Psychomotor and Perceptual Abilities and Skilled Performance

Author(s)
DR PHILLIP L. ACKERMAN

Performing Organization Name(s) and Address(es)
DEPARTMENT OF PSYCHOLOGY
UNIVERSITY OF MINNESOTA
75 EAST RIVER ROAD
MINNEAPOLIS MN 55455

Sponsoring/Monitoring Agency Name(s) and Address(es)
AFOSR/NL
110 DUNCAN AVE ROOM B115
BOLLING AFB DC 20332-8050

Supplementary Notes

Distribution/Availability Statement
Approved for public release; distribution unlimited.

Abstract (Maximum 200 words)
The research in this project is aimed at three broad approaches to development and assessment of psychomotor and perceptual speed ability predictors of skilled performance: The first approach takes advantage of computerized touch-panel devices for assessment of a series of psychomotor abilities; The second approach links individual differences in psychomotor abilities with perceptual speed abilities, which have been shown to be important predictors of the acquisition of skilled performance. The third approach evaluates the new test batteries for predicting individual differences in complex task performance. The program of research is proceeding on-schedule, in that the touch-panel technology has been acquired, seven new families of psychomotor tests have been developed and subjected to empirical assessment, and perceptual speed tests have been developed and incorporated into a larger aptitude/ability framework. The new tests show substantial promise in accounting for important sources of performance variance, and are currently being subjected to validation trials for complex task performance criteria.

Subject Terms

Security Classification of Report (U)
Security Classification of This Page (U)
Security Classification of Abstract (U)
Limitation of Abstract (UL)

NSN 7540-01-280-5500

Number of Pages
Price Code

AFRL-SR-BL-TR-98-0244
Psychomotor and Perceptual Abilities and Skilled Performance

F49620-96-1-0065

FINAL REPORT
(Period 2/14/96 - 12/15/97)

Phillip L. Ackerman
Department of Psychology
University of Minnesota
75 East River Road
Minneapolis, MN 55455

Now:
School of Psychology
Georgia Institute of Technology
274 5th Street
Atlanta, GA 30332-0170

Submitted to:

Dr. John F. Tangney
Air Force Office of Scientific Research
AFOSR/NL
110 Duncan Avenue, Suite B115
Washington, DC 20332-0001

This is a Final Report prepared for the Air Force Office of Scientific Research.
Summary

The research in this project is aimed at three broad approaches to development and assessment of psychomotor and perceptual speed ability predictors of skilled performance: The first approach takes advantage of computerized touch-panel devices for assessment of a series of psychomotor abilities; The second approach links individual differences in psychomotor abilities with perceptual speed abilities, which have been shown to be important predictors of the acquisition of skilled performance. The third approach evaluates the new test batteries for predicting individual differences in complex task performance. The program of research is proceeding on-schedule, in that the touchpanel technology has been acquired, seven new families of psychomotor tests have been developed and subjected to empirical assessment, and perceptual speed tests have been developed and incorporated into a larger aptitude/ability framework. The new tests show substantial promise in accounting for important sources of performance variance, and are currently being subjected to validation trials for complex task performance criteria.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Current Research</td>
<td>1</td>
</tr>
<tr>
<td>III. General Discussion</td>
<td>2</td>
</tr>
<tr>
<td>IV. Publications during the grant period</td>
<td>3</td>
</tr>
<tr>
<td>V. Presentations during the grant period</td>
<td>4</td>
</tr>
</tbody>
</table>
I. Introduction

The research in this project is aimed at three broad approaches to development and assessment of psychomotor and perceptual speed ability predictors of skilled performance: The first approach takes advantage of computerized touch-panel devices for assessment of a series of psychomotor abilities; The second approach links individual differences in psychomotor abilities with perceptual speed abilities, which have been shown to be important predictors of the acquisition of skilled performance. The third approach evaluates the new test batteries for predicting individual differences in complex task performance. The goal of this work is to demonstrate the feasibility of using new technology for assessment of psychomotor abilities, to provide an integrated approach with perceptual and cognitive abilities, and to demonstrate the validity of new measures of psychomotor and perceptual speed abilities for prediction of complex task performance. Potential applications from this work will be in enhancing prediction of human performance in complex skill situations.

II. Current Research

Part 1: Assessment of Psychomotor Abilities with touch panel technology.

This part of the project involves the use of general purpose desktop computers and touch-panel displays to generate a software suite that assesses individual differences in psychomotor skills and aptitudes. To date, we have developed and collected data on the following seven test types: (a) Tapping Speed and Fitts’ Law, (b) Choice Reaction Time (RT) and Simple RT, (c) Serial Reaction Time, (d) Maze Tracing, (e) Mirror Tracing, (f) Maze Pursuit, and (g) Rotary Pursuit. The tests have the advantage of ameliorating the four main obstacles that have historically prevented wide-spread use of psychomotor testing, namely: (a) Fabrication costs (this project involves off-the-shelf equipment); (b) Calibration requirements (the new technology requires minimal time and effort for calibration); (c) Examiner training (minimal training of examiners is required, given the simplicity of operation and limited needs for adjustment and maintenance); and (d) Low examiner-to-examinee ratios (because the systems are highly self-contained, and include on-board intelligence for upkeep). The test battery has been fully developed and is currently being subjected to several empirical studies to demonstrate reliability, and validity (e.g., correlations with other psychomotor ability assessments).

Part 2: Integration of perceptual speed and psychomotor abilities.

Our current and previous AFOSR projects have involved an extensive investigation of perceptual speed abilities, including the development of a taxonomic representation of these domains. In several studies it has become clear that tests of complex perceptual speed abilities are important predictors of individual differences in learning and skilled performance. From a theoretical perspective, these investigations are important because they shed light on a domain of human abilities that is not well-understood. From a practical perspective, this work has demonstrated that substantial gains in the prediction of training success and performance can be accomplished by the proper selection of appropriate perceptual speed measures. For example, we have demonstrated that two measures in
particular (a variation of the old Army Air Force Dial Reading Test, and an FAA-inspired Directional Headings Test) provide substantial incremental validity in predicting performance of air traffic controllers, both in the laboratory and in the field. Moreover, our empirical work (Ackerman & Kanfer, 1993; Ackerman, Kanfer, & Goff, 1995) has shown that complex perceptual speed tests also capture aspects of personality and self-regulatory processes that may interfere with training success on complex skill tasks.

To date, we have developed and validated a large battery of paper and pencil perceptual speed tests. In a series of investigations, we have validated several aspects of the proposed taxonomy of perceptual speed. Specifically, we have determined there are, for most practical intents and purposes, three major factors of Perceptual Speed (PS) ability: PS-Scanning, PS-Pattern Recognition, and PS-Memory (Ackerman & Rolfhus, 1996; see also Ackerman & Cianciolo [1998, "Psychomotor abilities via touchpanel testing: Measurement innovations, construct, and criterion validity." Manuscript under review]). By integrating these measures with the new touchpanel psychomotor ability tests, we have started building a broad network of ability constructs, that includes cognitive, perceptual speed, and psychomotor abilities -- all clearly relevant in one way or another to predicting individual differences in skilled performance.

Part 3: Validation of Psychomotor and Perceptual Speed Abilities for Complex Task Performance

This final phase of the research project is under way, under the new grant to Georgia Institute of Technology. We continue our research and development efforts on the touchpanel psychomotor tests, and will be validating them, along with the perceptual speed ability measures against complex task performance.

III. General Discussion

This is clearly an ongoing project, and this “final report” represents an interim description, roughly two-thirds of the way into the program. In the larger context of the University of Minnesota and Georgia Institute of Technology grants, we are on-schedule and on-budget for completing the entire project described in the respective proposals.

Moreover, we have also obtained data from a sample of School of Dentistry students, including criterion training performance measures. This is particularly noteworthy, because operative dentistry is a psychomotor-intensive work environment, and as such, provides a directly relevant criterion against which to compare our new touch-panel tests. We have nearly completed data analyses on this project, but the results are very encouraging. Specifically, we have demonstrated significant incremental validity with our touchpanel tests in predicting individual differences in operative dentistry skills (over and above a traditional standardized cognitive and spatial ability battery, and a tailored spatial and perceptual speed ability battery). Such results, taken together with the other data we have collected so far, suggest that this new approach is promising for both theoretical and application purposes. Additional information will be presented in the final report at the end of 1998.
IV. Publications during the grant period

V. Presentations during the grant period

Ackerman, P. L. (1997, January). *Trait complexes, adult intellectual development, and knowledge structures.* Invited colloquium presented to the School of Psychology, Georgia Institute of Technology: Atlanta, Georgia.

