Title and Subtitle: AASERT Grant - Distributed Systems and Flow Analysis Algorithm

Authors: Professor Flaviu Cristian

Performing Organization Name(A)(S) and Address(es):
Univ of California, San Diego
Dept of CSE
La Jolla CA 92093

Sponsoring/Monitoring Agency Name(A)(S) and Address(es):
AFOSR/NM
110 Duncan Avenue Suite B115
Bolling AFB DC 20332-8050

Abstract:
Progress has been made on the partitionable group membership problem in time-free asynchronous distributed systems. It was shown that a property similar to quorum consensus is required for the solution.

Subject Terms: Distributed systems

Security Classification of Report: Unclassified

Security Classification of this Page: Unclassified

Security Classification of Abstract: Unclassified

Number of Pages: 1

Price Code: UL
Final Report for ASSERT Grant F49620-94-1-0424

1 Aug 95 - 31 July 97

Flaviu Cristian
UCSD Dept. of CSE, La Jolla, CA, 92093-0114
619 822-0424
619 534-7029
flaviu@cs.ucsd.edu

Two students have been funded:

Jeremy Sussman worked on the partitionable group membership problem in time-free asynchronous distributed systems. We have been bothered by the specifications we have seen for such services because they have not been motivated by any reasonable applications. Without such motivation, it is impossible to say whether one specification is preferable to another. So, we took an application specification (having to do with resource allocation) that was originally proposed by Ken Birman as an example of a reasonable partitionable application. We found that the application could not be implemented in a time-free partitionable system without either blocking in the minority partitions or by a static assignment of resources. Hence, we chose a weaker problem, a variant of consensus, that is included in all of the competing specifications. We've come up with results that show that even with this simpler problem, a property similar to quorum consensus is required, which on the face of it is a negative result for the time-free asynchronous approach. We think, however, that the result may not be all that negative (which we are addressing in the continuing research). We're currently writing this result up.

David Morgenthaler worked out the details of how to implement the demand-driven data flow analysis algorithm of Duesterwald on top of his virtual control flow mechanism. The virtual control flow mechanism allows traversing an abstract syntax tree (AST) of a program as though it were a control flow graph, thus saving considerable space and perhaps time. This approach is well-suited to demand-driven data flow analysis because control flow information is computed on-demand as driven by the data flow analysis requirements. The result is that it should now be possible to perform large-scale meaning-preserving restructurings in acceptable time and space. This is significant, because it allows an engineer to remodelarize a system without changing its behavior (except for timing). Thus, it is possible to reengineer an aging system without compromising its reliability.