Systems

Contacts:

Krishna Sapru, Ph.D.
Director, Thermal Hydrides and Thermoelectrics

Ned T. Stetson, Ph.D.
Senior Research Scientist, Thermal Hydrides and Thermoelectrics
Materials and Manufacturing Technology

Materials development, design and fabrication of pilot line and production equipment for licensees and other strategic partners including United Solar, GM Ovonic, etc.
Technology: **Metal Hydrides**

Strengths:

- Over 15 years experience developing and optimizing metal hydrides for various applications;

- Large-scale manufacturing capabilities;

- Multiple production technique capabilities-
 - High temperature melt techniques,
 - Rapid quench techniques,
 - Mechanical alloying techniques,
 - Thin film technologies;

- Patented and proprietary technologies-
 - High density powder bed packing techniques,
 - High hydride bed thermal conductivity,
 - Modular designs - adaptable capacities;

Contact:

Dr. Krishna Sapru
Director, Thermal Hydrides and Thermoelectrics
High Density and Safe Hydrogen Storage for Unmanned Undersea Vehicles and Electric Land Vehicles

DARPA SBIR Phase II Project
Contract No. DAAH01-95-C-R150

Development of a prototype hydrogen storage device utilizing advanced Mg-based metal hydrides with > 5 wt. % (H/M) storage capacity. Heat for the hydrogen desorption supplied by combustion of a portion (~31%) of the stored hydrogen.
Dehydrating Kinetics at 350°C

- MA = Mechanically Alloyed
- Mg, <45 μm, MA'
- Mg, <45 μm, MA''
- Mg, <150 μm, MA
- Mg 150-850 μm

Time, min
300°C Dehydriding Kinetics

![Graph showing dehydriding kinetics for Mg-alloys at 300°C.](image)
Schematic of Mg-based hydride hydrogen storage test module.

Legend: 1- Hydrogen cylinder; 2- 10000 sccm flow controller; 3- 5 psig check valve; 4- 1000 sccm flow controller; 5- pressure regulator; 6- pressure gauge; 7- pressure relief valve; 8- 2 μm filter; 9- insulated SS tube with heat tape; 10- voltage meter; 11- current meter; 12- variac power source; 13- thermocouples; 14- multiple input digital temperature meter
Mg-based Alloy Prototype Test Module
Gas discharged and temperature vs. Energy input; discharge rate of ~750 sccm H₂
Hydrogen Desorption of a 100 standard liter prototype canister

300 sccm discharge rate, submerged in water bath
HYDROGEN STORAGE IN METAL HYDRIDES

Ricardo B. Schwarz
Center for Materials Science, Mail Stop K765
Los Alamos National Laboratory
Los Alamos, NM 87545

Summary of the Presentation:

We describe an integrated hydrogen storage systems consisting of a hydrogen storage medium and a heat delivery system (needed to activate the release of the hydrogen). The hydrogen is stored in a magnesium-nickel alloy prepared by mechanical alloying (a high-energy ball milling technique). The heat needed for the hydride decomposition is provided by a thermite powder which burns at a controlled rate when exposed to air. The hydride and thermite are contained inside concentric thin-wall stainless steel tubes. The thermite is located in the inner tube. The hydride is located between the inner and outer tubes. This way, all the heat delivered by the thermite is used by the hydride. The hydride stores 5.5 weight percent hydrogen.

Work supported by the Office of Research and Development (ORD)
PROGRAM GOALS:

DESIGN A SELF-CONTAINED HYDROGEN DELIVERY SYSTEM WITH THE FOLLOWING CHARACTERISTICS:

1. GRAVIMETRIC DENSITY > 600 Wh / kg
2. VOLUMETRIC DENSITY > 1200 Wh / liter
3. SYSTEM ENERGY STORAGE 1.3×10^6 Wh

SELECTED APPROACH

HYDROGEN DELIVERY FROM LIGHT METAL HYDRIDE

ENTHALPY OF DECOMPOSITION: THERMITE OXIDATION

\[
\text{Mg}_2\text{NiH}_4 \xrightarrow{\Delta H @ 250^\circ C} \text{H}_2 + \text{Thermite} \\
\text{Thermite} \xrightarrow{O_2 (\text{air})} \text{H}_2 + \text{Fuel Cell} \\
\text{Fuel Cell} \xrightarrow{\text{Electric power}} O_2 (\text{air}) + H_2O
\]
Comparison of the Hydrogen Storage Capacity in LaNi$_5$ and a two-phase Mg-Mg$_2$Ni alloy

LaNi$_5$ tested at 0°C
MgNi$_{0.1265}$ tested at 300°C
CONCLUSIONS

- Nanosized two-phase mixtures of Mg and Mg$_2$Ni prepared by mechanical alloying (MA) stores 5.4 weight percent hydrogen
- Alloy powder Mg$_{60}$Si$_{40}$ (at %), also prepared by MA, burns in air, delivering 18 kJ/g
- Modeling of the concentric hydrogen delivery system indicates that it should deliver:
 - 851 Wh/kg (142% of specifications)
 - 1087 Wh/lt (91% of specifications)

CURRENT WORK

- Testing of Cell performance
- Design electronic feedback system (computer controlled; can be integrated into a chip)
- Research alternative thermite alloys materials
Hydrogen Storage in Fullerenes

Materials & Electrochemical Research (MER) Corporation
Tucson, Arizona
Principle of Hydrogen Storage Using Fullerenes

- Hydrogen charge and discharge to/from fullerenes is achieved by fullerene hydrogenation and dehydrogenation processes.

\[C_{60} + \frac{x}{2} H_2 \leftrightarrow C_{60}H_x \quad x = 2-54 \]

- The advantages of hydrogen-fullerene system are the high storage capacity (up to 7% by weight), stable at ambient conditions, and non-toxic.
Fullerene Hydrogenation and Dehydrogenation

- Hydrogenation can be achieved by high temperature and pressure process to form fullerene hydrides, C\textsubscript{60}H\textsubscript{48}. This product is stable in ambient condition.

- Dehydrogenation can be achieved by heating fullerene hydride C\textsubscript{60}H\textsubscript{x} to 350 to 425°C temperature.

- 57.9 kJ/mole H\textsubscript{2}, or 20% of hydrogen heating value is required for dehydrogenation.
Hydrogen Storage Capacities Based on Fullerene Hydrides Considering Energy Balance

<table>
<thead>
<tr>
<th>wt%</th>
<th>kg/m³</th>
<th>mAh/gm</th>
<th>mAh/cc</th>
<th>Wh/kg</th>
<th>Wh/l</th>
<th>wt for 430KWh</th>
<th>volume for 430KWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>73.1</td>
<td>1353</td>
<td>2272</td>
<td>943</td>
<td>1590</td>
<td>455 kg</td>
<td>271 liter</td>
</tr>
</tbody>
</table>

---MER Corporation, Tucson, AZ---
Theoretical Capacities-Orlando Meeting Format

gravimetric density 6.25%
volumetric density 91.4 kg/m³
 Ah/kg 1,691
 Wh/kg 1,031
 Wh/L 1,739
thermal burden 57.9 kJ/mole H₂
Theoretical Capacities-Orlando Meeting Format-Cont’d

Wt for a 300W, 10kWh 8.53 kg
Vol. for a 300W, 10kWh 5.69 liter
Wt for a 100W, 1kWh 0.853 kg
Vol. for a 100W, 1kWh 0.569 liter
Wt for a 10W, 90kWh 76.77 kg
Vol. for a 10W, 90kWh 51.21 liter
Conclusions

- It is demonstrated that high hydrogen storage capacity can be achieved using fullerene hydrides.
- Although thermodynamically feasible to dehydrogenate hydrogen from fullerene hydrides at moderate temperatures (~100°C), certain limitations must be overcome before it can be achieved experimentally (Now being investigated under DARPA program). However, hydrogen release can be achieved around 400°C.
- The key issue is to develop a practical method to supply the heat for H₂ release (e.g..., Los Alamos approach)
WORKING GROUP 2: Chemical Hydrides
CHEMICAL HYDRIDES AND RELATED MATERIALS

The participants in Session 2 were:

Oliver Murphy, Chair
Omourtag Velev, Scribe
Deryn Chu
Ottmar Dengel
Raouf Loutfy
Michael Matthews
Subash Narang
Roger Pyon
Ron Akers
Otto Adlhart
Werner F. Beckert
Darren Browning
Tom Feldman
Bob Hamlen
Craig Jensen
William Kaska
Gary Mepsted
Bob Nowak
Darlene Slattery
Walter Taschek
John Wilkes
Lynntec
Texas A&M University
U.S. Army Research Laboratory
Royal Systems
MER Corporation
University of South Carolina
SRI
PRC
Dismounted Battle Lab
A.F. Sammer
Royal Systems
Defense Research Agency
Hysorb Technologies
U.S. Army Research Laboratory
University of Hawaii
UC Santa Barbara
Electrochemical Power Sources
DARPA
Florida Solar Energy Research
A.F. Sammer Consultant
U.S. Air Force Academy

As part of the Hydrogen Storage and Generation Workshop, Working Group 2 was charged with assessing and evaluating chemical hydrides and related materials to determine their suitability as sources of hydrogen for small fuel cell power sources. The technologies considered by this Working Group, under the general title Chemical Hydrides and Related Materials, are listed below. Material characteristics and estimates of weight and volume for each technology are outlined in Tables 1 and 2, Executive Summary. Tables 6-8, in which evaluation of the technologies, comparative aspects and systems issues are summarized, are presented at the end of this report.

- Silanes-Boranes/Hydrolysis
- Solid State Chemical Hydrides
- Cycloalkanes/Dehydrogenation
- Classical Hydrides/Hydrolysis

During the first day-and-a-half of the Workshop, presentations on each of the technologies identified in this list were made to all the Workshop participants by experts actively working in each area of technology. After extensive deliberations during the afternoon of the second day,
the findings, conclusions, and recommendations of Working Group 2 were presented to all the Workshop participants on the third day of the Workshop. These are discussed in the following section.

Findings, Conclusions, and Recommendations of Working Group 2

Material characteristics for the various technologies considered are outlined in Table 1. The theoretical hydrogen yield (kg H₂/kg Materials) varied from 0.073 for classical hydrides/hydrolysis and cycloalkanes/dehydrogenation, to 0.1 for silanes-boranes/hydrolysis and solid state chemical hydrides. The Ah/kg materials and Wh/kg materials (at 0.7 V) varied in a similar manner. In terms of Wh/L materials (at 0.7 V), the solid state chemical hydrides yielded the highest value at 1876 while the classical hydrides/hydrolysis gave rise to the smallest value, 460. Thus, in terms of available energy density, the classical hydrides/hydrolysis are the least attractive.

Although indicated as occurring at room temperature, technologies involving hydrolysis will react even more readily at elevated temperatures. Addition of a small amount of an alcohol to water would facilitate hydrolysis reactions taking place even at temperatures well below the normal freezing point of pure water. While the solid state chemical hydrides would yield hydrogen at any temperature, the cycloalkanes/dehydrogenation would yield hydrogen only upon being heated in the presence of a catalyst at temperatures in the range 150 - 250°C. Of the technologies considered, only the cycloalkanes/dehydrogenation were endothermic. The required ancillaries for solid state chemical hydrides would include a holding tank capable of storing H₂ gas at high pressure (2000 psi) while the cycloalkanes/dehydrogenation would need a H₂ gas permeable membrane. For three of the technologies, thermal management is an issue that needs to be addressed.

Estimates of weight and volume for each technology for three specific missions or applications (300 W, 10 kWh; 100 W, 1 kWh; and, 10 W, 90 kWh) are presented in Table 2. Based on this analysis, the silanes-boranes/hydrolysis appear to be the most attractive. However, as shown in the table, the range of estimates for the other technologies is small.

Each of the technologies was evaluated in order to determine the time required to demonstrate a prototype system in the field, the research/resources needed, and the probability of success for specific missions or applications. The results of this evaluation are presented in the Executive Summary and also in Table 6. For both the 300 W, 10 kWh, and the 100 W, 1 kWh applications, the time for implementation of each technology was considered to be short (1-3 years). However, for the 10 W, 90 kWh application, the time for implementation was viewed as being at least medium (3-5 years). The research/resources needed to implement each technology are identified in the table. An important and attractive feature of the cycloalkanes/dehydrogenation technologies is that they are the only truly recyclable technology of those considered by the Working Group. The probability of success for each technology for the stated applications is also given in Table 6.

Various parameters associated with each technology were compared and ranked on a scale of 0 - 3, where 0 equals not applicable, 1 equals small issue, 2 equals moderate issue, and 3 equals significant issue. The results of this analysis are presented in Table 7. For all technologies, two parameters ranked moderate-to-significant; these were safety and thermal signature. Because of the extreme sensitivity of state-of-the-art infrared sensors, the thermal signatures associated with the technologies may be overly stated, particularly when compared with heat en-
gine-based power sources. Similarly, the safety aspect of the technologies must be put in per-
spective with other electrical power sources used by the Army, e.g., the lithium/sulfur dioxide
primary battery. The latter battery system must be carefully handled when in use and when be-
ing disposed. Aspects of the technologies of moderate issue were response time/load following
capabilities, environmental restraints, and system integration constraints. Cost varied over the
whole ranking range, depending on the maturity of the technology considered.

Systems issues for the various technologies evaluated are presented in Table 8. Three of
the technologies are, in principle, capable of operating over a wide temperature range (-40 -
+75°C) on using an appropriate design. The fourth technology operates only at elevated tem-
peratures, most suitability in the range 150 - 250°C. However, the latter technology is the only
one that is truly recyclable and has a built-in safety feature in that it can only produce hydrogen
at low hydrogen gas pressures. As stated earlier, three of the technologies give rise to exother-
ic thermal loads that range from low to high while the fourth technology is endothermic. The
two hydrolysis-based technologies involving either silanes-boranes or classical hydrides give rise
to user defined hydrogen gas pressures on producing hydrogen. In contrast, the solid state
chemical hydrides yield high hydrogen gas pressures (approximately 2000 psi) and the cycloal-
kanes/dehydrogenation are low pressure (less than 60 psi) systems.
<table>
<thead>
<tr>
<th>Technology</th>
<th>Time to implementation</th>
<th>Research/Resources Needed</th>
<th>Probability of Success for Stated Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silanes-Boranes/ Hydrolysis</td>
<td>Short-Medium</td>
<td>Thermal and Kinetic Data, System Design, Synthesis</td>
<td>Likely for all Three Applications</td>
</tr>
<tr>
<td>Solid State Chemical Hydrides</td>
<td>Short-Medium</td>
<td>System Design for Long Duration Missions, Synthesis for More Energetic Systems, Thermal Management</td>
<td>Likely for Applications 1 and 2, Possible for Application 3</td>
</tr>
<tr>
<td>Cycloalkanes/ Dehydrogenation</td>
<td>Short-Medium</td>
<td>H₂ Permeable Membrane, Catalysts, Cyclability, System Design, Thermal Management</td>
<td>Likely for all Three Applications</td>
</tr>
<tr>
<td>Classical Hydrides/ Hydrolysis</td>
<td>Short-Medium</td>
<td>System Design, Thermal Integration, Control, Ligand Chemistry, Synthesis</td>
<td>Likely for Applications 1 and 2, Possible for Application 3</td>
</tr>
</tbody>
</table>

Ligands - Possible
Table 7. Comparative Aspects

Rankings: 3 = Significant issue; 2 = Moderate issue; 1 = Small issue; 0 = Not Applicable

<table>
<thead>
<tr>
<th>Technology</th>
<th>Silanes-Boranes/ Hydrolysis</th>
<th>Solid State Chemical Hydrides</th>
<th>Cycloalkanes/ Dehydrogenation</th>
<th>Classical Hydrides/ Hydrolysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Shelf life/stability under storage</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2. Response time/load following</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3. Flexibility in use (ease of stop/start; number of cycles; cycle speed)</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4. Safety</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5. Recharge time</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6. Environmental restraints (operating T range; air quality required; orientation sensitivity; recyclable or disposable)</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7. System integration constraints (Thermal match to fuel cell; water balance; parasitic power requirement)</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8. Thermal signature</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9. Manufacturability</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10. Cost</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
For the four technologies evaluated, the reactant and product phases are identified. In each case, the primary and desired product is hydrogen gas. For the silanes-boranes/hydrolysis, the reactants are in the liquid phase while the byproducts can be either in the liquid or solid phase. In the case of the solid state chemical hydrides, the reactant mass consists of well mixed solid powders that yield solid byproducts upon reaction. The cycloalkanes are liquids that undergo a dehydrogenation reaction in the presence of either a homogeneous or heterogeneous noble metal-based catalyst. The byproduct formed can be either a liquid or a solid that can readily be rehydrogenated. Reactants in the case of the classical hydrides/hydrolysis are usually a solid (the hydride) to which a liquid (water) is added in a controlled manner. The byproduct formed is a hydrated oxide or oxyhydroxide.

Table 8. Systems Issues for Chemical Hydrides and Related Materials

<table>
<thead>
<tr>
<th>Technology</th>
<th>Reactant 1</th>
<th>Reactant 2</th>
<th>Reactant 3</th>
<th>Product 1</th>
<th>Product 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silanes-Boranes/ Hydrolysis</td>
<td>Liquid</td>
<td>Liquid</td>
<td>N/A</td>
<td>Gas</td>
<td>Liquid/Solid</td>
</tr>
<tr>
<td>Solid State Chemical Hydrides</td>
<td>Solid</td>
<td>Solid</td>
<td>N/A</td>
<td>Gas</td>
<td>Solid</td>
</tr>
<tr>
<td>Cycloalkanes/ Dehydrogenation</td>
<td>Liquid</td>
<td>N/A (Catalyst)</td>
<td>N/A</td>
<td>Gas</td>
<td>Liquid/Solid</td>
</tr>
<tr>
<td>Classical Hydrides/ Hydrolysis</td>
<td>Solid</td>
<td>Liquid</td>
<td>N/A</td>
<td>Gas</td>
<td>Solid</td>
</tr>
</tbody>
</table>
John Wilkes, Air Force Academy contribution to group 2 discussions

<table>
<thead>
<tr>
<th>Technology</th>
<th>Theoretical H₂ yield (kg H₂/kg materials)</th>
<th>Ah/kg materials</th>
<th>Wh/kg materials (at 0.7 V)</th>
<th>Wh/L materials (at 0.7 V)</th>
<th>Thermal Burden kJ/kg H₂</th>
<th>Required Ancillaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid H₂</td>
<td>1</td>
<td>2.659 x 10⁴</td>
<td>1.861 x 10⁴</td>
<td>1.30 x 10³</td>
<td>+4408</td>
<td></td>
</tr>
<tr>
<td>LiAlH₄</td>
<td>0.2125</td>
<td>5.650 x 10³</td>
<td>3.955 x 10³</td>
<td>3.401 x 10³</td>
<td>-6.246 x 10⁴</td>
<td>1.8 kg/kg H₂</td>
</tr>
<tr>
<td>other chem hydride</td>
<td>>0.2125</td>
<td>>5.650 x 10³</td>
<td>>3.955 x 10³</td>
<td>>3.401 x 10³</td>
<td>-7.721 x 10⁴</td>
<td>1.8 kg/kg H₂</td>
</tr>
<tr>
<td>LiBH₄</td>
<td>0.06714</td>
<td>1.785 x 10⁵</td>
<td>1.249 x 10³</td>
<td>1.428 x 10³</td>
<td>-3.64 x 10⁴</td>
<td>1.8 kg/kg H₂</td>
</tr>
</tbody>
</table>

Table 2: Mission-Specific Estimates

<table>
<thead>
<tr>
<th>Technology</th>
<th>Est. wt. (kg) for a 300 W, 10 kWh system</th>
<th>Est. vol. (L) for a 300 W, 10 kWh system</th>
<th>Est. wt. (kg) for a 100 W, 1 kWh system</th>
<th>Est. vol. (L) for a 100 W, 1 kWh system</th>
<th>Est. wt. (kg) for a 10 W, 90 kWh system</th>
<th>Est. vol. (L) for a 10 W, 90 kWh system</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiAlH₄</td>
<td>5.4 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>other chem hydride</td>
<td><5.4 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LiBH₄</td>
<td>13.8 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Evaluation

<table>
<thead>
<tr>
<th>Technology</th>
<th>Time to Implementation</th>
<th>Research / Resources Needed</th>
<th>Probability of Success for Stated Applications:</th>
</tr>
</thead>
</table>
| LiAlH₄ | short | - Thermal decomposition and control
 | | Possible |
| other chem hydride | short | - Synthesis scale-up
 | | Likely |
| LiBH₄ | short | - Cost reduction
 | | Possible |

Table 4: Hydrogen Storage Densities

| Form | Example | Hydrogen Density
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>g_{H_2} / cm^3</td>
</tr>
<tr>
<td>Gas</td>
<td>$H_2(g), P = 1 \text{ atm}, t = 20 , ^\circ\text{C}$</td>
<td>0.00008987</td>
</tr>
<tr>
<td></td>
<td>$H_2(g), P = 2000 \text{ psi}, t = 20 , ^\circ\text{C}$</td>
<td>0.0098</td>
</tr>
<tr>
<td></td>
<td>$H_2(g), P = 14,000 \text{ psi}, t = 20 , ^\circ\text{C}$</td>
<td>0.048</td>
</tr>
<tr>
<td>Liquid</td>
<td>$H_2(l), P = 1 \text{ atm}, t = 254 , ^\circ\text{C}$</td>
<td>0.070</td>
</tr>
<tr>
<td>Solid</td>
<td>$H_2(s), P = 7 \text{ kPa}, T = 13.8 \text{ K}$</td>
<td>0.087</td>
</tr>
<tr>
<td>Metal Hydride</td>
<td>PdH₂</td>
<td>0.0503</td>
</tr>
<tr>
<td>Metal Hydride</td>
<td>TiH₂</td>
<td>0.156</td>
</tr>
<tr>
<td>Chemical Hydride</td>
<td>LiAlH₄</td>
<td>0.193</td>
</tr>
<tr>
<td>Chemical Hydride</td>
<td>LiBH₄</td>
<td>0.252</td>
</tr>
<tr>
<td>Metallic</td>
<td>$H, P = 1.4 \text{ Mbar}, T = 3000 \text{ K}$</td>
<td>0.5</td>
</tr>
<tr>
<td>Graphite Inclusion</td>
<td>$H_2/\text{C(gr)} \text{ nanofibers}$</td>
<td>6.12</td>
</tr>
</tbody>
</table>
Hydrogen Storage via Reversible Cycloalkane
Dehydrogenation Catalyzed by PCP Pincer Complexes

Craig M. Jensen, Departement of Chemistry, University of Hawaii

A major concern in the development of hydrogen as a fuel is the problem of hydrogen storage. Solid hydrogen storage systems based on metal hydrides are safer and require far less volume than either high pressure or cryogenic storage systems. However, hydrides of metals and alloys which reversibly release hydrogen at adequate rates contain too low of hydrogen weight percentages for the realization of hydrogen as an energy carrier. We are developing nonclassical polyhydride metal complexes as hydrogen storage materials. This class of materials can be tailored to reversibly release hydrogen at very favorable rates and temperatures both in solution and the solid state [1-4]. While attempting to develop complexes of improved available hydrogen densities, it was discovered that some polyhydride complexes act as catalysts for the low temperature, reversible dehydrogenation of cycloalkanes to aromatic hydrocarbons [5]. This catalytic system could be the basis for a low temperature, hydrogen storage system with a available hydrogen density greater than 7 weight percent.

We have found that iridium dihydrido complexes containing P-C-P pincer ligands are unusually robust and active catalysts for transfer dehydrogenation of cycloalkanes (cyclohexane, methylcyclohexane, decalin, and dicycolhexyl) to aromatic hydrocarbons (benzene, toluene, naphthalene, and biphenyl) [5]. For example, IrH4{C6H3-2,6-(Bu2PC2H4)2} (1) catalyzes the dehydrogenation of methylcyclohexane to methylcyclohexenes and toluene at rates of 186 and 94 turnover/h respectively at 200 °C. Appreciable activity was found at temperatures as low as 100 °C.

We have also found that 1 catalyzes the reverse reaction, the hydrogenation of arenes under 10 atm of hydrogen at 150 °C. The reactivity observed for the pincer
complex thus represents the basis for a hydrogen storage system with >7 weight percent available hydrogen content which operates under mild conditions. For example, we have found that 1 is a catalyst for the dicyclohexyl-biphenyl system seen in Scheme 1. This

Scheme 1

\begin{align*}
200 \, ^\circ C & \rightarrow 6 \text{H}_2 \\
\text{Cycloalkane} & \underset{\text{Ir} - \text{H}}{\text{P-Bu}_2} \underset{\text{Biphenyl}}{\text{C-H}} \underset{\text{10 atm H}_2}{\text{150} \, ^\circ C}
\end{align*}

reactivity represents the basis for a hydrogen storage system with 7.2 weight percent available hydrogen content and which operates under mild conditions. This technology is especially attractive since it is compatible with existing gasoline infrastructure. Finally, biphenyl has the advantage that, unlike toluene and naphthalene, there are no concerns about its toxicity and carcinogenicity.

A fundamental constraint of hydrogen storage systems based upon the reversible dehydrogenation of cycloalkanes to aromatic hydrocarbons is that equilibrium favors the aromatics only at temperatures above 200 °C. The P-C-P pincer complexes studied to date will activate cycloalkane C-H bonds and effect their conversion to aromatic hydrocarbons at temperatures as low as 100 °C. However, a hydrogen acceptor is thermodynamically required at the temperatures studied and free hydrogen was not produced in these systems. Above 200 °C the equilibrium favors the production of hydrogen and the requirement of a hydrogen acceptor is eliminated. Unfortunately, the bis(phosphino)-m-xylenyl (type A) complexes which have been studied decompose at
these temperatures due to activation of the ligand methylene C-H bonds by the metal center. In order to circumvent this problem, we plan to synthesize related P-C-P 1,8-bis(phosphino)anthryl (type B) complexes. These complexes will have no C-H bonds proximal to the metal center and should therefore have much greater stability than the xylenyl (type A) complexes. The related anthryl (type B) complex, PdCl\{1,8-(Ph₂P)₂C₁₄H₇\} has been previously prepared and found to be stable to its melting point of 300 °C [7]. It should be possible to prepare a wide variety of 1,8-bis(dialkylphosphino)anthracenes. This will allow us to vary the steric and electronic environments at the metal center and fine tune the activity of these complexes.

References.

Hydrogen Storage via Reversible Cycloalkane Dehydrogenation Catalyzed by P-C-P Pincer Complexes

Craig M. Jensen
Department of Chemistry
University of Hawaii

William C. Kaska
Department of Chemistry
UC Santa Barbara
Biphenyl/Dicyclohexyl Pincer Complex Hydrogen Storage System

200 °C → 6 H₂

10 atm H₂
150 °C

PBU₃

Biphenyl/Dicyclohexyl Pincer Complex Hydrogen Storage System

200 °C → 6 H₂

10 atm H₂
150 °C

PBU₃
Advantages of Biphenyl-Dicyclohexyl Pincer Complex Hydrogen Storage System

• 7.2 weight percent available hydrogen.

• Dehydrogenation and hydrogenation at moderate temperatures.

• Highly robust catalyst.

• Homogeneous catalyst.

• Low toxicity and carcinogenicity.

• Compatible with existing infrastructure.
Related Pincer Complex
Catalyzed Reversible
Dehydrogenations

200 °C → 5 H₂
10 atm H₂
150 °C

200 °C → 3 H₂
10 atm H₂
150 °C

200 °C → 2 H₂
10 atm H₂
150 °C

413
WORKING GROUP 3: Thermal and Catalyzed Processes
The Working Group on Catalyzed and Thermal Processes assessed seven different liquid or gaseous fuels which can be reprocessed to produce hydrogen. These fuels are ammonia, methanol, propane, methane, butane, gasoline and diesel fuel. Tables 1 and 2, found in the Executive Summary, summarize the material characteristics and weight and volume estimates. Tables 9 and 10 contain evaluations of the various systems and comparative aspects.

The session began with a presentation from the National Renewable Energy Laboratory on a solar electrolyzer with a projected efficiency of about 7 percent. The structure of the electrolyzer was analyzed in some detail and supporting experimental data from researchers in Hawaii were discussed. A second brief presentation was made by Analytic Power on the butane reformer technology available in Japan. The presentation was not in depth since there was little data on the Japanese device. The Japanese intend to go to the market in 2-3 years with a device in the 100-500 W range. The committee judged that the device would be somewhat comparable in size to the units discussed in detail in the workshop but would probably be less efficient.

The session participants spent some time clarifying the meaning of the terms in the four tables which were provided by the workshop organizers and filled out by the session participants. Since the focus of the session was to examine fuel reprocessing, potential fuels were listed and discussed in terms of their desirability for production of hydrogen. The most promi-
The fuels were butane, propane, methanol, methane, gasoline, ammonia, JP-8, and diesel fuel. For processing, some of these fuels require the addition of water. In preparing the data, the mass of the water was included in the calculations of the weight and volume estimates presented in Table 2. The hydrocarbon and alcohol fuels listed in Table 1 are not all inclusive but consist of those fuels that were discussed within the context of the workshop. The tabular format for the data was modified somewhat by replacing the column “required ancillaries” with “comments.”

The session participants examined ammonia, methanol, propane, methane, butane, gasoline, and diesel. Methane and ammonia possessed the highest specific energy of the fuels evaluated. With the exception of ammonia, all of the fuels considered within the workshop would have carbon monoxide in the hydrogen stream that must be reduced to tolerable levels prior to introduction to the fuel cell stack.

Table 2 shows the compilation of the participants’ collective opinions of the mass of a system to required reform selected fuels as listed in Table 1. All of the units and processes surveyed appeared capable of scaling to small sizes although the confidence in scaling decreased as the size decreased. The data indicate that all of the units are within a factor of 2 in size and weight for the same performance. There is however a considerable difference in the complexity of the units. The ammonia processor and the mesoscopic fuel processor have the lowest weight and volume.

Table 9 is an evaluation of the resources needed and the time necessary to take each of the technologies discussed in the workshop to a demonstration phase. Several of the technologies are currently in development and will be demonstrated in less than one year. The mesoscopic processors are the least well developed and are roughly 2-3 years from laboratory demonstrations. In contrast, ammonia processors are contracted for delivery within one year. Successful demonstration of these fuel processors is estimated to be low risk for units to deliver more than 100 watts. For smaller units, such as the 10 W system specified in the tables, the risk is higher due to unknown scaling and to the ancillary equipment needed.

Table 10 is a compilation of the participants’ estimates of the “state of the technology.” Shelf life and stability under storage were not assessed to be an issue. Although there are sensitive catalysts in these systems, system purge before storage effectively eliminates this problem. The remainder of the systems are metallic or inert which means that properly stored, fuel processors have an “infinite” storage life. The areas where there were significant issues for all of the processors discussed were safety, environmental constraints, systems integration (especially in small sizes) and the manufacturing technology needed for mass production. In general, the uncertainty in the state of the technologies increased as the size of the units decreased. At the level of development for small fuel processors, cost is difficult to estimate. There was a consensus that on a “delivered energy basis” for the useful life of the processor, the cost of the unit would be small compared to batteries. There does not appear to be any insurmountable technological barriers to the development of small fuel processors that could function within the context of Army applications.

The session participants identified the following key issues that will directly determine the utility of small fuel processors. The most pressing are:

- Water recovery
- Impurity Management
- Fuel
- Air
- Peripherals for units less than 50W
- Start up power
- Blowers
- Pumps
- Regulators
- Reliability of the peripherals
- Controls/sensors
- Systems Integration/Thermal Management
- Basic Flow Sheet
- Operating voltages for the peripherals

It was the unanimous opinion that some form of fuel processing would be used in the logistics for hydrogen fuel in the battlefield.
Table 9: Evaluation

<table>
<thead>
<tr>
<th>Technology</th>
<th>Time to implementation</th>
<th>Research/Resources needed</th>
<th>Probability of success for stated applications: Likely Possible Not Likely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesoscopic</td>
<td>2-3 lab DEMO</td>
<td>3-5 MM$ lab demo</td>
<td>Most components</td>
</tr>
<tr>
<td></td>
<td>3-4 yr field demo</td>
<td>Field Demo</td>
<td>Demo shift & pox not flow sheet risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water recovery</td>
<td>@ 100 watts, peripherals problem</td>
</tr>
<tr>
<td>Hot Spot</td>
<td>1 year lab demo</td>
<td>More rugged,</td>
<td>Scaling to low power (10 watts)</td>
</tr>
<tr>
<td></td>
<td>1 year field demo</td>
<td>Operating system,</td>
<td>A moderate risk, 100-300 watts likely</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flow sheet,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peripherals,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>300K & 500K partner cost</td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td>Four months to field demo</td>
<td>500K</td>
<td>Minimal risk</td>
</tr>
<tr>
<td>Hybrid POX</td>
<td>Less than one year to Lab Demo, 1-2 year field Demo</td>
<td>1MM$</td>
<td>Cleanup risks common to hydrocarbons, low risk to 100 watts</td>
</tr>
<tr>
<td>Steam Ref</td>
<td>Japanese tech. Exists but at unknown level of performance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 10: Comparative Aspects

Rankings: 3=Significant issue; 2=Moderate issue; 1=Small issue; 0=Not Applicable

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>Mesoscopic</th>
<th>Hot Spot</th>
<th>Ammonia</th>
<th>Hybrid POX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Shelf life/stability under storage</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2. Response time/load following</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3. Flexibility in use (ease of stop/start; number of cycles; cycle speed)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4. Safety</td>
<td>2-3</td>
<td>2-3</td>
<td>2-3</td>
<td>2-3</td>
</tr>
<tr>
<td>5. Recharge time</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6. Environmental restraints (operating T range; air quality required; orientation sensitivity; recyclable or disposable)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7. System integration constraints (Thermal match to fuel cell; water balance; parasitic power requirement)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8. Thermal signature</td>
<td>Not discriminator-operational constraint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Manufacturability</td>
<td>2</td>
<td>2-3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>10. Cost</td>
<td>All inexpensive to operate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SPE® HIGH PRESSURE HYDROGEN GENERATORS FOR TOMORROW'S HYDROGEN INFRASTRUCTURE

1997

J.F. McElroy

Hamilton Standard Division
United Technologies Corporation
Windsor Locks, Connecticut 06096

SPE® is a registered trademark of Hamilton Standard Division of United Technologies Corporation
SPE CELL REACTIONS: WATER CYCLE

FUEL CELL

LOAD

(+) (+)

OXYGEN

O₂ + 4H⁺ + 4e → 2 H₂O

PROTON EXCHANGE MEMBRANE

HYDROGEN ELECTRODES

4H⁺

2 H₂ → 4H⁺ + 4e

PRODUCT WATER

2 H₂O → 4H⁺ + 4e + O₂

PROTON EXCHANGE MEMBRANE

HYDROGEN

4H⁺ + 4e → 2 H₂

ELECTROLYZER CELL

OXYGEN ELECTRODES

PROCESS WATER

4e

(+) (-)
ON BOARD OXYGEN GENERATOR (2000 psi)

- H₂ Gas Detection Sensors
- H₂O Purity Sensor
- Power Supply
- Relay Assembly
- Filter
- Cell Stack
- Sump
- Pump
SPE HYDROGEN GENERATOR SYSTEM

- Water Conditioner
- Power Supply
- O₂ Separator
- H₂ Separator
- Water Tank
- Cell Stack
- H₂ Valves
- Heat Exchanger
- Water Pump
HIGH PRESSURE SPE GAS GENERATOR
(2000 TO 10,000 PSIG)
SUMMARY

- High differential pressure gas generators demonstrated (3000 psi proof - 2000 psi operating)

- Advanced design can be extended to 10,000 psi without exceeding membrane strength capabilities

- System hydrogen pressurization is electrochemically performed (i.e. no compressor nor high pressure water pump)

- High compression efficiency (i.e. >85% at 10,000 psig)
6. ATTENDEE LIST
Invited Speakers and Session Leaders Addresses
Hydrogen Storage and Generation Workshop
April 8-10, 1997
Orlando, Florida

David P. Bloomfield
Analytic Power
268 Summer Street
Boston, MA 02210
Phone: (617) 542-6352 ext. 27
Fax: (617) 695-3272

Brian James
Directed Technologies, Inc.
4001 N. Fairfax Dr., Suite 775
Arlington, VA 22203
Phone: (703) 243-3383
Fax: (703) 243-2724

Deryn Chu
U.S. Army Research Lab
ATTN:AMSR-L-EP-PB
2700 Pearl Harbor Way
Ft. Monmouth, NJ 07703-5601
Phone: (908) 427-2797
Fax: (908) 427-2823

Raouf Loutfy
Materials & Electrochemical Research Corp.
7960 S. Kolb Road
Tucson, AZ 85706
Phone: (520) 574-1980
Fax: (520) 574-1983

Mark Debe
3M Company
201-2N-19, 3M Center
St. Paul, MN 55144
Phone: (612) 736-9563
Fax: (612) 733-0648

Michael Matthews
Department of Chemical Engineering
Swearingen Engineering Center
University of South Carolina
Columbia, SC 29210
Phone: (803) 777-0556
Fax: (803) 777-8265

Otimar Dengel
Royal Systems
6294 Browntown Road
Fort Royal, VA 22630
Phone: (540) 636-1834

Michael Monsler
W.J. Schafer Associates, Inc.
303 Lindbergh Ave.
Livermore, CA 94550
Phone: (510) 447-0555 ext. 206

Jonathon Frost
Johnson Matthey Technology Centre
Blounts Court, Sonning Common
Berkshire, RG9 9NH, United Kingdom
Phone: 44-1734-242257
Fax: 44-1734-242360

Oliver Murphy
Lynntech, Inc.
7610 Eastmarket Dr.
College Station, TX 77840-4024
Phone: (409) 693-0017
Fax: (409) 764-7479

Michael Heben
National Renewable Energy Laboratory
1617 Cole Boulevard
Golden, CO 80401-3393
Phone: (303) 384-6490
Fax: (303) 384-6490

Subash Narang
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025
Phone: (415) 859-2119

428
Attendees
Hydrogen Storage and Generation Workshop
April 8-10, 1997
Orlando, FL

Ron Akers:
Commander, USAIC
Dismounted Battle Lab
Building 4, Room 338
Pt. Benning, GA 31905
Send ATTN: Lt. Ron Akers
Phone: (706) 545-8344
Fax: (706) 545-3096

Richard Bellows
Exxon Research & Engineering Co.
Rt. 22 East
Clinton Township
Annandale, NJ 08801
Phone: (908) 730-2713
Fax: (908) 730-3042

Otto Adlhart
AF Sammer Corporation
8 Industrial Parkway
Ringwood, NJ 07456
Phone: (201) 962-1990
Fax: (201) 962-1860

Darren Browning
Electrochemical Power Sources Centre
Environmental Sciences Department
DERA Haslar
Gosport, PO12 2AG, UK
Phone: (01705) 835285
Fax: (01705) 335102

Brian M. Barnett
A.D. Little, Inc.
Acorn Park
Cambridge, MA 02140-2390
Phone: (617) 498-5307

Chuck Call
Pacific Northwest Laboratory
P.O. Box 999, MS P7-20
Richland, WA 99352
Phone: (509) 372-2984
Fax: (509) 376-7127

Alan Bartolome
K412, Research and Engineering Building
9800 Savage Road
Fort Meade, MD 20755
Phone: (301) 688-0232
Fax: (301) 688-0201

Mark Cervi
Naval Surface Warfare Center
3A Leggett Circle
Annapolis, MD 21402-5067
Phone: (410) 293-2147

Werner F. Beckert
Royal Systems
6249 Browntown Road
Fort Royal, VA 22630
Phone: (540) 636-1834

John Cleland
Research Triangle Institute
P.O. Box 12194
3040 Cornwallis Rd.
Research Triangle Park, NC 27709
Phone: (919) 541-6156
Fax: (919) 541-6965

Jim Beckwith
Office of Research and Development
MS 4123
Washington, DC 20205
Phone: (703) 613-8854
Fax: (703) 613-8954

Kevin Drost
Pacific Northwest Laboratories
P.O. Box 999
Richland, WA 99352
Phone: (509) 375-2017
Fax: (509) 375-2242
Mohammad Entayetullah
H-Power Corporation
80 Montgomery Street
Belleville, NJ 07109
Phone: (201) 450-4400 ext. 446
Fax: (201) 450-9850

Craig Jensen
University of Hawaii
Department of Chemistry
2545 The Mall
Honolulu, HI 96822
Phone: (808) 956-2769
Fax: (808) 956-5908

Jack Evert
3M Company
201-2N-19, 3M Center
St. Paul, MN 55144
Phone: (612) 733-4043
Fax: (612) 733-4777

William Kaska
Department of Chemistry
University of California, Santa Barbara
Santa Barbara, CA 93106-5080
Phone: (805) 893-2515
Fax: (805) 893-4120

Peter Fedkiw
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709
Phone: (919) 515-3572
Fax: (919) 515-3465

Art Kaufman
H-Power Corporation
80 Montgomery Street
Belleville, NJ 07109
Phone: (201) 450-4400
Fax: (201) 450-9850

Tom Feldman
President, Hysorb Technology, Inc.
1704 Stanford Drive, N.E.
Albuquerque, NM 87106
Phone: (505) 268-0154
Fax: (505) 268-0154

Richard Lawrance
Giner, Inc.
14 Spring Street
Waltham, MA 02154-4497
Phone: (617) 899-7270
Fax: (617) 894-2762

Pat Grimes
Pat Grimes Associates
504 Mountain Avenue
Westfield, NJ 07090-3036
Phone: (908) 233-1134
Fax: (908) 233-3253

Myung Lee
Westinghouse Savannah River Company
P.O. Box 616
Building 773-41A, Room 144
Aiken, SC 29808
Phone: (803) 725-1726
Fax: (803) 725-4553

Michael Heben
National Renewable Energy Laboratory
1617 Cole Boulevard
Golden, CO 80401-3393
Phone: (303) 384-6641
Fax: (303) 384-6490

Xiao Lu
Materials & Electrochemical Research Corp.
7960 S. Kolb Road
Tucson, AZ 85706
Phone: (520) 574-1980 ext. 15
Fax: (520) 574-1983
Michael Matthews
Department of Chemical Engineering
Swearingen Engineering Center
University of South Carolina
Columbia, SC 29208
Phone: (803) 777-0556
Fax: (803) 777-8265

John B. O’Sullivan
Electric Power Research Institute
3412 Hillview Avenue
Palo Alto, CA 94304-1395
Phone: (415) 855-2292
Fax: (415) 855-8501

James McElroy
Navy & Electrochem. Products
Space & Sea Systems, Hamilton Standard
1 Hamilton Road, 1A-2-A66
Windsor Locks, CT 06096-1010
Phone: (860) 654-3427
Fax: (860) 654-2673

Krishna Sapru
Energy Conversion Devices, Inc.
1675 West Maple Road
Troy, MI 48084
Phone: (810) 362-4780
Fax: (810) 362-0012

Gary Mepsted
Electrochemical Power Sources Centre
Environmental Sciences Department
DERA Haslar
Gosport, PO12 2AG, UK
Phone: (01705) 335397
Fax: (01705) 335102

Jeff Schmidt
Mailstop ADO
Ball Aerospace & Technologies, Corp.
P.O. Bx 1062
Boulder, CO 80306-1062
Phone: (303) 939-5703
Fax: (303) 939-6307

Fred Mitlitsky
Lawrence Livermore National Laboratory
P.O. Box 808, L-045
700 East Avenue
Livermore, CA 94551
Phone: (510) 423-4852
Fax: (510) 423-9178

Ricardo Schwarz
Los Alamos National Laboratories
Mailstop K765
Los Alamos, NM 87545
Phone: (505) 667-8454
Fax: (505) 665-2992

S. R. Narayanan
Jet Propulsion Laboratory
Battery Systems Group
MS 277-212
Pasadena, CA 91109
Phone: (818) 354-0013
Fax: (818) 393-6951

Valentin Serebrennikov
MAGNIE International, Inc.
Room 510
400 West Main Street
Durham, NC 27701
Phone: (919) 541-8836
Fax: (919)

Robert Nowak
DARPA
3701 N. Fairfax Drive
Arlington, VA 22203-1714
Phone: (703) 696-7491
Fax: (703) 696-3999

Darlene Slattery
Florida Solar Energy Center
1679 Clearlake Road
Cocoa, FL 32922-5703
Fax: (407) 638-1010
<table>
<thead>
<tr>
<th>Name</th>
<th>Company/Institution</th>
<th>Address</th>
<th>Phone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ned Stetson</td>
<td>Energy Conversion Devices, Inc.</td>
<td>1675 West Maple Road Troy, MI 48084</td>
<td>(810) 362-4780 or 280-1900</td>
<td>(810) 362-0012 or 280-1456</td>
</tr>
<tr>
<td>Leslie Van Dine</td>
<td>International Fuel Cells</td>
<td>195 Governor’s Highway P.O. Box 739 South Windsor, CT 06074</td>
<td>(203) 727-2314</td>
<td>(203) 727-2319</td>
</tr>
<tr>
<td>Bill Stinson</td>
<td>Pk-G6 Kennedy Space Center, FL 32899</td>
<td>Phone: (407) 861-3939 Fax: (407) 861-3036</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bryan Wells</td>
<td>Ballard Power, Inc.</td>
<td>9000 Glenlyon Parkway Burnaby, B.C. Canada V5J 5J9</td>
<td>(604) 412-4751</td>
<td>(604) 412-4700</td>
</tr>
<tr>
<td>Walter Taschek</td>
<td>Department of Chemical Engineering Swearingen Engineering Center University of South Carolina Columbia, SC 29208</td>
<td>Phone: (803) 777-3270 Fax: (803) 777-8265</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W. Peter Teagun</td>
<td>Arthur D. Little, Inc.</td>
<td>Acorn Park Cambridge, MA 02140-2390</td>
<td>(617) 498-6054</td>
<td>(617) 498-7206</td>
</tr>
<tr>
<td>Ralph White</td>
<td>Department of Chemistry</td>
<td>HQ USAFA/DFC 2355 Fairchild Dr., Suite 2N225 USAF Academy, CO 80840-6230</td>
<td>(719) 333-6005</td>
<td>(719) 333-2947</td>
</tr>
<tr>
<td>John Wilkes</td>
<td></td>
<td>HQ USAFA/DFC 2355 Fairchild Dr., Suite 2N225 USAF Academy, CO 80840-6230</td>
<td>(719) 333-6005</td>
<td>(719) 333-2947</td>
</tr>
</tbody>
</table>
7. APPENDICES
Appendix 1. Report by O. Velev
HYDROGEN STORAGE IN CHEMICAL HYDRIDES

Executive Summary

Contract No. 95F142000*000

Broad Agency Announcement BAA 94-1 required the development of Small Power Sources with exacting specifications. The system proposed was a proton exchange membrane fuel cell (PEMFC) primary power source, operating on hydrogen. The hydrogen source may be refueled with hydrogen. The hydrogen could be stored as a rechargeable material (e.g., metal hydrides, fullerene hydrides) or in the form of expendable materials. The objective was a self-contained, maintenance-free power system delivering 430 kW over 180 days, with an hourly duty cycle of 300 W for 20 minutes, then 10 W for 40 minutes. The system goals were 1.2 kWh/liter and 650 Wh/kg, which were almost entirely determined by the reactants themselves.

At the time of proposed work, a PEMFC power source to meet the equivalent BAA 94-1 design goals was being developed by the Center for Electrochemical Systems and Hydrogen Research (CESHR), part of the Texas Engineering Experiment Station (TEES) in the Texas A&M University System (TAMU). About 3 kWh (10 hours) of baseline storage was required. The challenge was to attain the desired energy densities when storage sub-system parameters were included. To meet the goals of 1.2 kWh/liter and 650 Wh/kg, possible approaches were (a) Lightweight composite 300-500 atm (4,400-7,350 psi) pressure vessels for compressed gas storage; (b) Magnesium alloy and unconventional metal hydrides; (c) Fullerene hydrides; and (d) Chemical hydrides. The original proposal intended to examine all of the above, and select the most effective approach, but the objective of the referenced contract was to evaluate only (d).

To attain the goals via (d), only chemical hydrides producing hydrogen gas in contact with water are possible, since dissolving metals produce hydrogen from water in a 0.5 : 1 ratio. The most attractive of these are lithium hydride (LiH), lithium borohydride (sometimes called borohydrate, LiBH₄), lithium aluminum hydride (LiAlH₄), and sodium borohydride (NaBH₄). LiH may effectively store twice as much hydrogen as a dissolving metal if LiOH is the reaction product: i.e., the hydrogen produced is equivalent to the water consumed, and the storage would be independent of an external water supply if 100% of the product water of the PEMFC could be recovered. In this case, LiH could store 25 wt % of hydrogen. If an anhydrous mixed oxide or salt is the product instead of a hydroxide, e.g., which may be the case with LiAlH₄ under the correct reaction conditions, then the storage capacity would be 36.6% by weight of hydrogen. This would also make 100% water recovery unnecessary.

A literature survey showed that the composition of the products after reaction of hydrides with limited amounts of water was unknown in most cases. The concept depended on the appropriate combination of the highest possible water recovery from the PEMFC, combined with the least fixed water in the product. As a first step, water reactivity testing of selected hydrides was conducted in a Kipp generator as a function of temperature in the range -40°C and +65°C. Reaction rates and products were evaluated. The pure alkali and alkaline earth metal hydrides were stable to decomposition into their elements to temperatures exceeding 600°C (CaH₂, 600°C, NaH, 800°C, LiH, 800+°C). LiBH₄ was stable up to 275°C, but LiAlH₄ started to decompose at ca. 105°C, and its decomposition to LiH + Al + 3/2H₂ became rapid at 125°C. Since local temperatures in a Kipp-type reactor could easily exceed this temperature, LiAlH₄ was rejected as a candidate. The product of reaction between LiH and H₂O at reasonably low temperatures was not LiOH, but LiOH.H₂O. LiOH only formed at temperatures exceeding 125°C. Hence, a reactor designed to produce hydrogen from water in a 1 : 1 molecular ratio from LiH must operate at temperatures exceeding 125°C. If the water is solely derived from the PEMFC cathode effluent, 100% water recovery would be required. The reaction of LiH with pure water was rapid under all conditions, and the reaction generated a great deal of heat. This acted to seal off the surface of the reactant pellet with dry, solid reaction products when a reactor containing limited amounts of water was used. In a generator with intermittent water supply (e.g., a Kipp reactor whose water level varies with internal pressure, so that reaction only takes place as hydrogen is consumed and pressure falls) this meant that a time-delay effect occurred before further reaction took place. Similarly, when pressure increased, reaction continued to take place for some time after the solution level fell, since water was trapped within the porous LiH pellets. Excessive local heating was then difficult to control.

An atmospheric pressure Kipp generator must operate with a hydraulic seal of liquid water, protected from carbonatation (from air) via a low-density immiscible layer of e.g., silicone oil in contact with the atmosphere. Unless the generator is sealed and pressurized, it must operate below 100°C. Under these conditions, LiH only produces hydrogen from water molecule in a 0.5 : 1 ratio. This defeats the weight and volume objectives, since a
large volume of excess water must be carried in the reactor. The major problem was undoubtedly the requirement for operation at a temperature higher than 125°C to achieve a 1:1 water:hydrogen stoichiometry with LiOH as the end product. This will either require a pressurized system operating on liquid water, or an innovative approach with water vapor as reactant.

In contrast to LiH, CaH$_2$ produces a pure hydroxide at low temperatures, therefore hydrogen from water at 1:1 stoichiometry. If the PEMFC unit cell voltage is 0.7 V, its storage capacity is 1.70 kWh/liter, 0.89 kWh/kg (LiH, 1.66 Wh/liter, 2.38 kWh/kg for LiOH product), which is within the specifications. If CaH$_2$ reacts at 580°C, it might produce two hydrogen molecules per water molecule recovered, since the end-product would be CaO. However, this is too close to its decomposition temperature and the reaction is not practical. MgH$_2$ (decomposition temperature, 280°C, 2.90 kWh/liter, 1.43 kWh/kg at 0.7 V) could also produce a hydroxide (but not oxide) end product, and has a lower equivalent weight. AlH$_3$ has an even lower equivalent weight (corresponding ca 3.9 kWh/liter, 1.88 kWh/kg), but its low decomposition temperature (100°C) makes its use impractical, if not dangerous. The only other compound of interest is LiBH$_4$ (two crystalline modifications, rhomboic or orthorhombic, decomposition temperature ca. 275°, 1.25 kWh/liter, 1.90 Wh/kg, i.e., just within volume energy density specification). In the presence of limited amounts of water, it will react smoothly to hydrated lithium borate, LiBO$_2$.2H$_2$O, i.e., LiBH$_4$ + 4H$_2$O → 4H$_2$ + LiOH.B(OH)$_3$. However, its reaction rate with pure water or water vapor is extremely slow, due to the low intrinsic solubility of the lattice in water (the salt-like hydrides of the alkaline and alkaline earth metals are as intrinsically soluble as the corresponding chlorides). As a result, it must be used in an acidified environment to achieve reasonable reaction rates, e.g., in a Kipp-type generator containing sulfuric acid, which would not be within the energy density specifications.

The choice of material was narrowed to LiH (above 125°C), CaH$_2$, and MgH$_2$. The program undertaken included 5 W breadboard reactor design and construction. Its design depended on the results of reaction rate modeling conducted. A pressurized sealed Kipp reactor is in principle possible for LiH above 125°C. For safety reasons, it would require an active mechanical pressure control to 2.0-3.0 atm (gauge). This was not considered, because the rapidity of the reaction, and the time delays discussed above. The accompanying local heat production made the system impractical to control, although thermal runaway is improbable. Even if it may be technically feasible, this reactor was not considered because it needs a large passive reservoir of water for thermal control. A properly designed system could be passive and require no particular attention, but it would not meet energy density goals. A system using an Archimedian-screw hydride feed to the reactor was constructed, but its reliability was dubious.

In all cases, the requirement for water recovery from the fuel cell was a major problem. Simple condensation recovery schemes could not meet the goal. The only possibility appeared to be a scheme using the chemical desiccant properties of the hydride itself. The design of a reactor using a membrane dehumidifier operating with cathode effluent on one side and metal hydride (CaH$_2$, MgH$_2$) on the other is presented. Water is very soluble in the membrane (ion-exchanged Nafion™ perfluorocarbon sulfonate, Du Pont de Nemours), whereas hydrogen is not. This may be used to recover hydrogen for the PEMFC. Such a design may work, but the 100% recovery requirement is still difficult to satisfy. It was decided that work would be better terminated, rather than attempt to build such a system. One problem, which was not considered, is that of possible contamination of the PEMFC electrolyte by alkaline carry-over, although this should be minimal with CaH$_2$ or MgH$_2$ as reactants.

While the inevitable conclusion was that a PEMFC system with close to 100% water recovery using CaH$_2$ or MgH$_2$ for hydrogen storage in a foolproof system would be a very difficult, if not impossible, proposition, another much more workable solution was given in the original proposal. If the fuel cell is alkaline (with a chemical CO$_2$ scrubber on the air side), the reactant water is formed in the anode stream, which may be directly circulated over CaH$_2$ or MgH$_2$ in a hydrogen feedback loop. This will avoid the problem of product water separation, and permit the program goals to be achieved. Work on this solution is recommended in future, if the need for this power source still exists.
HYDROGEN STORAGE IN CHEMICAL HYDRIDES

1. Proposal and Anticipated Difficulties

1.1. Introduction

The referenced contract was awarded after the contractor responded to Broad Agency Proposer Information Pamphlet BAA 94-1. This required the development of Small Power Sources with the specifications: Energy Density: > 650 Wh/kg, > 1200 Wh/liter; Discharge Time: Minutes to several hours; Discharge Rates: High values for pulsed loads, with power densities in the same range as those of Ni/Cd or Pb/acid batteries, i.e., 150 W/kg; Lifetime: Shelf plus operational life up to several years without loss of performance; Energy Production: Preferably no expendable materials for energy production - preferably extract energy from some characteristics of the environment at rates and efficiencies higher than state-of-the-art.

These characteristics represented a combination of properties required for both Primary and Secondary Power Sources. The system proposed was a proton exchange membrane fuel cell (PEMFC) primary power source, which would be fueled by hydrogen, and which may be refueled (depending on needs) with hydrogen produced from either electricity and water from the environment in an electrolyzer similar in principle to the PEMFC, or by the use of expendable materials.

A proposed PEMFC power source design to meet these goals was based on previous studies by the Center for Electrochemical Systems and Hydrogen Research (CESHR), part of the Texas Engineering Experiment Station (TEES) in the Texas A&M University System (TAMU), with some supporting research by Los Alamos National Laboratory (LANL), and by MER Corporation (Tucson, AZ). MER is a small business specializing in advanced materials, including metal-non-metal composites, and fullerenes.

A 6 V (minimum), ca. 8 V (maximum) PEMFC multicell stack was proposed to minimize the weight and volume of both the power source and auxiliaries. The desired BAA voltage requirements (12 and 24 V) could be met by use of dc-dc converters. The stack would contain 10 cells with 100 cm2 electrode active area. This cell size is scaled to a postulated maximum gross power requirement of 360 W, which assumes operation at a conservative current density of 600 mA/cm2 at 0.6 V on stored hydrogen and ambient air at atmospheric pressure, a performance then routinely obtainable at CESHR. The power output could be scaled as desired by changes in cell area and in the number of cells in the stack. Corresponding changes in terminal stack voltage would be accommodated by the dc-dc converter. The design of the lightweight PEMFC stack was based on an ultra-light air-cooled atmospheric pressure design proposed in April 1994 to ARPA by CESHR/TEES in response to BAA 94-427, which was awarded in 1995. For simplicity and because of the requirement for zero maintenance, it would use internal self-humidification by product water, now a proven technology. No lifetime problems were anticipated with the PEMFC sub-system, which has demonstrated 40,000+ hour lifetimes with 20 year old components.

About 3 kWh (10 hours) of baseline storage was proposed. Hydrogen is the ideal reactive fuel for PEMFCs. Its lower-heating-value of combustion (33.4 kWh/kg) yields a practical 13.3 kWh/kg in a fuel cell operating at 0.6 V with 17% total losses for parasitic power (cooling,
electronics). The challenge was attaining the desired energy densities when storage sub-system parameters are included. To meet the BAA 94-1 goals of 1.2 kWh/liter and 650 Wh/kg, the following approaches were selected:

- Lightweight composite materials for cylinders for gas-phase storage at pressures as high as 300-500 atm (4,400-7,350 psi);
- Metallic hydrides based on magnesium alloys (Mg2Ni and unconventional systems) and on metastable alloys of Ti-Al type to increase energy density compared to conventional metal hydrides;
- Hydrogen on fullerenes, which may show at least 1 reversible H per 1.7 C;
- Chemical hydrogen storage, including metals, alkali metal hydrides;
- The use of hydrazine in aqueous solution as an alternative PEMFC fuel to hydrogen. The danger in this case was the possible formation of hydrazine salts of the sulfonic acid groups of PEM materials.

All of the above were proposed for comparative assessment under the program.

Two possible approaches exist, namely dissolving metals and chemical hydrides. The former include Fe, Zn, Al and Mg, and may also include Li. Studies at H-Power, Inc. (Bloomfield, NJ) have shown that a sponge iron/water system could store as much as 3.6 wt. % (including the system weight) and efforts are on the way to build a demonstration prototype/vehicle. Aluminum, on the other hand, may be able to "store" about 5.5% by weight of hydrogen. Another possible storage material is an ionic hydride. These produce hydrogen gas in contact with water, giving an alkaline reaction product for metals with soluble hydroxides. The most attractive of these compounds appeared to be lithium hydride (LiH), lithium borohydride (sometimes called borohydride, LiBH4), lithium aluminum hydride (LiBH4), and sodium borohydride (NaBH4). LiH effectively stores twice as much hydrogen as a dissolving metal provided that LiOH is the reaction product: i.e., the hydrogen produced is equivalent to the water consumed. If a mixed oxide or salt is the product instead of a hydroxide, e.g., which may be the case with LiBH4 under the correct reaction conditions, the hydrogen produced is twice as much as the equivalents of water consumed. This is clearly advantageous, since it makes 100% water recovery unnecessary. Thus, LiH can in principle "store" 25 wt. % of hydrogen and LiBH4 can correspondingly "store" 36.6 wt. %. In contrast, metallic Li stored only 14.4 wt % of hydrogen. The whole of this storage capacity per unit weight may be used, provided that 100% and 50% of the PEMFC product water can be recovered. It was felt that not all of this product water could in fact be recovered. In consequence, a mixture of these hydrides in a reactor of special design was proposed, which would incorporate a membrane humidifier (spent air drier). The development of such a reactor was proposed. Even including the reactor, the energy densities per kg and per liter would largely exceed the BAA specification requirements.

1.2. Work Initially Proposed

High-risk/high-payoff Task Areas were identified as those involving hydrogen storage and hydrogen supply to the fuel cell. If the weight content of hydrogen in the storage or generation sub-system exceeded 5%, the energy density goals of BAA 94-1 could be met.

The proposal was for a three-year, $2.01 million contract, which would deliver a 300 W Small Proton Exchange Fuel Cell Power Source with one selected breadboard hydrogen storage
system of 3 kWh capacity, Power Electronics, and Pulse Power Battery or Electrochemical Capacitor Subsystems. The Power System will be designed for 300 W nominal output, energy storage up to 3 kWh, with any required pulse power from a Ni/Cd or Pb-acid battery.

Project success was considered to depend on: (1) the development of lightweight bipolar plates and endplates in bonded PEMFC stacks, to reduce weight as far as possible; and (2) significant enhancement of the energy densities and specific energies for hydrogen storage generation. For the latter, it was proposed that subcontractors LANL and MER would examine advanced materials for the high pressure gas phase storage of hydrogen. New hydriding alloys based on magnesium Mg and on metastable Ti-Al materials were proposed, in partnership with LANL, which might allow much higher weight percent hydrogen storage than state-of-the-technology materials (up to 4.8 wt %, compared with up to 1.5 wt %). MER would also examine the absorption of hydrogen on fullerenes, since there is some evidence that semi-reversible absorption takes place up to the composition C₆₀H₃₆, which would allow up to 4.75 wt % hydrogen storage, excluding containment.

A detailed Statement of Work was provided, divided into three Tasks. Task 1 and its associated Subtasks included the development of 100 cm² active area PEMFC membrane-electrode assemblies (MEAs) which could operate in the temperature range 30°-70°C at 0.6 V and 600 mA/cm² (at 50°-60° C) with air at atmospheric pressure, under conditions of internal self-humidification using product water, the incorporation of such MEAs into lightweight bipolar hardware, and assembly and testing of 10-cell fuel cell stacks after appropriate thermal management modeling and experimental analysis.

Task 2 would have compared different methods of hydrogen storage, namely as a compressed gas in tanks made from lightweight composite materials, including high-strength graphite fibers, as metal hydrides in novel lightweight metastable hydriding alloys, as fullerenes, as hydrazine, and as chemical compounds producing hydrogen on reaction with water. One of these storage methods was to be selected for combination with the PEMFC DC power module. Task 3 was to study auxiliaries and electrical system considerations, such as power electronics, batteries and/or electrochemical capacitors for peak power applications, and systems integration and testing. This would result in production of the deliverable device discussed above.

1.3. Chemical Hydride Reactor Development

The part of the Subtask dedicated to the chemical hydride reactor (Subtask 2.4) would have selected hydride compounds from among the class represented by LiH, LiAlH₄, LiBH₄ and NaBH₄. The reactivity of these materials would be examined in the "as received" condition and after encapsulation with a porous organic coating dissolved in a suitable solvent, e.g., of polymers such as polyamides dissolved in acetone or diethyl ether. Reactivity testing would be first conducted as a function of ambient temperature in a standard Kipp generator constructed of chemical glassware, which is traditionally used in analytical chemistry laboratories for the "as-required" production of, e.g., hydrogen sulfide (H₂S) from insoluble inorganic sulfides and dilute sulfuric acid (H₂SO₄) or hydrogen from zinc or magnesium turnings and H₂SO₄. A traditional Kipp hydrogen generator is shown in Figure 1.

Emphasis was to be on the feasibility of operating this type of reactor at all ambient temperatures in the range −40°C and +65°C. Following the choice of suitable hydrides and/or mixtures, subscale generators incorporating wicking arrangements for operation under all orientations shall be constructed and tested. The water make-up source for the PEMFC
generator shall be either an air-cooled condenser, fed by humidified air saturated with water vapor at 65°C simulating PEMFC cathode exit conditions, or more favorably a membrane drier/humidifier incorporating an area of Nafton® or other suitable membrane through which rapid water diffusion occurs. Upon satisfactory demonstration of the performance of model generators subscale boiler-plate PEMFC fuel cells would be tested together with the generators in integrated units.

Figure 1. Traditional Kipp Hydrogen Generator.

1.4. Potential Problems With Chemical Hydrogen Generators

1.4.1. General Problems

For the chemical hydrides, success depended on the development of a suitable reactor with effective product water recovery from the fuel cell and effective water management. It also depended on the formation of the correct type of reaction products. It was originally felt that any form of mechanical feed of hydride reactant would be impractical, since it would be unreliable and would require electric drive mechanisms. Such a system would be only examined as a last resort. A major unknown which could throw doubt on the project as a whole was the effect of blockage of the active part of the reacting system by previously formed reaction products. Even the precise nature of the products was unknown in most cases, e.g., for LiBH₄. The literature would only report on the product formed in a large excess of water: in this case, it
would be the slightly soluble metaborate, LiBO$_2$, undoubtedly in a hydrated form. However, for this proposal, stoichiometric amounts of water would be reacted with the material, which should result in solid dehydrated metaborate. No previous published experience existed on the kinetics of this process, and indeed on whether a solid metaborate layer would not seal off the surface of unreacted LiBH$_4$, effectively passivating it and preventing further reaction.

1.4.2. Reactor Designs

The most obvious generator design for a dissolving hydride reactant would be of the Kipp variety, as originally proposed. A Kipp generator would contain an initial excess of water as reactant, with hydrogen produced by previous reaction under slight pressure. The pressure differential between the inside of the hydrogen-filled reactor and atmospheric pressure outside would lower the volume of the water inside, since the water would be in a container of U-tube type in barometric equilibrium with the atmosphere. Thus, the reaction would stop when the water level fell below the hydride reactant container inside, where any remaining water reacts until the system is locally dry. This may be accompanied by local heat production, which may cause some spot-heating. This was a further problem to be addressed. The excess hydrogen pressure is only a few inches of water, which is consistent with safety considerations. The reaction stops until the excess hydrogen is used by the fuel cell, when the pressure will fall to approach atmospheric, and more water then enters the reactant container. The hydrogen produced is prehumidified, which would help the fuel cell to attain maximum performance.

The simple Kipp generator must be initially charged with an excess of water to create the barometric column. However, water is consumed by the reaction as hydrogen is produced. This water would be supplied by make-up water as required from a condenser/dehumidifier operating from the fuel cell cathode exit air flow. The presence of excess water will tend to mitigate the effects of reactant passivation discussed above, however the presence of passivation films on the hydride reactant when the water reactant became saturated with reaction product was remained a further unknown.

1.4.3. Orientation and Portability

The simple Kipp generator relies on gravity for reactant switch-off under pressure. Even the design and practical operation of such a device would not be a trivial undertaking. If portable applications were required, the operation of the generator should remain independent of orientation. In consequence, an orientation-independent version of a Kipp generator would then be required. One approach would contain a flexible capillary sponge or wick which could be active in all orientations. If the sponge structure is more open towards the outside of the diameter, excess water will accumulate at the bottom of the system when the pressure rises and the hydrogen evolution reaction stops or slows down.

1.4.4. Interfacing Chemical Hydrides to the PEMFC

The water reactant, i.e., the product of the PEMFC cathode reaction, brings with it dissolved nitrogen with some oxygen from the cathode air supply, which can accumulate in the system as hydrogen is consumed. Therefore a small bleed of reactant via a permeation tube is required from the cathode. Such a generator is relatively simple to construct and is safe to operate if it is used for a stationary application since it could in principle assure fail-safe operation. Its
operation is fully automatic, and no special safety precautions are needed, provided that the container remains sealed.

1.4.5. Possible Neutralization of PEM Material

One further potential major problem with an alkali-metal hydrogen generator coupled to a PEMFC is that alkaline products may react with the acid membrane, causing neutralization. If LiBH₄ is used, hydroxides will not be the product. However, a porous Teflon® filter between the generator and the fuel cell will assist in protecting the PEM by preventing aerosols from passing over.

2. Conclusions - The Hydride Reactor

Even though the hydride reactor looked attractive on paper because of its potentially high weight percent of hydrogen storage (again on paper), we most certainly considered it to be high-risk compared with the alternative approaches, i.e., hydrogen storage at high pressures and/or in special hydriding alloys, or on fullerenes if this approach should have proved to be kinetically feasible.

The reactive chemical hydride was considered to be high-risk R&D, since a reactor based on stoichiometric reaction with fuel cell product water to produce exactly the required amount of hydrogen to feed the fuel cell (i.e., corresponding to the differential current requirement) may never work at all.

3. Summary of Contract Number 95F142000-000

3.1. Objectives

The objectives of the project were to use available or experimentally measured thermodynamic and kinetic data to select and evaluate lightweight (i.e., low equivalent weight) hydrides producing hydrogen from water in a prototype reactor, and design a reactor for controlled generation of hydrogen for use in a PEMFC. The design goal was the development of a self-contained feed-back hydrogen-generator PEMFC power system capable of delivering 430 kW over 180 days, with an hourly duty cycle of 300 W for 20 minutes, then 10 W for 40 minutes.

3.2. Task 1.2. Literature Survey

3.2.1. Subtask 1.2.1. Chemistry of Hydrogen Generation by Hydride Reaction with Water

Possible low-equivalent-weight hydride reactants are LiH, LiBH₄, LiAlH₄, NaBH₄, together with calcium hydride (CaH₂). All these materials are salt-like, and contain H⁺, BH₄⁻, and AlH₄⁻ anions. Stability considerations are a concern with certain complex low-equivalent-
weight hydride compounds. While LiBH$_4$ is stable up to 275°C in the absence of air, under the same conditions LiAlH$_4$ starts to show signs of decomposition at about 105°C, and decomposition becomes rapid at 125°C (Reaction 5, below). Calcium hydride decomposes into its elements at about 600°C, and sodium hydride at about 800°C. Lithium hydride is more stable than these. Hydrogen-producing reactions occurring with these compounds are as follows:

$$\text{LiH} + 2\text{H}_2\text{O} \rightarrow \text{H}_2 + \text{LiOH.H}_2\text{O} \quad (T < 125^\circ\text{C})$$

$$\text{LiH} + \text{H}_2\text{O} \rightarrow \text{H}_2 + \text{LiOH} \quad (T > 125^\circ\text{C})$$

$$\text{LiBH}_4 + 4\text{H}_2\text{O} \rightarrow 4\text{H}_2 + \text{LiOH.B(OH)}_3$$

$$\text{LiAlH}_4 + 4\text{H}_2\text{O} \rightarrow 4\text{H}_2 + \text{LiOH.Al(OH)}_3$$

$$\text{LiAlH}_4 \rightarrow \frac{3}{2}\text{H}_2 + \text{Al} + \text{LiH}$$

$$\text{Al} + \text{LiOH} + \text{H}_2\text{O} \rightarrow \frac{3}{2}\text{H}_2 + \text{LiAlO}_2$$

$$\text{NaBH}_4 + 4\text{H}_2\text{O} \rightarrow 4\text{H}_2 + \text{NaOH.B(OH)}_3$$

$$\text{CaH}_2 + 2\text{H}_2\text{O} \rightarrow 2\text{H}_2 + \text{Ca(OH)}_2$$

We should note that the amount of hydrogen available from the compounds depends on the reaction products formed. In some cases, the product of reaction may form a film over the hydride reactant. If this film is impervious to water, the reaction may not go to completion. For example, the reaction product in Equation 3 has these characteristics if pure water is used as the reactant, since the mixed hydroxy-compound (or hydrated borate salt) is rather insoluble at alkaline pH associated with the reaction product. If the material is acidified, the reaction proceeds smoothly. However, this implies the supply of an acid and excess water.

To use another example, the remaining water in LiOH.H$_2$O does not appear to react further with LiH (or indeed with lithium metal) until the temperature exceeds 125°C to complete Reaction 2. Reactions 3 and 4 are analogs of Reaction 2, since the reaction products contain no bound water as such. In principle, if the reaction temperatures are sufficiently high, LiH (or Li metal) will react with the water present as hydroxide in the reaction product, giving oxides or anhydrous oxide compounds. For example, the mixed hydroxide product of Reaction 3 could in theory decompose to LiBO$_2$, releasing two further molecules of water, which could react with another LiBH$_4$ molecule to give four more H$_2$ molecules. Thus, at a sufficiently high temperature,

$$\text{LiBH}_4 + 2\text{H}_2\text{O} \rightarrow 4\text{H}_2 + \text{LiBO}_2$$

The same type of process occurs in Reaction 4 followed by Reaction 5, giving overall:

$$\text{LiAlH}_4 + 2\text{H}_2\text{O} \rightarrow 4\text{H}_2 + \text{LiAlO}_2$$

10
In general, if the reaction products contain (OH) groups with no free water, H₂ is produced stoichiometrically from H₂O, i.e., in a 1:1 ratio. If free water is present in the reaction product, the ratio will be less than 1, as in Reaction 1. If oxides are contained in the final product, the ratio will rise, becoming eventually 2, as in Reactions 9 and 10. The controlling factor in each case is reaction temperature, and the possibilities of intimate mixing, which are governed by melting point and convection considerations. In the application envisaged, the only available water for reaction is the product from the proton-exchange-membrane fuel cell (PEMFC), in which one H₂O molecule is produced for each H₂ molecule consumed. Hence, as a minimum, the reaction products should be those in Reactions 2-4 and 7, 8, so that hydrogen production is stoichiometric.

Theoretical specific Ah capacities of some hydrides are given in Table 1 (as Ah/g and Ah/ml), and Table 2 indicates the weights of hydride which will provide 100 W (average) at three PEMFC cell voltages, assuming a stoichiometric (i.e., unit) H₂/H₂O ratio.

<table>
<thead>
<tr>
<th>Hydride</th>
<th>Theoretical Density (g/cm³)</th>
<th>Ah/g</th>
<th>Ah/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiH</td>
<td>0.78-0.81*</td>
<td>6.74</td>
<td>5.26</td>
</tr>
<tr>
<td>CaH₂</td>
<td>1.90</td>
<td>2.55</td>
<td>4.85</td>
</tr>
<tr>
<td>LiAlH₄</td>
<td>0.92</td>
<td>5.65</td>
<td>5.20</td>
</tr>
<tr>
<td>LiBH₄</td>
<td>0.66</td>
<td>9.83</td>
<td>6.49</td>
</tr>
<tr>
<td>NaBH₄</td>
<td>1.07</td>
<td>5.56</td>
<td>5.17</td>
</tr>
<tr>
<td>KBH₄</td>
<td>1.18</td>
<td>3.97</td>
<td>3.36</td>
</tr>
</tbody>
</table>

* Depending on source

Table 2. Mass of Hydride (100% Utilization) to Provide 100 W (Mean) for 180 Days as a Function of Fuel Cell Operating Voltage (Specific Energies, kWh/kg, in Parentheses).

<table>
<thead>
<tr>
<th>Cell Voltage (V)</th>
<th>LiH, kg (kWh/kg)</th>
<th>LiBH₄, kg (kWh/kg)</th>
<th>LiAlH₄, kg (kWh/kg)</th>
<th>CaH₂, kg (kWh/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.80</td>
<td>80 (5.4)</td>
<td>55 (7.8)</td>
<td>96 (4.5)</td>
<td>212 (2.0)</td>
</tr>
<tr>
<td>0.75</td>
<td>85 (5.1)</td>
<td>59 (7.3)</td>
<td>102 (4.2)</td>
<td>226 (1.9)</td>
</tr>
<tr>
<td>0.70</td>
<td>91 (4.7)</td>
<td>63 (6.8)</td>
<td>109 (4.0)</td>
<td>242 (1.8)</td>
</tr>
</tbody>
</table>
3.2.2. Subtask 3.2.2. Reactor Design

A hydrogen generator intended to operate as part of a closed-circuit system consuming hydrogen and producing an equivalent amount of product water, which in turn reacts with the hydride to produce a continuing supply of hydrogen, is not a simple system to design. If the system is to be autonomous and require no make-up water, reaction between the hydride and water must take place in a least an exact 1 : 1 ratio. If the reaction has an exact stoichiometry of unity, as is suggested by Reactions 2-4 and 7, 8 above, no hydrogen must be lost from the system, and correspondingly, no product water must be irreversibly lost, e.g., by becoming water of crystallization in the reaction products. Ideally, more hydrogen should be produced than the amount of water consumed to account for any irreversible losses of either species. Alternatively, a sufficient amount of water must be initially provided to overcome any irreversible losses. For example, if Reaction 1 applies, 80 kg of LiH is required for 18 kW-days, but this must be supplemented by 180 kg of water.

The General Electric Company developed a 1.8 kWh self-contained fuel cell system using a generator of Kipp type as early as 1967 (Table 3). A U.S. Patent was filed in June 1972, which was issued in June 1974 [1]. This operated on NaAlH$_4$ and NaOH as reactants, which allowed it to be used at low ambient temperatures. The reactor is shown schematically in Figure 2.

Table 3. Design Characteristics, General Electric 1.8 kWh Self-Contained Fuel Cell Power Supply

Total Weight:	10.1 kg
Total Energy Stored:	1844 Wh
Energy Density:	170 Wh/kg
Dimensions:	17 cm OD x 20 cm height
Continuous Power:	0.45 W
Pulse Power:	7.9 W

More recently, AF Sammer Corporation (J. Blanford Jr., and O. Adlhart) has developed a small, load-responsive hydrogen generator whose output is controlled by the rate of water supply [2]. The generator contained 128 g of LiH (i.e., 863 Ah theoretical), and it would permit a generator energy density (without the fuel cell and control system) equal to 3 kWh/liter at a fuel cell voltage of 0.85 V. A 50 kWh generator is being developed for unmanned underwater vehicles. These generators use a stainless steel cylindrical reactor operating at 50 psig, and incorporating hydride cartridges (either CaH$_2$ or LiH). The interior of the cartridges are spirally-wound, and the whole cartridge consists of stainless steel perforated sheet-metal. The top of the reactor is fitted with cooling fins, so that hot pressurized water drips back onto a horizontal wick, which is preferentially placed at the bottom of the container. Pressurized hydrogen exits from the top. The concept is shown schematically in Figure 3. The hydrides may have coatings or additives, such as waxes or rubber materials, to give a controlled reaction rate [3].
Figure 2. General Electric Company Kipp Hydride Generator [1].
Figure 3. AF Sammer Corporation Conceptual Pressurized (50 psig) Hydride Hydrogen Generator.
3.3. Task 1.3. Selection and Evaluation of Lightweight Hydrides

3.3.1. Subtask 1.3.1. Design and Construction of Test Cell

The first hydrogen generator constructed and tested was one of Kipp type, which was used for the preliminary measurement of reaction rates for as-received and coated hydrides. The design is shown schematically in Figure 4.

The hydride was contained in a nickel-mesh pocket and reacted with water. The rate of the reaction changed as a function of hydrogen pressure, i.e., rate of hydrogen consumption. A peristaltic pump was used to circulate hydrogen through a bubbler for humidification and thence to the PEMFC. After calibration, it also served to measure the volume of hydrogen produced, which could be compared with the rate of hydrogen consumption, i.e., the integral of fuel cell current as a function of time. A second generator was built to determine the quantity of water required for completion of the hydrogen formation reaction. It consisted of a stainless steel cylinder fitted with gas outlet ports, which was loaded with a given hydride under inert
atmosphere. Controlled amounts of water were added, governing the overall reaction rate, and the quantity of hydrogen released was measured volumetrically (Figure 5).

![Diagram of a water-controlled chemical hydride reactor](image)

Figure 5. Water-Controlled Chemical Hydride Reactor (Schematic).

3.3.2. Subtask 1.3.2. Experimental Evaluation of "As-Received" Materials

"As-Received" hydride materials initially examined for rate of hydrogen release and conversion efficiency included LiH (with coarse particle size and finely ground), LiBH₄, an LiH/LiBH₄ mixture, and CaH₂. The corresponding theoretical reactions were (1), (3), (1 plus 3), and (8). In each case, a small quantity of each hydride was weighed, and the equivalent amount of water added. The quantity of hydrogen released was measured volumetrically. The yields (theoretical volume of hydrogen at NTP in parentheses) were:

1. Coarse LiH (0.221 g, 0.501 g H₂O; 623 ml): 200 ml (32.1%) initially produced; 630 ml (100%) produced after adding excess water.
(2) Fine LiH (0.244g, 0.553 g H2O; 688 ml): 413 ml produced without excess water (60.0%).

(3) LiBH4 (0.12 g, 0.197 g H2O; 494.3 ml): Very low initial reaction rate. 100% conversion on addition of excess H2SO4.

(4) LiH (0.148 g, 0.336 g H2O; 417 ml) plus LiBH4 (0.065 g, 0.215 g H2O; 267 ml): Very low initial reaction rate. H2 released only after direct injection of H2O into reactor. Reaction probably pH dependent, since final pH was 11.9.

(5) CaH2 (0.82 g, 0.703 g H2O; 876 ml). 650 ml (74.5%) released with 1.5 hours, 830 ml (94.7%) over 15 hours.

Following these preliminary tests, experiments with as-received materials were conducted at elevated temperature. While LiH does not decompose when heated, the hydroxide monohydrate LiOH.H2O decomposes at 125 °C, releasing its water molecule. By carrying out the reaction at temperatures above 125 °C, it was shown that it was possible to produce a stoichiometric amount of hydrogen. LiBH4 is also thermally stable, and when reacted with water above 100 °C it produces hydrogen at a steady rate, corresponding to the stoichiometric amount.

It is therefore shown to be advantageous to design a reactor to operate at elevated temperature, which in principle could use the product water from the PEMFC for hydrogen production in the correct stoichiometric amounts.

It was decided not to perform experiments with encapsulated hydrides, because it was considered advantageous to control the hydrogen production rate in the proposed reactor to correspond to the rate of delivery of hydride material into the reaction zone, rather than to control the rate of water delivery, as in as Kipp generator. This was because a reactor operating at temperatures in excess of 100°C requires a steam input, unless the reactor is pressurized.

3.4. Task 1.4. Modeling Studies

3.4.1. Subtask 1.4.1. Preliminary Studies

To accomplish the project goals, a proton exchange membrane fuel cell (PEMFC) stack must be integrated with the hydrogen generator. The efficiency of the stack and the amount of heat generated must be taken into account in the final design. Figure 6 is a schematic of the complete hydrogen generator and fuel cell stack. In this design concept, the hydrogen produced would be circulated in a closed loop, to ensure 100% utilization and to fully use the water produced on the anode side of the PEMFC stack. The exhaust air would be cooled, and the condensed water fed to the hydrogen generator. Table 4 lists the design characteristics of the PEMFC stack. The assumed stack efficiency is 60% during high power load periods and close to 73% during standby periods.

These design characteristics indicate that the required amount of low-equivalent-weight reactive hydride (as LiH at 100% utilization) during peak power generation, assuming 100% fuel cell hydrogen utilization, will be 41 mg-A^{-1}s^{-1} of LiH per unit cell. This amounts to a total
rate of hydride consumption of 12.3 mg-s$^{-1}$ of LiH, with a corresponding rate of water consumption of 32 mg-s$^{-1}$. The heat generated from the LiH reaction will be 157 W during periods of peak power.

![Diagram](image)

Figure 6. Schematic of Combined Chemical Hydrogen Generator/PEMFC Stack.

<table>
<thead>
<tr>
<th>Table 4. Design Characteristics of PEMFC Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Voltage:</td>
</tr>
<tr>
<td>Current Density:</td>
</tr>
<tr>
<td>Active Area:</td>
</tr>
<tr>
<td>Number of Cells:</td>
</tr>
<tr>
<td>Total Current:</td>
</tr>
<tr>
<td>Stack Voltage:</td>
</tr>
<tr>
<td>Temperature:</td>
</tr>
<tr>
<td>Electric Power:</td>
</tr>
<tr>
<td>Heat Generated:</td>
</tr>
<tr>
<td>Duty Cycle:</td>
</tr>
<tr>
<td>Stack Dimensions:</td>
</tr>
</tbody>
</table>
The technological challenges which must be addressed during the development phase are:

- Controlled rate of \(\text{H}_2 \) generation for a 6 months period,
- Automated control for pulse power requirement,
- Thermal management,
- Water management,
- As close to 100% reactant utilization as possible, and
- Reliability and safety.

3.4.2. Subtask 1.4.2. Modeling Design of a 5 W Reactor

Based on the experimental data on hydrogen production at elevated temperatures, it was decided to design a chemical hydrogen generator operating under these conditions which would produce sufficient hydrogen for continuous operation of an integrated 5 W PEMFC stack. Preliminary calculations for the size of the reactor were performed. Figure 7 is a schematic representation of the moving-bed hydrogen production reactor.

![Figure 7 Schematic Representation of Moving-Bed Hydrogen Generation Reactor](image)

A model of the reactor will be illustrated by the use of LiBH\(_4\) as the reactant. For a reactor containing LiBH\(_4\), the hydrogen generating reaction, assuming \(\text{H}_2\text{O} \) to be in the vapor phase, may be represented as follows:

\[
\text{LiBH}_4(\text{s}) + 4\text{H}_2\text{O}(\text{g}) \rightarrow 4\text{H}_2(\text{g}) + \text{LiOH}(\text{s}) + \text{B(OH)}_3(\text{s})
\]

It seems most probable that the diffusion of water vapor to reaction sites will be the rate limiting process, thus, a "shrinking-core" model may be used to calculate the rate of the reaction as a function of time and of position in the reactor. Figure 8 schematically represents the shrinking-core model. In this model, the reaction proceeds at the surface of a sphere of radius \(r \). Water vapor diffuses through the solid hydrates reaction product layer to the shrinking unreacted core, where it produces more solid hydrates and gaseous hydrogen, which diffuses back to the gas phase. Simplifying assumptions for the model are:

- Simple shrinking-core with uniform product thickness
- Plug-flow reactor
- Uniform spherical particles
- Reaction enthalpy change independent of fractional conversion
- Reaction limited by diffusion of water vapor reactant, not hydrogen product, and
- Isothermal system (i.e., constant temperature coolant).
Figure 8 Shrinking-Core model of Solid-Gas Reaction.

A further reasonable assumption is that the diffusion coefficient for water, D_{H_2O}, is much lower than that for hydrogen, D_H, i.e.,

$$D_{n_0} << D_n$$ \hspace{1cm} (12)

The extent of conversion, x, can be expressed as a function of the original amount of the reactant. Using the pseudo-steady-state approximation, the rate of increase of x could be expressed by:

$$\frac{dx}{dt} = \frac{\omega^*}{3\epsilon (1-x)[1-(1-x)^\alpha]}$$ \hspace{1cm} (13)

where,

$$t_0 = \frac{R^2}{D_{H_2O}} \text{ and } \omega^* = \frac{M_A \rho_D \omega_{H_2O,R}}{4M_B \rho_A}$$ \hspace{1cm} (14)
The residence time of a particle in the moving bed reactor can be calculated by integrating Equation (5). Assuming that the mass-flow rate of the solid particles and the volumetric fraction of the solids in the reactor are constant,

\[
\frac{G_s}{\rho_s} \, dt = \varepsilon \, dz
\]

(15)

\[
\varepsilon = \frac{G_s}{\rho_s} \frac{G_s}{G_s + G_t}
\]

(16)

The hydrogen generation rate can be expressed as follows:

\[
\frac{dM_{H_2}}{dt} = 4 \frac{\pi G_{S,in} x_{out}}{M_A} \frac{d^2}{4}
\]

(17)

for an energy balance:

\[
[\text{Accumulation of Energy}] = [\text{Energy In}] - [\text{Energy Out}] + [\text{Energy Exchange}]
\]

(18)

or:

\[
(G_s C_s + G_t C_t) \, dT = \frac{G_s}{M_A} \, dx \, (-\Delta H) + \pi \, d \, \kappa(T - T_s) \, dz
\]

(19)

To calculate the conversion of the hydride material as a function of its position in the reactor, Equation (13) can be combined with Equations (15) and (16) to obtain:

\[
\frac{dx}{dz} = \frac{\omega^2}{3 \varepsilon_s (1-x)[1-(1-x)^{\alpha}]^\gamma} \frac{\rho_s \rho_t}{G_s \rho_s + G_t \rho_t}
\]

(20)

The required reactor length, \(z\), for a given conversion, \(x\), can be obtained after integration of Equation (10):

\[
z = \frac{12R^2 M_{H_2O}}{M_{LBH_s}} \left(\frac{G_s}{\rho_s} + \frac{G_s}{\rho_s} \right) \frac{1}{\omega_{H_2O} \rho_{H_2O} \rho_{H_2O}} \left[\frac{1}{1 + 3 \left(\frac{1}{1-x} \right)^7} \left(\frac{1}{2} \left(1-x \right)^2 \right) \right]
\]

(21)

The amount of hydrogen required for a PEMFC output of 5 W, and the corresponding amounts of solids and water vapor is given in Table 5.
Table 5. Assumed Values of Parameters for 5 Watt Output at 0.7 V PEMFC Voltage and 100% Hydrogen Utilization.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Current, A</td>
<td>7.14</td>
</tr>
<tr>
<td>Hydrogen generation rate, mole-s(^{-1})</td>
<td>3.7 x 10(^{-5})</td>
</tr>
<tr>
<td>LiBH(_4), mole-s(^{-1})</td>
<td>9.25 x 10(^{-6})</td>
</tr>
<tr>
<td>LiBH(_4), g-s(^{-1})</td>
<td>2.012 x 10(^{-4})</td>
</tr>
<tr>
<td>LiBH(_4), g-s(^{-1}) at x = 90%</td>
<td>2.24 x 10(^{-4})</td>
</tr>
<tr>
<td>G(_s), g-cm(^{-2})s(^{-1})</td>
<td>2.846 x 10(^{-4})</td>
</tr>
<tr>
<td>G(_{8_e}), g-cm(^{-2})s(^{-1}), stoichiometric</td>
<td>9.42 x 10(^{-4})</td>
</tr>
<tr>
<td>G(_{8_g}), g-cm(^{-2})s(^{-1}), 2x stoichiometric</td>
<td>1.88 x 10(^{-3})</td>
</tr>
</tbody>
</table>

Figure 9 is an illustration of the functional dependence between reactor length and total conversion, assuming values for certain parameters which are listed in Table 6.

![Figure 9](image-url)

Figure 9. Conversion as a function of reactor length.

The model given above may be extended to the design of an integrated hydrogen generator-PEMFC system. Again, we assume that the reaction is given by Reaction 11. Any new symbols are contained in Table 6. For a PEMFC power output of \(P\) Watts, the cell current is given by the following equation:

\[
I = \frac{P}{E_{cell}}
\]

(22)
The hydrogen generation rate, n_{H_2}, to sustain this power output at 100% hydrogen utilization is:

$$n_{H_2} = \frac{I}{2F} \tag{23}$$

The required rate of LiBH$_4$ delivery corresponding to its fractional conversion, x_{out}, at the reactor exit of the reactor is:

$$n_{\text{LiBH}_4} = \frac{n_{\text{H}_2}}{4x_{\text{ext}}} \tag{24}$$

$$w = \frac{n_{\text{LiBH}_4} \times M_{\text{LiBH}_4}}{x_{\text{ext}}} \tag{25}$$

or:

The mass flow rate of LiBH$_4$ per unit cross-sectional area of the reactor is given by:

$$G_i = \frac{w}{\pi d^2} \tag{26}$$

From Equations (1) to (5) we obtain:

$$G_s = \frac{M_{\text{LiBH}_4} P}{2x_{\text{ext}} \pi d^2 F E_{\text{cell}}} \tag{27}$$

The required mass flow rate of water vapor is:

$$G_s = \frac{2sM_{H_2O} P}{x_{\text{ext}} \pi d^2 F E_{\text{cell}}} \tag{28}$$

If there is no pressure drop in the reactor, the linear velocity of the reactant mixture is constant, and the length of the reactor can be calculated as a function of the residence time as follows:

$$L = t_s \frac{G_s}{\rho \varepsilon} \tag{29}$$

where ε is given by Equation 16.

Determination of the residence time requires a knowledge of the rate-determining step of the chemical reaction. As above, we assume that diffusion of water vapor to reaction sites is rate limiting, and the shrinking core model may be used to calculate the rate of the reaction as a function of time and position in the reactor, and that the relationship (12) applies for the diffusion coefficients of water vapor and hydrogen through the hydrate product layer surrounding the core. The conversion of hydride reactant, x, can be expressed as a function of the original amount of the reactant, the water vapor diffusion coefficient and several other
parameters described later. Using the pseudo-steady-state approximation, the rate of increase of x is:

$$\frac{dx}{dt} = \frac{\omega^*}{3\tau_e(1-x)[1-(1-x)^{1/3}]}$$

(30)

where:

$$\tau_e = \frac{R^2}{D_{H,0}} \quad \text{and} \quad \omega^* = \frac{M_{H,0} \rho_0}{4M \rho} \omega_{H,0}$$

(31)

To achieve a given exit conversion x_{out}, the particle must remain in contact with water vapor for time t_r. The residence time of a particle in the moving bed reactor may be calculated by integrating Equation (30):

$$t_r = \int \frac{3\tau_e(1-x)[1-(1-x)^{1/3}]}{\omega^*} dx$$

(32)

To find the dependence of x as a function of position in the reactor, we can substitute Equation (33) into Equation (30):

$$\frac{dx}{dz} = \frac{\epsilon \rho_s}{G_z} \frac{\omega^*}{3\tau_e(1-x)[1-(1-x)^{1/3}]}$$

(34)

Assuming that the temperature of the cooling fluid is constant and equal to T_0, the energy balance is given by:

$$\frac{\pi}{4} d^2 (G_s C + G_s C_s) d T = \frac{\pi}{4} d^2 G_s dx (-\Delta H) - \frac{\pi d}{l} \kappa (T - T_0) dz$$

(35)

Combining Equation (33) and (34), and rearranging, we obtain:

$$\frac{dT}{dz} = \frac{G_s (-\Delta H)}{(G_s C + G_s C_s)} \frac{dx}{dz} - \frac{4\kappa (T - T_0)}{dl(G_s C + G_s C_s)}$$

(36)

Equations (35) and (35) may now be solved for the initial boundary conditions:

$$x(0)=0; \quad T(0)=T_0$$

(37)
Table 6. Definition of Parameters and Values Assumed for Moving Bed Reactor Design Calculations.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{H_2O}</td>
<td>Molecular weight of H_2O</td>
<td>g-mole$^{-1}$</td>
<td>18</td>
</tr>
<tr>
<td>M_{LiBH_4}</td>
<td>Molecular weight of $LiBH_4$</td>
<td>g-mole$^{-1}$</td>
<td>21.75</td>
</tr>
<tr>
<td>$\Delta H_f, LiBH_4$</td>
<td>Standard enthalpy of formation of $LiBH_4$</td>
<td>kJ-mole$^{-1}$</td>
<td>-190.5</td>
</tr>
<tr>
<td>$\Delta H_f, H_2O$</td>
<td>Standard enthalpy of formation of H_2O vap.</td>
<td>kJ-mole$^{-1}$</td>
<td>-241.84</td>
</tr>
<tr>
<td>$\Delta H_f, LiOH$</td>
<td>Standard enthalpy of formation of $LiOH$</td>
<td>kJ-mole$^{-1}$</td>
<td>-487.2</td>
</tr>
<tr>
<td>$\Delta H_f, H_3BO_3$</td>
<td>Standard enthalpy of formation of H_3BO_3.</td>
<td>kJ-mole$^{-1}$</td>
<td>-1088.7</td>
</tr>
<tr>
<td>ΔH</td>
<td>Enthalpy change of reaction</td>
<td>kJ-mole$^{-1}$</td>
<td>-423.7</td>
</tr>
<tr>
<td>κ</td>
<td>Thermal conductivity of reactor walls</td>
<td>J-s$^{-1}$cm2C$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Diameter of reactor</td>
<td>cm</td>
<td></td>
</tr>
<tr>
<td>$z=L$</td>
<td>Reactor length</td>
<td>cm</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>Reactor wall thickness</td>
<td>cm</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Reactor temperature</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_0</td>
<td>Ambient or coolant temperature</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>G_s</td>
<td>Mass flow rate of solid particles</td>
<td>g-s$^{-1}$cm$^{-2}$</td>
<td></td>
</tr>
<tr>
<td>ρ_s</td>
<td>Bulk density of solid particles</td>
<td>g-cm$^{-3}$</td>
<td>0.66</td>
</tr>
<tr>
<td>n_{LiBH_4}</td>
<td>Molar flow rate of $LiBH_4$</td>
<td>mole-s$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>w</td>
<td>Mass flow rate of $LiBH_4$ powder</td>
<td>g-s$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Average hydride particle radius</td>
<td>cm</td>
<td>3 x 10$^{-3}$</td>
</tr>
<tr>
<td>C_s</td>
<td>Heat capacity of solid particles</td>
<td>J-g$^{-1}$°C$^{-1}$</td>
<td>3.5</td>
</tr>
<tr>
<td>C_g</td>
<td>Heat capacity of gas phase</td>
<td>J-g$^{-1}$°C$^{-1}$</td>
<td>2.029</td>
</tr>
<tr>
<td>ρ_g</td>
<td>Density of saturated steam at 100 °C</td>
<td>g-cm$^{-3}$</td>
<td>5.98x10$^{-4}$</td>
</tr>
<tr>
<td>D_{H_2O}</td>
<td>Diffusion coefficient of H_2O in solid</td>
<td>cm2-s$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>ε</td>
<td>Volumetric fraction of solid in reactor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ω_{H_2O}</td>
<td>Mass fraction of H_2O on solid surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t=t_R$</td>
<td>Particle residence time in reactor</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>Conversion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_{out}</td>
<td>Final conversion at reactor exit</td>
<td></td>
<td>0.99</td>
</tr>
<tr>
<td>n_{H_2}</td>
<td>Molar flow rate of hydrogen</td>
<td>mole-s$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>G_g</td>
<td>Mass flow rate of gas phase</td>
<td>g-s$^{-1}$cm$^{-2}$</td>
<td></td>
</tr>
<tr>
<td>E_{cell}</td>
<td>Average PEMFC cell potential</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Fuel cell stack power</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Total current</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Faraday constant</td>
<td>C-mols$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Stoichiometric number</td>
<td></td>
<td>96,500</td>
</tr>
</tbody>
</table>
Equation (34) describes the reactor length, \(z \), as a function of conversion, \(x \). However, several other parameters, e.g., reactor diameter, \(d \), hydride particle size, \(R \), etc., will strongly influence reactor design. Figure 11 shows the reactor length as a function of conversion and of reactor diameter in the form of a three-dimensional diagram. It can be seen that for 1 cm reactor diameter, reactor length has to be at least 10 cm for a conversion of 0.99. Increasing reactor diameter results in a decreased reactant mass flow rate, which may permit a reduction in reactor length. If the reactant particle size is larger, a longer reactor is needed to satisfy the conversion requirements. This is illustrated three-dimensionally in Figure 12.

The correct temperature distribution is an important factor for the safe operation of the equipment. To examine this, the reactor energy balance was numerically calculated to evaluate the temperature variation along the reactor. First, the effect of thermal conductivity of the reactor wall, \(k \), was addressed, as is illustrated in Figure 13. Increasing the thermal conductivity results in a smaller temperature variation along the reactor. The maximum temperature will be lower than 150 °C when the heat transfer coefficient of the reactor wall is \(k = 0.001 \) J/s cm °C, which fortunately is the case for most metallic materials. Therefore it should be quite safe to run a stainless steel hydrogen generation reactor under these conditions.

![Figure 10](image_url)
Figure 10 Reactor length as a function of conversion and reactor diameter for 5 Watt hydrogen generator. Other design parameters: Reactant particle radius, \(R = 0.003 \) cm; Water vapor diffusion coefficient in solid hydrate, \(D_{H_2O} = 10^{-7} \) cm-s \(^{-1} \); Fuel cell voltage, \(V = 0.7 \) V; Stoichiometric number \(s = 2 \).
Figure 11 Reactor length as a function of conversion and reactant particle radius for 5 Watt hydrogen generator. Other design parameters: Reactor diameter $d = 1$ cm, $D_{\text{H}_2\text{O}}$, V, and s as in Figure 10.

Figure 12. Reactor temperature as a function of conversion and thermal conductivity of reactor wall for 5 Watt hydrogen generator. Other design parameters: R, $D_{\text{H}_2\text{O}}$, V, and s as in Figure 10 and d as in Figure 11.
3.4.3. Subtask 1.4.3. Experimental 5 Watt Reactor

Since the experiments conducted under Subtask 1.3.2 had shown that hydrogen production was stoichiometric at elevated temperatures, a chemical hydrogen generator was designed to produce sufficient hydrogen for the continuous operation of an integrated 5 Watt PEMFC stack. A schematic of the integrated system is shown in Figure 13. The hydride material would be stored in a container and delivered to the reactor via an Archimedean-screw feed system. The steam generator and chemical reactor would be integrated for better utilization of reaction heat and improved heat exchange. A dust collector would retain reacted particles, and the hydrogen evolved would pass through a conditioning condenser. Unreacted hydrogen exiting the fuel cell would be recycled through the reactor. The water produced at the PEMFC anode would be condensed from the exit stream and returned to the steam-generator. Air-cooled heat-exchangers would be incorporated as needed. Initial work involved the construction of the controlled hydride powder delivery system.

Figure 13 System Schematic, 5 Watt Chemical Hydrogen Generator/PEMFC Stack.
A four cell PEMFC stack capable of delivering 10 W at 0.8 V per cell was assembled and tested. A data-acquisition and control system using an Intel computer with an 8 channel A/D board and two 16 channel expansion boards was designed and built to record system parameters, which include PEMFC and reactor temperatures, gas inlet and outlet temperatures, relative humidities, individual cell voltages and the PEMFC stack current.

By the late summer of 1996, the steam-generator for the 5 Watt reactor had been built and tested with 125°C steam to allow the production of hydrogen at the required rate. The 4-cell PEMFC and the data acquisition and control system were also operational. The key to obtaining a required controlled rate of hydrogen evolution is the hydride powder feed mechanism, which must transport the reactant reliably and at the same time prevent water entering the hydride storage tank. Both screw-type and piston-type powder feed mechanisms were being designed for comparative evaluation.

4. Conclusions

4.1. Choice of Hydride

Of the hydrides examined, lithium had the lowest equivalent weight, and was the most stable. The major problem was the requirement to operate the reactor at a temperature of 125°C if water recovered from the fuel cell exhaust is to be the reactant. Only under these conditions is hydrogen formed stoichiometrically from water molecules. The major design challenges were water recovery, control of reaction rate, and heat removal. A reactor providing 100 W (mean) for 180 days would require 85.1 kg of LiH in a fuel cell operating at 0.75 V. This would consume approximately 192.9 kg of water in a stoichiometric reaction. However, the required hourly duty cycle was a 20 minute period of 100 Wh, followed by a 40 minute period of 6.67 Wh. This longer, low-power period would be at a much lower current density, enabling a higher fuel cell voltage to be used, equal to approximately 0.85 V. Thus, the average requirement is 105.9 W at 0.75 V, corresponding to 90.1 kg (ca. 113 liters solid volume) of LiH and 204.3 kg of water. The 100 Wh/0.333 hours peak requires 1.85 moles of hydrogen, i.e., 60.4 liters of hydrogen at 1 atm pressure and 125°C.

4.2. Generator Design Options

4.2.1. Peaking Generator Operation

There are basically two options for the generation of the hydrogen required for the period of peak power output. The first is to operate the generator at the rate required by the hydrogen demand at any given time. This method of generation is required if the rate of consumption is totally unpredictable, e.g., if the hydrogen is to be consumed in a vehicle with a continuously variable duty cycle. To allow for any inertia between production and consumption, some storage capacity is usually necessary if this option is used. A simple Kipp Generator does not appear to be a viable solution, since the rate of reaction between a reactive hydride (e.g., lithium hydride) occurs too rapidly and generates too much local heating, causing the reaction to be essentially uncontrollable. The heating dries out the material on the surface, but water inside the pores of the material continues to react even after the hydrogen pressure has risen sufficiently to hydraulically push the level of water down below the hydride reactant. After the hydrogen is
consumed and the water level rises, there is a delay in reaction time to the presence of dried product on the surface, which initially blocks internal porosity. This makes the reactor doubly uncontrollable.

The second option arises when the duty cycle is predictable, which is so in the present case, when the equipment is expected to operate at high continuous power for 40 minutes each hour, then stand by for 40 minutes. The option consists of operating the generator at the mean rate required for the PEMFC, and to store the 60.4 liters of hydrogen produced for the 20 minute peak cycle each hour. Given the volume of LiH reactant required, this should not be difficult, even under ambient pressure conditions. Another option is as a solid hydride operating at 125°C, or at a compromise temperature between that of the reactor and the PEMFC stack. Thus, the best option for this application is a generator which operates at a continuous rate. This greatly simplifies the control system, since a continuous feed of one reactant (the metal hydride) with discontinuous feed of the other (water) can still result in a continuous average production of hydrogen. About 93.7% of the product water is formed at the PEMFC cathode in one-third of the total time the system operates (i.e., during 20 minutes per hour). In other words, provided that the stoichiometric water can be collected and trapped, its supply will not be rate-controlling, and a continuous calibrated screw device may be used to supply LiH at a controlled rate to the reactor. The rate of supply of LiH will be constant, representing the average required load, and it will determine the rate of hydrogen production.

This option is attractive, but it involves three major problems, or rather unknowns, one mechanical, the others chemical. The first is the design of the LiH feed device, which, as we have seen above, must be thoroughly reliable, and must not allow water to pass through to the hydride container. The other two problems are the exact stoichiometry of first, the hydrogen formation reaction, and second, the process for the collection of water from the PEMFC cathode exit. While we have stated above that the stoichiometry of the hydrogen formation reaction goes from 0.5 (product LiOH.H2O) at temperatures <125°C, to 1.0 (product LiOH) at temperatures >125°C, this is an over-simplification. No reaction is exactly stoichiometric. Similarly, the collection efficiency of product water from the fuel cell exit stream can never be 100%. This is illustrated by the mode of operation given below.

4.2.2. PEMFC-Generator Systems

The oxidizing (depleted air) PEMFC exit stream must be separated from the hydrogen anode inlet stream, otherwise hydrogen will be consumed and wasted by reaction with oxygen on the fuel cell anode catalyst. Water must therefore be separated at the highest possible efficiency (as close as possible to 100%) and physically supplied to the LiH reactant in a separate flow-stream. Because water supply is critical in the proposed system, the proposed PEMFC will operate under self-humidified conditions [4, 5] instead of using the usual humidified gas streams, which are saturated to several °C above the stack operating temperature. This procedure requires a total-loss water supply system. For applications where water supply is critical, the PEMFC may be operated so that its temperature is slightly above the dew-point of the gases exiting the cell cathode, containing product water in the form of vapor. Since the minimum oxygen stoichiometry of the inlet air stream giving stable operation is normally 2 (i.e., the highest practical utilization of oxygen in the air stream is 50%), and two molecules of water are formed from every molecule of oxygen consumed, then the exit cathode stream for initially dry air as reactant contains a partial pressure of 0.182 atm. of water vapor, corresponding to a dew point of 58.3°C. This is the maximum marginal temperature of operation of a self-humidified PEMFC, since drying out of the electrolyte membrane, and therefore loss of ionic
conductivity, will take place at higher temperatures. A condenser operating at its maximum possible efficiency at ambient temperature (say 25°C) will still collect only 82.8% of the water vapor exiting a PEMFC operating under self-humidified conditions at 58.3°C, since the saturated water vapor pressure at 25°C is 23.76 Torr (i.e., 0.031 atm).

Clearly a condensing system is inadequate, unless it is associated with a sophisticated vapor recovery system, either using ultra-low temperature condensation or some other method of reduction of the free energy of the system. Instead of trying to produce liquid water more or less inefficiently, then transferring the liquid water to the LiH reactant, use can be made of the very high degree of vapor pressure suppression by chemical reaction of water vapor in the presence of LiH. However, since the cathode exit and anode inlet streams cannot be mixed, means must be found to transfer water in the form of vapor between the two streams.

4.2.3. A Membrane-Humidified System

A possible solution to the above problems is the use of a reactor which uses a Nafion™ membrane (or set of membranes) as a water transporter. This concept relies on the excellent water transport properties and relatively low hydrogen permeability of the Nafion™ membrane, even in ion-exchanged (e.g., Li⁺) form. This may allow the product water to be collected from the PEMFC cathode exit stream, so that an equal amount of hydrogen can be produced, provided that the hydride product does not form a hydrate, e.g., LiOH.H₂O. This will unfortunately require operation at temperatures exceeding 125°C. Nafion™ is stable enough to operate under such conditions, provided its water transport properties are satisfactory. This may be so if it is in contact with LiOH.

A schematic of the device is shown in Figure 14. We conclude that this may be the only way to make a viable device, but even this may not be reliable. Thus we must concede that the chances of finding a safe, reliable, and chemically secure hydride hydrogen generator are not very great, especially if LiH is to be used, since it will require an operating temperature above 125°C if H₂ is to be produced stoichiometrically from water.

Operation at 125°C, even if successful, will have an operational disadvantage. The system will have some infra-red signature, and if mechanical devices are required (pressure pumps, etc.) reliability and noise may become issues. It should be possible to operate at a lower temperature using an alkaline earth metal hydride, yet still maintain stoichiometric hydrogen production from water. The use of calcium hydride (equivalent weight 21, end product Ca(OH)₂) will effectively allow a specific energy of 1.70 kWh/liter, 0.89 kWh/kg in a PEMFC operating at a unit cell voltage of 0.7 V, which is well within specifications. In contrast, LiH (equivalent weight 7.95) offers 1.66 Wh/liter, 2.38 kWh/kg (for LiOH product) under the same cell voltage conditions. Since most systems are volume-limited, rather than mass-limited, for most applications the two hydrides may be practically comparable. Even better is MgH₂, which reacts "violently" with water (so it is unlikely to passivate) and has an equivalent weight of 12.7. It offers 2.90 kWh/liter, 1.48 kWh/kg when used with a PEMFC operating at 0.7 V. Its decomposition temperature of 280°C offers a sufficiently large operating window to ensure that the H₂O → H₂ reaction goes to completion without side reactions. Beryllium hydride (equivalent weight 5; ca. 7.0 Wh/liter, 3.75 Wh/kg) would be even better, but its decomposition temperature is too low at ca. 125°C, and its products will be highly toxic to many people. An alternative is AlH₃ (equivalent weight corresponding to ca. 3.9 kWh/liter, 1.88 kWh/kg at 0.7 V), but its low decomposition temperature (100+°C) would make its use impractical.
4.2.4. Alkaline Fuel Cell Systems

If any alkali metal (i.e., lithium ion) carryover occurs from the reactor via an aerosol in the hydrogen stream to the PEMFC, the latter will be slowly deactivated as ion-exchange takes place. This can be minimized if the Group II systems (CaH$_2$ and MgH$_2$) are used. This will be particularly so for Mg$^{2+}$, which will not form a liquid aerosol with water.

All systems using an acid PEMFC system require a water-exchange device in the form of a condenser or membrane dehumidifier. Such systems cannot be 100% efficient, so in all cases make-up water will be required, and therefore a water management subsystem with active components must be included. This may be complex, and is likely to result in a lack of reliability. We may conclude that a PEMFC system with close to 100% water recovery using CaH$_2$ or MgH$_2$ for hydrogen storage in a foolproof system would be a very difficult proposition.

A much more workable solution was given in the original proposal. If the fuel cell is alkaline (with a chemical CO$_2$ scrubber on the air side), the reactant water is formed in the anode stream, which may be directly circulated over CaH$_2$ or MgH$_2$ in a hydrogen feedback loop. This will avoid the problem of product water separation, and permit the program goals to be achieved. It would also be immune from aerosol carry-over of any type. Work on this solution is recommended in future, if the need for this power source still exists.

5. References

Appendix 2. Energy Storage Efficiency for Direct Methanol Fuel Cells
Direct Methanol Fuel Cell Energy Density

Direct methanol fuel cells (DMFCs) were not considered at this workshop. However, for comparative purposes the energy density for the direct conversion of methanol is presented in this appendix. Research is being conducted on fuel cells which operate on pure methanol vapor feed, and on fuel cells which utilize aqueous methanol solutions. This appendix presents a brief discussion of the energy density for the methanol fuel. The energy densities listed below can be compared with other materials listed in Table 1 of this report.

The table below shows that the theoretical energy density for direct oxidation of pure methanol is 6,200 Whr/kg, which is based on the free energy of the reaction

\[
\text{CH}_3\text{OH} + \text{O}_2 = \text{CO}_2 + 2\text{H}_2\text{O}
\]

The practical energy density for pure methanol takes into account ohmic and kinetic losses (50% to 75% losses) which are observed in present-generation DMFCs. This does not include the weight of ancillaries.

Another device is the DMFC which uses an aqueous methanol feed. For illustrative purposes, a 1 M solution is typical. If the kinetic and ohmic losses are the same as above, then the practical energy density drops considerably because of the considerable dilution factor (approximately 1 kg of water for 32 g of MeOH).

<table>
<thead>
<tr>
<th></th>
<th>Potential Whr/kg</th>
<th>Practical Whr/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure methanol (vapor feed DMFC)</td>
<td>6,200</td>
<td>1,500-3,100</td>
</tr>
<tr>
<td>1 M aqueous solution</td>
<td>198</td>
<td>48-99</td>
</tr>
</tbody>
</table>