<table>
<thead>
<tr>
<th>1. Report Date (dd-mm-yy)</th>
<th>2. Report Type</th>
<th>3. Dates covered (from... to)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Title & subtitle</th>
<th>5a. Contract or Grant #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Army Research Office Programs In Beam Technology and Surface Engineering</td>
<td>5b. Program Element #</td>
</tr>
<tr>
<td>Tri-Service Conference on Corrosion Proceedings</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Author(s)</th>
<th>5c. Project #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert R. Reeber</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5d. Task #</td>
</tr>
<tr>
<td></td>
<td>5e. Work Unit #</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. Sponsoring/Monitoring Agency Name & Address</th>
<th>10. Monitor Acronym</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tri-Service Committee on Corrosion</td>
<td></td>
</tr>
<tr>
<td>USAF WRIGHT-PATTERSON Air Force Base, Ohio 45433</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Monitor Report #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Distribution/Availability Statement</th>
<th>13. Supplementary Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for Public Release</td>
<td></td>
</tr>
<tr>
<td>Distribution Unlimited</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Subject Terms</th>
<th>19. Limitation of Abstract</th>
<th>20. # of Pages</th>
<th>21. Responsible Person (Name and Telephone #)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tri-Service Conference on Corrosion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TRI-SERVICE CONFERENCE ON CORROSION

1994 TRI-SERVICE CONFERENCE ON CORROSION

DEPARTMENT OF DEFENSE
UNITED STATES OF AMERICA

21-23 JUNE 1994
SHERATON PLAZA HOTEL
ORLANDO, FLORIDA

PROCEEDINGS

19971028 075
Army Research Office Programs In Beam Technology and Surface Engineering

Robert R. Reeber
Materials Engineer
Army Research Office
Research Triangle Park, NC 27709

The objective here is to provide some idea of needs and opportunities for future research with potential for providing new capabilities for Army systems. The technical objectives of the program are 1. to discover the atomic, molecular and macroscopic processes governing deterioration and adhesion of materials, 2. to provide improved materials stability and longer term performance capability for Army systems, and 3. to educate the next generation of skilled scientists in areas of Army research opportunities and needs.

Two principal thrust areas, (1) Beam Technology and Surface Modification and (2) Non-Destructive Characterization of Materials and Processes, are the templates for fulfilling the technical objectives of the program. New directions in nondestructive characterization, adhesion, non-equilibrium processing of refractory materials, ultrastrong laminates, green processing of corrosion resistant coatings and superhard coatings will be reviewed.
Research at the University of Wisconsin, Milwaukee (Carolyn Aita); has provided a characterization scheme (metastable phase maps) for refractory metal oxide sputter depositions. These results have depended on careful spectroscopic plasma characterization and determination of the crystallinity of films with x-ray, XPS and other methods. The University of Michigan (Bilello, Yalisove and Srolovitz) refractory metals laminates project where synchrotron topography and double crystal diffractometry techniques and theory are being applied to monitor and predict residual stresses and properties of nanolaminate materials.

A current program in chemical analysis with low and medium energy ion beams is underway at Vanderbilt University (Robert Weller). A new form of backscattering spectrometry using medium energy ions and time-of-flight detection has been developed that is particularly useful for characterizing surfaces and thin films. Currently some scaleup of the results is being accomplished with the cooperation of Semitech and Sandia National Laboratory.

A. Chemical/Biological Defense:

Previous work at the University of Connecticut, Koberstein, in the mid to late 1980's was cofunded by the National Science Foundation and related to surface tension measurements of polymer blends. At the same time at Cornell Kramer began seminal work to measure true diffusion coefficients of organics in polymer glasses with Rutherford Back-Scattering Spectrometry. After this work completed new efforts applying positron annihilation methods to polymers were started and are continuing. Their aim is to determine polymer free volume and its relationship to aging and transport in polymers (Case Western Reserve, McGervey, Simha and Jamieson).

B. Surface Modification/Beam Technology:

Although initially work was aimed at identifying unique properties of beam-treated materials, a growing awareness arose concerning environmental problems with plating wastes and the chemical solutions required for routine coating. This caused a
second look at what alternates were available. Some directions were identified that potentially could reduce the costs of the new technology. Lawrence Berkeley Laboratory’s Ian Brown, an innovator in high current sources for implantation, was cofunded with the Office of Naval Research to further develop his technology. University of Wisconsin-Madison (John Conrad), has been evaluating the potential of Plasma Ion Implantation (PSII). The Madison group has had continuing transfers of technology to industry (Kearfoot-Singer) for space bearings, the auto industry and direct interactions with Army organizations i.e. Corpus Christi Army Depot, Army Materials Technology Laboratory and Rock Island Arsenal. Their method permits non-line-of-sight implantation with relatively uniform doses.

C. Adhesion and Adhesives:

The previous sections as they relate to bonding and coating technology have already touched on some of the approaches to improved adhesion. A new STM effort addressing ceramic-metal bond integrity is ongoing with Arizona State (Jg Tsong). At Cornell, Ed Kramer is applying fracture mechanics and neutron reflectivity measurements to understand polymer/glass interface/interphase chemistry and improve bonding strengths in composites and other systems. Problems relating to effects of adhesive tackifiers are being addressed at the University of Akron and imaging of adhesive bonds is being attempted with electron holographic techniques at Stevens Institute of Technology.

D. Non-destructive Evaluation:

The strong subfield emphasis on materials characterization as reviewed above (hydrogen analysis, STM, laser diagnostics etc.) is included in the non-destructive characterization area. An ongoing program in the area is being carried out at the University of Houston (Salama) with the cooperation of the German Frauenhofer Institute for Non-Destructive Analysis in Saarbrucken. Here metal matrix composite third order elastic constants are being measured as a function of temperature. The results are useful in formulating mechanical equations of state for these materials. Additionally, several new small business programs have
been initiated addressing NDE needs in chemical biological materials.

I. New Needs and Directions:

The Army of the next century will require greater mobility, less reliance on logistics, and the ability to project a strong force quickly into a potential troubleshoot. Such requirements can be translated into lighter weight systems and increased reliability. Higher temperature/pressure operations lead to increased efficiency but also increased stresses on equipment and munitions. New materials including lighter weight ceramic engines, a range of composite materials, graded coatings, and new polymers/elastomers will be required. Novel hard materials such as CVD diamond and cubic boron nitride are already being considered for unusual thermal and wear resistant applications. Smart coatings that provide stealth effects (neural control of color and emissivity), decontamination capabilities, self repair etc. are within the realm of possibility. New non-destructive techniques are required both to assess remaining system life and to provide in-situ monitoring of quality manufacturing. Additional research will be required to improve tribological properties of ceramics. Coatings and camouflage for polymers and polymer composites will have increasing importance. All new materials and systems processing will have to respond to increasing requirements for environmentally benign processing and recyclability. Since systems performance can often be significantly accelerated by technical breakthroughs, it is difficult to say what else to expect. Our ability to construct and characterize materials at the nanolevel will certainly reap future basic research dividends, many of which are now unforeseen.
ARMY APPLICATIONS

BODY ARMOR
- EXOSKELETON
- MOBILITY
- LOGISTICS
- LETHALITY
- STEALTH
- CB DEFENSE
- EYE PROTECTION

LIGHTWEIGHT
- ULTRAHARD
- ADHERENT
- WEAR/EROSION/FRACTURE RESISTANT
- IMPERVIOUS
- HIGH TEMPERATURE CAPABLE

SMART
- SUPERSTRONG
- CORROSION RESISTANT

HELIICOPTERS
- ARMORED VEHICLES
- COMMUNICATIONS
- SENSORS
- LOGISTICS
- MISSILES
- ARTILLERY
- DRONES

SURFACE SENSITIVE PROPERTIES/PROCESSING
DEGRADATION, REACTIVITY & PROTECTION

I. BEAM TECHNOLOGY/SURFACE MODIFICATION

<table>
<thead>
<tr>
<th></th>
<th>FY 93 (CORE)</th>
<th>FY 93 (ALT)</th>
<th>FY94 (CORE)</th>
<th>FY94 (ALT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ION/LASER</td>
<td>117</td>
<td>351</td>
<td>89</td>
<td>0</td>
</tr>
<tr>
<td>NANOLAMINATES</td>
<td>145</td>
<td>600</td>
<td>114</td>
<td>500 e</td>
</tr>
<tr>
<td>ADHESION/SMART/GREEN</td>
<td>273</td>
<td>156</td>
<td>232</td>
<td>7.98 e</td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

II. NONDESTRUCTIVE CHARACTERIZATION

<table>
<thead>
<tr>
<th></th>
<th>FY 93</th>
<th>FY 93</th>
<th>FY 94</th>
<th>FY 94</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADHESION/INTERFACES</td>
<td>263</td>
<td>0</td>
<td>292</td>
<td>0</td>
</tr>
<tr>
<td>INSERVICE</td>
<td>109</td>
<td>141</td>
<td>198</td>
<td>247</td>
</tr>
<tr>
<td>INSITU PROCESSING</td>
<td>86</td>
<td>434</td>
<td>59</td>
<td>250</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>993 1682</td>
</tr>
<tr>
<td></td>
<td>984 1845</td>
</tr>
</tbody>
</table>
BEAM PROCESSING OF MATERIALS
ATOMIC LEVEL SURFACE TREATMENT

METHODS:

• LASERS
• ION IMPLANTATION
• ION BEAM ENHANCED DEPOSITION
• PLASMA SPUTTERING
• CVD - MOCVD - MBE
• PLASMA SOURCE ION IMPLANTATION
• ELECTRON BEAM TREATMENTS

EFFECTS:

• SURFACE ZONE REFINEMENT
• MORPHOLOGY CHANGES
• AMORPHIZATION
• SURFACE MIXING
• PLANARIZE SURFACE
• ALLOYING FROM GAS & PREDEPOSITED LAYERS
• IMPROVED ADHESION
• IMPROVED CORROSION RESISTANCE
ARMY RESEARCH THRUST

01 MATERIALS SCIENCE
SUBAREA: STRUCTURAL MATERIALS
BEAM ENGINEERING/SURFACE MODIFICATION

MAJOR PERFORMERS

- UNIVERSITY OF CONNECTICUT
- UNIVERSITY OF WISCONSIN, MADISON
- CORNELL UNIVERSITY
- UNIVERSITY OF MICHIGAN
- BROOKHAVEN NATIONAL LAB
- IMPLANT SCIENCES, INC

ARMY RELEVANCE:

- FIRE SUPPORT, MOBILITY, AVIATION, SOLDIER

RECENT ACCOMPLISHMENTS:

- TWO IR100 AWARDS
- SUPERSTRONG NANO-LAMINATES
- HIGH TEMPERATURE AI COATING
- WEAR RESISTANT C/N COATINGS
- CHROMATE-FREE CONVERSION COATINGS

EXEMPLARY OF RECENT TRANSITIONS TO ARMY,
DoD, OR PRVATE SECTOR PROGRAMS:

- AUTO FASTENER CONVERSION COATING TRANSFERRED TO TRW/CALUMET/ RDEC/TTCP
- LONG ISLAND LIGHTING CO IS TESTING HIGH TEMPERATURE AI COATING FOR HEAT EXCHANGERS
- GM/LASEL/UNIVERSITY OF WISCONSIN, CRDA FORMED TO UTILIZE PLASMA SOURCE ION IMPLANTATION
NONDESTRUCTIVE CHARACTERIZATION OF COATINGS
(WHITE, UNIV. MO. - COLUMBIA & MANSFELD, USC)

- ZINC PHOSPHATE CONVERSION COATINGS

<table>
<thead>
<tr>
<th>MODIFIED*</th>
<th>UNMODIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>MORPHOLOGY</td>
<td>CHEMISTRY</td>
</tr>
<tr>
<td>5-10 MICRON GRAINS</td>
<td>ZnPHOSPHATEDIHYDRATE</td>
</tr>
<tr>
<td>10-20 MICRON GRAINS</td>
<td>ZnPHOSPHATEDIHYDRATE</td>
</tr>
</tbody>
</table>

*("WAVY" AND LESS ANGULAR THAN UNMODIFIED)

- CERIUM-BASED ALUMINUM PROTECTIVE COATINGS
 CHLORIDE-RESISTANT COATINGS
 CERIUM CONCENTRATIONS - AT LOCAL CHEMICALLY ACTIVE REGIONS
 RESULTS - MINIMAL PITTING OR LOCALIZED CORROSION

- ALUMINUM/SiC METAL MATRIX COMPOSITES
 RAMAN & MICRORAMAN SPECTROSCOPY
 MODIFIED INTERFACES - SILICON CONTAMINATION
 UNMODIFIED (PRISTINE) - SiC - ALUMINUM
ENERGY DISPERSIVE X-RAY ANALYSIS
AL 6061-T6 SURFACES (WHITE-UNIV. MO, COLUMBIA)

"PRISTINE"

CERIDE-TREATED
CERIUM-RICH LOCAL REGION

CERIDE-TREATED
CERIUM-RICH LOCAL REGION

POTENTIAL: IMPROVED PITTING/LOCALIZED CORROSION RESISTANCE

TRANSFER: SAMPLES PROVIDED BY ONR PROJECT
REFRACTORY COATINGS
(BILELLO, YALISOVE, SROLOVITZ - UNIV. MICHIGAN)

METAL - METAL NANOLAMINATES

CVD GROWTH

CHARACTERIZATION
- RESIDUAL STRESSES
- MECHANICAL PROPERTIES

CHANGE GROWTH PARAMETERS
- LAYER THICKNESSES
- FREQUENCY

MODEL-PROPERTIES
THEORY - EMBEDDED ATOM

TUNGSTEN - MOLYBDENUM

APPLICATIONS
HIGH TEMPERATURE ENGINES
SUPERSTRONG MATERIALS
TUNGSTEN - MOLYBDENUM

APPLICATIONS

HIGH TEMPERATURE ENGINES
SUPERSTRONG MATERIALS

NANOLAMINATES
(UNIVERSITY OF MICHIGAN)

BRIGHT FIELD
BRIGHT - MO TOUGHENING LAYERS
DARK - MO/W STRENGTHENING LAYERS

DARK FIELD
BRIGHT - INDIVIDUAL GRAINS OR GROUPS OF
GRAINS WITH SIMILAR ORIENT. 15° SECTOR OF MO
(110) RING.

TEM MICROGRAPHS
REFRACTORY COatings
C. AITA - UNIVERSITY OF WISCONSIN, MILWAUKEE

Objective:

Understand interrelationships
- Process parameters
- Growth environment
- Film properties

Payoffs:

Science
- Improved coating technology
- 21 referred publications, 4Ph.D, 3 MS
- 1 patent disclosure

Army
- Transformation toughened coatings
- Corrosion resistant high temp coatings
- Nanolaminate ceramic materials

Approach:

- Monitor sputter chemistry (transition metal oxides, nitrides & oxynitrides)
- Monitor cathode voltage
- Structural characterization (order-disorder)
- Structural/morphology control

Zirconia Phase Distribution (111) Monoclinic
REFRACTORY CERAMIC COATINGS
(BUNKER - IMPLANT SCIENCES INC)

APPLICATIONS:
- DIESEL INJECTOR PROTECTION
- PROSTHESIS (ORTHOPAEDIC DEVICES)
- CUTTING TOOLS

PROGRAM MANAGEMENT
- Zr ION IMPLANTATION - OXYGEN AMBIENT
- OXYGEN IN-DIFFUSION
- GRADED TRANSITION LAYERS
- IBAD-TO THICKEN COATING
- TEST ZrO2 COATINGS IN SIMULATED ENGINE ENVIRONMENTS

RESULTS:
- TWO PATENT APPLICATIONS
- TECHNOLOGY INTERACTIONS
- AMBAC, INTERNATIONAL (INJECTOR), ARL-MD, BIOMEDICAL FIRMS
ION IMPLANTATION

FRICTION AND WEAR

MICROSTRUCTURAL REGIMES AS A FUNCTION OF DOSE
(AFTER BURNETT & PAGE)

SURFACE FRACTURE TOUGHNESS AS A FUNCTION OF NI²⁺ IN ALUMINA
(IIKOKI ET AL.)
SURFACE TREATMENTS
BORON CARBIDE

APPROACHES:
N⁺-ION IMPLANTATION & LASER ANNEAL
N⁺-ION IMPLANTATION AT 850°C

OBJECTIVES:
IMPROVE TRIBOLOGICAL PROPERTIES BY INTRODUCING SOLID LUBRICANT BN.
LASER MELTING
TITANIUM ON ZIRCONIA
(ZALESKI, JERVIS & MAYER)

OBJECTIVE:
IMPROVED TRIBOLOGICAL PROPERTIES

APPROACH:
• NOVEL MICROSTRUCTURE CHANGES
• SLIGHTLY SOFTER MORE PREDICTABLE
• LOWERED FRICTION COEFFICIENT
NON-EQUILIBRIUM PROCESSING
SUPERHARD MATERIALS COATINGS
SMALL BUSINESS PROJECTS

• SI DIAMOND INC., BN, PHASE I
• IONWERKS, INC., BN, CN, PHASE II
• STRUCTURAL MATERIALS INDUSTRIES, INC., CN, PHASE I
• F.S. LAB, DIAMOND-CN, PHASE I, PHASE I
• SPACE POWER, INC, BN, PHASE I
• IMPLANT SCIENCES INC, DIAMOND, PHASE I

APPROACHES: ION/LASER/PLASMA
LIQUID INTERMEDIARY
SUMMARY

METHODS FOR IN-SITU CONTROL

- HOLOGRAPHIC
- ION BEAM ANALYSIS
- X-RAY ANALYSIS - REAL TIME
- THERMAL WAVE IMAGING
- LASER - PULSED ELECTRON GUN
- COHERENT ANTI-STOKES RAMAN (CARS)
- OTHER SPECTROSCOPIC TECHNIQUES
- ELLIPSOmetry
- GAMMA RAY/NEUTRONS
ARMY RESEARCH THRUST

MAJOR PERFORMERS

- MIT
- ARIZONA STATE UNIVERSITY
- VANDERBILT UNIVERSITY
- UNIVERSITY OF HOUSTON
- TEXAS RESEARCH INSTITUTE - AUSTIN
- IONWERKS INC.
- STEVENS INSTITUTE OF TECHNOLOGY
- CASE WESTERN RESERVE UNIVERSITY

ARMY RELEVANCE:

- COMBAT SUPPORT, CHEMICAL DEFENSE, MOBILITY, SOLDIER, CLOSE COMBAT HEAVY

RECENT ACCOMPLISHMENTS:

- REAL TIME ANALYSIS CVD DEPOSITION
- NEW NDE METHOD CBD SUIT INTEGRITY

EXAMPLES OF RECENT TRANSITIONS TO ARMY, DoD, OR PRIVATE SECTOR PROGRAMS:

- SILICON WAFFLE CONTAMINANT CHARACTERIZATION TO SEMITECH/LASL
- ION SOURCE AND REAL TIME ANALYSIS OF CVD DEPOSITION (IBM YORKTOWN)
- ELECTRON HOLOGRAPHIC CHARACTERIZATION OF ADHESIVE BONDS (ARL)
NONDESTRUCTIVE TESTING BIOLOGICAL/CHEMICAL SUITS
(BRAY-TX RESEARCH INST, AUSTIN)

APPROACH:

- FLUORESCENT PENETRANT DEVELOPMENT
- PROTOTYPE TEST KIT MANUFACTURING
- ACCELERATED WEAR TESTING OF MATERIALS
- FIELD TESTING

USERS:

BATTLE LAB, ERDEC, NRDC, FIRE DEPARTMENTS CHEMICAL COMPANIES
DEGRADATION, REACTIVITY & PROTECTION TECHNOLOGY TRANSFER

<table>
<thead>
<tr>
<th>UNIVERSITIES</th>
<th>USERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>WISCONSIN, MADISON</td>
<td>ROCK ISLAND ARSENAL, CORPUS CHRISTI, ARL-MD, CRDA WITH LOS ALAMOS & G.M.</td>
</tr>
<tr>
<td>WISCONSIN, MILWAUKEE</td>
<td>ARDEC-BENET</td>
</tr>
<tr>
<td>STEVENS INST. TECHNOLOGY</td>
<td>ARL-MD</td>
</tr>
<tr>
<td>CORNELL</td>
<td>DOW, DUPONT ELECTRONICS, MONSANTO</td>
</tr>
<tr>
<td>CONNECTICUT</td>
<td>ARL-ED, ARL-MD</td>
</tr>
<tr>
<td>MIT</td>
<td>NRDC, ARL-MD, GENERAL ELECTRIC, FORD</td>
</tr>
<tr>
<td>MICHIGAN</td>
<td>ARPA, PRATT & WHITNEY, MARTIN MARRIETTA</td>
</tr>
<tr>
<td>VANDERBILT</td>
<td>SANDIA, SEMITECH, SMALL BUSINESS</td>
</tr>
<tr>
<td>MISSOURI, COLUMBIA</td>
<td>MCDONALD-DOUGLAS, ONR</td>
</tr>
</tbody>
</table>
Degradation, Reactivity & Protection Technology Transfer

<table>
<thead>
<tr>
<th>National Lab/SBIR</th>
<th>Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brookhaven</td>
<td>TARDEC, TRW-Fasteners, Calumet, TTCP, Long Island Lighting, DOE, Gas Research Institute</td>
</tr>
<tr>
<td>Lawrence Berkeley</td>
<td>ARDEC, IR100, EPRI, DOE</td>
</tr>
<tr>
<td>Implant Sciences</td>
<td>ARL-MD, Cummins Diesel, AMBAC, INT.</td>
</tr>
<tr>
<td>Ion Werks, Inc</td>
<td>IBM Yorktown, Commonwealth</td>
</tr>
<tr>
<td>SI Diamond, Inc</td>
<td>McDonald Douglas Aircraft Co.</td>
</tr>
</tbody>
</table>
CONTROLLED ATOMIC BEAM DEPOSITION
CUBIC & HEXAGONAL BN
(EIPERS-SMITH, WATERS & SCHULTZ)

APPROACH:

• BROAD BEAM - HIGH FLUX ATOMIC NITROGEN SOURCE

• HIGH PRESSURE IN-SITU SURFACE ANALYSIS

OBJECTIVES:

• CONTROLLED GROWTH OF EPILAYER C-BN FILMS

TRANSMISSION IR OF H-BN & C-BN FILMS