SDVS 12 Users’ Manual

30 September 1993

Prepared by

L. G. MARCUS
Trusted Computer Systems Department
Computer Science and Technology Subdivision
Computer Systems Division
Engineering and Technology Group

Prepared for

DEPARTMENT OF DEFENSE
Ft. George G. Meade, MD 20744-6000

19971008 108

Engineering and Technology Group

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION IS UNLIMITED
SDVS 12 USER'S MANUAL

Prepared by

L. G. MARCUS
Trusted Computer Systems Department
Computer Science and Technology Subdivision
Computer Systems Division
Engineering and Technology Group

30 September 1993

Engineering and Technology Group
THE AEROSPACE CORPORATION
El Segundo, CA 90245-4691

Prepared for

DEPARTMENT OF DEFENSE
Ft. George G. Meade, MD 20744-6000

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION IS UNLIMITED

[DTIC QUALITY INSPECTED &]
Abstract

This is a guide for users of the State Delta Verification System (SDVS), Version 12. Its style is somewhere between that of a tutorial and a reference manual.

All facets of the verification system are covered here: the underlying logic (state deltas), the proof language, the user interface, the actual use of the system, the translation from the register-transfer-level language ISPS to state deltas, the translation from Ada to state deltas, the translation from VHDL to state deltas, the capabilities of the static solvers, and example proofs. A set of exercises is provided in the last chapter and a comprehensive SDVS bibliography is included.
Acknowledgments

The author gratefully acknowledges the other members of the SDVS Verification Project: Mark Bouler, John Doner, Ivan Filipenko, Beth Levy, Telis Menas, and David Schultenberg for their substantial contributions to this manual, and to Melodee Lydon for valuable technical assistance.
Contents

Abstract ... v

Acknowledgments ... vi

1 INTRODUCTION ... 1

 1.1 PRELUDE ... 1
 1.2 OVERVIEW ... 2
 1.3 INSTALLING SDVS ... 5
 1.4 STATE Deltas .. 8
 1.4.1 Expressing a Computation as a State Delta 8
 1.4.2 Expressing a Claim about a Computation as a State Delta 11
 1.4.3 Assuming and Proving a State Delta 12
 1.5 THE MODEL OF STORAGE 13
 1.6 THE STRUCTURE OF SDVS 15
 1.7 INPUTTING THEOREMS ... 16
 1.8 GETTING AROUND IN SDVS 17
 1.9 SOME PRACTICE ON THE SYSTEM 18
 1.10 SYSTEM HELP .. 22

2 THE PROOF LANGUAGE .. 41

 2.1 A DYNAMIC EXAMPLE .. 41
 2.2 STARTING AND ENDING A PROOF 46
 2.3 STRAIGHT-LINE SYMBOLIC EXECUTION 47
 2.4 PROOF BY CASES .. 49
 2.5 PROOF BY INDUCTION .. 54
 2.6 PROOF BY CONTRADICTION 61
 2.7 STATIC PROOF .. 65
 2.7.1 Axioms ... 66
 2.7.2 Rewriting ... 70
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7.3</td>
<td>Current Axiom List</td>
<td>71</td>
</tr>
<tr>
<td>2.7.4</td>
<td>Lemmas</td>
<td>81</td>
</tr>
<tr>
<td>2.7.5</td>
<td>Notice</td>
<td>87</td>
</tr>
<tr>
<td>2.7.6</td>
<td>Solvers</td>
<td>88</td>
</tr>
<tr>
<td>2.8</td>
<td>MANIPULATING THE PROOF</td>
<td>90</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Defer</td>
<td>90</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Pop</td>
<td>93</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Stop and Continue</td>
<td>95</td>
</tr>
<tr>
<td>2.9</td>
<td>MISCELLANEOUS</td>
<td>95</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Flags</td>
<td>95</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Queries</td>
<td>98</td>
</tr>
<tr>
<td>2.9.3</td>
<td>Introduction of Constants</td>
<td>105</td>
</tr>
<tr>
<td>2.9.4</td>
<td>Declarations</td>
<td>105</td>
</tr>
<tr>
<td>2.9.5</td>
<td>Data and Array Allocation</td>
<td>108</td>
</tr>
<tr>
<td>2.9.6</td>
<td>Negate</td>
<td>111</td>
</tr>
<tr>
<td>2.9.7</td>
<td>Linearize</td>
<td>116</td>
</tr>
<tr>
<td>2.9.8</td>
<td>Natural Number Induction</td>
<td>120</td>
</tr>
<tr>
<td>2.9.9</td>
<td>Mapping</td>
<td>121</td>
</tr>
<tr>
<td>2.9.10</td>
<td>Formulas</td>
<td>127</td>
</tr>
<tr>
<td>2.9.11</td>
<td>Macros</td>
<td>130</td>
</tr>
<tr>
<td>2.9.12</td>
<td>Composition of State Deltas</td>
<td>131</td>
</tr>
<tr>
<td>2.9.13</td>
<td>The SDVS Language Parser</td>
<td>134</td>
</tr>
<tr>
<td>2.9.14</td>
<td>Reading, Writing, and Editing</td>
<td>137</td>
</tr>
<tr>
<td>2.9.15</td>
<td>Batch Proofs</td>
<td>139</td>
</tr>
<tr>
<td>2.9.16</td>
<td>Disjunctions of State Deltas</td>
<td>140</td>
</tr>
<tr>
<td>2.9.17</td>
<td>System Commands</td>
<td>141</td>
</tr>
<tr>
<td>2.9.18</td>
<td>Errors</td>
<td>141</td>
</tr>
<tr>
<td>2.9.19</td>
<td>Breaks in SDVS</td>
<td>142</td>
</tr>
<tr>
<td>2.9.20</td>
<td>Bugs in SDVS</td>
<td>142</td>
</tr>
</tbody>
</table>
6.1 QUANTIFICATION PROOF COMMANDS .. 238
 6.1.1 Quantification ... 238
 6.1.2 Usablequantifiers .. 238
 6.1.3 Enotice ... 239
 6.1.4 Instantiate ... 240
 6.1.5 Provebygeneralization ... 243
 6.1.6 Provebyinstantiation ... 244
 6.1.7 Makeboundedquantifier ... 248
 6.1.8 Quantification Axioms .. 250
 6.1.9 Quantification Flags ... 253

6.2 PROOF OF A SORT PROGRAM ... 253

7 USER-DEFINED DATA TYPES ... 263
 7.1 INTRODUCTION .. 263
 7.2 SDVS COMMANDS .. 265

8 INVARIENTS IN SDVS ... 267
 8.1 NOTICEINVARIANT .. 269
 8.2 LINEARIZE .. 271
 8.3 NOTICECONCURRENTSD ... 280
 8.4 NEGATE ... 284
 8.5 OMEGAINDUCT .. 287

9 THE SIMPLIFIER ... 295
 9.1 PROPOSITIONS .. 296
 9.2 EQUALITY ... 297
 9.3 ARITHMETIC ... 299
 9.3.1 Linear Integer Arithmetic 301
 9.3.2 Integer Multiplication ... 302
 9.3.3 Integer Division, Remainder, Modulus, and Absolute Value .. 304
 9.3.4 Integer Exponentiation .. 305
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4</td>
<td>BITSTRINGS</td>
<td>308</td>
</tr>
<tr>
<td>9.5</td>
<td>ARRAYS</td>
<td>312</td>
</tr>
<tr>
<td>9.6</td>
<td>COVERINGS</td>
<td>316</td>
</tr>
<tr>
<td>9.7</td>
<td>LISTS</td>
<td>323</td>
</tr>
<tr>
<td>9.8</td>
<td>QUEUES</td>
<td>323</td>
</tr>
<tr>
<td>9.9</td>
<td>ENUMERATION TYPES</td>
<td>325</td>
</tr>
<tr>
<td>9.10</td>
<td>VHDL TIME</td>
<td>327</td>
</tr>
<tr>
<td>9.11</td>
<td>VHDL WAVEFORMS</td>
<td>328</td>
</tr>
</tbody>
</table>

10 SDVS EXERCISES 331

References 335
1 INTRODUCTION

1.1 PRELUDE

This manual is intended for users of the State Delta Verification System Version 12 (SDVS 12). It is a blend of a reference manual and a tutorial. This version of the manual supersedes the previous manual [1], which described SDVS 11, although most of the text is common to both. The SDVS 11 tutorial [2] contains additional examples and explanations.

Other easily accessible published background material on SDVS can be found in [3], [4], and [6]. References for further information on SDVS are to be found in the SDVS bibliography at the end of this manual.

SDVS is written in Common Lisp. It currently runs in Lucid Common Lisp 4.1 and Franz Allegro Common Lisp 4.1. SDVS can be run directly in Lisp, but it is preferable to run SDVS from GNU Emacs, which then gives the user certain editing capabilities.

SDVS 12 is for the most part upwardly compatible with all previous version of SDVS. Since most of the group's effort during the year were directed toward proving the Ada MSX example ([7], [8], [9]), the main improvements of SDVS 12 over SDVS 11 are in the Ada capability (Section 4.1.2) and in performance (parts of the code were re-implemented for efficiency or bug fixes; however, some additions to SDVS that were made to run the MSX example have not yet been incorporated in SDVS 12). Also, significant improvements were made in the VHDL capability (Section 5).

This introductory chapter will be sufficient to let the user get started on the system. Other chapters detail the following aspects of the theory and operation of SDVS 12:

1. the internal logic (state deltas) (Chapter 1)
2. the proof language (Chapter 2)
3. the user interface (throughout)
4. actual system use (throughout)
5. the translation from the hardware description language ISPS to state deltas (Chapter 3)
6. the translation from a subset of the programming language Ada to state deltas (Chapter 4)
7. the translation from a subset of the hardware description language VHDL to state deltas (Chapter 5)
8. the handling of quantification (Chapter 6)
9. user-defined data types (Chapter 7)
10. the invariant extension to state deltas (Chapter 8)
11. the capabilities of the static solvers (Chapter 9)

12. example proofs (throughout)

13. exercises (Chapter 10)

A word about the index at the end of this manual: command names are listed under "Command-name" as well as individually.

Before one begins the significant effort involved in learning to use a verification system such as SDVS, he or she should certainly be aware that the utility of verification, or the role that verification plays in providing confidence in computer systems, is an important issue. We assume that the potential user is either already aware of the value of verification, or at least believes in the possibility of such value. For a strong, if sometimes overstated, argument in favor of verification, we recommend [10].

1.2 OVERVIEW

The State Delta Verification System, SDVS, is a system for checking proofs about the course of a computation, usually called “correctness” proofs. SDVS can be used to check microcode implementation correctness proofs, program verification proofs (e.g. liveness and safety for Ada programs), or hardware correctness proofs (e.g. liveness and safety for VHDL hardware descriptions). As a test of the system’s microcode correctness capabilities, SDVS 5 was used to analyze most of the instruction set of the BBN C/30 computer. A summary of that work is presented in [11].

In SDVS 12, the theorems to be proved for the above cases of program and hardware correctness must still be explicitly written by the user in the internal logic of state deltas. However, beginning with SDVS 6, if the user is interested in proving implementation or microcode correctness theorems, SDVS will construct the theorem automatically, given the relevant information; i.e., the system can be instructed to prompt the user for

1. the descriptions of a host machine (often microprogrammed) and target machine written in either a somewhat “extended subset” of the machine description language ISPS, or the internal SDVS state delta language;

2. the microcode (if any);

3. the correspondence between the program variables (machine places) in the host and target; and

4. the proof of correctness that the host implements the target with respect to the above correspondence (if such a proof is already constructed).

SDVS then automatically constructs the state delta representing the theorem of correctness of the implementation, and either checks the proof, if one was given in step 4 above, or allows the user to construct one interactively.
The user communicates to SDVS through several languages. The proof language is used to write the proof that the system will check. The state delta language is used to write the theorems to be proved and to describe the relevant programs and specifications. The user-interface language allows for interactive proof building, querying, and so on. Finally, there is a module that translates from a subset of ISPS ([12], [13]), from a subset of Ada ([14] – [23]), and from a subset of the hardware description language VHDL ([24] – [30]) into state deltas.

Recently, the underlying logic has been enhanced to allow for the specification of (state-transition) invariants. For more background on the use of invariants in state deltas, consult [31] – [35].

Technically, SDVS aids in the writing and checking of proofs of state deltas. For example, state deltas can specify claims of the form “If P is true now, then Q will become true in the future.” If P is (the translation of) a program (perhaps with some initial conditions) and Q is an output condition, then the above claim is an input-output assertion about P. SDVS can also specify (and prove) claims of the form “If P is true now, then Q is true now.” In this case, if P is a (state delta representing a) program or hardware description and Q is a (state delta representing a) specification, then the above claim asserts the implementation correctness of P with respect to Q.

Finally, SDVS can prove claims of the form “If P is true now, then Q will always be true in the future,” or until some other condition becomes true.

The view of the world captured by state deltas is that there are “places” (to be thought of as abstract machine registers, usually called program variables in other contexts) that can “hold” contents. A “state” of a computation or a machine is, to first approximation, an association of contents with places. In general, a set of states can be specified by any set of sentences that relate the contents of some places with the contents of other places. For example, the sentence $x \geq 5$ can be thought of as specifying the set of states in which the current contents of x are greater than or equal to 5, with no restriction on any other places that happen to “exist.”

The “if-now, then-later” statement above is the basic building block of state deltas. It can be thought of as a specification of a state change, with P being the “precondition” (the condition allowing the state change to occur) and Q the “postcondition” (the description of the state after the change has occurred). A sequential computation is thought of as a sequence of state changes; as we will see, there are several ways in which such a sequence of state changes can be specified by a state delta or set of state deltas. The word “delta” indicates our intention to describe “small” state changes, those state changes in which only a small part of a large state is changing. In order to specify the resultant state after the change, instead of listing all true facts, it would be much more efficient simply to list those places that have (or possibly have) changed during the transition. Typically this will be a small list, called the “modification” list. The true statements at the end of the transition are those explicitly given in Q, plus those statements true in the precondition state that involve variables that do not appear in the modification list. In particular, if it is specified that no variables are allowed to change as the state changes from P to Q (the modification
list is empty), and \(Q \) is a first-order sentence, then \(Q \) must be true in the state that satisfies \(P \), and we are simply looking at the static claim that \(P \) implies \(Q \).

The proof language can be divided into two parts, the dynamic and the static. The dynamic part controls the state transitions made by the system. There are constructs for proof by symbolic execution for straight-line code, proof by cases for branching code, and proof by induction for loops. In addition, there are several more-specialized proof commands, such as the command to sequentialize two simultaneously true state deltas. Of course, when the execution has arrived at a new state, a static proof may be needed to verify that new relations do in fact hold, i.e., they follow from the facts known explicitly about the new state (in order to show that the postcondition is true and the goal is reached, or to show that a precondition is true and a new state delta may be applied; see below).

The static part of the proof language deals with proving that certain assumptions imply certain conclusions about a given state. For simple domains where efficient decision procedures exist and are implemented, the system will be able to derive all conclusions without any user-input proof. Examples are equality over uninterpreted function symbols, a fragment of naive set theory, and linear arithmetic. For more complicated domains, our current philosophy and implementation allow the user to write proofs by having the system notice incrementally more difficult conclusions, where the newly verified conclusions are stored and used as facts on which to base the next conclusion. The derivation from a given set of facts to the next conclusion may be automatic in some cases, or it may require the user to designate that an axiom or a previously proved lemma is to be applied.

SDVS may be run in interactive mode, batch mode, or, as in most real applications, as a combination of the two. In interactive mode the user writes the proof in SDVS with help from system prompts, with the system executing each proof command as it is written. Expressions are written in standard infix notation (e.g. \(x+y \)). In batch mode the proof is written either by the SDVS dump-proof and write command, or in an editor, and then is executed in SDVS with no further user interaction. Most commonly, a partial proof is written interactively, stored, and then rerun in batch mode at a later time when the proof-writing process is being continued.

(Technical note: currently some proofs can be rerun only in a new SDVS session. This is the case when names of formulas are created during the proof. The system does not currently allow names to be reused without the user explicitly and interactively validating such an action. Since the name appearing in the proof will already have been used, the proof will abort at that point. Such a proof is the example on page 117 using the command linearize.)

The most important property of a proof-checker is that it should not allow invalid proofs to be accepted. Nevertheless, there is a trade-off. Our philosophy has been to protect the benign user from inadvertently proving falsehoods; we do not guarantee that a scheming and knowledgeable user will be unable to do so intentionally. Thus, no absolute guarantee should be attached to a proof, just because it comes out of an SDVS run with a "QED" certificate.

An example of this trade-off comes in the use of lemmas stored in a file. It is of course possible for users to change the statement of a lemma or its proof in an editor inadvertently.
Thus we have provided a means for users to protect themselves against this possibility, if they so desire, by having the proof of a lemma rerun as the lemma is read into SDVS before it is actually used. But for efficiency's sake, we do not require that this be done.

Another example of the lack of total soundness is that it is possible, through self-referencing state deltas, to prove a contradiction. We have not gone to the trouble of eliminating this loophole (although we know how: see [36]), because under "normal" circumstances a user would not employ explicit self-reference. See Section 2.9.20 for an example.

1.3 INSTALLING SDVS

SDVS is available on magnetic tape in four different formats: source code; object code for Franz Allegro Common Lisp (FACL); object code for Lucid Common Lisp (LCL); and as a standalone executable utilizing the Franz Allegro Runtime package. Each format requires its own procedure for creating or loading SDVS, as outlined below. However, the procedure for reading the system files from the tape is the same for all formats.

SOFTWARE REQUIREMENTS

SDVS currently runs under Franz Allegro Common Lisp release 4.1 and Lucid Common Lisp 4.1. SDVS is also available as a standalone executable utilizing the Franz Allegro Runtime package; users of this version of SDVS are not required to supply their own Common Lisp environment. SDVS assumes that the underlying operating system is Unix, Sun OS 4.x, or equivalent.

HARDWARE REQUIREMENTS

The FACL and LCL binary and FACL runtime versions of SDVS require a Sparc processor. The source code should run under FACL or LCL on other architectures without modification, although this has not been tested. SDVS should port easily to other Common Lisp implementations on other architectures, although, again, this has not been done.
Table 1: Disk Space Requirements for SDVS 12, in MB

<table>
<thead>
<tr>
<th>Source (.lisp)</th>
<th>To Load</th>
<th>From Tape</th>
<th>Installed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lucid Object (.sbin)</td>
<td>2.4</td>
<td>N/A</td>
<td>31.5</td>
</tr>
<tr>
<td>Franz Object (.fasl)</td>
<td>3.7</td>
<td>48.1</td>
<td></td>
</tr>
<tr>
<td>Franz Runtime</td>
<td>8.9</td>
<td>38.9</td>
<td></td>
</tr>
</tbody>
</table>

DISK SPACE REQUIREMENTS

Table 1 gives the disk space requirements for SDVS 12. "Installed" represents the disk requirements of the system after SDVS has been installed, and assumes that the tar file from the tape has been recompressed. The size of your installed executable image, if you are building SDVS from the source or either binary version, will depend on the size of your (vanilla) Common Lisp image. These numbers are therefore approximate. All numbers are in megabytes (MB).

READING THE SYSTEM FILES

First, you should create a top-level directory to contain all of the files and subdirectories associated with SDVS. On our system, this directory is called versys (for VERification SYStem) and resides as a subdirectory under /u giving /u/versys. Although you can give your directory any name, we suggest you use the same name for compatibility; yours can be located anywhere, however. For example, you might put it as a subdirectory of /usr/lib, giving /usr/lib/versys. For the examples below, we assume you have /usr/lib/versys as your top-level directory.

Next, you will want to load the SDVS system tar file from the tape. To do this, create a tmp directory in your top-level versys directory, connect (cd) to it, and extract (tar) the system tar file as follows ([unix] is the system prompt):

[unix] tar zjfmv xxx

where xxx is the device name for your tape drive, e.g. /dev/rst0. This will create a file named sdvsnn-zzzz.tar.Z where nn is the current release number (e.g. 12) and zzzz is lisp (for source files), sbin (for LCL object), fasl (for FACL object), or runtime (for FACL runtime). The file is compressed, so it must be uncompressed:

[unix] uncompress sdvsnn-zzzz.tar

replacing nn and zzzz appropriately.

Now, the system directories must be extracted from the tar file:

[unix] tar zjfmv sdvsnn-zzzz.tar

This process creates a file structure containing the individual files from which the SDVS system can be used or built. Once this process is complete, you may delete sdvsnn-zzzz.tar
if you feel you have no further need for it. An alternative is to recompress the file:

[unix] compress sdusnn-zzzz.tar

Both will save disk space.

Before you can build and use an SDVS executable image or use the FACl Runtime executable, you must define a UNIX environment variable as follows. This can be done directly in the shell in which you plan to build or use SDVS or by adding the command to your .cshrc file.

[unix] setenv SDVS_DIR "/usr/lib/versys/"

Of course, you will need to supply the correct path you have chosen for your top-level directory. Please note the slash (/) character at the end; it is required.

BUILDING AN SDVS EXECUTABLE IMAGE

Once you have all of the system files available, you can build an executable SDVS image. To do this, you must start up a (vanilla) Common Lisp session (either LCL or FACl) and load the init-sdus.lisp file found in your top-level directory. (If you don’t know how to start up a Common Lisp session, see your system administrator.) For example, to load the file, type

> (load "/usr/lib/versys/init-sdus")

After the init-sdus.lisp file has been loaded, you are ready to tell Lisp to build your SDVS executable. Two functions will do this: make-sdus builds from the object files; make-new-sdus builds from the source files and compiles the entire system. Each function takes one argument, the name you wish to give the executable; the executable will automatically reside in your top-level directory. You may give the executable any name you want; in the following examples, we use the name sdus12 for our executable. Each of these functions will produce a trace of what is happening. (NOTE: For these operations, you must have write privileges to the appropriate directories.)

For creating an SDVS executable from source:

> (make-new-sdus "sdus12")

For creating an SDVS executable from binary:

> (make-sdus "sdus12")

You may safely ignore any warning messages printed by the system. When you return to the Lisp prompt, you can exit Lisp by

> (quit)

USING THE SDVS RUNTIME EXECUTABLE

If you have extracted the SDVS system files from a tape containing the "runtime" format, the file /usr/lib/versys/sdus12 (assuming the appropriate top-level directory) contains the executable image. This can be used to run SDVS directly, as noted below.
RUNNING SDVS

You have gone through this procedure and have created your executable. How do you run SDVS? At the Unix shell, just type, for example

[unix] /usr/lib/versys/sdus12

or just sdus12 if you are connected (cd) to the top-level directory (/usr/lib/versys in our example) or if your $PATH environment variable contains the path to the top-level directory.

RUNNING THE TEST SUITE

Included in the SDVS release is a set of tests that exercise the system. To run these tests, you must first start up SDVS. (After building your SDVS executable, you should restart SDVS so that the system is initialized properly.) When you get to the SDVS prompt, invoke the tests as follows:

<sdfs.1> run-test-proofs

A very long trace will appear. If the tests run successfully (this may take over two hours on a Sun 4), you will return to the SDVS prompt. If something goes wrong, Lisp will "break," allowing you to examine the system; Lisp will print out some diagnostic information and put you at a prompt. If this should happen, you may exit Lisp by typing (quit).

You may restart SDVS by first returning to the top level of Lisp and invoking the function sdus as follows:

> (sdus)

From the SDVS prompt, you can return to Lisp by typing the SDVS command bye.

1.4 STATE DELTAS

In this section we gradually lead up to the full definition of (standard) state deltas, which appears on page 11. State deltas with invariants are defined in Chapter 8. We adopt an outlook that sees a duality between programs and certain kinds of theories (collections of facts), in the sense that a program (a set of computations) can be seen as the set of all (temporal) facts that hold in all its computations, and a computational theory can be seen as the set of all possible computations the theory allows. For a fuller discussion, see [37] or [38].

1.4.1 Expressing a Computation as a State Delta

A state delta is a description of a transition from one state to another. For example,

[sd pre: (.a = 1) post: (#b = 2)]
where \(sd\) indicates that this is a state delta formula, \(pre:\) is the precondition field, \(post:\) is the postcondition field, \(a\) and \(b\) are places, the dot (\(\cdot\)) is the function symbol for "contents of" before the transition, and the pound (\(#\)) is the function symbol for "contents of" after the transition. We have temporarily left out two more fields, the \(comodification\) list (\(comod:\)) and \(modification\) list (\(mod:\)) fields. This incomplete state delta represents the transition from the precondition, a state in which the contents of \(a\) are 1, to the postcondition, a state in which the contents of \(b\) are 2; that is, if at any time \(.a=1\), then there will be a later time when \(#b=2\). (Note that there is no specification as to \(when\) this later time is.)

The modification field (\(mod:\)) will list those places that are allowed to change between the precondition and postcondition times. One possibility is that a given place does not change, or that such a change is irrelevant. However, it could be that the system described has some interrelationships that imply that when \(b\) gets the value 2 as indicated above, \(b\) or some other places may in fact change, or have to change, but the user is either unaware of or uninterested in what those changes are. A mechanism is needed that allows the expression of the fact that during a transition, certain places may have changed their contents, i.e., that the contents of those places cannot be assumed to remain the same. More generally, any sentence dependent on those places that change cannot be assumed to be preserved during such a transition.

The problem is solved by including in a state delta an explicit list of the places that are not guaranteed to preserve their contents, or that may have their contents modified. Thus the above state delta could become

\[
[\text{ad pre: (}.a = 1\text{) mod: (}a, b, c\text{) post: (#b = 2)}]
\]

This means that from a state in which the contents of \(a\) are 1, we will get to a state in which the contents of \(b\) are 2, and in this transition all places, except perhaps \(a\), \(b\), and \(c\), preserve their contents. Thus, a state delta with an empty mod list encodes a static claim, i.e., a claim about a transition in which nothing changes, and thus, if first-order, a claim about the current state.

If one wanted to encode the assignment statement \(a := a + 1\) as a state delta, it would be, to first approximation,

\[
[\text{ad pre: (true)}
\begin{align*}
\text{mod: (}a\text{)} \quad &\text{post: (#a = .a + 1)}
\end{align*}
\]

If \(a\) were not in the mod list above, the resulting state delta would be inconsistent, that is, it could never be realized by a real computation, since \(a\) could not be replaced by \(a + 1\) without \(a\) being allowed to change value. We currently do not allow pounds (\(\#\)) to appear in the precondition.\(^1\) A dotted place in the postcondition refers to the contents of that place at the time the precondition is checked.

\(^1\)Although this change is not planned, we could interpret pounds in the precondition to refer to precondition time, as dots do now, and then interpret dots to refer to the time at which the state delta became true.
The last ingredient of basic (i.e., without invariant list) state deltas, the comodification list, is used to regulate how long a usable state delta remains usable. It helps to consider the following intuition behind state deltas: state deltas describe various computations, and the validity or accessibility of those descriptions changes (possibly) as a function of time. For example, one may think of state deltas as processes that may be “activated” at one time and “deactivated” at other times. So in order to specify that the assignment statement \(a := a + 1 \) will be applied only once (not repeatedly as in a loop), and then will be no longer accessible, the state delta will have to be

\[
\begin{align*}
&\text{[sd pre: (true)} \\
&\text{comod: (a)} \\
&\text{mod: (a)} \\
&\text{post: (#a = .a + 1)]}
\end{align*}
\]

or possibly

\[
\begin{align*}
&\text{[sd pre: (true)} \\
&\text{comod: (pc)} \\
&\text{mod: (a,pc)} \\
&\text{post: (#a = .a + 1)]}
\end{align*}
\]

where \(pc \) (program counter) is some new place. As long as the places in the comodification list do not change values, a usable state delta will remain usable and thus applicable at any time its precondition is true. So for the above state deltas, once either is applied it may not be reapplied, since the mod list and the comod list intersect. Note that this result holds simply because of the intersection, not because any places actually change value, a fact that, in some cases, we may never know. SDVS, for the sake of soundness, must take the conservative position that established facts will go away, unless we can prove that they remain. This is to be contrasted with the “default reasoning” position that established facts will stick around, unless we have good reason to believe that they should go away.

To continue with the intuition behind the comod list, consider a supply of state deltas, each of which is introduced at a certain time, and each of which must have its precondition become true in order to “execute” (or be “applied”) and bring about its postcondition. It could be the case that for a certain state delta to be applicable, most of the state at the time of its introduction must be unchanged except for one condition that is stated in the precondition. In order not to have to list all state characteristics that must remain in force, one can list those places that must remain unchanged since the time of the state delta’s introduction in order for that state delta to be applicable. This is the comodification list. If one of those places changes before the precondition becomes true, the state delta cannot become applicable and is removed from the supply. (Of course, it can be explicitly introduced again in the future.) So, the following state delta

\[
\begin{align*}
&\text{[sd pre: (.a gt 0)} \\
&\text{mod: (a)} \\
&\text{post: (#a = .a + 1)]}
\end{align*}
\]

10
is true at a certain time ("now"), if at any time in the future (from then) when the contents of \(a \) are greater than 0, there is a (not necessarily strictly) later time at which the contents of \(a \) will be incremented by 1, and nothing else would have changed. However, at this later time the contents of \(a \) are still greater than 0, and so the state delta is "reappplicable." In other words, there is a still later time at which the contents of \(a \) are further incremented, and the process can be continued ad infinitum.

The state delta

\[
[\text{sd prep: } (.a \gt 0) \\
\text{comod: (a)} \\
\text{mod: (a)} \\
\text{post: (#a = .a + 1)}]
\]

is true "now" if at any later time at which the contents of \(a \) are greater than 0, and in the interval between now and that time the contents of \(a \) have not changed (\(a \) is in the comodification list), then there is a (not necessarily strictly) later time at which the contents of \(a \) are incremented by 1 and nothing has changed except the contents of \(a \) (only \(a \) is in the modification list). The truth of this state delta now does not imply that it will still be true at the time when the contents of \(a \) are actually incremented, because the comodification list will have changed. Note that a true state delta with an empty comodification list will be true at any time in the future.

The general definition follows.

\textbf{Definition:} Let \(p \) and \(q \) be lists of first-order sentences or previously defined state deltas (an implicit conjunction), where the first-order sentences in \(p \) and in the preconditions of any state deltas embedded within \(p \) and \(q \) are \#-free, and let \(c \) and \(m \) be lists of places. The state delta

\[
[\text{sd prep: } (p) \text{ comod: (c)} \text{ mod: (m)} \text{ post: (q)}]
\]

is true at time \(t_0 \) in a given computation if at any later \(t_1 \geq t_0 \) at which \(p \) is true and the contents of the places in \(c \) have not changed between \(t_0 \) and \(t_1 \), then there is some still later time \(t_2 \geq t_1 \) in the computation at which \(q \) is true and only the contents of the places in \(m \) may have changed between \(t_1 \) and \(t_2 \).

The extra \textit{invariant (inv:)} field is discussed in Chapter 8.

\subsection*{1.4.2 Expressing a Claim about a Computation as a State Delta}

Much added expressive power comes from allowing the precondition and postcondition themselves to contain state deltas in addition to first-order sentences. This is well-defined, since all one must do is evaluate the truth of the precondition and postcondition at certain times, and this evaluation can be done for state deltas as well as for "static" sentences.

Thus the following is a true state delta:
This state delta can be interpreted as a claim about the computation represented by the state delta (call it S) embedded in the precondition; i.e., if the contents of a are 1 and S is constantly active, then definitely at some future time the contents of a will be 1000. Note that the above does not determine anything else about the values of a (for example, that a increases monotonically). Interchanging between the times when a takes on the values 1, 2, ..., 1000, ..., a can take on arbitrary values. Also, nothing is specified about the length of the time interval between these increasing values, nor about how long these values are maintained once they are achieved.

1.4.3 Assuming and Proving a State Delta

First, we want to clarify several terms relating to state deltas that have been found to be confusing to users of SDVS. They are: “true state delta,” “usable state delta,” and “applicable state delta.” A true, or valid, state delta is one that holds in every computation according to the semantics given on page 11. Every state delta theorem proved in SDVS, i.e., proved at the top level, is (we hope) a true state delta. A usable state delta is one that is known by SDVS to be true at the current time in the current context, i.e., is in the list of usablesds. An applicable state delta is a usable state delta that can be applied in the current context, i.e., whose precondition is true. After it is applied, it may remain applicable, usable, or neither in the new state.

In order to prove the above state delta, i.e., that it is true “now,” SDVS assumes there is a later time at which the precondition is true and the contents of the places in the comodification list (there are no such places in this example) have not changed. The precondition consisting of the first-order sentence about a and the state delta S is stored in a database representation of the “current state” of the computation. Then one shows, in this case by direct execution or induction, that there exists a state in which the postcondition becomes true.

For the sake of simplicity, we now describe a step of the symbolic execution proof. (Induction will be discussed in Section 2.5.) The fact that S is in the current state (i.e., true) allows a state transition to take place. The precondition of S, .a gt 0, is also true in the current state, so one may advance the state to the time of S’s postcondition, #a = .a + 1. Now one must update the current state. It contains the fact that the contents of a are now 2. How about S? S has an empty comodification list also, so it will be true at any time after the original “now.” Thus S also belongs to the new current state. Since the precondition of S is still true, S may be reapplied, which brings about the state where the contents of a are 3. This process can obviously be continued until the contents of a become 1000. One final check is needed to prove the state delta: it must be verified that the postcondition
was achieved within the constraints of the modification list. Indeed this is so: since the modification list of S contained only a, the whole computation involved only changes in a.

1.5 THE MODEL OF STORAGE

There is one additional element of the state delta paradigm that we have not yet considered, the dependence relations among the places. The covering predicate represents architectural information about the “overlap” of places, and is needed in processing the comod and mod lists in order to update the state. Without an explicit covering statement mentioning all places in a given state delta, SDVS may behave too conservatively. If there is no overlap among places, that has to be explicitly stated.

For example, if b is in the modification list of a state delta, then b is allowed to change when that state delta is applied, and thus we cannot know a priori (i.e., based on the previous value of b) what its new value will be. The contents of b must be explicitly updated at postcondition time (either in accordance with the information in the postcondition about b, or simply to “don’t know”). If a happens to be defined as the concatenation of b with c, say, then a must also be similarly updated at postcondition time. In this case, or in the more general case of a being the disjoint union of b and c, one would write COVERING(A, B, C). If the user has knowledge that is more explicit (e.g., that a is the concatenation of b and c), those details would have to be specified separately, and then of course further information about the relation among the values of a, b, and c could be deduced.

Think of

\[\text{covering}(\text{place}, \text{subplace}_1, \text{subplace}_2, \ldots, \text{subplace}_n) \]

as representing the condition that place is the disjoint union of \{subplace_1, subplace_2, \ldots, subplace_n\}. [Note to advanced SDVS users: to model more general situations, think of

\[\text{covering}(\text{place}, \text{subplace}_1, \text{subplace}_2, \ldots, \text{subplace}_n) \]

as representing the condition that \{subplace_1, subplace_2, \ldots, subplace_n\} is a minimal independent set such that the value of place is a function of (.subplace_1,.subplace_2,\ldots,.subplace_n). But we will not get into the technical details here.] In particular, if place is actually the disjoint union of the mentioned subplaces, and the contents are calculated by concatenating the contents of the subplaces, then certainly the above covering relation holds. Thus, a change in .place means that there was a change in at least one of .subplace_1,.subplace_2,\ldots,.subplace_n; therefore, unless we know more specifics, we must assume all have potentially changed value. Similarly, unless we know otherwise, a change in the value of one of the subplaces means we must assume that .place changed. Note that we do not insist that the value of place be a one-one function of (.subplace_1,.subplace_2,\ldots,.subplace_n); thus, the value of a subplace may change without the value of place actually changing. However, in cases where we do want to enforce that the function be one-one, we have the strongcoverings flag (see Section 2.9.1).

Thus, under the hypothesis that covering(all, a, b) (all represents the set of all places) and covering(a, c, d) hold, the following state delta is inconsistent:
S1:

[(sd pre: (true))
 mod: (d)
 post: (\$c = .c + 1)]

while the following are consistent:

S2:

[(sd pre: (true))
 mod: (c)
 post: (\$c = .c + 1, \$a = .a)]

S3:

[(sd pre: (true))
 mod: (b,c)
 post: (\$a = .a, \$b = 1)]

S4:

[(sd pre: (true))
 mod: (c)
 post: (\$a = .a + 1)]

(To see how the system responds to the hypothesis of an inconsistent state delta, see Section 2.6.) To see why S2 is consistent, we must use the abstract dependency interpretation of coverings. For example, assuming that covering(a, c, d) means that a depends on c and d, but c and d are independent, we can consider the situation in which .a = .c + .d if .c ≤ 5, and .a = 5 + .d otherwise. Then .c can go from 5 to 6 without changing the value of a. S3 is similar: in S3 the contents of d are not allowed to change during the computation, since d does not appear in the mod list. a does not have to appear in the mod list, even though its contents may have changed during the computation (as a result of the fact that c is in the mod list). If c had been omitted in the mod list and \#b=1 had been omitted in the postcondition, then the resulting state delta would have been true (and provable in SDVS).

S4 is seen to be consistent by making the part of a that changes be c.

The covering language actually represents a fragment of set theory. The other symbols in the covering language are pcovering ("partial" covering, with pcovering(x, a, b, ...), meaning that the place x contains, but is not necessarily equal to, the disjoint union of a, b, ...), union (with union(a, b, ...) meaning the list of the places a, b, ...), alldisjoint (with alldisjoint(a, b, ...) meaning that the places a, b, ..., have no locations in common, i.e., they are independent), diff (with diff(A, B), where A and B are lists of places, meaning those places in the list A but not in B), everyplace (the universal place, pcovering all other places), and emptyplace (meaning the unique place that has no contents, that is pcovered by all other places). The name all is used as an abbreviation for everyplace.
1.6 THE STRUCTURE OF SDVS

Figure 1 illustrates the various modules of SDVS. SDVS is organized around the kernel, which is the manager for the state delta logic and thus performs dynamic reasoning within SDVS. Access to the kernel is gained through the command interface, which is in turn accessed by users of the system through the user interface. The kernel uses the place table, which stores the associations between places (variables) and their values, and both the kernel and the place table use the simplifier for static reasoning and value simplification. Also available with SDVS are translators for translating from software and hardware languages (currently parts of ISPS, Ada, and VHDL) into the state delta logic. Finally, some general-purpose modules of SDVS are the utilities, parsers, and printers.

The simplifier module processes static expressions (i.e., those not involving state changes) by maintaining a database of equivalence classes of expressions, which is kept closed under congruences [39] (see Figure 2). The entry to the simplifier is through two modules that deal with normalizing expressions into standard form and analyzing the propositional (boolean) nature of any expression. E is the part of the simplifier that performs deductions that are based solely on equality reasoning. The other "solvers" deal with special theories, such as Z: the integers, C: coverings, B: bitstrings, and A: arrays.

The simplifier has two properties that facilitate its use. First, it is incremental; that is, the simplifier can accept atomic formulas one by one, maintain a representation of their
conjunction, and detect an unsatisfiability as soon as it occurs. Second, it is resettable; that is, the simplifier can mark its state, accept further formulas, and then return to the marked state by removing the formulas received after the mark.

1.7 INPUTTING THEOREMS

The user is able to input descriptions of target and host machines in ISPS (see Chapter 3), as well as a mapping between states in the host and target, which gives the "interpretation" of one machine in the other. These are the ingredients of the state delta representing the statement of the theorem that the host implements the target via the given mapping.

The implementation command prompts the user to supply these components and automatically creates the theorem expressing the implementation relation (see page 121).

Theorems representing the input-output correctness or safety of Ada programs must be written as state deltas by the user: the Ada program in its adatr form (written as ada<program-name>) along with any other necessary input conditions in the precondition, and the output condition appearing in the postcondition along with the predicate terminated<program-name> (see Chapter 4.) A similar procedure employing the predicate vhdl<desc-name> must be followed for theorems representing the correctness of VHDL descriptions (see Chapter 5.) The terminated predicate is made true when the translator arrives at the end statement of an Ada program or VHDL description. Note that ada<program-name> or vhdl<desc-name> can occur only as implicit conjuncts separated by a comma; use of the word and or the symbol &, as allowed with all other predicates, is not allowed, and will result in an error.
1.8 GETTING AROUND IN SDVS

Throughout this manual, italic type indicates user input and

this kind of type

indicates system type-back. All arguments input to SDVS must be followed with a carriage return \(<CR>\).

To run SDVS, just type the name of the executable load module given when the system was created, e.g. sdvs12.\(^2\) (This assumes that the correct path has been put into the Unix $PATH variable. Otherwise, you will have to type in the entire pathname.) When SDVS starts up, you will see a system header message followed by the SDVS command prompt, which looks like this:

\(<sdvs.1>\)

Suffixes other than “1” indicate proof depth.

SDVS is now ready to accept your commands to create state deltas, parse ISPS, Ada, or VHDL files, and build proofs. Most of SDVS’s commands require further information from the user. A short prompt message followed by : will describe the type of information that SDVS is expecting. The user should then supply the requested information. SDVS expects all of the requested information on one line; therefore, the user should press the “return” key only after typing in all of the information. Occasionally, the prompt will contain a default value to be used. The default value for any prompt is displayed within enclosing brackets “” before the “:”. To use the default value, one need only press the “return” key. (In the examples in the manual, you will see \(<CR>\) indicating this.)

Certain commands prompt the user to supply file (or path) names. In these instances, the full pathname for a file may be supplied (e.g. /usr/jones/sdvs/proofs/ada.proof) or a partial (relative) pathname (e.g. testproofs/mult.ada). If a partial pathname is supplied, it is relative to the current working directory. Initially, it is the sdvs subdirectory of the top-level directory created to hold the SDVS system when it was loaded from the release tape by the system administrator.

A useful feature of SDVS is its ability to return to a previous step in the proof by means of the pop command. The proof structure is kept as a stack so that the intermediate proof steps are lost. It is a good idea to do a proofstate first, showing the proof steps executed so far, in order to see how many steps you need to pop. Several query commands come in handy: whynotgoal can help direct the proof by showing the user which goals are not yet verified; whynotapply will give the reasons why a state delta cannot be applied (e.g. because part of the precondition is not known to be true; it will also inform the user if the mod list is too large, and therefore the proof can be closed only by reaching a contradiction; see Section 2.6).

\(^2\)See your system administrator for the name you should use.
When the proof is either partially or totally written, it may be saved by the command `dump-proof`. Saved variables (e.g. state deltas, proofs, lemmas, formulas) may be written to a file by the command `write`, and read by the command `read`. See Section 2.9.14. Incorporating into the current SDVS environment a state delta or proof that has a defining form in the editor is accomplished by evaluating that form at the Lisp prompt: simply type `bye` in SDVS to get the Lisp prompt, and `(sdvs)` to return. Alternatively, `eval` can be used at the SDVS prompt.

1.9 SOME PRACTICE ON THE SYSTEM

In this section we want to give the user interactive experience with SDVS. This section uses the following commands:

- `createsd`: define a state delta
- `ppsd <sd>`: prettyprint the state delta `<sd>`
- `init`: initialize the system before beginning a new proof
- `prove <sd> <proof>`: prove (check the proof of) the state delta `<sd>` by `<proof>`
- `*`: execute (apply usable state deltas as long as possible)
- `ps`: prints the current proof state
- `isps <file>`: translates the ISPS program on `<file>` into a state delta.
- `quit`: terminates a proof session

The following simple example illustrates the creation and proof of the state delta claiming that if `a` starts out at 1, and, if nonnegative, `a` is repeatedly incremented by 1, then eventually `a` gets to be 3.

```
<sdvs.1> createsd
   name: s2
   [SD pre: .a ge 0
    comod[]: <CR>
    mod[]: a
          post: #a = .a + 1
    ]

<sdvs.1> ppsd
state delta: s2
[sd pre: (.a ge 0)
 mod: (a)
 post: (#a = .a + 1)]
```
One way to insert a state delta in the precondition or postcondition of another state delta is by means of the formula command. The internal state delta can also be typed in directly (see Section 2.1).

<sdvs.1> created
 name: s3
 [SD pre: .a = 1, formula(s2)
 comod[]: <CR>
 mod[]: a
 post: #a = 3
]

<sdvs.1> ppsd
 state delta: s3
 [sd pre: (.a = 1, formula(s2))
 mod: (a)
 post: (#a = 3)]

<sdvs.1> init
 proof name[]: <CR>

State Delta Verification System, Version 12
Restricted to authorized users only.

<sdvs.1> prove
 state delta[]: s3
 proof[]: <CR>

open -- [sd pre: (.a = 1, formula(s2))
 mod: (a)
 post: (#a = 3)]

 inserting -- pcovering(all,a)

Complete the proof.

The message about pcovering announces that SDVS has discovered an undeclared place, a. SDVS discovers places either because they appear in mod or comod lists, or because they appear with dots or pounds. It is recommended that all places be declared explicitly by means of a covering statement. To continue the proof (make sure the autoclose flag is on by typing flags; it should be, unless you have explicitly turned it off by the setflag command):

<sdvs.1.1> *
 apply -- [sd pre: (.a ge 0)
 mod: (a)
 post: (#a = .a + 1)]

 apply -- [sd pre: (.a ge 0)
 mod: (a)
post: (#a = .a + 1)]

close -- 2 steps/applications

<sdvs.2> quit

Q.E.D. The proof for this session is in 'sdvsproof'.

State Delta Verification System, Version 12

Restricted to authorized users only.

The next little example deals with the ISPS program aaa.isp. See Chapter 3 for detailed information about the translation from ISPS descriptions to state deltas.

MACHINE:=

Registers
A<1:0>

Process

CYCLE{MAIN}:=

BEGIN
A.1
END
)

Now we wish to access this program. It resides in testproofs/manual/isps/aaa.isp. When a path name or a file name is required as an argument to an SDVS command, the user is prompted with an expression of the proper form as a default. Sometimes SDVS will guess correctly; if so, hitting <CR> instructs SDVS to use the default. Otherwise, a new expression may be typed in. After iniifng, the session continues:

<sdvs.1> isps
 path name[foo.isp]: testproofs/manual/isps/aaa.isp
 unique name level[1]: <CR>

Parsing ISPS file -- "testproofs/manual/isps/aaa.isp"

Translating ISPS file -- "testproofs/manual/isps/aaa.isp"

In translating from ISPS to state deltas, the control point is considered as a place <machine-

name>\upc (for microprogram counter, u being the poor man's u) that takes label names

for values, thereby allowing execution from one label to the next or to any other. The labels

machine\started and machine\halted are generated automatically.

We create and prove the state delta theorem claiming that if we start executing the program

aaa.isp at its start point, we will eventually get to a state in which a has the bitstring value

1(2), that is, value 1 and length 2 (as specified in the semantics of ISPS).
<sdvs.2> ppsd
 state delta: isps
 file name: aaa.isp

covering(machine,a,machine\upc)
declare(a,type(bitstring,2))
[tr @MACHINE\STARTED \{in MACHINE\} A....;]

<sdvs.2> createds
 name: isps.sd
 [SD pre: isps(aaa.isp), machine\upc = machine\started
 comod[]: <CR>
 mod[]: all
 post: #a = 1(2)
]

<sdvs.2> ppsd
 state delta: isps.sd

 [sd pre: (isps(aaa.isp), machine\upc = machine\started)
 mod: (all)
 post: (#a = 1(2))]

<sdvs.2> setflag
 flag variable: autoclose
 on or off[off]: on

setflag autoclose -- on

<sdvs.3> init
 proof name[]: <CR>

State Delta Verification System, Version 12

Restricted to authorized users only.

<sdvs.1> prove
 state delta[]: isps.sd
 proof[]: *

 open -- [sd pre: (isps(aaa.isp), machine\upc = machine\started)
 mod: (all)
 post: (#a = 1(2))]

 apply -- [sd pre: (machine\upc = machine\started)
 mod: (machine\upc,a)
 post: (#a = 1(2),
 [tr @MACHINE\halted]]

 close -- 1 steps/applications

<sdvs.2> quit

Q.E.D. The proof for this session is in 'sdvsproof'.
State Delta Verification System, Version 12

Restricted to authorized users only.

```
<sdvs.1> pp
   object: sdusproof

proof sdusproof:
   prove isps.sd
   proof: execute
```

Consider these examples showing the use of the `help` command. (Note that the system output has been suppressed.) The first example shows that the user wishes to accept the default value (`all`) supplied by the system by just pressing the "return" key. In the second example, the user wishes to supply a value different from the default and so types it in.

```
<sdvs.1> help
   with[all]:  <CR>

<sdvs.1> help
   with[all]:  help
```

1.10 SYSTEM HELP

All possible user input has on-line documentation. The `help` command may be typed in. The total output for system help is listed below.

```
<sdvs.1> help
   with[all]:  all

<<<SDVS Help>>>  Proof Commands  <<<SDVS Help>>>  

Commands -- * activate adatr apply apply! applydecis applydeclsandstats
automatedatatype cases cleardate close comment consider createadalemma
createmhexllemma date deactivate defer execute finduct go
hidepropagations induct interpret invokeadalemma invokehxllemma isps
ispsr let letsd linearize mcases mpisps mpotr natinduct negate notice
noticeconcurrentsd noticeinvariant omegainduct parse prove provedalemma
provebyaxiom provebylemma provelemma provehxllemmma quantification read
readaxioms readlemmas restorepropagations rewritebyaxiom rewritebylemma
selecti setflag stop subcases tr until vhdltr

* Symbolically executes state deltas until either no more state deltas can be
   applied or the current goal is satisfied. If the 'autoclose' flag is on, the goal
   is checked after each state delta application; otherwise, the goal is never
   checked.

22
activate `<solver-name>`
Acts on the simplifier's solvers, when `<solver-name>` is one of `a`, `b`, `c`, `d`, `e`, `l`, `n`, `p`, `q`, or `z`. Use the 'solvers' command to see what the single character `<solver-name>` designations denote.

adatr `<pathname>`
Initiates the incremental translation of the `<file>` identified by `<pathname>` into the language of the state delta logic, assuming `<file>` contains a Stage 4 Ada program. The `<file>` is not re-parsed if it has already been parsed, and is not re-translated if it has previously been translated. The resulting translation is associated with `<file>`'s name, and becomes available via the predicate `ada(<file>)`.

apply `{<n>}`
Symbolically execute, if possible, the next `<n>` highest applicable state deltas, executing only once if `<n>` is omitted. If the invariance flag is ON, the application is preceded by the opening of a proof that the invariant of the state delta to be proved is implied by the invariant of the state delta to be applied.

apply `<sdspec>`
Symbolically execute the state delta specified by `<sdspec>` if applicable. If the invariance flag is ON, the application is preceded by the opening of a proof that the invariant of the state delta to be proved is implied by the invariant of the state delta to be applied.

apply! `{<n>}`
Symbolically execute, if possible, highest applicable state deltas until the `<n>`th markpoint is reached, executing only to the first markpoint if `<n>` is omitted.

applydecls
Performs symbolic execution of Ada declarations.

applydeclsandstats
See the command 'go'.

automatedatatype `<datatype-name>`
Automates the axioms for an untyped user-defined datatype created via the 'createdatatype' command, by defining a simplifier solver which implements the axioms. This command must be performed at the top level, because it causes additional simplifier initialization and must be invoked in a guaranteed consistent state. Use the 'deautomatedatatype' command to eliminate the automation.

cases `<preterm>` { `<then-proof>` } { `<else-proof>` }
Starts a proof by cases of the current goal, the two cases being conditional on `<preterm>` and its negation. Unless omitted, the proof commands in `<then-proof>` are used for the proof of the first case and those in `<else-proof>` for the proof of the second case.

cleardate
Zeroes out the elapsed proof time since previous 'date' command, so the next 'date' command will display new elapsed time.

close
Tries to close the current proof, which is possible only if the current goal has
been satisfied. When the 'autoclose' flag is on, SDVS attempts to close the proof after each proof command, and explicit 'close' commands are unnecessary.

\textit{comment \textless \textit{text}\textgreater}

Comments a portion of the proof. Anything may be embedded within a comment, but only text may be typed in from command level.

\textit{consider \textless \textit{preterm}\textgreater}

Adds \textless \textit{preterm}\textgreater to the simplifier's database.

\textit{createadalemma \textless \textit{lemma-name}\textgreater \textless \textit{file-name}\textgreater \textless \textit{subprogram-name}\textgreater \textless \textit{qualified-name}\textgreater \textless \textit{preformulas}\textgreater \textless \textit{mod-places}\textgreater \textless \textit{postformulas}\textgreater}

Create and name a lemma about an Ada subprogram contained in the indicated file. One must provide the fully qualified name of the subprogram, the optional precondition formulas for executing the subprogram, the optional list of places (variables) modified by the subprogram, and the desired postcondition formulas resulting from the execution of the subprogram. The lemma is represented by a state delta with appropriate precondition, modlist, and postcondition. The lemma may be printed via the 'pp adalemma' command, may be proved via the 'proveadalemma' command, and may be invoked by the 'invokeadalemma' command.

\textit{createvhdllemma \textless \textit{lemma-name}\textgreater \textless \textit{file-name}\textgreater \textless \textit{subprogram-name}\textgreater \textless \textit{qualified-name}\textgreater \textless \textit{preformulas}\textgreater \textless \textit{mod-places}\textgreater \textless \textit{postformulas}\textgreater}

Create and name a lemma about a VHDL subprogram contained in the indicated file. One must provide the fully qualified name of the subprogram, the optional precondition formulas for executing the subprogram, the optional list of places (variables, signals) modified by the subprogram, and the desired postcondition formulas resulting from the execution of the subprogram. The lemma is represented by a state delta with appropriate precondition, modlist, and postcondition. The lemma may be printed via the 'pp vhdllemma' command, may be proved via the 'provevhdllemma' command, and may be invoked by the 'invokevhdllemma' command.

\textit{date}

Displays the time of day and the elapsed proof time since previous 'date' command, displaying only the time of day if no 'date' command since the last SDVS initialization.

\textit{deactivate \textless \textit{solver-name}\textgreater}

Deactivates one of the simplifier's solvers, when \textless \textit{solver-name}\textgreater is one of a, b, c, d, e, l, m, p, q, or z. Use the 'solvers' command to see what the single character \textless \textit{solver-name}\textgreater designations denote.

\textit{defer \{\textit{ns}\}}

Defers either all goals if not provided an argument, or defers the goals whose goal numbers appear in \textit{ns}.

\textit{execute}

Symbolically executes state deltas until either no more state deltas can be applied or the current goal is satisfied. If the 'autoclose' flag is ON, the goal is checked after each state delta application; otherwise, the goal is never checked.

\textit{finduct \textless \textit{tr-goal}\textgreater \textless \textit{invariant-preformulas}\textgreater \{\textless \textit{base-proof}\} \{\textless \textit{step-proof}\}}

\texttt{\textbf{CURRENTLY NOT IMPLEMENTED.} Opens a fixed point inductive proof of the specified goal, which must be a TR-generated continuation. The invariant, base proof, and}
step proof are as in the 'induct' command.

\{postformula\}

is similar to the 'until' command, except that 'go' will instantiate existentially qualified state deltas and apply them if a state is reached where no more state deltas are applicable. This command is especially useful for symbolically executing Ada programs and VHDL descriptions.

\textbf{hidepropagations}

Hides propagated facts, essentially making the system forget about the current set of propagated disjunctions. Turning on the 'reportpropagations' flag forces the system to print propagated disjunctions after they appear during the course of a proof. The 'restorepropagations' command restores any hidden propagated disjunctions.

\textbf{induct} \textbf{<induct-preterm> <from-preterm> <to-preterm> <invariant-preformulas> <comod-places> <mod-places> \{<base-proof>\} \{<step-proof>\}}

Initiates an inductive proof on the expression \textbf{<induct-preterm>} in the range \textbf{<from-preterm>} to \textbf{<to-preterm>}. The loop invariant is the conjunction of \textbf{<invariant-preformulas>}, and \textbf{<comod-places>} and \textbf{<mod-places>} are lists of places for the comodification and modification lists of the inductive step proof. Unless omitted, the base and step proofs are taken from \textbf{<base-proof>} and \textbf{<step-proof>}, respectively. Currently, induction expressions must be integer-valued, and the induction counter is either incremented or decremented by exactly one during the inductive step.

\textbf{interpret} \textbf{<proof-name>}

Interprets the proof commands in \textbf{<proof>}.  

\textbf{invokeadalemma} \textbf{<lemma-name>}

\textbf{<lemma-name>} must be the name of a valid Ada lemma, previously created via the 'createadalemma' command. This lemma characterizes the execution of some subprogram \textit{P}. If the current proof is symbolically executing an Ada program, and the symbolic execution point indicates that we are "at \textit{P}," then the lemma is invoked to replace the execution of the body of \textit{P} by its state delta characterization. After the state delta resulting from the lemma is applied, symbolic execution can resume.

\textbf{invokevhdllemma} \textbf{<lemma-name>}

\textbf{<lemma-name>} must be the name of a valid VHDL lemma, previously created via the 'createvhdllemma' command. This lemma characterizes the execution of some subprogram \textit{P}. If the current proof is symbolically executing a VHDL hardware description, and the symbolic execution point indicates that we are "at \textit{P}," then the lemma is invoked to replace the execution of the body of \textit{P} by its state delta characterization. After the state delta resulting from the lemma is applied, symbolic execution can resume.

\textbf{isps} \textbf{<file>} \{<unique-name-level>\}

Parses the ISPS file \textbf{<file>}, generating a parse tree file, and produces the state delta semantics of \textbf{<file>}, associating these semantics with \textbf{<file>}'s name.

\textbf{isptr} \textbf{<pathname>}

Initiates the incremental translation of the \textbf{<file>} identified by \textbf{<pathname>} into the language of the state delta logic, assuming \textbf{<file>} contains an ISPS program. The \textbf{<file>} is not re-parsed if it has already been parsed, and is not
re-translated if it has previously been translated. The resulting translation is
associated with <file>’s name, and available via the predicate isps(<file>).

let <name> <preterm>
Instantiates <name> to the current value of <preterm> if name is not already in
use by the simplifier.

letsd <name> <sdspec>
Generates a new <name> for the state delta referenced by <sdspec>, if <name> is
not in use by the current proof.

linearize <sdspec1> <sdspec2> <name1> <name2> {<name3>}
Linearizes the two applicable state deltas specified by creating and asserting the
disjunction of two resultant state deltas (three, if the invariance flag is ON).
The name of each disjunct is supplied by the user.

mcases <n> {<first-proof>} ... <nth-proof> {<nth-proof>}
Starts a proof of the current goal by multiple cases predicated on the n
<preformulas>, using the associated proof commands if provided.

mpipsps <file> <starting-markpoint-name> <ending-markpoint-names> <dotformulas>
{<unique-name-level>}
Produces the markpoint-to-markpoint state delta semantics of <file>, after parsing
it, generating state deltas only for those paths which start at
<starting-markpoint-name> and go no further than any markpoint in
<ending-markpoint-names>, where <dotformulas> must hold at the beginning of each
such path.

mptr <file> <starting-markpoint-name> <ending-markpoint-names> <dotformulas>
{<unique-name-level>}
Produces the markpoint-to-markpoint state delta semantics of the already ‘isps’ed
<file>, generating state deltas only for those paths which start at
<starting-markpoint-name> and go no further than any markpoint in
<ending-markpoint-names>, where <dotformulas> must hold at the beginning of each
such path.

natinduct <induction-variable> <formulas> {<base-proof>} {<step-proof>}
Performs natural induction on n for the specified formulas, where n is the new
induction variable.

negate <sdspec> {<name1> {<name2> {<name3>}}
If the specified state delta is known to be FALSE, SDVS creates and asserts an
equivalent state delta. The postcondition of the asserted state delta contains
the disjunction of three formulas (one formula, if the invariance flag is OFF),
whose names are given by the user.

notice <preformulas>
Inserts <preformulas> into the state if it is known to be TRUE.

noticeconcurrentd <n> <sdspec1> ... <sdspecn>
Creates and asserts the concurrent state delta obtained from the n specified
applicable state deltas.

noticeinvariant <sdspec>
Asserts the invariant of the state delta specified, if the state delta is known to
be applicable.

omegaind-induct \(<\text{on}\>\) \{\<\text{auxiliary-formulas}\>\} \<\text{places}\> \{\<\text{base-proof}\>\} \{\<\text{step-proof}\>\}

Initiates an inductive proof on the \(\<\text{on}\>\) formulas which must be of precondition type. The optional \<\text{auxiliary-formulas}\>, which must also be of precondition type, will usually be loop state deltas. \<\text{Places}\> is a set of places one of which will change infinitely often in the induction. The \<\text{base-proof}\> and \<\text{step-proof}\> are optional.

\text{parse} <\text{file}> <\text{language-name}>

Parses \<\text{file}\> and creates a parse tree file.tree, according to the grammar and semantic actions associated with \<\text{language-name}\>.

\text{prove} <\text{adslspec} > \{<\text{proof}\>\}

Opens a proof of the state delta specified by \<\text{adslspec}\>, using \<\text{proof}\> if supplied. Then, if the invariance flag is ON, a proof of the invariant of the specified state delta is opened.

\text{proveadalemma} <\text{lemma-name}> \{<\text{proof}\>\}

Starts a proof of the Ada lemma named \<\text{lemma-name}\>, using the proof commands in \<\text{proof}\> if provided. This command, like the 'provelemma' command, is available only as a top level command.

\text{provebyaxiom} <\text{preformula}> \{<\text{axiom-name}>\} \{<\text{freevar-symbol} > <\text{matching-preterm}>\}*

Attempts to prove the truth of \<\text{preformula}\> using a single instantiation of a single axiom whose consequent matches \<\text{formula}\>, using the axiom whose name is \<\text{axiom-name}\> and matching free variables appearing in the antecedent but not the consequent if matching terms are provided.

\text{provebylemma} <\text{preformula}> \{<\text{lemma-name}>\} \{<\text{freevar-symbol} > <\text{matching-preterm}>\}*

Attempts to prove the truth of \<\text{preformula}\> using a single instantiation of a single lemma whose consequent matches \<\text{formula}\>, using the lemma whose name is \<\text{lemma-name}\> and matching free variables appearing in the antecedent but not the consequent if matching terms are provided.

\text{provelemma} <\text{lemma-name}> \{<\text{proof}\>\}

Starts a proof of the lemma named \<\text{lemma-name}\>, using the proof commands in \<\text{proof}\> if provided.

\text{provevhdllemma} <\text{lemma-name}> \{<\text{proof}\>\}

Starts a proof of the VHDL lemma named \<\text{lemma-name}\>, using the proof commands in \<\text{proof}\> if provided. This command, like the 'provelemma' command, is available only as a top level command.

\text{quantification} \{<\text{on/off}>\}

Turns the quantification solver on or off, unless the arguments are omitted, in which case the state of the solver is toggled. This command is not accepted if any proofs have been started since initialization, since it causes system re-initialization.

\text{read} <\text{file}>

Reads state deltas, proofs, axioms, lemmas, formulas, formula lists, datatypes, macros, adalemmas, and vhdllemmas from \<\text{file}\>, indicating which definitions were read. Use the 'write' command to place definitions in a file.
readaxioms <file>
Reads axioms from <file>, inserting them into the current set of axioms.

readlemmas <file>
Reads lemmas from <file>, inserting them into the current set of lemmas.

restoropropagations
Restores all hidden propagated disjunctions. See the 'hidepropagations' command.

rewriteaxiom <preterm> {<axiom-name>}
Attempts to rewrite <preterm> by finding some axiom whose consequent is of the form t1#t2, where either t1 or t2 matches <preterm>, and if the antecedent of the axiom is satisfied, then the equality assertion is made, instantiating t1 and t2 using subterms of <preterm>. The axiom whose name is <axiom-name> is used if <axiom-name> is provided.

rewritelemma <preterm> {<lemma-name>}
Attempts to rewrite <preterm> by finding some lemma whose consequent is of the form t1#t2, where either t1 or t2 matches <preterm>, and if the antecedent of the lemma is satisfied, then the equality assertion is made, instantiating t1 and t2 using subterms of <preterm>. The lemma whose name is <lemma-name> is used if <lemma-name> is provided.

selecti <preterm> <n> <first-selecti-clause> {<first-proof>} ... <nth-selecti-clause> {<nth-proof>}
Permits proof selection based on the value of the integer-valued expression <preterm>. The <selecti-clause>s are checked against the value of <preterm> one at a time, and if a clause matches, then its proof is executed. A final clause of "t" matches any value for <preterm>.

setflag <flag-name> {<on/off/n>}
Sets the flag denoted by <flag-name> to the indicated value, toggling the flag if the value is omitted.

stop {<string/symbol>}
Halts the current batch proof, printing out the <string/symbol> unless it is omitted. This command has no effect in interactive mode.

subcases <preterm> <mod-places> <postformulas> {<then-proof>} {<else-proof>}
Starts a proof by cases of the goals indicated by <postformulas>, the two cases being conditional on <preterm> and its negation. Only the places in <mod-places> are permitted to be modified during the course of the proof. Unless omitted, the proof commands in <then-proof> are used for the proof of the first case and those in <else-proof> for the proof of the second case.

tr <file> {<unique-name-level>}
Produces the state delta semantics of already parsed <file> from its parse tree, associating these semantics with <file>'s name.

until <postformula>
Symbolically executes highest applicable state deltas until <postformula> is TRUE, there are no more applicable state deltas, or the 'autoclose' flag is on and the current goal is satisfied.

vhdltr <pathname>
Initiates the incremental translation of the <file> identified by <pathname> into the language of the state delta logic, assuming <file> contains a Stage 3 VHDL hardware description. The <file> is not re-parsed if it has already been parsed, and is not re-translated if it has previously been translated. The resulting translation is associated with <file>'s name, and becomes available via the predicate vhdl(<file>).

<<SDVS Help>> Quantification Commands <<SDVS Help>>

Commands -- enotice instantiate provebyklaxiom provebygeneralization provebyinstantiation provebymakeboundedquantifier

enotice <postformula>
Informs EKL of the non-quantified formula <postformula>, which is already known to be true by the simplifier.

instantiate <goal> [<existential-symbol> <substitute-symbol>/]*
The goal must be an existential formula. Replaces the goal with the formula obtained by substituting names for the existentially quantified variables in the original goal. The substitutions must be specified in order of appearance if more than one variable is to be substituted.

instantiate <quant> [<existential-symbol> <substitute-symbol>/]*
Substitutes names for existentially quantified variables in the usable quantified formula <quant>. The variable names are used as the substitution names if no substitutions are specified.

instantiate <postformula> [<existential-symbol> <substitute-symbol>/]*
Substitutes names for existentially quantified variables in the true existential formula <postformula>. The variable names are used as the substitution names if no substitutions are specified.

provebyklaxiom <postformula> [<axiomname>]
Attempts to prove the truth of the quantifiers formula <postformula> using a single instantiation of a single axiom whose consequent matches <postformula>, returning either the name of the axiom used, or NIL if no axiom proves <postformula>. The axiom whose name is <axiomname> is used if <axiomname> is specified.

provebygeneralization <universal-formula> <universal-formulas>
Attempts to prove <universal-formula> by using the already known to be true statements <universal-formulas>. It checks that the conjunction of the first levels of <universal-formulas> implies the first level of <universal-formula>. The first level of a quantified formula is obtained by removing the first quantifier and variable.

provebyinstantiation <postformula> <universal-postformula> <universal-var1> <term1> ...
<universal-vark> <termk>
Attempts to prove <postformula> by using the already known to be true universal statement <universal-postformula> with specified terms substituted for universal variables. This command checks to see that the non-quantified part of <universal-postformula> with the terms substituted implies <postformula>. If <postformula> is omitted, the result of the substitution is inserted as a true fact into the current state.
provebymakeboundedquantifier <universal-formula> <universal-formulas>
Attempts to prove <universal-formula> by using the already known to be true
universal statements <universal-formulas>. Checks to see that the prefixes are
all the same and that the bound in <universal-formula> implies the disjunction of
the bounds of the sentences in <universal-formulas>.

<<<SDVS Help>>> Query/Printing Commands <<<SDVS Help>>>-

Commands -- adasubprogenv applicable axiomnames datatypes decls eval flags goals help
lasterror lemmnames next nset placevalue pp ppeq ppl ppst proofcommands
proofstate ps range simp solvers usable usablequantifiers usablesds
usablistrs values vhd1-processes vhd1-signals vhdlsubprogen vhdltime
whynotapply whynotgoal

adasubprogenv <file-name> <subprogram-name> <qualified-name>
Displays the mapping between fully and uniquely qualified names constituting the
environment of the Ada subprogram in the indicated file. In addition to the file
name, both the (textual) name and the fully qualified name of the subprogram must
be provided.

applicable
Prints the indexed set of currently applicable state deltas.

axiomnames {<function/predicate-names>}
Prints the names of the axioms having each function or predicate symbol in
<function/predicate-names> in their consequents, unless <function/predicate-names>
is omitted, in which case the names of all axioms are printed.

datatypes
Prints the names of all known datatypes.

decls
Prints all declarations currently in effect.

eval <s-expression>
Prints the result of evaluating <s-expression>.

flags
Prints the values of all SDVS flag variables.

goals
Prints the current set of goals.

help {<names>}
Prints help information about <names>, unless <names> is omitted, in which case
all SDVS help information is printed. The name "commands" produces help for all
SDVS commands; the name "args" produces help for all SDVS command arguments; the
name "flags" prints help for all SDVS flag variables; the name "proofcommands"
prints help for all SDVS proof commands; the name "quantcommands" prints help for
all SDVS quantification commands; the name "querycommands" prints help for all
SDVS query commands; the name "interactivecommands" prints help for all SDVS
solely interactive commands; the name "batchcommands" prints help for all SDVS
commands which can appear in a batch proof. For other names, such as the names of
flags and commands, the help for that particular name is printed.
lasterror
Prints the last command error, if SDVS is in an erroneous state.

lemmanames {<function/predicate-names>}
Prints the names of the lemmas having each function or predicate symbol in
<function/predicate-names> in their consequents, unless <function/predicate-names>
is omitted, in which case the names of all lemmas are printed.

next {<n>}
Prints the next <n> batch proof commands, or just the next command if <n> is
omitted.

nsd
Prints the highest applicable state delta.

placevalue <place>
Prints the current value of <place>.

pp <name>
Prettyprints objects associated with <name>. The objects currently recognized are
state deltas, proofs, axioms, usable quantifier formulas, goals, lemmas, formulas,
formula lists, and s-expressions.

pp ada <file-name>
Prettyprints the state delta translation of the Ada file identified by
<file-name>.

pp vhdl <file-name>
Prettyprints the state delta translation of the VHDL file identified by
<file-name>.

pp axiom <name>
Prettyprints the axiom named <name>.

pp axioms {<axiom-names>} {<function/predicate-names>}
Prettyprints all axioms if the optional arguments are omitted, prints those axioms
with names in <axiom-names> if provided, and prints those axioms whose consequents
contain all of the function and predicate symbols in <function/predicate-names> if
<axiom-names> is omitted but <function/predicate-names> is not.

pp datatype <name>
Prettyprints the datatype named <name>.

pp formula <name>
Prettyprints the formula named <name>.

pp formulas <name>
Prettyprints the list of formulas named <name>.

PP g <n>
Prettyprints the nth current goal.

pp isps <file-name>
Prettyprints the state delta translation of the ISPS file identified by
<file-name>.
pp lemma <name>
Prettyprints the lemma named <name>.

pp lemmaproof <name>
Prettyprints the lemma proof named <name>.

pp lemmas {<lemma-names>} {<function/predicate-names>}
Prettyprints all lemmas if the optional arguments are omitted, prints those lemmas with names in <lemma-names> if provided, and prints those lemmas whose consequents contain all of the function and predicate symbols in <function/predicate-names> if <lemma-names> is omitted but <function/predicate-names> is not.

pp mppisps <file-name> {<starting-markpoint-name>} {<ending-markpoint-names>} {<preformulas>}
Prettyprints the markpoint-to-markpoint state delta translation of the ISFS file identified by <file-name>, translated according to the remaining optional arguments.

pp proof <name>
Prettyprints the proof named <name>.

pp q <n>
Prettyprints the nth usable quantifier formula.

pp <sdspec>
Prettyprints the state delta specified by <sdspec>.

ppeq <preterm>
Prints all of the terms that are in the same equivalence class as <preterm>.

ppl {<places>}
Prints, for each place in <places>, the current value of the place and any declarations associated with place. If <places> is omitted, this information is printed for all places.

ppsd ada <file-name>
Prettyprints the state delta translation of the Ada file identified by <file-name>.

ppsd vhd1 <file-name>
Prettyprints the state delta translation of the VHDL file identified by <file-name>.

ppsd isps <file-name>
Prettyprints the state delta translation of the ISFS file identified by <file-name>.

ppsd mppisps <file-name> {<starting-markpoint-name>} {<ending-markpoint-names>} {<preformulas>}
Prettyprints the markpoint-to-markpoint state delta translation of the ISFS file identified by <file-name>, translated according to the remaining optional arguments.

ppsd <sdspec>
Prettyprints the state delta specified by `<sdspec>`.

`proofcommands <proof-name>`
Prints a list of the proof commands which were used in the proof denoted by `<proof-name>`.

`proofstate`
Prints a trace of the current proof.

`ps`
Synonymous with `proofstate`.

`range <preterm>`
Prints the numeric range of `<preterm>`.

`simp <preterm>`
Prints the result of simplifying `<preterm>`.

`solvers`
Indicates which solvers are available and which are active.

`usable`
Prints the indexed set of currently usable state deltas and quantified formulas.

`usablequantifiers`
Prints the list of currently usable quantified statements.

`usablesds`
Prints the indexed set of currently usable state deltas.

`usablers`
Prints the indexed set of currently usable TRs.

`values`
Prints the values of all declared variables.

`vhdl-processes {<process-names>}`
Prints information about current state of indicated VHDL processes.

`vhdl-signals {<signal-names>} {<simplify?>}`
Prints information about the current state of the indicated VHDL signals. Any input other than a carriage return for `<simplify?>` causes simplifications to be performed, usually slowing the response time.

`vhdlsubprogenv <file-name> <subprogram-name> <qualified-name>`
Displays the mapping between fully and uniquely qualified names constituting the environment of the VHDL subprogram in the indicated file. In addition to the file name, both the (textual) name and the fully qualified name of the subprogram must be provided.

`vhdltime`
Prints the current VHDL simulation time (a `<global,delta>` pair).

`whynotapply <sdspec>`
Indicates why the state delta specified by `<sdspec>` is not applicable.
why not goal \(<\text{simplify?}>)\)
Shows which goals are not yet satisfied, simplifying the unsatisfied goals unless
\(<\text{simplify?}>\) is omitted.

\(<\text{SDVS Help}>\) Solely Interactive Commands \(<\text{SDVS Help}>\)

Commands -- bye cd compose continue createaxiom createdatatype createeklaxiom
createformula createformulas createlemma createmacro createmacro
createdatatype deautomatedatatype delete deletemaxioms
deletelemmas dump-proof exit implementation init ls pop pwd quit
run-test-proofs shell skip step writeaxioms writelemmas

bye
Returns the user to the LISP read-eval-print-loop.

cd <\text{file}>
Changes the current working directory.

compose \(<\text{n}\>)
Composes the last \(<\text{n}\) state deltas applied. The third field determines what type of
proof commands to compose through. The default is \(<\text{:applications} \text{ which includes}
\text{ all applications of state deltas including apply, until, apply!}, \text{ and } \ast).\n
continue
Continues interpretation of suspended batch proof commands.

createaxiom <axiom-name> <term> <free-variable-names> <constant-names>
<function-names> <predicate-names>
Creates an axiom identified by <axiom-name>, with the axiom pattern <term>, free
variables <free-variable-names>, new constant symbols <constant-names>, new
function symbols <function-names>, and new predicate symbols <predicate-names>.
If <axiom-name> already names an axiom, the user is prompted for overwrite
permission.

createdatatype <datatype-name> <constructor-name> <constructor-arity> <accessor> *
<base-name>
Permits the user to define a (possibly recursive) abstract datatype. The user
chooses a new name for the abstract datatype, chooses a name for its constructor
function, tells the arity (\(<\text{n}\)) of the constructor function, and then goes on to
describe the \(<\text{n}\) accessor functions. For each accessor function, its name is given,
its output type (which may be a list representing a union of previously defined
types, including the type currently being defined, or may be arbitrary) is given,
and a default access value is given. If the new type is recursive, the user must
specify the name of the base constant for the type.

createeklaxiom <axiom-name> <term> <free-variable-names> <constant-names>
<function-names> <predicate-names>
Creates a quantifier axiom identified by <axiom-name>, with the axiom pattern
<term>, free variables <free-variable-names>, new constant symbols
<constant-names>, new function symbols <function-names>, and new predicate symbols
<predicate-names>. If <axiom-name> already names an axiom, the user is prompted
for overwrite permission.

createformula <postformula-name> <postformula>
Associates the typed-in <postformula> with <postformula-name>, unless <postformula-name> already names a formula and the user does not wish to overwrite it.

createformulas <postformulas-name> <postformulas>
Associates the typed-in <postformulas> with <postformulas-name>, unless <postformulas-name> already names a list of formulas and the user does not wish to overwrite it.

creatlemma <lemma-name> <term> <free-variable-names> <constant-names> <function-names> <predicate-names>
Creates a lemma identified by <lemma-name>, with the lemma pattern <term>, free variables <free-variable-names>, new constant symbols <constant-names>, new function symbols <function-names>, and new predicate symbols <predicate-names>. If <lemma-name> already names an lemma, the user is prompted for overwrite permission.

createmacro <macro-name> <preterm> <free-variable-names> <quantifier-names>
Creates a macro identified by <macro-name>, with the macro definition <preterm>, free variables <free-variable-names>, and quantified variables <quantifier-names>. If <macro-name> already names a macro, the user is prompted for overwrite permission. All free variables must occur free in the definition, quantified variables appearing in the definition must be listed in their order (inorder) of appearance, the definition may not be recursive or contain references to other macros, and it may not contain state deltas.

createproof <proof-name> <proof>
Associates the typed-in <proof> with <proof-name>, unless <proof-name> already names a proof and the user does not wish to overwrite it.

creates <sd-name> <preformulas> <comod-places> <mod-places> {<inv-postformulas>}
Creates <postformulas>
Prompts the user for the precondition, comodification list, modification list, invariant (when the invariance flag is ON), and postcondition, of a state delta to be named <sd-name>. If <sd-name> already names a state delta, the user is prompted for overwrite permission.

datatypeaxiom <datatype-name> <axiom-name> <term> <free-variable-names> <constant-names> <function-names> <predicate-names>
Adds a new axiom to the set currently associated with a user-defined datatype created via the 'createdatatype' command. Use the 'pp' command applied to datatype name to display the axioms currently associated with a datatype.

deautomatedatatype <datatype-name>
Removes a datatype axiom automation initiated by the 'automatedatatype' command.

delete <type-name> <object-name>
If <type-name> is the name of a recognized type and <object-name> is associated with an object of this type, then the name/object association is deleted.

deleteaxioms {<axiom-names>}
Deletes those axioms with names in <axiom-names> from the current set of axioms, indicating which axioms were deleted. If <axiom-names> is omitted, all axioms are deleted.
deletelemmas {<lemma-names>}
Delete those lemmas with names in <lemma-names> from the current set of lemmas,
indicating which lemmas were deleted. If <lemma-names> is omitted, all lemmas are
deleted.

dump-proof <proof-name>
Associates the current (possibly partial) proof with <proof-name>, unless
<proof-name> already names a proof and the user does not wish to overwrite it.

exit
Exits the SDVS system AND the Lisp environment.

implementation <thm-name> <upper-spec-postformulas> <lower-spec-postformulas>
<mapping-preformulas> <constant-preformulas> <invariant-preformulas>
Create a theorem (state delta) named <thm-name> which when proved verifies the
implementation of the upper-level specification <upper-spec-postformulas> by the
lower-level specification <lower-spec-postformulas>. Both the upper and
lower-level specifications must have a certain format, which permits them to be
composed only of predicates headed by covering, alldisjoint, declaration, and
distinct, plus state deltas, TR statements and "formula" or "formulas" predicates
made up of only the preceding types of statements. <mapping-preformulas> is a
list of mappings from upper-level to lower-level places, <constant-preformulas> is
a list of constant-specifying formulas involving lower-level places, and
<invariant-preformulas> is a list of lower-level invariants.

init {<proof-name>}
Initializes the proof system, optionally starting the interpretation of the proof
associated with <proof-name>.

ls
Prints the contents of the current working directory.

pop {<n>}
Pops the proof step to level <n> in the proof, popping one level if <n> is
omitted. Use the 'ps' command to see the proof state and the proof levels, which
are bracketed numerals, e.g. <3>, following each proof step.

pwd
Prints the current working directory.

quit
Terminates the proof session if no proofs are in progress. The proof steps
executed before termination are made into a proof which is associated with the
name 'svdssproof'.

run-test-proofs <test proof suite>
Runs the desired test proof suite. Valid options are: all, *original-tests*,
*strongcoverings-tests*, *negation-tests*, *inv-tests*, *new-inv-omega-tr-tests*,
*quant-tests*, *isps-tests*, *ada-tests*, and *vhdl-tests*.

shell <command>
Execute the given string in a UNIX shell.

skip {<n>}
Skips the next <n> batch proof commands, skipping one command if <n> is omitted.
step {<n>}
Steps through <n> batch proof commands, stepping only once if <n> is omitted.

write <file> {<sd-names>} {<proof-names>} {<axiom-names>} {<lemma-names>}
{<formula-names>} {<formulas-names>} {<macro-names>} {<datatype-names>}
{<adalemma-names>} {<vhdlemma-names>}
Writes the state deltas, proofs, axioms, lemmas, formulas, formula lists, macros,
datatypes, adalemmas, and vhdlemmas corresponding to the appropriate names onto
either a new version of <file> or onto the end of <file>. If the file previously
existed, the user is asked if the object definitions are to be appended to the
file. Use the 'read' command to retrieve definitions from a file.

writeaxioms <file> {<axiom-names>}
Writes the axioms whose names appear in <axiom-names> onto a new version of
<file>. If <axiom-names> is omitted, all axioms are written. Use the
'readaxioms' command to retrieve axioms from a file.

writelimmas <file> {<lemma-names>}
Writes the lemmas whose names appear in <lemma-names> onto a new version of
<file>. If <lemma-names> is omitted, all lemmas are written. Use the
'readlemmas' command to retrieve lemmas from a file.

Type 'help help' for more help.

<<<SDVS Help>>> Command Arguments <<<SDVS Help>>>}

{ Encloses optional command arguments.
< > Encloses command argument names.
<x/y> A command argument of type <x> or of type <y>.
<y-x> A command argument of type <x> qualified by the symbol y. The purpose of the
qualification is usually to disambiguate multiple occurrences of <x> in a
command (quote s) arguments or to provide some additional contextual
information about the particular <x>.
<x> A command argument which is a list of objects of type <x>, separated by commas.
<x>* Zero or more command arguments of type <x>.
<x>+ One or more command arguments of type <x>.
[] Encloses of group arguments to which the * and + operators may be applied.
... Are used as ellipses.
<file> A file name in string quotes.
<formula> A formula which may involve neither DOTs nor POUNDS.
<g> The identifier reserved to indicate the current list of goals, always followed
by a nonzero natural number which chooses one from the list.

37
<goal> A goal <g> <n>.

<n> A natural number.

<name> An identifier used to name an object, such as a state delta.

<pathname> A string which completely identifies a file name, by including its
directory path and possible a host designator.

<place> The name of a variable to which the DOT and POUND operators may be applied.

<postformula> A formula which may involve both DOTs and POUNDS.

<postterm> A term which may involve both DOTs and POUNDS.

<preformula> A formula which may involve DOTs but not POUNDS.

<preterm> A term which may involve DOTs but not POUNDS.

<proof> A list of SDVS batch proof commands.

<q> The identifier reserved to indicate the current list of quantified formulas,
always followed by a nonzero natural number which chooses one from the list.

<quant> A quantified formula <q> <n>.

<s-expression> An s-expression, that is, either a symbol or a list.

<selecti-clause> An integer selection clause which is either an integer, a list of
integers, an integer range n...m, or the symbol t.

<sdspec> A state delta specification, which is either a state delta <name>, a state
delta goal <g> <n>, a usable state delta <u> <n>, or a usable TR state
delta <tr> <n>.

<string> A single line of text.

<symbol> Same as <name>.

<term> A term which may involve neither DOTs nor POUNDS.

<tr> The identifier reserved to indicate the stack of usable TR state deltas, always
followed by a nonzero natural number which chooses one from the stack.

<u> The identifier reserved to indicate the stack of usable state deltas, always
followed by a nonzero natural number which chooses one from the stack.

<usablesd> Some usable state delta <u> <n>.

<unique-name-level> A positive integer specifying the level of qualification given
to variable and procedure names in ISPS files. Level 0
specifies no qualification. The value of the 'unique-name-level' flag will be used whenever <unique-name-level> is omitted.

<<<SDVS Help>>> Flags <<<SDVS Help>>>
abbreviationlevel
This flag controls the printing level (during proof traces) of state deltas and
Ada, VHDL, or ISPS program fragments appearing inside translator continuations in
state deltas. It takes on the values NONE, SOME, and MAX, indicating that these
objects are never to be abbreviated, should be somewhat abbreviated, or should be
maximally abbreviated, respectively.

acceptfileproofs
While this flag is ON the system will accept proofs it reads from files as valid,
otherwise such proofs will be ignored.

autoclose
While this flag is ON the system will attempt to close the proof after each proof
command, otherwise the user must explicitly close the proof.

checkexistence
When this flag is on existential quantifiers of type place are automatically
instantiated in all possible combinations.

checksyntax
While this flag is ON all commands will be checked for proper syntax, and errors
will be generated if an improper command is found. This flag should only be
turned OFF for an efficient run of a proof that ran successfully with the flag ON.

displaympads
When this flag is ON, the state deltas created during the ‘mpsps’ and ‘mptr’
commands will be displayed.

ekltraceflag
When this flag is ON, EKL internal messages will be printed.

enumerate
When this flag is ON bounded universally quantified variables are enumerated.

invariance
While this flag is ON the use of invariants is permitted in SDVS.

optimizeassignments
While this flag is anything but OFF the values assigned to changing places are
optimized to create fewer simplifier database entries. This may result in
decreased proof execution speed.

ppdottednames
When this flag is ON, any symbolic value which is the current value of a place is
pretty-printed by printing the dotted place name.

pplinewidth
The value of this flag controls the right margin for pretty-printing.

reportpropagations
While this flag is ON propagated disjunctions are traced between proof commands.

showstats
Flag not currently implemented.
showstep#
When this flag is ON and traceflag is ON the sequential number of the current
proof step will be traced during proof execution.

strongcoverings
When this flag is ON coverings are interpreted as real set partitions so that a
real change in a subspace implies a real change in every superplace.

stronglytyped
While this flag is ON, the 'createdatatype' command will construct strongly typed
datatype definitions; i.e., a type recognizer predicate will be associated with
each datatype and be present in each of the datatype's axioms. This flag is
initially OFF.

traceflag
This flag can be turned OFF to inhibit printing of proof trace information.

uniquelevel
A non-negative integer, this flag controls the degree of qualification of variable
and procedure names during the translation (into the state delta logic) of ISPS
descriptions. The default value is 1, which is adequate if all names unique. If
the value is not high enough to prevent name clashes, an error will be signalled
during translation.

usedots
When this flag is ON, true-quantifiers will automatically check the effect of
dots in trying to prove a universal tautology.

weaknext.tr
When this flag is ON the state deltas generated by the translators have the
nontrivial invariant (#all=.all). The invariance flag must be ON for the
application of these state deltas.
2 THE PROOF LANGUAGE

The proof language is the formal vehicle for writing proofs of state deltas. Thus, the proof language allows the user to describe segments of computations and to describe logical derivations within a given state. Another way to view the proof language is as a programming language: if the proof language "program" is accepted by SDVS, then the proof is "correct."

Some actions of proof commands are determined by the settings of system flags or by whether or not various solvers are activated. The solvers (see Section 2.7.6) can be activated by the command activate <s>, where <s> is the first initial of a solver (e.g. m for multiplication). Brief descriptions of all the commands are listed in Section 1.10.

2.1 A DYNAMIC EXAMPLE

The following example illustrates some of the dynamic proof commands used in an interactive session, although it is not expected that the reader understand thoroughly all the details at this point. For example, the subtleties of the induct command are dealt with only in Section 2.5. In interactive mode with created, all field entries (e.g. pre:) must be typed on a continuous line with wrap-around (no <CR>). Note that the precondition and postcondition each should be a list of sentences, separated by commas. Within each sentence that is an element of the list, no commas can appear. The word and or the symbol & can be used interchangeably for conjunction. The translator predicates ada, vhdl, and isps can appear only as top-level elements in the list.

The interactive input is identical to the prettyprinted output. Note also that there is no "graceful" way to abort an interactive command in the middle. The user must persever to the end of the argument list, as SDVS 12 has no interrupt command. Thus, if for some reason you wish to halt the action of SDVS before SDVS gives you a command prompt, you simply must kill the process and start again.

The state delta sinduct represents the theorem that if a is continually incremented, then its value will eventually be greater than 1000. It should be noted that the default data type for the predicate gt is integer, so that the value increases by at least 1.

<sdvs.1> created
    name: sinduct
    [SD pre: covering(all, a, b), [sd (true) () (a) (#a gt .a)]
    comod[]: <CR>
    mod[]: a
    post: #a gt 1000
]

Notice that here we input the interior state delta directly "by hand," without using the formula command applied to an extant state delta. We could also have typed the internal sd as

41
[sd pre: (true) comod: () mod: (a) post: (#a gt .a)]

or

[sd pre: (true) mod: (a) post: (#a gt .a)]

instead of

[sd (true) () (a) (#a gt .a)]

<sdvs.1> pp
   object:  sinduct

[sd pre: (covering(all,a,b),
    [sd pre: (true)
       mod: (a)
       post: (#a gt .a))
    mod: (a)
    post: (#a gt 1000)]

<sdvs.1> init
   proof name[]:  <CR>

State Delta Verification System, Version 12

Restricted to authorized users only.

Let us prove this. The SDVS proof follows the "natural" proof quite closely: it will be done by induction on the value of a, taking into account the two cases that either a is or is not already greater than 1000.

<sdvs.1> prove
   state delta[]:  sinduct
   proof[]:  <CR>

open -- [sd pre: (covering(all,a,b),
    [sd pre: (true)
       mod: (a)
       post: (#a gt .a))
    mod: (a)
    post: (#a gt 1000)]

Complete the proof.

We will do a proof by cases based on the current value of a. Let us assign the name aa to the current contents of a.
<sdvs.1.1> let
new variable: aa
value: .a

let -- aa = .a

<sdvs.1.2> cases
case predicate: aa gt 1000
cases -- aa gt 1000
open -- [sd pre: (aa gt 1000)
            comod: (all)
            mod: (a)
            post: (#a gt 1000)]
close -- 0 steps/applications
open -- [sd pre: (¬(aa gt 1000))
            comod: (all)
            mod: (a)
            post: (#a gt 1000)]

Complete the proof.

<sdvs.1.2.1> ps

<< initial state >>
proof in progress of sinduct <3>
let aa = .a <2>
case analysis in progress on: aa gt 1000 or ¬(aa gt 1000) <1>
1st case: complete
2nd case: in progress
--> you are here <--

Note that the bracketed numbers < 1 >, etc., in the listing of the proof state are proof step numbers that can be revisited by pop.

If the contents of a are not greater than 1000, we will do an induction on a new variable, called counter.³

We know that the value of a must increase by at least 1 every time through the loop. Therefore, we have to execute the loop at most 1001 - aa times. Notice we are not assuming aa ge 0.

³Any new name can be used here.
comodification list[]: <CR>
modification list[]: a
base proof[]: <CR>
step proof[]: <CR>

induction -- counter from 0 to 1001 - aa

open -- [sd pre: (counter = 0)
   comod: (all)
   post: (counter le .a - aa)]

close -- 0 steps/applications

open -- [sd pre: (counter ge 0,counter lt 1001 - aa,
   counter le .a - aa)
   mod: (a)
   post: (counter + 1 le #a - aa)]

Complete the proof.

Now let us check where we are in the proof.

<sdvs.1.2.1.2.1> ps

<< initial state >>
proof in progress of sinduct <4>
   let aa = .a <3>
   case analysis in progress on: aa gt 1000 or -(aa gt 1000) <2>
      1st case: complete
      2nd case: in progress
      induction in progress on counter from 0 to 1001 - aa <1>
      base case: complete
      step case: in progress
--> you are here <--

Let us see why the open state delta is not true.

<sdvs.1.2.1.2.1> whynotgoal
   simplify?[no]: <CR>
   g(1) counter + 1 le #a - aa

Let us check which state deltas are known to be true at this point in the proof.

<sdvs.1.2.1.2.1> usablesds
   u(1) [sd pre: (true) mod: (a) post: (#a gt .a)]

If we apply this state delta, the remaining goal will be achieved.
apply
sd/number[highest applicable/once]: <CR>

apply -- [sd pre: (true)
mod: (a)
post: (#a gt .a)]

close -- 1 steps/applications

join induction cases -- [sd pre: (0 le 1001 - aa)
comod: (all)
mod: (a)
post: (1001 - aa le #a - aa)]

close -- 1 steps/applications

join -- [sd pre: (true)
comod: (all)
mod: (a)
post: (#a gt 1000)]

close -- 2 steps/applications

<sdvs.2> dump-proof
name: sinductproof

Current proof dumped to sinductproof.

<sdvs.2> pp
object: sinductproof

proof sinductproof:

prove sinduct
proof:
(let aa = .a,
cases aa gt 1000
then proof:
else proof:
induct on: counter
from: 0
to: 1001 - aa
invariants: (counter le .a - aa)
comodlist:
modlist: (a)
base proof:
step proof: apply u(1))

<sdvs.2> quit

Q.E.D. The proof for this session is in 'sdvproof'.

State Delta Verification System, Version 12

Restricted to authorized users only.
We could store this proof and rerun it using the `interpret` command. We could also input this proof directly into SDVS at the proof level. In the latter case it must be typed in verbatim with all the fields (e.g. `then proof:`) given explicitly.

2.2 STARTING AND ENDING A PROOF

The command `init` must be typed before typing any one or any combination of the "top-level commands": `activate`, `deactivate`, `provelemma`, and `quantification`. All other commands may be typed at any time. `Init` opens up a new proof context, and makes the state "clean" and free of any contextual information. Of course, the names of previously defined state deltas, proofs, and so on are preserved. `Init` may be followed by a proof name, whose associated proof will then be executed.

The primary proof command is

```plaintext
<sdvs.1> prove
 state delta: <sd>
 proof[]: <proof>
```

where `<sd>` is the name of a state delta and `<proof>` is either empty `<CR>`, in which case SDVS will prompt with "complete the proof" and the user can interactively input either the proof commands, or an atom that evaluates to a list of proof commands.

The `prove` command takes a state delta as an argument: this state delta may be specified either by name or by typing `<CR>` and having SDVS prompt for state delta fields to be input explicitly. The command causes a proof to be "opened," or started, and ensuing proof commands have as their goal the current theorem corresponding to the most recently opened proof in a stack discipline. The precondition of the state delta that is the argument to `prove` is added to the current state (also in the case that the state has not been initialized by the `init` command) and a new proof context is opened. When the proof is "closed," i.e., when the current theorem or subtheorem has been proved, the proved state delta is added to the usable state delta list and is preserved until the enclosing context is popped or the comodification list of the proved state delta is violated.

In the normal case (when the `autoclose` flag is on), the goal is checked after each proof command to see if the proof can be closed. If `autoclose` is off, the proof will have to be closed explicitly with the `close` command. This may be advantageous when the simplifier spends a noticeable amount of time trying to prove that the goal is reached in a state the user knows does not satisfy the goal.

When the proof is complete, the proven state delta is inserted into the database as "usable."

To exit the proof session, type `quit`. This is the time when any messages about pending proof steps will appear, for example if an unproved lemma is used. However, if it is desired to save the proof, this must be done before quitting.
2.3 STRAIGHT-LINE SYMBOLIC EXECUTION

The basic proof step is \textit{apply}. The system searches through the stack of usable state deltas, the most recently added state delta first, and finds the first one with the precondition true in the current state. That state delta is then applied; that is, a new state is stored consisting of

- the postcondition of the applied state delta,
- those facts from the previous state that are not dependent on places in the applied state delta's modification list, and
- those state deltas true in the previous state whose comodification lists do not contain places dependent on places in the applied state delta's modification list.

The common case is that at most one state delta is applicable at one time, so \textit{apply} is sufficient. If more than one state delta is applicable, the specific one we are interested in applying can be designated. Instead of having to type a sequence of \textit{apply}'s, we can specify how many times to apply; to indicate "as many applications as possible," use the command * (or go or execute). This causes \textit{apply} to be performed until the goal is reached or until there is no applicable state delta. Notice that the flag \textit{autoclose} must be on for this to work. The command \textit{apply!} causes application until the next mark point (see Section 3.2). The integer \textit{n} following \textit{apply} or \textit{apply!} means to use that command \textit{n} times. A state delta \texttt{<sd>} or name of a state delta may be used as an argument to \textit{apply}. The name of a usable state delta may be found by the command \textit{usablesds}.

\begin{verbatim}
<sdvs.1> ppsd
  state delta: s5
  [sd pre: (covering(all,a),a = 1,
    [sd pre: (covering(all,a),a = 1)
     mod: (all)
     post: (#a = 2)],
    [sd pre: (covering(all,a),a = 2)
     mod: (all)
     post: (#a = 3)],
    [sd pre: (covering(all,a),a = 3)
     mod: (all)
     post: (#a = 4)])
  mod: (all)
  post: (#a = 4)]

<sdvs.1> prove
  state delta[]: s5
  proof[]: <CR>

  open -- [sd pre: (covering(all,a),a = 1,
    [sd pre: (covering(all,a),a = 1)]]
\end{verbatim}
mod: (all)
post: (#a = 2)],
[sd pre: (covering(all,a)..a = 2)
mod: (all)
post: (#a = 3)],
[sd pre: (covering(all,a)..a = 3)
mod: (all)
post: (#a = 4)]]
mod: (all)
post: (#a = 4)]

Complete the proof.

<sdvs:1.1> *

apply -- [sd pre: (covering(all,a)..a = 1)
mod: (all)
post: (#a = 2)]

apply -- [sd pre: (covering(all,a)..a = 2)
mod: (all)
post: (#a = 3)]

apply -- [sd pre: (covering(all,a)..a = 3)
mod: (all)
post: (#a = 4)]

close -- 3 steps/applications

If no state delta is applicable in the given state, it may be that the goal cannot be achieved from the given state; that is, the current state contradicts the precondition of any currently true state deltas, or it could be that although the current state does in fact satisfy the preconditions of some true state deltas, not enough information is known by SDVS to be able to decide this. In this case SDVS may need some hints, by way of static proof commands, to establish that the precondition of the applicable state delta is true.

Another variation of apply is until. The proof command "until P," where P is some predicate, causes state deltas to be applied until P is known. P may contain both DOTs and POUNDS, where DOT refers to the contents of a place at the time the until command is given, and POUND refers to the contents at the time P is subsequently evaluated. This command is useful (or essential) in cases where the user wants to stop, even though execute may be able to continue (for example, where the system needs input about static assertions from the user in order to verify that the postcondition state has been reached). Recall that if the system cannot prove the postcondition, it will continue to apply state deltas; but then the correct postcondition time may be passed. So, for example, if the postcondition is P & Q, and P is automatically provable at the right time (i.e., when P and Q are in fact both true) but Q requires assistance, then “until P” would bring the system to the required state, at which time the user gives the necessary assistance to allow Q to be proved also. If P is true also at states before Q is true, then the above strategy will have to be modified, for example by using some other “marker” for the until, or jumping from true P state to true P state, each time using one apply followed by the “until P.”
Another use for until is the case where the state delta the user wants to apply, say S1, has a precondition that the simplifier cannot prove automatically, and thus another (lower) state delta, say S2, whose precondition is provable is applied instead. In this case the user would make the condition P in "until P" the postcondition of the last proved state delta, and then insert hints to prove the precondition of S1.

2.4 PROOF BY CASES

A typical instance of proof by cases occurs at a branch point of a program. In order to proceed symbolically to the goal, the current state before the branch must be split into two (or into as many branches as there are), and each branch must be pursued separately. When a split into two is desired, the cases command may be used. When a case proof is desired to achieve a goal other than the current goal, the subcases command is used.

The command syntax is

```
cases <cond> <thenproof> <elseproof>
```

where <cond> is some predicate such that the assumption of <cond> allows the choice of branch to be determined, <thenproof> is the proof for that branch, and <elseproof> is the proof for the rest of the computation, which assumes that <cond> is not true. If one or both of <thenproof> and <elseproof> are empty, then SDVS will try to close with no proof. If it is not able to close, it will respond with "complete the proof," and then the user may interactively submit proof commands. The predicate <cond> can be first order or a state delta; see the example in Section 2.9.7. Consider the following example:

```
<sdvs.2> ppsd
 state delta: casessd
 [sd pre: (formula(cases1),formula(cases2))
 mod: (a)
 post: (#a gt 0)]

<sdvs.2> ppsd
 state delta: cases1
 [sd pre: (.a lt 0) mod: (a) post: (#a = 1)]

<sdvs.2> ppsd
 state delta: cases2
 [sd pre: (.a ge 0) mod: (a) post: (#a = 2)]

<sdvs.2> init
 proof name[]: <CR>
```

49
State Delta Verification System, Version 1

Restricted to authorized users only.

<sdvs.1> prove
  state delta[]: casesd
  proof[]: <CR>

open -- [sd pre: (formula(cases1),formula(cases2))
   mod: (a)
   post: (#a gt 0)]

Complete the proof.

<sdvs.1.1> cases
  case predicate: .a lt 0

  cases -- .a lt 0

  open -- [sd pre: (.a lt 0)
    comod: (all)
    mod: (a)
    post: (#a gt 0)]

<sdvs.1.1.1> *

  inserting -- pcovering(all,a)

  apply -- [sd pre: (.a lt 0)
    mod: (a)
    post: (#a = 1)]

  inserting -- pcovering(all,a)

  close -- 1 steps/applications

open -- [sd pre: (!(.a lt 0))
  comod: (all)
  mod: (a)
  post: (#a gt 0)]

Complete the proof.

<sdvs.1.1.2.1> *

  inserting -- pcovering(all,a)

  apply -- [sd pre: (.a ge 0)
    mod: (a)
    post: (#a = 2)]

  inserting -- pcovering(all,a)

  close -- 1 steps/applications

50
join -- [sd pre: (true)  
comod: (all)  
mod: (a)  
post: (#a gt 0)]

inserting -- pcovering(all,a)

inserting -- pcovering(all,a)

close -- 1 steps/applications

In this example both cases were proved by the execute command (*). Note that the two subcases were opened, closed, and joined, and the joined state delta was applied to complete the proof of the top level.

When there are more than two cases to consider, and the user wants to describe each explicitly rather than translate the problem into a nested cases, there is the command mcases (m for multiple):

```
mcases (<cond1>.<proof1>) (<cond2>.<proof2>) ... (<condn>.<proofn>)
```

SDVS must be able to prove that the disjunction of the <cond> clauses is true.

For example, consider the following proof:

```
<sdvs.2> pp
 object: casesproof

proof casesproof:

prove [sd pre: ([sd pre: (p1 & p2)
mod: (all)
post: (q1)],
[sd pre: (p1 & ¬p2)
mod: (all)
post: (q2)],
[sd pre: (¬p1 & p2)
mod: (all)
post: (q2)],
[sd pre: (¬p1 & ¬p2)
mod: (all)
post: (q1)])]
mod: (all)
post: (q1 or q2)]

proof:
mcases
 (case: p1 & p2
 proof: *

51
```
case: p1 & ~p2
proof: *
case: ~p1 & p2
proof: *
case: ~p1 & ~p2
proof: *

<svns.2> init
proof name[]: casesproof

State Delta Verification System, Version 12

Restricted to authorized users only.

open -- [sd pre: (sd pre: (p1 & p2)
    mod: (all)
    post: (q1)],
    [sd pre: (p1 & ~p2)
    mod: (all)
    post: (q2)],
    [sd pre: (~p1 & p2)
    mod: (all)
    post: (q2)],
    [sd pre: (~p1 & ~p2)
    mod: (all)
    post: (q1)])
    mod: (all)
    post: (q1 or q2)]

mcases -- 4

open -- [sd pre: (p1 & p2)
    comod: (all)
    mod: (all)
    post: (q1 or q2)]

apply -- [sd pre: (p1 & p2)
    mod: (all)
    post: (q1)]

close -- 1 steps/applications

open -- [sd pre: (p1 & ~p2)
    comod: (all)
    mod: (all)
    post: (q1 or q2)]

apply -- [sd pre: (p1 & ~p2)
    mod: (all)
    post: (q2)]

close -- 1 steps/applications

open -- [sd pre: (~p1 & p2)
    comod: (all)
mod: (all)
post: (q1 or q2])

apply -- [sd pre: (~p1 & p2)
mod: (all)
post: (q2)]

close -- 1 steps/applications

open -- [sd pre: (~p1 & ~p2)
comod: (all)
mod: (all)
post: (q1 or q2)]

apply -- [sd pre: (~p1 & ~p2)
mod: (all)
post: (q1)]

close -- 1 steps/applications

join -- [sd pre: (p1 & p2 or p1 & ~p2 or ~p1 & p2 or
~p1 & ~p2)
comod: (all)
mod: (all)
post: (q1 or q2)]

close -- 1 steps/applications

Another variety of cases is subcases. This is used for proving a statement other than the current goal by cases. Of course, there is no essential need for subcases, since starting a new subproof of a state delta with the subcases goal as the postcondition, followed by applying that state delta, will suffice.

The format is

subcases <cond> <mod> <subgoal> <thenproof> <elseproof>.

This is similar to the cases command, but the cases are joined at <subgoal> instead of at the goal of the current proof. The field <mod> is the mod list for each execution path to the subgoal.

<adv.1> subcases
subcase predicate: p
modification list[]: <CR>
subgoal: p or q
then proof[]: <CR>
else proof[]: <CR>

subcases -- p
open -- [sd pre: (p) comod: (all) post: (p or q)]

close -- 0 steps/applications

open -- [sd pre: (~p) comod: (all) post: (p or q)]

Complete the proof.

Of course, the proof is not closed, because the above state delta is not valid.

## 2.5 PROOF BY INDUCTION

Induction arguments are in general more complex than straight-line symbolic execution or branching. Several useful forms of induction that are applicable in many naturally occurring proofs are identified and incorporated into SDVS 12. SDVS 12 is able to prove claims about terminating loops by induction on the natural numbers using the `induct` command. A fixed-point induction command for proving claims about TR-generated continuations has been implemented on an experimental basis, but does not appear in robust form in SDVS 12. In addition, there are experimental commands for general mathematical induction (`natinduct`: see Section 2.9.8) and for proving properties of Ada recursive procedures (`recurse`) [40]. The `omegainduct` command (Section 8.5) is primarily intended for proving safety properties of Ada programs.

The `induct` command allows for proofs of theorems about programs containing certain kinds of loops. Note: the restrictions on the kind of loops make the current implementation unable to handle some cases. However, probably any proof involving induction over a set essentially ordered like the natural numbers is verifiable in this implementation.

Sometimes a proof by `induct` is a short version of another proof by symbolic execution, if the loop is of known length. For loops with data-dependent length, induction may be the only way to take the proof over the loop.

The typical use of the `induct` command is when you are at a place in the proof where you want to prove the following state delta (call it S1):

```sh
[SD pre: (TRUE) comod: (ALL) mod: (M) post: (Q)]
```

and then apply it, bringing the symbolic computation to a state in the future at which Q is true, and during which interval only the places in M have changed.

Proving S1 by induction involves finding a predicate Inv(.X) (the invariant) that depends on some number-valued place X such that Inv(n) implies Q for some n, and such that
Inv(0) is true now, i.e.,

(1) [SD  pre: (TRUE)
     comod: (ALL)
     mod: ()
     post: (Inv(0))] 

and

(2)[SD pre: (Inv(i))
     comod: ()
     mod: (M)
     post: (Inv(i+1))] 

If these two state deltas are true, then it is true that for all n,

[SD pre: (TRUE)
     comod: (ALL)
     mod: (M)
     post: (Inv(n))] 

Thus, we can apply this state delta, obtaining Inv(n), and thus Q.

[Note for the advanced SDVS user: the above conclusion is valid if we use any comod list C instead of the empty comod list in (2), as long as C and M are disjoint. However, we strongly suggest (and this may be enforced in later versions of SDVS) that the induct comod list be always chosen to be empty. Similarly we suggest that there be no dots in the induct mod list, for example a[i] where a is an array place. Instead, use a in the mod list and make the invariant strong enough to imply that part of the array is held constant in the transition represented by the step-case state delta.

However, when using induction to characterize iterations of a loop involving arrays, more care on the user's part might be needed. For example, if one iteration of the loop changes only the slice a[i : 10], where .i has a different value depending on which iteration you are doing, you really would need to give a[i : 10] as the induct command modlist. Then the state delta representing the net result of all the iterations (the "join state delta" constructed at the successful completion of the induct command) will have simply a in its modlist: there is no simple way to restrict the part of a that may have changed. If in fact a is actually of length 20, say, and you need to preserve the values of a[11 : 20] over the course of the induction, do a

<sdvs.1> let
   new variable: aa
       value: a[1:10]
and give \( aa[i:10] \) as the induct modlist. Then the step-case state delta will preserve the first part of \( aa \), and thus of \( a \), and the join-case state delta will have only \( aa \) as its modlist, so that \( a[11:20] \) will be preserved. End of Note for the advanced SDVS user.]

Actually, SDVS makes the user choose initial ("from") and final ("to") values for \( X \), instead of using 0 and some arbitrary \( n \). Also, \( \text{Inv} \) must be a predicate without top-level pounds. It may, and often does, contain state deltas. \( \text{Inv}(./#) \) is the result of substituting pounds for dots in \( \text{Inv} \).

Therefore, SDVS sets up proofs of

\[
\begin{align*}
(1) \quad \text{SD} & \quad \text{pre: (TRUE)} \\
& \quad \text{comod: (ALL)} \\
& \quad \text{mod: ()} \\
& \quad \text{post: (Inv(from))}
\end{align*}
\]

and

\[
\begin{align*}
(2) \quad \text{SD} & \quad \text{pre: (Inv(i), i ge from, i lt to)} \\
& \quad \text{comod: (C)} \\
& \quad \text{mod: (M)} \\
& \quad \text{post: (Inv(i+1)(./#))}
\end{align*}
\]

If the system can prove these two, then it creates and automatically applies the state delta:

\[
\begin{align*}
\text{SD} & \quad \text{pre: (TRUE)} \\
& \quad \text{comod: (ALL)} \\
& \quad \text{mod: (M)} \\
& \quad \text{post: (Inv(to)(./#))}
\end{align*}
\]

If \( \text{Inv} \) was chosen shrewdly (for example, if \( \text{Inv(to)} \) implies \( Q \)), then \( Q \) will be true in the resulting new state, thus essentially proving and applying \( S1 \).

The \textit{induct} command has eight parameters,

\[
\text{induct <indexp> <from> <to> <invariant> <comod> <mod> <baseproof> <stepproof>}
\]

and means "Do an induction proof (of the current goal) using the expression \( \text{<indexp>} \) in the range \( \text{<from>} \) to \( \text{<to>} \)" (both of type integer, with one provably less than or equal to the other); \( \text{<indexp>} \) can be any expression of type integer that contains only one variable of type place and no pounds. A new (previously undeclared) place may be introduced as
the only place in `<indexp>`. `<invariant>` (a list of predicates) is the loop invariant. The invariant can also contain state deltas, but cannot contain pounds at the top level. Do not leave the invariant field blank; if you really do not need an invariant, type “true.” `<comod>` and `<mod>` are the lists for the induction step; they must be disjoint.

In the above typical case, `<indexp>` is `.X`, `<from>` is `Initial`, `<to>` is `Final`, `<invariant>` is `Inv`, `<comod>` is `C`, `<mod>` is `M`, and `<baseproof>` and `<stepproof>` would be proofs of the two claims (1) and (2) above. If either `<baseproof>` or `<stepproof>` is empty, SDVS tries to close the current proof automatically. If it cannot, it responds with “complete the proof,” and then the user may submit interactive proof commands.

The step modification list gives the places that change in executing the loop once, and the step comodification list gives those places that must be preserved for the loop to execute again. These lists must be disjoint. Indeed, the comodification list of the `induct` command may always be taken to be empty, if the invariant is chosen to be strong enough. Also, the mod list of the `induct` command must be contained in the mod list of the state delta being proved. However, there need not be any connection between the comodification lists of the two state deltas.

Here is a typical proof. Note that the comodification list is empty, as is the base proof; under certain circumstances related to the pretty-printer, these fields may not show up in the prettyprinted form.

```prolog
(prove [sd pre: (.a = 1,.b = 1,covering(all,a,b)),
 [sd pre: (.a = 1,.b ge 1,covering(all,a,b))
 mod: (b)
 post: (#b = .b + 1)])
 mod: (b)
 post: (#b = 100,#a ge 0)]
proof:
 induct on: .b
 from: 1
 to: 100
 invariants: (.a = 1)
 comodlist:
 modlist: (b)
 base proof:
 step proof:
 apply [sd pre: (.a = 1,.b ge 1,covering(all,a,b))
 mod: (b)
 post: (#b = .b + 1)]
```

And here is a transcript of the proof:

```
<sdfs.1.2.1> init
 proof name[]: pr.eg28proof

State Delta Verification System, Version 12
57
```
Restricted to authorized users only.

open -- [sd pre: (.a = 1,.b = 1,covering(all,a,b)),
        [sd pre: (.a = 1,.b ge 1,covering(all,a,b))
         mod: (b)
         post: (#b = .b + 1)]
      mod: (b)
      post: (#b = 100,#a ge 0)]

induction -- .b from 1 to 100

open -- [sd pre: (true)
          comod: (all)
          post: (.a = 1,.b = 1)]

close -- 0 steps/applications

open -- [sd pre: (.b ge 1,.b lt 100,.a = 1)
         mod: (b)
         post: (#a = 1,#b = .b + 1)]

apply -- [sd pre: (.a = 1,.b ge 1,covering(all,a,b))
          mod: (b)
          post: (#b = .b + 1)]

close -- 1 steps/applications

join induction cases -- [sd pre: (1 le 100)
                        comod: (all)
                        mod: (b)
                        post: (#b = 100,#a = 1)]

close -- 1 steps/applications

If the invariant is left out, then the proof will not go through. However, if the comodification list is made to contain \( a \), the proof will go through with trivial invariant.

A minor change in the state delta will allow both the comodification list and the invariant to be "true:"

\[
\begin{align*}
\text{[sd pre: (.a = 1,.b = 1,covering(all,a,b),} \\
\text{[sd pre: (.b ge 1,covering(all,a,b))} \\
\text{mod: (b)} \\
\text{post: (#b = .b + 1)]} \\
\text{mod: (b)} \\
\text{post: (#b = 100,#a ge 0)}
\end{align*}
\]

Another option is to use a new name as an induction variable, for example \textit{counter}. This variable is automatically incremented by 1 every time around the loop, i.e., from the precondition to the postcondition of the step-case state delta. See Section 2.1 for another example involving \textit{counter}. 

58
If the induction argument is over a larger well-ordered set, then a more complicated proof will have to be used. For example, we could be faced with the situation of a loop within a loop, where the inner loop bounds are possibly different each time.

For an abstract illustration, consider the pairs of natural numbers ordered lexicographically (the order is \(\omega^2\)). If a loop takes a pair into a lower pair, then there is no finite bound on the number of times around the loop, even in terms of the initial pair. However, the loop does terminate with the value (0,0). Thus, the following state delta \(ind.sd\) is true and provable in SDVS:

\[
\begin{align*}
[\text{ad pre:}] & \quad (\text{covering}(\text{all},a,b),.a \geq 0,.b \geq 0), \\
[\text{sd pre:}] & \quad (.a \gt 0,.b \gt 0) \\
& \quad \text{mod: } (a,b) \\
& \quad \text{post: } ([a \lt a \lor a = a \& b \lt b,.a \geq 0,.b \geq 0])] \\
[\text{sd pre:}] & \quad (.a = 0,.b \gt 0) \\
& \quad \text{mod: } (a,b) \\
& \quad \text{post: } ([a = a,.b \lt b,.a \geq 0,.b \geq 0])] \\
[\text{sd pre:}] & \quad (.a \gt 0,.b = 0) \\
& \quad \text{mod: } (a,b) \\
& \quad \text{post: } ([a \lt a,.a \geq 0,.b \geq 0])] \\
\end{align*}
\]

Here is the proof:

\[
\begin{align*}
\text{(prove ind.sd} \\
\text{proof:)} \\
\quad \text{(prove s1} \\
\quad \text{proof:)} \\
\quad \text{(prove s1.1} \\
\quad \text{proof:)} \\
\quad \text{(let aa = .a,} \\
\quad \text{let bb = .b,} \\
\quad \text{induct on: } k \\
\quad \text{from: } 0 \\
\quad \text{to: } bb \\
\quad \text{invariants: (.a \lt aa or} \\
\quad \quad .a = aa \& .b \leq bb - k,} \\
\quad \quad .a \geq 0,.b \geq 0) \\
\quad \text{comodlist:} \\
\quad \text{modlist: } (a,b) \\
\quad \text{base proof:} \\
\quad \text{step proof:} \\
\quad \quad \text{cases .b = 0} \\
\quad \quad \quad \text{then proof:} \\
\quad \quad \quad \text{else proof:} \\
\quad \quad \quad \quad \text{cases .a \gt 0} \\
\quad \quad \quad \quad \quad \text{then proof: apply i1} \\
\quad \quad \quad \quad \quad \text{else proof: },) \\
\quad \text{let aa = .a,}
\end{align*}
\]

\footnote{The proof is due to John Doner.}
apply s1.1.
cases .a = aa
  then proof: apply i3
  else proof: ),
prove s2
proof:
  (let aa = .a,
  induct on:  i
  from: 0
to: aa
invariants: (.a le aa - i,.a ge 0,.b ge 0)
comodlist:
modlist: (a,b)
base proof:
step proof:
  cases .a = 0
  then proof:
  else proof: apply s1),
prove s3
proof:
  (let bb = .b,
  induct on:  j
  from: 0
to: bb
invariants: (.b le bb - j,.a = 0,.b ge 0)
comodlist:
modlist: (a,b)
base proof:
step proof:
  cases .b = 0
  then proof:
  else proof: apply i2),
cases .a = 0
  then proof: apply s3
  else proof:
    (apply s2,
     apply s3)))

where s1 is

[sd pre: (.a gt 0,.b ge 0)
  mod: (a,b)
  post: ($a lt .a,$a ge 0,$b ge 0)]

s1.1 is

[sd pre: (.a gt 0,.b ge 0)
  mod: (a,b)
  post: ($a lt .a or $a = .a & $b = 0,$a ge 0,$b ge 0)]

s2 is

60
[sd pre: (a g0 b ge 0)  
mod: (a,b)  
post: (#a = 0,#b ge 0)]

and s3 is

[sd pre: (a = 0,b ge 0)  
mod: (a,b)  
post: (#a = 0,#b = 0)]

2.6 PROOF BY CONTRADICTION

In SDVS, if the symbolic execution proof brings about an inconsistent state (e.g. one containing 0 = 1 or x ≠ x), then the most recently begun proof is closed, and that state delta that was being proved is proclaimed usable. The explanation is that in opening the proof of that state delta, we assumed that there was a state (subject to the comod list restrictions) that satisfied its precondition, and on the basis of that state we were able to execute forward. If we arrive at an inconsistent state, that must mean that our previous assumption was false. Thus, there was in fact no state satisfying those conditions, and thus the state delta is "vacuously" true.

When trying to achieve the postcondition of the goal state delta, a usable state delta can (only) be applied if its mod list is contained in that of the goal, since that is part of the satisfaction condition. However, if reaching a contradiction is the intended proof strategy, one need not worry about this restriction; in that case we are not executing to the state fulfilling the postcondition, but are simply trying to get to a state manifesting the contradiction in the precondition.

Another way to put this is that if the mod list of an applied state delta is not contained in the mod list of the state delta to be proven, then the only way the proof can be closed is by reaching a contradiction. The user is suitably warned by an SDVS message.

First, we show how proof by contradiction can be exploited to eliminate false cases. The state delta e&dote below essentially says that if we can execute to a state, allowing x to change along the way, in which we learn that the original value of x was 1, then in fact, the current value of x is 1. Note that we cannot prove this fact by simply executing to a future state, because the mod list x of the applied state delta is not included in the mod list of the state delta to be proven, which is empty, and thus we would have to reach a contradiction in order to close the proof. But since .x is 1, there is no contradiction. The way to reach a contradiction is first to assume that the current value of x is not 1. This calls for a proof by cases.

<sdvs.1> pp  
   object: 'dote  
[sd pre: (true) mod: (x) post: (.x = 1)]
<sdvs.1> pp
  object: eqdotx

  [sd pre: (formula(dotz))
   comod: (all)
   post: (.x = 1)]

<sdvs.1> prove
  state delta[]: eqdotx
  proof[]: <CR>

  open -- [sd pre: (formula(dotz))
           comod: (all)
           post: (.x = 1)]

  Complete the proof.

<sdvs.1.1> cases
  case predicate: .x = 1

  cases -- .x = 1

  open -- [sd pre: (.x = 1)
           comod: (all)
           post: (x\863 = 1)]

  close -- 0 steps/applications

  open -- [sd pre: (\(\neg .x = 1\))
           comod: (all)
           post: (x\863 = 1)]

  Complete the proof.

<sdvs.1.1.2.1> usable

  u(1) [sd pre: (.x = 1)
         comod: (all)
         post: (x\863 = 1)]

  u(2) [sd pre: (true) mod: (x) post: (.x = 1)]

  No usable quantified formulas.

<sdvs.1.1.2.1> apply
  sd/number[highest applicable/once]: <CR>

    inserting -- pcovering(all,x)

    apply -- [sd pre: (true)
               mod: (x)
               post: (.x = 1)]

  Warning: the modlist of the last applied state delta mentions places

62
(x) outside of the modlist of the state delta to be proven. The current proof can only be closed by contradiction.

The postcondition of the last applied state delta is inconsistent with the current state.

close -- 0 steps/applications

join -- [sd pre: (true)
           comod: (all)
           post: (x\(863 = 1))]

close -- 1 steps/applications

Now here is the example from Section 1.5. This shows how we may sometimes want to execute to achieve a false state in order to prove the inconsistency of a precondition.

<sdvs.1> ppsd
       state delta: covsd
       [sd pre: (covering(a,c,d))
        mod: (d)
        post: (#c = .c + 1)]

<sdvs.1> ppsd
       state delta: contrasd
       [sd pre: (formula(covsd),covering(a,c,d))
        mod: (all)
        post: (false)]

<sdvs.1> prove
       state delta[]: contrasd
       proof[]: <CR>

open -- [sd pre: (formula(covsd),covering(a,c,d))
        mod: (all)
        post: (false)]

Complete the proof.

<sdvs.1.1> usable<ds

u(1) [sd pre: (covering(a,c,d))
       mod: (d)
       post: (#c = .c + 1)]

<sdvs.1.1> apply
       sd/number[highest applicable/once]: <CR>

apply -- [sd pre: (covering(a,c,d))
          mod: (d)
          post: (#c = .c + 1)]
The postcondition of the last applied state delta is inconsistent with the current state.

close -- 0 steps/applications

The final example shows how to prove that if \( p \) can bring about false, then \( p \) holds in the current state.

\[
<\texttt{sdv1.1}> \quad \texttt{prove} \\
\texttt{state delta[]} : \texttt{negate3.sd} \\
\texttt{proof[]} : <CR>
\]

\[
\texttt{open -- [sd pre: (p) comod: (all) mod: (all) post: (false)]} \\
\texttt{post: (\neg p)}
\]

Complete the proof.

\[
<\texttt{sdv1.1.1}> \quad \texttt{cases} \\
\texttt{case predicate: p} \\
\texttt{cases -- p} \\
\texttt{open -- [sd pre: (p) comod: (all) post: (\neg p)]}
\]

\[
<\texttt{sdv1.1.1.1}> \quad \texttt{usable} \\
\texttt{u(1) [sd pre: (p) comod: (all) mod: (all) post: (false)]}
\]

No usable quantified formulas.

Now we would like to apply \( u(1) \) to bring about false and thereby negate the precondition.

\[
<\texttt{sdv1.1.1.1.1}> \quad \texttt{apply} \\
\texttt{sd/number[highest applicable/once]} : u \\
\texttt{number: 1}
\]

\[
\texttt{apply -- [sd pre: (p) comod: (all) mod: (all) post: (false)]}
\]

Warning: the modlist of the last applied state delta mentions places (all) outside of the modlist of the state delta to be proven. The current proof can only be closed by contradiction.
The postcondition of the last applied state delta is inconsistent with the current state.

close -- 0 steps/applications

open -- [sd pre: (¬p)
        comod: (all)
        post: (¬p)]

close -- 0 steps/applications

join -- [sd pre: (true) comod: (all) post: (¬p)]

close -- 1 steps/applications

2.7 STATIC PROOF

Now we describe the static proof language. These commands relate only to deductions within a given state. They do not open or apply state deltas, though they certainly can cause state deltas to close.

There are essentially three different ways in which the system can prove static assertions, i.e., that a static assertion A follows from the database D:

1. Automatically: The assertion follows from the database without any user interaction; the system "knows" it to be true.

2. Proof by "axiom" or "lemma" invocation: The assertion A follows by axiom or lemma invocation from database D if there is an axiom or lemma of the form "if C then P," where A is of the pattern P and C follows from D automatically. This is implemented so that the user need not, but may, specify the axiom or lemma to be used to verify A. If no name is specified, SDVS checks all the axioms or lemmas with the required pattern until it finds one with the provable precondition C. (Note that the appropriate list of axioms must be read before being used. The command help axioms gives the names of the files of axioms.) The database is then updated by adding A. The choice of the word "axiom" simply indicates that these rules are useful and basic enough to be built into SDVS. Of course, they are not independent or necessarily elegant. "Lemmas" are rules that the user may create and prove from the axioms and already proven lemmas.

3. Proof "by notice": In the case that A does not follow automatically from the database D or by axiom or lemma, one must construct a sequence A₁, ..., Aₙ such that A₁ follows automatically from D, Aᵢ follows automatically from D, A₁, ..., Aᵢ₋₁, and A is Aₙ. This is implemented by the notice command. Thus, notice Aᵢ checks to see whether Aᵢ follows (automatically) from the current database, and if so, updates the database by adding Aᵢ explicitly.

Chapter 9, on the simplifier, specifies how much about a given domain is fully automated knowledge (decision procedures) and how much is partially automated.
2.7.1 Axioms

The `provebyaxiom` command causes the system to try to prove the subsequent statement by invoking an axiom. An axiom is represented as a pattern of the form \((\text{imp} \ q \ p)\), or just \(p\) [equivalent to \((\text{imp} \ true \ p)\)], where \(q\) and \(p\) are predicate patterns that may contain free variables. A single instantiation of an axiom can be used to prove the truth of a formula that “matches” the consequent of the axiom “at the top level.” By “matches at the top level” we mean that the axiom consequent \((p)\) has the same syntactic form as the formula, except for free variables, which match arbitrary terms. If a free variable is duplicated, then the formula must have identical terms that match the multiple occurrences of the free variable.

Consider a formula \(F\) and an axiom \(A\) of the form \((\text{imp} \ q \ p)\). We say that “\(A\) proves \(F\)” if and only if \(p\) matches \(F\) at the top level, and \(q\), when instantiated, simplifies (in SDVS) to \(\text{TRUE}\). An axiom pattern is instantiated by the replacement of all of its free variables with matched terms taken from the formula. In mathematical notation, if \(p\) and \(q\) are of the form \(p(x_1, \ldots, x_n)\) and \(q(x_1, \ldots, x_n)\), then \(F\) has to be of the form \(p(t_1, \ldots, t_n)\) for terms \(t_i\), and \(q(t_1, \ldots, t_n)\) must simplify to \(\text{TRUE}\).

The syntax of the command is `provebyaxiom <expr> <axiom-name>`. If `<axiom-name>` is omitted, the system will search the list of all currently loaded axioms to try to find one with the right pattern. The system prompts for instantiations of variables that appear on the left side but not on the right side.

This next little example only illustrates what would happen if `test.ax` really were an axiom. You cannot duplicate this without using the `createaxiom` command, which we like to discourage.

```
<sdvs.1> pp
 object: axiom
 axiom name: test.ax

axiom test.ax (x,y,z):
 p(x,y) --> q(x,z)

<sdvs.1> prove
 state delta[]: test.sd
 proof[]: <CR>

open -- [sd pre: (p(1,2)) post: (q(1,3))]

Complete the proof.

<sdvs.1.1> provebyaxiom
 formula to prove: q(1, 3)
 axiom name[]: test.ax
 match for y: 2

provebyaxiom test.ax -- q(1,3)

close -- 1 steps/applications
```
The following is a list of the commands related to axioms that are illustrated in the example below:

<sdvs.1> read
  path name[testproofs/manual/ada/exchangetest.proofs]: axioms/arraycoverings.axioms

Definitions read from file "axioms/arraycoverings.axioms"
-- (disjoint\adjacent\slices\disjoint\slices, disjoint\elements, pcovering\slice, pcovering\element, pcovering\slice\slice, pcovering\slice\element, disjoint\slice\element)

<sdvs.2> axionnames
  symbol list[]: <CR>

Axiom names -- (pcovering\slice\element, pcovering\slice\slice, pcovering\element, pcovering\slice, disjoint\slice\element, disjoint\elements, disjoint\slices.
  disjoint\adjacent\slices, test.ax, test.3, test.2, test.1,
  stack.6, stack.5, stack.4, stack.3, stack.2, stack.1)

<sdvs.2> pp
  object: axioms
  axiom names[]: <CR>
  with symbols[]: <CR>

axiom pcovering\slice\element (a,i,m,n): (disjointarray(a) & m le i) & i le n 
  --> pcovering(a[m:n],a[i])

axiom pcovering\slice\slice (a,i,j,m,n): ((disjointarray(a) & m le i) & i le j) & 
  j le n --> pcovering(a[m:n],a[i:j])

axiom pcovering\element (a,i,j): disjointarray(a) --> pcovering(a,a[i])

axiom pcovering\slice (a,i,j): disjointarray(a) --> pcovering(a,a[i:j])

axiom disjoint\slice\element (a,i,m,n): disjointarray(a) & 
  (m gt i or i gt n) 
  --> alldisjoint(a[m:n],a[i])

axiom disjoint\elements (a,i,j): disjointarray(a) & i ne j 
  --> alldisjoint(a[i],a[j])

axiom disjoint\slices (a,i,j,k,l): disjointarray(a) & (j lt k or l lt i) 
  --> alldisjoint(a[i:j],a[k:l])

axiom disjoint\adjacent\slices (a,i,j,k,l): ((disjointarray(a) & j ge i) & 
  j + 1 = k) & 
  1 ge k --> covering(a[i:1],a[i:j], 
  a[k:1])

axiom test.ax (x,y,z): p(x,y) --> q(x,z)

axiom test.3 (x1,x2): unsrunch2(srunch(x1,x2)) = x2

67
axiom test.2 (x1,x2): unscrunch1(scrunch(x1,x2)) = x1
axiom test.1 (t): t = scrunch(unscrunch1(t),unscrunch2(t))

axiom stack.6 (i,s): stacksize(push(i,s)) = 1 + stacksize(s)
axiom stack.5 (): stacksize(()) = 0
axiom stack.4 (i,s): pop(push(i,s)) = s
axiom stack.3 (i,s): top(push(i,s)) = i
axiom stack.2 (s): () = s --> s = push(top(s),pop(s))
axiom stack.1 (i,s): () = push(i,s)

<sdvs.2> pp
    object: axioms
    axiom names[]: <CR>
    with symbols[]: pcovering

axiom pcovering\element (a,i,m,n): (disjointarray(a) & m le i) & i le n
    --> pcovering(a[m:n],a[i])

axiom pcovering\slice (a,i,j,m,n): ((disjointarray(a) & m le i) & i le j) &
    j le n --> pcovering(a[m:n],a[i:j])

axiom pcovering\slice (a,i,j): disjointarray(a) --> pcovering(a,a[i:j])

<sdvs.2> axiomnames
    symbol list[]: pcovering

Axiom names with symbol pcovering -- (pcovering\element, pcovering\slice, pcovering\element,pcovering\slice)

<sdvs.2> pp
    object: axioms
    axiom names[]: disjoint\elements

axiom disjoint\elements (a,i,j): disjointarray(a) & i = j
    --> alldisjoint(a[i],a[j])

Now assume that we know that a is a disjoint array. Then SDVS automatically knows (if the array solver is active) that a[i] and a[j] are alldisjoint for any two distinct integers i, j, whether or not they are in range (real indices).

<sdvs.2> simp
    expression: disjointarray(a) --> alldisjoint(a[i], a[j])
    true
Also,

\[
<\text{sdvs.2}> \quad \text{simp}
\]

expression: \( (\text{disjointarray}(a) \land i \neq j) \rightarrow \text{alldisjoint}(a[i], a[j]) \)

true

The axiom \text{disjoint\backslash elements} is used in the case that \(a[i]\) and \(a[j]\) are introduced before the system knows that \(i \neq j\). For example:

\[
<\text{sdvs.3}> \quad \text{prove}
\]

state delta[]: \text{disjoint3.sd}

proof[]: <\text{CR}>

open -- [sd pre: (\text{declare}(a,\text{type}(\text{array},1,2,\text{type}(\text{bitstring},8))))],

\[.a[i] = .a[j]\]

\[.a[j] = .a[i]\]

post: (false)]

Complete the proof.

\[
<\text{sdvs.3.1}> \quad \text{cases}
\]

case predicate: \(i = j\)

cases -- \(i = j\)

open -- [sd pre: (\(i = j\))]

comod: (all)

post: (false)]

\[
<\text{sdvs.3.1.1.1}> \quad \text{defer}
\]

numbers of goals[all]: <\text{CR}>

deferring all current goals

close -- 1 steps/applications

open -- [sd pre: (\(\neg(i = j)\))]

comod: (all)

post: (false)]

Complete the proof.

\[
<\text{sdvs.3.1.2.1}> \quad \text{simp}
\]

expression: \(\text{alldisjoint}(a[i], a[j])\)

\(\text{alldisjoint}(a[i], a[j])\)

\[
<\text{sdvs.3.1.2.1}> \quad \text{provebyaxiom}
\]

formula to prove: \(\text{alldisjoint}(a[i], a[j])\)

axiom name[]: \text{disjoint\backslash elements}

provebyaxiom disjoint\backslash elements -- \text{alldisjoint}(a[i], a[j])\)

69
2.7.2 Rewriting

The rewrite command is based on the mechanism for invoking axioms and applies to equality assertions that are provable by existing axioms. When the user wants to cause an equality between two terms to be asserted, but does not want (or need) to write the "simpler" term, he or she may simply type rewritebyaxiom x. The system then scans the axioms to find an equality axiom based on the pattern of x (on either side of the equality) and causes the equality to be asserted. Again, the name of the axiom desired to do the rewriting may be added to the end of the command.

Another method has been implemented for rewriting when not all the variables appear on one side of the equality to be rewritten. However, the general mechanism whereby SDVS prompts for unmatched variables (appearing on the left side of the implication but not the right side), as in the case of provebyaxiom, has not been implemented for rewritebyaxiom. For example, consider the axiom

\[ \text{ussub} \text{ussub} (x,h,i,j,k,l,m) : h = \min(i,k + \max(j,0)) \& \\
    m = \max(j,0) + \max(1,0) \implies x<i:j><k:l> = x<h:m> \]

As a matter of convenience, the user may want to say rewritebyaxiom x <i:j><k:n>. This is possible only if the precondition is true. However, since some variables in the precondition do not have matches in the input term, there is nothing to check. In this case, the system will substitute the correct values for h and m.

prove
state delta[]: rewrite.sd
proof[]: <CR>

open -- [sd pre: (h = \min(i,k + \max(j,0)) \& \\
    m = \max(j,0) + \max(n,0)) \\
    post: (x<i:j><k:n> = x<h:m>)]

Complete the proof.

rewritebyaxiom

rewrtebyaxiom ussuh\ussuh -- x<i:j><k:n> = x<\min(i,k + \max(j,0))
\[ \max(j, 0) + \max(n, 0) > \]

close -- 1 steps/applications

Note that if the bitstring solver were activated at level 3 or 4, then the above proof would have closed because the simplifier would know the truth of the implication to be proved (remember that solvers must be activated before \textit{init}).

\begin{verbatim}
<sdvs.1> activate
  solver: b3

Bitstring solver (level 3) activated.

<sdvs.3> prove
  state delta[]: rewrite.sd
  proof[]: <CR>

  open -- [sd pre: (h = \min(i, k + \max(j, 0)) \&
  m = \max(j, 0) + \max(n, 0))
     post: (x<i:j><k:n> = x<h:m>)]

  close -- 0 steps/applications
\end{verbatim}

2.7.3 Current Axiom List

The axioms are grouped according to the domain to which they apply. The intent is that each group be complete for its domain; i.e., every (universal) true statement about that domain can be proved from the axioms. In addition, there is a supply of less “basic” axioms that have been found to be useful in actual proofs. For example, in the bitstring domain there are axioms for distributing substring over concatenation, for compressing concatenation, and so on.

The user may peruse the list of axioms of the domain of interest to see if there is an axiom that will exactly solve a given problem, or one may use the command \textit{axiomnames} or \textit{pp} < CR > axioms with the symbol or symbols of interest. The “symbol” refers to the actual symbol in the axiom, and not in the name of the axiom. Also note that it is the alphabetic name, not the mathematical symbol, e.g. “\texttt{mult}” not “\*”. The simplifier names of the symbols used in the axioms can be obtained by the \textit{help symbols} query, which responds:

\begin{verbatim}
<<SDVS Help)>> Symbols used in Axioms and Lemmas  <<SDVS Help>>

constants false, true, emptyarray, 0, 1, emptyplace, everyplace, nullqueue
functions mkarray, val, inertial_update, transport_update, transaction, waveform, frontqueue, dequeue, enqueue, cdr, car, cons, diff,
\end{verbatim}

71
union, slice, range, origin, element, aconc, lh, usval, bs, bcons, ussub, usconc (0), useql (==), usneq (!=), uslss (uslt), usleq (usle), usgt (usge), usgeq (usge), usplus (++), usdifference (--), ustimes (**), usquotient (/), usremainder (usmod), usnot (!), usand (&), usor, usxor, usand, usnor, useqv, zeros, ones, lastone, parity, idiv, irem, icons, plus (+), minus (-), mul (*), exp (^), max, min, div (/), rem, mod, abs, vhdltime, timeglobal, timedelta, timeplus, tcval

predicates timege, timegt, timel, timelt, vhdltimep, sd-value, distinct, neq ('='), eq ('='), not (''), implies (-->), xor, or, and (&), cond, epred, esucc, ege, egt, ele, elt, usvalp, lhp, disjointarray, covering, pcovering, alldisjoint, ge, gt, le, lt, emptyqueue, preempt, waveform

If a particular claim proven by a sequence of steps involving axioms is to be used more than once, it may be advisable to make a lemma by createlemma, which then may be reused.

Below we list all SDVS axioms, grouped by filename. The following list is given as response to the help axioms query:

<sdvsa.1> help
   with[all]: axioms

<<<SDVS Help>> Axioms <<<SDVS Help>>>
axioms/abs.axioms integer absolute value
axioms/arraycoverings.axioms arrays and coverings
axioms/arrays.axioms 0-origin arrays (obsolete)
axioms/bitstring.axioms bitstrings
axioms/div.axioms integer division
axioms/exp.axioms integer exponentiation
axioms/idiv.axioms unsigned integer division
axioms/lastone.axioms the LAST.ONE bitstring function
axioms/log2.axioms integer log base 2
axioms/minmax.axioms integer min and max
axioms/mod.axioms integer modulus
axioms/mult.axioms integer multiplication
axioms/origin-arrays.axioms arbitrary-origin arrays
axioms/quant.axioms quantification
axioms/rem.axioms integer remainder
axioms/sqrt.axioms integer square root

Axioms for Integer Absolute value (contained in file axioms/abs.axioms):

abs\pos abs\pos (x): x \geq 0 \rightarrow \text{abs}(x) = x
abs\neg abs\neg (x): x < 0 \rightarrow \text{abs}(x) = -x

Axioms for Bitstrings (contained in file axioms/bitstring.axioms):

usval\lt\lh usval\lt\lh (b): 2 \cdot \text{lh}(b) \geq |b|
usub\lt0 usub\lt0 (x,i,j): 0 \geq j \rightarrow x\langle i:j \rangle = x\langle i:0 \rangle
usub\usdifference usub\usdifference (u,v,x,y,m,n): u = |x| \&
  (v = |y| \&
   (n = 0 \&
    2 \cdot (m + 1) \geq u - v))
\rightarrow |(x - y) \langle m:n \rangle| = u - v
usub\ustimes usub\ustimes (x,y,i,j): j = 0 \& 2 \cdot i \geq |x| \& |y|
\rightarrow |(x \times y) \langle i:j \rangle| = |x \times y|
usub\ustimes\0 usub\ustimes\0 (x,y,i,j): 2 \cdot j \geq |x| \& |y| \rightarrow |(x \times y) \langle i:j \rangle| = 0
usval\usub\0 usval\usub\0 (x,i,j): |x| = 0 \rightarrow |x\langle i:j \rangle| = 0
usor\usplus usor\usplus (x,y,z): \text{lh}(x) = 1 \& (\text{lh}(y) = 1 \& z = 1(1))
\rightarrow x \text{ usor } y = (z ++ (x ++ y)) \langle 1:1 \rangle
usor\0 usor\0 (x,y): |x| = 0 \& \text{lh}(y) \geq \text{lh}(x) \rightarrow x \text{ usor } y = y
equsvals equsvals (x,y,i,j): |x| = |y| \rightarrow |x\langle i:j \rangle| = |y\langle i:j \rangle|
usat\usat (x,y): x = 1(1) \& \text{lh}(y) = 1 \rightarrow x \& y = y
usub\usat usub\usat (x,y,i,j): (x \& y) \langle i:j \rangle = x\langle i:j \rangle \& y\langle i:j \rangle
usub\usxor usub\usxor (x,y,i,j): (x \usxor y) \langle i:j \rangle = x\langle i:j \rangle \usxor y\langle i:j \rangle
not0 not0 (x): \( \text{lh}(x) = 1 \land x = 0(1) \) --> \( x = 1(1) \)

not1 not1 (x): \( \text{lh}(x) = 1 \land x = 1(1) \) --> \( x = 0(1) \)

usror\commute usror\commute (x,y): \( x \text{ usor } y = y \text{ usor } x \)

commuteusand commuteusand (x,y): \( x \&\& y = y \&\& x \)

lh\ussub lh\ussub (b,i,j): \( \text{lh}(b_{<i:j>) = \max(0,} \\
\quad i + (\min(\text{lh}(b) - 1,i) - \max(0,j))) \)

lh\ones lh\ones (n): \( \text{lh}(\text{ones}(n)) = \max(n,0) \)

lh\zeros lh\zeros (n): \( \text{lh}(\text{zeros}(n)) = \max(n,0) \)

lh\usdifference lh\usdifference (11,12,x,y): \( 11 = \text{lh}(x) \land 12 = \text{lh}(y) \) --> \( \text{lh}(x \rightarrow y) = \max(11,12) + 1 \)

usval\usdifference usval\usdifference (u,v,x,y,l): \( u = |x| \land \\
\quad (v = |y| \land \\
\quad \quad (v \geq u \land \)
\quad \quad \quad l = \max(\text{lh}(x),\text{lh}(y)) + 1)) \)

usval\usdifference usval\usdifference (x,y,u,v): \( u = |x| \land (v = |y| \land u \text{ ge } v) \) --> \( |x \rightarrow y| = u - v \)

ussub\total ussub\total (j,k,b): \( j \geq \text{lh}(b) - 1 \land 0 \geq k \) --> \( b = b_{<j:k>} \)

ussub\gt lh ussub\gt lh (j,k,b): \( j \geq \text{lh}(b) - 1 \) --> \( b_{<j:k>} = b_{<\text{lh}(b) - 1:k>} \)

ussub\empty ussub\empty (x,i,j): \( i \lt j \) --> \( x_{<i:j>} = 0(0) \)

usval\ge usval\ge (b): \( |b| \geq 0 \)

usval\le usval\le (x,i,j,k,l): \( i \geq k \land 1 \geq j \) --> \( x_{<i:j>} \geq |x_{<k:l>}| \)

g e usval\usor ge usval\usor (b1,b2): \( |b1 \text{ usor } b2| \geq |b1| \)

Axioms for Integer Multiplication (contained in file axioms/mult.axioms):

multgt multgt (x,y,z): \( x \text{ gt } 0 \land y \text{ gt } z \lor 0 \text{ gt } x \land z \text{ gt } y \) --> \( x \star y \text{ gt } x \star z \)

multlt0 multlt0 (x,y): \( 0 \text{ gt } x \land y \text{ gt } 0 \lor 0 \text{ gt } x \land 0 \text{ gt } y \) --> \( 0 \text{ gt } x \star y \)

multgt0 multgt0 (x,y): \( 0 \text{ gt } x \land 0 \text{ gt } y \lor 0 \text{ gt } x \land y \text{ gt } 0 \) --> \( x \star y \text{ gt } 0 \)

multge multge (x,y,z): \( x \text{ ge } 0 \land y \text{ ge } z \lor 0 \text{ ge } x \land z \text{ ge } y \) --> \( x \star y \text{ ge } x \star z \)

multle0 multle0 (x,y): \( 0 \text{ ge } x \land y \text{ ge } 0 \lor 0 \text{ ge } x \land 0 \text{ ge } y \) --> \( 0 \text{ ge } x \star y \)

75
multge0 multge0 (x,y): 0 ge x & 0 ge y or x ge 0 & y ge 0 --> x * y ge 0

multsquares0 multsquares0 (x): x * x ge 0

multminus multminus (x,y): (-x) * y = -(x * y)

multdistributeminus multdistributeminus (x,y,z): x * (y - z) = x * y - x * z

multdistributeplus multdistributeplus (x,y,z): x * (y + z) = x * y + x * z

multassoc multassoc (x,y,z): x * (y * z) = (x * y) * z

multcommute multcommute (x,y): x * y = y * x

multi multi (x,y): y = 1 --> x * y = x

mult0 multi0 (x,y): y = 0 --> x * y = 0

Axioms for Integer Exponentiation (contained in file axioms/exp.axioms):

multeqsquare multeqsquare (a): a * a = a ^ 2

expdiv expdiv (a,k): k ge 1 --> a ^ (k - 1) = a ^ k / a

expmult expmult (a,k): k ge 1 --> a ^ k = a * a ^ (k - 1)

e5 e5 (x,a): a = 0 & x = 0 --> a ^ x = 0

e4 e4 (a,x): a = 0 & x = 0 --> x ^ a = 1

e3 e3 (a,b,c,x): c = a + b --> x ^ a * x ^ b = x ^ c

expabsval expabsval (a,b,c): ((b ge a & a ge -b) & b ge 0) & c ge 1
--> b ^ c ge a ^ c

e11 e11 (a,b,c): (c gt 0 & b ge 0) & a ge b --> a ^ c ge b ^ c

e8 e8 (a,x,y): (a ge 1 & x ge 1) & x ge y --> x ^ a ge y

e2 e2 (b,x,y): b ge 0 & y ge x --> b ^ y ge b ^ x

e10 e10 (a,b,c): (c gt 0 & b ge 0) & a gt b --> a ^ c gt b ^ c

e9 e9 (a,x,y): (a ge 2 & x ge 2) & x ge y --> x ^ a gt y

e7 e7 (b,x,y): b gt 1 & y gt x --> b ^ y gt b ^ x

e6 e6 (a,x): a gt 1 & 0 gt x --> 1 gt a ^ x

e1 e1 (b,x): b gt 0 & x ge 0 --> b ^ x gt 0

Axioms for Min-Max Functions (contained in file axioms/minmax.axioms):

76
maxge maxge (x,y): max(x,y) ge x

minle minle (x,y): x ge min(x,y)

lemin lemin (x,y,z): y ge x & z ge x --> min(y,z) ge x

gemax gemax (x,y,z): x ge y & x ge z --> x ge max(y,z)

gemin gemin (x,y,z): x ge y or x ge z --> x ge min(y,z)

glemax lemax (x,y,z): y ge x or z ge x --> max(y,z) ge x

mineq mineq (x,y): min(x,y) = x --> min(x,y) = y

maxeq maxeq (x,y): max(x,y) = x --> max(x,y) = y

commutemax commutemax (x,y): max(x,y) = max(y,x)

commutemin commutemin (x,y): min(x,y) = min(y,x)

Axioms for Coverings of Arrays (contained in file axioms/arraycoverings.axioms):

pcovering\slice\element pcovering\slice\element (a,i,m,n): (disjointarray(a) & m le i) & i le n
  --> pcovering(a[m:n],a[i])

pcovering\slice\slice pcovering\slice\slice (a,i,j,m,n): ((disjointarray(a) & m le i) & i le j) &
  j le n --> pcovering(a[m:n],a[i:j])

pcovering\element pcovering\element (a,i): disjointarray(a) --> pcovering(a,a[i])

pcovering\slice pcovering\slice (a,i,j): disjointarray(a) --> pcovering(a,a[i:j])

disjoint\slice\element disjoint\slice\element (a,i,m,n): disjointarray(a) & (m gt i or i gt n)
  --> alldisjoint(a[m:n],a[i])

disjoint\elements disjoint\elements (a,i,j): disjointarray(a) & i = j --> alldisjoint(a[i],
  a[j])

disjoint\slices disjoint\slices (a,i,j,k,l): disjointarray(a) & (j lt k or l lt i)
  --> alldisjoint(a[i:j],a[k:l])

disjoint\adjacent\slices disjoint\adjacent\slices (a,i,j,k,l): ((disjointarray(a) & j ge i) &
  j + 1 = k) &
  l ge k --> covering(a[i:1],a[i:j],a[k:1])

Axioms for Arrays with Arbitrary Origin (contained in file axioms/origin-arrays.axioms)

emptyslice emptyslice (v,i,j): i gt j --> v[i:j] = emptyarray

lowerslice lowerslice (v,i,j,lb): lb = origin(v) & origin(v) gt i --> v[i:j] = v[lb:j]

upperslice upperslice (v,i,j,ub): ub = (origin(v) + range(v)) - 1 & j ge ub
-- \( \forall [i:j] = \forall [i:ub] \)

totalslice totalslice \( (v, i, j) : \) origin\( (v) \) ge \( i \) \&
\( j \) ge (origin\( (v) \) + range\( (v) \)) - 1 \( \rightarrow \) \( v[i:j] = v \)

slicerange slicerange \( (v, i, j, r) : \) ((i ge origin\( (v) \) \& \( j \) ge i) \&
origin\( (v) \) + range\( (v) \) gt j) \&
\( r = (j - i) + 1 \rightarrow \) range\( (v[i:j]) = r \)

sliceorigin sliceorigin \( (v, i, j) : \) (i ge origin\( (v) \) \& \( j \) ge i) \&
origin\( (v) \) + range\( (v) \) gt j \( \rightarrow \) origin\( (v[i:j]) = i \)

adjacentslices adjacentslices \( (v, i, j, k, l) : \) (j ge i \& \( j = k + 1 \) \& \( l \) ge k
\( \rightarrow \) aconc\( (v[i:j], v[k:l]) = v[i:l] \)

elementofslice elementofslice \( (v, i, j, k, m) : \) (j ge i \& \( i \) ge origin\( (v) \) ) \&
m = (i + k) - origin\( (v) \) \( \rightarrow \) \( v[i:j][k] = v[m] \)

elementofaconc1 elementofaconc1 \( (v1, v2, j) : \) origin\( (v1) \) + range\( (v1) \) gt j
\( \rightarrow \) aconc\( (v1, v2)[j] = v1[j] \)

elementofaconc2 elementofaconc2 \( (v1, v2, j, k) : \) j ge origin\( (v1) \) + range\( (v1) \) \&
k = origin\( (v2) \) +
\( (j - (origin\( (v1) \) + range\( (v1) ))) \)
\( \rightarrow \) aconc\( (v1, v2)[j] = v2[k] \)

sliceofaconc sliceofaconc \( (v1, v2, i, j, i2, j2) : \) i2 = origin\( (v2) \) +
\( (i - (origin\( (v1) \) + range\( (v1) ))) \&
j2 = origin\( (v2) \) +
\( (j - (origin\( (v1) \) + range\( (v1) ))) \)
\( \rightarrow \) aconc\( (v1, v2)[i:j] = aconc\( (v1[i:j], v2[i2:j2]) \)

Axioms for Log Base 2 (contained in file axioms/log2.axioms):

log2expgt log2expgt \( (x, y) : \) x ge 1 \& \( y = log2(x) \rightarrow 2 \cdot (y + 1) \) gt x

log2exple log2exple \( (x, y) : \) x ge 1 \& \( y = log2(x) \rightarrow 2 \cdot y \) le x

log2def log2def \( (x, y) : \) (x ge 1 \& \( 2 \cdot y \) le x) \& \( 2 \cdot (y + 1) \) gt x \( \rightarrow \) \( y = log2(x) \)

Axioms for Integer Division (contained in file axioms/div.axioms):

divgt0 divgt0 \( (a, b) : \) (a ge 0 \& \( b \) gt 0) \& \( a \) ge \( b \) or
\( (0 \) ge \( a \) \& \( 0 \) \) gt \( b \) \& \( b \) ge \( a \) \( \rightarrow \) \( a / b \) gt 0

divlt0 divlt0 \( (a, b) : \) (a ge 0 \& \( 0 \) \) gt \( b \) \& \( b \) gt \( a \) or
\( (0 \) ge \( a \) \& \( b \) \) gt \( 0 \) \& \( a \) \) gt \( b \) \( \rightarrow \) \( 0 \) \( \) gt \( a / b \)

divlt divlt \( (a, b) : \) a \( \) gt \( 0 \) \& \( b \) \( \) gt \( 1 \) \( \rightarrow \) \( a \) \( \) gt \( a / b \)

diveq0 diveq0 \( (a, b) : \) (a = 0 \& \( b \) \( = \) \( 0 \) or \( a \) ge 0 \& \( b \) \) gt \( a \) \( \) or
\( 0 \) \( \) ge \( a \) \& \( a \) \) \( \) gt \( b \) \( \rightarrow \) \( a / b = 0 \)

78
diveq1 diveq1 (a, b): \ a = b \ & b =^2 0 \rightarrow a / b = 1

divneg1 divneg1 (a, b): \ (-a) / b = -(a / b)

divneg2 divneg2 (a, b): \ a / (-b) = -(a / b)

divmulteq divmulteq (a, b): \ a \ geq 1 \rightarrow (a \ & b) / a = b

divdist1 divdist1 (a, b, n): \ ((n \ \text{gt} 0 \ & a \ \text{ge} 0) \ & b \ \text{lt} n) \ & 0 \ \text{le} b
\rightarrow (n \ * a + b) / n = a

divby2repeat divby2repeat (a, j): \ j \ \text{ge} 0
\rightarrow (a / 2 ^ - j) / 2 = a / 2 ^ - (j + 1)

divge0 divge0 (a, b): \ a \ \text{ge} 0 \ & b \ \text{gt} 0 \ or \ 0 \ \text{ge} a \ & 0 \ \text{gt} b \rightarrow a / b \ \text{ge} 0

divle0 divle0 (a, b): \ a \ \text{ge} 0 \ & 0 \ \text{gt} b \ or \ 0 \ \text{ge} a \ & b \ \text{gt} 0 \rightarrow 0 \ \text{ge} a / b

divgmult divgmult (a, b): \ a \ \text{ge} 0 \ & b =^2 0 \rightarrow a \ \text{ge} (a / b) * b

divlemult divlemult (a, b): \ 0 \ \text{ge} a \ & b =^2 0 \rightarrow (a / b) * b \ \text{ge} a

divposlemax divposlemax (a, b): \ a \ \text{ge} 0 \ & b \ \text{gt} 0
\rightarrow (a / b) * b \ \text{ge} \ \text{max}(0, (a - b) + 1)

divposorder divposorder (a, b, c): \ a \ \text{ge} 1 \ & c \ \text{ge} b \rightarrow c / a \ \text{ge} b / a

Axioms for Modulo Arithmetic (contained in file axioms/mod.axioms):

modpos modpos (x, y): \ y \ \text{gt} 0 \rightarrow x \ \text{mod} y \ \text{ge} 0

modneg modneg (x, y): \ 0 \ \text{gt} y \rightarrow 0 \ \text{ge} x \ \text{mod} y

mod0 mod0 (x, y): \ x = 0 \rightarrow x \ \text{mod} y = 0

modmult modmult (x, y, k): \ x \ \text{mod} y = (x + k \ * y) \ \text{mod} y

modrem1 modrem1 (x, y): \ (y =^2 0 \ & (x / y) \ * y = x) \ or \ 0 \ \text{gt} x \ & 0 \ \text{gt} y
\rightarrow x \ \text{gt} 0 \ & y \ \text{gt} 0 \rightarrow x \ \text{mod} y = x \ \text{rem} y

modrem2 modrem2 (x, y): \ (y =^2 0 \ & (x / y) \ * y =^2 x) \ &
(0 \ \text{gt} x \ & y \ \text{gt} 0 \ or \ x \ \text{gt} 0 \ & 0 \ \text{gt} y)
\rightarrow \ \text{abs}(x \ \text{rem} y) = \ \text{abs}(y) - \ \text{abs}(x \ \text{mod} y)

Axioms for Remainder Function (contained in file axioms/rem.axioms):

remdef remdef (x, y): \ y =^2 0 \rightarrow x = (x / y) * y + x \ \text{rem} y

rem0 rem0 (x, y): \ x = 0 \rightarrow x \ \text{rem} y = 0

rempos rempos (x, y): \ x \ \text{gt} 0 \ & y =^2 0 \rightarrow \ \text{abs}(x \ \text{rem} y) = x \ \text{rem} y

79
remneg  remneg (x,y):  x \lt 0 & y = 0 \rightarrow abs(x \rem y) = -(x \rem y)

remneg1 remneg1 (x,y):  (-x) \rem y = -(x \rem y)

remneg2 remneg2 (x,y):  x \rem (-y) = x \rem y

remlb  remlb (x,y):  abs(x \rem y) \geq 0

remsub  remsub (x,y):  abs(x \rem y) \lt abs(y)

Axioms for Square Root (contained in file axioms/sqrt.axioms):

sqrt3  sqrt3 (y):  y \geq 0 \rightarrow y \geq sqrt(y) \times sqrt(y)

sqrt2  sqrt2 (y):  y = 0 \rightarrow sqrt(y) = 0

sqrt4  sqrt4 (y):  y \geq 0 \rightarrow (sqrt(y) + 1) \times (sqrt(y) + 1) \gt y

sqrt1  sqrt1 (y):  y \gt 0 \rightarrow sqrt(y) \gt 0

Axioms for "Last One" Function (contained on the file axioms/lastone.axioms):

last1\value2 last1\value2 (x):  |x| \gt 0 \rightarrow 1h(x) \gt |lastone(x)|

last1\value last1\value (x):  1h(x) \geq |lastone(x)|

last1\usval\ge last1\usval\ge (z,i):  x<i:i> = 1(1) \rightarrow i \geq |lastone(x)|

last1\valuedef last1\valuedef (x,m):  x<m:m> = 1(1) \& |x<m - 1:0>| = 0 \rightarrow |lastone(x)| = m

last1\lhdef last1\lhdef (x,k):  1h(x) \geq 2 \cdot k \& 2 \cdot (k + 1) \gt 1h(x)
\rightarrow 1h(lastone(x)) = k + 2

last1\def last1\def (1,x):  |x| \gt 0 & (x<0:0> = 0(1) \& 1h(x) - 1 = 1)
\rightarrow |lastone(x)| = |lastone(x<1:1>)| + 1

last1\usor last1\usor (x,y):  |lastone(x usor y)| = \min(|lastone(x)|,|lastone(y)|)

last1\firstone last1\firstone (ux,x):  |x| \gt 0 \& ux = |lastone(x)| \rightarrow x<ux:ux> = 1(1)

last1\usconc last1\usconc (x,y):  |x| \gt 0 \rightarrow |lastone(y @ x)| = |lastone(x)|

last1\zeros last1\zeros (x,1):  1 \geq 0 \& |lastone(x)| \gt 1 \rightarrow x<1:1> = 0(1)

last1\zeros0 last1\zeros0 (x,k):  |lastone(x)| = k + 1 \rightarrow |x<k:0>| = 0

last1\ussub last1\ussub (ux,x,1,n):  ux = |lastone(x)| \& (n = 1h(x) - 1 \& (n \geq 0 \& ux \geq n))
\rightarrow |lastone(x<1:n>)| = ux - n

80
Axioms for Experimental ("Unsigned") Integer Division (contained in file axioms/idiv.axioms):

\[
\text{idivdef idivdef}(a,x): \ a \ \text{gt} \ 0 \rightarrow x = \text{idiv}(x,a) \ast a + \text{irem}(x,a)
\]

\[
\text{idiv0 idiv0}(a,b): \ a \ \text{ge} \ 0 \ \& \ b \ \text{gt} \ a \rightarrow \text{idiv}(a,b) = 0
\]

\[
\text{iremdf iremdf}(q,r,y): \ r \ \text{ge} \ 0 \ \& \ y \ \text{gt} \ r \rightarrow r = \text{irem}(q \ast y + r,y)
\]

\[
\text{idiv\textbackslash order2 idiv\textbackslash order2}(a_1,a_2,b): \ a_1 \ \text{ge} \ 0 \ \& \ (a_2 \ \text{ge} \ a_1 \ \& \ b \ \text{gt} \ 0)
\rightarrow \text{idiv}(a_2,b) \ \text{ge} \ \text{idiv}(a_1,b)
\]

\[
\text{irem\textbackslash order2 irem\textbackslash order2}(a,b): \ a \ \text{ge} \ 0 \ \& \ b \ \text{gt} \ 0 \rightarrow b \ \text{ge} \ \text{irem}(a,b)
\]

\[
\text{irem\textbackslash order1 irem\textbackslash order1}(a,b): \ a \ \text{ge} \ 0 \ \& \ b \ \text{gt} \ 0 \rightarrow a \ \text{ge} \ \text{irem}(a,b)
\]

\[
\text{idiv\textbackslash order idiv\textbackslash order}(a,b): \ a \ \text{ge} \ 0 \ \& \ b \ \text{gt} \ 0 \rightarrow a \ \text{ge} \ \text{idiv}(a,b)
\]

The axioms for quantification are discussed in Chapter 6.

2.7.4 Lemmas

The following commands are covered in this section:

read
writelemmas (or write lemmas)
createlemma
provelemma
provebylemma

Lemmas enable the user to extend the static derivation capability of SDVS. A lemma is written in the same format as the system-supplied axioms. Note that quantifiers cannot appear in the statement of the lemma.

The command createlemma prompts the user for the various components. The resulting lemma may be stored through the command writelemmas or just the write command. A previously written lemma can be read in by the read command. A proof of the lemma (from axioms and previous lemmas) is initiated in the context of a larger proof by the command provelemma <lemma-name>. The lemma is used in the same way as an axiom is used (for pattern matching, prompting for unmatched variables, and so on) through the command provebylemma. Note that the provebylemma command only proves sentences that match the lemma’s conclusion, not the whole implication.

If an unproved lemma is used during a proof, a message to that effect, similar to the statement about deferred goals, will appear at the end of the proof (after quitting). All unexplained bitstring notation used below is described in Section 9.4.
<sdvs.1> createlemma
  name: createlemma
  pattern: (lh(x) = 1 & lh(y) = 1 & lh(z) = 1) -> (x & y & z) & (x & y & z) =
       (x ++ y + z)<1:1>
  free variables[]: x, y, z
  constant symbols[]: <CR>
  function symbols[]: <CR>
  predicate symbols[]: <CR>

Lemma 'createlemma' created.

The prompts for constant, function, and predicate symbols relate to only those (uninterpreted) symbols that SDVS does not already recognize.

<sdvs.1> pp
  object: lemmas
  lemma names[]: createlemma

unproved lemma createlemma (x,y,z): (lh(x) = 1 & lh(y) = 1) & lh(z) = 1
  --> (x & y & z) & (x & y & z) = (x ++ y & z)<1:1>

<sdvs.1> provelemma
  lemma name: createlemma
  proof[]: <CR>

open -- [sd pre: ((lh(x) = 1 & lh(y) = 1) & lh(z) = 1)
     post: ((x & y & z) & (x & y & z) = (x ++ y & z)<1:1>)]

<sdvs.1.1> mcases
  number of cases: 8
  1st case: x = 0(1) & y = 0(1) & z = 0(1)
  proof[]: <CR>
  2nd case: x = 0(1) & y = 0(1) & z = 1(1)
  proof[]: <CR>
  3rd case: x = 0(1) & y = 1(1) & z = 0(1)
  proof[]: <CR>
  4th case: x = 0(1) & y = 1(1) & z = 1(1)
  proof[]: <CR>
  5th case: x = 1(1) & y = 0(1) & z = 0(1)
  proof[]: <CR>
  6th case: x = 1(1) & y = 0(1) & z = 1(1)
  proof[]: <CR>
  7th case: x = 1(1) & y = 1(1) & z = 0(1)
  proof[]: <CR>
  8th case: x = 1(1) & y = 1(1) & z = 1(1)
  proof[]: <CR>

mcases -- 8

open -- [sd pre: ((x = 0(1) & y = 0(1)) & z = 0(1))
     comod: (all)
     post: ((x & y & z) & (x & y & z) = (x ++ y & z)
= ((x ++ y) ++ z<1:1>)]

close -- 0 steps/applications

open -- [sd pre: ((x = 0(1) & y = 0(1)) & z = 1(1))
     comod: (all)
     post: ((x && y usor x && z) usor y && z
            = ((x ++ y) ++ z<1:1>)]

close -- 0 steps/applications

open -- [sd pre: ((x = 0(1) & y = 1(1)) & z = 0(1))
     comod: (all)
     post: ((x && y usor x && z) usor y && z
            = ((x ++ y) ++ z<1:1>)]

close -- 0 steps/applications

open -- [sd pre: ((x = 1(1) & y = 0(1)) & z = 1(1))
     comod: (all)
     post: ((x && y usor x && z) usor y && z
            = ((x ++ y) ++ z<1:1>)]

close -- 0 steps/applications

open -- [sd pre: ((x = 1(1) & y = 0(1)) & z = 0(1))
     comod: (all)
     post: ((x && y usor x && z) usor y && z
            = ((x ++ y) ++ z<1:1>)]

close -- 0 steps/applications

open -- [sd pre: ((x = 1(1) & y = 1(1)) & z = 0(1))
     comod: (all)
     post: ((x && y usor x && z) usor y && z
            = ((x ++ y) ++ z<1:1>)]

close -- 0 steps/applications

open -- [sd pre: ((x = 1(1) & y = 1(1)) & z = 1(1))
     comod: (all)
     post: ((x && y usor x && z) usor y && z
            = ((x ++ y) ++ z<1:1>)]

close -- 0 steps/applications

open -- [sd pre: ((x = 1(1) & y = 1(1)) & z = 1(1))
     comod: (all)
     post: ((x && y usor x && z) usor y && z
            = ((x ++ y) ++ z<1:1>)]

close -- 0 steps/applications

open -- [sd pre: ((x = 0(1) & y = 0(1)) & z = 0(1) or
     (x = 0(1) & y = 0(1)) & z = 1(1) or

join -- [sd pre: ((x = 0(1) & y = 0(1)) & z = 0(1) or
     (x = 0(1) & y = 0(1)) & z = 1(1) or
(x = 0(1) & y = 1(1)) & z = 0(0) or
(x = 0(1) & y = 1(1)) & z = 1(0) or
(x = 1(1) & y = 0(1)) & z = 0(0) or
(x = 1(1) & y = 0(1)) & z = 1(0) or
(x = 1(1) & y = 1(1)) & z = 0(0) or
(x = 1(1) & y = 1(1)) & z = 1(0)
comod: (all)
post: ((x && y || x && z) || y && z
  = (((x ++ y) || z)<1:1>)

close -- 1 steps/applications

<sdvs.1> dump-proof
  name: carryproof

Current proof dumped to carryproof.

<sdvs.1> write
  path name[axioms/coverings.axioms]: lemmas/lemmas.lemmas
  state delta names[ ]: <CR>
  proof names[ ]: carryproof
  axiom names[ ]: <CR>
  lemma names[ ]: carrylemma
  formula names[ ]: <CR>
  formulas names[ ]: <CR>
  macro names[ ]: <CR>
  datatype names[ ]: <CR>
  adalemma names[ ]: <CR>
  vhdllemma names[ ]: <CR>

Do you wish to append to the already existing file? y

Append to file "lemmas/lemmas.lemmas" -- (carryproof,carrylemma)

<sdvs.1> read
  path name[lemmas/lemmas.lemmas]: lemmas/lemmas.lemmas

Definitions read from file "lemmas/lemmas.lemmas"
-- (carryproof,carrylemma,carryproof,carrylemma,carryproof,carrylemma,
carryproof,carrylemma,carryproof,carrylemma,carryproof,carrylemma,
carryproof,carrylemma,carryproof,carrylemma,carryproof,carrylemma,
carryproof,carrylemma,carryproof,carrylemma,carryproof,carrylemma,
carryproof,carrylemma,carryproof,carrylemma,carryproof,carrylemma,
carryproof,carrylemma,carryproof,carrylemma,carryproof,carrylemma,
carryproof,carrylemma,carryproof,carrylemma,carryproof,carrylemma,
carryproof,carrylemma,carryproof,carrylemma,carryproof,carrylemma)

<sdvs.2> pp
  object: lemmas
  lemma names[ ]: carrylemma

lemma carrylemma (x,y,z): (lh(x) = 1 & lh(y) = 1) & lh(z) = 1
  --> (x && y || x && z) || y && z
  = (((x ++ y) || z)<1:1>

84
Actually, one does not have to store the proof explicitly; it is stored automatically with the proven lemma. It can be viewed as follows:

<sdvs.2> pp
   object: lemmaproof
   lemma name: carrylemma

(provelemma carrylemma
  proof:
    mcases
      (case: (x = 0(1) & y = 0(1)) & z = 0(1)
        proof:
        case: (x = 0(1) & y = 0(1)) & z = 1(1)
          proof:
          case: (x = 0(1) & y = 1(1)) & z = 0(1)
            proof:
            case: (x = 0(1) & y = 1(1)) & z = 1(1)
              proof:
              case: (x = 1(1) & y = 0(1)) & z = 0(1)
                proof:
                case: (x = 1(1) & y = 1(1)) & z = 1(1)
                  proof:
                  case: (x = 1(1) & y = 1(1)) & z = 1(1)
                    proof: ))

Now we shall use carrylemma in proving carriesd:

<sdvs.1> ppsd
   state delta: carriesd

[sd pre: (declare(x,type(bitstring,1)),declare(y,type(bitstring,1)),
  declare(z,type(bitstring,1)),covering(all,a,b,x,y,z),
  [sd pre: (true)
    mod: (a)
      post: (#a = (.x & & .y usor .x & & .z) usor .y & & .z)),
  [sd pre: (true)
    mod: (b)
      post: (#b = ((.x ++ .y) ++ .z)<1:1>))]
mod: (a,b)
post: (#a = #b)]

<sdvs.1> init
   proof name[]: <CR>

State Delta Verification System, Version 12

Restricted to authorized users only.
proof[]:  <CR>

open -- [sd pre: (declare(x.type(bitstring,1))),
          declare(y.type(bitstring,1))),
          declare(z.type(bitstring,1)),covering(all,a,b,z,y,z),
          [sd pre: (true)
           mod: (a)
           post: ($a = (x &+ y user .x &+ .z) user .y &+ .z)],
          [sd pre: (true)
           mod: (b)
           post: ($b = ((x ++ .y) ++ .z}<1:1>))]
          mod: (a,b)
          post: ($a = $b)]

Complete the proof.

<sdvs.1.1> whynotgoal
simplify?[no]:  <CR>

g(1) $a = $b

<sdvs.1.1> usablesds

u(1) [sd pre: (true)
      mod: (b)
      post: ($b = ((.x ++ .y) ++ .z)<1:1>)]

u(2) [sd pre: (true)
      mod: (a)
      post: ($a = (.x &+ .y user .x &+ .z) user .y &+ .z)]

<sdvs.1.1> apply
sd/number[highest applicable/once]: u
    number:  1

apply -- [sd pre: (true)
      mod: (b)
      post: ($b = ((.x ++ .y) ++ .z)<1:1>)]

<sdvs.1.2> apply
sd/number[highest applicable/once]: u
    number:  2

apply -- [sd pre: (true)
      mod: (a)
      post: ($a = (.x &+ .y user .x &+ .z) user .y &+ .z)]

<sdvs.1.3> whynotgoal
simplify?[no]:  <CR>

g(1) $a = $b

<sdvs.1.3> provedlemma
formula to prove:  {.x &+ .y user .x &+ .z} user .y &+ .z = (.x ++ .y ++ .z)<1:1>

86
lemma name: carrylemma

provelemma carrylemma -- !(\x \&\& .y usor .x \&\& .z) usor
.y \&\& .z = (!(\x ++ .y) ++ .z)
<1:1>

close -- 3 steps/applications

2.7.5 Notice

The user may need to create a sequence of notices to lead the system from its perception of the current state to the realization of the truth of some other facts about the current state. The system must be able to verify automatically the current fact being noticed on the basis of the facts that were previously noticed or proved by axiom or lemma.

A command similar to notice is consider. An essential role in the automatic deduction mechanism of SDVS is played by the demons, that is, by rules triggered by patterns of terms that cause certain statements to be inserted into the database. Consider allows the user the possibility of supplying the system with those key terms that will cause the appropriate demons to “fire” and thus automatically carry out part of the proof. Note that “consider t” has the same effect as “notice t“.

As an example of the use of consider, suppose the user knows that for some 0 ≤ i ≤ 8, a<9 : i>=b<9 - i : 0> and wants to prove that a<9 : 8> = b<9 - i : 8 - i>. The system knows that a<9 : 8> = a<9 : i><9 - i : 8 - i> when the solver b3 is in force (see Section 2.7.6), because of the equation

a<i : j><k : m> = a<min(i, k + max(j, 0)) : max(j, 0) + max(m, 0)>

However, this demon will not fire unless the term a<9 : i><9 - i : 8 - i>. is introduced explicitly. This is accomplished by consider. Then a<9 : 8> = a<9 : i><9 - i : 8 - i> = b<9 - i : 0><9 - i : 8 - i> and the demon fires again, giving b<9 - i : 8 - i>.

Below is a transcript illustrating the above argument:

<sdvs.1> prove
   state delta[]: notice.sd
   proof[]: <CR>

open -- [sd pre: ((0 le i & i le 8) & a<9:i> = b<9 - i:0>)]
   post: (a<9:8> = b<9 - i:8 - i>)]

Complete the proof.

<sdvs.1.1> consider
   term: a<9:i><9 - i:8 - i>

   consider -- a<9:i><9 - i:8 - i>

close -- 1 steps/applications
One could have also used \textit{notice}:

\begin{verbatim}
<advs.1> prove
    state delta[]: notice.sd
    proof[]: <CR>

open -- [sd pre: ((0 le i & i le 8) & a<9:i> = b<9 - i:0>)
    post: (a<9:8> = b<9 - i:8 - i>)]

Complete the proof.

<advs.1.1> notice
    term: a<9:8> = a<9:i><9 - i:8 - i>

notice -- a<9:8> = a<9:i><9 - i:8 - i>

close -- 1 steps/applications
\end{verbatim}

2.7.6 Solvers

The commands \textit{activate} and \textit{deactivate} control the solvers described in the simplifier. If a given solver is activated, the embedded knowledge for that domain in the simplifier is used. The system must be reinitialized after a solver is activated. If a given solver is deactivated, all function symbols in its domain will be treated as uninterpreted. The solvers e and p cannot be deactivated.

The solvers can be tested by typing \texttt{eval (test-simp-solvers)}.

Below is the current list of solvers with their default settings:

\begin{verbatim}
<advs.1.4> solvers

Quantification solver inactive.

Simplifier Solvers:
  a arrays                (activated)
  b bitstrings           (activated, level 3)
  c coverings            (activated)
  d integer division     (deactivated)
  e equality             (activated)
  enum enumerations      (activated)
  k extra boolean operators (activated)
  l lists                (deactivated)
  m associative/commutative multiplication (deactivated)
  p propositional logic  (activated)
  q queues               (deactivated)
  t vhdl time            (activated)
  w vhdl waveforms       (activated)
  z integer arithmetic   (activated)
\end{verbatim}
The query solvers will produce the above table with the settings in force at the time of the query.

There are four varieties of bitstring solver: b, b2, b3, and b4. For more information about bitstring arithmetic, see Section 9.4. The solver b is the basic bitstring solver. When the query solvers shows b activated, it means that only the basic bitstring solver is activated. The other bitstring solvers are activated and displayed as follows:

The solver b2 contains the capability to do some derivations involving bitstrings with non-constant substring selectors.

The solver b3 incorporates six capabilities not included in b:

1. \((x@y)_{i:j} = x_{i} \cdot \text{lh}(y) \cdot j \cdot \text{lh}(y) \cdot y_{i:j} \)
2. \(x_{i:j} \cdot \text{lh}(k) \cdot k_{i:j}\) is simplified to \(x_{m:n}\) under certain conditions
3. \(10(k)_{i:j} = 0\)
4. \(x_{i:j} \cdot \text{lh}(k) \cdot k_{i:j}\) is simplified to \(x_{m:n}\) under certain conditions
5. \(|(x + y)_{i:j}|\) is simplified to \(|x_{m:n} + y_{m:n}|\) under certain conditions
6. \(|(x \cdot y)_{i:j}|\) is simplified to 0 under certain conditions

The solver b4 combines b2 and b3.

For example,

\[
<\text{sdvs.1}> \text{ activate } \\
\quad \text{ solver: b4 } \\
\]

Bitstring solver (level 4) activated.

\[
<\text{sdvs.3}> \text{ simp } \\
\quad \text{ expression: } i \cdot j \rightarrow b_{i:j} = 0(0) \\
\]

true

If the high substring selector is \(\text{lh}(b) - 1\) and the low selector is 0, then the whole expression just simps to b:

\[
<\text{sdvs.3}> \text{ simp } \\
\quad \text{ expression: } i = 0 \& j = \text{lh}(b) - 1 \rightarrow b_{j:i} = b \\
\]

true
2.8 MANIPULATING THE PROOF

This section describes the two means currently available for interactively manipulating the proof structure: deferring and popping. A goal for some future version of SDVS is to allow the user to edit the proof essentially at will, moving around the proof tree, proving, deferring, and so on. Of course, these actions would be checked in such a way that the finished proof structure would indeed be a correct proof, or at least that the holes in the proof would be correctly identified.

Defer is used to postpone proving the current goal or goals and move on to the next. Pop is used to back up to some previous proof step. Currently, the “popped” proof steps are not saved.

2.8.1 Defer

The purpose of the defer command is to allow the user to postpone proving a given goal or state delta. The deferred goal or state delta is asserted or added to usablesds, as if it had been proved, and the proof may be continued interactively or in batch mode by the continue command. After deferring a certain goal, the user may continue with proving and deferring until the opened state delta is proved. He may quit, thus storing the (partial) proof. Now when the stored proof is rerun, there will be stop commands in the proof in place of defer. The user will be able to complete the deferred sections, either by typing interactively, or by using interpret. Then the proof will continue as stored. The final proof will be updated (or completed) when the goal is reached. The user can also step through a proof, any number of steps at a time. If the proof is stopped, either because of a defer or an explicit stop, the user may simply type step. In order to step through a whole proof, the user must insert a “stop” at the beginning and then “step.”

We illustrate this with a reproof of the induct example from Section 2.1.

<sdvs.1> ppsd
state delta: sinduct

[sd pre: (covering(all,a,b)),
  [sd pre: (true)
    mod: (a)
    post: (#a gt .a)]
  mod: (a)
  post: (#a gt 1000)]

<sdvs.1> init
proof name[]: <CR>

State Delta Verification System, Version 12

Restricted to authorized users only.
prove
state delta[]:  sduct
proof[]:  <CR>

open -- [sd pre: (covering(all,a,b)),
    [sd pre: (true)
    mod: (a)
    post: (#a gt .a)])
    mod: (a)
    post: (#a gt 1000)]

Complete the proof.

let
new variable:  a
value:  .a

let -- aa = .a

cases
    cases -- aa le 1000

    open -- [sd pre: (aa le 1000)
        comod: (all)
        mod: (a)
        post: (#a gt 1000)]

defer
numbers of goals[all]:  <CR>

deferring all current goals

close -- 1 steps/applications

open -- [sd pre: (\(aa le 1000\))
    comod: (all)
    mod: (a)
    post: (#a gt 1000)]

close -- 0 steps/applications

join -- [sd pre: (true)
    comod: (all)
    mod: (a)
    post: (#a gt 1000)]

close -- 2 steps/applications

quit

Proof session closed with one deferred goal.
The proof for this session is in 'sdvsproof'.
State Delta Verification System, Version 12

Restricted to authorized users only.

<sdvs.1> pp
    object:  sdusproof

proof sdusproof:

prove sinduct
    proof:
        (let aa = .a,
            cases aa le 1000
            then proof: stop All current goals must be proved here.
            else proof: )

<sdvs.1> init
    proof name[]:  <CR>

State Delta Verification System, Version 12

Restricted to authorized users only.

<sdvs.1> interpret
    proof name:  sdusproof

open -- [sd pre: (covering(all,a,b),
    [sd pre: (true)
    mod: (a)
    post: (#a gt .a)])
    mod: (a)
    post: (#a gt 1000)]

let -- aa = .a

cases -- aa le 1000

open -- [sd pre: (aa le 1000)
    comod: (all)
    mod: (a)
    post: (#a gt 1000)]

All current goals must be proved here.

<sdvs.1.2.1.1> induct
    induction expression:  counter
    from:  0
    to:  1001 - aa
    invariant list[]:  counter le .a - aa
    comodification list[]:  <CR>
    modification list[]:  a
    base proof[]:  <CR>
    step proof[]:  <CR>

    induction -- counter from 0 to 1001 - aa
open -- [sd pre: (counter = 0)]
comod: (all)
post: (counter le .a - aa)]

close -- 0 steps/applications

open -- [sd pre: (counter ge 0,counter lt 1001 - aa,
       counter le .a - aa)
       mod: (a)
       post: (counter + 1 le #a - aa)]

Complete the proof.

<sdvs.1.2.1.2.1> apply
sd/number[highest applicable/once]: <CR>

   apply -- [sd pre: (true)
      mod: (a)
      post: (#a gt .a)]

   close -- 1 steps/applications

join induction cases -- [sd pre: (0 le 1001 - aa)
       comod: (all)
       mod: (a)
       post: (1001 - aa le #a - aa)]

   close -- 1 steps/applications

open -- [sd pre: (¬(aa le 1000))
       comod: (all)
       mod: (a)
       post: (#a gt 1000)]

   close -- 0 steps/applications

join -- [sd pre: (true)
       comod: (all)
       mod: (a)
       post: (#a gt 1000)]

   close -- 2 steps/applications

2.8.2 Pop

Pop returns the user to a previous proof state. Let us re-examine the sinduct example. This time pretend we forgot to do the let before the induction.

<sdvs.1> prove
state delta[]: sinduct
proof[]: <CR>
open -- [sd pre: (covering(all,a,b)).
    [sd pre: (true)
     mod: (a)
     post: (#a gt .a))]
    mod: (a)
    post: (#a gt 1000)]

Complete the proof.

<sdvs.1.1> cases
    case predicate: .a gt 1000

    cases -- .a gt 1000

    open -- [sd pre: (.a gt 1000)
             comod: (all)
             mod: (a)
             post: (#a gt 1000)]

    close -- 0 steps/applications

    open -- [sd pre: "(.a gt 1000)
             comod: (all)
             mod: (a)
             post: (#a gt 1000)]

Complete the proof.

<sdvs.1.1.2.1> ps

<< initial state >>
proof in progress of sinduct <2>
    case analysis in progress on: .a gt 1000 or "(.a gt 1000) <1>
    1st case: complete
    2nd case: in progress
    --> you are here <<-

<sdvs.1.1.2.1> pop
    number of levels[1]: <CR>

One level popped.

<sdvs.1.1> ps

<< initial state >>
proof in progress of sinduct <1>
    --> you are here <<-

<sdvs.1.1> let
    new variable: aa
    value: .a

    let -- aa = .a
<sdvs.1.2> cases
  case predicate: aa gt 1000

cases -- aa gt 1000

  open -- [sd pre: (aa gt 1000)
            comod: (all)
            mod: (a)
            post: (#a gt 1000)]

  close -- 0 steps/applications

  open -- [sd pre: (~(aa gt 1000))
            comod: (all)
            mod: (a)
            post: (#a gt 1000)]

  Complete the proof.

<sdvs.1.2.2.1> ps

<< initial state >>
proof in progress of induct <3>
  let aa = .a <2>
  case analysis in progress on: aa gt 1000 or ~(aa gt 1000) <1>
    1st case: complete
    2nd case: in progress
    --> you are here <--

2.8.3 Stop and Continue

The stop command is a batch command that causes the batch proof to halt gracefully. It is inserted automatically into the SDVS-constructed proof (sdvproof) by the defer command. It may also be inserted "by hand."

Continue causes the execution of the proof to continue from the next batch proof command. Note that if a subproof of a state delta within a larger proof closes before the end of the list of proof commands for that subproof (appearing on the batch proof being run), then SDVS will skip the remaining proof commands for that closed state delta, and go on to the next proof command at the higher level.

2.9 MISCELLANEOUS

2.9.1 Flags

There are currently twenty-one flags that allow the user to "fine-tune" the operation of SDVS, in accordance with the needs of the specific verification problem at hand. The default settings are as follows:
<sdvs.1> flags

abbreviationlevel = none
acceptfileproofs = on
autoclose = on
checkexistence = off
checksyntax = on
displaymads = on
ekltraceflag = off
enumerate = off
invariance = off
optimizeassignments = simp
ppdottednames = off
pplinewidth = 75
reportpropagations = on
showstats = off
showstep# = off
strongcoverings = off
stronglytyped = off
traceflag = on
uniquelevel = 1
usedots = off
weaknext_tr = off

Type 'help flags' for a description.

Flag settings are changed with the command setflag.

In addition to the information that can be obtained from the help flags command (see Section 1.10), we highlight several of the more common flags and their uses.

We have provided a flag acceptfileproofs, which, when off, essentially causes previous proofs stored in files to be ignored, and requires any proof to proceed "from scratch." This way the user is protected, if so desired, from his or her own editing mistakes.

The autoclose flag determines whether SDVS will try to "close" the current proof after every user command. It is handy sometimes to have autoclose on if the user is in user-interaction mode and building a proof on-line. However, it is more time-consuming than simply waiting until you think the proof should close, and then simply typing close.

The invariance flag determines whether state deltas will have an inv field or not. This flag is described in detail in Chapter 8.

The flag optimizeassignments regulates the method by which new values for contents of places are stored. There are three settings: OFF, ON, and SIMP, with SIMP being the system default. When this flag is in any state but OFF, the values assigned to changing places are optimized to create fewer simplifier database entries. This may result in decreased proof execution speed. Consider the statement

\[ #x = .x + 1 \]
where initially \( x = 1 \). We will consider the situation where \( \#x = x + 1 \) is twice evaluated under the three settings of `optimizeassignments`. First, if the flag is `OFF`, a new value \( x_2 \) will be created, \( x \) will be associated with \( x_2 \), and the equality \( x_2 = x_1 + 1 \) will be generated. Then a value \( x_3 \) will be created, \( x \) will be associated with \( x_3 \), and the equality \( x_3 = x_2 + 1 \) will be generated.

Next, under the setting `ON`, \( x_1 + 1 \) will be associated with \( x \), then \( (x_1 + 1) + 1 \) will be associated with \( x \).

Finally, under the setting `SIMP`, \( x_1 + 1 \) will be associated with \( x \) (as in the `ON` case), then \( x_1 + 2 \) will be associated with \( x \).

The `strongcoverings` flag strengthens the semantics of `coverings` so that an actual (as opposed to potential) change in a subplace implies an actual change in a superplace. Without `strongcoverings` on, an actual (as well as potential) change in a subplace implies only a potential change in a superplace.

The `usedots` flag is new in SDVS 12. It is concerned with proving universal tautologies automatically without the quantification solver being on. Previously, occurrences of dotted subformulas inside of the formula matrix (the “body” of the formula) were evaluated and taken into account in trying to prove the formula. However, often evaluating these dotted terms is unnecessary for the proof to succeed, and even more usually, SDVS attempts to simplify formulas with dotted subformulas at inopportune times. Now the default (`usedots` `NIL`) causes the dotted terms essentially to be substituted away and the proof of that universal sentence stands or falls on more general grounds. If the user `does` want dotted terms to be taken into account, setting `usedots` to `T` causes the previous (longer) method of proof to be used.

Much time is saved with the `usedots` flag turned off. For example, the testproof of `mergesort` has two places where dots are needed. With the flag off except surrounding those two places, the execution time is reduced from 7 minutes to 3 minutes. One such fragment is the given in the following trace:

```
open -- [sd pre: (n = 1)]
 comod: (all)
 post: (forall k forall j (((0 lt j & j le k) & 0 lt k) &
 k le n --> .b[j] le .b[k])]]

setflag usedots -- on

close -- 1 steps/applications

open -- [sd pre: (n ge 1, n lt range(b),]
 forall k forall j (((0 lt j & j le k) & 0 lt k) &
 k le n --> .b[j] le .b[k]))
 comod: (all)
 post: (forall k forall j (((0 lt j & j le k) & 0 lt k) &
```
\[ k \leq n + 1 \rightarrow \#b[j] \leq \#b[k] \]

setflag usedots -- off

which expands the following part of the proof:

induct on: \ n
from: \ 1
to: \ range(a)

invariants: (forall k forall j (((0 lt j & j le k) & 0 lt k) &
\ k le n \rightarrow .a[j] le .a[k]))

comodlist: (all)
modlist:

base proof: (setflag usedots on, close)

step proof:

(setflag usedots off,
provebyaxiom alldisjoint(a[n],a[(n + 1)])

The \textit{weaknext} tr flag causes the Ada and VHDL language translators to create state deltas with \#all = .all as an invariant. This means that execution essentially takes place in discrete steps, thus guaranteeing that no actual changes take place during state transitions, but only at their termination.

\subsection*{2.9.2 Queries}

Queries are proof commands that do not change the current state, but only give answers to users' questions. Most of these commands have been described in detail and illustrated with examples in other sections (for example, in the section on axioms). In this section we discuss the following queries:

\textit{date, lastappliedszd, next, nsd, placevalue, ppeq, ppl, proofcommands, range, sdtobeproven, whynotapply, and whynotgoal}.

Example:

\begin{verbatim}
<sdvs.1.2.2.1> date

   date -- 9/16/93 13:36:57 Elapsed time is 1 seconds.
\end{verbatim}

When put at the beginning and end of a batch proof, \textit{date} serves as a timer.

\textit{Next} gives the next (n) proof steps. This is useful if a batch proof has halted either because of a command error or an explicit \textit{stop}.
proof proof2:
  (notice x = x,
   stop,
   notice y = y)

State Delta Verification System, Version 12
Restricted to authorized users only.

notice -- x = x
Proof stopped by 'stop' command.

number of steps[1]: <CR>
(notice y = y)

Ppl with an argument (place) prints three things: the place, its value (contents), if known, and any declarations. Ppl without an argument prints the values and declarations of all places. Placevalue just prints the contents.
open -- [sd pre: (declare(x,type(bitstring,1))),
       declare(y,type(bitstring,1))),
       declare(z,type(bitstring,1))),covering(all,a,b,x,y,z),
       [sd pre: (true)
        mod: (a)
        post: (#a = (.x && .y usor .x && .z) usor
                .y && .z)],
       [sd pre: (true)
        mod: (b)
        post: (#b = ((.x ++ .y) ++ .z)<1:1>))]
       mod: (a,b)
       post: (#a = #b)]

Complete the proof.

<sdvs.1.1> ppl
        places[all]: <CR>

  b  b\950
  a  a\949
z  UNDEFINED  declare(z,type(bitstring,1))
  lh(*) = 1
y  UNDEFINED  declare(y,type(bitstring,1))
  lh(*) = 1
x  UNDEFINED  declare(x,type(bitstring,1))
  lh(*) = 1

<sdvs.1.1> apply
        sd/number[highest applicable/once]: <CR>

apply -- [sd pre: (true)
        mod: (b)
        post: (#b = ((.x ++ .y) ++ .z)<1:1>)]

<sdvs.1.2> ppl
        places[all]: <CR>

eyeryplace  UNDEFINED
  b  ((x\951 ++ y\952) ++ z\953)<1:1>
  a  a\949
z  z\953  declare(z,type(bitstring,1))
  lh(*) = 1
y  y\952  declare(y,type(bitstring,1))
  lh(*) = 1
x  x\951  declare(x,type(bitstring,1))
  lh(*) = 1

Notice above that when the value is unknown, a new name is generated, e.g. b\22. (In certain cases the words “value unknown” will appear.)

Proofcommands gives the list of proof commands appearing in a given proof. It is useful, for example, in determining whether there is a defer in a proof.
<sdvs.1> pp

object: mproof

proof mproof:

prove [sd pre: (sd pre: (p1 & p2)
mod: (all)
post: (q1)),
[sd pre: (p1 & ¬p2)
mod: (all)
post: (q2)],
[sd pre: (¬p1 & p2)
mod: (all)
post: (q2)],
[sd pre: (¬p1 & ¬p2)
mod: (all)
post: (q1))]
mod: (all)
post: (q1 or q2)]
proof:

mcases
(case: p1 & p2
proof: *
case: p1 & ¬p2
proof: *
case: ¬p1 & p2
proof: *
case: ¬p1 & ¬p2
proof: *)

<sdvs.1> proofcommands

proof name: mproof

proof commands: (*, mcases, prove)

Example:

<sdvs.1> ppds
state delta: cases1.sd

[sd pre: (.a = 0) mod: (a) post: (#a = 1)]

<sdvs.1> ppds
state delta: cases2.sd

[sd pre: (.a gt 0) mod: (a) post: (#a = 2)]

<sdvs.1> ppds
state delta: cases.sd

[sd pre: (.a ge 0,formula(cases1.sd),formula(cases2.sd))
mod: (a)
post: (#a = 1 or #a = 2)]
<sdvs.1> init
    proof name[]: <CR>

State Delta Verification System, Version 12

Restricted to authorized users only.

<sdvs.1> prove
    state delta[]: cases.sd
    proof[]: <CR>

open -- [sd pre: (.a ge 0, formula(cases1.sd), formula(cases2.sd))
    mod: (a)
    post: (#a = 1 or #a = 2)]

    inserting -- pcovering(all,a)

Complete the proof.

<sdvs.1.1> cases
    case predicate: .a = 0

    cases -- .a = 0

    open -- [sd pre: (.a = 0)
        comod: (all)
        mod: (a)
        post: (#a = 1 or #a = 2)]

<sdvs.1.1.1.1> placevalue
    place: a

    value = a\958

<sdvs.1.1.1.1> pseq
    expression: .a

    eqclass = a\958
        range(emptyarray)
        0

<sdvs.1.1.1.1> nsd

    [sd pre: (.a = 0) mod: (a) post: (#a = 1)]

<sdvs.1.1.1.1> whynotapply
    state delta[ highest usable]: <CR>

    Because the following is not known to be true -- .a gt 0

<sdvs.1.1.1.1> usablesds

    u(1) [sd pre: (.a gt 0) mod: (a) post: (#a = 2)]
    u(2) [sd pre: (.a = 0) mod: (a) post: (#a = 1)]
<sdvs.1.1.1.1> whynotapply
  state delta[ highest usable]: u
  number: 2

Quite applicable.

<sdvs.1.1.1.1> apply
  sd/number[highest applicable/once]: <CR>

    apply -- [sd pre: (.a = 0)
      mod: (a)
      post: (#a = 1)]

    close -- 1 steps/applications

    open -- [sd pre: (~(.a = 0))
      comod: (all)
      mod: (a)
      post: (#a = 1 or #a = 2)]

Complete the proof.

<sdvs.1.1.2.1> ppsd
  state delta: sdtobeproven

  [sd pre: (~(.a = 0))
    comod: (all)
    mod: (a)
    post: (#a = 1 or #a = 2)]

<sdvs.1.1.2.1> nsd

  [sd pre: (.a gt 0) mod: (a) post: (#a = 2)]

<sdvs.1.1.2.1> placevalue
  place: a

  value = a\958

<sdvs.1.1.2.1> ppeq
  expression: .a

  eqclass = a\958

<sdvs.1.1.2.1> usablesds

u(1) [sd pre: (.a = 0)
    comod: (all)
    mod: (a)
    post: (#a = 1 or #a = 2)]

u(2) [sd pre: (.a gt 0) mod: (a) post: (#a = 2)]

u(3) [sd pre: (.a = 0) mod: (a) post: (#a = 1)]
whynotapply
state delta[ highest usable]: <CR>

Because the following is not known to be true -- .a = 0

whynotapply
state delta[ highest usable]: u
    number: 2

Quite applicable.

apply
sd number[ highest applicable/once]: <CR>
apply -- [sd pre: (.a gt 0)
    mod: (a)
    post: (#a = 2)]

close -- 1 steps/applications

join -- [sd pre: (true)
    comod: (all)
    mod: (a)
    post: (#a = 1 or #a = 2)]

close -- 1 steps/applications

*Whynotgoal* can be used with two options: default (return = no simp of the goal) or "yes" (or anything at all = simp the goal). For example,

prove
state delta[]: why.sd
proof[]: <CR>

open -- [sd pre: (.x = 1)
    mod: (all)
    post: (#x = .x + .y)]

inserting -- pcovering(all,x)

Complete the proof.

whynotgoal
simplify?[no]: <CR>
g(1) #x = x\965 + y\966

whynotgoal
simplify?[no]: yes

g(1) 1 = 1 + y\966
2.9.3 Introduction of Constants

The \texttt{let} command allows a new alphanumeric variable to be equated to any expression.\textsuperscript{5} Thus, for example, the contents of a place at a certain time can be "stored" and will not be lost when the state changes. If a variable already in use has been \texttt{let}, SDVS will complain:

\begin{verbatim}
<sdvs.1.1> let
new variable: a
value: .x

let -- a = .x

<sdvs.1.2> let
new variable: x
value: .y

let error: the variable is already in use x

<sdvs.1.3> let
new variable: b
value: .x

let -- b = .x

<sdvs.1.4> simp
expression: a = b

true
\end{verbatim}

A similar command for naming state deltas is \texttt{letsd}. The use of \texttt{letsd} is primarily in situations where a state delta is usable (and thus has a "u" usable number attached to it), but one wants to rename it in order to refer to it later when it may not be usable anymore. For example, this happens when you want to name the state delta(s) designating the top of a loop, in order to refer to them in an induction invariant.

It is also possible to name a goal state delta (with a "g" number), or simply to type in a state delta, as with \texttt{createsd}. However, \texttt{letsd} can only be used within a proof context, and the connection between a state delta and its \texttt{letsd} name is preserved only within a proof context.

2.9.4 Declarations

Declarations are statements that are true over all state changes. They may be thought of as describing the "architecture" of the machine or the type of program variables. There are several forms of declarations:

\textsuperscript{5}Although SDVS does not check to see that the variable is in fact alphanumeric, it is strongly recommended that the user adhere to this guideline.
1. In ISPS programs, declarations of type and dimension appear (automatically) in `declare` statements. `Covering` statements are also generated.

2. In state delta translations of Ada programs, variables are declared (automatically) in the `declare` statement. `Covering` statements are also generated.

3. As components to preconditions or postconditions to state deltas, the user can write `covering` and `pcoverings`, as well as explicit `declare` statements.

The primary use of declarations is in the translation from ISPS, Ada, and VHDL to state deltas, but they also may be inserted directly into state deltas.

The syntax for the `declare` statement is

```
(declare var type)
```

where the possible types are (obtained by the `help types` query):

```
help
 with[all]: types

<<SDVS Help>> Types <<SDVS Help>>
type(boolean) Boolean
type(character) Ada characters
type(bitstring,n) bitstring of length n
type(polymorphic) polymorphic (any type).
type(fn,exp) a function defined by the expression exp
type(float) floating point
type(integer) integer
type(integer,lb,ub) bounded integer, that is, lb<=i<=ub
type(array,lb,ub,type) array with lower bound lb, upper bound ub, and specified element type
type(record,field1(type1),...,fieldj(typej)) record with field names of specified types
type(time) VHDL time
type(waveform) VHDL waveform
type(integerwaveform) VHDL integer waveform
type(bitwaveform) VHDL bit waveform
```
type(bitstring, waveform, n) VHDL bitstring (length n) waveform

The following example illustrates some of these rules (for examples of bitstring declarations, see Section 2.9.9):

<sdvs.1> ppsd
state delta: s11

[ sd pre: (covering(all,a),
  declare(a,type(array,1,128,type(bitstring,16))),
  mod: (a)
  post: (#a[1] = 5(16)) ]

<sdvs.1> ppsd
state delta: s12

[ sd pre: (formula(s11),covering(all,a),
  declare(a,type(array,1,128,type(bitstring,16))),
  covering(a[1],b),declare(b,type(fn,.a[1])))
  mod: (a)
  post: (#b = 5(16)) ]

<sdvs.1> prove
state delta[]: s12
proof[]: <CR>

open -- [ sd pre: (formula(s11),covering(all,a),
  declare(a,type(array,1,128,type(bitstring,16))),
  covering(a[1],b),declare(b,type(fn,.a[1])))
  mod: (a)
  post: (#b = 5(16)) ]

Complete the proof.

<sdvs.1.1> *

apply -- [ sd pre: (covering(all,a),
  declare(a,type(array,1,128,type(bitstring,16))))
  mod: (a)
  post: (#a[1] = 5(16)) ]

close -- 1 steps/applications

Note that without the covering relationship between a[1] and b, the declaration of b as a function of a[1] is still invalid; that declaration just expresses the fact that there is a functional dependency between the two, without there being an architectural one.

<sdvs.1> ppsd
state delta: s14
[sd pre: (formula(s11), covering(all,a),
    declare(a, type(array,1,128, type(bitstring,16))),
    declare(b, type(fn,.a[1])))
  mod: (a)
  post: (#b = 5(16))]

<sdvs.1> prove
state delta[]: s14
proof[]: <CR>
open -- [sd pre: (formula(s11), covering(all,a),
    declare(a, type(array,1,128, type(bitstring,16))),
    declare(b, type(fn,.a[1])))
  mod: (a)
  post: (#b = 5(16))]

  inserting -- pcovering(all,b)

Complete the proof.

<sdvs.1.1> *

apply -- [sd pre: (covering(all,a),
    declare(a, type(array,1,128, type(bitstring,16))))
  mod: (a)
  post: (#a[1] = 5(16))]

close -- 1 steps/applications

2.9.5 Data and Array Allocation

One must activate the array solver (see Section 2.7.6) to use the data and array allocation statements. The array initialization construct has the form

(DATA <slice><file-name> <starting-value>)

where <slice> is a slice of a previously declared array, <file-name> is the name of the file from which the data are to be read, and <starting-value> is the ordinal value of the "s-expression" (sequence; for example, (BS 7 3), in the case of bitstrings) from which the data are to be read, up to the required size of <slice>. This is the preferred way to specify the contents of the ROM (read-only memory) for a microcoded machine. Of course, it could be specified by a (typically long) list of .mem[0] = 3(7), .mem[1] = 10(7), and so on.

The ALLOCATE <slice> DENSE statement associates a Lisp array of the appropriate size with the designated slice in the symbol table. One may also ALLOCATE <slice> SPARSE, which associates an "association list" with the slice. The ALLOCATE assertion will be allowed only if no value has previously been stored for any element of the slice and if no previous allocation has been made for any slice intersecting it. Allocation should be used only for read-only memory, since the occurrence of any element of the slice in a mod list will

108
cause the Lisp storage array or \textit{alist} to be wiped clean. To assign initial values to memory
that will be written into later, one must use ISPS assignment statements, or their equivalent
in state deltas.

Below is an example of a state delta that uses the "DATA" declaration and array allocation:

\begin{verbatim}
<sdvs.1> created
  name: s22
  [SD pre: declare(a, type(array, 0, 128, type(bitstring, 3))), allocate(a[0:7], dense),
      data(a[0:7], "testproofs/manual/data/array2.data", 0)]
  comod[]: <CR>
  mod[]: <CR>
  post: #a[2] = 2(3)
]

<sdvs.1> ppsd
  state delta: s22
  [sd pre: (declare(a, type(array, 0, 128, type(bitstring, 3))],
            allocate(a[0:7], dense),
            data(a[0:7], "testproofs/manual/data/array2.data", 0))
  post: (#a[2] = 2(3))]

The file array2.data looks like this:

(bs 0 3)(bs 1 3)(bs 2 3)(bs 3 3)(bs 4 3)(bs 5 3)(bs 6 3)(bs 7 3)

With the flag \textit{autoclose} on, the proof will close automatically:

\begin{verbatim}
<sdvs.1> prove
  state delta[]: s22
  proof[]: <CR>

  open -- [sd pre: (declare(a, type(array, 0, 128, type(bitstring, 3))],
             allocate(a[0:7], dense),
             data(a[0:7], "testproofs/manual/data/array2.data", 0))
             post: (#a[2] = 2(3))]

  close -- 0 steps/applications
\end{verbatim}

However, if we turn off those flags, the proof will not close and we can examine the declara-
tions:

\begin{verbatim}
<sdvs.2> setflag
  flag variable: autoclose
  on or off[off]: off

  setflag autoclose -- off
\end{verbatim}
flags

abbreviationlevel = none
acceptfileproofs = on
autoclose = off
checkexistence = off
checksyntax = on
displaywpsds = on
ektraceflag = off
enumerate = off
invariance = off
optimizeassignments = simp
ppdottednames = off
plinewidth = 75
reportpropagations = on
showstats = off
showstep$ = off
strongcoverings = off
stronglytyped = off
traceflag = on
uniquenamelevel = 1
usedots = off
weaknext.tr = off

Type 'help flags' for a description.

init

proof name[]: <CR>

State Delta Verification System, Version 12

Restricted to authorized users only.

prove

state delta[]: s22

proof[]: <CR>

open -- [sd pre: (declare(a,type(array,0,128,type(bitstring,3))),
allocate(a[0:7],dense),
data(a[0:7],"testproofs/manual/data/array2.data",0))
post: (#a[2] = 2(3))]

Complete the proof.

dects

a[2] type(bitstring,3)
a type(array,0,128,type(bitstring,3))

expression: .a[2] = 2(3)

true
2.9.6 Negate

The proofs involving negation can be run by typing `run-test-proofs *negation-tests*`. They include proofs of negations of state deltas by contradiction and also proofs that use the `negate` command.

The `negate` command asserts the negation of a specified state delta, through the equivalence (in the case where Q does not have any top-level dots or quantifiers) between

```plaintext
~ [sd pre: P
 comod: C
 mod: M
 post: Q]
```

and

```plaintext
[sd pre: true
 comod: all
 mod: all - C
 post: P(#/.) &
 [sd pre: true
 comod: all - M
 mod: ()
 post: Q]]
```

if the state delta is known to be false (see [33]). (For the case where the state delta has invariants, see Section 8.4.)

For example, consider the state delta `negate6.sd`:

```plaintext
[sd pre: (~(((sd pre: (p comod: (c) mod: (m) post: (q)))))
 post: (~(((sd pre: (true) comod: (c) mod: (m) post: (q)))))
```

Below is a transcript of the proof session:

```
<sdvs.1> prove
state delta[]: negate6.sd
proof[]: <CR>
open -- [sd pre: (~(((sd pre: (p comod: (c) mod: (m) post: (q)))))
```
post: ~((sd pre: (true) 
    comod: (c) 
    mod: (m) 
    post: (q))))}

Complete the proof.

<adv.1.1> usable

No usable state deltas.

No usable quantified formulas.

<adv.1.1> cases
    case predicate: ~((sd pre: (true) comod: (c) mod: (m) post: (q))
    cases -- ~((sd pre: (true) comod: (c) mod: (m) post: (q)))
    open -- [sd pre: (~((sd pre: (true) 
        comod: (c) 
        mod: (m) 
        post: (q))))
        comod: (all) 
        post: (~((sd pre: (true) 
            comod: (c) 
            mod: (m) 
            post: (q))))]
    close -- 0 steps/applications
    open -- [sd pre: (~((sd pre: (true) 
        comod: (c) 
        mod: (m) 
        post: (q))))
        comod: (all) 
        post: (~((sd pre: (true) 
            comod: (c) 
            mod: (m) 
            post: (q))))]

Complete the proof.

<adv.1.1.2.1> usable

u(1) [sd pre: (true) comod: (c) mod: (m) post: (q)]

u(2) [sd pre: (~((sd pre: (true) comod: (c) mod: (m) post: (q))))
    comod: (all) 
    post: (~((sd pre: (true) comod: (c) mod: (m) post: (q))))]

No usable quantified formulas.

<adv.1.1.2.1> negate
state delta: \{sd pre: (p) comod: (c) mod: (m) post: (q)\}
formula name #1: \textit{fml1}

negated result -- [sd pre: (true)
comod: (all)
mod: (diff(all,c))
post: (p,
 [sd pre: (true)
  comod: (diff(all,m))
  post: ('q)])]

\texttt{<sdvs.1.1.2.2> pp}
object: \textit{fml1}

formula fml1: [sd pre: (true)
comod: (diff(all,m))
post: ('q)]

\texttt{<sdvs.1.1.2.2> usable}

\texttt{u(1) [sd pre: (true)
comod: (all)
mod: (diff(all,c))
post: (p,
 [sd pre: (true)
  comod: (diff(all,m))
  post: ('q)])]

u(2) [sd pre: (true) comod: (c) mod: (m) post: (q)]

u(3) [sd pre: ('((sd pre: (true) comod: (c) mod: (m) post: (q)))))
comod: (all)
post: ('((sd pre: (true) comod: (c) mod: (m) post: (q))))]]

No usable quantified formulas.

\texttt{<sdvs.1.1.2.2> apply}
\texttt{sd/number[highest applicable/once]: u}
\texttt{number: 1}

apply -- [sd pre: (true)
comod: (all)
mod: (diff(all,c))
post: (p,
 [sd pre: (true)
  comod: (diff(all,m))
  post: ('q)])]

Warning: the modlist of the last applied state delta mentions places (diff(all,c)) outside of the modlist of the state delta to be proven. The current proof can only be closed by contradiction.

\texttt{<sdvs.1.1.2.3> usable}
u(1) [sd pre: (true)
comod: (diff(all,m))
post: (~q)]

u(2) [sd pre: (true) comod: (c) mod: (m) post: (q)]

No usable quantified formulas.

<sdvs.1.1.2.3> apply
sd/number[highest applicable/once]: u
number: 2

inserting -- pcovering(all,m)

apply -- [sd pre: (true) comod: (c) mod: (m) post: (q)]

Warning: the modlist of the last applied state delta mentions places
(m) outside of the modlist of the state delta to be proven. The
current proof can only be closed by contradiction.

inserting -- pcovering(all,m)

<sdvs.1.1.2.4> usable

u(1) [sd pre: (true)
comod: (diff(all,m))
post: (~q)]

No usable quantified formulas.

<sdvs.1.1.2.4> apply
sd/number[highest applicable/once]: u
number: 1

apply -- [sd pre: (true)
comod: (diff(all,m))
post: (~q)]

The postcondition of the last applied state delta is inconsistent
with the current state.

close -- 3 steps/applications

join -- [sd pre: (true)
comod: (all)
post: (~((sd pre: (true)
comod: (c)
mod: (m)
post: (q))))]]

close -- 1 steps/applications

Here is another example, also illustrating that formulas can be negated:
<sdvs.1> pp
  object: tobeneg

  formula tobeneg: [sd pre: (true)
    comod: (all)
    post: (p)]

<sdvs.1> pp
  object: negged.sd

  [sd pre: (¬(formula(tobeneg)))
    comod: (all)
    post: (¬p)]

<sdvs.1> prove
  state delta[]: negged.sd
  proof[]: <CR>

  open -- [sd pre: (¬(formula(tobeneg)))
    comod: (all)
    post: (¬p)]

  Complete the proof.

<sdvs.1.1> usable

  No usable state deltas.

  No usable quantified formulas.

<sdvs.1.1> negate
  state delta: [sd pre: (true) comod: (all) post: (p)]
  formula name #1: fml2

  negated result -- [sd pre: (true)
    comod: (all)
    mod: (diff(all, all))
    post: (true,
      [sd pre: (true)
        comod: (all)
        post: (¬p)]])

<sdvs.1.2> usable

  u(1) [sd pre: (true)
    comod: (all)
    mod: (diff(all, all))
    post: (true,
      [sd pre: (true)
        comod: (all)
        post: (¬p)]])
No usable quantified formulas.

```
<sdvs.1.2> apply
 sd/number[highest applicable/once]: <CR>

 apply -- [sd pre: (true)
 comod: (all)
 mod: (diff(all,all))
 post: (true,
 [sd pre: (true)
 comod: (all)
 post: (~p)])

<sdvs.1.3> usable

 u(1) [sd pre: (true) comod: (all) post: (~p)]

 u(2) [sd pre: (true)
 comod: (all)
 mod: (diff(all,all))
 post: (true,
 [sd pre: (true)
 comod: (all)
 post: (~p)])]

No usable quantified formulas.
```

```
<sdvs.1.3> apply
 sd/number[highest applicable/once]: <CR>

 apply -- [sd pre: (true)
 comod: (all)
 post: (~p)]

 close -- 3 steps/applications
```

2.9.7 Linearize

Linearize is the command intended to take two usable state deltas $S_1$ and $S_2$ having true preconditions and form the disjunction of two state deltas: the first claiming that $S_1 : post$ occurs first in the future and then $S_2 : post$, and the second claiming that $S_2 : post$ occurs first and then $S_1 : post$. In both cases the modlist in force until the first postcondition is achieved is the intersection of $S_1 : mod$ and $S_2 : mod$. The possible simultaneous occurrence of both postconditions is allowed in either case. This situation corresponds to the interleaving of two parallel program fragments. For a discussion of linearize in the presence of invariants, see Section 8.2.

For example, consider the state delta incboth:
where \(incx\) and \(incy\) are as follows:

\[
\begin{align*}
[\text{sd pre: (true) mod: (x) post: (#x = 1)]}
\end{align*}
\]

\[
\begin{align*}
[\text{sd pre: (true) mod: (y) post: (#y = 1)]}
\end{align*}
\]

This state delta is true because the two interior state deltas in the precondition are contradictory with the covering statement. The \textit{linearize} command gives us the means to force the system to recognize this contradiction by making one of the postconditions true, with a mod list equal to the intersection of the mod lists of the linearized state deltas. This intersection is empty, and thus neither \(x\) nor \(y\) can change value.

\(<\text{sdvs.1}>\) prove

state delta[s]: incboth
proof[]: <CR>

open -- [sd pre: (covering(all,x,y),x = 0,,y = 0,formula(incx),formula(incy))

\[
[\text{comod: (all) mod: (all) post: (false)}]
\]

Complete the proof.

\(<\text{sdvs.1.1}>\) usable

\begin{align*}
u(1) [\text{sd pre: (true) mod: (y) post: (#y = 1)]} \\
u(2) [\text{sd pre: (true) mod: (x) post: (#x = 1)]}
\end{align*}

No usable quantified formulas.

\(<\text{sdvs.1.1}>\) linearize

state delta #1: u
number: 1
state delta #2: u
number: 2
formula name #1: incy
formula name #2: incx

linearize -- formula(incy) or formula(incx)

non-trivial propagations -- ([sd pre: (true)
comod: (all)
mod: (inter(y,x))
post: ($y = 1,$
    [sd pre: (true)
     comod: (all)
     mod: (x)
     post: ($x = 1$)])) or
([sd pre: (true)
  comod: (all)
  mod: (inter(y,x))
  post: ($x = 1,$
    [sd pre: (true)
     comod: (all)
     mod: (y)
     post: ($y = 1$)]))]

<sdvs.1.2> cases
  case predicate: [sd (true) (all) (inter(y, x)) ($y = 1,$ [sd (true) (all) ($x = 1$)])]

  cases -- [sd pre: (true)
            comod: (all)
            mod: (inter(y,x))
            post: ($y = 1,$
                [sd pre: (true)
                 comod: (all)
                 mod: (x)
                 post: ($x = 1$)]])

  open -- [sd pre: ([sd pre: (true)
                    comod: (all)
                    mod: (inter(y,x))
                    post: ($y = 1,$
                        [sd pre: (true)
                         comod: (all)
                         mod: (x)
                         post: ($x = 1$)]))

            comod: (all)
            mod: (all)
            post: (false)]

<sdvs.1.2.1.1> usable

  u(1) [sd pre: (true)
         comod: (all)
         mod: (inter(y,x))
         post: ($y = 1,$
             [sd pre: (true)
              comod: (all)
              mod: (x)
              post: ($x = 1$)]))

  u(2) [sd pre: (true) mod: (y) post: ($y = 1$)]

  u(3) [sd pre: (true) mod: (x) post: ($x = 1$)]
No usable quantified formulas.

<sdvs.1.2.1.1> apply
sd/number[highest applicable/once]: <CR>

apply -- [sd pre: (true)
comod: (all)
mod: (inter(y,x))
post: (#y = 1,
   [sd pre: (true)
    comod: (all)
    mod: (x)
    post: (#x = 1)])]

The postcondition of the last applied state delta is inconsistent
with the current state.

close -- 0 steps/applications

open -- [sd pre: (~((sd pre: (true)
comod: (all)
mod: (inter(y,x))
post: (#y = 1,
   [sd pre: (true)
    comod: (all)
    mod: (x)
    post: (#x = 1)])])
comod: (all)
mod: (all)
post: (false)]

Complete the proof.

<sdvs.1.2.2.1> usable

u(1) [sd pre: (true)
comod: (all)
mod: (inter(y,x))
post: (#x = 1,
   [sd pre: (true)
    comod: (all)
    mod: (y)
    post: (#y = 1)])]

u(2) [sd pre: ([sd pre: (true)
comod: (all)
mod: (inter(y,x))
post: (#y = 1,
   [sd pre: (true)
    comod: (all)
    mod: (x)
    post: (#x = 1)])]
comod: (all)
mod: (all)
post: (false)]
u(3) [sd pre: (true) mod: (y) post: (#y = 1)]

u(4) [sd pre: (true) mod: (x) post: (#x = 1)]

No usable quantified formulas.

<sdvs.1.2.2.1> apply
sd/number[highest applicable/once]: <CR>

apply -- [sd pre: (true)
comod: (all)
mod: (inter(y,x))
post: (#x = 1,
[sd pre: (true)
comod: (all)
mod: (y)
post: (#y = 1)])]

The postcondition of the last applied state delta is inconsistent
with the current state.

close -- 0 steps/applications

join -- [sd pre: (true) comod: (all) mod: (all) post: (false)]

close -- 2 steps/applications

The postcondition of the last applied state delta is inconsistent with the
current state.

2.9.8 Natural Number Induction

Natural number induction, or what is commonly referred to as "mathematical induction,"
was incorporated into SDVS 10 specifically to help overcome a hurdle in the proof of a
sorting program; see [41].

The command can be used to prove claims of the form \( \forall n \alpha(n) \), where \( n \) is assumed to
range over the natural numbers. The command simply requests the user for the induction
expression (\( n \) above), the formula (\( \alpha(n) \)), the base proof, and the step proof. The proofs,
as in other similar commands, can be left empty at the time of the command invocation,
and supplied interactively during the continuation of the proof. The base-case state delta
claims that the formula is true for \( n = 0 \), i.e., \( \alpha(0) \), and the step-case state delta claims
that if the formula is true for \( n \), then it is true for \( n + 1 \).

As a simple example, we prove that \( \forall n(n + 1 > n) \). The proof closes automatically.

<sdvs.1> natinduct
induction expression: n
formulas: n+1 gt n
base proof[]: <CR>
step proof[]: <CR>

natural induction on n -- (n + 1 gt n)

open -- [sd pre: (n = 0)
  comod: (all)
  post: (n + 1 gt n)]

close -- 0 steps/applications

open -- [sd pre: (n ge 0,n + 1 gt n)
  comod: (all)
  post: ((n + 1) + 1 gt n + 1)]

close -- 0 steps/applications

join natural induction cases
  -- forall n (n ge 0 --> n + 1 gt n)

2.9.9 Mapping

The proof language must allow the user to specify the mapping (correspondence) between
the places of one state delta and another state delta that implements it, or, more generally,
between the states of one computation and another that implements it. For a more detailed
treatment of mapping, see [42].

A mapping is an assignment for each target (upper level) place of a set of host (lower level)
places such that the value of the target place is a function of the values of the associated
host places. A technicality forces the requirement that this function must be one-to-one
if the target place appears in the comodification list of a target state delta. However, the
user does not have to worry about this, since the implementation command does not allow
nonempty comodification lists in the upper level at all. Three types of statements must be
proved about the mapping:

1. Disjointness among a set of target places must be reflected in the disjointness of the
   associated sets of host places.

2. Declarations of the target places (length of bitstrings, or range of arrays) must be
   proved from the declarations associated with the corresponding host places.

3. The translations of the target state deltas into the host language induced by the
   mappings must be proved from the host description.

The command implementation fills the role of "theorem constructor." It takes (or prompts
the user for) a theorem name, the upper-level specification, the lower-level specification, the
formula containing the mapping functions, the places in the host that must be constant for
the implementation to be valid, and the invariants for host state changes that must hold for the implementation to be valid.

The result is a theorem (state delta) that denotes the implementation of the upper level by the lower level. The precondition of the theorem contains the lower-level specification, the constant formulas, and some equalities that provide names for certain sets of places in the lower level, specifically,

1. names for the set of all lower-level places,
2. the set of all mapped lower-level places,
3. the set of all unmapped lower-level places, and
4. the set of all constant lower-level places.

The \texttt{comod} and \texttt{mod} of the theorem are empty. The postcondition of the theorem contains $n + 2$ items, where there are $n$ state deltas in the upper-level specification. The first item is an \texttt{alldisjoint} predicate stating the disjointness of the sets of mapped-onto lower-level places. The second item is a state delta representing the validity of the upper-level declarations and the one-to-oneness of certain mapping functions. The next $n$ items are upper-level state deltas that have been transformed into lower-level theorems.

The \texttt{mapping} construct can take either the form

1. mapping(.tplace, f(.hplace_1, ..., .hplace_n)), where $f$ is some explicit function, e.g. mapping(.tplace, .hplace); or
2. mapping(.tplace, f(.hplace_1, ..., .hplace_n), values(tval_1.f(hval_1^1, ..., hval_n^1), ..., tval_k, f(hval_1^k, ..., hval_m^k))), where the tvals are possible values of tplace and the hvals are possible values of the hplaces.

The \texttt{constant} field can take four kinds of statements:

1. constant(.p), expressing the fact that .p is constant, but we do not know or care what that value is;
2. .p = c, the actual value that does not change;
3. data(.p[i:j], file, offset), for values of arrays (here is where the ROMs for microprograms could be initialized); or
4. allocate statements to accompany the data statements.
The *invariants* field takes a formula or list of formulas. The *invariants* field, if needed, is used to specify the significant states in the lower-level machine. In other words, sometimes the mapping of places to places as specified by the *mapping* formula is not sufficiently rich to induce the state-to-state mapping required by the implementation theorem. Invariants must hold for every lower-level state, including the initial state. They are usually implications of the following form: if certain mapped places have certain values, then other conditions must hold.

As an example, consider the following simple case:

First, the lower-level machine, the host machine `a10.isp`:

```plaintext
machinea:=(
 Registers
 a<1:0>
 Process
 cyclea{main}:=
 begin
 a_1 next a_0
 end
)

<sdvs.1> ppsd
 state delta: isp
 file name: a10.isp

covering(machinea,a,machinea\upc)
declare(a,type(bitstring,2))
[tr @MACHINEA\STARTED {in MACHINEA} A_...; A_...;]
```

Now, the upper-level machine, the target machine `b0.isp`:

```plaintext
machineb:=(
 Registers
 b<1:0>
 Process
 cycleb{main}:=
 begin
 b_0
 end
)
```
You need to *mpisps* the file and then you may look at the result (although it is not necessary to *ppsd* it):

```
<svds.2> ppsd
 state delta: mpisps
 file name: b0 isp
 starting mark points[]: <CR>
 ending mark points[]: <CR>
 preconditions[]: <CR>

covering(machine,b,machine\upc)
declare(b,type(bitstring,2))
[sd pre: (.machine\upc = machine\started)
 mod: (b,machine\upc)
 post: ($machine\upc = machine\halted,$b = 0(2))]
```

Here is the mapping specification from target places to host places:

```
<svds.2> pp
 object: b0a10.mapping

formulas b0a10.mapping: mapping(.b,.a)
 mapping(.machine\upc,map\upc(.machine\upc),
 values(machine\started,
 map\upc(machine\started),
 machine\halted,
 map\upc(machine\halted)))
```

Next, we invoke the implementation command (after having *mpisps*ed *b0*isp and *isps*ed *a10*isp; for more information about *mpisps*, see page 147):

```
<svds.2> implementation
 theorem name: b0a10.thm
 upper-level spec: mpisps
 file name: b0 isp
 starting mark points[]: <CR>
 ending mark points[]: <CR>
 preconditions[]: <CR>
 lower-level spec: isps
 file name: a10 isp
 mappings: formulas(b0a10.mapping)
 constants[]: <CR>
 invariants[]: <CR>

Implementation theorem 'b0a10.thm' created.
```

Here is the theorem (formula) that was created:
Object: b0a10.thm

[sd pre: (isps(a10.isp), b0a10.thm.places = union(a,machine\upc), b0a10.thm.mapped.places = union(a,machine\upc), b0a10.thm.unmapped.places = diff(b0a10.thm.places,b0a10.thm.mapped.places))
post: (alldisjoint(a,machine\upc),
[sd pre: (true)
comod: (all)
post: (forall a1 (lh(a1) = 2 --> lh(a1) = 2)),
[sd pre: (.machine\upc = machine\started)
mod: (a,machine\upc,b0a10.thm.unmapped.places)
post: (#machine\upc = machine\halted,#a = 0(2)))]

Make sure to use the formulas construct around the mapping name (the mappings have already been defined). Note that the three clauses in the postcondition correspond to the three types of statements above. Now let us prove it.

<sdvs.2> prove
state delta[]: b0a10.thm
proof[]: <CR>

open -- [sd pre: (isps(a10.isp), b0a10.thm.places = union(a,machine\upc), b0a10.thm.mapped.places = union(a,machine\upc), b0a10.thm.unmapped.places = diff(b0a10.thm.places,b0a10.thm.mapped.places))
post: (alldisjoint(a,machine\upc),
[sd pre: (true)
comod: (all)
post: (forall a1 (lh(a1) = 2 --> lh(a1) = 2)),
[sd pre: (.machine\upc = machine\started)
mod: (a,machine\upc,b0a10.thm.unmapped.places)
post: (#machine\upc = machine\halted,#a = 0(2)))]

Complete the proof.

<sdvs.2.1> whynotgoal
simplify?[no]: <CR>

g(2) [sd pre: (true)
comod: (all)
post: (forall a1 (lh(a1) = 2 --> lh(a1) = 2))]
g(3) [sd pre: (.machine\upc = machine\started)
mod: (a,machine\upc,b0a10.thm.unmapped.places)
post: (#machine\upc = machine\halted,#a = 0(2))]

<sdvs.2.1> prove
state delta[]: g
number: 3
proof[]: <CR>

125
open -- [sd pre: (.machine\upc = machine\started)
    mod: (a,machine\upc,b0a10.thm.unmapped.places)
    post: (#machine\upc = machine\halted,#a = 0(2))]

Complete the proof.

<sdvs.2.1.1> until
   formula: #machine\upc = machine\halted

   apply -- [sd pre: (.machine\upc = machine\started)
       mod: (machine\upc,a)
       post: (#a = 1(2),
           [tr {in MACHINE} A....]])

   apply -- [sd pre: (true)
       comod: (machine\upc)
       mod: (machine\upc,a)
       post: (#a = 0(2),
           [tr #MACHINE\halted])]

   apply -- [sd pre: (true)
       comod: (machine\upc)
       mod: (machine\upc)
       post: (#machine\upc = machine\halted)]

close -- 3 steps/applications

Complete the proof.

<sdvs.2.2> whynotgoal
   simplify?[no]: <CR>

   g(2) [sd pre: (true)
       comod: (all)
       post: (forall a1 (1h(a1) = 2 --> 1h(a1) = 2))]

<sdvs.2.2> prove
   state delta[]: g
   number: 2
   proof[]: <CR>

open -- [sd pre: (true)
    comod: (all)
    post: (forall a1 (1h(a1) = 2 --> 1h(a1) = 2))]

close -- 0 steps/applications

close -- 2 steps/applications

<sdvs.3> ps

<< initial state >>
mpisps testproofs/manual/isps/b0.isp <2>
proved b0a10.thm <1>
--> you are here <==
2.9.10 Formulas

The command *formulas* \(<\text{name-of-list-of-exprs}>\) will insert the list of formulas associated with the name. It is useful when a long hypothesis occurs in more than one state delta.

The command *formula*\(<\text{expr-name}>\) inserts the single formula associated with the \(<\text{expr-name}>\). One may also insert state deltas by using *formula*\(<\text{sd-name}>\).

```
<sdvs.1> createformula
 name: hyp2
 formula: .a = 5

<sdvs.1> created
 name: f10.sd
 [SD pre: .a = 5
 comod[]: <CR>
 mod[]: all
 post: #a = 10
]

<sdvs.1> created
 name: f14.sd
 [SD pre: formula(f10.sd), formula(hyp2)
 comod[]: <CR>
 mod[]: all
 post: #a = 10
]

<sdvs.1> prove
 state delta[]: f14.sd
 proof[]: <CR>

open -- [sd pre: (formula(f10.sd),formula(hyp2))
 mod: (all)
 post: (#a = 10)]

 inserting -- pcovering(all,a)

Complete the proof.

<sdvs.1.1> usablesds

u(1) [sd pre: (.a = 5)
 mod: (all)
 post: (#a = 10)]

<sdvs.1.1> apply
 sd/number[highest applicable/once]: <CR>

apply -- [sd pre: (.a = 5)
 mod: (all)
 post: (#a = 10)]
```
close -- 1 steps/applications

<sdvs.2> createformulas
   name: hyp3
   formula list: .a = 1, .a = 2

<sdvs.2> pp
   object: hyp3

   formulas hyp3: .a = 1
               .a = 2

<sdvs.2> created
   name: f15.sd
   [SD pre: formulas(hyp3)
   comod[]: <CR>
   mod[]: all
     post: false
   ]

<sdvs.2> init
   proof name[]: <CR>

State Delta Verification System, Version 12

Restricted to authorized users only.

<sdvs.1> prove
   state delta[]: f15.sd
   proof[]: <CR>

open -- [sd pre: (formulas(hyp3))
     mod: (all)
     post: (false)]

   The state delta is vacuously TRUE because its precondition is FALSE.

close -- 0 steps/applications

Here is another example illustrating the disjunction of \textit{formulas} and using a state delta as a case predicate.

<sdvs.1> pp
   object: queue

   formula queue: q

<sdvs.1> pp
   object: disj.formula.sd

   [sd pre: (formula(tobeneg) or formula(queue))
     mod: (all)
     post: (p or q)]
<sdv.1> prove
   state delta[]: disj.formula.sd
   proof[]: <CR>

open -- [sd pre: (formula(tobeneg) or formula(queue))
       mod: (all)
       post: (p or q)]

   non-trivial propagations -- ([sd pre: (true)
       comod: (all)
       post: (p)] or
       q

Complete the proof.

<sdv.1.1> usable

No usable state deltas.

No usable quantified formulas.

<sdv.1.1> cases
   case predicate: [sd pre: (true) comod: (all) post: (p)]

   cases -- [sd pre: (true) comod: (all) post: (p)]

   open -- [sd pre: ([sd pre: (true)
       comod: (all)
       post: (p)]
       comod: (all)
       mod: (all)
       post: (p or q)]

<sdv.1.1.1> usable

u(1) [sd pre: (true) comod: (all) post: (p)]

No usable quantified formulas.

<sdv.1.1.1.1> apply
   sd/number[highest applicable/once]: <CR>

   apply -- [sd pre: (true) comod: (all) post: (p)]

   close -- 1 steps/applications

   open -- [sd pre: (~(([sd pre: (true)
       comod: (all)
       post: (p)]))]
       comod: (all)
       mod: (all)
       post: (p or q)]
2.9.11 Macros

The macro facility is essentially a parametrized formula of the preceding section. This capability was initially developed to aid in the quicksort proof (see [41]). A macro is a named formula (possibly quantified) with designated lists of free and quantified variables (possibly NIL). It is defined by the command \texttt{createmacro(name)(free variables)(quantified variables)}. It is invoked by the term \texttt{name(subs)}, where \texttt{subs} is a list of terms corresponding to the declared variables, both free and quantified, in one contiguous sequence separated by commas. The characteristic distinguishing between the substitutions corresponding to the free variables and those corresponding to the quantified variables is that the latter can be only names (atoms), not arbitrary terms. When invoked, the correct substitutions are performed and the resulting formula is inserted in place of the macro.

As an example, consider the macro \texttt{sorted} and the state delta \texttt{sorted.sd}, exhibited below.

\begin{verbatim}
<sdvs.1> createmacro
    name: sorted
    pattern: forall i (1 le i and i lt range(a) -> .a[i:i] le .a[i+1:i+1])
    free variables[]: a
    quantifier symbols[]: i

<sdvs.1> pp
    object: macro
    macro name: sorted

macro sorted (a),(i): forall i (1 le i & i lt range(a)
    --> .a[i:i] le .a[(i + 1):(i + 1)])

<sdvs.1> pp
    object: sorted.sd

[nd pre: (sorted(x,i))
    post: (sorted(x[j:k],i))]

<sdvs.1> prove
    state delta[]: sorted.sd
    proof[]: usable

open -- [sd pre: (sorted(x,i))
    post: (sorted(x[j:k],i))]

No usable state deltas.
\end{verbatim}
q(1) forall i (1 le i & i lt range(x)
    --&gt; .x[i:i] le .x[(i + 1):(i + 1)])

Complete the proof.

<sdvs.1> goals

<1> forall i (1 le i & i lt range(x[j:k]))
    --&gt; .x[j:k][i:i] le .x[j:k][(i + 1):(i + 1)])

At this point, the *macro* has been invoked and the problem is reduced to a simple question
of proving a state delta (which we do not bother to do here).

2.9.12 Composition of State Deltas

Composition is the method for combining the effect of the sequential execution of several
state deltas into one state delta. The command is called *compose*. Composition is used
internally in processing *mpisp* and *vhdlir*, and it can also be called explicitly by the user
in interactive mode. Here is an example illustrating an arithmetic swap.

<sdvs.1> compose
    composed ad name: swapcompose.sd
    Do you wish to compose sds from the proof stack? (y or n) [n]: n
    sd []: [sd (true) (all) (x) (#x = .x + .y)]
    sd []: [sd (true) (all) (y) (#y = .x - .y)]
    sd []: [sd (true) (all) (x) (#x = .x - .y)]
    sd []: <CR>
    declarations[]: covering(all, x, y)

Experimental Composer

Composed

[sd pre: (true)
    mod: (y,x)
    post: (#x = .y, #y = .x)]

For a more detailed look at composition, see [42].

The following example illustrates the use of composition in a proof of the state delta *c5.sd*:

<sdvs.1> pp
    object: c5.sd

    [sd pre: (covering(all,x,y,upc,tmp),formulas(machine),.upc = 1)
        mod: (all)
        post: (#z = .x + 1, #y = .y)]
where

(defformulas machine "c1.sd" "c2.sd" "c3.sd" "c4.sd")

Of course, c5.sd could be proved by direct execution:

<sdvs.1> prove
  state delta[]:  c5.sd
  proof[]:  *

  open -- [sd pre: (covering(all,x,y,upc,tmp),formulas(machine)..upc = 1)
          mod: (all)
          post: (\$x = .x + 1,\$y = .y)]

  apply -- [sd pre: (.upc = 1)
            mod: (upc,tmp)
            post: (\$tmp = .x,\$upc = .upc + 1)]

  apply -- [sd pre: (.upc = 2)
            mod: (x,upc)
            post: (\$x = .y,\$upc = .upc + 1)]

  apply -- [sd pre: (.upc = 3)
            mod: (y,upc)
            post: (\$y = .tmp,\$upc = .upc + 1)]

  apply -- [sd pre: (.upc = 4)
            mod: (y,upc)
            post: (\$y = .y + 1,\$upc = 1)]

  apply -- [sd pre: (.upc = 1)
            mod: (upc,tmp)
            post: (\$tmp = .x,\$upc = .upc + 1)]

  apply -- [sd pre: (.upc = 2)
            mod: (x,upc)
            post: (\$x = .y,\$upc = .upc + 1)]

  apply -- [sd pre: (.upc = 3)
            mod: (y,upc)
            post: (\$y = .tmp,\$upc = .upc + 1)]

  close -- 7 steps/applications

However, we are really only interested in applying c1.sd, c2.sd, and c3.sd in succession. So let us make a state delta that will have the same effect as that successive application.

<sdvs.1> compose
  composed sd name:  composedsd
  Do you wish to compose sds from the proof stack? (y or n) [n]:  n
Experimental Composer

Composed

[sd pre: (.upc = 1)
  mod: (x,tmp,y,upc)
  post: (#upc = 4,#y = .x,#x = .y,#tmp = .x)]

Now we can use the following as a proof:

(defproof example "(prove c5.sd
  proof:(prove composedsd
    proof: (apply c1.sd,
       apply c2.sd,
       apply c3.sd,
       close),
       apply composedsd,
       apply c4.sd,
       apply composedsd,
       close))")

Notice that composedsd will have to be proved before it can be applied. Every state delta resulting from the compose command should be provable by *\(\). The <declarations> field can be only a covering or declaration statement.

<sdvs.1> init
  proof name[]: example

State Delta Verification System, Version 12

Restricted to authorized users only.

open -- [sd pre: (covering(all,x,y,upc,tmp),formulas(machine),.upc = 1)
  mod: (all)
  post: (#x = .x + 1,#y = .y)]

open -- [sd pre: (.upc = 1)
  mod: (x,tmp,y,upc)
  post: (#upc = 4,#y = .x,#x = .y,#tmp = .x)]

apply -- [sd pre: (.upc = 1)
  mod: (upc,tmp)
  post: (#tmp = .x,#upc = .upc + 1)]
apply -- [sd pre: (.upc = 2)
   mod: (x, upc)
   post: ($x = .y,#upc = .upc + 1)]

apply -- [sd pre: (.upc = 3)
   mod: (y, upc)
   post: ($y = .tmp,#upc = .upc + 1)]

close -- 3 steps/applications

apply -- [sd pre: (.upc = 1)
   mod: (x, tmp, y, upc)
   post: ($upc = 4,$y = .x,$x = .y,$tmp = .x)]

apply -- [sd pre: (.upc = 4)
   mod: (y, upc)
   post: ($y = .y + 1,$upc = 1)]

apply -- [sd pre: (.upc = 1)
   mod: (x, tmp, y, upc)
   post: ($upc = 4,$y = .x,$x = .y,$tmp = .x)]

close -- 4 steps/applications

2.9.13 The SDVS Language Parser

Internally, SDVS deals with expressions in prefix notation, e.g. (USSUB X 7 0). The prettyprinter will print this expression in infix notation as X<7:0>. Those operators that have different infix and prefix symbols (such as “plus” and “+”) may be input interactively either in infix or in mathematical (not Lisp) prefix notation, in any combination. Some operators have only one symbol for both the infix and the prefix notation (such as “lt,” since the character < is reserved for substring selection). Some operators have only a mathematical prefix form, such as the enumeration type relations and queueing operations. SDVS is not case sensitive.

For example,

<sdvs.1> created
   name: sd5
   [SD pre: covering(all, a), eq(plus(x, y), 1)
    comod[]: <CR>
    mod[]: <CR>
    post: pound(a) = .a + 1
   ]

<sdvs.1> ppsd
   state delta: sd5
   [sd pre: (covering(all,a), x + y = 1)
    post: ($a = .a + 1)]
It is essential to parenthesize expressions that may be ambiguous, for example \( p \rightarrow q \) or \( r \). Otherwise, they may be interpreted differently than intended, with unpredictable results.

Some symbols may be typed in at the terminal in their prettyprint format, some must be typed in in their non-prettyprint format, and some may be typed in either way. For example,

\[
\begin{align*}
<\text{sdvs.1}> & \quad \textit{simp} \\
& \quad \textit{expression: } a \textbf{ or } b \\
& \quad a \textbf{ or } b
\end{align*}
\]

\[
\begin{align*}
<\text{sdvs.1}> & \quad \textit{simp} \\
& \quad \textit{expression: } a \textbf{ and } b \\
& \quad a \textbf{ \& } b
\end{align*}
\]

\[
\begin{align*}
<\text{sdvs.1}> & \quad \textit{simp} \\
& \quad \textit{expression: } a \textbf{ \& } b \\
& \quad a \textbf{ \& } b
\end{align*}
\]

The infix-prefix correspondence (for those operators with both forms) is as follows:

<table>
<thead>
<tr>
<th>prefix</th>
<th>infix</th>
</tr>
</thead>
<tbody>
<tr>
<td>aconc</td>
<td>aconc</td>
</tr>
<tr>
<td>abs</td>
<td>abs</td>
</tr>
<tr>
<td>and</td>
<td>&amp;</td>
</tr>
<tr>
<td>div</td>
<td>/</td>
</tr>
<tr>
<td>dot</td>
<td>.</td>
</tr>
<tr>
<td>eq</td>
<td>=</td>
</tr>
<tr>
<td>exists</td>
<td>\exists</td>
</tr>
<tr>
<td>expt</td>
<td>-</td>
</tr>
<tr>
<td>forall</td>
<td>\forall</td>
</tr>
<tr>
<td>ge</td>
<td>\ge</td>
</tr>
<tr>
<td>gt</td>
<td>\gt</td>
</tr>
<tr>
<td>implies</td>
<td>\rightarrow (input), \rightarrow (prettyprinted)</td>
</tr>
<tr>
<td>invert</td>
<td>~</td>
</tr>
<tr>
<td>le</td>
<td>\le</td>
</tr>
<tr>
<td>lh</td>
<td>\lt</td>
</tr>
<tr>
<td>lt</td>
<td>\lt</td>
</tr>
<tr>
<td>minus</td>
<td>-</td>
</tr>
<tr>
<td>mult</td>
<td>*</td>
</tr>
<tr>
<td>neq</td>
<td>\textbf{\neq} (input), \neq (prettyprinted)</td>
</tr>
<tr>
<td>not</td>
<td>~</td>
</tr>
</tbody>
</table>
ones or (input), V (prettyprinted)
plus +
pound #
rem rem
usand &&
usconc @
usdifference --
useql ==
usgeq usage
usgtr usgt
usleq usle
uslss uslt
usneq "==
usnot --
usor (input), VV (prettyprinted)
usplus ++
usquotient //
usremainder usmod
ustimes **
usxor usxor
zeros zeros

Nonstandard transformations:

(usval X) \[X]\n(cond A B C) (if A then B else C)
(bs X Y) X(Y)
(ussub A X Y) A<X:Y>
(element A X) A[X]
(slice A X Y) A[X:Y]

The following is a list of reserved words, other than commands and the standard interpreted function symbols, that have special meaning in SDVS and should not be used in other than their official capacity.

all
count
covering
declaration
diff
inter
map
2.9.14 Reading, Writing, and Editing

The commands read and write are the SDVS input-output commands for user-created files. Write prompts the user for the names of all objects that can possibly be stored (e.g. state deltas and proofs). SDVS converts all the objects into the def form, e.g. defproof, which can then be edited as desired. Read goes to the designated file and processes all the defforms.

<sdvs.1> write
    path name[lemmas/lemmas.lemmas]: junk
    state delta names[]: <CR>
    proof names[]: <CR>
    axiom names[]: <CR>
    lemma names[]: <CR>
    formula names[]: <CR>
    formulas names[]: <CR>
    macro names[]: <CR>
    datatype names[]: <CR>
    adalemma names[]: <CR>
    vhdllemma names[]: <CR>

Do you wish to append to the already existing file? n

No objects written.

The primary method for creating proofs interactively is simply to type in proof commands in an SDVS proof session. The proof can then be named by the dump-proof command (see below) and written to a file. Another method is to use the command createproof. For example,

<sdvs.1> createproof
    name: testproof
    proof: (prove [sd pre: (p) comod: () mod: () post: (true)] proof: ())

<sdvs.1> pp
    object: testproof

proof testproof:
    prove [sd pre: (p) post: (true)]
    proof:

The proper constructors for use in the editor, corresponding to the interactive create constructs, are defproof, defsd, and defformulas.
The form in which these definitions can be evaluated in the editor is

```
(defitem <itemname> "'<itembody>'")
```

A common situation arises when the user has finished an interactive proof, SDVS has collected this into \texttt{&\textbackslash{dpsproof}}, and the user would like to change the name. The easiest way to do this is to use the \texttt{dump-proof} command. Another way, which might be useful under certain circumstances, is to write the proof to a file using the \texttt{write} command, change the name in the editor, and then evaluate the \texttt{defsd}.

For example,

```
(defproof casesproof "(prove [sd pre: ([sd pre: (p1 \& p2)
 mod: (all)
 post: (q1)],
 [sd pre: (p1 \& \neg p2)
 mod: (all)
 post: (q2)],
 [sd pre: (\neg p1 \& p2)
 mod: (all)
 post: (q2)],
 [sd pre: (\neg p1 \& \neg p2)
 mod: (all)
 post: (q1)])
 mod: (all)
 post: (q1 or q2)])
proof:
mcases
 (case: p1 \& p2
 proof: *
 case: p1 \& \neg p2
 proof: *
 case: \neg p1 \& p2
 proof: *
 case: \neg p1 \& \neg p2
 proof: *)")
```

If the state delta exists in unparsed (input) notation in the editor, say as

```
[sd ...]
```

it may be input into SDVS by typing in the editor

```
(defsd sdname "[sd ...]")
```

and then evaluating.

If \texttt{defproof} does not work on some proof, \texttt{putproof} may be used. The differences are that in putproof, the name of the proof and the proof itself must be single quoted, and with

138
defproof the proof must be string quoted. Also, in putproof, the proof itself is given in Lisp notation, whereas defproof takes the unparsed prettyprint version.

Also note that in using the defproof method, quotation marks around path names must be preceded by backslashes to appear as follows:

(defproof proof1
  "(prove s22
   proof: readaxioms \"axioms/bitstring.axioms\")")

For example, in case you wish to change the name of a proof, and the above defsd method does not work, do the following:

(putproof 'new-proofname (proofp 'sdvproof))

and then evaluate.

To summarize, the two methods of obtaining a proof are evaluating in Lisp:

1. (proofp 'proofname) and
2. (get 'proofname 'proof).

Similarly, the two methods of obtaining a state delta named sdname are

1. (sdp 'sdname) and
2. (get 'sdname 'sd).

2.9.15 Batch Proofs

The user may write a batch proof in the editor by using the commands of the previous section, or may write it interactively by using the command createproof:

<sdvs.1> createproof
  name: tproof
  proof: prove test3 proof: (*, close)

Of course, the user may also type in the actual state delta in place of just giving its name, and may type in an arbitrarily long proof. However, given the complexity of the syntax and the probability of making an error, it is strongly recommended that the user modularize the work, or use the editor.

A batch proof may be run by typing its name at the prompt after the init command (if a clean system is needed), or after the interpret command (if it is desired to continue from the current context).
2.9.16 Disjunctions of State Deltas

Disjunctions of state deltas in preconditions are treated just like disjunctions of any other sentences. (Be sure that when typing in disjunctions of state deltas the state delta square brackets are enclosed by parentheses: \((sd \ldots j)\) or \((j sd \ldots j)\).) To use a disjunction of state deltas, a proof by cases must be done:

\[
\begin{align*}
<sdvs.1> \ ppsd \\
& \quad \text{state delta: } int1.sd \\
& \quad [sd \ pre: (true) \ post: (q)]
\end{align*}
\]

\[
<sdvs.1> \ ppsd \\
& \quad \text{state delta: } int2.sd \\
& \quad [sd \ pre: (true) \ post: (r)]
\]

\[
<sdvs.1> \ ppsd \\
& \quad \text{state delta: } s8 \\
& \quad [sd \ pre: (\text{formula}(int1.sd) \ or \ \text{formula}(int2.sd)) \\
& \quad \quad \text{post: (q or r)]}
\]

\[
<sdvs.1> \ prove \\
& \quad \text{state delta[]: } s8 \\
& \quad \text{proof[]: } <CR>
\]

open -- [sd \ pre: (\text{formula}(int1.sd) \ or \ \text{formula}(int2.sd)) \\
& \quad \quad \text{post: (q or r)]}

non-trivial propagations -- ([sd \ pre: (true) \\
& \quad \quad \text{post: (q)}) \ or \\
& \quad \quad ([sd \ pre: (true) \\
& \quad \quad \quad \text{post: (r)]})

Complete the proof.

\[
<sdvs.1.1> \ cases \\
& \quad \text{case predicate: } \text{formula}(int1.sd)
\]

\[
\begin{align*}
\text{cases} \ \text{-- formula}(int1.sd) \\
& \quad \text{open} \ -- [sd \ pre: (\text{formula}(int1.sd)) \\
& \quad \quad \text{comod: (all)} \\
& \quad \quad \text{post: (q or r)]}
\end{align*}
\]

\[
<sdvs.1.1.1.1> \ usable
\]

\[
\text{u(1)} \ [sd \ pre: (true) \ post: (q)]
\]

No usable quantified formulas.
<sdvs.1.1.1.1> apply
sd/number[highest applicable/once]: <CR>
       apply -- [sd pre: (true) post: (q)]
close -- 1 steps/applications
       open -- [sd pre: (¬(formula(int1.sd)))
                comod: (all)
                post: (q or r)]

Complete the proof.

<sdvs.1.1.2.1> usable

u(1) [sd pre: (true) post: (r)]
u(2) [sd pre: (formula(int1.sd))
    comod: (all)
    post: (q or r)]

No usable quantified formulas.

<sdvs.1.1.2.1> apply
sd/number[highest applicable/once]: <CR>
       apply -- [sd pre: (true) post: (r)]
close -- 1 steps/applications
       join -- [sd pre: (true)
                comod: (all)
                post: (q or r)]
close -- 1 steps/applications

2.9.17 System Commands

The two commands cd and pwd, when typed at the SDVS prompt, do the same as the Unix commands of the same name, i.e., connect to a directory and print the name of the working directory. The command shell allows the user to enter Unix commands at the prompt, and the command exit kills the currently running SDVS job. Exit is the same as doing bye in SDVS followed by (quit) in Lisp.

2.9.18 Errors

When the user (interactively) types a proof command that cannot be executed, an explanatory message is generated. When this same error occurs in a batch proof, a “command error” is generated and the proof halts. The command lasterror returns the current error
message.

2.9.19 Breaks in SDVS

Although we are confident that SDVS will usually not "crash" under normal operation, there are still some instances where a determined (or unlucky) user can break the system. One example is given here:

<sdvs.1> createsd
   name: decsd8
   [sd pre: declare(x, type(fn, x))
     comod[]: <CR>
     mod[]: <CR>
     post: false
   ]

<sdvs.1> prove
   state delta[]: decsd8
   proof[]: <CR>

open -- [sd pre: (declare(x, type(fn, x)))
   post: (false)]

   inserting -- pcovering(all,x)

Complete the proof.

If at this point you were to simp x = .x, the control stack would overflow.

Some of the reading and writing commands still react ungracefully if you type in a particularly nonsensical path name, for example.

There are surely more examples.

2.9.20 Bugs in SDVS

In addition to errors and breaks, there are, unfortunately, still bugs. This means that there are still some instances where a determined (or unlucky) user can prove false. It is reassuring when an automated proof succeeds, but the user should understand that success as an increase in confidence in the correctness of the theorem, not a fool-proof guarantee.

Here is an example of using self-reference to prove false:

<sdvs.1> ppsd
   state delta: self

   [sd pre: (formula(self)) post: (false)]
<sdvs.1> ppsd
    state delta: foo

    [sd pre: (true) post: (false)]

<sdvs.1> prove
    state delta[]: foo
    proof[]: <CR>

    open -- [sd pre: (true) post: (false)]

    Complete the proof.

<sdvs.1.1> prove
    state delta[]: self
    proof[]: <CR>

    open -- [sd pre: (formula(self))
              post: (false)]

    The state delta to be proven is already known to be TRUE.

    close -- 0 steps/applications

    Complete the proof.

<sdvs.1.2> apply
    sd/number[highest applicable/once]: <CR>

    apply -- [sd pre: (formula(self))
              post: (false)]

    The postcondition of the last applied state delta is inconsistent with
    the current state.

    close -- 1 steps/applications

<sdvs.2> ps

    << initial state >>
    proved foo <1>
    --> you are here <--

An algorithm to detect the unsoundness of circular state delta definitions (see [36]) has been implemented, but is not yet part of the distributed SDVS.
3 INTERACTION WITH ISPS

3.1 TR: TRANSLATOR FROM ISPS TO STATE DELTAS

In SDVS the internal language for expressing computations is the state delta language; thus the programs and specifications must be written in, or converted to, state deltas for processing by SDVS. For programs that already exist in other, more common, languages, or for programs that are more easily written in other languages, the problem of how to translate accurately into the state delta language must be overcome. In the simplest cases this may be done manually. However, for "real" programs, and in order to eliminate possible inaccuracies in the translation, the task is too difficult to be left to the user; the slightest error in the translation could invalidate the connection between the proof (about state deltas) and the original claim (about a program in some other language).

This section describes the action of the translator TR on the machine description language ISPS. Subsequent chapters discuss the translation of Ada and VHDL.

In fact, there are two different versions of the translator from ISPS to state deltas. The more recent translator will be discussed only in the last section of this chapter. It is still to be considered experimental, although it will eventually replace the old translator. It has been generated by the same uniform method as the translators for Ada and VHDL, and recognizes a slightly larger piece of ISPS (it allows "don't care" digits, and bit order in bitstrings can be low to high).

The version of ISPS that the (old) translator (TR) recognizes differs from the version described in the ISPS Manual ([12]) in several respects. The first category of differences contains those aspects of the "official" ISPS that TR does not support (see Figure 3): these include parallelism and two's-complement arithmetic.

The second category of differences consists of extra features that SDVS needs for the implementation proof paradigm. For example, when one is not interested in implementing the action of all target places, some of the machine variables ("place" names) must be designated as significant and the others as auxiliary. The mapping is defined only on the designated significant places. Another useful feature is the capability to intersperse standard ISPS code with state deltas. This can be used when one is not interested in the details of how a certain postcondition was brought about, but only in its effect, or in case that effect is not expressible in ISPS.

A complete description of Aerospace ISPS is given in the report ISPS for SDVS ([43]); the semantics of TR are described in [65], [13], and [44]; tests for static semantic errors are described in [44]; and problems with ISPS are described in [45].
• Bit declarations must be from high to low and have zero as the rightmost bit.
• Word declarations must be from low to high and have zero as the leftmost word.
• One-bit scalars must be declared with brackets, e.g. A<> (or A<0>, not A.
• The right-hand side of a mapping must have been declared prior to the mapping.
• In our implementation only scalar entities may be on the right-hand side of a mapping declaration. The left-hand entity may be either a scalar or an entire element of an array.
• The REQUIRE and DEFINE declarations are unsupported.
• Function formals and return value cannot be arrays.
• “;” is interpreted as if it were “NEXT,” i.e., parallel action is unsupported.
• Except for arithmetic transfer, unsigned is the only arithmetic mode implemented, and is required at the ISPS-Declaration level for compatibility with C-MU ISPS. The TC qualifier is required on arithmetic transfer.
• “?” is not allowed as a constant digit.
• The RESUME and TERMINATE statements are not allowed.
• UNPREDICTABLE, STOP, NO.OP, LAST.ONE, and UNDEFINED are the only implemented predeclared entities. UNDEFINED is allowed only on the right-hand side of a transfer operation.
• The arithmetic relation TST is unimplemented.
• MAIN, US, and TC are the only allowable qualifiers, with TC allowable only in the context of transfer operations.
• The user definition of qualifiers is unimplemented.
• Quoted strings after BEGIN/END are not allowed.
• There is no call by reference.
• Side-effect-causing operations on the left-hand side of any transfer operation are not permitted.
• Nonfunction, nonassignment expressions, e.g. \( A + B \), cannot be statements.
• The right operand in shifts cannot be longer than the left operand.
• The array index out of bounds may cause errors.

Figure 3: ISPS Features not Implemented in TR

146
3.2 MARKING

SDVS does the processing necessary to turn an ISPS program into an equivalent state delta or set of state deltas. Thus, ISPS programs can be used in, or as, preconditions or postconditions of state deltas.

A very simple example was given in Section 1.9. A more complicated example illustrating the capability to execute from an ISPS mark point is shown next. One can run a set of example ISPS proofs by typing run-test-proofs *isps-tests*.

When dealing with a proof based on state deltas created by TR from an ISPS program, the user does not have a convenient method of handling the specific state deltas representing the “continuation” of the program from each control point. To solve that problem, the system allows the user to label the location of control points in the ISPS program.

The initial and final control points are named by the system <machine-name>\STARTED and <machine-name>\HALTED, respectively. The exit point for an internal subroutine, <subroutine>, is <subroutine>\exited.

Consider the following ISPS program:

```plaintext
gcd.mach {US} := BEGIN ! gcd algorithm computes gcd(x,y)
 ! for inputs x and y
 ** local.variables **
 x<15:0>, ! input variable x
 y<15:0>, ! input variable y
 twos<5:0>, ! indicates common factor of twos between x and y
 gcdresult<15:0> ! result of gcd(x,y)
 ** algorithm **
 gcd {MAIN} := BEGIN
 twos - LAST.ONE(x OR y) NEXT ! store common factor of twos
 y - y SRO LAST.ONE(y) NEXT ! strip low-order zeros from y
 x - x SRO LAST.ONE(x) NEXT ! strip low-order zeros from x
 REPEAT
 BEGIN
 m1:= IF x LSS y => x@y - y@x NEXT ! swap x,y if x<y
 x - y NEXT ! assign x-y to x
 m2:= IF x EQL 0 => ! if x=0 (finished) then
 (m4 := gcdresult - y NEXT ! assign y to gcdy,
 gcdresult - gcdresult SLO twos NEXT ! remember common twos,
 LEAVE gcd) NEXT ! and exit
 m3:= x - x SRO LAST.ONE(x) ! strip low-order zeros from x
 END
 END
END
END
```

The command m epis generates state deltas corresponding to the state changes between mark points, instead of every state change represented in the unmarked ISPS program. If epis is used on an ISPS program with a potentially infinite loop in which the loop does
not have a mark point at the top, \texttt{mpisps} will not terminate. Gcd.isp has five mark points, including the initial state, which is a default mark point.

\texttt{Mpisps} prompts for starting mark point, stopping mark point, and preconditions.

\begin{verbatim}
<sdfs.1> mpisps
    path name[testproofs/manual/isps/alias.isp]: testproofs/manual/isps/gcd.isp

    starting mark point[]: <CR>
    ending mark points[]: <CR>
    preconditions[]: <CR>
    unique name level[1]: <CR>

Parsing ISPS file -- "testproofs/manual/isps/gcd.isp"

Markpoint-to-markpoint translating ISPS file
-- "testproofs/manual/isps/gcd.isp"

[sp pre: (.gcd.machine\upc = gcd.machine\started)
  mod: (x,twos,y,gcd.machine\upc)
  post: (#gcd.machine\upc = m1,
        #x = (zeros(|lastone(.x)|) @ .x)
        <15 + |lastone(.x)|:|lastone(.x)|>,
        #y = (zeros(|lastone(.y)|) @ .y)
        <15 + |lastone(.y)|:|lastone(.y)|>,
        #twos = lastone(.x usor .y))]

[sp pre: (.y gt |.|,gcd.machine\upc = m1)
  mod: (x,y,gcd.machine\upc)
  post: (#gcd.machine\upc = m2,#x = (.y -- .x)<15:0>,#y = .x)]

[sp pre: (.y le |.|,gcd.machine\upc = m1)
  mod: (x,gcd.machine\upc)
  post: (#gcd.machine\upc = m2,#x = (.x -- .y)<15:0>)]

[sp pre: (.x = 0.,gcd.machine\upc = m2)
  mod: (gcd.machine\upc)
  post: (#gcd.machine\upc = m4)]

[sp pre: (.x "= 0.,gcd.machine\upc = m2)
  mod: (gcd.machine\upc)
  post: (#gcd.machine\upc = m3)]

[sp pre: (.gcd.machine\upc = m4)
  mod: (gcdresult,gcd.machine\upc)
  post: (#gcd.machine\upc = gcd.machine\halted,
        #gcdresult = (.y @ zeros(|.twos|)<15:0>)]

[sp pre: (.gcd.machine\upc = m3)
  mod: (x,gcd.machine\upc)
  post: (#gcd.machine\upc = m1,
        #x = (zeros(|lastone(.x)|) @ .x)
        <15 + |lastone(.x)|:|lastone(.x)|>)]
\end{verbatim}

The flag \texttt{displaymp} was on. If it were off, the above state deltas would not be displayed.
<sdvs.2>  ppsd
state delta: mptisp
    file name: gcd.isp
    starting mark point[]: <CR>
    ending mark points[]: <CR>
    preconditions[]: <CR>

covering(gcd.machine,x,y,twos,gcdresult,gcd.machine\upc)
declare(x,type(bitstring,16))
declare(y,type(bitstring,16))
declare(twos,type(bitstring,6))
declare(gcdresult,type(bitstring,16))
[sp pre: (.gcd.machine\upc = gcd.machine\started)  
    mod: (x,twos,y,gcd.machine\upc)  
    post: (#gcd.machine\upc = m1,  
        #x = (zeros([lastone(.x)]) @ .x)  
        <15 + [lastone(.x)];[lastone(.x)]>,  
        #y = (zeros([lastone(.y)]) @ .y)  
        <15 + [lastone(.y)];[lastone(.y)]>,  
        #twos = lastone(.x user .y))]]
[sp pre: (.y gt |.x|,gcd.machine\upc = m1)  
    mod: (x,y,gcd.machine\upc)  
    post: (#gcd.machine\upc = m2,#x = (.y -- .x)<15:0>,#y = .x)]
[sp pre: (.y le |.x|,gcd.machine\upc = m1)  
    mod: (x,gcd.machine\upc)  
    post: (#gcd.machine\upc = m2,#x = (.x -- .y)<15:0>)]
[sp pre: (.|x| = 0,.gcd.machine\upc = m2)  
    mod: (gcd.machine\upc)  
    post: (#gcd.machine\upc = m4)]
[sp pre: (#x = 0,.gcd.machine\upc = m2)  
    mod: (gcd.machine\upc)  
    post: (#gcd.machine\upc = m3)]
[sp pre: (.gcd.machine\upc = m4)  
    mod: (gcdresult,gcd.machine\upc)  
    post: (#gcd.machine\upc = gcd.machine\halted,  
        #gcdresult = (.y @ zeros([.twos])<15:0>)]
[sp pre: (.gcd.machine\upc = m3)  
    mod: (x,gcd.machine\upc)  
    post: (#gcd.machine\upc = m1,  
        #x = (zeros([lastone(.x)]) @ .x)  
        <15 + [lastone(.x)];[lastone(.x)]>)]

Now we will use mpisps with mark points chosen.

<sdvs.2>  mpisps
    path name[testsheets/manual/ispzs/gcd.isp]:  testzooms/manual/ispzs/gcd.isp
    starting mark point[]: m2
    ending mark points[]: m3
    preconditions[]: <CR>
    unique name level[1]: <CR>

Parsing ISPS file -- "testzooms/manual/ispzs/gcd.isp"

Markpoint-to-markpoint translating ISPS file
-- "testzooms/manual/ispzs/gcd.isp"
[sd pre: (|.x| = 0, .gcd.machine\upc = m2)
 mod: (gcd.machine\upc)
 post: (#gcd.machine\upc = m4)]

[sd pre: (|.x| = 0, .gcd.machine\upc = m2)
 mod: (gcd.machine\upc)
 post: (#gcd.machine\upc = m3)]

[sd pre: (.gcd.machine\upc = m4)
 mod: (gcdresult, .gcd.machine\upc)
 post: (#gcd.machine\upc = gcd.machine\halted,
 #gcdresult = (.y @ zeros(|.twos|)<15:0>))]

<sdvs.3> mpisps
 path name[testproofs/manual/isps/gcd.isp]: <CR>
    starting mark point[]: m2
    ending mark points[]: <CR>
    preconditions[]: <CR>
    unique name level[]: <CR>

Parsing ISPS file -- "testproofs/manual/isps/gcd.isp"

Markpoint-to-markpoint translating ISPS file
-- "testproofs/manual/isps/gcd.isp"

[sd pre: (|.x| = 0, .gcd.machine\upc = m2)
 mod: (gcd.machine\upc)
 post: (#gcd.machine\upc = m4)]

[sd pre: (|.x| = 0, .gcd.machine\upc = m2)
 mod: (gcd.machine\upc)
 post: (#gcd.machine\upc = m3)]

[sd pre: (.gcd.machine\upc = m3)
 mod: (x, .gcd.machine\upc)
 post: (#gcd.machine\upc = m1,
    #x = (zeros(|lastone(.x)|)) @ .x)
    <15 + |lastone(.x)|:|lastone(.x)|>)]

[sd pre: (.gcd.machine\upc = m4)
 mod: (gcdresult, .gcd.machine\upc)
 post: (#gcd.machine\upc = gcd.machine\halted,
 #gcdresult = (.y @ zeros(|.twos|)<15:0>))]

[sd pre: (|.y| le |.x|, .gcd.machine\upc = m1)
 mod: (x, .gcd.machine\upc)
 post: (#gcd.machine\upc = m2, #x = (.x -- .y)<15:0>)]

[sd pre: (|.y| gt |.x|, .gcd.machine\upc = m1)
 mod: (x, .y, .gcd.machine\upc)
 post: (#gcd.machine\upc = m2, #x = (.y -- .x)<15:0>, #y = .x)]

<sdvs.4> mpisps
 path name[testproofs/manual/isps/gcd.isp]: <CR>

150
starting mark point[]:  m²
ending mark points[]:  <CR>
preconditions[]:  |x| ge |y|
unique name level[]:  <CR>

Parsing ISPS file -- "testproofs/manual/isps/gcd.isp"

Markpoint-to-markpoint translating ISPS file
-- "testproofs/manual/isps/gcd.isp"

[sd pre: (|x| ge |y|,|x| = 0,.gcd.machine\upc = m2)
  mod: (gcd.machine\upc)
  post: (%gcd.machine\upc = m4)]

[sd pre: (|x| ge |y|,|x| = 0,.gcd.machine\upc = m2)
  mod: (gcd.machine\upc)
  post: (%gcd.machine\upc = m3)]

[sd pre: (gcd.machine\upc = m3)
  mod: (gcdresult,gcd.machine\upc)
  post: (%gcd.machine\upc = gcd.machine\halted,
  gcdresult = (y @ zeros(|twos|)|<15:0>))]

[sd pre: (|y| le |x|,.gcd.machine\upc = m1)
  mod: (x,gcd.machine\upc)
  post: (%gcd.machine\upc = m2,|x| = (.x -- .y)<15:0>)]

[sd pre: (|y| gt |x|,.gcd.machine\upc = m1)
  mod: (x,y,gcd.machine\upc)
  post: (%gcd.machine\upc = m2,|x| = (.y -- .x)<15:0>,|y| = .x)]

<sdvs.5> mpisps
  path name[testproofs/manual/isps/gcd.isp]:  <CR>
  starting mark point[]:  m²
  ending mark points[]:  <CR>
  preconditions[]:  |x| = 0
  unique name level[]:  <CR>

Parsing ISPS file -- "testproofs/manual/isps/gcd.isp"

Markpoint-to-markpoint translating ISPS file
-- "testproofs/manual/isps/gcd.isp"

[sd pre: (|x| = 0,.gcd.machine\upc = m2)
  mod: (gcd.machine\upc)
  post: (%gcd.machine\upc = m4)]

[sd pre: (gcd.machine\upc = m4)
  mod: (gcdresult,gcd.machine\upc)

151
post: (#gcd.machine\upc = gcd.machine\halted,  
    #gcdresult = (.y @ zeros(.twos[])<15:0>))

The differences between isps and mpisps are as follows:

1. isps gives an incremental translation (with TRs in the postcondition); mpisps gives a set of state deltas;

2. isps translates every ISPS state change; mpisps accumulates effects from mark point to mark point;

3. mpisps takes account of extensions of ISPS by state deltas, assumptions, and external and auxiliary variables; and

4. isps(file.isp) should be used only in the precondition of a state delta (as a host description).

3.3 EXTENSIONS OF ISPS

The user may extend ISPS code in two main ways:

1. by interspersing assumptions or state deltas between ISPS statements, and

2. by declaring some ISPS variables to be external or auxiliary.

These extensions were found to be useful in specifying real machines in the context of setting up implementation proofs. They were found to be necessary, for example, in the work on the C30 machine [11].

3.3.1 Extending ISPS by Assumptions and State Deltas

The two methods for extending ISPS that are discussed in this section are

1. the assumptions ![/ASSUME: (expr)], and

2. inserting state deltas ![/EXTSD () (pre) (comod) (mod) (post)].

The expr field in assumption is any state delta formula (note that a statement such as "#x = 1" is not a legal state delta formula); it is interpreted to be a precondition to the rest of the ISPS routine. In other words, if the assumption is not true, execution cannot continue from that point.
The extended state delta has room for a markpoint field which is currently unimplemented and must be left empty. Other than that, it is interpreted with the same internal semantics as any state delta, and with the same control as if it had been a regular ISPS statement. It is useful for expressing state changes that cannot be expressed in ISPS. Notice that one may make a static assertion by using an extended state delta with (nil markpoint field and) nil precondition and nil mod list.

As an example, consider the following extended ISPS program (extest2.isp):

```plaintext
ds.mach {US} :=
BEGIN
Registers

x<15:0>, y<15:0>

Algorithm

exec {MAIN} :=
BEGIN

!![EXTSD: () (|.x| ge |.y|) () (x, y) (#x = 0(16) or #y = 0(16))] NEXT
POINT:=
if x eq 0 => y - 1 NEXT
if y eq 0 => x - 0
END
END
```

Let us mpisps it and look at the resulting state deltas.

<sdvs.1> mpisps

path name[testproofs/manual/isps/gcd.isp]: testproofs/manual/isps/extest2.isp

starting mark point[]: <CR>

ending mark points[]: <CR>

preconditions[]: <CR>

unique name level[1]: <CR>

Parsing ISPS file -- "testproofs/manual/isps/extest2.isp"

Markpoint-to-markpoint translating ISPS file

-- "testproofs/manual/isps/extest2.isp"

[sp pre: (|.x| ge |.y|, sd.mach\upc = sd.mach\started)
 mod: (y,x,sd.mach\upc)
 post: (#x = 0(16) or #y = 0(16), #sd.mach\upc = point)]

[sp pre: (|.x| <t |.y|, sd.mach\upc = sd.mach\started)
 mod: (sd.mach\upc)
 post: (#sd.mach\upc = point)]

[sp pre: (|.x| = 0, sd.mach\upc = point)
 mod: (y,sd.mach\upc)
 post: (#sd.mach\upc = sd.mach\halted, #y = 0(14) & 1(2))]}

[sp pre: (|.x| = 0 & .sd.mach\upc = point, |.y| = 0)
mod: (x, sd.machin€\upc)
post: (#sd.machin€\upc = sd.machin€\halted, #x = 0(16))]

[sd pre: (|x| = 0 & .sd.machin€\upc = point, |.y| = 0)
mod: (sd.machin€\upc)
post: (#sd.machin€\upc = sd.machin€\halted)]

<sdvs.2> ppsd
state dleta: mpisps
  file name: estest2.isp
  starting mark point[]: <CR>
  ending mark points[]: <CR>
  preconditions[]: <CR>

covering(sd.machin€, x, y, sd.machin€\upc)
declare(x, type(bitstring,16))
declare(y, type(bitstring,16))
[sd pre: (|.x| ge |.y|, sd.machin€\upc = sd.machin€\started)
mod: (y, x, sd.machin€\upc)
post: (#x = 0(16) or #y = 0(16), #sd.machin€\upc = point)]
[sd pre: (|.x| lt |.y|, sd.machin€\upc = sd.machin€\started)
mod: (sd.machin€\upc)
post: (#sd.machin€\upc = point)]
[sd pre: (|.|x| = 0, sd.machin€\upc = point)
mod: (y, sd.machin€\upc)
post: (#sd.machin€\upc = sd.machin€\halted, #y = 0(14) \& 1(2))]}
[sd pre: (|.|x| = 0 & .sd.machin€\upc = point, |.|y| = 0)
mod: (x, sd.machin€\upc)
post: (#sd.machin€\upc = sd.machin€\halted, #x = 0(16))]
[sd pre: (|.|x| = 0 & .sd.machin€\upc = point, |.|y| = 0)
mod: (sd.machin€\upc)
post: (#sd.machin€\upc = sd.machin€\halted)]

Let estest.isp be the above without POINT:

sd.machin€ {US} :=
BEGIN
**Registers**
x<15:0>, y<15:0>

**Algorithm**
exec {MAIN} :=
BEGIN

!![EXSTD: () (|.x| ge |.y|) () (x, y) (#x = 0(16) or #y = 0(16))] NEXT
if x eq 0 => y - 1 NEXT
if y eq 0 => x - 0
END
END

<sdvs.1> mpisps

154
[sd pre: (\[x\] ge \[y\], .sd.machine\[upc = sd.machine\]started)  
  mod: (x,y,sd.machine\[upc)  
  post: (exists gv-y-2935 exists gv-x-2934 (((gv-x-2934 = 0(16) or  
    gv-y-2935 = 0(16)) &  
    lh(gv-x-2934) = 16 &  
    lh(gv-y-2935) = 16) &  
    (gv-x-2934) = 0  
    --> #sd.machine\[upc  
      = sd.machine\]halted &  
      y = 0(14) @  
      1(2) &  
      x = 0(16)))))]

[sd pre: (\[x\] ge \[y\], .sd.machine\[upc = sd.machine\]started)  
  mod: (x,y,sd.machine\[upc)  
  post: (exists gv-y-2935 exists gv-x-2934 (((gv-x-2934 = 0(16) or  
    gv-y-2935 = 0(16)) &  
    lh(gv-x-2934) = 16 &  
    lh(gv-y-2935) = 16) &  
    (\[x\] - = 0  
    --> #sd.machine\[upc  
      = sd.machine\]halted &  
      x = 0(16) &  
      y = 0(16)))))]

[sd pre: (\[x\] it \[y\] & .sd.machine\[upc = sd.machine\]started, \[x\] = 0)  
  mod: (y,sd.machine\[upc)  
  post: (#sd.machine\[upc = sd.machine\]halted,y = 0(14) @ 1(2))]

[sd pre: (\[x\] it \[y\] & .sd.machine\[upc = sd.machine\]started,  
\[x\] = 0)  
  mod: (sd.machine\[upc)  
  post: (#sd.machine\[upc = sd.machine\]halted)]

<sdvs.2> ppsd  
  state delta: mpips  
  file name: extest.isp  
  starting mark point[]: <CR>  
  ending mark points[]: <CR>  
  preconditions[]: <CR>  
  covering(sd.machine,x,y,sd.machine\[upc)  
  declare(x,type(bitstring,16))  
  declare(y,type(bitstring,16))

155
[sd pre: (.|x| ge .|y|) ..sd.machine\upc = sd.machine\started]
mod: (x,y,sd.machine\upc)
post: (exists gv-y-2935 exists gv-x-2934 (((gv-x-2934 = 0(16) or
   gv-y-2935 = 0(16)) &
   lh(gv-x-2934) = 16 &
   lh(gv-y-2935) = 16) &
   (|gv-x-2934| = 0
   --> #sd.machine\upc
   = sd.machine\halted &
   $y = 0(14) @
   1(2) &
   $x = 0(16))))]]

[sd pre: (.|x| ge .|y|) ..sd.machine\upc = sd.machine\started]
mod: (x,y,sd.machine\upc)
post: (exists gv-y-2935 exists gv-x-2934 (((gv-x-2934 = 0(16) or
   gv-y-2935 = 0(16)) &
   lh(gv-x-2934) = 16 &
   lh(gv-y-2935) = 16) &
   (|gv-x-2934| ^ = 0
   --> #sd.machine\upc
   = sd.machine\halted &
   $x = 0(16) &
   $y = 0(16))))]]

[sd pre: (.|x| lt .|y|) ..sd.machine\upc = sd.machine\started,.|x| = 0]
mod: (y,sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted,$y = 0(14) @ 1(2))]
[sd pre: (.|x| lt .|y|) ..sd.machine\upc = sd.machine\started,.|x| = 0]
mod: (sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted)]

It is clear that the following state delta (call it extsd1) is true:

[sd pre: ( mpi8ps(exttest2.iap),..sd.machine\upc = sd.machine\started]
mod: (all)
post: (|$x| le $|y|, #sd.machine\upc = sd.machine\halted)]

and the following proof works:

(prove extsd1
  proof:
    cases .|x| ge .|y|
    then proof:
      (apply,
      cases .|x| = 0
      then proof:
        (apply,
        close)
      else proof:
        (notice .|y| = 0,
         apply,
         close))
    else proof:
      (apply,
cases |.x| = 0
  then proof:
    (apply,
     close)
else proof:
  cases |.y| = 0
    then proof:
    else proof:
      (apply,
       close))

As a good exercise, try to input the above state delta and proof in the editor, using the defsd and defproof functions. See Section 2.9.14. Remember to use two backslashes "\\" in the editor to get one real backslash.

We cannot currently prove the corresponding state delta involving extest.isp; any state deltas resulting from mpiisps that contain existential quantifiers should be suspect. The user should eliminate these quantifiers by adding mark points in suitable places in the original ISPS code.

Now let us examine the state delta formed by making .xge.y an assumption. Call the following extended ISPS program extest3.isp:

sd.machine {US} :=
BEGIN
**Registers**

x<15:0>, y<15:0>

**Algorithm**

exec {MAIN} :=
BEGIN

!![ASSUME: (.x ge |.y|)] NEXT
if x eql 0 => y - 1 NEXT
if y eql 0 => x - 0
END
END

<sdvs.1> mpiisps
path name[testproofs/manual/isps/extest.isp]: testproofs/manual/isps/extest3.isp
starting mark point[]: <CR>
ending mark points[]: <CR>
preconditions[]: <CR>

157
unique name level[1]: <CR>

Parsing ISPS file -- "testproofs/manual/isps/extest3.isp"

Markpoint-to-markpoint translating ISPS file
-- "testproofs/manual/isps/extest3.isp"

[sp pre: |.x| ge |.y| & .sd.mach\cupc = sd.mach\started,|.x| = 0]
mod: (y,sd.mach\cupc)
post: (#sd.mach\cupc = sd.mach\halted,\#y = 0(14) @ 1(2))]

[sp pre: |.x| ge |.y| & .sd.mach\cupc = sd.mach\started,
|.| \& = 0,|.y| = 0)
mod: (x,sd.mach\cupc)
post: (#sd.mach\cupc = sd.mach\halted,\#x = 0(16))]

3.3.2 External and Auxiliary Variables

External and auxiliary variables are introduced into ISPS descriptions in order to extend the possibilities of expression, not just to facilitate expression. These extended possibilities are reflected in the translation of the description into state deltas and the methods of proof needed to verify claims of implementation between two levels of description.

Both external and auxiliary variables satisfy specification needs arising from real problems. External variables have their intuitive motivation in "input variables," that is, in variables whose value may change at random, upon receipt of a signal from some external source
(external with respect to the level of description in which they appear designated as "external"), in addition to any changes explicitly required by that description.

The idea for auxiliary variables is found in the concept of temporary variables. Generally speaking, the designation "auxiliary" is used for any variable whose contents are not to be relied on, or even considered, by any "outside" observer (although, of course, they may be essential to the internal workings of the description). When viewed from the outside, auxiliary variables are not considered to be part of the state of the system.

### 3.3.3 External Variables

The suffix `!ext` may be appended to any ISPS declaration, e.g.

\[ X<15:0>!!ext. \]

This indicates that the variable may change value during any state change explicitly allowed by the ISPS program. There is no need to change the syntax or semantics of state deltas to account for the external variables. An ISPS program with `ext` is translated into state deltas just as before, with the addition that the external variables appear in every mod list.

In the case of markpoint-to-markpoint translation, care must be taken, for example, when there is a case split on an external variable between the starting and ending markpoint. However, when we take the view that markpoint-to-markpoint translation equals the composition of the state deltas representing the translation of the fine-grained state changes, the problem of external variables is just a subcase of the general problem (remember that the only special handling that external variables need is to be placed in every mod list).

For example, consider the machine (assumed below to be in file extest4.isp):

```plaintext
sd.machine {US} :=
BEGIN
Registers
 x<15:0>,
 y<15:0>!!ext
Algorithm
exec {MAIN} :=
BEGIN
 if x eql 0 => y - 1 NEXT
 if y eql 0 => x - 0
END
END
```

and consider the state delta

\[ <sdvs.1> ppsd \]

159
state delta: \texttt{extsd}

[\text{sd pre: } ([.]|x| = 1, \text{isps(extend4.isp)},
 .sd.machine\text{\textbackslash upc = sd.machine\textbackslash started})
 mod: (all)
 post: (\#sd.machine\text{\textbackslash upc = sd.machine\textbackslash halted, }|\#x| = 0 \text{ or } |\#x| = 1)]

The following proof works:

<sdvs.1> \texttt{pp}
 object: \texttt{extproof}

proof extproof:

prove extsd
 proof:
 (apply,
 cases |.y| = 0
 then proof:
 (apply 3,
 close)
 else proof:
 (apply 2,
 close))

<sdvs.1> \texttt{interpret}
 proof name: \texttt{extproof}

open -- [\text{sd pre: } ([.]|x| = 1, \text{isps(extend4.isp)},
 .sd.machine\text{\textbackslash upc = sd.machine\textbackslash started})
 mod: (all)
 post: (\#sd.machine\text{\textbackslash upc = sd.machine\textbackslash halted, }|\#x| = 0 \text{ or } |\#x| = 1)]

apply -- [\text{sd pre: } (.sd.machine\text{\textbackslash upc = sd.machine\textbackslash started,}
 .x == 0(2) \text{ or } 1(1))
 mod: (sd.machine\text{\textbackslash upc,y})
 post: ([\text{tr \{in SD.MACHINE\} IF;}])

cases -- |.y| = 0

open -- [\text{sd pre: } ([.]|y| = 0)
 comod: (all)
 mod: (all)
 post: (\#sd.machine\text{\textbackslash upc = sd.machine\textbackslash halted, }|\#x| = 0 \text{ or } |\#x| = 1)]

apply -- [\text{sd pre: } (.y == 0(2) \text{ or } 1(1))
 comod: (sd.machine\text{\textbackslash upc})
 mod: (sd.machine\text{\textbackslash upc,y})
 post: ([\text{tr \{in SD.MACHINE\} X....;}])

apply -- [\text{sd pre: } (\text{true})
 comod: (sd.machine\text{\textbackslash upc})]
mod: (sd.machine\upc.x,y)
post: ($x = 0(14) \in 0(2),
    \text{true} \in \text{SD.MACHINE}\text{halted})]

apply -- [sd pre: (true)]
comod: (sd.machine\upc)
mod: (sd.machine\upc,y)
post: ($sd.machine\upc = sd.machine\text{halted})]

close -- 3 steps/applications

open -- [sd pre: (¬(\{.y\} = 0))]
comod: (all)
mod: (all)
post: ($sd.machine\upc = sd.machine\text{halted},
    \#x = 0 \text{ or } \#x = 1])

apply -- [sd pre: (.y \equiv 0(2) \equiv 1(1))]
comod: (sd.machine\upc)
mod: (sd.machine\upc,y)
post: ([\text{true} \in \text{SD.MACHINE}\text{halted}])

apply -- [sd pre: (true)]
comod: (sd.machine\upc)
mod: (sd.machine\upc,y)
post: ($sd.machine\upc = sd.machine\text{halted})]

close -- 2 steps/applications

join -- [sd pre: (true)]
comod: (all)
mod: (all)
post: ($sd.machine\upc = sd.machine\text{halted},
    \#x = 0 \text{ or } \#x = 1)]

close -- 2 steps/applications

3.3.4 Auxiliary Variables

The suffix \textit{aux} may be appended to any ISPS declaration, e.g.
\texttt{X<15:0>!!aux}.

The difference between the semantics of such an annotated ISPS program and the semantics of an unannotated one becomes apparent only when one considers the interaction of the programs with another level. Auxiliary variables in target or host cannot play a role in the mapping. Thus, target auxiliary variables are not mapped from, and host auxiliary variables are not mapped to. Auxiliary variables do not appear in state deltas that are the result of \texttt{mpisps}.

Consider the machine

aux.machine \{US\} :=
BEGIN
** Registers **

x<15:0>,
y<15:0>,
temp<15:0>!!aux

** Algorithm **

exec {MAIN} :=
BEGIN
  temp = x next
  x = y next
  y = temp
END
END

<sdvs.1> ppst
state delta: mpsps
  file name: auxtest.isp
starting mark point[]: <CR>
ending mark points[]: <CR>
preconditions[]: <CR>

covering(aux.machine,x,y,aux.machine\upc)
declare(x,type(bitstring,16))
declare(y,type(bitstring,16))
[sd pre: (.aux.machine\upc = aux.machine\started)
  mod: (y,x,aux.machine\upc)
  post: (#aux.machine\upc = aux.machine\halted, #y = .x, #x = .y)]

Now we construct a theorem saying that auxtest implements itself.

<sdvs.1> implementation
  theorem name: aux.thm
  upper-level spec: mpsps
    file name: auxtest.isp
starting mark point[]: <CR>
ending mark points[]: <CR>
preconditions[]: <CR>
lower-level spec: isps
    file name: auxtest.isp
    mappings: mapping(.x,.x), mapping(.y,.y), mapping(.aux.machine\upc,.aux.machine\upc)
    constants[]: <CR>
    invariants[]: <CR>

Implementation theorem 'aux.thm' created.

<sdvs.1> ppst
state delta: aux.thm
[sd pre: (isps(auxtest.isp),
    aux.thm.places = union(x,y,aux.machine\upc,aux.machine\aux),
    aux.thm.mapped.places = union(x,y,aux.machine\upc),]
aux.thm.unmapped.places
  = diff(aux.thm.places,aux.thm.mapped.places)
post: (all disjoint(x,y,aux.machine\upc),
  [sd pre: (true)
  comod: (all)
  post: (forall a1 (lh(a1) = 16 --> lh(a1) = 16),
           forall a1 (lh(a1) = 16 --> lh(a1) = 16))],
  [sd pre: (.aux.machine\upc = aux.machine\started)
  mod: (y,x,aux.machine\upc,aux.thm.unmapped.places)
  post: (#aux.machine\upc = aux.machine\halted,\#y = .x,
       \#x = .y)])

<sdv.s.1> prove
  state delta[]: aux.thm
  proof[]: <CR>

open -- [sd pre: (isps(aux.test.isp),
      aux.thm.places
      = union(x,y,aux.machine\upc,aux.machine\aux),
      aux.thm.mapped.places = union(x,y,aux.machine\upc),
      aux.thm.unmapped.places
      = diff(aux.thm.places,aux.thm.mapped.places))
post: (all disjoint(x,y,aux.machine\upc),
  [sd pre: (true)
  comod: (all)
  post: (forall a1 (lh(a1) = 16 --> lh(a1) = 16),
           forall a1 (lh(a1) = 16 --> lh(a1) = 16))],
  [sd pre: (.aux.machine\upc = aux.machine\started)
  mod: (y,x,aux.machine\upc,aux.thm.unmapped.places)
  post: (#aux.machine\upc = aux.machine\halted,
       \#y = .x,\#x = .y)])

Complete the proof.

<sdv.s.1.1> whynotgoal
  simplify?[no]: <CR>

g(2) [sd pre: (true)
  comod: (all)
  post: (forall a1 (lh(a1) = 16 --> lh(a1) = 16),
           forall a1 (lh(a1) = 16 --> lh(a1) = 16))]
g(3) [sd pre: (.aux.machine\upc = aux.machine\started)
  mod: (y,x,aux.machine\upc,aux.thm.unmapped.places)
  post: (#aux.machine\upc = aux.machine\halted,\#y = .x,\#x = .y)]

<sdv.s.1.1> prove
  state delta[]: g
  number: 2
  proof[]: <CR>

open -- [sd pre: (true)
  comod: (all)
  post: (forall a1 (lh(a1) = 16 --> lh(a1) = 16),
           forall a1 (lh(a1) = 16 --> lh(a1) = 16))]

163
close -- 0 steps/applications

Complete the proof.

<sdvs.1.2> prove
state delta[]: g
number: 3
proof[]: <CR>

open -- [sd pre: (.aux.machine\upc = aux.machine\started)
  mod: (y,x,aux.machine\upc,aux.thm.unmapped.places)
  post: (#aux.machine\upc = aux.machine\halted,#y = .x,
    #x = .y)]

Complete the proof.

<sdvs.1.2.1> *

apply -- [sd pre: (.aux.machine\upc = aux.machine\started)
  mod: (aux.machine\upc,temp)
  post: (#temp = .x,
    [tr {in AUX.MACHINE} X....; Y....;])]

apply -- [sd pre: (true)
  comod: (aux.machine\upc)
  mod: (aux.machine\upc,x)
  post: (#x = .y,
    [tr {in AUX.MACHINE} Y....;])]

apply -- [sd pre: (true)
  comod: (aux.machine\upc)
  mod: (aux.machine\upc,y)
  post: (#y = .temp,
    [tr #AUX.MACHINE\halted]])

apply -- [sd pre: (true)
  comod: (aux.machine\upc)
  mod: (aux.machine\upc)
  post: (#aux.machine\upc = aux.machine\halted)]

close -- 4 steps/applications

close -- 2 steps/applications

3.4 THE NEW ISPS TRANSLATOR

The new translator can be accessed by the command ispstr. The associated predicate is newisps. We present an example comparing the new with the old translator on the ISPS program incl.isp:

! incl.ISP

incl {US} := (
**Registers**

\( x<7:0> \)

**Processes**

inc1 {MAIN} := BEGIN

\[ \text{REPEAT BEGIN}
\text{loop1:= x \cdot x + 1}
\text{END}
\text{END} \]

)

First, using the new translator:

<sdvs.1> \text{pp}
  \text{object: newinc0.sd}

[\text{sd pre: (newisps(inc1.isp))}
  \text{post: (newisps(inc1.isp))}]

We would expect this to be true and trivially provable, and it is with the new translator:

<sdvs.1> \text{setflag}
  \text{flag variable: autoclose}
  \text{on or off[off]: off}

setflag autoclose -- off

<sdvs.2> \text{prove}
  \text{state delta[]: newinc0.sd}
  \text{proof[]: \text{<CR>}}

open -- [\text{sd pre: (newisps(inc1.isp))}
  \text{post: (newisps(inc1.isp))}]

Complete the proof.

<sdvs.2.1> \text{goals}

\text{g(1) covering(inc1,inc1\upc,x)}
\text{g(2) declare(x,type(bitstring,8))}
\text{g(3) [sd pre: (.incl\upc = incl\started)}
  \text{comod: (all)}
  \text{mod: (incl\upc)}
  \text{post: ([ispsstr t(incl) incl ...])}}

<sdvs.2.1> \text{whynotgoal}

simplify?[no]: \text{<CR>}

165
The goal is TRUE. Type 'close'.

<sdvs.2.1> close

   close -- 0 steps/applications

<sdvs.3> setflag
   flag variable: autoclose
     on or off[on]: on
   setflag autoclose -- on

With the old translator, things are not so trivial:

<sdvs.1> pp
   object: newinc1.sd
   [sd pre: (isps(in1 isp))
      post: (isps(in1 isp))]

<sdvs.1> prove
   state delta[]: newinc1.sd
   proof[]: <CR>
   open -- [sd pre: (isps(in1 isp))
      post: (isps(in1 isp))]

   Complete the proof.

<sdvs.1.1> whynotgoal
   simplify?[no]: <CR>

   g(3) [tr @INC\STANGED [in INC1] REPEAT;]
   g(4) [tr @LOOP1 [in INC1] x...; REPEAT;]

In fact, it appears that this is unprovable in SDVS 12.
4 INTERACTION WITH ADA

This chapter describes the ability of SDVS 12 to deal with Ada programs and their proofs of correctness with respect to specifications written in state deltas. We first describe the subset of the Ada language that SDVS can currently handle: "SDVS 12 Ada." Then we give the proof rules that have been added to SDVS in order to reason about programs written in that language. Finally, we give some example proofs using those commands.

The additional implemented translational capability for Ada that SDVS 12 has over SDVS 11 spans the following Ada language features: subtypes of scalar types, integer type definitions, explicit type conversions, the generic function UNCHECKED_CONVERSION, and length clauses (representation clauses specifying an amount of storage associated with a type). In other words, what we call SDVS 12 Ada here is really what used to be called Stage 3 Ada, plus for loops and the elimination of existential quantification of declared variables (which formed SDVS 11 Ada or "Stage 4 Ada"), plus the above-mentioned features.

In addition, research has been performed on translating (and proving claims about) programs with real (floating) types ([46]), access types ([47]), and recursive programs ([48] and [40]), but these capabilities are not part of SDVS yet.

We are often interested in translating an Ada program in such a way that the resulting state deltas have invariants equivalent to (#all = .all), which essentially means that the execution happens in discrete steps. This is because in order to prove even simple safety properties of a program, the symbolic execution of that program in SDVS must contain only those states that are necessitated by the program. When weaknext_tr flag is on, the language translators of SDVS behave in this manner.

The user interface has been enhanced by the addition of a prototype X-Window capability for viewing the Ada code as it is being symbolically executed in the SDVS window. This feature is not part of the distributed SDVS 12 system, but at this time must be requested separately. The user types load-zpp at the Lisp prompt in order to turn on the Ada window. Then the specific line of Ada code that is being reasoned about or translated is highlighted. The Ada window cannot be resized or scrolled when SDVS is writing to it, although you may do this when SDVS is passive. If you intend to use this feature, all translation and Adalemma creation must be done while the Ada window is on.

More details and examples can be found in [14], [41], and [49]–[51].

4.1 TR: TRANSLATOR FROM ADA TO STATE DELTAS

As mentioned above, the current Ada capability of SDVS includes Stage 3 Ada, plus for loops and the elimination of existential quantification of declared variables, plus subtypes of scalar types, integer type definitions, explicit type conversions, the generic function UNCHECKED_CONVERSION, and length clauses.

SDVS 12 Ada is a nontrivial subset of Ada. It is the sixth (after Core Ada, Stage 1 Ada,
Stage 2 Ada, Stage 3 Ada, and SDVS 11 Ada) of a series of Ada language subsets of increasing semantic complexity whose translators have been implemented in SDVS. Core Ada was intended to be the basis of a rapid initial adaptation of SDVS to Ada, providing early confirmation of technically sound but untested techniques: formal (Ada) translator specification and specification-directed translator implementation.

4.1.1 Ada Language Subsets

The features of the six Ada subsets are as follows:

Core Ada: scalar assignment statements and simple expression evaluation; straight-line program flow; branching (if, case), and iteration (loop) statements; simple input and output (through the GET and PUT procedures); block structure, scoping and variable declarations; simple packages containing only variable declarations and other simple packages; use clauses; basic data types (integer, boolean, array).

Stage 1 Ada: the features of Core Ada, plus nonscalar assignment, subprogram declarations and subprogram calls, package bodies, record types, and enumeration types.

Stage 2 Ada: the features of Stage 1 Ada, plus user-defined exceptions and the character data type.

Stage 3 Ada: the features of Stage 2 Ada, plus context clause declarations (for certain I/O subpackages of the STANDARD package), rudimentary overload resolution for subprogram arguments, the string data type, and a preliminary version of floating-point types and operations.

SDVS 11 Ada: the features of Stage 3 Ada, plus for loops.

SDVS 12 Ada: the features of SDVS 11 Ada, plus subtypes of scalar types, integer type definitions, explicit type conversions, instances of the generic function UNCHECKED_CONVERSION, and length clauses (representation clauses specifying an amount of storage associated with a type).

Core Ada posed no fundamental technical obstacles to interfacing it to SDVS, and the technical challenges inherent in the adaptation of successive Ada stages to SDVS have been successfully overcome. On the other hand, it is presently not clear how to interface certain advanced Ada language features, such as generics, real-time features, and tasking.

4.1.2 SDVS 12 Ada Language Features

A more detailed description of SDVS 12 Ada language features now follows.

These features are partitioned into four groups: statements, expressions, declarations, and data types. More details and examples can be found in [50].

168
Statements
The kinds of statements included in SDVS 12 Ada are null, assignment, conditional (if), case, loop (while loops with and without a condition and for loops over integer or enumeration type ranges), block, exit, simple input (GET), simple output (PUT), subprogram call and return, and raise statements.

Expressions
A representative class of Ada expressions is included in SDVS 12 Ada. These expressions contain simple names (identifiers), and dotted names (e.g. pkg.subp.blk.id, where pkg is the name of a package, subp the name of a subprogram, blk the name of a block, and id is a simple name). Other forms of names in SDVS 12 Ada denote array and record components, and function calls. Also included in expressions are numeric and boolean constants, short-circuit boolean operators (and then, or else), relational operators (=, /=, <, <=, >, >=), binary boolean and arithmetic operators (and, or, xor, +, -, *, /, mod, rem, **), and unary arithmetic and boolean operators (-, abs, not). SDVS 12 Ada expressions can contain aggregates. These aggregates must consist only of positional component associations (an array aggregate) or named component associations (a record aggregate).

Declarations
SDVS 12 Ada includes declarations of objects that can be constants and variables of scalar, one-dimensional array, string, record, and enumeration types. Also included are package specifications, package bodies, “with” clauses (the only packages recognized in such clauses are the STANDARD packages TEXT_IO, TEXT_IO.INTEGER_IO, and TEXT_IO.FLOAT_IO; the only subprograms made available through these subpackages are GET and PUT), “use” clauses, subprogram (i.e., procedure and function) specifications and bodies, and user-defined exceptions and exception handlers.

Data Types
SDVS 12 Ada includes the following basic data types: integer, boolean, character (see Section 9.9 for details), string, and float. Arrays in SDVS 12 Ada are limited to be one-dimensional; the elements of these arrays can have any SDVS 12 Ada type. Thus multidimensional arrays are synthesized in a “curried” way from one-dimensional ones. SDVS 12 Ada has record and enumeration types, where record fields can have any SDVS 12 Ada type. SDVS 12 Ada also encompasses subtypes of scalar types, and integer type definitions. Furthermore, explicit type conversions between integer types are allowed.

Miscellaneous
SDVS 12 Ada includes instances of the generic function UNCHECKED_CONVERSION, as well as length clauses (representation clauses specifying an amount of storage associated with a type).
4.2 COMMANDS DEALING WITH ADA

SDVS 12 has the ability to prove theorems of input-output total correctness\(^6\) or safety for SDVS 12 Ada programs. This section demonstrates the construction of theorems to be proved, describes the contents of these theorems, and then gives some hints on proof strategy.

The user can run some example proofs by typing `run-test-proofs *ada-tests*`.

4.2.1 Theorems

Theorems stating total correctness properties for SDVS 12 Ada programs are essentially input/output assertions. The notations for the input and output of SDVS 12 Ada programs are described in the next section. Theorems about SDVS 12 Ada programs are always written in the state delta language, which currently provides the only specification language for Ada in SDVS. The formats of typical state deltas specifying total correctness and safety properties for an SDVS 12 Ada program are shown below.

First, the total correctness case:

\[
[\text{sd pre}: \text{(ada(adaprog.ada),<initial correctness requirements>)}] \\
\text{comod}: \text{(all)} \\
\text{mod}: \text{(all)} \\
\text{post}: \text{(<final correctness requirements>, terminated(mainprog))}
\]

Two predicates are introduced in the state delta shown above. The formula `ada(adaprog.ada)` represents the translation of the SDVS 12 Ada program in the file `adaprog.ada` into the language of the state delta logic. The formula `terminated(mainprog)` is asserted when SDVS symbolically executes to the end of the SDVS 12 Ada procedure `mainprog`, providing explicit representation of program termination.

Now we consider the nonterminating safety case. We want to show that there exists a time when some triggering condition holds, and thereafter a safety requirement is true. The safety state delta is

\[
[\text{sd pre}: \text{(true)}] \\
\text{comod}: \text{()} \\
\text{mod}: \text{()} \\
\text{post}: \text{(<safety requirement>)}
\]

and the safety claim about the Ada program is

\(^6\)The phrase "total correctness" means correct and terminating.
[sd pre: (ada(adaprog.ada),<initial correctness requirements>)]
comod: (all)
mod: (all)
post: (<triggering condition>, <safety state delta>)]

We put off an example until Section 8.5, since knowledge of state deltas with invariants is necessary first.

The ada predicate is given meaning only by the proof command adatr, which takes as its only argument the name of a file to be translated. The execution of this command causes the translation of the file (assuming the file contains a syntactically valid SDVS 12 Ada program) into the state delta logic, which yields formulas describing the predefined environment of the SDVS 12 Ada program, in addition to a single state delta for the symbolic execution of the program. The remaining SDVS 12 Ada proof command, applydecls, is discussed below.

4.2.2 Input and Output

Input and output buffers (arrays) are part of the predefined environment for all SDVS 12 Ada programs. Translating a file containing an Ada program prog by the adatr proof command yields SDVS 12 declare formulas for four objects, described below.

stdin is an arbitrary size, 1-origin array of polymorphic type that holds input values for prog.

stdin\ctr is an integer counter, initialized to 1, that indexes stdin for the get statement.

stdout is an arbitrary size, 1-origin array of polymorphic type that holds output values for prog.

stdout\ctr is an integer counter, initialized to 1, that indexes stdout for the put statement.

Conditions on the sizes of the input and output buffers and the contents of the input buffer are typical correctness requirements held in the preconditions of state deltas representing SDVS 12 Ada theorems. Conditions relating the contents of the output buffer to those of the input buffer are typical correctness requirements held in the postconditions of those theorems. For example, the state delta shown below claims the total correctness property that the example program adaprog.ada has two elements in its input and output buffers, and terminates with the values in its input buffer written into its output buffer.

[ad pre: (ada(adaprog.ada),range(stdin) = 2,range(stdout) = 2)
comod: (all)
mod: (all)
 terminated(adaprog))]

171
4.2.3 Proof Strategy

Now that Ada theorems and their contents have been introduced, a strategy for developing their proofs may be discussed. Proofs in SDVS that involve dynamic properties\(^7\) of Ada programs proceed by symbolic execution. The user develops proofs by integrating symbolic execution commands with commands that prove properties about the current state. Thus, at any point in an Ada proof, there is an analogous execution point in the corresponding Ada program.

A typical step the prover wishes to make (in fact, the first step) is to elaborate Ada declarations. Elaborating a declaration consists of asserting and symbolically executing a state delta with those declarations in the postcondition. This involved multiple proof commands in SDVS 6 for each declaration. For this reason, the proof command \texttt{applydecls} was introduced to SDVS 7 (and retained in all later versions). This command elaborates the declarations; it generates an error if the current symbolic execution point does not immediately precede an SDVS 12 Ada declaration. The command \texttt{go} does the work of \texttt{applydecls} and then continues to execute state deltas until symbolic execution cannot proceed for some reason (for example, the declaration had a conditional initialization).

Subprogram calls are handled by the following sequence of actions:

1. declare formal parameters
2. assign input values to IN parameters
3. assert \texttt{.pc=at(fully.qualified.subprogram.name)}
4. execute body
5. assert \texttt{.pc=exited(fully.qualified.subprogram.name)}
6. assign output values to OUT parameters
7. undeclare formal parameters

The symbolic execution of straight-line code can be accomplished by one of the proof commands available for that purpose, such as \texttt{until}, \texttt{execute}, and \texttt{apply}. The symbolic execution of conditionals (\texttt{if-then-else} statements) may be accomplished by the \texttt{cases} or \texttt{subcases} proof commands, which split the proof into two cases, the \texttt{then} case and the \texttt{else} case. The symbolic execution of SDVS 12 Ada \texttt{case} statements (multi-way conditionals) may be accomplished by the \texttt{mcases} proof command. The only dynamic SDVS 12 Ada constructs remaining are the (while and for) loop statements, discussed below.

The symbolic execution of SDVS 12 Ada loops is performed by induction, through the proof command \texttt{induct}. A basic \texttt{recurse} command for the symbolic execution of Ada programs

\(^{7}\text{The static properties of Ada programs are fairly uninteresting. They involve only the predefined environment discussed in the previous section.}\)
with recursive procedures has been implemented in an experimental fashion, but is not yet available in SDVS 12.

As one can see, the structure of an SDVS 12 Ada proof roughly assumes the structure of the program it proves. In fact, the dynamic structure of the proof will usually have a one-to-one correspondence with the structure of the Ada program being considered. However, writing the dynamic portion of the proof is usually not the difficult part of the proof. The difficult part is proving static claims about the state without full decision procedures for the domains in question.

Finally, we have implemented a "statement marking" capability for SDVS 12 Ada. One sets a mark in a comment line just before the statement being marked, using the notation "--*" (no spaces), e.g.

```
--* foo
x := 1;
```

During symbolic execution, this will yield "pc = at(foo)" at the point where the state delta(s) representing the marked statement become usable, so that a go ... until .pc = at(foo) command can be given to execute symbolically to the particular point in the Ada program just before the marked statement.

Any statement can be so marked, and the program remains acceptable to an Ada compiler. A mark can be turned into a regular (uninterpreted in SDVS) comment simply by inserting a space between the "--" and the "*", or by beginning the whole line with an extra pair of hyphens (even one extra will do, so long as it's not followed by a space).

### 4.3 EASY EXAMPLE OF AN ADA PROOF

First we give the proof of correctness of a very trivial Ada program. Consider the program `triv`:

```ada
with text_io; use text_io;
with integer_io; use integer_io;

procedure triv is
 x : integer; -- inputs
begin
 get(x);
 x := x + 1;
 put(x);
end triv;
```

We translate it to state deltas by the `adatr` command:

```
<sdvs.1> adatr
```
path name [testproofs/fo orchestra]: testproofs/manual/ada/triv.ada

Reading parse tree file for Stage 4 Ada file -- "triv.ada"

Translating Stage 4 Ada file -- "testproofs/manual/ada/triv.ada"

<sdv.2> pp
  object: ada
  file name [triv.ada]: triv.ada

alldisjoint(triv..triv)
covering (.triv, triv\pc, stdin, stdin\ctr, stdout, stdout\ctr)
declare (stdin, type [array, 1, range (stdin), type (polymorphic)])
declare (stdin\ctr, type (integer))
  .stdin\ctr = 1
declare (stdout, type [array, 1, range (stdout), type (polymorphic)])
declare (stdout\ctr, type (integer))
  .stdout\ctr = 1

Now we create a state delta that claims that the value of x (the standard input) will go from 2 to 3, and be recorded in the standard output:

<sdv.2> created
  name: triv.sd
  [SD pre: ada(triv.ada), stdin[1]=2
  comod[]: all
  mod[]: all
  post: #stdout[1] = 3, terminated(triv)]

We now prove triv.sd by repeated application:

<sdv.2> prove
  state delta[]: triv.sd
  proof[]: <CR>

open -- [sd pre: (ada(triv.ada), stdin[1] = 2)
  comod: (all)
  mod: (all)
  post: (#stdout[1] = 3, terminated(triv))]

Complete the proof.

<sdv.2.1> usable

u(1) [sd pre: (true)
  comod: (all)
  mod: (triv\pc)
  post: (<datatr procedure triv is
        x : integer
        begin
          get (x);

174
No usable quantified formulas.

\[<sdvs.2.1>\hspace{1em} \text{apply} \hspace{1em} \] 
\[\text{sd/number}[\text{highest applicable/once}]: \hspace{1em} <CR>\]

\[\text{apply} -- [\text{sd pre: (true)}] \hspace{1em} \]
\[\text{comod: (all)} \hspace{1em} \]
\[\text{mod: (triv\pc)} \hspace{1em} \]
\[\text{post: (}<\text{adatr procedure triv is}} \hspace{1em} \]
\[\quad x : \text{integer} \hspace{1em} \]
\[\quad \begin{align*} & \text{begin} \\
& \text{get } (x)\text{;} \hspace{1em} \\
& \quad \ldots \hspace{1em} \\
& \text{end triv;>)}\]

\[<sdvs.2.2>\hspace{1em} \text{usable} \hspace{1em} \]
\[\begin{align*} \\
& \text{u(1) [sd pre: (true)} \hspace{1em} \\
& \text{comod: (all)} \hspace{1em} \\
& \text{mod: (triv\pc,triv)} \hspace{1em} \\
& \text{post: (alldisjoint(triv.,triv,x),covering(#triv.,triv,x,} \hspace{1em} \\
& \quad \text{declare(x,type(integer)),} \hspace{1em} \\
& \quad <\text{adatr } x : \text{integer}>)] \end{align*} \]

No usable quantified formulas.

\[<sdvs.2.2>\hspace{1em} \text{applydecls} \hspace{1em} \]

\[\text{apply} -- [\text{sd pre: (true)}] \hspace{1em} \]
\[\text{comod: (all)} \hspace{1em} \]
\[\text{mod: (triv\pc,triv)} \hspace{1em} \]
\[\text{post: (alldisjoint(triv.,triv,x),covering(#triv.,triv,x),} \hspace{1em} \\
& \text{declare(x,type(integer)),} \hspace{1em} \\
& <\text{adatr } x : \text{integer}>)] \]

\[\text{apply} -- [\text{sd pre: (true)}] \hspace{1em} \]
\[\text{comod: (all)} \hspace{1em} \]
\[\text{mod: (triv\pc,triv)} \hspace{1em} \]
\[\text{post: (alldisjoint(triv.,triv,x),get\item,} \hspace{1em} \\
& \text{covering(#triv.,triv,get\item),} \hspace{1em} \\
& \text{declare(get\item,type(polymorphic)),} \hspace{1em} \\
& <\text{adatr get } (x)>)] \]

applydecls -- declaration elaboration complete.

\[<sdvs.2.4>\hspace{1em} \text{usable} \hspace{1em} \]

\[\text{u(1) [sd pre: (true)} \hspace{1em} \\
& \text{comod: (all)} \hspace{1em} \\
& \text{mod: (triv\pc)} \]

175
post: (#triv\pc = at(standard.text_io.get),
<adatr get (x)>)]

No usable quantified formulas.

<sdvs.2.4> apply
sd/number[highest applicable/once]: <CR>

apply -- [sd pre: (true)
comod: (all)
mod: (triv\pc)
post: (#triv\pc = at(standard.text_io.get),
<adatr get (x)>)]

<sdvs.2.5> usable

u(1) [sd pre: (.triv\pc = at(standard.text_io.get))
comod: (all)
mod: (triv\pc, stdin\ctr, get\item)
post: (#get\item = .stdin[.stdin\ctr],
#stdin\ctr = .stdin\ctr + 1,
#triv\pc = exited(standard.text_io.get),
<adatr null;>)]

No usable quantified formulas.

<sdvs.2.5> apply
sd/number[highest applicable/once]: <CR>

apply -- [sd pre: (.triv\pc = at(standard.text_io.get))
comod: (all)
mod: (triv\pc, stdin\ctr, get\item)
post: (#get\item = .stdin[.stdin\ctr],
#stdin\ctr = .stdin\ctr + 1,
#triv\pc = exited(standard.text_io.get),
<adatr null;>)]

<sdvs.2.6> usable

u(1) [sd pre: (true)
comod: (all)
mod: (triv\pc, x)
post: (#x = .get\item,
<adatr get (x)>)]

No usable quantified formulas.

<sdvs.2.6> apply
sd/number[highest applicable/once]: <CR>

apply -- [sd pre: (true)
comod: (all)
mod: (triv\pc,x)
post: (\$x = .get\item,
<adatr get (x)>)]

<sdvs.2.7> usable

u(1) [sd pre: (true)
comod: (all)
mod: (triv\pc,triv,get\item)
post: (covering(.triv,\$triv,get\item),undeclare(get\item),
<adatr get (x)>)]

No usable quantified formulas.

<sdvs.2.7> apply
sd/number[highest applicable/once]: <CR>

apply -- [sd pre: (true)
comod: (all)
mod: (triv\pc,triv,get\item)
post: (\$x = x + 1,
<adatr x := x + 1;>)]

<sdvs.2.8> usable

u(1) [sd pre: (true)
comod: (all)
mod: (triv\pc,x)
post: (\$x = .x + 1,
<adatr x := x + 1;>)]

No usable quantified formulas.

<sdvs.2.8> apply
sd/number[highest applicable/once]: <CR>

apply -- [sd pre: (true)
comod: (all)
mod: (triv\pc,x)
post: (\$x = .x + 1,
<adatr x := x + 1;>)]

We could continue typing applies until the proof (and program) terminates, but the same effect can also be achieved by the one proof command go:

<sdvs.1> prove
state delta[]: triv.sd
proof[]: go
open -- [sd pre: (ada(triv.ada),.stdin[1] = 2)
comod: (all)
mod: (all)
post: (#stdout[1] = 3, terminated(triv))

apply -- [sd pre: (true)]
comod: (all)
mod: (triv\pc)
post: (..<adatr procedure triv is
  x : integer
  begin
  get (x);
  ...
end triv:>)

apply -- [sd pre: (true)]
comod: (all)
mod: (triv\pc, triv)
post: (all_disjoint(triv, triv, x), covering(#triv, triv, x),
  declare(z, type(integer)),
  <adatr x : integer>)

apply -- [sd pre: (true)]
comod: (all)
mod: (triv\pc, triv)
post: (all_disjoint(triv, triv, get\item),
  covering(#triv, triv, get\item),
  declare(get\item, type(polynomial)),
  <adatr get (x)>)

apply -- [sd pre: (true)]
comod: (all)
mod: (triv\pc)
post: (#triv\pc = at(standard.text.io.get),
  <adatr get (x)>)

apply -- [sd pre: (.triv\pc = at(standard.text.io.get))]
comod: (all)
mod: (triv\pc, stdin\ctr, get\item)
post: (#get\item = stdin.[stdin\ctr],
  stdin\ctr = stdin[ctr + 1],
  #triv\pc = exited(standard.text.io.get),
  <adatr null;>)

apply -- [sd pre: (true)]
comod: (all)
mod: (triv\pc, x)
post: (#x = .get\item,
  <adatr get (x)>)

apply -- [sd pre: (true)]
comod: (all)
mod: (triv\pc, triv, get\item)
post: (covering(.triv, #triv, get\item), undeclare(get\item),
  <adatr get (x)>)

apply -- [sd pre: (true)]
comod: (all)
mod: (triv \ pc, x)
post: ($x = .x + 1,$
      <adatr x := x + 1; $>)

apply -- [sd pre: (true)
comod: (all)
    mod: (triv \ pc, triv)
    post: (alldisjoint(triv, triv, put \ item),
          covering(#triv, triv, put \ item),
          declare(put \ item, type(polymorphic)),
          <adatr put (x)>)]

apply -- [sd pre: (true)
comod: (all)
    mod: (triv \ pc, put \ item)
    post: ($put \ item = .x,$
          <adatr put (x)>)]

apply -- [sd pre: (true)
comod: (all)
    mod: (triv \ pc)
    post: ($triv \ pc = at(standard.text.io.put),
          <adatr put (x)>)]

apply -- [sd pre: (.triv \ pc = at(standard.text.io.put))
comod: (all)
    mod: (triv \ pc, stdout[.stdout[ctr], stdout[ctr])
    post: (#stdout[.stdout[ctr] = .put \ item,
           #stdout[ctr = .stdout[ctr + 1,
           #triv \ pc = exited(standard.text.io.put),
           <adatr null; >)]

apply -- [sd pre: (true)
comod: (all)
    mod: (triv \ pc, triv, put \ item)
    post: (covering(.triv, #triv, put \ item), undeclare(put \ item),
           <adatr put (x)>)]

apply -- [sd pre: (true)
comod: (all)
    mod: (triv \ pc, triv, x)
    post: (covering(.triv, #triv, x), undeclare(x),
           <adatr x : integer>)]

apply -- [sd pre: (true)
comod: (all)
    mod: (triv \ pc)
    post: (terminated(triv))]

close -- 15 steps/applications
4.4 NONTRIVIAL EXAMPLE OF AN ADA PROOF

We give here an example of a proof of an Ada program containing enumeration types, records, in-out parameters, a procedure called within a loop, and a function. In the next section we consider offline characterization and proving lemmas about Ada procedures. In the final section we present another example proof, that of an SDVS 12 Ada program with packages and the "use" clause.

The program discussed in this section is called WorkWeek, and it calculates the number of hours worked and rested in one week. See Figures 4 and 5.

The state delta to be proven is workweek.sd:

\[
\begin{align*}
\text{[sd pre: (ada(workweek.ada),range(stdout) = 1)} \nonumber \\
\text{mod: (all)} \nonumber \\
\text{post: (#stdout[1] = 1, terminated(workweek))]}
\end{align*}
\]

The proof workweek:proof (see Figures 6 and 7) is by induction, with two extra complications: First, the universe of declared places changes inside the loop when the procedure is called. This necessitates the line let loop.universe = .workweek in the proof. Second, there must be a proof by enumerating subcases that for i le 5, (elt(.week[i],.days.saturday)).

4.5 OFFLINE CHARACTERIZATION

The Ada offline characterization facility comprises three commands:

- the createadalemma command, which defines a lemma about an Ada subprogram (procedure or function), and which collects other necessary descriptive information from the user;

- the proveadalemma command, which sets up an environment within which the state delta of the lemma can be proved — this must be at the top level of symbolic execution, and we do not allow lemmas dependent on an existing context; and

- the invokeadalemma command, which uses a previously created lemma to construct a usable state delta, including the substitution of an actual program continuation for the unspecified (null) continuation, and the application of the resulting state delta.

A fourth command adasubprogenv (a query command newly implemented in SDVS 12) is quite useful in connection with Ada offline characterization. It displays the mapping of fully qualified program names to uniquely qualified place names for all places constituting the environment for the proof of an adalemma about a subprogram. This assists the user to specify correctly these places in the statement and proof of the adalemma. In the absence of such a mapping, for a large program it can be difficult for the user to predict, simply by manual inspection of the Ada source code, the unique place names that will be automatically generated by the translator for the adalemma proof.
with text_io; use text_io;
with integer_io; use integer_io;

PROCEDURE WorkWeek IS

TYPE days IS
  (monday, tuesday, wednesday, thursday, friday,
   saturday, sunday);

TYPE time IS
  RECORD
    work : integer;
    rest : integer;
  END record;

week : ARRAY(1..7) OF days;

divlabor : time;

PROCEDURE Assign_Time (day : IN days;
                        work, rest : IN OUT integer) IS
  BEGIN
    IF day < saturday
      THEN BEGIN
        work := work + 8;
        rest := rest + 16;
      END;
    ELSE rest := rest + 24;
    END IF;
  END Assign_Time;

FUNCTION Check_Divlabor (work, rest : integer)
  RETURN integer IS
  BEGIN
    IF work = 40 AND rest = 128
      THEN RETURN 1;
      ELSE RETURN 0;
    END IF;
  END Check_Divlabor;

i : integer;

timecheck : integer;

Figure 4: The Program WorkWeek, Part 1
BEGIN

week(1) := monday;
week(2) := tuesday;
week(3) := wednesday;
week(4) := thursday;
week(5) := friday;
week(6) := saturday;
week(7) := sunday;

divlabor.work := 0;
divlabor.rest := 0;

i := 1;
WHILE i < 8 LOOP
   Assign.Time(week(i), divlabor.work, divlabor.rest);
   i := i + 1;
END LOOP;

timecheck := Check.Divlabor(divlabor.work, divlabor.rest);

put(timecheck);

END WorkWeek;

Figure 5: The Program WorkWeek, Part 2
(adapt "testproofs/manual/ada/workweek.ada",
prove workweek.sd
proof:
  (applydecls,
    until #i = 1,
    letsd u1 = u(1),
    letsd u2 = u(2),
    let loop.universe = .workweek,
    induct on: .i
    from: 1
    to: 8
    invariants: (formula(u1),formula(u2),
      covering(.workweek,loop.universe),
      .record(divlabor,work)
        = (if .i le 5
            then (.i - 1) * 8
            else 40),
      .record(divlabor,rest)
        = (if .i le 5
            then (.i - 1) * 16
            else 80 + (.i - 6) * 24))
    conodlist: (stdout\ctr,week)
    modlist: (diff(all,union(stdout\ctr,week)))
  base proof: close
  step proof:
    cases .i le 5
    then proof:
      (subcases .i le 5
        modlist:
        subgoal: (elt(.week[.i],saturday))
        then proof:
          mcases
            (case: 1 le .i & .i lt 2
              proof: close
            case: 2 le .i & .i lt 3
              proof: close
            case: 3 le .i & .i lt 4
              proof: close
            case: 4 le .i & .i lt 5
              proof: close
            case: 5 le .i
              proof: close)
Figure 6: The Proof WorkWeek.Proof, Part 1
else proof:
    go #i = .i + 1,
    close)
else proof:
   (subcases .i le 5
    modlist:
    subgoal:  (¬(elt(.week[.i],saturday)))
    then proof:
    else proof:
    mcases
    (case: 6 le .i & .i lt 7
        proof: close
    case: 7 le .i
        proof: close),
    go #i = .i + 1,
    close),
    go terminated(workweek),
    close)

Figure 7: The Proof WorkWeek.Proof, Part 2

Perhaps the best way to discuss these commands is through an example. Below, we give an annotated SDVS session in which a lemma is created, proved, and invoked. The target program ztest (Figure 8) is very simple, but adequate for this illustration. It includes a two-parameter procedure that exchanges the values of its two integer parameters, and a main program that invokes the procedure.

The lemma will simply assert, in the form of a state delta, the fact that the procedure exchanges its parameters. It will be invoked twice in the proof of a state delta describing the effect of the program as a whole, which is simply this: if the input stream consists of three integers i, j, k, then the output stream will be j, k, i.

First, we input a file that contains the predefined state delta describing the action of the test program:

<sdres.4> pp
  object:  ztest.sd

[sd pre: (ada(xtest.ada))
  comod: (all)
  mod: (all)
        #stdout[3] = .stdin[1])]
with text_io; use text_io;
with integer_io; use integer_io;

PROCEDURE xtest IS
  x, y, z : integer := 1;
  PROCEDURE exchange(a, b : IN OUT integer) IS
    c : integer;
  BEGIN
    c := a;
    a := b;
    b := c;
  END exchange;
BEGIN
  get(x);
  get(y);
  get(z);
  exchange(x, y);
  exchange(y, z);
  put(x);
  put(y);
  put(z);
END xtest;

Figure 8: The Program Xtest
We can use the adasubprogenv query command to establish the correspondence between fully qualified Ada program names for objects constituting the execution environment of procedure exchange and the uniquely qualified place names that will be selected by the SDVS Ada translator to represent these objects:

\texttt{<sdvs.5> adasubprogenv}
\begin{verbatim}
  file name: testproofs/manual/ada/xtest.ada
  subprogram name: exchange
  qualified name: xtest.exchange
\end{verbatim}

\texttt{fully qualified name} \texttt{--> uniquely qualified name (= place name)}
\begin{verbatim}
XTEST --> XTEST
XTEST.X --> X
XTEST.Y --> Y
XTEST.Z --> Z
XTEST.EXCHANGE.A --> A
XTEST.EXCHANGE.B --> B
XTEST.EXCHANGE.C --> C
STANDARD.IO.STDIN --> STDIN
STANDARD.IO.STDIN\CTR --> STDIN\CTR
STANDARD.IO.STDOUT --> STDOUT
STANDARD.IO.STDOUT\CTR --> STDOUT\CTR
\end{verbatim}

The \texttt{createadalemma} command is used to create the lemma, which will be a certain state delta:

\texttt{<sdvs.5> createadalemma}
\begin{verbatim}
  lemma name: exchange.lemma
  file name: testproofs/manual/ada/xtest.ada
  subprogram name: exchange
  qualified name: xtest.exchange
  preconditions[]: \texttt{<CR>}
  mod list[]: a, b
  postconditions: #a=b, #b=a
\end{verbatim}
createad lemma -- [sd pre: \( .xtest\pc = at(xtest\.exchange) \)]

comod: (all)
mod: (xtest\pc,a,b)
post: (#a = .b,#b = .a,
\( #xtest\pc = exited(xtest\.exchange) \))

Notice that the system supplies additional entries for the state delta besides those given by the user. To explain these, and indeed the requirements for the usage of the other commands as well, we need to understand a little more about the symbolic execution of procedure calls.

In general, the main steps in the symbolic execution of a call to procedure exchange are as follows:

1. Declarations of the formal parameters of exchange are processed: The universe of places is expanded to include new places a and b.

2. The actual parameters are evaluated, and the resulting values are bound to the places a and b.

3. The declarations of the local variables of exchange are processed: The universe of places is expanded to include a new place c.

4. The body of procedure exchange is executed symbolically.

5. Undoing 3: The local variables are undeclared, so c is no longer among the places.

6. in out and out formal parameter values are assigned to the corresponding actual parameters: These values are determined and bound to the appropriate places.

7. Undoing step 1: The formal parameters are undeclared, so a and b are deleted from the universe of places.

Now we can explain the parts of the state delta of exchange.lemma. The condition \( .xtest\pc = at(xtest\.exchange) \) becomes true exactly when the symbolic execution of a call to procedure exchange has completed step 2. Similarly, the condition \( #xtest\pc = exited(xtest\.exchange) \) will be true when the symbolic execution of a call has completed step 5. Also, \( xtest\pc \) should always be part of the mod list for a state delta about any part of the program xtest. To identify fully the code to which the lemma refers, one must supply a full path name to the file, and a fully qualified procedure name. The fully qualified name in this case is xtest.exchange; in general, it is a list in order of the containing procedure or block names, ending with the given procedure, all separated by periods. (If a containing block is unnamed, the parser supplies an internal name, which in principle could be used in this context; however, it is recommended that the user name the containing block explicitly.)

The provead lemma command causes SDVS to set up the environment for proving the lemma.
<sdvs.6> proveadlemma

Ada lemma name: exchange.lemma

proof(): <CR>

open -- [sd pre: (alldisjoint(xtest,.xtest),
    covering(.xtest,xtest|pc,x,y,z,stdin,stdin|ctr,stdout,stdout|ctr),
    declare(x,type(integer)),declare(y,type(integer)),
    declare(z,type(integer)),
    declare(stdin,type(polymorphic)),
    declare(stdin|ctr,type(integer)),
    declare(stdout,type(polymorphic)),
    declare(stdout|ctr,type(integer)),
    <adatr null;;>]

comod: (all)
mod: (all)

post: ([sd pre: (.xtest\pc = at(xtest.exchange))
    comod: (all)
    mod: (diff(all,
        diff(union(xtest\pc,x,y,z,stdin,
            stdin|ctr,stdout,stdout|ctr,a,
            b),
        union(xtest\pc,a,b))))
    post: (#a = .b,#b = .a,
        #xtest\pc = exited(xtest.exchange))]]

apply -- [sd pre: (true)
    comod: (all)
    mod: (xtest\pc,xtest)
    post: (alldisjoint(xtest,.xtest,a,b),
        covering(#xtest,.xtest,a,b),
        declare(a,type(integer)),declare(b,type(integer)),
        <adatr null;;>]

apply -- [sd pre: (true)
    comod: (all)
    mod: (xtest\pc,a,b)
    post: (#a = .a,#b = .b,
        <adatr null;;>]

apply -- [sd pre: (true)
    comod: (all)
    mod: (xtest\pc)
    post: (#xtest\pc = at(xtest.exchange),
        <adatr null;;>]

go -- breakpoint reached

open -- [sd pre: (.xtest\pc = at(xtest.exchange))
    comod: (all)
    mod: (diff(all,
        diff(union(xtest\pc,x,y,z,stdin,stdin|ctr,stdout,
            stdout|ctr,a,b),
        union(xtest\pc,a,b)))
    post: (#a = .b,#b = .a,
        <adatr null;;>]

188
The environment at this point is like what would exist after the completion of steps 1 and 2 of the symbolic execution of a call to the procedure. Examining the output above, we see that this environment was created by opening the proof of a state delta having a precondition establishing the necessary environment, and a postcondition consisting of the state delta of the lemma. The last step above is opening the proof of the latter state delta. The system's response to each intermediate apply command (these are internally generated) shows the state delta being applied, and the adatr fields show the particular Ada program statement with which the currently applied state delta is associated.

The reader will notice that the last state delta opened for proof is not exactly the same as that of the lemma: the mod list is apparently more complex. This is done to allow for modification, during the proof, of new places created by declarations arising during the symbolic execution of the procedure body. The evaluation of the expression for the mod list will show that in the current context it describes no more than the places named in the original mod list. However, the value of this expression will change appropriately as other places are created through declaration, or deleted by undeclaration.

The usable command will help us ascertain the current position in symbolic execution.

<sds.6.4.1> usable

u(1) [sd pre: (true)
comod: (all)
mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,,xtest,,c),covering(#xtest,,xtest,,c),
declare(c,type(integer)),
<adatr c : integer>)]

No usable quantified formulas.

This shows that symbolic execution is just at the point of the declaration of the local variable in the exchange procedure—i.e., just before step 3 of processing a procedure call. The next step will be an application of the state delta that is usable at this point.

<sds.6.4.1> apply
sd/number[highest applicable/once]: <CR>

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,,xtest,,c),
covering(#xtest,,xtest,,c),
declare(c,type(integer)),
<adatr c : integer>)]

<sds.6.4.2> usable
u(1) [sd pre: (true)
    comod: (all)
    mod: (xtest\pc,c)
    post: (#c = .a,
        <adatr c := a;>)]

No usable quantified formulas.

The application of the state delta to effect the necessary declaration brings us to the first executable statement in the body of the procedure. From here, we need only continue until the end of the procedure.

<sdvs.6.4.2>  go
    until[]: #test\pc = exited[xtest.exchange]

    apply -- [sd pre: (true)
               comod: (all)
               mod: (xtest\pc,c)
               post: (#c = .a,
                     <adatr c := a;>)]

    apply -- [sd pre: (true)
               comod: (all)
               mod: (xtest\pc,a)
               post: (#a = .b,
                     <adatr a := b;>)]

    apply -- [sd pre: (true)
               comod: (all)
               mod: (xtest\pc,b)
               post: (#b = .c,
                     <adatr b := c;>)]

    apply -- [sd pre: (true)
               comod: (all)
               mod: (xtest\pc,xtest,c)
               post: (covering(.xtest,xtest,c),undeclare(c),
                     <adatr c : integer>)]

    apply -- [sd pre: (true)
               comod: (all)
               mod: (xtest\pc)
               post: (#xtest\pc = exited[xtest.exchange],
                     <adatr null;>)]

close -- 6 steps/applications

close -- 4 steps/applications

proveadalemma -- [sd pre: (.xtest\pc = at(xtest.exchange))
                  comod: (all)
                  mod: (xtest\pc,a,b)
                  post: (#a = .b,#b = .a,
The facts to be proved here are sufficiently simple that the proof of the lemma closes automatically. Having proved the lemma, the next step is to reinitialize SDVS and prove the overall state delta, xtest.sd.

<sdvs.6> init
    proof name[]: <CR>

State Delta Verification System, Version 12

Restricted to authorized users only.

<sdvs.1> prove
    state delta[]: xtest.sd
    proof[]: <CR>

open -- [ad pre: (ada(xtest.ada))
    comod: (all)
    mod: (all)
        #stdout[3] = .stdin[1])]

Complete the proof.

<sdvs.1.1> usable

u(1) [sd pre: (true)
    comod: (all)
    mod: (xtest\pc)
    post: (<adattr procedure xtest is
        x, ... : integer := 1
        ...
        begin
        get (x);
        ...
        end xtest;>)]

No usable quantified formulas.

The go command can be used to cause the system to apply state deltas and perform instantiations until a specified condition holds.

<sdvs.1.1> go
    until[]: #xtest\pc = at(xtest.exchange)

apply -- [ad pre: (true)
    comod: (all)
    mod: (xtest\pc)
    post: (<adattr procedure xtest is
        x, ... : integer := 1
...  
begin
get (x);
...
end xtest;]]

apply -- [sd pre: (true)
comod: (all)
  mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,xtest,x),
  covering(#xtest,xtest,x),
  declare(x,type(integer)),
  <adatr x, ... : integer := 1>>]

apply -- [sd pre: (true)
comod: (all)
  mod: (xtest\pc,x)
post: ($x = 1,
  <adatr x, ... : integer := 1>>]

apply -- [sd pre: (true)
comod: (all)
  mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,xtest,y),
  covering(#xtest,xtest,z),
  declare(y,type(integer)),
  <adatr x, ... : integer := 1>>]

apply -- [sd pre: (true)
comod: (all)
  mod: (xtest\pc,y)
post: ($y = 1,
  <adatr x, ... : integer := 1>>]

apply -- [sd pre: (true)
comod: (all)
  mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,xtest,z),
  covering(#xtest,xtest,z),
  declare(z,type(integer)),
  <adatr x, ... : integer := 1>>]

apply -- [sd pre: (true)
comod: (all)
  mod: (xtest\pc,z)
post: ($z = 1,
  <adatr x, ... : integer := 1>>]

apply -- [sd pre: (true)
comod: (all)
  mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,xtest,get\item),
  covering(#xtest,xtest,get\item),
  declare(get\item,type(polymorphic)),
  <adatr get (x)>>]

apply -- [sd pre: (true)
comod: (all)
mod: (xtext\pc)
post: (#xtext\pc = at(standard.text_io.get),
<adatr get (x)>)]

apply -- [sd pre: (.xtext\pc = at(standard.text_io.get))
comod: (all)
  mod: (xtext\pc, stdin\ctr.get\item)
  post: (#get\item = .stdin[.stdin\ctr],
    #stdin\ctr = .stdin\ctr + 1,
    #xtest\pc = exited(standard.text_io.get),
    <adatr null;>)]

apply -- [sd pre: (true)
comod: (all)
  mod: (xtest\pc,x)
  post: (#x = .get\item,
    <adatr get (x)>)]

apply -- [sd pre: (true)
comod: (all)
  mod: (xtest\pc,xtest, get\item)
  post: (covering(xtest, #xtest, get\item),
    undeclare(get\item),
    <adatr get (x)>)]

apply -- [sd pre: (true)
comod: (all)
  mod: (xtest\pc,xtest)
  post: (alldisjoint(xtest, #xtest, get\item!2),
    covering(#xtest, #xtest, get\item!2),
    declare(get\item!2, type(polymorphic)),
    <adatr get (y)>)]

apply -- [sd pre: (true)
comod: (all)
  mod: (xtest\pc)
  post: (#xtest\pc = at(standard.text_io.get),
    <adatr get (y)>)]

apply -- [sd pre: (.xtest\pc = at(standard.text_io.get))
comod: (all)
  mod: (xtest\pc, stdin\ctr.get\item!2)
  post: (#get\item!2 = .stdin[.stdin\ctr],
    #stdin\ctr = .stdin\ctr + 1,
    #xtest\pc = exited(standard.text_io.get),
    <adatr null;>)]

apply -- [sd pre: (true)
comod: (all)
  mod: (xtest\pc,y)
  post: (#y = .get\item!2,
    <adatr get (y)>)]

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc,xtest,\text{get item!2})
post: (\text{covering}(\cdot xtest,\cdot xtest,\text{get item!2}),
\text{undeclare}(\text{get item!2}),
\langle \text{adatr get (y)>})

apply -- [sd pre: (true)]
comod: (all)
mod: (xtest\pc,xtest)
post: (\text{alldisjoint}(xtest,\cdot xtest,\text{get item!3}),
\text{covering}(\cdot xtest,\cdot xtest,\text{get item!3}),
\text{declare}(\text{get item!3, type (polymorphic)}),
\langle \text{adatr get (z)>})

apply -- [sd pre: (true)]
comod: (all)
mod: (xtest\pc)
post: (\cdot xtest\pc = \text{at (standard.text.io.get)},
\langle \text{adatr get (z)>})

apply -- [sd pre: (\cdot xtest\pc = \text{at (standard.text.io.get})]
comod: (all)
mod: (xtest\pc,\text{stdin}[\text{ctr},\text{get item!3}]
post: (\cdot \text{get item!3} = \cdot \text{stdin}[\cdot \text{stdin}[\cdot \text{ctr}],
\text{stdin}[\cdot \text{ctr} = \cdot \text{stdin}[\cdot \text{ctr} + 1,
\cdot xtest\pc = \text{exited (standard.text.io.get)},
\langle \text{adatr null}>})

apply -- [sd pre: (true)]
comod: (all)
mod: (xtest\pc,\cdot z)
post: (\cdot z = .get \text{item!3},
\langle \text{adatr get (z)>})

apply -- [sd pre: (true)]
comod: (all)
mod: (xtest\pc,xtest,\text{get item!3})
post: (\text{covering}(\cdot xtest,\cdot xtest,\text{get item!3}),
\text{undeclare}(\text{get item!3}),
\langle \text{adatr get (z)>})

apply -- [sd pre: (true)]
comod: (all)
mod: (xtest\pc,xtest)
post: (\text{alldisjoint}(xtest,\cdot xtest,a,b),
\text{covering}(\cdot xtest,\cdot xtest,a,b),
\text{declare}(a,\text{type (integer)}),\text{declare}(b,\text{type (integer)}),
\langle \text{adatr exchange (x, ...)}>])

apply -- [sd pre: (true)]
comod: (all)
mod: (xtest\pc,a,b)
post: (\cdot a = .x,\cdot b = .y,
\langle \text{adatr exchange (x, ...)}>])

apply -- [sd pre: (true)]
comod: (all)
mod: (xtest\pc)
post: (#xtest\pc = at(xtest.exchange),
<adatr exchange (x, ...)>]

go -- breakpoint reached

<sdvs.1.26> usable

u(1) [sd pre: (true)
  comod: (all)
  mod: (xtest\pc, xtest)
  post: (all_disjoint(xtest, xtest, c), covering(#xtest, xtest, c),
    declare(c, type(integer)),
    <adatr c : integer>)]

No usable quantified formulas.

Symbolic execution is now at precisely the point where steps 1 and 2 of the first call to the exchange procedure have been completed, where the next step would be the instantiation for the declaration of the local variable. Instead, we can invoke the lemma to bypass symbolic execution of the procedure body.

<sdvs.1.26> invokeadalemma
  Ada lemma name: exchange.lemma

invokeadalemma -- [sd pre: (.xtest\pc = at(xtest.exchange))
  comod: (all)
  mod: (xtest\pc, a, b)
  post: (#a = a, #b = b,
    #xtest\pc = exited(xtest.exchange),
    <adatr return;>)]

<sdvs.1.27> usable

u(1) [sd pre: (.xtest\pc = exited(xtest.exchange))
  comod: (all)
  mod: (xtest\pc)
  post: (<adatr exchange (x, ...)>)]

u(2) [sd pre: (true)
  comod: (all)
  mod: (xtest\pc)
  post: (#xtest\pc = exited(xtest.exchange),
    <adatr exchange (x, ...)>)]

No usable quantified formulas.

<sdvs.1.27> apply
sd/number[highest applicable/once]: <CR>

apply -- [sd pre: (.xtest\pc = exited(xtest.exchange))
comod: (all)
  mod: (xtest\pc)
  post: (<adatr exchange (x, ...)>)

<sdvs.1.28> usable

u(1) [sd pre: (true)
  comod: (all)
  mod: (xtest\pc,x,y)
  post: ($x = .a,$y = .b,
       <adatr exchange (x, ...)>)]

No usable quantified formulas.

This point immediately follows the completion of step 5. Two more state deltas are applied to complete steps 6 and 7.

<sdvs.1.28> apply
  sd/number[highest applicable/once]: 2

  apply -- [sd pre: (true)
    comod: (all)
    mod: (xtest\pc,x,y)
    post: ($x = .a,$y = .b,
         <adatr exchange (x, ...)>)]

  apply -- [sd pre: (true)
    comod: (all)
    mod: (xtest\pc,xtest,a,b)
    post: (covering(.xtest,$xtest,a,b),undeclare(a,b),
         <adatr exchange (x, ...)>)]

<sdvs.1.30> usable

u(1) [sd pre: (true)
  comod: (all)
  mod: (xtest\pc,xtest)
  post: (alldisjoint(xtest,,xtest,a!2,b!2),
       covering($xtest,,xtest,a!2,b!2),
       declare(a!2,type(integer)),declare(b!2,type(integer)),
       <adatr exchange (y, ...)>)]

No usable quantified formulas.

This is the beginning of the next Ada statement.

We go on to the point where the lemma can be invoked again, invoke it, and then apply the state deltas to complete the return from the call.

<sdvs.1.30> go

196
until []: #xtest\pc = at(xtest.exchange)

apply -- [sd pre: (true)]
comod: (all)
mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,xtest,a'2,b'2),
      covering(xtest,xtest,a'2,b'2),
      declare(a'2,type(integer)),
      declare(b'2,type(integer)),
      <adatr exchange (y, ...)>>]

apply -- [sd pre: (true)]
comod: (all)
mod: (xtest\pc,a'2,b'2)
post: (#a'2 = .y,#b'2 = .z,
      <adatr exchange (y, ...)>>]

apply -- [sd pre: (true)]
comod: (all)
mod: (xtest\pc)
post: (#xtest\pc = at(xtest.exchange),
      <adatr exchange (y, ...)>>]

go -- breakpoint reached

<sdvs.1.33> invokeadalemna
Ada lemma name: exchange.lemma

invokeadalemna -- [sd pre: (.xtest\pc = at(xtest.exchange))] 
comod: (all)
mod: (xtest\pc,a'2,b'2)
post: (#a'2 = .b'2,#b'2 = .a'2,
      #xtest\pc = exited(xtest.exchange),
      <adatr return;>>]

<sdvs.1.34> apply
sd/number[highest applicable/once]: 3

apply -- [sd pre: (.xtest\pc = exited(xtest.exchange))] 
comod: (all)
mod: (xtest\pc)
post: (<adatr exchange (y, ...)>>]

apply -- [sd pre: (true)]
comod: (all)
mod: (xtest\pc,y,z)
post: (#y = .a'2,#z = .b'2,
      <adatr exchange (y, ...)>>]

apply -- [sd pre: (true)]
comod: (all)
mod: (xtest\pc,xtest,a'2,b'2)
post: (covering(xtest,xtest,a'2,b'2),undeclear(a'2,b'2),
      <adatr exchange (y, ...)>>]
<sdvs.1.37> usable

u(1) [sd pre: (true)
comod: (all)
  mod: (xtest\pc\xtest)
post: (alldisjoint(xtest, xtest, put\item),
  covering(#xtest, xtest, put\item),
  declare(put\item, type(polymorphic)),
  <adatr put (x)>)]

No usable quantified formulas.

We now simply go on through the rest of the test program.

<sdvs.1.37> go
  until[]: terminated(xtest)

  apply -- [sd pre: (true)
  comod: (all)
    mod: (xtest\pc, xtest)
post: (alldisjoint(xtest, xtest, put\item),
      covering(#xtest, xtest, put\item),
      declare(put\item, type(polymorphic)),
      <adatr put (x)>)]

  apply -- [sd pre: (true)
  comod: (all)
    mod: (xtest\pc, put\item)
post: (#put\item = .x,
      <adatr put (x)>)]

  apply -- [sd pre: (true)
  comod: (all)
    mod: (xtest\pc)
post: (#xtest\pc = at(standard.text.io.put),
      <adatr put (x)>)]

  apply -- [sd pre: (.xtest\pc = at(standard.text.io.put))
  comod: (all)
    mod: (xtest\pc, stdout[.stdout[ctr]], stdout[ctr])
post: (#stdout[.stdout[ctr]] = .put\item,
      #stdout[ctr] = .stdout[ctr + 1],
      #xtest\pc = exited(standard.text.io.put),
      <adatr null;>)]

  apply -- [sd pre: (true)
  comod: (all)
    mod: (xtest\pc, xtest, put\item)
post: (covering(.xtest, #xtest, put\item),
      undeclare(put\item),
      <adatr put (x)>)]

  apply -- [sd pre: (true)
  comod: (all)
mod: (xtest\pc, xtest)
post: (alldisjoint(xtest..xtest, put\item!2),
    covering(xtest..xtest, put\item!2),
    declare(put\item!2, type(polymorphic)),
    <adatr put (y)>)

apply -- [sd pre: (true)
comod: (all)
    mod: (xtest\pc, put\item!2)
post: (#put\item!2 = .y,
    <adatr put (y)>)

apply -- [sd pre: (true)
comod: (all)
    mod: (xtest\pc)
post: (#xtest\pc = at(standard.text.io.put),
    <adatr put (y)>)

apply -- [sd pre: (.xtest\pc = at(standard.text.io.put))
comod: (all)
    mod: (xtest\pc, stdout[.stdout[ctr], stdout[ctr])
post: (#stdout[ctr] = .put\item!2,
    #stdout[ctr] = .stdout[ctr] + 1,
    #xtest\pc = exited(standard.text.io.put),
    <adatr null;)]

apply -- [sd pre: (true)
comod: (all)
    mod: (xtest\pc, xtest, put\item!2)
post: (covering(xtest, xtest, put\item!2),
    undeclare(put\item!2),
    <adatr put (y)>)

apply -- [sd pre: (true)
comod: (all)
    mod: (xtest\pc, xtest)
post: (alldisjoint(xtest..xtest, put\item!3),
    covering(xtest..xtest, put\item!3),
    declare(put\item!3, type(polymorphic)),
    <adatr put (z)>)

apply -- [sd pre: (true)
comod: (all)
    mod: (xtest\pc, put\item!3)
post: (#put\item!3 = .z,
    <adatr put (z)>)

apply -- [sd pre: (true)
comod: (all)
    mod: (xtest\pc)
post: (#xtest\pc = at(standard.text.io.put),
    <adatr put (z)>)

apply -- [sd pre: (.xtest\pc = at(standard.text.io.put))
comod: (all)
mod: (rtest\pc, stdout[.stdout\ctr], stdout\ctr)
post: (stdout[.stdout\ctr] = put\item!3,
 stdout\ctr = stdout\ctr + 1,
 rtest\pc = exited(standard.text_io.put),
 <adatr null;>))

close -- 50 steps/applications

<< initial state >>
proved rtest.sd <1>
--> you are here <--

The postcondition of rtest.sd is sufficiently simple that the system can verify it without assistance, and the proof closes automatically.

The reader may well wonder why the Ada lemma can be invoked only after a call to the procedure has been partly processed and why afterwards we still have to apply two more state deltas to complete the call. Why shouldn’t the system be programmed to perform these instantiations and state delta applications automatically? In fact, there is no reason why this wouldn’t have worked in our example. But here, all the conditions to be proven were simple enough that they could be verified by the simplifier and propagated automatically. With conditions that are more complex, perhaps involving quantifiers, this would not be the case, and the user would need to assist the system in propagating these conditions through the steps at the beginning and end of the procedure call.

4.6 AN EXAMPLE PROOF WITH ADALEmma

In this final section we give one more example of an SDVS 12 Ada proof for the program packages (Figures 9, 10, and 11). This rather complex program has a null body, but contains functions test1 through test4, and as procedures test5 and exceptions. The adalemma that we state and prove characterizes the behavior of the procedure exceptions; all the other subprograms are irrelevant (but it is comforting to see that SDVS knows this.) This proof illustrates the SDVS capability for packages and exceptions. It essentially claims that the two values 5 and 23 are output, and then the procedure exceptions is exited. The label

#packages\pc = at(0!11)

is generated internally.

We create an adalemma and proof as follows:

<<sdvs.2> adatr
    path name[testproofs/manual/ada/rtest.ada]: testproofs/manual/ada/packages.a

Reading parse tree file for Stage 4 Ada file -- "packages.a"

200
with text_io; use text_io;
with integer_io; use integer_io;

procedure packages is

  function test1 return integer is
    package p is
      x: integer := 10;
    end p;
    begin
    return x;
    end test1;

  function test2 return boolean is
    x : boolean := true;
    package p is
      x: integer := 10;
    end p;
    begin
    return x;
    end test2;

  function test3 return integer is
    package p1 is
      x : integer;
    end p1;
    package p2 is
      x : boolean;
    end p2;
    use p1, p2;
    begin
    return x;
    end test3;

Figure 9: Program Packages, Part 1
function test4 return integer is
  package p1 is
    x : integer;
  end p1;
  package p2 is
    x : boolean;
  end p2;
  use p1, p2;
begin
  return p1.x;
end test4;

procedure test5 is
  package p0 is
    v : integer;
  end p0;
  package p1 is
    x : integer;
    function f return integer;
    use p0;
  package p is
    z : integer := v;
    u : integer := x;
    use p1;
  package q is
    w : integer;
    end q;
  end p;
  end p1;
  package p2 is
    x : boolean;
  end p2;
  use p1.p;
  use p2;
  use q;

package body p1 is
  function f return integer is
begin
  return 5;
end f;
end p1;

begin
  null;
  w := 2;
  x := true;
  z := 1;
end test5;

Figure 10: Program Packages, Part 2
procedure exceptions is
  foo: exception;
  x: integer;
function f(z: integer) return integer is
  begin
    raise foo;
exception
  when foo => return 1;
end f;
package p2 is
  x: integer;
procedure p(z: integer);
package p3 is
  x: integer;
end p3;
end p2;
package body p2 is
  w: integer := f(0);
procedure p(z: integer) is
  begin
    w := z;
    put(w);
    raise foo;
  end p;
begin
  x := 5;
  put(x);
  raise foo;
exception
  when foo => x := 23;
  put(x);
  raise;
end p2;
begin
  p2.p(86);
exception
  when foo => put(100);
end exceptions;
begin
  null;
end packages;

Figure 11: Program Packages, Part 3 (conclusion)
Translating Stage 4 Ada file -- "testproofs/manual/ada/packages.a"

<sdvs.3> createadlemma

lemma name: packages.exceptions.lemma
file name: testproofs/manual/ada/packages.a
subprogram name: exceptions
qualified name: packages.exceptions
preconditions[]: alldisjoint(stdout[1], stdout[2]), .stdout\ctr = 1
mod list[]: all

createadlemma -- [sd pre: (.packages\pc = at(packages.exceptions),
   alldisjoint(stdout[1],stdout[2]),
   .stdout\ctr = 1)
comod: (all)
mod: (packages\pc, all)
   #packages\pc = exited(packages.exceptions))]

<sdvs.4> proveadlemma

Ada lemma name: packages.exceptions.lemma
proof[]: <CR>

open -- [sd pre: (alldisjoint(packages..packages),
   covering(.packages,packages\pc,stdin,stdin\ctr,stdout,
   stdout\ctr),
   declare(stdin,type(polymorphic)),
   declare(stdin\ctr,type(integer)),
   declare(stdout,stdout\ctr,type(polymorphic)),
   declare(stdout\ctr,type(integer)),
   <adatr null;;;;>)
comod: (all)
mod: (all)
post: ([sd pre: (.packages\pc = at(packages.exceptions),
   alldisjoint(stdout[1],stdout[2]),
   .stdout\ctr = 1)
comod: (all)
mod: (diff(all,
   diff(union(packages\pc,stdin,stdin\ctr,
   stdout,stdout\ctr),
   union(packages\pc,all))))
   #packages\pc = exited(packages.exceptions))])]

apply -- [sd pre: (true)
comod: (all)
mod: (packages\pc)
post: (#packages\pc = at(packages.exceptions),
   <adatr null;;;;>)]

go -- breakpoint reached

open -- [sd pre: (.packages\pc = at(packages.exceptions),
   alldisjoint(stdout[1],stdout[2]),.stdout\ctr = 1)
comod: (all)
mod: (diff(all,
    diff(union(packages\pc,stdin,stdin\ctr,stdout, stdout\ctr),
    union(packages\pc,all))))
    #packages\pc = exited(packages.exceptions))]

<sdvs.4.2.1> go
until[]: #packages\pc = exited(packages.exceptions)

apply -- [sd pre: (true)
comod: (all)
    mod: (packages\pc,packages)
    post: (alldisjoint(packages,packages,exceptions.x),
        covering(#packages,packages,exceptions.x),
        declare(exceptions.x,type(integer)),
        <adatr x : integer>)]

apply -- [sd pre: (true)
comod: (all)
    mod: (packages\pc,packages)
    post: (alldisjoint(packages,packages,exceptions.p2.x),
        covering(#packages,packages,exceptions.p2.x),
        declare(exceptions.p2.x,type(integer)),
        <adatr x : integer>)]

apply -- [sd pre: (true)
comod: (all)
    mod: (packages\pc,packages)
    post: (alldisjoint(packages,packages,p3.x),
        covering(#packages,packages,p3.x),
        declare(p3.x,type(integer)),
        <adatr x : integer>)]

apply -- [sd pre: (true)
comod: (all)
    mod: (packages\pc,packages)
    post: (alldisjoint(packages,packages,exceptions.f),
        covering(#packages,packages,exceptions.f),
        declare(exceptions.f,type(integer)),
        <adatr null;>)]

apply -- [sd pre: (true)
comod: (all)
    mod: (packages\pc,packages)
    post: (alldisjoint(packages,packages,f.z),
        covering(#packages,packages,f.z),
        declare(f.z,type(integer)),
        <adatr f (0)>)]

apply -- [sd pre: (true)
comod: (all)
    mod: (packages\pc,f.z)
    post: (#f.z = 0,
        <adatr f (0)>)]
apply -- [sd pre: (true)]
  comod: (all)
    mod: (packages\pc)
    post: (#packages\pc = at(packages.exceptions.f),
      <adatr f (0)>)]

apply -- [sd pre: (true)]
  comod: (all)
    mod: (packages\pc)
    post: (#packages\pc = at(0!11),
      [sd pre: (true)]
        comod: (all)
          mod: (packages\pc,exceptions.f)
          post: (#exceptions.f = 1,
            <adatr return 1;>)]])

apply -- [sd pre: (true)]
  comod: (all)
    mod: (packages\pc,exceptions.f)
    post: (#exceptions.f = 1,
      <adatr return 1;>)]

apply -- [sd pre: (true)]
  comod: (all)
    mod: (packages\pc)
    post: (#packages\pc = exited(packages.exceptions.f),
      [sd pre: (true)]
        comod: (all)
          mod: (packages\pc,packages,f.z)
          post: (covering(.packages,#packages,f.z),
            undeclare(f.z),
            <adatr f (0)>)])

apply -- [sd pre: (true)]
  comod: (all)
    mod: (packages\pc,packages,f.z)
    post: (covering(.packages,#packages,f.z),undeclare(f.z),
      <adatr f (0)>)]

apply -- [sd pre: (true)]
  comod: (all)
    mod: (packages\pc,packages)
    post: (alldisjoint(packages,.packages,p2.w),
      covering(#packages,.packages,p2.w),
      declare(p2.w,type(integer)),
      <adatr w : integer := f (0)>)]

apply -- [sd pre: (true)]
  comod: (all)
    mod: (packages\pc,p2.w)
    post: (#p2.w = .exceptions.f,
      <adatr w : integer := f (0)>)]

apply -- [sd pre: (true)]
comod: (all)
  mod: (packages\pc, exceptions.p2.x)
  post: (#exceptions.p2.x = 5,
    <adatr x := 5;>)

apply -- [sd pre: (true)]
comod: (all)
  mod: (packages\pc, packages)
  post: (alldisjoint(packages, packages, put\item),
    covering(#packages, packages, put\item),
    declare(put\item, type(polymorphic)),
    <adatr put (6)>)

apply -- [sd pre: (true)]
comod: (all)
  mod: (packages\pc, put\item)
  post: (#put\item = 5,
    <adatr put (5)>)

apply -- [sd pre: (true)]
comod: (all)
  mod: (packages\pc)
  post: (#packages\pc = at(standard.text.io.put),
    <adatr put (6)>)

apply -- [sd pre: (.packages\pc = at(standard.text.io.put))]
comod: (all)
  mod: (packages\pc, stdout[\stdout\ctr], stdout\ctr)
  post: (#stdout[\stdout\ctr] = .put\item,
    #stdout\ctr = .stdout\ctr + 1,
    #packages\pc = exited(standard.text.io.put),
    <adatr null;>)

apply -- [sd pre: (true)]
comod: (all)
  mod: (packages\pc, packages, put\item)
  post: (covering(.packages, packages, put\item),
    undeclare(put\item),
    <adatr put (5)>)

apply -- [sd pre: (true)]
comod: (all)
  mod: (packages\pc)
  post: (#packages\pc = at(#18),
    [sd pre: (true)]
    comod: (all)
      mod: (packages\pc, exceptions.p2.x)
      post: (#exceptions.p2.x = 23,
        <adatr x := 23;>))

apply -- [sd pre: (true)]
comod: (all)
  mod: (packages\pc, exceptions.p2.x)
  post: (#exceptions.p2.x = 23,
    <adatr x := 23;>)

207
apply -- [sd pre: (true)]
    comod: (all)
    mod: (packages\pc,packages)
    post: (alldisjoint(packages,.packages,put\item!2),
          covering(#packages,.packages,put\item!2),
          declare(put\item!2,type(polymorphic)),
          <adatr put (x)>)]

apply -- [sd pre: (true)]
    comod: (all)
    mod: (#put\item!2 = .exceptions.p2.x,
         <adatr put (x)>)]

apply -- [sd pre: (true)]
    comod: (all)
    mod: (#packages\pc)
    post: (#packages\pc = at(standard.text.io.put),
          <adatr put (x)>)]

apply -- [sd pre: (# packages\pc = at(standard.text.io.put))]  
    comod: (all)
    mod: (packages\pc,stdout[,stdout\ctr],stdout\ctr)
    post: (#stdout\.stdout\ctr = .put\item!2,
           #stdout\ctr = .stdout\ctr + 1,
           #packages\pc = exited(standard.text.io.put),
           <adatr null;>)]

apply -- [sd pre: (true)]
    comod: (all)
    mod: (packages\pc,packages,put\item!2)
    post: (covering(.packages,#packages,put\item!2),
           undeclare(put\item!2),
           <adatr put (x)>)]

apply -- [sd pre: (true)]
    comod: (all)
    mod: (packages\pc)
    post: ([sd pre: (true)]
           comod: (all)
           mod: (packages\pc,packages,p2.w)
           post: (covering(.packages,#packages,p2.w),
                  undeclare(p2.w),
                  <adatr w : integer := f (0)>)])

apply -- [sd pre: (true)]
    comod: (all)
    mod: (packages\pc,packages,p2.w)
    post: (covering(.packages,#packages,p2.w),
           undeclare(p2.w),
           <adatr w : integer := f (0)>)]

apply -- [sd pre: (true)]
    comod: (all)
mod: (packages\pc.packages,p3.x)
post: (covering(.packages,#packages,p3.x),
undeclare(p3.x),
<adatr x : integer>)

apply -- [sd pre: (true)
comod: (all)
  mod: (packages\pc.packages,exceptions.p2.x)
post: (covering(.packages,#packages,exceptions.p2.x),
undeclare(exceptions.p2.x),
<adatr x : integer>)

apply -- [sd pre: (true)
comod: (all)
  mod: (packages\pc.packages,exceptions.x)
post: (covering(.packages,#packages,exceptions.x),
undeclare(exceptions.x),
<adatr x : integer>)

apply -- [sd pre: (true)
comod: (all)
  mod: (packages\pc)
post: (#packages\pc = exited(packages.exceptions),
[sd pre: (true)
comod: (all)
  mod: (packages\pc)
post: (<<adatr null;>>)]]

close -- 32 steps/applications

close -- 2 steps/applications

proveadalemma -- [sd pre: (.packages\pc = at(packages.exceptions),
alldisjoint(stdout[1],stdout[2]),
.stdout\ctr = 1)
comod: (all)
mod: (packages\pc,all)
   #packages\pc = exited(packages.exceptions))]

209
5 INTERACTION WITH VHDL

VHDL (VHSIC Hardware Description Language) is an IEEE standard hardware description language, for which [24] is the definitive reference. SDVS 12 has the capability to translate from a subset of the language — Stage 3 VHDL — into state deltas, and to prove claims about the resulting hardware description representations. To run the VHDL test proofs, type run-test-proofs *vhdl-tests*.

We present a brief description of the Stage 3 VHDL language subset and an example proof of a property of a VHDL hardware description. The Stage 3 VHDL translator itself is documented in detail in [66], on which the next section is based.

Our projections for the partition of VHDL into language subsets are set forth in [29] (though the features actually included in the subsets have deviated somewhat from this plan). Example correctness proofs for hardware descriptions written in the initial subset, Core VHDL, are discussed in [54]. The translator for the second subset, Stage 1 VHDL, is described in [53], and that for the third subset, Stage 2 VHDL, is described in [52]. For further information on the evolution of the state delta semantics for VHDL, refer to [25], [26], [30], and [27]. The VHDL translator is invoked with the command vhdltr, which operates like adatr, but takes as argument the name of a file containing the VHDL description to be translated.

5.1 INTRODUCTION

Prior to 1987, we adapted SDVS to handle a subset of the hardware description language ISPS. However, ISPS has serious limitations regarding the specification of hardware at levels other than the register transfer level. In 1988 we documented a study of some of the hardware verification research being performed outside Aerospace and investigated VHDL, an IEEE and DoD standard hardware description language released in December 1987. We selected VHDL as a possible medium for hardware description within SDVS.

Prerequisites for adapting SDVS to VHDL are (1) to define VHDL semantics formally in terms of SDVS's underlying logic (the state delta logic) and (2) to implement a translator from VHDL to the state delta logic. As with the incorporation of Ada into SDVS, the approach taken with VHDL has been to implement increasingly complex language subsets; this enables a graded, structured approach to hardware verification.

In 1989 we defined an initial subset of VHDL, called Core VHDL, that captured the essential behavioral features of VHDL. We defined both the concrete syntax and abstract syntax for Core VHDL, formally specified its semantics and, on the basis of this semantic definition, implemented a Core-VHDL-to-state-delta translator. In 1990, SDVS was enhanced to provide the capability of verifying hardware descriptions written in Core VHDL. In 1991 and 1992, the translator underwent extensive revisions to accommodate Stage 1 VHDL and Stage 2 VHDL, respectively. The translator for the SDVS 12 VHDL language subset, Stage 3 VHDL, was implemented in 1993.

The VHDL translator essentially functions as a simulator kernel, maintaining a clock and a
list of future events that are defined as state deltas. For Core VHDL, however, the translator transformed possibly multiple Core VHDL statements: sequential statements between \texttt{WAIT} statements within a process were all translated and then \textit{composed} into a single state delta. The translator updated the clock to the next time at which a signal driver became active or a process resumed. As the clock advanced, the translator \textit{merged} the composite state deltas into a single state delta that specified the behavior of all processes at that point in the execution.

For Stage 1 VHDL, we reevaluated the feasibility of using composition in the translation of VHDL to state deltas, and concluded that although composition had initially seemed viable in the case of Core VHDL, it is \textit{impossible in principle} to apply the technique to more complex VHDL subsets, as the attempt would require the ability to compose over sections of VHDL code that would necessitate static proof in SDVS. More generally, the ability to compose over arbitrary \texttt{WAIT}-bracketed code in \texttt{PROCESS} statements would be tantamount to the automatic construction of correctness proofs without user intervention — a theoretically undecidable problem.

Therefore, we decided to abandon composition for Stage 1 VHDL and succeeding SDVS VHDL subsets. Instead, within a given execution (simulation) cycle, processes are translated sequentially, in the order in which they appear in the VHDL description, and the user has control over stepping through the sequential statements within each process. Thus, rather than trying to have the VHDL translator model the concurrency of the processes, we chose to take for granted a certain "metatheorem" about VHDL: that any two sequentializations of the processes are equivalent. A brief justification for this point of view is that the problem of mutual exclusion is not a concern in VHDL, since

- all variables are local to the process in which they are declared; and
- distinct processes modify distinct drivers of a given signal (known as a \textit{resolved signal}), and the ultimate signal value is obtained by the application of a user-defined \textit{resolution function}.\footnote{As of Stage 3 VHDL, however, \textit{resolved signals} are still disallowed.}

A gratifying benefit of the revised translation strategy is that the understandability of the resulting proofs has been remarkably improved — the dynamic flow of process execution precisely reflects the simulation semantics of VHDL (as defined in the \textit{VHDL Language Reference Manual} [24]), but with the crucial aspect of symbolic execution (the use of abstract values rather than concrete) thrown in. The current VHDL translator thus functions as a "symbolic simulator," and is a considerably more intuitive proof engine than was its incarnation for Core VHDL.

\subsection{5.2 \textsc{Stage 3 VHDL}}

Stage 3 VHDL comprises a relatively powerful \textit{behavioral} subset of VHDL. That is to say, Stage 3 VHDL descriptions are confined to the specification of hardware behavior or data
flow, rather than structure. More-comprehensive VHDL subsets for SDVS (anticipated for Stage 4 VHDL) will include constructs for the structural description of hardware in terms of its hierarchical decomposition into connected subcomponents. The Stage 3 VHDL data types are BOOLEAN, BIT, INTEGER, REAL (preliminary version), TIME (a predefined physical type of INTEGER range), CHARACTER, STRING (arrays of characters), BIT_VECTOR (arrays of bits), user-defined enumeration types, user-defined array types, subtypes of scalar types, and integer type definitions. Furthermore, explicit type conversions between integer types are allowed.

The primary VHDL abstraction for modeling a digital device is the design entity. A design entity consists of two parts: an entity declaration, providing an external view of the component by declaring the input and output ports, and an architecture body, giving an internal view in terms of component behavior or structure.

In Stage 3 VHDL, each architecture body is constrained to be behavioral, consisting of a set of declarations and concurrent statements defining the functional interpretation of the device being modeled. The allowable concurrent statements are of two kinds: PROCESS statements and concurrent signal assignment statements, to be discussed below.

A PROCESS statement, the most fundamental kind of behavioral concurrent statement in VHDL, is a block of sequential zero-time statements that execute sequentially but "instantaneously" in zero time [30], and some (possibly none) distinguished sequential WAIT statements whose purpose is to suspend process execution and allow time to elapse.

A process typically schedules future values to appear on data holders called signals, by means of sequential signal assignment statements. The execution of a signal assignment statement does not immediately update the value of the target signal (the signal assigned to); rather, it updates the driver associated with the signal by placing (at least one) new transaction, or time-value pair, on the waveform that is the list of such transactions contained in the driver. Each transaction projects that the signal will assume the indicated value at the indicated time; the time is computed as the sum of the current clock time of the model and the delay specified (explicitly or implicitly) by the signal assignment statement.

Two types of time delay can be specified by a sequential signal assignment statement, and Stage 3 VHDL encompasses both. Inertial delay, the default, models a target signal's inertia that must be overcome in order for the signal to change value; that is, the scheduled new value must persist for at least the time period specified by the delay in order actually to be attained by the target signal. Transport delay, on the other hand, must be explicitly indicated in the signal assignment statement with the reserved word TRANSPORT, and models a "wire delay" wherein any pulse of whatever duration is propagated to the target signal after the specified delay.

In lieu of explicit WAITs, a process may have a sensitivity list of signals that activate process resumption upon receiving a distinct new value (an event). The sensitivity list implicitly inserts a WAIT statement as the last statement of the process body.

The other class of concurrent statement in Stage 3 VHDL is that of concurrent signal assignment statements. These always represent equivalent PROCESS statements, and come
in two varieties: *conditional signal assignment* and *selected signal assignment*. A conditional signal assignment is equivalent to a process with an embedded IF statement whose branches are sequential signal assignments; similarly, a selected signal assignment is equivalent to a process with an embedded (possibly degenerate) CASE statement whose branches are sequential signal assignments. The VHDL translator syntactically transforms concurrent signal assignment statements to their corresponding PROCESS statements before translating them into state deltas.

Signals act as data pathways between processes. Each process applies operations to values being passed through the design entity. We may regard a process as a program implementing an algorithm, and a Stage 3 VHDL description as a collection of independent programs running in parallel.

In full VHDL, a target signal can be assigned to in multiple processes, in which case it possesses correspondingly many drivers for updating by the different processes; the value taken on by the signal at any particular time is then computed by a user-defined *resolution function* of these drivers.

Currently Stage 3 VHDL disallows such *resolved signals*: a signal is not permitted to appear as the target of a sequential signal assignment statement in more than one process body; equivalently, every signal has a unique driver.

Concrete and abstract syntaxes for Stage 3 VHDL have been defined [66] — as required, of course, for the implementation of the Stage 3 VHDL translator. Perhaps the following summary provides the best way of seeing the Stage 3 VHDL language subset and translator at a glance.

- **VHDL design files**
  - user-defined packages (optional), USE clauses (optional), entity declaration, architecture body
  - *restriction*: unique entity and architecture per file

- **package STANDARD**
  - predefined types: BOOLEAN, BIT, INTEGER, TIME, CHARACTER, REAL, STRING, BIT_VECTOR
  - various units of type TIME: FS, PS, NS, US, MS, SEC, MIN, HR
  - *restriction*: implementation of type REAL is preliminary

- **user-defined packages**
  - package declarations
  - package bodies

- **USE clauses for accessing packages**

- **entity declarations**
  - entity header: port declarations
- entity declarative part: other declarations
- architecture bodies
- object declarations
  - \texttt{CONSTANT, VARIABLE, SIGNAL}
  - octal and hexadecimal representations of bitstrings
  - entity ports of default object class \texttt{SIGNAL}
- array type declarations
  - arrays (bidirectional; constrained or not) of arbitrary element type
  - attributes \texttt{'low} and \texttt{'high} for lower and upper bounds of an array type (\textit{restriction}: but not of an object of type array)
- user-defined enumeration types
- subtypes of scalar types
- integer type definitions
- type conversion
- signals of arbitrary types
- subprograms
  - procedures and functions: declarations and bodies
  - \textit{restriction}: excluding parameters of object class \texttt{SIGNAL}
- concurrent statements
  - \texttt{PROCESS} statements
  - conditional signal assignments
  - selected signal assignments
- sequential statements
  - null statement: \texttt{NULL}
  - variable assignments (scalar and composite)
  - signal assignments (scalar and composite, inertial or \texttt{TRANSPORT} delay)
  - conditionals: \texttt{IF, CASE}
  - loops: \texttt{LOOP, WHILE, FOR}
  - loop exits: \texttt{EXIT}
  - subprogram calls
  - subprogram return: \texttt{RETURN}
- process suspension: WAIT

- operators
  - numeric unary operators: ABS, +, -
  - numeric binary operators: +, -, *, /, ** (exponentiation), MOD (modulus), REM (remainder)
  - boolean and bit operators: NOT, AND, NAND, OR, NOR, XOR
  - relational operators: =, /=, <, <=, >, and >=
  - array concatenation operator: &
  - restriction: =, /=, and & are the only Stage 3 VHDL operators defined for user-defined array types

5.3 TRANSLATION OF STAGE 3 VHDL

A Stage 3 VHDL hardware description is first parsed according to the Stage 3 VHDL grammar, producing an abstract syntax tree that serves as the input to Phase 1 of the translation.

Phase 1 of the translation accomplishes the following.

- Performs static semantic checks to verify that certain conditions are met, for example:
  - Objects, subprograms, packages, and process and loop labels must be declared prior to use.
  - Identifiers with the same name cannot be declared in the same local context.
  - References to objects and labels must be proper, e.g. scalar objects must not be indexed, array references must have the correct number of indices, and EXIT statements must reference a loop label.
  - All components of statements and expressions must have the proper type, e.g. expressions used as conditions must be boolean, array indices must be of the proper type, operators must receive operands of the correct type, procedure and function calls must receive actual parameters of the proper type, function calls must return a result of a type appropriate for their use in an expression.
  - Sensitivity lists in PROCESS and WAIT statements must contain signal identifiers.
  - The collection of discrete ranges defining a CASE statement alternative must be exhaustive and mutually exclusive.
  - The time delays in the AFTER clause of a signal assignment statement must be increasing.

- Creates a new abstract syntax tree — a transformed version of the original abstract syntax tree (used by Phase 1) — that will be more conveniently utilized by Phase 2 of the translation.
• Creates and manipulates a tree-structured environment (TSE) that, in the absence of errors, is provided to Phase 2 of the translation.

If the VHDL translator completes Phase 1 without error, then it can proceed with Phase 2, state delta generation. Phase 2 requires two inputs: the transformed abstract syntax tree and the tree-structured environment (TSE) for the hardware description, both constructed by Phase 1. The TSE contains a complete record of the name/attribute associations corresponding to the hardware description’s declarations, and its structure reflects that of the description. Referring to the TSE, Phase 2 incrementally generates and (per user proof commands) applies state deltas via symbolic execution and the theories built into the Simplifier.

To understand Phase 2 of the VHDL translator, it is important to recognize that in defining the semantics of concurrent processes within a given architecture body, the translator involves a significant operational component. This is to be distinguished from the semantics of sequential statements within processes, which the translator defines in a primarily denotational manner.

We are referring here to our strategy of designing aspects of a simulator kernel into the VHDL translator. After the application of the state deltas specifying the behavior of one execution cycle for the active processes, the translator is responsible for

• determining the next VHDL clock time at which a driver becomes active or a process resumes,

• advancing the SDVS state to this new time, and

• generating the state delta that specifies the next sequential statement in the first resuming process for the new execution cycle.

After a given resuming process suspends, its continuation is the textually next-resuming process, or “end of execution cycle” when none such remain. The internal translator machinery to perform these tasks is operationally defined, much of it embodied in the translator’s implementation rather than described by semantic equations.

Finally, we have implemented a “sequential statement marking” capability for Stage 3 VHDL. One sets a mark in a comment line just before the sequential statement being marked, using the notation “--@” (no spaces), e.g.

```
--@ foo
x := 1;
```

During symbolic execution, this will yield “.pc = at(foo)” at the point where the state delta(s) representing the marked statement become usable, so that a `go ... until .pc = at(foo)` command can be given to execute symbolically to the particular point in the VHDL hardware description just before the marked statement.
Any sequential statement can be so marked, and the hardware description remains acceptable to a VHDL simulator. A mark can be turned into a regular (uninterpreted in SDVS) comment simply by inserting a space between the "--" and the "&", or by beginning the whole line with an extra pair of hyphens (even one extra will do, so long as it's not followed by a space).

Note that marking concurrent statements would actually not be meaningful, since execution is never really "at" a concurrent PROCESS statement, but rather somewhere inside of one (conceptually, inside several at once). Another way to view this is to notice that the simulation cycle semantics of concurrent statements is determined by that of the sequential WAIT statement.

5.4 AN EXAMPLE

Here we present a very simple example, illustrating the translation of a Stage 3 VHDL hardware description and the manner in which SDVS keeps track of signals and the clock during symbolic execution. The example is a version of one appearing in [54], but modified somewhat to reflect a few of the new language features available in Stage 3 VHDL.
DESIGN_FILE switch IS

PACKAGE switch_package IS

  CONSTANT half_delay : TIME := 500 FS;

END switch_package;

USE switch_package.ALL;

ENTITY switch IS

  PORT ( x, y : INOUT INTEGER );

END switch;

ARCHITECTURE behavior OF switch IS

BEGIN

  x.gets_y :

  x <= y AFTER (2 * half_delay);

  y.gets_x :

  y <= x AFTER (2 * half_delay);

END behavior;

The Stage 3 VHDL hardware description in file switch.vhd begins with a line that represents our device for giving a name to the whole description; the tag DESIGN_FILE is not part of official VHDL syntax. This device will disappear once the VHDL design library facility is incorporated into SDVS.

The first interesting section of code is the package declaration of switch_package, which itself declares the constant half_delay of type TIME (predefined as part of package STANDARD) that will be referenced in the architecture body. The TIME unit FS represents femtoseconds (1 femtosecond = $10^{-15}$ second).
The `USE` clause is necessary to make the declaration(s) in `switch_package` accessible to the rest of the description.

The `entity declaration`, or interface, of the description declares two ports `x` and `y`; these are signals connecting the hardware device being modeled to other (unspecified) devices in the design environment. The ports are of mode `inout`, meaning that they may be both read from and written to by the accompanying architecture body.

The `architecture body` consists of two labeled concurrent signal assignment statements (degenerate selected signal assignments, actually), each of which schedules the current value of a “source” port to become the future value of the other “target” port after 1000 femtoseconds, or 1 picosecond.

As indicated in Section 5.2, each of the concurrent signal assignments is equivalent to a process that (1) has a similar, but unlabeled, sequential signal assignment statement as its body, and (2) waits for an `event` — an actual change in the value of the source port — in order to resume execution. We simply continue to refer to these processes in the sequel.

The net effect is to describe a device that switches the values of `x` and `y` every picosecond, provided their original values are different, and only a single time during an initialization phase provided their original values are the same.

We wish to formulate and prove the following claim about the VHDL description `switch`:

At any time at which the translation of `switch.vhdl` holds, there will be a time when the declarations of `switch.vhdl` have been elaborated, and such that (1) if the input values of `x` and `y` are the same, then they will be switched 1 picosecond later and the VHDL model will have completed execution, whereas (2) if the input values are different, the values of `x` and `y` will be switched 1 picosecond later, and then in 1 more picosecond they will be switched again.

This English-language specification is formulated as the state delta `switch2.sd`, which we read from a file:

```plaintext
<sdvs.1> read
 path name[axioms/quant_axioms]: testproofs/manual/vhdl/switch.spec
Definitions read from file "testproofs/manual/vhdl/switch.spec"
 -- (switch1.sd,switch2.sd,switch2.badsd,switch2.sd2)
<sdvs.2> ppsd
 state delta: switch2.sd

[sd pre: (vhdl(switch.vhdl))]
 mod: (all)
 post: (vhdl_model.elaboration_complete(switch),
 [sd pre: (.x = .y)]
 comod: (all)
 mod: (all)
 post: ($vhdltime = vhdltime(1000,0),#x = .y,#y = .x,
```

220
vhdl.model.execution.complete(switch)),
[sd pre: (.x ^= .y)
comod: (all)
mod: (all)
post: ([#vhdltime = vhdltime(1000,0),#x = .y,#y = .x,
  [sd pre: (true)
  comod: (all)
  mod: (all)
  post: ([#vhdltime = vhdltime(2000,0),#x = .y,
      #y = .x)])]])

Our first essential order of business is to translate the VHDL description in switch.vhdl into its state delta representation, vhdl(switch.vhdl), so that we may prove our claim about it. This is done by invoking the VHDL translator with the command vhdltr, giving it the source VHDL file as its argument.

<sdvs.2> vhdltr
  path name[testproofs/vhdl3/foo.vhdl]: testproofs/manual/vhdl/switch.vhdl

  Reading parse tree file for Stage 3 VHDL file -- "switch.vhdl"

  Translating Stage 3 VHDL file -- "testproofs/manual/vhdl/switch.vhdl"

<sdvs.3> pp
  object: vhdl
  file name[switch.vhdl]: switch.vhdl

  alldisjoint(switch,switch)
covering(.switch,switch\pc,vhdltime,vhdltime.previous)
declare(vhdltime,type(vhdltime))
declare(vhdltime.previous,type(vhdltime))
  .vhdltime = vhdltime(0,0)
  .vhdltime.previous = vhdltime(0,0)
<>

We have just exhibited the "initial segment" of the translation of the switch description, consisting of the declaration and initialization of the places vhdltime and vhdltime.previous, as well as a state delta whose postcondition contains a representation of (a state delta for) the incremental continuation of the translation.

In general, each state delta generated by the VHDL translator will contain, as part of its postcondition, a continuation label enclosed in angle brackets; this continuation label simply stands for the next state delta to be incrementally generated by the translator — the continuation. The generic label <VHDLTR> appears most frequently, but occasionally labels attempt to be more descriptive of the next increment of translation.

Sometimes, as in the initial segment of translation, the translator generates a state delta with precondition (true), comodlist (all), a \pc modlist, and only a continuation in the postcondition. Such a state delta corresponds to an action, to be unconditionally performed by the translator, resulting in no change in the state (contents of places) except
for the program counter. When such a state delta is applied, for brevity it is not printed out in its entirety in the proof trace; rather, the tag action is printed, followed by the continuation label.

<sdvs.3> setflag
flag variable: autoclose
on or off(Off): off

setflag autoclose -- off

The autoclose flag has been turned off to allow the proof to be developed without SDVS closing it automatically.

We now open the proof of switch2.sd:

<sdvs.4> prove
state delta(): switch2.sd
proof(): <CR>

open -- [sd pre: (vhdl(switch.vhdl))
mod: (all)
post: (vhdl_model.elaboration_complete(switch),
[sd pre: (.x = .y)
comod: (all)
mod: (all)
post: ($vhdltime = vhdltime(1000,0),$x = .y,
$y = .x,
vhdl_model.execution_complete(switch))],
[sd pre: (.x = .y)
comod: (all)
mod: (all)
post: ($vhdltime = vhdltime(1000,0),$x = .y,
$y = .x,
[sd pre: (true)
comod: (all)
mod: (all)
post: ($vhdltime = vhdltime(2000,0),
$x = .y,$y = .x)])]]

Complete the proof.

The automatic elaboration of the VHDL description is accomplished by issuing the SDVS command go with the predicate vhdl_model.elaboration_complete(switch) as the until argument. This elaborates the declarations of the constant half_delay and the entity ports x and y, applying state deltas until the elaboration is complete. Any declarations internal to the architecture body or the processes are also elaborated (in the present example, there are none).

<sdvs.4.1> go
until(): vhdl_model.elaboration_complete(switch)
action -- <VHDLTR>

apply -- [sd pre: (true)
    comod: (all)
    mod: (switch\pc,switch)
    post: (alldisjoint(switch,switch,half\delay),
          covering(#switch,switch,half\delay),
          declare(half\delay,type(integer)),
          <VHDLTR>)]

apply -- [sd pre: (true)
    comod: (all)
    mod: (switch\pc,half\delay)
    post: (#half\delay = 500,
           <VHDLTR>)]

apply -- [sd pre: (true)
    comod: (all)
    mod: (switch\pc,switch)
    post: (alldisjoint(switch,switch,x,y,driver\x,driver\y),
          covering(#switch,switch,x,y,driver\x,driver\y),
          declare(x,sig\type(integer)),
          declare(driver\x,type(waveform,type(integer))),
          declare(y,sig\type(integer)),
          declare(driver\y,type(waveform,type(integer))),
          <VHDLTR>)]

apply -- [sd pre: (true)
    comod: (all)
    mod: (switch\pc,x,y,driver\x,driver\y)
    post: (#driver\x
        = waveform(x,transaction(vhdltime(0,0),x\1486)),
        #driver\y
        = waveform(y,transaction(vhdltime(0,0),y\1486)),
        <VHDLTR>)]

action -- <ELABORATE PROCESS: X.GETS.Y>

action -- <ELABORATE PROCESS: Y.GETS.X>

go -- breakpoint reached

The evaluation of the three SDVS commands vhdltime, vhdl-signal, and vhdl-processes is a convenient means of querying SDVS about aspects of the state of the Stage 3 VHDL proof. Particularly in the case of signals, this query method provides information in a much more intelligible form than that returned by, say, the query command ppl.

<sdvs.4.8> vhdltime

global time  = 0

delta time  = 0

223
signal X

  current value     = x\1486
  previous value    = x\1486
  projected output waveform = ()
  driver history    = (transaction(vhdltime(0,0),x\1486))

signal Y

  current value     = y\1488
  previous value    = y\1488
  projected output waveform = ()
  driver history    = (transaction(vhdltime(0,0),y\1488))

The declarations have been symbolically elaborated. For example, places x and driver\x have been created to represent the signal (of the same name) and its driver, respectively, and the contents of driver\x have been initialized with a waveform (indexed by x) consisting of a single transaction, waveform(x,transaction(vhdltime(0,0),x\20)). This transaction stipulates that at vhdltime(0,0), x acquires the symbolic bit value x\20.

In the display generated by the command vhdl-signals, the driver is split conceptually into two disjoint parts, each represented as a list:

- A projected output waveform, consisting of future transactions scheduled to occur on the signal (some of which might be preempted, or deleted from the waveform, during subsequent execution of the description). The time components of projected transactions are all greater than the placevalue vhdltime. For ease of reference, the projected transactions are displayed in chronological order according to their time components, so that the next scheduled transaction occurs first in the list.

- A driver history, consisting of those transactions that have already been “actualized,” i.e., whose time component is at most the placevalue vhdltime. For ease of reference once again, but in contradistinction to the projected output waveform, these transactions are displayed in reverse chronological order: the most recent actualized transaction for the signal appears at the head of the driver history, and its value component is always the current value of the signal driver.
Thus, the entire signal driver itself is the concatenation of the reverse of the driver history with the projected output waveform.

<sds.4.8> vhdl-processes
  process-names[all]: <CR>

  process X.GETS.Y :
    current state  = SUSPENDED
    scheduled time = VHDLTIME(0,0)
    scheduled reason = INITIALIZATION

  process Y.GETS.X :
    current state  = SUSPENDED
    scheduled time = VHDLTIME(0,0)
    scheduled reason = INITIALIZATION

All processes are shown as currently suspended, because we have not yet begun executing the model, but they are scheduled to “resume” execution at vhdltime(0,0), by reason of the initialization phase of the simulation semantics informally defined in the VHDL Language Reference Manual[24]. In the initialization phase, each process is executed until it suspends. As the next applicable state delta indicates, the translation is ready to commence model execution.

<sds.4.8> nsd

  [sd pre: (true)
   comod: (all)
   mod: (switch|pc)
   post: (<BEGIN VHDL MODEL EXECUTION>)]

<sds.4.8> whynotgoal
  simplify?[no]: <CR>

  g(2) [sd pre: (.x = .y)
    comod: (all)
    mod: (all)
    post: (#vhdltime = vhdltime(1000,0),#x = .y,#y = .x,
      vhdl.model.execution.complete(switch))]

  g(3) [sd pre: (.x ^= .y)
    comod: (all)
    mod: (all)
    post: (#vhdltime = vhdltime(1000,0),#x = .y,#y = .x,
      [sd pre: (true)
comod: (all)
mod: (all)
post: (vhdltime = vhdltime(2000,0), $x = .y, $y = .x])}

This is an appropriate point at which to open a proof of the goal g(2). Later, after this goal has been proved, we will also need to prove the goal g(3).

<svds.4.8> prove
state delta[]: g
number: 2
proof[]: <CR>
open -- [sd pre: (.x = .y)
comod: (all)
mod: (all)
post: (vhdltime = vhdltime(1000,0), $x = .y, $y = .x,
vhdl.model.execution.complete(switch))]

Complete the proof.

<svds.4.8.1> go
until[]: vhdl.model.execution.complete(switch)
action -- <BEGIN VHDL MODEL EXECUTION>
action -- <BEGIN INITIALIZATION PHASE>
action -- <... INITIALIZATION PHASE: EACH PROCESS EXECUTES UNTIL SUSPENSION>
action -- <EXECUTE PROCESS: X.GETS.Y>
apply -- [sd pre: (~preemption(.driver|x,
transaction(timeplus(.vhdltime,
vhdltime(2 *
.half.delay,
0)),
.y))))
comod: (all)
mod: (switch\pc,driver|x)
post: (#driver|x
  = inertial.update(.driver|x,
  transaction(timeplus(.vhdltime,
  vhdltime(2 *
  .half.delay,
  0)),
  .y)),
  <VHDLTR>)]
action -- <SUSPEND PROCESS: X.GETS.Y>
action -- <... INITIALIZATION PHASE: EACH PROCESS EXECUTES UNTIL SUSPENSION>
action -- <EXECUTE PROCESS: Y.GETS.X>
apply -- [sd pre: (~preemption(.driver\y, transaction(timeplus(.vhdltime, vhdltime(2 * .half_delay, 0)), .x)))]
comod: (all)
mod: (switch\pc,driver\y)
post: (#driver\y = inertial_update(.driver\y, transaction(timeplus(.vhdltime, vhdltime(2 * .half_delay, 0)), .x)), <VHDLTR>>]

action -- <SUSPEND PROCESS: Y.GETS.X>

action -- <END INITIALIZATION PHASE>

action -- <BEGIN EXECUTION CYCLE:
1. ADVANCE EXECUTION TIME,
2. UPDATE SIGNALS,
3. RESUME PROCESSES>
apply -- [sd pre: (true)
comod: (all)
mod: (switch\pc,vhdltime,vhdltime.previous,x,y)
post: (#vhdltime = vhdltme(1000,0), #vhdltime.previous = .vhdltime, <UPDATE SIGNALS>>]

action -- <RESUME (?) NEXT SCHEDULED PROCESS: X.GETS.Y>
apply -- [sd pre: (.y = val(.driver\y,.vhdltime.previous))
comod: (all)
mod: (switch\pc)
post: (<RESUME (?) NEXT SCHEDULED PROCESS: Y.GETS.X>>]

apply -- [sd pre: (.x = val(.driver\x,.vhdltime.previous))
comod: (all)
mod: (switch\pc)
post: (<END EXECUTION CYCLE>>]

action -- <BEGIN EXECUTION CYCLE:
1. ADVANCE EXECUTION TIME,
2. UPDATE SIGNALS,
3. RESUME PROCESSES>

action -- <END VHDL MODEL EXECUTION>
apply -- [sd pre: (true)
comod: (all)
mod: (switch\pc)
post: (vhdl.model.execution_complete(switch))

go -- breakpoint reached

<sdvs.4.8.20> vhdltme

global time = 1000
delta time = 0

<sdvs.4.8.20> vhdlsignals
signal-names[all]: <CR>
simplify?[no]: yes

signal X

current value = y\1488
previous value = y\1488
projected output waveform = ()
driver history = (transaction(vhdltme(2 * 500,0),y\1488),
transaction(vhdltme(0,0),y\1488))

signal Y

current value = y\1488
previous value = y\1488
projected output waveform = ()
driver history = (transaction(vhdltme(2 * 500,0),y\1488),
transaction(vhdltme(0,0),y\1488))

<sdvs.4.8.20> goals

g(1) $vhdltme = vhdltme(1000,0)
g(2) $x = y\1495
g(3) $y = x\1494
g(4) vhdl.model.execution_complete(switch)

<sdvs.4.8.20> whynotgoal
simplify?[no]: <CR>

The goal is TRUE. Type ‘close’.

<sdvs.4.8.20> close
close -- 19 steps/applications

Complete the proof.

<sdvs.4.9> goals

g(1) vhdl_model.elaboration_complete(switch)

g(2) true

g(3) [sd pre: (.x ^= .y)
       comod: (all)
       mod: (all)
       post: (#vhdltime = vhdltime(1000,0),#x = .y,#y = .x,
              [sd pre: (true)
               comod: (all)
               mod: (all)
               post: (#vhdltime = vhdltime(2000,0),#x = .y,#y = .x)])

<sdvs.4.9> whynotgoal

simplify?[no]: <CR>

<sdvs.4.9> prove

state delta[]: g

number: ?

proof[]: <CR>

open -- [sd pre: (.x ^= .y)
       comod: (all)
       mod: (all)
       post: (#vhdltime = vhdltime(1000,0),#x = .y,#y = .x,
              [sd pre: (true)
               comod: (all)
               mod: (all)
               post: (#vhdltime = vhdltime(2000,0),#x = .y,
                      #y = .x)])]

Complete the proof.

<sdvs.4.9.1> go

until[]: #vhdltime = vhdltime(1000,0)

action -- <BEGIN VHDL MODEL EXECUTION>

action -- <BEGIN INITIALIZATION PHASE>

action -- <... INITIALIZATION PHASE: EACH PROCESS EXECUTES UNTIL SUSPENSION>
action -- <EXECUTE PROCESS: x.GETS.Y>
apply -- [sd pre: (~preemption(.driver\x,
    transaction(timeplus(.vhdltime,
    vhdltime(2 * .half_delay, 0)),
    .y))))
comod: (all)
    mod: (switch\pc,driver\x)
post: (#driver\x
    = inertial_update(.driver\x,
    transaction(timeplus(.vhdltime,
    vhdltime(2 *
    .half_delay, 0)),
    .y)),
<VHDLTR>)]
action -- <SUSPEND PROCESS: x.GETS.Y>
action -- <... INITIALIZATION PHASE: EACH PROCESS EXECUTES UNTIL SUSPENSION>
action -- <EXECUTE PROCESS: y.GETS.X>
apply -- [sd pre: (~preemption(.driver\y,
    transaction(timeplus(.vhdltime,
    vhdltime(2 * .half_delay, 0)),
    .x))))
comod: (all)
    mod: (switch\pc,driver\y)
post: (#driver\y
    = inertial_update(.driver\y,
    transaction(timeplus(.vhdltime,
    vhdltime(2 *
    .half_delay, 0)),
    .x)),
<VHDLTR>)]
action -- <SUSPEND PROCESS: y.GETS.X>
action -- <END INITIALIZATION PHASE>
action -- <BEGIN EXECUTION CYCLE:
1. ADVANCE EXECUTION TIME,
2. UPDATE SIGNALS,
3. RESUME PROCESSES>
apply -- [sd pre: (true)
comod: (all)
    mod: (switch\pc,vhdltime,vhdltime.previous,x,y)
post: (#vhdltime = vhdltime(1000,0),

230
go -- breakpoint reached

<sdvs.4.9.14> vhdltim

global time = 1000

delta time = 0

<sdvs.4.9.14> vhdli-signals
signal-names[all]: <CR>
simplify?[no]: yes

signal X

  current value = y\1488
  previous value = x\1486
  projected output waveform = ()
  driver history = (transaction(vhdltim(1000,0),y\1488),transaction(vhdltim(0,0),x\1486))

signal Y

  current value = x\1486
  previous value = y\1488
  projected output waveform = ()
  driver history = (transaction(vhdltim(1000,0),x\1486),transaction(vhdltim(0,0),y\1488))

<sdvs.4.9.14> goals

  g(1) #vhdltim = vhdltim(1000,0)
  g(2) $x = y\1526
  g(3) $y = x\1525
  g(4) [ad pre: (true)
       comod: (all)
       mod: (all)
       post: ($vhdltim = vhdltim(2000,0),$x = .y,$y = .x)]

<sdvs.4.9.14> whynotgoal
simplify?[no]: <CR>

  g(4) [ad pre: (true)
       comod: (all)
mod: (all)
post: (#vhdltime = vhdltime(2000,0),#x = .y,#y = .x)]

<svx.4.9.14> prove
state delta[]: g
number: 4
proof[]: <CR>

open -- [sd pre: (true)
comod: (all)
mod: (all)
post: (#vhdltime = vhdltime(2000,0),#x = .y,#y = .x)]

Complete the proof.

<svx.4.9.14.1> go
until[]: #vhdltime = vhdltime(2000,0)

action -- <RESUME (?): NEXT SCHEDULED PROCESS: I.GETS.Y>

apply -- [sd pre: (.y = val(.driver\y,.vhdltime.previous))
comod: (all)
mod: (switch\pc)
post: ([sd pre: (true)
comod: (all)
mod: (switch\pc)
post: ([<EXECUTE PROCESS: I.GETS.Y>])])

action -- <EXECUTE PROCESS: I.GETS.Y>

apply -- [sd pre: (~preemption(.driver\x,
transaction(timeplus(.vhdltime,
vhdltime(2 * .half.delay, 0)),
.y)))]
comod: (all)
mod: (switch\pc,driver\x)
post: (#driver\x
= inertial_update(.driver\x,
transaction(timeplus(.vhdltime,
vhdltime(2 * .half.delay, 0)),
.y)),

<VHDLTR>]]

action -- <SUSPEND PROCESS: I.GETS.Y>

action -- <RESUME (?): NEXT SCHEDULED PROCESS: Y.GETS.X>

apply -- [sd pre: (.x = val(.driver\x,.vhdltime.previous))
comod: (all)
mod: (switch\pc)
post: ([sd pre: (true)
comod: (all)
mod: (switch\pc)
post: (<EXECUTE PROCESS: Y.GETS.X>))

action -- <EXECUTE PROCESS: Y.GETS.X>

apply -- [sd pre: (~preemption(.driver\y,
    transaction(timeplus(.vhdltime,
       vhdltime(2 *
       .half_delay,
       0)),
       .x))))
comod: (all)
mod: (switch\pc,driver\y)
p post: (#driver\y
    = inertial_update(.driver\y,
    transaction(timeplus(.vhdltime,
       vhdltime(2 *
       .half_delay,
       0)),
       .x)),
   <VHDLTR>>)

action -- <SUSPEND PROCESS: Y.GETS.X>

action -- <END EXECUTION CYCLE>

action -- <BEGIN EXECUTION CYCLE:
1. ADVANCE EXECUTION TIME,
2. UPDATE SIGNALS,
3. RESUME PROCESSES>

apply -- [sd pre: (true)
comod: (all)
mod: (switch\pc,vhdltime,vhdltime.previous,x,y)
p post: (#vhdltime = vhdltime(2000,0),
   #vhdltime.previous = .vhdltime,
   <UPDATE SIGNALS>>]

go -- breakpoint reached

<sdvs.4.9.14.14> vhdltime

    global time = 2000
    delta time = 0

<sdvs.4.9.14.14> vhdl-signals
signal-names[all]: <CR>
simplify?[no]: yes

signal X
current value = x

previous value = y

projected output waveform = ()

driver history = (transaction(vhdltime(2000,0),x), transaction(vhdltime(1000,0),y), transaction(vhdltime(0,0),x))

signal Y

current value = y

previous value = x

projected output waveform = ()

driver history = (transaction(vhdltime(2000,0),y), transaction(vhdltime(1000,0),x), transaction(vhdltime(0,0),y))

<sdvs.4.9.14> goals

g(1) vhdltime = vhdltime(2000,0)
g(2) x = y

<sdvs.4.9.14> whynotgoal

simplify?[no]: <CR>

The goal is TRUE. Type 'close'.

<sdvs.4.9.14> close

    close -- 13 steps/applications

Complete the proof.

<sdvs.4.9.15> goals

    g(1) vhdltime = vhdltime(1000,0)
g(2) x = y

<sdvs.4.9.15> whynotgoal

simplify?[no]: <CR>

The goal is TRUE. Type 'close'.

<sdvs.4.9.15> close

    close -- 14 steps/applications
Complete the proof.

\[\text{goals}\]

\(g(1) \text{ vhdl.model.elaboration.complete(switch)}\)
\(g(2) \text{ true}\)
\(g(3) \text{ true}\)

\[\text{whynotgoal}\]
\[\text{simplify? [no]: } \text{<CR>}\]

The goal is TRUE. Type 'close'.

\[\text{close} - 9 \text{ steps/applications}\]

\[\text{usablesds}\]

\[\text{u(1) [sd pre: (vhdl(switch.vhdl))}\]
\[\text{mod: (all)}\]
\[\text{post: (vhdl.model.elaboration.complete(switch),}\]
\[\text{[sd pre: (x = y)}\]
\[\text{comod: (all)}\]
\[\text{mod: (all)}\]
\[\text{post: (#vhdltime = vhdltime(1000,0),\#x = y,\#y = x,}\]
\[\text{vhdl.model.execution.complete(switch))]},\]
\[\text{[sd pre: (x ^= y)}\]
\[\text{comod: (all)}\]
\[\text{mod: (all)}\]
\[\text{post: (#vhdltime = vhdltime(1000,0),\#x = y,\#y = x,}\]
\[\text{[sd pre: (true)}\]
\[\text{comod: (all)}\]
\[\text{mod: (all)}\]
\[\text{post: (#vhdltime = vhdltime(2000,0),}\]
\[\text{\#x = .y,\#y = .x)]\]}\]]

5.5 OFFLINE CHARACTERIZATION

The offline characterization facility for VHDL is similar to that for Ada (see Section 4.5), comprising three commands:

- the \texttt{createvhdllemma} command, which defines a lemma about a VHDL subprogram (procedure or function), and which collects other necessary descriptive information from the user;

- the \texttt{provevhdllemma} command, which sets up an environment within which the state delta of the lemma can be proved — this must be at the top level of symbolic execution, and we do not allow lemmas dependent on an existing context; and
• the `invokevhdllemma` command, which uses a previously created lemma as a template to construct a usable state delta, including the substitution of an actual program continuation for the unspecified (null) continuation in the template, and the application of the resulting state delta.

In addition, a fourth command `vhdlsubprogenv` (a query command) is quite useful in connection with VHDL offline characterization. It displays the mapping of fully qualified program names to uniquely qualified place names for all places constituting the environment for the proof of a `vhdllemma` about a subprogram. This assists the user to specify correctly these places in the statement and proof of the `vhdllemma`. In the absence of such a mapping, for a large program it can be difficult for the user to predict, simply by manual inspection of the VHDL source code, the unique place names that will be automatically generated by the translator for the `vhdllemma` proof.
6 QUANTIFICATION

This chapter describes the way SDVS handles quantification. The universal quantifier $\forall$ has the intuitive meaning “for all,” and the existential quantifier $\exists$ means “there exists.” So, for example, the sentence $\forall x \exists y (x < y)$ would be true in a set in which $<$ was an order with no last element. In SDVS syntax the parentheses must be used as shown, and, of course, $<$ must be written as $lt$.

While it is true that the domains over which quantifiers may range in SDVS are (usually considered to be) finite, and therefore quantification is just an abbreviation for disjunction or conjunction (we shall call the operations disjunction and conjunction “junctions”), there are two obvious reasons for pursuing an independent quantification-reasoning mechanism:

1. The potentially large size of the junction can be neatly captured in a much smaller quantification statement.

2. The quantification represents a very structured kind of junction, and therefore is amenable to more powerful reasoning than the corresponding junction would be.

SDVS uses quantification in two main ways: in existential quantification over “places” (for example, in the declaration of procedure variables in Ada; see page 172) and in general untyped first-order predicate logic inferences. The former type of reasoning relies on examining the actual list of places in the proof context. We do not currently allow universal quantification over places, and an error message will be produced if places occur in the scope of a universal quantifier. The latter uses some special SDVS proof rules supplemented with a part of EKL ([55]), an interactive predicate logic solver developed at Stanford University.

In evaluating a nontautological claim of the form “there exists a place R such that ...” one must find such a place explicitly, instantiate that place in “...”, and verify the result. Likewise, “for all places R ...” would require that “...” be checked for all places (whatever that might mean); however, as stated above, this is not allowed in SDVS 12.

The quantification solver uses the same style and repertoire of command types as the other solvers do, namely, a mix of automatic deduction, user-invoked proof rules, and an axiom capability.

Quantification is an independent module of SDVS that may be turned on or off with the quantification command. A large part of the quantification commands will work even if quantification is not turned on; for example, trivial deductions are done automatically, such as the truth or falsity of a quantified statement whose matrix is a tautology or a contradiction, respectively, and most of the quantification-specific user-invoked commands.

There is a set of quantifier test proofs that one can run by typing run-test-proofs *quant-tests*.

Trying to access a quantification command that uses EKL when the quantification solver is not activated will cause an error message to be printed.
It should be borne in mind that the quantification solver does have an experimental and rudimentary status, and does not enjoy the same degree of robustness or confidence as the rest of SDVS. This limitation manifests itself in two aspects: applicability and reliability. For example, sentences not in prenex normal form (all quantifiers first, followed by a quantifier-free sentence) may not be handled. Simply, we have decided that most sentences arising naturally in the context of program verification are already in prenex normal form (for example, the order property), and the quantified sentences generated internally by SDVS (for example, in the implementation command) are all prenex universal sentences.

Besides the fact that EKL and SDVS use a somewhat different syntax, another difference between the EKL and SDVS interface is that the EKL user must keep track of the line number of proof steps and occasionally give these as hints to the system. SDVS does not have the concept of line number, so SDVS functions implementing the EKL interface must do the bookkeeping for the user.

Warning: EKL is strongly typed while SDVS is untyped. The result is that SDVS input to EKL is considered to be of type "arbitrary." This works well for the most part, but occasionally it causes problems. For example, in the context of quantification, the user should use only the letters i through n for integer variables. Other letters may be implicitly declared by EKL to be of type "predicate," for example. Type mismatch could cause SDVS to break.

6.1 QUANTIFICATION PROOF COMMANDS

Most of the quantification commands will accept the designators "g <goal-number>" and "q <usable-quant-number>" as arguments. This is a welcome alternative to typing the quantified sentences by hand. However, it should be remembered that this makes for added difficulty in reading and understanding the proofs, in addition to the problem that a change in an earlier part of the proof may affect the labeling of the usable quantifiers.

6.1.1 Quantification

The command quantification turns the quantification solver on or off, unless the arguments are omitted, in which case the state of the solver is toggled. This command is not accepted if any proofs have been started since initialization, since it causes system re-initialization. The command solvers will show whether quantification is on or off.

6.1.2 Usablequantifiers

The command usablequantifiers returns the list of currently true quantified statements. This information is also included in a usable query.
6.1.3 Enotice

The enotify command is used to notify EKL of some true nonquantified statement that may be needed for the deduction of a quantified statement. For example,

<svds.1> quantification
   on or off[on]: on

Quantification solver activated.

<svds.3> pp
   object: enoticeproof

proof enoticeproof:

prove [sd pre: ((sd pre: (true) post: (true))
   --> forall x ((sd pre: (p)
      comod: (a)
      mod: (b)
      post: (q)))]

post: (forall x ((sd pre: (p)
      comod: (a)
      mod: (b)
      post: (q)))]

proof:
   (prove [sd pre: (true) post: (true)]
      proof:
      enotify
      [sd pre: (true) post: (true)]

<svds.3> init
   proof name[]: enoticeproof

State Delta Verification System, Version 12

Restricted to authorized users only.

open -- [sd pre: ((sd pre: (true)
   post: (true))
   --> forall x ((sd pre: (p)
      comod: (a)
      mod: (b)
      post: (q)))]

post: (forall x ((sd pre: (p)
      comod: (a)
      mod: (b)
      post: (q)))]

open -- [sd pre: (true) post: (true)]

Complete the proof.

<svds.1.1.1> usable

No usable state deltas.
q(1) ([sd pre: (true) post: (true)])
   --> forall x ([sd pre: (p)
                  comod: (a)
                  mod: (b)
                  post: (q)])

<sdvs.1.1.1> goals

  g(1) true

<sdvs.1.1.1> close

  close -- 0 steps/applications

  enotice -- [sd pre: (true) post: (true)]

Complete the proof.

<sdvs.1.3> goals

  g(1) forall x ([sd pre: (p) comod: (a) mod: (b) post: (q)])

<sdvs.1.3> usable

  u(1) [sd pre: (true) post: (true)]

  q(1) [sd pre: (true) post: (true)]

  q(2) ([sd pre: (true) post: (true)])
      --> forall x ([sd pre: (p)
                     comod: (a)
                     mod: (b)
                     post: (q)])

<sdvs.1.3> close

  close -- 2 steps/applications

Sometimes enotice of a state delta will not work if the “timestamp” of the enoticed state delta does not correspond to other incarnations of that state delta that exist in other parts of the system. Unfortunately, enotice does not currently take a “u” argument.

6.1.4 Instantiate

The command instantiate is the existential instantiation command. It can be applied to existential formulas in the usable quantifier stack or in the goal stack. When instantiating usable formulas the system checks to see that all instantiations are with new symbols. This is needed for soundness, because we are not allowed to assume extra information about
these symbols. This check is not needed when instantiating an existential formula in the goal stack; there it is sufficient to find any symbols that will work, i.e., make the goal true.

If more than one quantifier, e.g. $\exists x \exists y A$, is to be instantiated, then all the instantiations must be specified at the same time and in the right order, $\langle x c, y d, \ldots \rangle$. When instantiating in a usable existentially quantified statement, the resulting instantiated statement is simply made true. When instantiating in an existentially quantified sentence, that goal specified by $\langle$goal-number$\rangle$ is replaced by the resulting instantiated sentence.

First consider an example where the goal is an existentially quantified sentence.

\[
\text{<sdvs.1>} \text{ prove}
\]
\[
\text{state delta[]: qsdj2}
\]
\[
\text{proof[]: } \langle CR \rangle
\]
\[
\text{open -- [sd pre: ([sd pre: (true) mod: (a) post: ($\#a = .a + 1$), \text{.a = 1, .b = 3}) mod: (a) post: (exists x exists y ($\#x = .y - 1$))]
}
\]
\[
\text{inserting -- pcovering(all,b)}
\]
\[
\text{inserting -- pcovering(all,a)}
\]

Complete the proof.

\[
\text{<sdvs.1.1> whynotgoal}
\]
\[
\text{simplify?[no]: } \langle CR \rangle
\]
\[
\text{g(1) exists x exists y ($\#x = .y - 1$)}
\]

\[
\text{<sdvs.1.1> instantiate}
\]
\[
\text{existential formula: g number: 1 existential variable[]: x instantiated by: a existential variable[]: y instantiated by: b existential variable[]: } \langle CR \rangle
\]

instantiate in goal 1 -- a for x, b for y.

\[
\text{<sdvs.1.2> whynotgoal}
\]
\[
\text{simplify?[no]: } \langle CR \rangle
\]
\[
\text{g(1) $\#a = b\backslash1110 - 1$}
\]

\[
\text{<sdvs.1.2> usablesds}
\]
\[
\text{u(1) [sd pre: (true) mod: (a) post: ($\#a = .a + 1$)]}
\]

241
<sdvs.1.2> apply
   sd/number[highest applicable/once]: <CR>

   apply -- [sd pre: (true)
               mod: (a)
               post: (#a = .a + 1)]

   close -- 2 steps/applications

<sdvs.2> quit

Q.E.D. The proof for this session is in 'sdvsproof'.

State Delta Verification System, Version 12

Restricted to authorized users only.

<sdvs.1> pp
   object: sdvsproof

   proof sdvsproof:

   prove qadf2
   proof:
      (instantiate (x=a,y=b) in g(1),
       apply u(1))

<sdvs.1> init
   proof name[]: sdvsproof

State Delta Verification System, Version 12

Restricted to authorized users only.

open -- [sd pre: ([sd pre: (true)
                  mod: (a)
                  post: (#a = .a + 1)],
                  .a = 1,.b = 3)
               mod: (a)
               post: (exists x exists y (#x = .y - 1))]

inserting -- pcovering(all,b)
inserting -- pcovering(all,a)

instantiate in goal 1 -- a for x, b for y.

apply -- [sd pre: (true)
          mod: (a)
          post: (#a = .a + 1)]

close -- 2 steps/applications

As an example where we must instantiate in a true existential sentence, consider the fol-
lowing situation. Assume that we have an integer array $a$ initialized to 0, about which it is known that there is some index $j$ such that $a[j]$ will be continually incremented by 1 (this is the existentially quantified fact), and we wish to show that there exists an array element that will eventually have the value 3 (this is the existentially quantified goal).

The state delta we want to prove is (assuming for simplicity’s sake that the array has range of 2)

\[
\text{[sd pre: (declare(a,type(array,1,2,type(integer))),}
\text{ exists j ((1 le j & j le 2) & formula(inc.sd))), .a[1] = 0,}
\text{ .a[2] = 0)}
\text{comod: (all)}
\text{mod: (all)}
\text{post: (exists k (#s[k] = 3))}]
\]

where \emph{inc.sd} is

\[
\text{[sd pre: (true)}
\text{mod: (all)}
\text{post: (#s[j] = #s[j] + 1)]}
\]

A similar example is discussed on page 246.

### 6.1.5 Provebygeneralization

The command \emph{provebygeneralization \textless expr1 \textgreater \textless expr2 \textgreater} attempts to prove expr1 by using the statement (already known to be true) expr2. It checks that the nonquantified part of expr2 implies the nonquantified part of expr1.

\[
\text{<sdvs.1> prove}
\text{ state delta[]: gensd}
\text{ proof[]: <CR>}
\text{open -- [sd pre: (forall x (p(x) --&gt; x gt 1))}
\text{ post: (forall x (p(x) --&gt; x gt 0))]}
\text{Complete the proof.}
\text{<sdvs.1.1> whynotgoal}
\text{ simplify?[no]: <CR>}
\text{g(1) forall x (p(x) --&gt; x gt 0)}
\text{<sdvs.1.1> provebygeneralization}
\text{ prove universal formula: g}
\text{ number: 1}
\text{ number of universal formulas: 1}
\text{ using universal formula: forall x (p(x) --&gt; x gt 1)}
\]

243
provebygeneralization -- forall x (p(x) --> x gt 0)

close -- 1 steps/applications

<sdvs.2> quit

Q.E.D. The proof for this session is in 'sdvsproof'.

State Delta Verification System, Version 12

Restricted to authorized users only.

<sdvs.1> pp
  object: sdvsproof

proof sdvsproof:

  prove gensd
    proof: provebygeneralization g(1)
      using: (forall x (p(x) --> x gt 1))

<sdvs.1> init
  proof name[]: sdvsproof

State Delta Verification System, Version 12

Restricted to authorized users only.

open -- [sd pre: (forall x (p(x) --> x gt 1))
  post: (forall x (p(x) --> x gt 0))]

  provebygeneralization -- forall x (p(x) --> x gt 0)

close -- 1 steps/applications

6.1.6 Provebyinstantiation

The command provebyinstantiation <expr1> <expr2> <term1> is the universal instantiation command of SDVS. It attempts to prove expr1 by using the already known to be true universal statement expr2 with terms <term1> substituted. SDVS checks to see that the non-quantified part of expr2 with the terms substituted implies expr1.

If expr1 is not given (default NIL), SDVS just proves the instantiated form of expr2.

Some future implementation of this command will contain a positional identification scheme for the variables to be instantiated, instead of simply their names. This will make the command repeatable even if the names of those variables are randomly generated by some other command in SDVS.

<sdvs.1> pp
  state delta: instan.sd

244
[sd pre: (forall x p(x)) post: (p(j))]

<sdv.1> prove
  state delta[]: instan.sd
  proof[]: <CR>

open -- [sd pre: (forall x p(x))
  post: (p(j))]

Complete the proof.

<sdv.1.1> usable

No usable state deltas.

q(i) forall x p(x)

<sdv.1.1> provebyinstantiation
  prove formula[]: p(j)
  using universal formula: q
  number: 1
  universal variable[]: x
  instantiated by: j
  universal variable[]: <CR>

provebyinstantiation -- p(j)

close -- 1 steps/applications

Below is another example relying on some automatic arithmetic reasoning:

<sdv.1> prove
  state delta[]: intsd
  proof[]: <CR>

open -- [sd pre: (forall k ((i gt 0 & 0 le k) &
  k lt (n - i) + 1
     --> |.a[k]| le |a[(n - i) + 1]|),
  j le n - i,i gt 0,0 le j)
  post: (|#a[j]| le |a[(n - i) + 1]|)]

inserting -- pcovering(all,a[(n - i) + 1])

Complete the proof.

<sdv.1.1> whynotgoal
  simplify?[no]: <CR>

  g(1) |#a[j]| le |a[(n - i) + 1]|

<sdv.1.1> usable

No usable state deltas.
q(1) for all k ((i gt 0 & 0 le k) & k lt (n - i) + 1 --> [.a[k] le [a\1125])

<sdvs.1.1> provebystatement
    prove formula[]: [.a[j] le [.a[((n - i) + 1)]
    using universal formula: q
    number: 1
    universal variable[]: k
    instantiated by: j
    universal variable[]: <CR>

provebystatement -- [a\1127] le [a\1125]

close -- 1 steps/applications

<sdvs.2> quit

Q.E.D. The proof for this session is in 'sdvsproof'.

State Delta Verification System, Version 12

Restricted to authorized users only.

Here is an example combining both instantiate and provebystatement.

Note that if the internal state delta is changed to have a comod list of all, then it will still not be usable after having been applied once and the state delta will not be true (nor provable).

<sdvs.1> ppsd
    state delta: arrayquant1.sd

    [sd pre: (covering(all,a,b),
        declare(a,type(array,1,10,type(bitstring,8))),
        forall j (.a[j] = 1),
        exists k ([sd pre: (true)
            comod: (all)
            mod: (all)
            post: (#a[k] = .a[k] + 1)])
        mod: (all)
        post: (exists i (#a[i] = 3))]

<sdvs.1> prove
    state delta[]: arrayquant1.sd
    proof[]: <CR>

open -- [sd pre: (covering(all,a,b),
        declare(a,type(array,1,10,type(bitstring,8))),
        forall j (.a[j] = 1),
        exists k ([sd pre: (true)
            comod: (all)
            mod: (all)
            post: (#a[k] = .a[k] + 1)])]
Complete the proof.

\<sdvs.1.1\> usable

No usable state deltas.

\text{q(1) exists k \left[ \text{sd pre: (true)} \right.} \\
\text{comod: (all)} \\
\text{mod: (all)} \\
\text{post: (\#a[k] = .a[k] + 1)]}

\text{q(2) for all j (.a[j] = 1)}

\<sdvs.1.1\> instantiate
\begin{itemize}
\item \text{existential formula: q}
\item \text{number: 1}
\item \text{existential variable[]} \text{[k]}
\item \text{instantiated by: k}
\item \text{existential variable[]} \text{<CR>}
\end{itemize}
\text{instantiate in q(1) -- k for k.}

\<sdvs.1.2\> provebyinstantiation
\begin{itemize}
\item \text{prove formula[]} \text{.a[k] = 1}
\item \text{using universal formula: q}
\item \text{number: 2}
\item \text{universal variable[]} \text{[j]}
\item \text{instantiated by: k}
\item \text{universal variable[]} \text{<CR>}
\end{itemize}
\text{provebyinstantiation -- a\textbackslash 1139 = 1}

\<sdvs.1.3\> usable

\text{u(1) \left[ \text{sd pre: (true)} \right.} \\
\text{comod: (all)} \\
\text{mod: (all)} \\
\text{post: (\#a[k] = .a[k] + 1)]}

\text{q(1) exists k \left[ \text{sd pre: (true)} \right.} \\
\text{comod: (all)} \\
\text{mod: (all)} \\
\text{post: (\#a[k] = .a[k] + 1)]}

\text{q(2) for all j (.a[j] = 1)}

\<sdvs.1.3\> simp
\begin{itemize}
\item \text{expression: .a[k]}
\end{itemize}

1

247
apply
sd/number[highest applicable/once]: <CR>

apply -- [sd pre: (true)
comod: (all)
mod: (all)
post: (\#a[k] = \#a[k] + 1)]

<sdvs.1.4> usable

No usable state deltas.

No usable quantified formulas.

6.1.7 Makeboundedquantifier

The command provebymakeboundedquantifier <expr1> <explist> attempts to prove expr1 by using the already known to be true universal statements in explist. It checks to see that the prefixes are all the same and that the bound in expr1 implies the disjunction of the bounds of the sentences in explist.

<sdvs.1> prove
state delta[]: quantsd
proof[]: <CR>

open -- [sd pre: (forall k ((\#i) gt 0 & 0 le k) & k lt j0
  -- > [.a[k]] le \#a([(\#n] - \#i)] + 1)],
forall k ((\#i) gt 0 & j0 le k) & k lt j0 + 1
  -- > [.a[k]] le \#a([(\#n] - \#i)] + 1)],
forall k ((\#i) gt 0 & j0 + 1 le k) &
  k lt (j0 + 1) + 1
  -- > [.a[k]] le \#a([(\#n] - \#i)] + 1)],
forall k ((\#i) gt (j0 + 1) + 1 le k) &
  k lt (\#n] - \#i)] + 1
  -- > [.a[k]] le \#a([(\#n] - \#i)] + 1)])

post: (forall k ((\#i) gt 0 & 0 le k) &
  k lt (\#n] - \#i)] + 1
  -- > [.a[k]] le \#a([(\#n] - \#i)] + 1)])

inserting -- pcovering(all,\#a([\#n\#1146] - \#i\#1145] + 1])

inserting -- pcovering(all,n)

inserting -- pcovering(all,i)

Complete the proof.

<sdvs.1.1> whynotgoal
simplify?[no]: <CR>
g(1) forall k ((\#i) gt 0 & 0 le k) & k lt (\#n] - \#i)] + 1

248
\[ \rightarrow |a[k]| \leq |a[1 + |i| + 1]| \]

<sdvs.1.1> usable

No usable state deltas.

q(1) forall k ((|i|1145) \& 0 \& (j0 + 1) \& 1 \& le k) \&
   k lt (|[n]|1146) - |i|1145) + 1 \rightarrow |.a[k]| \leq |a|1147|

q(2) forall k ((|i|1145) \& 0 \& j0 + 1 \& le k) \&
   k lt (j0 + 1) + 1 \rightarrow |.a[k]| \leq |a|1147|

q(3) forall k ((|i|1145) \& 0 \& j0 \& le k) \& k lt j0 + 1
   \rightarrow |.a[k]| \leq |a|1147|

q(4) forall k ((|i|1145) \& 0 \& 0 \& le k) \& k lt j0 \rightarrow |.a[k]| \leq |a|1147|

<sdvs.1.1> provebymakeboundedquantifier
   prove bounded universal formula: g
      number: 1
      number of universal formulas: 4
      using universal formula: q
      number: 1
      using universal formula: q
      number: 2
      using universal formula: q
      number: 3
      using universal formula: q
      number: 4

   provebymakeboundedquantifier -- forall k ((|i|1145) \& 0 \& 0 \& le k) \&
      k lt (|[n]|1146) - |i|1145) + 1
      \rightarrow |.a[k]| \leq |a|1147|

   close -- 1 steps/applications

<sdvs.2> quit

Q.E.D. The proof for this session is in 'sdvsproof'.

State Delta Verification System, Version 12

Restricted to authorized users only.

Of course, instead of naming the formulas by "g" or "q," one could have typed them out. Here is the way the proof looks:

(prove quantsd
   proof: provebymakeboundedquantifier g(1)
      using: (q(1), q(2), q(3), q(4)))
6.1.8 Quantification Axioms

Another manifestation of the experimental nature of the quantification solver is that the quantification axioms are not completely connected to the SDVS axiom mechanism. Therefore, some strange things may occasionally happen. For example, if even after having read in the quantification axiom(s) SDVS does not recognize that fact, execute deleteaxioms and try reading the quantification axiom again via readaxioms.

There are now only two user-invokable quantification axioms in SDVS, quant2 and quant3, located on axioms/quant.axioms. The content of quant2 was needed in an induction proof involving properties of numbers, and instead of proving the result in EKL by using a more basic axiomatization of natural numbers, we decided to "cheat" and just make quant2 an axiom.

<sdvs.1> pp
object: quant2

axiom quant2 (j,1,k):
    forall predtomatch forall j forall l (forall k (1 le k &
       k le j
       --> predtomatch(k)) &
       predtomatch(j + 1)
       --> forall k (1 le k &
       k le j +
       l
       --> predtomatch(k))))

<sdvs.1> pp
object: quant3

axiom quant3 (k,i,l,j):
    forall predtomatch forall k forall l (exists j ((1 le j &
       j lt k) &
       ~(predtomatch(j)))
       --> exists j (((1 le j &
       j lt k) &
       ~(predtomatch(j))) &
       forall i (1 le i &
       i lt j
       --> predtomatch(i))))

To print an EKL axiom use the pp command, not pp axioms.

<sdvs.1> pp
object: axiomproof

proof axiomproof:

provebyeklaiom (forall k (0 le k & k le j0 - 1 --> |.a[k]| 1 le |.a[j1]|) &
                |.a[(j0 - 1) + 1] 1 le |.a[j1]|
                --> forall k (0 le k & k le (j0 - 1) + 1

250
using: quant2

\[ \forall k \leq j0 - 1 \rightarrow a[k] \leq a[j1] \]

Notice that we had to use \texttt{interpret} instead of \texttt{init}, since the first proof command cannot be \texttt{provebyklaxiom}. Note that to create the above axiomproof it is necessary to do the following in the editor:

\begin{verbatim}
(putproof 'axiomproof
  '((provebyklaxiom
      (implies
       (and (forall k
             (implies (and (le 0 k) (le k (minus j0 1)))
             (le (usval (dot (element a k))))
             (usval (dot (element a j1)))))
             (forall k
             (implies (and (le 0 k) (le k (plus (minus j0 1) 1)))
             (le (usval (dot (element a k))))
             (usval (dot (element a j1)))))))
    (forall k
     (implies (and (le 0 k) (le k (plus (minus j0 1) 1)))
     (le (usval (dot (element a k))))
     (usval (dot (element a j1)))))))
(quant2)))
\end{verbatim}

Here is an example of a proof involving \texttt{quant3}: Let the following state delta be called test.sd:

\begin{verbatim}
[sd pre: "((forall j (.k le j & j lt .1 --> .x[j] le .x[1])))
  post: (exists j (((.k le j & j lt .1) & ~(.x[j] le .x[1])) &
                  forall i (.k le i & i lt j --> .x[i] le .x[1])))]
\end{verbatim}

and let the following proof be called quant-good.proof:

\begin{verbatim}
(prove test1.sd
  proof:
    (provebyklaxiom (exists j (((.k le j & j lt .1)) &
                   .x[j] gt .x[1])
      -- exists j (((.k le j & j lt .1)) &
                   .x[j] gt .x[1]) &
                   forall i (.k le i & i lt j
                   -- .x[i] le .x[1])))
      using: quant3,

251
\end{verbatim}
notice
exists j (((k le j & j lt .1) & ~(x[j] le x[1])) &
forall i (.k le i & i lt j --> x[i] le x[1])),
close))

The transcript of the proof session follows:

<sdvx.1.2> init
proof name[]: quant-good.proof

State Delta Verification System, Version 12

Restricted to authorized users only.

open -- [sd pre: (~(forall j (.k le j & j lt .1 --> x[j] le x[1])))
post: (exists j (((.k le j & j lt .1) &
~(x[j] le x[1])) &
forall i (.k le i & i lt j --> x[i] le x[1])))

inserting -- pcovering(all,1)

inserting -- pcovering(all,k)

provebyeklaxiom quant3 -- exists j (((.k le j & j lt .1) &
~(x[j] le x[1])
--> exists j (((.k le j & j lt .1) &
~(x[j] le x[1])) &
forall i (.k le i &
i lt j
--> x[i] le x[1])))

close -- 1 steps/applications

Note that care has to be taken to save the proof in its Lisp form, so that the internal form of the predtomatch part of the axiom will really be a predicate and its negation, and not in terms of le and lt; thus

(defproof quant-good.proof
((prove test1.ad
(provebyeklaxiom
(implies
(exists j
(and (and (le (dot k) j) (lt j (dot l)))
(not (le (dot (element x j)) (dot (element x 1)))))))
(exists j
(and (and (le (dot k) j) (lt j (dot l)))
(not (le (dot (element x j)) (dot (element x 1))))))
(forall i
(implies (and (le (dot k) i) (lt i j))
(le (dot (element x i)) (dot (element x 1))))))
quant3)
(notice
252
(exists j
  (and (and (and (le (dot k) j) (lt j (dot l)))
    (not (le (dot (element x j)) (dot (element x l)))))
  (forall i
    (implies (and (le (dot k) i) (lt i j))
     (le (dot (element x i)) (dot (element x i)))))
  (close))))

6.1.9 Quantification Flags

checkexistence When this flag is on, existential quantifiers of type place are automatically instantiated in all possible combinations.

ekltraceflag When this flag is on, EKL internal messages will be printed.

enumerate When this flag is on, bounded universally quantified variables are enumerated.

6.2 PROOF OF A SORT PROGRAM

Now we present an example proof of a standard bubble-sort algorithm stated in ISPS. The SDVS proof of a "quicksort" Ada program is given in [41].

ISPS.SORT {US} := BEGIN

** Declaration.Section **

I<15:0>,
J<15:0>,
N<15:0>,
TMP<15:0>,
A[0:99]<15:0>,

** Interpretation.Section **

SORT {main} := BEGIN
I.0 NEXT
L11 := REPEAT
L1 := BEGIN
  IF I EQL N => LEAVE L11 NEXT
L0 NEXT
L22 := REPEAT
L2 := BEGIN
  IF J EQL N => LEAVE L22 NEXT
    TMP.A[J] NEXT
    A[J+1].TMP
    END NEXT
L.J+1
END NEXT
L.I+1

253
The theorem, as given in sort.sd, expresses the order property of the array a upon termination of sort.isp.

\[
\text{[sd pre: (isps(sort.isp), isps.sort.upc = isps.sort\started,}
\|n\| \lt \text{range(a))}
\text{mod: (all)}
\text{post: (isps.sort.upc = isps.sort\halted,}
\text{forall k (0 \leq k \& k \lt |.n| \rightarrow |.a[k]| \leq |.a[k + 1]|))}
\]

The proof of sort.sd is given in sort.proof.

<sdvs.l> pp
object: sort.proof
proof sort.proof:
(setflag enumerate off,
 setflag ektraceflag off,
 setflag autoclose off,
 date,
 prove sort.sd
 proof:
cases |.n| = 0
 then proof:
 (until isps.sort.upc = isps.sort\halted, close)
 else proof:
 (until isps.sort.upc = 12,
 induct on: |.j|
 from: 0
to: |.n|
invariants: (.isps.sort\upc = 12,
 forall k (0 \leq k \& k \lt |.j| 
 \rightarrow |.a[k]| \leq |.a[|.|.j|]|))
 comodlist: (n,i)
 modlist: (j,isps.sort\upc,a,tmp)
bare proof: close
 step proof:
(comment Let j0, j1, notice j1=j0+1 bistring-wise.,
 let j0 = |.j|,
 let j1 = j0 + 1,
 notice j1 = |(.j ++ 1(0))<15:0>|,
 comment Notice initial inner invariants in terms of j0.,
 provebygeneralization forall k (0 \leq k \& k \lt j0 
 \rightarrow |.a[k]| \leq |.a[j0]|))
 using: (forall k (0 \leq k \& k \lt |.j| \rightarrow |.a[k]| \leq |.a[|.|.j|]|)),
 comment Apply to inner greater-than test.)
apply, cases \[ a\llbracket j \rrbracket \leq a\llbracket j \rrbracket + 1 \times (2) \rrbracket \]
then proof:
  (interpret sortinner01.proof, close)
else proof:
  (interpret sortinner02.proof, close),
close),
until
\#isps.sort\upc = 11, notice
forall \( k \) (\( 0 \leq k \land k \lt \llbracket i \rrbracket \) \implies \( a\llbracket k \rrbracket \leq a\llbracket i \rrbracket + 1 \rrbracket \)),
provebygeneralization forall \( k \) ((\( i \) gt 0 \& 0 \leq k) \& k lt (\( n \) - \( i \) + 1)
\implies \( a\llbracket k \rrbracket \leq a((\( n \) - \( i \) + 1)) \))
using: (forall \( k \) (\( 0 \leq k \land k \lt \llbracket j \rrbracket \) \implies \( a\llbracket k \rrbracket \leq a\llbracket j \rrbracket + 1 \rrbracket \)),
notice
forall \( k \) ((\( n \) - \( i \) + 1 \leq k) \& k lt \( n \)
\implies \( a\llbracket k \rrbracket \leq a\llbracket k + 1 \rrbracket )
induct on: \( i \)
from: \( i \)
to: \( n \)
invariants: \( a\llbracket n \rrbracket \leq a\llbracket n \rrbracket + 1 \leq k \land k \lt \( n \)
\implies \( a\llbracket k \rrbracket \leq a\llbracket k + 1 \rrbracket )
forall \( k \) ((\( i \) gt 0 \& 0 \leq k) \& k lt (\( n \) - \( i \) + 1)
\implies \( a\llbracket k \rrbracket \leq a((\( n \) - \( i \) + 1)) \))
comodlist: \( n \)
modlist: \( (a,i,j,tmp,isps.sort\upc) \)
base proof: close
step proof:
(comment Let \( i0, i1, \) notice \( i1 = i0 + 1 \) bitstring-wise.,
let \( i0 = \llbracket i \rrbracket \),
let \( i1 = i0 + 1 \),
notice \( i1 = ((i \times 1 + 1) < 15:0>) \),
until \#isps.sort\upc = 12,
induct on: \( j \)
from: 0
to: \( n - i \)
invariants: \( a\llbracket n \rrbracket \leq a\llbracket n \rrbracket + 1 \leq k \land k \lt \( n \)
\implies \( a\llbracket k \rrbracket \leq a\llbracket n \rrbracket + 1 \rrbracket )
forall \( k \) ((\( i \) gt 0 \& 0 \leq k) \& k lt (\( n \) - \( i \) + 1)
\implies \( a\llbracket k \rrbracket \leq a((\( n \) - \( i \) + 1)) \))
)}
comodlist: (n,i)
modlist: (j,a[0:([],n) - [],i]), isps.sort\upc,tmp
base proof: close
step proof:
  *(comment Let j0, j1, notice j1=j0+1 bistring-wise.,
  let j0 = [],j).
  let j1 = j0 + 1,
  notice j1 = |(.,j ++ 1(2))<15:0>|,
  comment Notice initial inner invariants in terms of j0.,
  provebygeneralization forall k (0 le k & k lt j0
  --> |.a[k]| le |.a[j0]|)
  using: (forall k (0 le k & k lt [],j --> |.a[k]| le |.a[j[]]|),
  comment Apply to inner greater-than test.,
  apply,
  cases |.a[[],j]| le |.a[[],j ++ 1(2)]|,
  then proof:
  (interpret sortinner11.proof,
   close)
  else proof:
  (interpret sortinner12.proof,
   close),
  close),
  notice
  forall k (0 le k & k lt [],j --> |.a[k]| le |.a[[],j]|),
  provebygeneralization forall k (0 le k &
  k lt |.n| - |.i|
  --> |.a[k]|
  le |.a[|.,n| - |.i|]|)
  using: (forall k (0 le k & k lt [],j --> |.a[k]| le |.a[[],j]|),
  induct on: [,j]
  from: |.n| - |.i|
  to: |.n|
invariants: (.isps.sort\upc = 12,
  forall k (((|.,n| - |.i|) + 1 le k &
  k lt |.n|
  --> |.a[k]| le |.a[k + 1]|),
  forall k (((|.,i| gt 0 & 0 le k) &
  k lt (|.,n| - |.i|) + 1
  --> |.a[k]|
  le |.a[|.,n| - |.i| + 1]|))
comodlist: (n,i,a)
modlist: (j,isps.sort\upc)
base proof: close
step proof:
  *(comment Let j0, j1, notice j1=j0+1 bistring-wise.,
  let j0 = [],j),
  let j1 = j0 + 1,
  notice j1 = |(.,j ++ 1(2))<15:0>|,
  comment The next notice was inserted by leo.,
  notice
  forall k (((|.,n| - |.i|) + 1 le k & k lt |.n|
  --> |.a[k]| le |.a[k + 1]|),
  comment Apply to inner greater-than test.,
  apply,
provebyinstantiation \[.a[.j]]\]
\[.e\.a[.i].n - .i]\]
\[.a[.k]\]
\[.e\.a[.k + 1]\]

subcases\.j\.e\.a[.n] - .i]

modlist:
subgoal: \([.a[.j]]\)
\[.e\.a[.j + 1]\)]
then proof:
(provebyinstantiation \[.a[.j]]\]
\[.e\.a[.i].n - .i\] + 1]

using: forall \k\ ((.i) gt 0 & 0 le \k) &
\k lt (.i) + 1
\[.a[.k]\]
\le\.a[(.i) + 1)]

substitutions: \(k = .j)\),
close)
else proof:
(provebyinstantiation \[.a[.j]]\]
\[.e\.a[.i].n + 1]\]

using: forall \k\ ((.i) + 1 le \k &
\k lt (.i)
\[.a[.k]\]
\le\.a[.i] + 1)]

substitutions: \(k = .j)\),
close),

comment The next notice was inserted by leo.,
notice
forall \k\ ((.i) + 1 le \k &
\k lt (.i)
\[.a[.k]\]
\le\.a[.i] + 1)]

proofbygeneralization forall \k\ ((i0) gt 0 & 0 le \k) &
\k lt (.i - i0)
\[.a[.k]\]
\le\.a[.i] - i0)]

using: (forall \k\ ((.i) gt 0 & 0 le \k) &
\k lt (.i)
\[.a[.k]\]
\le\.a[.i] - .i)]

notice
forall \k\ ((.i) + 1 le \k &
\k lt (.i)
\[.a[.k]\]
\le\.a[.k + 1)]

proofbygeneralization forall \k\ ((.i) - i0 + 1 le \k &
\k lt (.i)
\[.a[.k]\]
\le\.a[.k + 1)]

using: (forall \k\ ((.i) + 1 le \k &
\k lt (.i)
\[.a[.k]\]
\le\.a[.k + 1)]

notice
forall \k\ ((.i) gt 0 & 0 le \k) &
\k lt (.i)
\[.a[.k]\]
\le\.a[.i] + 1]
\[
\text{provebygeneralization} \quad \forall k \; ((\text{pred} 0 \land k \cdot 0) \land k \cdot \text{lt} (\text{pred} \cdot 0 - \text{pred} \cdot i) + 1) \land k \\
\rightarrow \; |.a[k]| \leq |.a[(\text{pred} \cdot 0 - \text{pred} \cdot i + 1)]|
\]

using: \(\forall k \; ((\text{pred} \cdot 0 \land k \cdot 0) \land k \cdot \text{lt} (\text{pred} \cdot (\text{pred} - \text{pred} \cdot i) + 1))\).

\text{provebyinstantiation} \quad |.a[(\text{pred} \cdot 0 - \text{pred} \cdot (\text{pred} - \text{pred} \cdot i) + 1)]|

using: \(\forall k \; ((\text{pred} \cdot 0 \land k \cdot 0) \land k \cdot \text{lt} (\text{pred} \cdot (\text{pred} - \text{pred} \cdot i) + 1))\)

\text{substitutions:} \(k = \text{pred} \cdot 0 - \text{pred} \cdot i\).

\text{notice} \quad \forall k \; (|.a[(\text{pred} \cdot (\text{pred} - \text{pred} \cdot i) + 1)]|) \land .a[(\text{pred} \cdot (\text{pred} - \text{pred} \cdot i) + 1)]|

\text{provebygeneralization} \quad \forall k \; ((\text{pred} \cdot i) \land k \cdot \text{lt} (\text{pred} \cdot (\text{pred} - \text{pred} \cdot (\text{pred} - \text{pred} \cdot i) + 1)) + 1) \land k \\
\rightarrow \; |.a[k]| \leq |.a[(\text{pred} \cdot (\text{pred} - \text{pred} \cdot (\text{pred} - \text{pred} \cdot i) + 1)) + 1]|
\]

using: \(\forall k \; ((\text{pred} \cdot i) \land k \cdot \text{lt} (\text{pred} \cdot (\text{pred} - \text{pred} \cdot (\text{pred} - \text{pred} \cdot i) + 1)) + 1) \land k\)

\text{provebymakeboundedquantifier} \quad \forall k \; ((\text{pred} \cdot (\text{pred} - \text{pred} \cdot i) + 1) \land k \cdot k \cdot \text{lt} (\text{pred}) + 1) \land k \\
\rightarrow \; |.a[k]| \leq |.a[(\text{pred} \cdot (\text{pred} - \text{pred} \cdot i) + 1)]|
\]

using: \(\forall k \; ((\text{pred} \cdot (\text{pred} - \text{pred} \cdot i) + 1) \land k \cdot \text{lt} (\text{pred} \cdot (\text{pred} - \text{pred} \cdot i) + 1)) \land k\)

\text{provebygeneralization} \quad \forall k \; ((\text{pred} \cdot i) \land k \cdot \text{lt} (\text{pred} \cdot (\text{pred} - \text{pred} \cdot i) + 1)) \land k \\
\rightarrow \; |.a[k]| \leq |.a[(\text{pred} \cdot (\text{pred} - \text{pred} \cdot i) + 1)]|
\]

using: \(\forall k \; ((\text{pred} \cdot i) \land k \cdot \text{lt} (\text{pred} \cdot (\text{pred} - \text{pred} \cdot i) + 1)) \land k\)

\text{close}, \text{notice} \quad \forall k \; ((\text{pred} \cdot (\text{pred} - \text{pred} \cdot i) + 1) \land k \cdot k \cdot \text{lt} (\text{pred}) + 1) \land k \\
\rightarrow \; |.a[k]| \leq |.a[(\text{pred} \cdot (\text{pred} - \text{pred} \cdot i) + 1)]|
\]

\text{notice} \quad \forall k \; ((\text{pred} \cdot (\text{pred} - \text{pred} \cdot i) + 1) \land k \cdot k \cdot \text{lt} (\text{pred}) + 1) \land k \\
\rightarrow \; |.a[k]| \leq |.a[(\text{pred} \cdot (\text{pred} - \text{pred} \cdot i) + 1)]|
\]

\text{provebygeneralization} \quad \forall k \; ((\text{pred} \cdot i) \land k \cdot \text{lt} (\text{pred} \cdot (\text{pred} - \text{pred} \cdot i) + 1)) \land k \\
\rightarrow \; |.a[k]| \leq |.a[(\text{pred} \cdot (\text{pred} - \text{pred} \cdot i) + 1)]|
\]

using: \(\forall k \; ((\text{pred} \cdot i) \land k \cdot \text{lt} (\text{pred} \cdot (\text{pred} - \text{pred} \cdot i) + 1)) \land k\)
\begin{verbatim}
\texttt{k \text{lt} ([.n - [.i]) + 1
---> [.a[k]] le [.a([.n - [.i)) + 1])},
\texttt{provebymakeboundedquantifier forall k (0 le k & k \text{lt} [.n]
---> [.a[k]]
\hspace{1cm} le [.a[k + 1])}\\
\texttt{using: (forall k (i[j] gt 0 & 0 le k) &
\hspace{1cm} k \text{lt} ([.n - i[j]) + 1
---> [.a[k]] le [.a[k + 1])},
\texttt{forall k (i[j]) + 1 le k & k \text{lt} [.n]
---> [.a[k]] le [.a[k + 1])},
\texttt{until \#isps.sort\upc = isps.sort\halted, close),}
\end{verbatim}

<sdvs.1> pp
object: sortinner01.proof

proof sortinner01.proof:

\begin{verbatim}
\texttt{(until \#isps.sort\upc = 12,}
\texttt{comment Generalize from a[j0] \leq a[j1] and k<j0--->k<=j0-1..}
\texttt{provebymakegeneralization forall k (0 le k & k le j0 - 1
---> [.a[k]] le [.a[j1]])}
\texttt{using: (forall k (0 le k & k \text{lt} j0 ---> [.a[k]] le [.a[j0]])},
\texttt{provebyklaxon (forall k (0 le k & k le j0 - 1 ---> [.a[k]] le [.a[j1]]) &
\hspace{1cm} [.a([j0 - 1] + 1)] le [.a[j1]]
---> forall k (0 le k & k le (j0 - 1) + 1
---> [.a[k]] le [.a[j1]])}}
\end{verbatim}

<sdvs.1> pp
object: sortinner02.proof

proof sortinner02.proof:

\begin{verbatim}
\texttt{(provebyaxiom alldisjoint(a[],j],a[],.j + 1(2)])}
\texttt{using: disjoint\elements, apply 2,}
\texttt{provebymakegeneralization forall k (0 le k & k \text{lt} j0 ---> [.a[k]] le [.tmp])}
\texttt{using: (forall k (0 le k & k \text{lt} j0 ---> [.a[k]] le [.a[j0]])},
\texttt{until \#isps.sort\upc = 12,}
\texttt{comment Generalize from a[j0] \leq a[j1] and k<j0--->k<=j0-1..}
\texttt{provebymakegeneralization forall k (0 le k & k \text{lt} j0 - 1
---> [.a[k]] le [.a[j1]])}
\texttt{using: (forall k (0 le k & k \text{lt} j0 ---> [.a[k]] le [.tmp]),
provebyklaxon (forall k (0 le k & k le j0 - 1 ---> [.a[k]] le [.a[j1]]) &
\hspace{1cm} [.a([j0 - 1] + 1)] le [.a[j1]]}
\end{verbatim}

259
using: quant2,
notice
forall k (0 le k & k le j0 - 1 --> \|a[k]\| le \|a[j1]\|) &
\|a((j0 - 1) + 1)\| le \|a[j1]\|,

notice
forall k (0 le k & k le (j0 - 1) + 1 --> \|a[k]\| le \|a[j1]\|),

comment Generalize from k<='j0-1+1-->k'<='j0-1' and j0+1=j1 and j1=usval(.j).,
provebygeneralization forall k (0 le k & k le j0 - 1 --> \|a[k]\| le \|a[j1]\|)
using: (forall k (0 le k & k le j0 - 1 --> \|a[k]\| le \|a[j1]\|)),
provekyeklaxiom forall k (0 le k & k le j0 - 1 --> \|a[k]\| le \|a[j1]\|) &
\|a((j0 - 1) + 1)\| le \|a[j1]\|
---> forall k (0 le k & k le (j0 - 1) + 1
---> \|a[k]\| le \|a[j1]\|)

using: quant2,
notice
forall k (0 le k & k le j0 - 1 --> \|a[k]\| le \|a[j1]\|) &
\|a((j0 - 1) + 1)\| le \|a[j1]\|,

notice
forall k (0 le k & k le (j0 - 1) + 1 --> \|a[k]\| le \|a[j1]\|),

comment Generalize from k<='j0-1+1-->k'<='j0-1' and j0+1=j1 and j1=usval(.j).,
provebygeneralization forall k (0 le k & k le j0 - 1 --> \|a[k]\| le \|a[j1]\|)
using: (forall k (0 le k & k le j0 - 1 --> \|a[k]\| le \|a[j1]\|)),
provekyeklaxiom forall k (0 le k & k le j0 - 1 --> \|a[k]\| le \|a[j1]\|) &
\|a((j0 - 1) + 1)\| le \|a[j1]\|
---> forall k (0 le k & k le (j0 - 1) + 1
---> \|a[k]\| le \|a[j1]\|)

<sdvs.1> pp

object: sortinner12.proof

proof sortinner12.proof:

(comment Start the proof of the third invariant, by breaking it into pieces.,
provebyinstantiation \|a(\|n\| - \|i\|) + 1]\| le \|a(\|n\| - \|i\|) + 1]\|
using: forall k ((\|i\| eq 0 & 0 le k) & k lt (\|n\| - \|i\|) + 1
---> \|a[k]\| le \|a((\|n\| - \|i\|) + 1]\])

substitutions: (k=\|j\|),
provebyinstantiation \|a(\|j\| + 1]\| le \|a((\|j\| + 1]\| + 1]\|
using: forall k ((\|i\| eq 0 & 0 le k) & k lt (\|n\| - \|i\|) + 1
---> \|a[k]\| le \|a((\|n\| - \|i\|) + 1]\])

substitutions: (k=\|j\|),
provebygeneralization forall k ((\|i\| eq 0 & 0 le k) & k lt j0
---> \|a[k]\|
le \|a((\|n\| - \|i\|) + 1]\])
using: (forall k ((\|i\| eq 0 & 0 le k) & k lt (\|n\| - \|i\|) + 1
---> \|a[k]\| le \|a((\|n\| - \|i\|) + 1]\])).

260
provebygeneralization forall k ((.i) 0 & j1 + 1 le k) &
  k (j0) (.n) (.i) + 1
tmp (.i) (.n) (.i) + 1
-> a[k]
le a[.n - .i] + 1)

using: (forall k ((.i) 0 & 0 le k) & k (j0) (.n) (.i) + 1
-> a[k] le a[.n - .i] + 1)
provebyaxiom pcovering(a[0:(.n) (.i)] a[.j])
using: pcovering[slice;element;
provebyaxiom pcovering(a[0:(.n) (.i)] a[.j + 1(2)])
using: pcovering[slice;element;
provebyaxiom alldisjoint(a[.j]) & a[.n - .i] + 1)
using: disjinct[elements;
provebyaxiom alldisjoint(a[.j + 1(2)], a[.n - .i] + 1)
using: disjinct[elements;
provebyaxiom alldisjoint(a[.j], a[.n])
using: disjinct[elements;
provebyaxiom alldisjoint(a[.j + 1(2)], a[.n])
using: disjinct[elements;
comment Here is the equivalent proof for the i=0 case starts.,
provebyaxiom alldisjoint(a[.j], a[.j + 1(2)])
using: disjinct[elements;
apply 2,
provebygeneralization forall k (0 le k & k (j0) 0 --> a[k] le .tmp)
using: (forall k (0 le k & k (j0) 0 --> a[k] le a[j0]))
until #isps.sort[]up = 12,
comment Generalize from a[j0] a[j1] and k<j0-->k<='j0-1,
provebygeneralization forall k (0 le k & k (j0 - 1
---> a[k] le a[j1])
using: (forall k (0 le k & k (j0) 0 --> a[k] le .tmp))
provebyaxiom (forall k (0 le k & k (j0 - 1 --> a[k] le a[j1]) &
.a[j0] + 1) le a[j1]
---> forall k (0 le k & k (j0 - 1 + 1
--> a[k] le a[j1])

using: quant2,
notice
forall k (0 le k & k (j0 - 1 --> a[k] le a[j1]) &
.a[j0] + 1) le a[j1],
notice
forall k (0 le k & k (j0 - 1 + 1 --> a[k] le a[j1])

comment Generalize from k<='j0-1--->k<j0+1 and j0+j1=1 and j1=usval(.j),
provebygeneralization forall k (0 le k & k (j0) 0 --> a[k] le a[j1])
using: (forall k (0 le k & k (j0 - 1 + 1 --> a[k] le a[j1])
comment Finish the proof of the third invariant.,
notice forall k (a[j0] le a[.n - .i] + 1)
provebygeneralization forall k ((.i) 0 & j0 le k) &
  k (j0) (.n) (.i) + 1
-> a[k]
le a[.n - .i] + 1)

using: (forall k (a[j0] le a[.n - .i] + 1))

notice forall k (a[j1] le a[.n - .i] + 1))
provebygeneralization forall k ((.i) 0 & j1 le k) &
  k (j1) (.n) (.i) + 1
-> a[k]
le a[.n - .i] + 1)

using: (forall k (a[j1] le a[.n - .i] + 1))

261
prove by bounded quantifier forall k ((|i| gt 0 & 0 le k) &
    k lt (|n| - |i|) + 1
    ---> |.a[k]|
    le |.a[(|n| - |i|) + 1]])

using: (forall k ((|i| gt 0 & 0 le k) & k lt j0
    ---> |.a[k]| le |.a[(|n| - |i|) + 1]]).
    forall k ((|i| gt 0 & j0 le k) & k lt j0 + 1
    ---> |.a[k]| le |.a[(|n| - |i|) + 1]]).
    forall k ((|i| gt 0 & j1 le k) & k lt j1 + 1
    ---> |.a[k]| le |.a[(|n| - |i|) + 1]]).
    forall k ((|i| gt 0 & j1 + 1 le k) &
    k lt (|n| - |i|) + 1
    ---> |.a[k]| le |.a[(|n| - |i|) + 1]]))
7 USER-DEFINED DATA TYPES

7.1 INTRODUCTION

In this section we give some background on user-defined data types in general, and in the next section we give the specifics of the experimental SDVS capability. This capability is modeled on the Boyer-Moore system [56]. This chapter is largely taken from [57].

Boyer and Moore, in their program for Computational Logic, introduced a formal method for the introduction of new data types, called the shell principle. This specifies what functions are introduced for the definition of a new data type, and introduces an automatically generated set of associated axioms. This is the pattern of the shell principle:

- There is a constructor function \texttt{const}, of \texttt{n} arguments,
- an optional base constant \texttt{base},
- a recognizer function \texttt{r},
- \texttt{accessor} functions \texttt{ac}_1, \texttt{ac}_2, \ldots, \texttt{ac}_n,
- \texttt{type restrictions} \texttt{tr}_1, \texttt{tr}_2, \ldots, \texttt{tr}_n, and
- \texttt{default values} \texttt{dv}_1, \texttt{dv}_2, \ldots, \texttt{dv}_n.

For example, a binary tree could be considered to be a data type with constructor \texttt{buildTree}, a function of two arguments, where the base is \texttt{emptyTree}, the recognizer would be a predicate \texttt{isTree(...),} and the accessors are \texttt{leftSubTree, data,} and \texttt{rightSubTree}. The type restrictions, which give the types of the results of the accessor functions, are \texttt{binaryTree, int, binaryTree}, respectively, and thus imply

- \texttt{leftSubTree: [binaryTree \rightarrow binaryTree]}
- \texttt{data: [binaryTree \rightarrow int]}
- \texttt{rightSubTree: [binaryTree \rightarrow binaryTree]}

Finally, the default values are \texttt{emptyTree, 0, emptyTree} for \texttt{leftSubTree, data,} and \texttt{rightSubTree,} respectively.

Just as before, models of structures introduced by the shell principle are obtained in either of two ways:

1. by \texttt{n}-tuples in which the i-th term satisfies the type restriction \texttt{tr}_i, or
2. by all terms being built up from \texttt{base} using the constructor \texttt{const}.

Axioms for the new data type are automatically generated; a few of these are
\[ r(x) = T \lor r(x) = F \]

- \[ r(\text{const}(x_1, \ldots, x_n)) = T \]
- \[ r(\text{base}) = T \]
- \[ \text{base} \neq \text{const}(x_1, \ldots, x_n) \]
- \[ r(x) \rightarrow x \neq \text{base} \rightarrow x = \text{const}(a(1)(x), \ldots, a(n)(x)) \]

Note: The use of \( r \) in some of these axioms is needed for a language in which variables can range over other objects as well as \textbf{stack}s; it could be omitted in a typed situation where \( x \) can be declared to be of type \textbf{stack}.

The type restrictions in the shell principle may take either of two forms; a union of types—"one of"—or a complement of a union of types—"none of." So the \textbf{const} function may be polymorphic. When \textbf{const} is applied to objects that do not meet the appropriate type restrictions, the appropriate default value is used instead. Likewise, the accessor functions return default values when applied to arguments not of the defined type.

The shell principle does not cover all conceivable abstract data type definitions. In particular, it does not allow for mutually recursive definitions; this would be a situation in which two new data types are being defined, with the constructor for each taking one or more arguments to be of the other type. We do not know of any concrete examples where this actually needs to be done, so it would seem that the shell principle is adequate for practical cases. However, it would not be particularly difficult to extend the shell principle to allow for multiple constructors.

Because the shell principle suffices for the known cases of interest, we have chosen it for SDVS's preliminary paradigm for data type introduction.

We now describe the user interface by means of an example—defining the \textbf{stack} type—and discuss the other requirements placed upon SDVS to support this new facility.

```
<sdvs.1> createdatatype
 datatype name: stack
 constructor: push
 arity: 2
 accessor#1: top
 accessor#1 type is stack --> [arbitrary]: integer
 accessor#1 default value: 0
 accessor#2: pop
 accessor#2 type is stack --> [arbitrary]: stack
 accessor#2 default value: emptystack

Datatype 'stack' created with the following axioms:

axiom stack.1 (i,s): () ^= push(i,s)

axiom stack.2 (s): () ^= s --> s = push(top(s),pop(s))
```
axiom stack.3 (i,s): \( \text{top(push(i,s))} = i \)

axiom stack.4 (i,s): \( \text{pop(push(i,s))} = s \)

axiom stack.5 (): \( \text{stacksize()} = 0 \)

axiom stack.6 (i,s): \( \text{stacksize(push(i,s))} = 1 + \text{stacksize(s)} \)

Writing 'stack' datatype definition to file
/u/versys/sdvs/datatypes/stack.datatype

If more than the standard axioms are required, use the 'datatypes axioms' command.

This is a stack of objects of type int, i.e., integers. We could have stacks of other data types as well, but these stacks would likewise be of different type than the stack of integers. This is the reason for polymorphic types, as in the Boyer-Moore system and some programming languages. So top could be declared to have type stack \( \rightarrow \) int \( \cup \) string, for example; then the stacks would contain either integers or strings. There could even be a built-in polymorphic data type ground, which matches any type so that stacks could be defined to hold any sort of objects.

### 7.2 SDVS COMMANDS

The command createdatatype prompts the user for the datatype name, the constructor function name, the number of arguments of the constructor ("arity"), and accessors for each argument position.

```
<sdvs.1> createdatatype
datatype name: test
 constructor: scrunch
 arity: 2
 accessor#1: unscrunch1
 accessor#1 type is test --> [arbitrary]: <CR>
 accessor#1 default value: empty1
 accessor#2: unscrunch2
 accessor#2 type is test --> [arbitrary]: <CR>
 accessor#2 default value: empty2
```

Datatype 'test' created with the following axioms:

axiom test.1 (t): \( t = \text{scrunch(unsrunch1(t),unsrunch2(t))} \)

axiom test.2 (x1,x2): \( \text{unsrunch1(scrunch(x1,x2))} = x1 \)

axiom test.3 (x1,x2): \( \text{unsrunch2(scrunch(x1,x2))} = x2 \)

Writing 'test' datatype definition to file
/u/versys/sdvs/datatypes/test.datatype
If more than the standard axioms are required, use the `datatypeaxioms` command.
8 INvariants IN SDVS

This chapter describes the capabilities of SDVS with regard to state deltas with invariants. For more details, the reader is referred to [32], [58], [59], and [60].

The motivation for adding invariants to state deltas comes from the desire to specify how places change in the time between the precondition and the postcondition, not only whether they change, for which the mod list suffices. For example, in a standard state delta, we may say that a place x will be incremented by 1, but we cannot say that along the way x will have only its previous value until it jumps discretely to x+ 1. For this we need to say that \#x = .x is an invariant. Note that since x does in fact change value, it must appear in the mod list. This also shows why we interpret the invariant as holding from the time of the precondition up to, but not including, the time of the postcondition (left-closed, right-open interval).

The invariance capability is regulated by the flag invariance. When invariance is off, SDVS essentially assumes that the invariants of all state deltas are “TRUE,” and thus the user need not think about invariants. However, when invariance is on, there is a new “inv” field in state deltas. (Make sure not to confuse this with the induction invariant.) Two new commands have been introduced specifically for state deltas with invariants: noticeinvvariant and noticeconcurrentsd; but all the other commands (apply, cases, induct, linearize, mcases, prove, and especially negate) have been altered to handle the invariant case. If a command is called on a state delta that has an invariant when the invariance flag is off, an error message will be generated.

```
<sdvs.1> createsd
 name: inv1.sd
 [SD pre: true]
 comod[]: <CR>
 mod[]: x
 inv[]: \#x = .x
 post: \#x = .x + 1
```

The dot in the invariant refers to the precondition time, and the pound in the invariant refers to any time between the precondition and postcondition time (including the former but not the latter).

The modification list of the standard state delta is a restricted kind of invariant. Of course, there is a connection between the mod list and the invariant. Note that the following are equivalent state deltas:

```
mod.sd
```

```
[sd pre: (.y = 1) comod: (all) mod: (y) post: (#y = 5)]
```

and invxy.sd

267
[ad pre: (.y = 1)
comod: (all)
mod: (x,y)
inv: (#x = .x)
post: (#x = .x, #y = 5)]

However, SDVS can prove only one direction, namely that the first implies the second. See [35] for more details.

<sdvs.1> prove
  state delta[]: equiv.sd
  proof[]: <CR>

open -- [sd pre: (formula(mod.sd))
comod: (all)
  post: (formula(inv.sd))]

Complete the proof.

<sdvs.1.1> goals

G(1) [sd pre: (.y = 1)
comod: (all)
  mod: (x,y)
  inv: (#x = .x)
  post: (#x = .x, #y = 5)]

<sdvs.1.1> prove
  state delta[]: g
  number: 1
  proof[]: usable

open -- [sd pre: (.y = 1)
comod: (all)
  mod: (x,y)
  inv: (#x = .x)
  post: (#x = .x, #y = 5)]

inserting -- pcovering(all,y)

comment -- prove the invariant of the state delta to be proven

open -- [sd pre: (true)
comod: (all)
  post: (#x = x\676)]

close -- 0 steps/applications

Complete the proof.

<sdvs.1.1.2> apply
  sd/number[highest applicable/once]: u
  number: 2
comment -- prove the invariant prior to the application

open -- [sd pre: (true)
          comod: (all)
          post: ($x = x\{676}]\]

close -- 1 steps/applications

apply -- [sd pre: (.y = 1)
          comod: (all)
          mod: (y)
          post: ($y = 5)]\]

close -- 1 steps/applications

close -- 1 steps/applications

8.1 NOTICEINVARIANT

Now consider the state deltas inv8.sd:

[sd pre: (.y = 1)
 mod: (x)
 inv: ($x \text{gt} 2)
 post: ($y = 5)]\]

inv9.sd:

[sd pre: (.y = 1)
 mod: (x)
 inv: ($x \text{gt} 1)
 post: ($y = 5)]\]

and inv10.sd:

[sd pre: (formula(inv8.sd))
 post: (formula(inv9.sd))]\]

Clearly inv10.sd is true. The proof will involve showing that one invariant implies the other, using the noticeinvariant command.

<sdws.1> prove
    state delta[]: inv10.sd
    proof[]: <CR>

open -- [sd pre: (formula(inv8.sd))
          post: (formula(inv9.sd))]

Complete the proof.
goals

g(1) [sd pre: (.y = 1)
    mod: (x)
    inv: ($x \gt 1$
    post: ($y = 5$)]

prove

state delta[]: g
number: 1
proof[]: <CR>

open -- [sd pre: (.y = 1)
    mod: (x)
    inv: ($x \gt 1$
    post: ($y = 5$)]

inserting -- pcovering(all,y)

comment -- prove the invariant of the state delta to be proven

open -- [sd pre: (true)
    comod: (all)
    post: ($x \gt 1$)]

Complete the proof.

Of course, $x \gt 1$ follows from $x \gt 2$, and that, being the invariant of an applicable state delta, is true. We simply notice it, via noticeinvariant, which prompts for the state delta whose invariant we wish to notice.

noticeinvariant

state delta[highest applicable]: <CR>

    inserting -- pcovering(all,x)

noticeinvariant -- [sd pre: (.y = 1)
    mod: (x)
    inv: ($x \gt 2$
    post: ($y = 5$)]

close -- 1 steps/applications

Complete the proof.

usable

u(1) [sd pre: (true) comod: (all) post: ($x \gt 1$)]

u(2) [sd pre: (.y = 1)
    mod: (x)
    inv: ($x \gt 2$
    post: ($y = 5$)]

270
No usable quantified formulas.

\texttt{<sdvs.1.1.2> goals}
\texttt{g(1) #y = 5}
\texttt{<sdvs.1.1.2> nsd}
\texttt{[sd pre: (true) comod: (all) post: (#x gt 1)]}
\texttt{<sdvs.1.1.2> simp}
\texttt{expression: .y = 1}
\texttt{true}

After the following apply, SDVS requires the proof of the invariant in the transition state.

\texttt{<sdvs.1.1.2> apply}
\texttt{sd/number[highest applicable/once]: u}
\texttt{number: 2}
\texttt{inserting -- pcovering(all,x)}
\texttt{comment -- prove the invariant prior to the application}
\texttt{open -- [sd pre: (.x gt 2)}
\texttt{comod: (all)}
\texttt{post: (#x gt 1)]}
\texttt{inserting -- pcovering(all,x)}
\texttt{close -- 1 steps/applications}
\texttt{apply -- [sd pre: (.y = 1)}
\texttt{mod: (x)}
\texttt{inv: (#x gt 2)}
\texttt{post: (#y = 5)]}
\texttt{inserting -- pcovering(all,x)}
\texttt{close -- 1 steps/applications}
\texttt{close -- 1 steps/applications}

\textbf{8.2 LINEARIZE}

To remind the reader (see Section 2.9.7), the general situation we are dealing with is where two state deltas are applicable (they are true and their preconditions are true). Thus, both of the postconditions must become true according the restrictions inherent in the modification lists. However, either state delta may be the first to achieve its postcondition.
The linearization command makes true the disjunction that says either the first achieves its precondition and the other is still "pending," or vice versa.

When we linearize state deltas in the presence of invariants, we must of course account for the intervals over which the respective invariants hold. We must also account for another possibility: that the two postconditions become true simultaneously with the conjunction of their invariants as invariant. This is a new case not included in either of the above two disjuncts.

Now consider the following example:

```
<sdvs.1> pp
 object: lin1.sd

[sd pre: (true)
 comod: (all)
 mod: (all)
 inv: (#y = .y)
 post: (#x = #y)]

<sdvs.1> pp
 object: lin2.sd

[sd pre: (true)
 comod: (all)
 mod: (all)
 inv: (#x = .x)
 post: (#y = 6)]

<sdvs.1> pp
 object: lin3.sd

[sd pre: (true)
 comod: (all)
 mod: (all)
 inv: (#x = .x, #y = .y)
 post: (#x = 5, #y = 5)]

<sdvs.1> pp
 object: lin4.sd

[sd pre: (true)
 comod: (all)
 mod: (all)
 inv: (#x = .x, #y = .y)
 post: (#x = 6, #y = 6)]
```

We want to prove that if x starts out at 5 and y starts out at 4, and lin1.sd and lin2.sd are true, then either lin3.sd or lin4.sd will hold:

```
[sd pre: (.x = 5, .y = 4, formula(lin1.sd), formula(lin2.sd))
 comod: (all)
 post: (formula(lin3.sd) or formula(lin4.sd))]
```
Here is the proof.

<sdvs.1> prove
  state delta[]: lin.sd
  proof[]: <CR>

  open -- [sd pre: (.x = 5,.y = 4,formula(lin1.sd),formula(lin2.sd))
    comod: (all)
    post: (formula(lin3.sd) or formula(lin4.sd))]

  inserting -- pcoversing(all,y)

  inserting -- pcoversing(all,x)

  Complete the proof.

<sdvs.1.1> linearize
  state delta #1: lin1.sd
  state delta #2: lin2.sd
  formula name #1: or1
  formula name #2: or2
  formula name #3: or3

  linearize -- formula(or1) or formula(or2) or formula(or3)

  non-trivial propagations -- ([sd pre: (.x = x1129)
    comod: (all)
    mod: (int(all,all))
    inv: (#y = .y,#x = .x)
    post: (#x = #y,]
      [sd pre: (true)
        comod: (all)
        mod: (all)
        inv: (#x = x1129)
        post: (#y = 6)])] or

  (([sd pre: (.y = y1128)
    comod: (all)
    mod: (int(all,all))
    inv: (#y = .y,#x = .x)
    post: (#y = 6,
      [sd pre: (true)
        comod: (all)
        mod: (all)
        inv: (#y = y1128)
        post: (#x = #y)])]) or

  (([sd pre: (true)
    comod: (all)
    mod: (int(all,all))
    inv: (#y = .y,#x = .x)
    post: (#x = #y,#y = 6)])])

<sdvs.1.2> mcases
  number of cases: 3
  1st case: formula(or1)
  proof[]: <CR>
2nd case: \textit{formula(or2)}
proof[]: <CR>
3rd case: \textit{formula(or3)}
proof[]: <CR>

\textbf{mcases -- 3}

\textbf{open -- [sd pre: \textit{formula(or1)}]}
  \textbf{comod: (all)}
  \textbf{post: ([sd pre: (true)]
    \textbf{comod: (all)}
    \textbf{mod: (all)}
    \textbf{inv: ($x = .x,$y = .y)}
    \textbf{post: ($x = 5,$y = 5) or}
    \textbf{((sd pre: (true)]
      \textbf{comod: (all)}
      \textbf{mod: (all)}
      \textbf{inv: ($x = .x,$y = .y)}
      \textbf{post: ($x = 6,$y = 6))})}}}

<sdvs.1.2.1.1> \textit{prove}
  \textbf{state delta[]: lin3.sd}
proof[]: <CR>

\textbf{open -- [sd pre: (true)}
  \textbf{comod: (all)}
  \textbf{mod: (all)}
  \textbf{inv: ($x = .x,$y = .y)}
  \textbf{post: ($x = 5,$y = 5)}

\textbf{comment -- prove the invariant of the state delta to be proven}

\textbf{open -- [sd pre: (true)}
  \textbf{comod: (all)}
  \textbf{post: ($x = x\text{\backslash}688,$y = y\text{\backslash}689)}

\textbf{close -- 0 steps/applications}

Complete the proof.
<sdvs.1.2.1.2> \textit{usable}

u(1) [sd pre: (true)
  \textbf{comod: (all)}
  \textbf{post: ($x = x\text{\backslash}688,$y = y\text{\backslash}689)}]

u(2) [sd pre: (.x = x1129)
  \textbf{comod: (all)}
  \textbf{mod: (inter(all,all))}
  \textbf{inv: ($y = .y,$x = .x)}
  \textbf{post: ($x = \#y,$}
  \textbf{[sd pre: (true)]
    \textbf{comod: (all)}
    \textbf{mod: (all)}
    \textbf{inv: ($x = x1129)$}}

274
post: (%y = 6)])

u(3) [sd pre: (true)
   comod: (all)
   mod: (all)
   inv: (%x = .x)
   post: (%y = 6)]

u(4) [sd pre: (true)
   comod: (all)
   mod: (all)
   inv: (%y = .y)
   post: (%x = %y)]

No usable quantified formulas.

<sdvs.1.2.1.1.2> whynotapply
   state delta[ highest usable]: u
       number: 2

Quite applicable.

<sdvs.1.2.1.1.2> apply
   sd/number[highest applicable/once]: u
       number: 2

   comment -- prove the invariant prior to the application

   open -- [sd pre: (.y = y\689,.x = x\688)
       comod: (all)
       post: (%x = x\688,%y = y\689)]

   close -- 1 steps/applications

   apply -- [sd pre: (.x = x1129)
       comod: (all)
       mod: (inter(all,all))
       inv: (%y = .y,%x = .x)
       post: (%x = %y,
            [sd pre: (true)
                comod: (all)
                mod: (all)
                inv: (%x = x1129)
                post: (%y = 6)])]

Complete the proof.

<sdvs.1.2.1.1.2> usable

u(1) [sd pre: (true)
   comod: (all)
   mod: (all)
   inv: (%x = x1129)
   post: (%y = 6)]
No usable quantified formulas.

<sdvs.1.2.1.1.2> noticeinvariant
state delta[highest applicable]: <CR>

noticeinvariant -- [sd pre: (true)
  comod: (all)
  mod: (all)
  inv: ($x = x129)
  post: ($y = 6)]

close -- 2 steps/applications

close -- 1 steps/applications

open -- [sd pre: (formula(or2))
  comod: (all)
  post: (((sd pre: (true)
    comod: (all)
    mod: (all)
    inv: ($x = .x,$y = .y)
    post: ($x = 5,$y = 5)) or
    ((sd pre: (true)
      comod: (all)
      mod: (all)
      inv: ($x = .x,$y = .y)
      post: ($x = 6,$y = 6))))]

Complete the proof.

<sdvs.1.2.2.1> usable

u(1) [sd pre: (.y = y128)
  comod: (all)
  mod: (inter(all,all))
  inv: ($y = .y,$x = .x)
  post: ($y = 6,
  [sd pre: (true)
   comod: (all)
   mod: (all)
   inv: ($y = y128)
   post: ($x = $y)])]

u(2) [sd pre: (formula(or1))
  comod: (all)
  post: (((sd pre: (true)
    comod: (all)
    mod: (all)
    inv: ($x = .x,$y = .y)
    post: ($x = 5,$y = 5)) or
    ((sd pre: (true)
      comod: (all)
      mod: (all)

276
inv: ($x = .x, y = .y)
post: ($x = 6, y = 6$)

u(3) [sd pre: (true)
comod: (all)
mod: (all)
inv: ($x = .x$)
post: ($y = 6$)]

u(4) [sd pre: (true)
comod: (all)
mod: (all)
inv: ($y = .y$)
post: ($x = y$)]

No usable quantified formulas.

<sdv.1.2.2.1> nsd

[sd pre: (.y = y1128)
comod: (all)
mod: (inter(all,all))
inv: ($y = .y$, $x = .x$)
post: ($y = 6$,
[sd pre: (true)
comod: (all)
mod: (all)
inv: ($y = y1128$)
post: ($x = y$)])]

<sdv.1.2.2.1> apply
sd/number[highest applicable/once]: <CR>

apply -- [sd pre: (.y = y1128)
comod: (all)
mod: (inter(all,all))
inv: ($y = .y$, $x = .x$)
post: ($y = 6$,
[sd pre: (true)
comod: (all)
mod: (all)
inv: ($y = y1128$)
post: ($x = y$)])]

Warning: the modlist of the last applied state delta mentions places (inter(all,all)) outside of the modlist of the state delta to be proven. The current proof can only be closed by contradiction.

<sdv.1.2.2.2> usable

u(1) [sd pre: (true)
comod: (all)
mod: (all)
in: ($y = y1128$)
post: (x = y)]

No usable quantified formulas.

<sdvs.1.2.2.2> noticeinvariant
state delta[highest applicable]: <CR>

noticeinvariant -- [sd pre: (true)
comod: (all)
mod: (all)
inv: (y = y128)
post: (x = y)]

The invariant of the last applied state delta is inconsistent with
the current state.

close -- 1 steps/applications

open -- [sd pre: (formula(or3))
comod: (all)
post: (((sd pre: (true)
comod: (all)
mod: (all)
inv: (x = .x,y = .y)
post: (x = 5,y = 5)) or
((sd pre: (true)
comod: (all)
mod: (all)
in: (x = .x,y = .y)
post: (x = 6,y = 6)))]

Complete the proof.

<sdvs.1.2.3.1> prove
state delta[]: lin4.sd
proof[]: <CR>

open -- [sd pre: (true)
comod: (all)
mod: (all)
in: (x = .x,y = .y)
post: (x = 6,y = 6)]

comment -- prove the invariant of the state delta to be proven

open -- [sd pre: (true)
comod: (all)
post: (x = x\688,y = y\689)]

close -- 0 steps/applications

Complete the proof.

<sdvs.1.2.3.1.2> usable

278
u(1) [sd pre: (true)
    comod: (all)
    post: ($x = \text{688}, y = \text{689})]

u(2) [sd pre: (true)
    comod: (all)
    mod: (inter(all, all))
    inv: ($y = .y, x = .x)
    post: ($x = \text{6y}, y = \text{6})]

u(3) [sd pre: (formula(or2))
    comod: (all)
    post: (((sd pre: (true)
       comod: (all)
       mod: (all)
       inv: ($x = .x, y = .y)
       post: ($x = 5, y = 5)) or
       ((sd pre: (true)
       comod: (all)
       mod: (all)
       inv: ($x = .x, y = .y)
       post: ($x = 6, y = 6))))]]

u(4) [sd pre: (formula(or1))
    comod: (all)
    post: (((sd pre: (true)
       comod: (all)
       mod: (all)
       inv: ($x = .x, y = .y)
       post: ($x = 5, y = 5)) or
       ((sd pre: (true)
       comod: (all)
       mod: (all)
       inv: ($x = .x, y = .y)
       post: ($x = 6, y = 6))))]]

u(5) [sd pre: (true)
    comod: (all)
    mod: (all)
    inv: ($x = .x
    post: ($y = 6)]

u(6) [sd pre: (true)
    comod: (all)
    mod: (all)
    inv: ($y = .y
    post: ($x = \text{y})]

No usable quantified formulas.

<sdvs.1.2.3.1.2> whynotapply
    state delta[ highest usable]: u
    number: 2

279
Quite applicable.

\begin{verbatim}
<sdvs.1.2.3.1.2> apply
  sd/number[highest applicable/once]: u
  number: 2

  comment -- prove the invariant prior to the application

  open -- [sd pre: (.y = y\689,.x = x\688)
    comod: (all)
    post: ($x = x\688,$y = y\689)]

  close -- 1 steps/applications

  apply -- [sd pre: (true)
    comod: (all)
    mod: (inter(all,all))
    inv: ($y = .y,$x = .x)
    post: ($x =$y,$y = 6)]

  close -- 1 steps/applications

  close -- 1 steps/applications

  join -- [sd pre: (formula(or1) or formula(or2) or formula(or3))
    comod: (all)
    post: (((sd pre: (true)
      comod: (all)
      mod: (all)
      inv: ($x = .x,$y = .y)
      post: ($x = 5,$y = 5)) or
     ((sd pre: (true)
      comod: (all)
      mod: (all)
      inv: ($x = .x,$y = .y)
      post: ($x = 6,$y = 6))))]

  close -- 2 steps/applications
\end{verbatim}

8.3 NOTICECONCURRENTSD

The \texttt{noticeconcurrentsd} command is actually a special case of the \texttt{linearize} command, discussed in the previous section. It is definitely more convenient to use than \texttt{linearize}, and often sufficient. Again we deal with the situation where two state deltas are applicable, and we do not know which will achieve its postcondition first. The \texttt{noticeconcurrentsd} command makes true the state delta whose postcondition is essentially the disjunction of the postconditions of the two applicable state deltas (without worrying about when the other’s postcondition will become true), and whose invariant is the conjunction of the invariants of the two applicable state deltas.

Consider the following state deltas:
<sdvs.1> ppsd

state delta: conc1.sd

[sd pre: (0 lt .x,.x lt 10)
  comod: (all)
  mod: (all)
  inv: (0 lt #x)
  post: (#x = 10)]

<sdvs.1> ppsd

state delta: conc2.sd

[sd pre: (true)
  comod: (all)
  mod: (all)
  inv: (#x lt 10)
  post: (#x = 10)]

<sdvs.1> ppsd

state delta: conc3.sd

[sd pre: (true)
  comod: (all)
  mod: (all)
  inv: (0 lt #x,#x lt 10)
  post: (#x = 10)]

<sdvs.1> ppsd

state delta: conc4.sd

[sd pre: (0 lt .x,formula(conc1.sd),formula(conc2.sd))
  comod: (all)
  post: (formula(conc3.sd))]

<sdvs.1> prove

state delta[]: conc4.sd

proof[]: <CR>

open -- [sd pre: (0 lt .x,formula(conc1.sd),formula(conc2.sd))
  comod: (all)
  post: (formula(conc3.sd))]

inserting -- pcovering(all,x)

Complete the proof.

<sdvs.1.1> usable

u(1) [sd pre: (true)
  comod: (all)
  mod: (all)
  inv: (#x lt 10)
  post: (#x = 10)]

u(2) [sd pre: (0 lt .x,.x lt 10)
comod: (all)
mod: (all)
inv: (0 lt $x$)
post: ($x = 10$)

No usable quantified formulas.

<sdvs.1.1> whynotapply
state delta[ highest usable]: u
    number: 2

Because the following is not known to be true -- $x$ lt 10

Because its mod list is not contained in the proof mod list.
    sd mod list: (all)
    proof mod list: ()
    list difference: (all)
<sdvs.1.1> noticeinvariant
state delta[ highest applicable]: conc2.sd

noticeinvariant -- [sd pre: (true)
    comod: (all)
    mod: (all)
    inv: ($x$ lt 10)
    post: ($x = 10$)]

<sdvs.1.2> simp
expression: $x$ lt 10
true

<sdvs.1.2> simp
expression: 0 lt $x$
true

<sdvs.1.2> goals
g(1) [sd pre: (true)
    comod: (all)
    mod: (all)
    inv: (0 lt $x$, $x$ lt 10)
    post: ($x = 10$)]

<sdvs.1.2> prove
state delta[]: g
    number: 1
proof[]: <CR>

open -- [sd pre: (true)
    comod: (all)
    mod: (all)
    inv: (0 lt $x$, $x$ lt 10)
    post: ($x = 10$)]
comment -- prove the invariant of the state delta to be proven

open -- [sd pre: (true)
  comod: (all)
  post: (0 lt \#x, \#x lt 10)]

close -- 0 steps/applications

Complete the proof.

<snds.1.2.2> noticeconcurrentsd
  number of state deltas: 2
  1st state delta: conc1.sd
  2nd state delta: conc2.sd

  noticeconcurrentsd (conc1.sd,conc2.sd) -- [sd pre: (true)
    comod: (all)
    mod: (inter(all,all))
    inv: (0 lt \#x,
        \#x lt 10)
    post: (\#x = 10 or
           \#x = 10)]

<snds.1.2.3> usable

u(1) [sd pre: (true)
    comod: (all)
    mod: (inter(all,all))
    inv: (0 lt \#x, \#x lt 10)
    post: (\#x = 10 or \#x = 10)]

u(2) [sd pre: (true)
    comod: (all)
    post: (0 lt \#x, \#x lt 10)]

u(3) [sd pre: (true)
    comod: (all)
    mod: (all)
    inv: (\#x lt 10)
    post: (\#x = 10)]

u(4) [sd pre: (0 lt x, x lt 10)
    comod: (all)
    mod: (all)
    inv: (0 lt \#x)
    post: (\#x = 10)]

No usable quantified formulas.

<snds.1.2.3> apply
  sd/number[highest applicable/once]: <CR>

  comment -- prove the invariant prior to the application
open -- [sd pre: (0 lt .x..x lt 10)
   comod: (all)
   post: (0 lt #x,#x lt 10)]

close -- 1 steps/applications

apply -- [sd pre: (true)
   comod: (all)
   mod: (inter(all,all))
   inv: (0 lt #x,#x lt 10)
   post: (#x = 10 or #x = 10)]

close -- 2 steps/applications

close -- 2 steps/applications

8.4 NEGATE

Suppose that "inv.sd is known to be true by the system, where inv.sd is the state delta

[sd pre: (.y = 1)
   comod: (all)
   mod: (x,y)
   inv: (#x = .x)
   post: (#x = .x,y = 5)]

Then upon the user's invocation of the negate command, SDVS prompts the user for the names of the three formulas that it will create and insert in the postcondition of the negated state delta. We show how SDVS treats the above state delta. The effect of the negation command is clear from the following transcript. However, note that use of the negate command on a state delta with invariants implies that the timeline is well-ordered (see [60]). For the use of negate when the state delta does not have invariants, see Section 2.9.6. Following this example, we shall show how SDVS treats a case of negation where there are dots and pounds in the state delta to be negated.

<sdrs.2> pp
   object: invneg.sd

[sd pre: (¬(formula(inv.sd)))
   post: (false)]

We set up a dummy context in which to illustrate the negate command.

<sdvs.2> prove
   state delta[]: invneg.sd
   proof[]: <CR>

open -- [sd pre: (¬(formula(inv.sd)))

284
Complete the proof.

<sdvs.2.1> negate
state delta: inv.sd
formula name #1: inv1.sd
formula name #2: inv2.sd
formula name #3: inv3.sd

eegated result -- [sd pre: (true)
comod: (all)
mod: (diff(all,all))
post: (x = x1212, y = 1,
([sd pre: (true)
comod: (diff(all,union(x,y)))
post: (~(#x = x1212 & #y = 5))) or
~(#x = #x) or
([sd pre: (true)
comod: (all)
mod: (x,y)
inv: (~(#x = .x & #y = 5))
post: (~(#x = .x),
~(#x = .x & #y = 5)))]]

<sdvs.2.2> pp
object: inv1.sd

formula inv1.sd: [sd pre: (true)
comod: (diff(all,union(x,y)))
post: (~(#x = x1212 & #y = 5))]

[sd pre: (true)
mod: (x)
inv: (#x = .x)
post: (#x = .x + 1)]

<sdvs.2.2> pp
object: inv2.sd

formula inv2.sd: ~(x = .x)

[sd pre: ((sd pre: (p)
mod: (x)
inv: (#x = .x)
post: (#x = .x,q))
post: ([sd pre: (p) post: (q)])]]

<sdvs.2.2> pp
object: inv3.sd

formula inv3.sd: [sd pre: (true)
comod: (all)
mod: (x,y)
inv: (~(#x = .x & #y = 5))
post: (\("(#x = .x),\"(#x = .x \& \#y = 5)\))

[sd pre: (\[sd pre: (p) post: (q)\])
 post: (\[sd pre: (p)
 mod: (x)
 inv: (#x = .x)
 post: (#x = .x.q)\]])

<sdvs.2.2> pp
 object: invdots.sd

[sd pre: (#.x = 5)
 comod: (y)
 mod: (x)
 inv: (#x = .y)
 post: (#x = .x + 1)]

<sdvs.2.2> pp
 object: invdotsneg.sd

[sd pre: (^formula(invdots.sd))
 post: (false)]

<sdvs.2.2> prove
 state delta[]: invdotsneg.sd
 proof[]: <CR>

 open -- [sd pre: (^formula(invdots.sd))
 post: (false)]

Complete the proof.

<sdvs.2.2.1> usable

No usable state deltas.

No usable quantified formulas.

<sdvs.2.2.1> negate
 state delta: invdots.sd
 formula name #1: invdots1.sd
 formula name #2: invdots2.sd
 formula name #3: invdots3.sd

negated result -- [sd pre: (true)
 comod: (all)
 mod: (diff(all,y))
 post: (#x = x1224, #x = 5,
 ([sd pre: (true)
 comod: (diff(all,x))
 post: (^(#x = x1224 + 1))) or
 (^#x = #y) or
 ([sd pre: (true)
 comod: (all)
mod: (x)
inv: (~(\#x = .x + 1))
post: (~(\#x = .y),
    (~(\#x = .x + 1))))}

8.5 OMEGAINDUCT

This section describes the omegainduct command. A more detailed description can be found in [51].

For a proof of a safety property of a nonterminating program, it is often not enough to require that each state change in its execution be discrete. We must also disallow possible states in its execution that are limits of an infinite sequence of other states. This restriction is inherent in the use of the omegainduct command.

The omegainduct command is based on the principle that if

\[
\begin{align*}
\text{[sd pre: (true)} & \\
\text{comod: (all)} & \\
\text{mod: (}) & \\
\text{inv: (}) & \\
\text{post: (A & B)} &
\end{align*}
\]

and

\[
\begin{align*}
\text{[sd pre: (true)} & \\
\text{comod: (}) & \\
\text{mod: (}) & \\
\text{post: ([sd pre: (A & B)} & \\
\text{comod: (all)} & \\
\text{mod: (all)} & \\
\text{inv: (A(#/.))} & \\
\text{post: (A(#/.)) & B(#/.)) & (#x1 = .x1 or ... or #xn = .xn)} &
\end{align*}
\]

are true now, then also the following is true now:

\[
\begin{align*}
\text{[sd pre: (true)} & \\
\text{comod: (}) & \\
\text{mod: (}) & \\
\text{inv: (}) & \\
\text{post: (A)]} &
\end{align*}
\]
In the above, $A$ and $B$ are any formulas not containing top-level pounds. $A$ is the safety formula we are interested in proving, $B$ is the “auxiliary formula,” $n$ is an integer greater than 0, and the $x$'s are places. $A(\#/.\_)$ is the result of substituting pounds for all occurrences of dots in $A$.

Intuitively, the reasoning is that if $A$ and $B$ are true now, and if for any time in the future at which $A$ and $B$ are true, there is a later time when $A$ and $B$ are true, $A$ is preserved true over the interval, and something has actually changed at that later time, then $A$ is true always in the future.

This formula is true on precisely those timelines in which $\omega + 1$ (the order of the natural numbers with a limit point at infinity) is not embeddable.

The first conjunct in the antecedent above is the base-case state delta and the second is the step-case state delta. If $\omega$induct is used in the course of a proof, the user must enter as parameters the formula $A$ on which the induction will proceed, the optional “auxiliary formula” $B$, and a nonempty set of places $x1, x2, \ldots, xn$. Both formulas must be of precondition type.

The induction formula $A$ is the formula that will be asserted to be true henceforth.

The purpose of the auxiliary formula is to allow the induction to proceed over loop bodies that are generated by the SDVS program translators. In these cases, the auxiliary formula is intended to be the state delta that asserts that execution is at the top of the loop. If the user does not enter an auxiliary formula, the system assumes that the formula is “true.”

The list of places must have the property that, in the induction step of the proof, at least one of the places will change its value.

After the parameters to the $\omega$induct have been given, SDVS opens the proof of the base case of the induction. Once the base-case state delta is proved, SDVS will open the proof of the step-case state delta. After the step-case state delta has been proved, SDVS will assert the goal state delta at the state at which the $\omega$induct command was given.

Consider the following example. We want to show that $i$ is always greater than or equal to zero for the Ada program $infloop.ada$.

```ada
with text_io; use text_io;
with integer_io; use integer_io;
procedure infloop is
 i, s : integer;
 begin
 i := 0;
 s := 3;
 while true loop
 i := i+1;
 s := s+1;
 end loop;
 end infloop;
```

288
That claim is represented by the state delta *loopsd*:

\[
\text{pre: (ada(inloop.ada))}
\quad \text{comod: (all)}
\quad \text{mod: (all)}
\quad \text{post: ($#i = 0 \& \ \text{formula(loopevent)}$)}
\]

where *loopevent* is

\[
\text{pre: (true)} \quad \text{post: ($#i \geq 0$)}
\]

The proof proceeds as follows:

<sds:1> adatr
path name[testproofs/manual/ada/packages.a]: testproofs/manual/ada/inloop.ada

Reading parse tree file for Stage 4 Ada file -- "inloop.ada"

Translating Stage 4 Ada file -- "testproofs/manual/ada/inloop.ada"

<sds:2> prove
state delta[]: loopsd
proof[]: &lt;CR&gt;

open -- [sd pre: (ada(inloop.ada))
comod: (all)
mod: (all)
post: ($#i = 0 \& \ \text{formula(loopevent)}$)]

Complete the proof.

<sds:2.1> until
formula: $#i=0$

apply -- [sd pre: (true)
comod: (all)
mod: (inloop\pc)
inv: ($#all = .all$)
post: ($\lt\text{adatr procedure inloop is}$
    i, ... : integer
    begin
    i := 0;
    ...
    end inloop;>)]

apply -- [sd pre: (true)
comod: (all)
mod: (inloop\pc,inloop)
inv: ($#all = .all$)
post: ($\text{alldisjoint(inloop..inloop,i,s)},$
    covering($\text{inloop..inloop},i,s),$
    declare(i,type(integer)),declare(s,type(integer)),
    ...$)

289
apply -- [sd pre: (true)
    comod: (all)
    mod: (infloop\pc,i)
    inv: (#all = .all)
    post: (#i = 0,
        <adatr i := 0;>)]
until break point reached -- #i = 0

<sdvs.2.4> apply
    sd/number[highest applicable/once]: u
    number: 1

apply -- [sd pre: (true)
    comod: (all)
    mod: (infloop\pc,s)
    inv: (#all = .all)
    post: (#s = 3,
        <adatr s := 3;>)]

<sdvs.2.5> letsd
    name: loopu2
    state delta[]: u
    number: 2

letsd -- loopu2 = u(2)

<sdvs.2.6> omegainduct
    on: .i ge 0
    auxiliary formulas[]: formula(loopu2)
    places: i
    base proof[]: <CR>
    step proof[]: <CR>

omegainduction on -- (.i ge 0)

open -- [sd pre: (true)
    comod: (all)
    post: (.i ge 0,
        [sd pre: (true)
            comod: (all)
            mod: (infloop\pc)
            inv: (#all = .all)
            post: ((<adatr while true
                i := i + 1;
                ...
            end loop;>)]])

close -- 0 steps/applications

open -- [sd pre: (true)
    post: ([sd pre: (.i ge 0,
[sd pre: (true)
comod: (all)
mod: (inloop\pc)
inv: (#all = .all)
post: (<adatr while true

i := i + 1;
...
end loop;>)]

comod: (all)
mod: (all)
inv: (#i ge 0)
post: (#i = .i,#i ge 0,
[sd pre: (true)
comod: (all)
mod: (inloop\pc)
inv: (#all = .all)
post: (<adatr while true

i := i + 1;
...
end loop;>)]

Complete the proof.

<sdvs.2.6.2.1> prove
state delta[]: g
number: l
proof[]): <CR>

open -- [sd pre: (.i ge 0,
[sd pre: (true)
comod: (all)
mod: (inloop\pc)
inv: (#all = .all)
post: (<adatr while true

i := i + 1;
...
end loop;>)]

comod: (all)
mod: (all)
inv: (#i ge 0)
post: (#i = .i,#i ge 0,
[sd pre: (true)
comod: (all)
mod: (inloop\pc)
inv: (#all = .all)
post: (<adatr while true

i := i + 1;
...
end loop;>)]

comment -- prove the invariant of the state delta to be proven

291
open -- [sd pre: (true)
      comod: (all)
      post: (#i ≥ 0)]

close -- 0 steps/applications

Complete the proof.

<sdsr.2.6.2.1.2> apply
  sd/number[highest applicable/once]: u
  number: 2

  comment -- prove the invariant prior to the application

open -- [sd pre: (.all = all\741)
      comod: (all)
      post: (#i ≥ 0)]

close -- 1 steps/applications

apply -- [sd pre: (true)
      comod: (true)
      mod: (infloop\pc)
      inv: (#all = .all)
      post: (<adatr while true
            i := i + 1;
            ...
          end loop;>)]

Complete the proof.

<sdsr.2.6.2.1.2> apply
  sd/number[highest applicable/once]: 2

  comment -- prove the invariant prior to the application

open -- [sd pre: (.all = all\744)
      comod: (all)
      post: (#i ≥ 0)]

close -- 1 steps/applications

apply -- [sd pre: (true)
      comod: (all)
      mod: (infloop\pc,i)
      inv: (#all = .all)
      post: (#i = .i + 1,
            <adatr i := i + 1;>)]

  comment -- prove the invariant prior to the application

open -- [sd pre: (.all = all\747)
      comod: (all)
post: (#i ge 0)]

close -- 1 steps/applications

apply -- [sd pre: (true)
    comod: (all)
    mod: (infloop\pc,s)
    inv: (#all = .all)
    post: (#s = .s + 1,
        <adatr s := s + 1;>)]

close -- 1 steps/applications

assert always formula
   -- [sd pre: (true) post: (#i ge 0)]

close -- 6 steps/applications
THE SIMPLIFIER

This chapter describes the simplifier for static deductions at a level of detail necessary for the user to have a good idea of the relative strengths of the various solvers, i.e., how much is done automatically vs. how much must be done by the user. The actual proof commands and axioms for static proofs are described in Section 2.7. The simplifier is based on the technique of "cooperating decision procedures" of [61] and [62]. The structure of the SDVS version is described in [63].

The simplifier is not "typed," so the same variable may be used in different theories and an operator may be used on variables that originated in different domains.

The simplifier recognizes the languages of the following domains (see Section 2.9.13 for the infix-prefix correspondences):

- propositional calculus
  
  true, false, ¬, &, ∨, →, if-then-else

- equality
  
  =, ≠, distinct

- integer arithmetic
  
  0, 1, -1, 2, -2, ... (all integer constants), lt, le, gt, ge, +, *, ^, /, abs, rem, mod, min, max

- bitstrings
  
  lh, zeros, ones, @, ^, ==, usxor, &&, ∀∀, ¬¬, ++, --, **, //, usgt, uslt, usge, usle, 11, v(l), < : >

- arrays
  
  emptyarray, aconc, [], [ : ], range, origin

- coverings
  
  emptyplace, covering, pcovering, alldisjoint, everyplace, diff, union

- queues
  
  nullqueue, emptyqueue, enqueue, dequeue, frontqueue

- lists
  
  cons, car, cdr

- enumeration types
  
  elt, ele, egt, ege, epred, esucc
• VHDL time
  
  vhdlt ime, timeglobal, timedelta, timeplus, timelt, timele, timegt, timege

• VHDL waveforms
  
  waveform, transaction, inertial_update, transport_update, val, preemption

We now proceed to discuss the semantics and deductive capabilities for each domain.

In discussions of the semantics of a symbol in the language of a theory, the type of the interpretation of that symbol is indicated in terms of the basic domains with which it is concerned. For example, if $P$ denotes the domain of propositional (boolean) values, then the constant symbol $true$ has type $P$, and the predicate symbol $implies$ has type $[P \times P \rightarrow P]$.

A domain name superscripted with a plus symbol (for example, $P^+$) denotes the cross product of one or more objects in the domain. A superscripted asterisk symbol (for example, $P^*$) denotes the cross product of zero or more objects in the domain. For example, the predicate and may be applied to one or more arguments; the type of and is $[P^+ \rightarrow P]$.

9.1 PROPOSITIONS

The solver for the theory of propositional logic is a permanent part of the simplifier, and thus cannot be deactivated (it is always active). The language of the theory of propositional logic includes the constant symbols $true$ and $false$ and the logical (predicate) symbols $not$, $and$, $or$, $implies$, and $if-then-else$. The standard interpretation for propositions is assumed. Each simplifier theory that follows subsumes the theory of propositional logic; that is, each theory includes the logical connectives as logical symbols. Some examples of formulas in this language (in system output format) are

\[
\neg (p \lor q)
\]

\[(p \land q) \rightarrow p\]

\[
if \ p \ then \ q \ else \ false
\]

$P$ denotes the domain of propositional (boolean) values. $U$ denotes the universal domain; any arbitrary object is in $U$. Table 2 presents a description of the propositional symbols. Two syntactic representations are given for each symbol. The first representation is the user-input format. If there is a discrepancy between that format and the prettyprinted version the system returns, that latter is placed in parentheses. The second shows the prefix form, which is the internal representation and should be used when one submits batch proofs. For
Table 2: Propositional Symbols

<table>
<thead>
<tr>
<th>constant symbol</th>
<th>simp symbol</th>
<th>description</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>TRUE</td>
<td>truth</td>
<td>P</td>
</tr>
<tr>
<td>false</td>
<td>FALSE</td>
<td>falsity</td>
<td>P</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>predicate symbol</th>
<th>simp symbol</th>
<th>description</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>¬</td>
<td>NOT</td>
<td>logical negation</td>
<td>P → P</td>
</tr>
<tr>
<td>&amp;</td>
<td>AND</td>
<td>conjunction</td>
<td>P+ → P</td>
</tr>
<tr>
<td>or</td>
<td>OR</td>
<td>disjunction</td>
<td>P+ → P</td>
</tr>
<tr>
<td>--&gt;</td>
<td>IMPLIES</td>
<td>implication</td>
<td>P × P → P</td>
</tr>
<tr>
<td>if-then-else</td>
<td>COND</td>
<td>conditional</td>
<td>P × U × U → U</td>
</tr>
</tbody>
</table>

each symbol. Table 2 also gives an English description of the interpretation of that symbol, as well as the type of the constant, function, or predicate that provides that interpretation.

Note that if-then-else is not treated as a pure predicate, since the then and else parts may accept objects in any arbitrary domain. This is because expressions of the form if p then t₁ else t₂, where p is a predicate and t₁ and t₂ are terms, may be used in place of a term in an expression. Expressions with embedded if-then-else's are normalized by the simplifier before simplification takes place; for example, \( f(x) = (\text{if } p(x) \text{ then } t₁ \text{ else } t₂) \) normalizes to \( f(x) = t₁ \) before being processed by the simplifier.

**Semantics** The semantics of propositions are standard. A complete decision procedure for propositions is implemented. Some examples are given in Figure 12.

### 9.2 EQUALITY

The solver for the theory of equality is a central and basic component of the simplifier, and thus cannot be deactivated (it is always active). The language of the theory of equality contains three predicate symbols, =, ≠, and distinct, representing equality, disequality, and pairwise disequality, respectively. Note that including ≠ and distinct adds no expressive power and is only for convenience, since any formula using ≠ can be rewritten as an equivalent formula using only not and =. and any formula using distinct can be rewritten as an equivalent formula using only and, not, and =. Some examples of formulas in this language are

\[
\begin{align*}
    a &= b \\
    x &\neq 1 \\
    f(f(f(a))) &= f(a)
\end{align*}
\]

and

\[
\text{distinct}(u,v,x,y,z)
\]
\begin{verbatim}
<sdvs.1> simp
    expression: "true

false

<sdvs.1> simp
    expression: (a -> b) or (a -> "b)

true

<sdvs.1> simp
    expression: if false -> a then a or b else "b

a or b

<sdvs.1> simp
    expression: a or b & b

a or b

<sdvs.1> simp
    expression: (a or b) & b

b

<sdvs.1> simp
    expression: if p then true else false

p
\end{verbatim}

Figure 12: Simplification of Propositions
Table 3: Equality Symbols

<table>
<thead>
<tr>
<th>predicate symbol</th>
<th>simp symbol</th>
<th>description</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>EQ</td>
<td>equality</td>
<td>$U \times U \rightarrow P$</td>
</tr>
<tr>
<td>$\sim=$</td>
<td>NEQ</td>
<td>disequality</td>
<td>$U \times U \rightarrow P$</td>
</tr>
<tr>
<td>distinct</td>
<td>DISTINCT</td>
<td>pairwise disequality</td>
<td>$U^+ \rightarrow P$</td>
</tr>
</tbody>
</table>

$U$ denotes the universal domain, that is, any arbitrary object is in $U$. The equality and disequality predicates operate on objects in the domain $U$. Table 3 presents a description of the equality and disequality predicate symbols.

**Semantics** The nonlogical symbols in the theory of equality are all uninterpreted constant, function, and predicate symbols. The theory of equality obeys symmetry, reflexivity, transitivity, and substitutivity. Some examples of theorems in this theory are

$$(a=b \land b=c) \rightarrow a=c$$

$$f(a,b)=a \rightarrow f(f(a,b),b)=a$$

$$f(f(f(a)))=a \land f(f(f(f(f(a)))))=a \rightarrow f(a)=a$$

and

$$distinct(x,y,z) \rightarrow x\neq y \land x\neq z \land y\neq z$$

The simplifier has a complete automatic solver for universal equalities. Some examples are given in Figure 13.

### 9.3 ARITHMETIC

The theory of integer arithmetic comes in various levels. SDVS has symbols for integer addition, subtraction, comparison, multiplication, division, absolute value, remainder, exponentiation, min, and max. The theory of integer arithmetic under addition, subtraction, and comparison is decidable, but adding either multiplication, division, or remainder makes the theory undecidable. Thus, a decision procedure for basic linear integer arithmetic is provided, and partial decision procedures are provided for the rest of integer arithmetic. See Section 2.7.1 for the user-invokable axioms pertaining to integer arithmetic.
\begin{quote}
\verb|<sdrv.1> simp expression: a = b & b = c -> a = c|
\end{quote}
true

\begin{quote}
\verb|<sdrv.1> simp expression: f(f(f(a))) = a & f(f(f(f(f(a))))) = a -> f(a) = a|
\end{quote}
true

\begin{quote}
\verb|<sdrv.1> simp expression: g(a) = a & g(a) = a|
\end{quote}
false

\begin{quote}
\verb|<sdrv.1> simp expression: if a then false else a = true|
\end{quote}
false

\begin{quote}
\verb|<sdrv.1> simp expression: distinct(x, y, z) -> x = y & x = z & y = z|
\end{quote}
true

Figure 13: Simplification of Formulas with Equality and Disequality
9.3.1 Linear Integer Arithmetic

The character "z" is used to denote the theory of linear integer arithmetic. The command "activate z" activates the solver for linear integer arithmetic; the command "deactivate z" deactivates this solver.

The language of the theory of linear integer arithmetic includes the predicate symbol $\leq$, the function symbols $+$ and $-$, and the constant symbols 0 and 1. The numerals and the remaining arithmetic relations (lt, ge, and gt) are allowed, but are formally regarded as abbreviations: 2 abbreviates $1+1$ and $x$ gt $y$ abbreviates $\neg (x \leq y)$. Multiplication by integer constants is also allowed; $3^* x$ abbreviates $x+x+x$. Some examples of expressions in this language are

$$x+y$$

$$x-1 \lt x$$

and

$$2 \cdot x+1 \leq 5$$

Also included in linear integer arithmetic are the function symbols $\max$ and $\min$, for which full deductive capabilities are obtained only for constants.

$\mathbb{Z}$ denotes the domain of integers. The arithmetic functions and predicates operate on objects in the domain $\mathbb{Z}$. The standard interpretation is assumed for integer arithmetic. Table 4 presents a description of the arithmetic symbols.

**Semantics**  The theory of integer arithmetic under $+$, $-$, and $\leq$ is the standard Presburger theory for the integers.

The theory of integer arithmetic under $+$, $-$, and $\leq$ is decidable, admitting a full decision procedure. However, the decision procedure implemented in the simplifier is based on the Simplex algorithm and is in fact a solver for rationals, not integers. Thus, the simplifier does not presently have full deductive capabilities for dealing with integers. Statements that are valid over the integers but not over the rationals, such as $x+x\neq 5$, are not consequences of the above axioms and will not be simplified to true by the simplifier.

The following simple rules, where $\Rightarrow$ denotes "rewrites to," have been added to the decision procedure for rationals to facilitate proving statements about integers:

1. $(x < y) \Rightarrow (y > x)$

2. $(x \leq y) \Rightarrow (y \geq x)$

---

9 The reason that "<" and ">" are not used is that they are reserved for bitstring substring selection.
Table 4: Linear Integer Arithmetic Symbols

<table>
<thead>
<tr>
<th>constant symbol</th>
<th>simp symbol</th>
<th>description</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>... -2 -1 0 1 2 ...</td>
<td>... -2 -1 0 1 2 ...</td>
<td>the integers</td>
<td>Z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>function symbol</th>
<th>simp symbol</th>
<th>description</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>PLUS</td>
<td>addition</td>
<td>Z × Z → Z</td>
</tr>
<tr>
<td>-</td>
<td>MINUS</td>
<td>subtraction</td>
<td>Z × Z → Z</td>
</tr>
<tr>
<td>-</td>
<td>MINUS</td>
<td>arithmetic negation</td>
<td>Z → Z</td>
</tr>
<tr>
<td>*</td>
<td>MULT</td>
<td>multiplication by constant</td>
<td>Z × Z → Z</td>
</tr>
<tr>
<td>max</td>
<td>MAX</td>
<td>maximum</td>
<td>Z × Z → Z</td>
</tr>
<tr>
<td>min</td>
<td>MIN</td>
<td>minimum</td>
<td>Z × Z → Z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>predicate symbol</th>
<th>simp symbol</th>
<th>description</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>le</td>
<td>LE</td>
<td>less than or equal</td>
<td>Z × Z → P</td>
</tr>
<tr>
<td>lt</td>
<td>LT</td>
<td>less than</td>
<td>Z × Z → P</td>
</tr>
<tr>
<td>ge</td>
<td>GE</td>
<td>greater than or equal</td>
<td>Z × Z → P</td>
</tr>
<tr>
<td>gt</td>
<td>GT</td>
<td>greater than</td>
<td>Z × Z → P</td>
</tr>
</tbody>
</table>

3. \((x > y) \Rightarrow (x \geq y+1)\), and

4. \(\neg (x \geq y) \Rightarrow (y \geq x+1)\)

These rules allow us to prove the validity of statements over the integers by performing case splitting. For example, one can prove that \(x+x\neq 5\) is valid by case splitting on \(x\leq 2\). The two cases are \(x\leq 2\) and \(\neg (x\leq 2)\) (or \(x\leq 2\) and \(x>2\) or \(x\leq 2\) and \(x\geq 3\)). Since \(x+x\leq 5\) for \(x\leq 2\), and \(x+x>5\) for \(x\geq 3\), we can deduce that \(x+x\neq 5\) is valid over the integers (for all \(x\)). Some examples of simplification are given in Figure 14.

The interaction between the integer and rational semantics of the above arithmetic operators can lead to some complicated phenomena that cause SDVS not to recognize the truth of certain statements. We do not have the space to go into an example here, but will mention the following heuristic that we have found to help in getting the strongest possible deductions: In any complex expression or sequence of expressions, terms containing strict inequalities (lt, gt) should appear wherever possible before terms with the corresponding weak inequalities (le, ge).

Note that the axiomatization of linear integer arithmetic fails to deal with the function symbols max and min. See page 76 for a list of the user-invokable axioms concerning the operation of max and min.

### 9.3.2 Integer Multiplication

The character "m" is used to denote the theory of integer multiplication, which subsumes the theory of linear integer arithmetic. The command "activate m" activates the solver
<sdfs.1> simp
 expression: 4 + 5

9

<sdfs.1> simp
 expression: x le y and x gt y -> ~(x ge z)

true

<sdfs.1> simp
 expression: x le 4 * y - 1 and x gt 3 -> y le 1

x le 4 * y - 1 --> x le 3

Figure 14: Simplification of Linear Integer Arithmetic Expressions

Table 5: Integer Multiplication Symbols

<table>
<thead>
<tr>
<th>function symbol</th>
<th>simp symbol</th>
<th>description</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>MULT</td>
<td>integer multiplication</td>
<td>$\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$</td>
</tr>
</tbody>
</table>

for integer multiplication; the command "deactivate m" deactivates this solver, without deactivating the solver for linear integer arithmetic.

The language of the theory of integer multiplication contains the function symbol *, representing the multiplication operation, and includes all symbols from the theory of linear integer arithmetic, a subtheory of integer multiplication. Some examples of expressions in this language are

x*y-1

and

(x*y)+z=x*(y*z)

Z denotes the domain of integers. Table 5 presents a description of the symbols in the language of the theory of integer multiplication, excluding those symbols common to the theory of linear integer arithmetic.

**Semantics** The theory of integer multiplication (integer arithmetic under $\le$, $+$, $-$, and *) is undecidable, because of the presence of multiplication [64]. The following axioms characterize the associative/commutative subtheory of integer multiplication that has been implemented within the simplifier:
activate

solvem

Associative/commutative multiplication solver activated.

init

  proof name[]: <CR>

State Delta Verification System, Version 12

Restricted to authorized users only.

simp

  expression: \( 1 \cdot x \cdot y = y \cdot x \)

  true

simp

  expression: \( 0 \cdot (x + 2) = 0 \)

  true

simp

  expression: \( 0 \cdot x = x \)

  0 = x

simp

  expression: \( x \cdot y \cdot z \cdot w = w \cdot z \cdot y \cdot x \)

  true

Figure 15: Simplification of Integer Multiplication Expressions

\[
\begin{align*}
\forall x & \qquad x \cdot 1 = x \\
\forall x & \qquad x \cdot 0 = 0 \\
\forall x \forall y & \qquad x \cdot y = y \cdot x \\
\forall x \forall y \forall z & \qquad x \cdot (y \cdot z) = (x \cdot y) \cdot z
\end{align*}
\]

The deductive capability of the simplifier, with respect to the theory of integer multiplication, is limited to those facts that are consequences of the above axioms. See page 75 for a list of the user-invokable axioms concerning integer multiplication. Some examples of simplification are given in Figure 15.

9.3.3 Integer Division, Remainder, Modulus, and Absolute Value

The language consists of the symbols "/", abs, mod, and rem. Table 6 presents a description of these symbols.

With relation to these symbols, the simplifier knows only about operations with constants.
Table 6: Integer Division, Absolute Value, and Remainder

<table>
<thead>
<tr>
<th>function symbol</th>
<th>simp symbol</th>
<th>description</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>DIV</td>
<td>integer division</td>
<td>$\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$</td>
</tr>
<tr>
<td>rem</td>
<td>REM</td>
<td>remainder</td>
<td>$\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$</td>
</tr>
<tr>
<td>mod</td>
<td>MOD</td>
<td>modulus</td>
<td>$\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$</td>
</tr>
<tr>
<td>abs</td>
<td>ABS</td>
<td>absolute value</td>
<td>$\mathbb{Z} \rightarrow \mathbb{N}$</td>
</tr>
</tbody>
</table>

Table 7: Integer Exponentiation Symbol

<table>
<thead>
<tr>
<th>function symbol</th>
<th>simp symbol</th>
<th>description</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>∧</td>
<td>EXPT</td>
<td>integer exponentiation</td>
<td>$\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$</td>
</tr>
</tbody>
</table>

The operations `rem` and `mod` (though not integer division) are defined in accordance with the Ada and Common Lisp semantics (they are the same). See page 78 for the user-invokable axioms.

Figure 16 illustrates the simplification of integer division, absolute value, and remainder expressions.

9.3.4 Integer Exponentiation

The solver for the theory of integer exponentiation is concerned only with the exponentiation of integer constants. This solver is active as long as the solver for linear integer arithmetic is active, because the rules for exponentiation of integer constants are built into the solver for linear integer arithmetic.

The language of the theory of integer exponentiation contains the function symbol $\wedge$ (carat), representing the exponentiation operation, and includes all symbols from the theory of linear integer arithmetic. Some examples of expressions in this language are

$$x \neq 0 \rightarrow x^0 = 1$$

$$(2^y) - 1$$

$\mathbb{Z}$ denotes the domain of integers. Table 7 presents a description of the symbols in the language of the theory of integer exponentiation, excluding those symbols common to the theory of linear integer arithmetic.
\begin{verbatim}
<sdvs.1> simp
   expression: \( x / y \)

\[ x / y \]

<sdvs.1> simp
   expression: \( x / 1 \)

\[ x \]

<sdvs.1> simp
   expression: \( 0 / 1 \)

\[ 0 \]

<sdvs.1> simp
   expression: \( x / 0 \)

\[ x / 0 \]

<sdvs.1> simp
   expression: \( 0 / 0 \)

\[ 0 / 0 \]

<sdvs.1> simp
   expression: \( \text{abs}(-2) \)

\[ 2 \]

<sdvs.1> simp
   expression: \( 5 \text{ rem } 2 \)

\[ 1 \]
\end{verbatim}

Figure 16: Simplification of Integer Division, Absolute Value, and Remainder (Part 1)
Figure 17: Simplification of Integer Division, Absolute Value, and Remainder (Part 2)
Semantics The deductive capabilities of the simplifier with respect to the theory of integer exponentiation are limited to facts about the exponentiation of constants. See page 76 for a list of the user-invokable axioms concerning integer exponentiation.

See Figure 18 for examples of the simplification of integer exponentiation expressions.

9.4 BITSTRINGS

The character “b” is used to denote the theory of bitstrings. The command “activate b” activates the solver for the theory of bitstrings; “deactivate b” deactivates this solver.

The language of the theory of bitstrings contains numerous function symbols. Many of them have the prefix “us.” This stands for “unsigned” and is a throwback to the version where “tc” (two’s complement) also existed. Two basic function symbols are lh and usval, used for representing the nonnegative length and nonnegative value of a bitstring, respectively. The expression usval(b) is prettyprinted |b|1. The function symbols for substring and concatenation are ussub and usconc, respectively. The expression ussub(b,i,j) is written b<:i:j>; usconc(b1,b2) is written b1@b2. The symbols for the bitstring value comparison functions are useql, usnee, uslss, usleq, usgtr, and usgeq. Note that these comparators are not predicates that return true or false, but return the bitstrings 1(1) (for true) and 0(1) (for false). The bitstring arithmetic function symbols are usplus, usdifference, ustimes, usquotient, and usremainder. The symbols for the bitstring logical operation functions are usnot, usand, usor, usxor, and useqv. When the integer arithmetic operator is represented as a symbol rather than a word (e.g. as + instead of “plus”), the bitstring counterpart is represented by two of the symbols in juxtaposition (e.g. ++). In order to distinguish the cases where “-” is to be interpreted as two propositional “¬” symbols or - - as two integer arithmetic unary minuses, parentheses must be used.

In addition, we have the function symbols zeros, ones, and lastone.

The language of the theory of bitstrings also contains a countably infinite set of constant symbols that syntactically resemble function symbols applied to terms. These constant symbols have the form i(j), which denotes the constant bitstring whose integer value is i and whose integer length is j, where j ≥ 0 and 0 ≤ i ≤ 2^j - 1.

Some examples of expressions in this language are

\[ x <:3:2> = 2(2) \]

\[ x ++ 1(1) \text{ usgt } x \]

\[ x \text{ usor } 0(5) \]

\[ (a \odot b) <:\text{lh}(a)-1 : j> \]
readaxioms
path name[axioms/arraycovering.axioms]: axioms/exp.axioms

readaxioms "axioms/exp.axioms"
-- (multsq, square, expabsval, e11, e10, e9, e8, expdiv, expmult, e7, e6, e5, e4, e3, e2, e1)

simp
expression: 2^0
1

simp
expression: 0^2
0

simp
expression: 3^2
9

simp
expression: x^0 = 1
x^0 = 1

simp
expression: 0^x
0^x

ppsd
state delta: exp.sd
[sd pre: (x^0 = 0)
 post: (x^0 = 1)]

prove
state delta[]: exp.sd
proof[]: <CR>

open -- [sd pre: (x^0 = 0)
 post: (x^0 = 1)]

Complete the proof.

provebyaxiom
formula to prove: x^0 = 1
axiom name[]: e4

provebyaxiom e4 -- x^0 = 1

close -- 1 steps/applications

Figure 18: Simplification of Integer Exponentiation Expressions
309
B denotes the domain of bitstrings, Z the domain of all integers, and N the domain of nonnegative integers. Table 8 presents a description of the symbols in the language of the theory of bitstrings.

**Semantics** The following axioms characterize the theory of bitstrings that has been implemented within the simplifier:

\[
\forall b \forall c \quad b = c \iff |b| = |c| \land lh(b) = lh(c)
\]

\[
\forall b \quad lh(b) \geq 0
\]

\[
\forall b \quad 0 \leq |b| \leq 2^{lh(b)} - 1
\]

\[
\forall i \forall j \quad j \geq \iff lh(i(j)) = j
\]

\[
\forall i \forall j \quad j \geq \land 0 \leq i \leq 2^j - 1 \rightarrow l(i(j)) \downarrow = i
\]

\[
\forall b \forall i \forall j \quad lh(b < i: j>) = \max(0, \min(i, lh(b) - 1) + \max(j, 0))
\]

\[
\forall b \forall i \forall j \quad |b < i: j| = |1| \cdot ((|b| / 2^{\max(0, i + 1)}) \cdot 2^{\max(0, i + 1)}) / 2^{\max(0, j)}
\]

\[
\forall b \quad b = b < lh(b) - 1: 0
\]

\[
\forall b \forall i \forall j \quad i \geq lh(b) \rightarrow b < i: j > = b < i: 0 >
\]

\[
\forall b \forall i \forall j \quad i < j \rightarrow b < i: j > = 0(0)
\]

\[
\forall b \forall c \quad lh(b @ c) = lh(b) + lh(c)
\]

\[
\forall b \forall c \quad |b @ c| = (|b| \cdot 2^{lh(b)}) + |c|
\]

\[
\forall b \forall c \forall i \forall j \quad (b @ c) < i: j > = b < i: lh(b): j > \cdot lh(b) \circ @ c < i: j >
\]

\[
\forall b \quad b \neq 0(1) \land lh(b) = 1 \rightarrow b = 1(1)
\]

\[
\forall b \quad b \neq 1(1) \land lh(b) = 1 \rightarrow b = 0(1)
\]

\[
\forall b \forall c \quad b = c = 1(1) \iff |b| = |c|
\]

\[
\forall b \forall c \quad b = c = 0(1) \iff |b| \neq |c|
\]

\[
\forall b \forall c \quad b = c = 1(1) \iff |b| \neq |c|
\]

\[
\forall b \forall c \quad b = c = 0(1) \iff |b| = 1 |c|
\]

\[
\forall b \forall c \quad b < ul(1) = 1(1) \iff |b| < |c|
\]

\[
\forall b \forall c \quad b < ul(0) = 0(1) \iff |b| \geq |c|
\]

\[
\forall b \forall c \quad b < ul(1) = 1(1) \iff |b| \leq |c|
\]

\[
\forall b \forall c \quad b < ul(0) = 0(1) \iff |b| > |c|
\]

\[
\forall b \forall c \quad b < usgt(1) = 1(1) \iff |b| > |c|
\]

\[
\forall b \forall c \quad b < usgt(0) = 0(1) \iff |b| \leq |c|
\]

\[
\forall b \forall c \quad b < usge(1) = 1(1) \iff |b| \geq |c|
\]

\[
\forall b \forall c \quad b < usge(0) = 0(1) \iff |b| < |c|
\]

310
### Table 8: Bitstring Symbols

<table>
<thead>
<tr>
<th>constant symbol</th>
<th>simp symbol</th>
<th>description</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(0)</td>
<td>BS 0 0</td>
<td>constant bitstring of value 0, length 0</td>
<td>B</td>
</tr>
<tr>
<td>0(1)</td>
<td>BS 0 1</td>
<td>constant bitstring of value 0, length 1</td>
<td>B</td>
</tr>
<tr>
<td>1(1)</td>
<td>BS 1 1</td>
<td>constant bitstring of value 1, length 1</td>
<td>B</td>
</tr>
<tr>
<td>0(2)</td>
<td>BS 0 2</td>
<td>constant bitstring of value 0, length 2</td>
<td>B</td>
</tr>
<tr>
<td>1(2)</td>
<td>BS 1 2</td>
<td>constant bitstring of value 1, length 2</td>
<td>B</td>
</tr>
<tr>
<td>2(2)</td>
<td>BS 2 2</td>
<td>constant bitstring of value 2, length 2</td>
<td>B</td>
</tr>
<tr>
<td>3(2)</td>
<td>BS 3 2</td>
<td>constant bitstring of value 3, length 2</td>
<td>B</td>
</tr>
<tr>
<td>0(3)</td>
<td>BS 0 3</td>
<td>constant bitstring of value 0, length 3</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>function symbol</th>
<th>simp symbol</th>
<th>description</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>lh</td>
<td>LH</td>
<td>bitstring length</td>
<td>B → N</td>
</tr>
<tr>
<td>l l</td>
<td>USVAL</td>
<td>bitstring value</td>
<td>B → N</td>
</tr>
<tr>
<td>l &gt;</td>
<td>USSLB</td>
<td>bitstring substring</td>
<td>B x Z x Z → B</td>
</tr>
<tr>
<td>@</td>
<td>USconc</td>
<td>bitstring concatenation</td>
<td>B x B → B</td>
</tr>
<tr>
<td>==</td>
<td>USEQ</td>
<td>bitstring equality</td>
<td>B x B → B</td>
</tr>
<tr>
<td>-=</td>
<td>USneq</td>
<td>bitstring nonequality</td>
<td>B x B → B</td>
</tr>
<tr>
<td>uslt</td>
<td>USLSS</td>
<td>bitstring less than</td>
<td>B x B → B</td>
</tr>
<tr>
<td>usle</td>
<td>USLEQ</td>
<td>bitstring less than or equal</td>
<td>B x B → B</td>
</tr>
<tr>
<td>usgt</td>
<td>USGTR</td>
<td>bitstring greater than</td>
<td>B x B → B</td>
</tr>
<tr>
<td>usge</td>
<td>USGEQ</td>
<td>bitstring greater than or equal</td>
<td>B x B → B</td>
</tr>
<tr>
<td>++</td>
<td>USPLUS</td>
<td>bitstring addition</td>
<td>B x B → B</td>
</tr>
<tr>
<td>- -</td>
<td>USDIFFERENCE</td>
<td>bitstring subtraction</td>
<td>B x B → B</td>
</tr>
<tr>
<td>**</td>
<td>USTimes</td>
<td>bitstring multiplication</td>
<td>B x B → B</td>
</tr>
<tr>
<td>//</td>
<td>USQUOTIENT</td>
<td>bitstring quotient</td>
<td>B x B → B</td>
</tr>
<tr>
<td>usremainder</td>
<td>USREMAINDER</td>
<td>bitstring remainder</td>
<td>B x B → B</td>
</tr>
<tr>
<td>&amp;&amp;</td>
<td>USNOT</td>
<td>bitstring logical negation</td>
<td>B → B</td>
</tr>
<tr>
<td>usand</td>
<td>USAND</td>
<td>bitstring logical conjunction</td>
<td>B x B → B</td>
</tr>
<tr>
<td>usor</td>
<td>USOR</td>
<td>bitstring logical disjunction</td>
<td>B x B → B</td>
</tr>
<tr>
<td>usxor</td>
<td>USXOR</td>
<td>bitstring logical exclusive disjunction</td>
<td>B x B → B</td>
</tr>
<tr>
<td>zeros</td>
<td>ZEROS</td>
<td>bitstring of all 0's</td>
<td>Z → B</td>
</tr>
<tr>
<td>ones</td>
<td>ONES</td>
<td>bitstring of all 1's</td>
<td>Z → B</td>
</tr>
<tr>
<td>lastone</td>
<td>LASTONE</td>
<td>bitstring low-order 1 index</td>
<td>B → B</td>
</tr>
</tbody>
</table>
\forall b \forall c \quad lh(b++c)=\text{max}(lh(b),lh(c))+1

\forall b \forall c \quad |b++c|=|b|+|c|

\forall b \forall c \quad lh(b\cdot c)=\text{max}(lh(b),lh(c))+1

\forall b \forall c \quad |b-\cdot c| = \begin{cases} |b| < |c| & \text{then } 2^{lh(b-\cdot c)}+|b|\cdot |c| \\ |b| > |c| & \text{else } |b| \cdot |c| \end{cases}

\forall b \forall c \quad lh(b\star\star c)=lh(b)+lh(c)

\forall b \forall c \quad |b\star\star c|=|b|\cdot |c|

\forall b \forall c \quad lh(b/c)=lh(b)

\forall b \forall c \quad lh(b \text{ usmod } c)=lh(c)

\forall b \quad lh(\text{--}b)=lh(b)

\forall b \forall c \quad lh(b\&\&c)=\text{max}(lh(b),lh(c))

\forall b \forall c \quad lh(b\text{ usor } c)=\text{max}(lh(b),lh(c))

\forall b \forall c \quad lh(b \text{ usxor } c)=\text{max}(lh(b),lh(c))

\forall i \quad lh(\text{zeros}(i))=\text{max}(0,i)

\forall i \quad |\text{zeros}(i)|=0

\forall i \quad lh(\text{ones}(i))=\text{max}(0,i)

\forall i \quad i>0 \rightarrow |\text{ones}(i)|=2^i-1

The deductive capability of the simplifier, with respect to the theory of bitstrings, is approximately limited to those facts that are consequences of the above axioms. The rules preceded by "\forall" are implemented automatically only when the bitstrings involved have constant lengths and all of the substring selectors are constant-valued. For variable-length bitstrings and variable-substring selectors, user-invokable axioms have been provided. See page 73 for a list of the user-invokable axioms for the bitstring function symbols. User-invokable axioms are also provided for defining the values of the bitstring logical operators usnot, usand, usor, usxor, and useqv, and for defining the length and value of the lastone operator.

Note that usplus is not associative: for example, \((1(8) ++ 1(2)) ++ 1(2) = 3(10)\), while \(1(8) ++ (1(2) ++ 1(2)) = 3(9)\). Of course, it is true that \(|a ++ b| = |a| + |b|\).

### 9.5 ARRAYS

The character "a" is used to denote the theory of arrays. The command "activate a" activates the solver for the theory of arrays; "deactivate a" deactivates this solver.

The language of the theory of arrays contains the function symbols origin, range, element, slice, and aconc, as well as the constant symbol emptyarray, denoting the empty array. The expression origin(v) denotes the integer origin (initial index) of the array v. The expression
<sdvs.1> simp
  expression: \( x = 3(5) \rightarrow x<3:2> = 2(2) \)
  true

<sdvs.1> simp
  expression: \( 0(1) \oplus 3(5) = 3(6) \)
  true

<sdvs.1> simp
  expression: \( x ++ \ 1(1) \ usgl \ x \)
  1(1)

<sdvs.1> simp
  expression: \( x ++ y = y ++ x \)
  true

<sdvs.1> simp
  expression: \( x usor 0(5) = x \)
  \[ x usor 0(5) = x \]

<sdvs.1> simp
  expression: \( lh(x) = 5 \rightarrow x usor 0(5) = x \)
  true

<sdvs.1> simp
  expression: \( lh(x) ge 5 \rightarrow x usor 0(5) = x \)
  \[ lh(x) ge 5 \rightarrow x usor 0(5) = x \]

Figure 19: Simplification of Bitstring Expressions (Part 1)
\begin{verbatim}
<sdvs.1> simp
  expression: \(lh(b) = 8 \rightarrow b<8:8> = 0(0)\)
  true

<sdvs.1> simp
  expression: \(lh(b) = 8 \rightarrow b<100:1> = b\)
  true

<sdvs.1> simp
  expression: \(lh(b) = 8 \rightarrow b<5:1> = b<5:0>\)
  true

<sdvs.1> simp
  expression: \(lh(b) = 8 \rightarrow b<10:4> = b<7:4>\)
  true

<sdvs.1> simp
  expression: \(b @ 0(0)\)
  b

<sdvs.1> simp
  expression: \(|b| = 1 \rightarrow b usgt 0(8) = 1(1)\)
  true

<sdvs.1> simp
  expression: \(1(8) ++ 10(9)\)
  11(10)

<sdvs.1> simp
  expression: \(1(8) - 10(8)\)
  503(9)

<sdvs.1> simp
  expression: \(lh(b) = 8 \rightarrow lh(b usor b) = 8\)
  true

<sdvs.1> simp
  expression: \(|zeros(n)| = 0\)
  true
\end{verbatim}

Figure 20: Simplification of Bitstring Expressions (Part 2)
Table 9: Array Symbols

<table>
<thead>
<tr>
<th>constant symbol</th>
<th>simp symbol</th>
<th>description</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>emptyarray</td>
<td>EMPTYARRAY</td>
<td>the empty array</td>
<td>V</td>
</tr>
<tr>
<td>function symbol</td>
<td>simp symbol</td>
<td>description</td>
<td>type</td>
</tr>
<tr>
<td>origin</td>
<td>ORIGIN</td>
<td>array origin</td>
<td>V → N</td>
</tr>
<tr>
<td>range</td>
<td>RANGE</td>
<td>array length</td>
<td>V → N</td>
</tr>
<tr>
<td>[]</td>
<td>ELEMENT</td>
<td>array element</td>
<td>V × Z → U</td>
</tr>
<tr>
<td>[:]</td>
<td>SLICE</td>
<td>subarray</td>
<td>V × Z × Z → V</td>
</tr>
<tr>
<td>aconc</td>
<td>ACONC</td>
<td>array concatenation</td>
<td>V × V → V</td>
</tr>
</tbody>
</table>

\( \text{range}(v) \) denotes the nonnegative range of the array \( v \). The expression \( \text{element}(v, i) \), written \( v[i] \), denotes the element of the array \( v \) with the name \( i \). The expression \( \text{slice}(v, i, j) \), written \( v[i:j] \), denotes the subarray of the array \( v \) extending from elements named \( i \) to \( j \), inclusively. The expression \( \text{aconc}(v1, v2) \) denotes the concatenation of the arrays \( v1 \) and \( v2 \). Some examples of expressions in this language are

\[
\text{origin}(v) = 0 \rightarrow \text{range}(v[0:0]) = 1
\]

\[
\text{range}(\text{emptyarray}) = 0
\]

\[
\text{range}(\text{aconc}(v, \text{emptyarray}))
\]

\[
v[\text{origin}(v): \text{origin}(v)+\text{range}(v)-1] = v
\]

\[
\text{aconc}(v[0:5], v[6:9])
\]

\[
\text{range}(v1) = 3 \text{ and } \text{range}(v2) = 3 \rightarrow v2[0] = \text{aconc}(v1, v2)[3]
\]

\( V \) denotes the domain of arrays, \( Z \) the domain of all integers, \( N \) the domain of nonnegative integers, and \( U \) the universal domain. Table 9 presents a description of the symbols in the language of the theory of arrays.

**Axiomatization** The theory of arrays obeys the following axioms:

\[
\forall v \quad \text{range}(v) \geq 0
\]

\[
\forall v \quad \text{range}(v) = 0 \rightarrow v = \text{emptyarray}
\]

\[
\forall v1 \forall v2 \quad \text{range}(\text{aconc}(v1, v2)) = \text{range}(v1) + \text{range}(v2)
\]
\[\forall v \quad v = acon(v, emptyarray) = acon(emptyarray, v)\]
\[\forall i \forall j \quad \text{origin}(v) \leq i \leq j \Rightarrow \text{origin}(v + \text{range}(v)) \rightarrow \text{range}(v[i:j]) = j - i + 1\]
\[\forall v \quad v = v[\text{origin}(v) : \text{range}(v) - 1]\]
\[\forall i \forall j \quad i \geq \text{origin}(v) \rightarrow v[i:j] = v[\text{origin}(v) : j]\]
\[\forall i \forall j \quad j \geq \text{origin}(v) + \text{range}(v) \rightarrow v[i:j] = v[i : \text{origin}(v) + \text{range}(v) - 1]\]
\[\forall i \forall j \forall k \quad i \leq j < k \Rightarrow acon(v[i:j], v[j+1:k]) = v[i:k]\]

The deductive capability of the simplifier with respect to the theory of arrays is limited to those facts that are consequences of the above axioms. The rules preceded by "\(\vdash\)" are implemented automatically only when the arrays involved have constant origins and ranges and all of the index selectors are constant-valued. See page 77 for a list of the user-invokable axioms dealing with variable-length arrays and variable array selectors. Some examples of simplification are given in Figure 21.

### 9.6 COVERINGS

The character "c" is used to denote the theory of coverings (set partitions). The command "activate c" activates the solver for the theory of coverings; "deactivate c" deactivates this solver.

The language of the theory of coverings includes the predicate symbols \textit{alldisjoint}, \textit{covering}, and \textit{pcovering}; the constant symbols \textit{emptyplace}, representing the empty place; \textit{everyplace}, representing the universal place; and the function symbols \textit{diff}, \textit{inter}, and \textit{union}. The symbol \textit{all} is an abbreviation for \textit{everyplace}, i.e., \textit{all} = \textit{everyplace} "simp" to \text{true}. The predicate \textit{alldisjoint}(x_1, \ldots, x_n), \(n \geq 1\), is satisfied when the places \(x_i\) are pairwise disjoint. The predicate \textit{covering}(x, y_1, \ldots, y_k), \(k \geq 1\), is satisfied when the places \(y_i\) are pairwise disjoint, and their union is exactly the place \(x\). The predicate \textit{pcovering}(x, y_1, \ldots, y_k), \(k \geq 1\), is satisfied when the places \(y_i\) are pairwise disjoint and their union is a subplace of the place \(x\). It is always true (and the simplifier knows) that \textit{pcovering}(\text{all}, x) and \textit{pcovering}(x, \text{emptyplace}) for any place \(x\), declared or not. Some examples of formulas in this language are:

\[
\text{covering}(a, b, c, d)\]

\[
\text{alldisjoint}(a, \text{emptyplace})\]

\[
\text{pcovering}(\text{all}, a, b)\]

S denotes the domain of places. The constant \textit{emptyplace} is in the domain \(S\), and the \textit{alldisjoint}, \textit{covering}, and \textit{pcovering} predicates operate on objects in the domain \(S\). Table 10 presents a description of the symbols in the language of the theory of coverings.
\texttt{<sdvs.1> simp}
  \texttt{expression: origin(v) = 0 and range(v) ge 1 -> range(v[0:0]) = 1}

\texttt{origin(v) = 0 \& range(v) ge 1 --> range(v[0:0]) = 1}

(Though true, simp does not know this automatically.)

\texttt{<sdvs.1> simp}
  \texttt{expression: origin(v) = 0 and range(v) = 1 -> range(v[0:0]) = 1}

true

\texttt{<sdvs.1> simp}
  \texttt{expression: origin(v) = 0 and range(v) = 1 --> range(v[3:3]) = 0}

true

\texttt{<sdvs.1> simp}
  \texttt{expression: range(emptyarray) = 0}

true

\texttt{<sdvs.1> simp}
  \texttt{expression: range(aconc(v, emptyarray)) = range(v)}

true

\texttt{<sdvs.1> simp}
  \texttt{expression: origin(v) = -10 and range(v) = 3 --> v = v[-10:-8]}

true

\texttt{<sdvs.1> simp}
  \texttt{expression: range(v) ge 0}

true

\texttt{<sdvs.1> simp}
  \texttt{expression: origin(v) = 0 and range(v) = 10 --> v = aconc(v[0:5], v[6:9])}

true

\texttt{Figure 21: Simplification of Array Expressions}
Table 10: Covering Symbols

<table>
<thead>
<tr>
<th>constant symbol</th>
<th>simp symbol</th>
<th>description</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>emptyplace</td>
<td>EMPTYPLACE</td>
<td>the empty place</td>
<td>S</td>
</tr>
<tr>
<td><strong>predicate symbol</strong></td>
<td><strong>simp symbol</strong></td>
<td><strong>description</strong></td>
<td><strong>type</strong></td>
</tr>
<tr>
<td>alldisjoint</td>
<td>ALLDISJOINT</td>
<td>pairwise disjointness predicate</td>
<td>$S^+ \rightarrow P$</td>
</tr>
<tr>
<td>covering</td>
<td>COVERING</td>
<td>set partition predicate</td>
<td>$S^+ \rightarrow P$</td>
</tr>
<tr>
<td>pcovering</td>
<td>PCOVERING</td>
<td>partial set partition predicate</td>
<td>$S^+ \rightarrow P$</td>
</tr>
<tr>
<td><strong>function symbol</strong></td>
<td><strong>simp symbol</strong></td>
<td><strong>description</strong></td>
<td><strong>type</strong></td>
</tr>
<tr>
<td>diff</td>
<td>DIFF</td>
<td>set difference</td>
<td>$S \times S \rightarrow S$</td>
</tr>
<tr>
<td>inter</td>
<td>INTER</td>
<td>set intersection</td>
<td>$S^+ \rightarrow S$</td>
</tr>
<tr>
<td>union</td>
<td>UNION</td>
<td>set union</td>
<td>$S^+ \rightarrow S$</td>
</tr>
</tbody>
</table>

**Semantics**  A place is a structure on a set. This is incorrectly, though easily, confused with the contents of a place, which is a specific instance of that structure, e.g. a specific bitstring. However, the contents of a place may be objects of other types, such as integers, arrays, sets, or even other places.

For descriptive and intuitive purposes, consider each place $p$ to be associated with an (unstructured) set $\text{loc}(p)$ of locations. For example, if the contents of $p$ were bitstrings, then $\text{loc}(p)$ would be the set of individual bit locations. Two or more places may have the same set of locations yet still be unequal as places (because their contents, or values, may be different, for example, because of their component bits being ordered differently.)

The theory of coverings satisfies the following axioms:

$$\forall p \quad \text{alldisjoint}(p)$$
$$\forall p_1,\ldots,p_k \quad \text{alldisjoint}(p_1,\ldots,p_k) \iff \bigwedge_{i \neq j} \text{loc}(p_i) \cap \text{loc}(p_j) = \emptyset$$
$$\forall s \forall p_1,\ldots,p_k \quad \text{covering}(s,p_1,\ldots,p_k) \iff \text{loc}(s) = \text{loc}(p_1) \cup \ldots \cup \text{loc}(p_k) \land \text{alldisjoint}(p_1,\ldots,p_k)$$
$$\forall s \forall p_1,\ldots,p_k \quad \text{pcovering}(s,p_1,\ldots,p_k) \iff \text{loc}(s) \supseteq \text{loc}(p_1) \cup \ldots \cup \text{loc}(p_k) \land \text{alldisjoint}(p_1,\ldots,p_k)$$

The simplifier has full deductive capabilities for dealing with the theory of coverings. See Figure 22 for examples of simplification of covering expressions.

The following is an example illustrating the use of alldisjoint. (The machine isps description of alias.machine is called alias.isp.)

```
alias.machine{US} :=
BEGIN

variables

mem[0:10]<15:0>,
```

318
<sdvs.1> simp
  expression: pcovering(a, x, y) -> alldisjoint(x, y)
  true

<sdvs.1> simp
  expression: covering(a, b) -> covering(b, a)
  true

<sdvs.1> simp
  expression: covering(a, b, c) & covering(a, b) -> c = emptyplace
  covering(a,b,c) & covering(a,b) --> c = emptyplace

<sdvs.1> simp
  expression: covering(a, b, c) & covering(a, b) -> covering(c, emptyplace)
  true

<sdvs.1> simp
  expression: alldisjoint(a, b, c, d) -> alldisjoint(a, b)
  true

<sdvs.1> simp
  expression: alldisjoint(a)
  true

<sdvs.1> simp
  expression: covering(emptyplace, diff(a, a))
  true

<sdvs.1> simp
  expression: covering(everyplace, a, diff(everyplace, a))
  true

<sdvs.1> simp
  expression: alldisjoint(a, diff(b, a))
  true

<sdvs.1> simp
  expression: pcovering(a, b, c) -> alldisjoint(a, b)
  pcovering(a,b,c) --> alldisjoint(a,b)

Figure 22: Simplification of Covering Expressions
**code**

\[
\text{mp1(MAIN)} := \text{BEGIN}
\begin{align*}
\text{ir} & := \text{mem}[0]<15:0>, \\
\text{pc} & := \text{mem}[0]<15:0>, \\
\text{k} & := \text{ir}<10:7>, \\
\text{pc} & := \text{pc} + 1 \\
\text{mem}[\text{k}] & := \text{mem}[\text{pc}], \\
\text{END}
\end{align*}
\]

**<sdvs.1> ppsd**

**state delta:** alias.sd

\[
[\text{sd pre: (isps(alias.isp),alias.machine\upc = alias.machine\started,} \\
|\text{pc}| \geq 0,|\text{pc}| \leq 9,|\text{mem[\text{pc}]}| < 10:7| \leq 10) \\
\text{mod: (all)} \\
\text{post: (#mem[\text{pc}],mem[0]<10:7>] = mem[\text{mem[0]} + 1])]
\]

**<sdvs.1> pp**

**object:** alias.proof

**proof alias.proof:**

**prove alias.sd**

**proof:**

\[
\text{cases } |\text{mem[0]}| \leq 0
\]

**then proof:**

\[
(\text{provebyaxiom alldisjoint(mem[0],mem[|\text{pc}| + 1])}
\begin{align*}
\text{using: disjoint\elements,} \\
\end{align*}
\]

**else proof:**

\[
(\text{apply,}
\text{provebyaxiom alldisjoint(mem[0],mem[|\text{pc}| + 1])}
\begin{align*}
\text{using: disjoint\elements,}
\end{align*}
\]

**apply,**

\[
\text{cases } |\text{k}| = |\text{pc}|
\]

**then proof:**

**else proof:**

\[
(\text{provebyaxiom alldisjoint(mem[|\text{k}|,mem[|\text{pc}|])}
\begin{align*}
\text{using: disjoint\elements,} \\
\end{align*}
\]

This proof was actually input to the editor as follows:

\[
((\text{prove alias.sd})
(\text{cases } (1 \text{le } (\text{usval } \text{dot } \text{element mem 0})))
(0)
(((\text{provebyaxiom alldisjoint element mem 0})
(\text{element mem } (\text{plus } \text{usval } \text{dot } \text{pc}) 1)))
\text{disjoint\elements})
\]

320
*)

((apply nil)
  (provebyaxiom (alldisjoint (element mem 0)
    (element mem (plus (usval (dot pc)) 1)))
   (disjoint\backslash elements))

(apply nil)
(cases (eq (usval (dot k)) (usval (dot pc))) nil
  ((provebyaxiom (alldisjoint (element mem (usval (dot k))))
    (element mem (usval (dot pc))))
   (disjoint\backslash elements)
   *))
))

<sdvs.1> readaxioms
path name[axioms/arraycoverings.axioms]: axioms/arraycoverings.axioms

readaxioms (redundant) -- "axioms/arraycoverings.axioms"

<sdvs.2> interpret
proof name: alias.proof
open -- [sd pre: (isps(alias.isp),
   .alias.machine\upc = alias.machine\started,\pc ge 0,
   |\pc| le 9,|.mem[\pc]<10:7>| le 10)
   mod: (all)
   post: (#mem[|.mem[|.mem[0]|]<10:7>|1 = .mem[|.mem[0]| + 1])]

cases -- |.mem[0]| le 0

open -- [sd pre: (|.mem[0]| le 0)
   comod: (all)
   mod: (all)
   post: (#mem[mem\1184<10:7>|1 = mem\1187])]

provebyaxiom disjoint\backslash elements -- alldisjoint(mem[0],
   mem[|.pc| + 1])

apply -- [sd pre: (.alias.machine\upc = alias.machine\started)
   mod: (alias.machine\upc,ir)
   post: (#ir = .mem[|.pc|],
      [tr {in ALIAS.MACHINE} PC...; MEM...;])]

apply -- [sd pre: (true)
   comod: (alias.machine\upc)
   mod: (alias.machine\upc,pc)
   post: (#pc = (.pc ++ 1(2))<15:0>,
      [tr {in ALIAS.MACHINE} MEM...;])]

apply -- [sd pre: (|.k| le 10)
   comod: (alias.machine\upc)
   mod: (alias.machine\upc,mem[|.k|])
   post: (#mem[|.k|] = .mem[|.pc|],
      [tr @ALIAS.MACHINE\halted])]

close -- 4 steps/applications
open -- [sd pre: (~(.\mem[0] le 0))
    comod: (all)
    mod: (all)
    post: (#mem[mem\1184<10:7>]= mem\1187])

apply -- [sd pre: (.alias.machine\upc = alias.machine\started)
    mod: (alias.machine\upc, ir)
    post: (#ir = .mem[.pc],
    [tr {in ALIAS.MACHINE} PC....; MEM....;])]

proveby axiom disjoint\elements -- alldisjoint(mem[0],
    mem[.pc + 1])

apply -- [sd pre: (true)
    comod: (alias.machine\upc)
    mod: (alias.machine\upc, pc)
    post: (#pc = (.pc ++ 1(2))<15:0>,
    [tr {in ALIAS.MACHINE} MEM....;])]

cases -- |.k| = |.pc|

open -- [sd pre: (.k = |.pc|)
    comod: (all)
    mod: (all)
    post: (#mem[mem\1184<10:7>]= mem\1187])

close -- 0 steps/applications

open -- [sd pre: (~(.k = |.pc|))
    comod: (all)
    mod: (all)
    post: (#mem[mem\1184<10:7>]= mem\1187])

proveby axiom disjoint\elements -- alldisjoint(mem[.k],
    mem[.pc])

apply -- [sd pre: (.k le 10)
    comod: (alias.machine\upc)
    mod: (alias.machine\upc, mem[.k])
    post: (#mem[.k] = .mem[.pc],
    [tr @ALIAS.MACHINE\halted])]

close -- 2 steps/applications

join -- [sd pre: (true)
    comod: (all)
    mod: (all)
    post: (#mem[mem\1184<10:7>]= mem\1187])

close -- 4 steps/applications

join -- [sd pre: (true)
    comod: (all)
    mod: (all)
    post: (#mem[mem\1184<10:7>]= mem\1187])
Table 11: List Symbols

<table>
<thead>
<tr>
<th>function symbol</th>
<th>simp symbol</th>
<th>description</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>cons</td>
<td>CONS</td>
<td>list construction</td>
<td>$U \times U \rightarrow L$</td>
</tr>
<tr>
<td>car</td>
<td>CAR</td>
<td>list head selection</td>
<td>$L \rightarrow U$</td>
</tr>
<tr>
<td>cdr</td>
<td>CDR</td>
<td>list tail selection</td>
<td>$L \rightarrow U$</td>
</tr>
</tbody>
</table>

close -- 1 steps/applications

9.7 LISTS

The character “l” is used to denote the theory of lists. The command “activate l” activates the solver for the theory of lists; “deactivate l” deactivates this solver.

The language of the theory of lists contains the function symbols $cons$, $car$, and $cdr$. The expression $cons(x,y)$ denotes a list whose head is $x$ and whose tail is $y$. The expression $car(x)$ denotes the head of the list $x$, and $cdr(x)$ denotes the tail of the list $x$.

$L$ denotes the domain of list structures. $U$ denotes the universal domain. The list construction and selection operators represented by $cons$, $car$, and $cdr$ operate on objects in the domains $L$ and $U$. Table 11 presents a description of the symbols in the language of the theory of lists. Note that the atom $nil$ is not in the language. If fact, if you try to simp an expression containing an occurrence of $nil$, SDVS will break.

**Semantics** Within the simplifier, only a subtheory of the theory of lists has been implemented. This subtheory is that which satisfies the following axioms:

\[
\forall x \quad cons(car(x),cdr(x))=x
\]

\[
\forall x\forall y \quad car(cons(x,y))=x
\]

\[
\forall x\forall y \quad cdr(cons(x,y))=y
\]

The simplifier has full deductive capabilities for dealing with the subtheory of lists characterized above. See Figure 23 for examples.

9.8 QUEUES

The character “q” is used to denote the theory of queues. The command “activate q” activates the solver for the theory of queues; “deactivate q” deactivates this solver.
The language of the theory of queues includes the constant symbol `nullqueue`, the predicate symbol `emptyqueue`, and the function symbols `enqueue`, `dequeue`, and `frontqueue`. The symbol `nullqueue` denotes the empty queue. The predicate `emptyqueue` is `true` when applied to the empty queue. The expression `enqueue(q, u)` denotes the queue formed by appending `u` to the back of `q`. The expression `dequeue(q)` denotes the queue formed by removing the front element from `q`. The expression `frontqueue(q)` denotes the front element of `q`. Some examples of expressions in this language are

```
frontqueue(enqueue(nullqueue, u))
dequeue(enqueue(q, u))
```

Q denotes the domain of queues. U denotes the universal domain. The constant `nullqueue` is in the domain Q, and the `emptyqueue` predicate operates on objects in the domain Q. The functions `enqueue`, `dequeue`, and `frontqueue` operate on objects in the domains Q and U, i.e., on queues and elements of queues. Table 12 presents a description of the symbols in the language of the theory of queues.

**Semantics**  The theory of queues satisfies the following axioms:

\[
\begin{align*}
\forall q & \quad emptyqueue(q) \leftarrow q=nullqueue \\
\forall q & \quad nullqueue\neq enqueue(q, u) \\
\forall q & \quad dequeue(enqueue(q, u)) = if q=nullqueue then nullqueue else enqueue(dequeue(q), u) \\
\forall q & \quad frontqueue(enqueue(q, u)) = if q=nullqueue then u else frontqueue(q)
\end{align*}
\]
The simplifier has full deductive capabilities for dealing with queues. See Figure 24 for examples.

### 9.9 ENUMERATION TYPES

The symbol “enum” is used to denote the theory of enumeration types. The command “activate enum” activates the solver for the theory of enumeration types; “deactivate enum” deactivates this solver.

The language of the theory of enumeration types includes \( ele, ege, elt, egt, epred, \) and \( esucc \). All expressions must be written in prefix notation.

Some examples of expressions in this language are

\[
elt(a, b) \rightarrow ele(a, b)
\]

\[
eelt(a, b) \text{ or } a = b \text{ or } egt(a, b)
\]

\[
epred(a, b) \rightarrow esucc(b, a)
\]

The domain of enumeration types is simply \( U \), the universal domain. Table 13 presents a description of the symbols in the language of the theory of enumeration types.

**Semantics** The theory of enumeration type order satisfies the axioms of total ordering with predicates for successor and predecessor relations. The primary use of enumeration types is when order is defined on some non-numeric quantities, such as is possible in Ada. The range of the Ada character function “char” is ordered by \((char \ m) elt (char \ n)\) for \(0 \leq m < n \leq 127\). The translation from characters in Ada programs to char forms in SDVS is made via the lisp char-code, e.g. \((char-code (char \ "a") 0))=97\). Thus, the Ada character ‘a’ would be translated to \(char(97)\). Similar \(esucc\) and \(epred\) also apply for \(n = m+1\).
<sdvs.3> simp
expression: emptyqueue(q) \rightarrow q = nullqueue
true

<sdvs.3> simp
expression: frontqueue(enqueue(nullqueue, u)) = u
true

<sdvs.3> simp
expression: dequeue(enqueue(q, u)) = enqueue(dequeue(q), u)
dequeue(enqueue(q,u)) = enqueue(dequeue(q),u)

<sdvs.3> simp
expression: frontqueue(enqueue(nullqueue, u))
u

<sdvs.3> simp
expression: dequeue(enqueue(nullqueue, u))
nullqueue

<sdvs.3> simp
expression: \neg nullqueue \rightarrow frontqueue(q) = frontqueue(enqueue(q, u))
true

<sdvs.3> simp
expression: \neg emptyqueue(q) \rightarrow dequeue(enqueue(q, u)) = enqueue(dequeue(q), u)
true

Figure 24: Simplification of Queue Expressions

Table 13: Enumeration Type Symbols

<table>
<thead>
<tr>
<th>predicate symbol</th>
<th>simp symbol</th>
<th>description</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ele</td>
<td>ELE</td>
<td>less than or equal</td>
<td>U \times U \rightarrow P</td>
</tr>
<tr>
<td>elt</td>
<td>ELT</td>
<td>less than</td>
<td>U \times U \rightarrow P</td>
</tr>
<tr>
<td>ege</td>
<td>EGE</td>
<td>greater than or equal</td>
<td>U \times U \rightarrow P</td>
</tr>
<tr>
<td>egt</td>
<td>EGT</td>
<td>greater than</td>
<td>U \times U \rightarrow P</td>
</tr>
<tr>
<td>epred</td>
<td>EPRED</td>
<td>predecessor</td>
<td>U \times U \rightarrow P</td>
</tr>
<tr>
<td>esucc</td>
<td>ESUCC</td>
<td>successor</td>
<td>U \times U \rightarrow P</td>
</tr>
</tbody>
</table>

326
<sdvs.4> simp
  expression: ele(a, b) or ele(b, a)
  true

<sdvs.4> simp
  expression: ele(a, b) \&\& ele(b, c) \&\& ele(c, d) \&\& ele(d, a) \rightarrow a = b
  true

<sdvs.4> simp
  expression: elt(a, b) \&\& ele(b, c) \rightarrow a = c
  egt(b,a) \rightarrow ¬(ege(c,b))

<sdvs.4> simp
  expression: elt(a, b) \&\& ele(b, c) \&\& (egt(b, a) \rightarrow ¬ege(c, b)) \rightarrow a = c
  true

<sdvs.4> simp
  expression: elt(char(97), char(98))
  true

Figure 25: Simplification of Enumeration Type Expressions

The simplifier has full deductive capabilities for dealing with enumeration types. See Figure 25 for examples.

9.10 VHDL TIME

The character "t" is used to denote the theory of VHDL time. The command "activate t" activates the solver for the theory of VHDL time; "deactivate t" deactivates this solver.

The language of the theory of VHDL time contains the function and predicate symbols described by Table 14, in which T denotes the domain of VHDL time objects, N the domain of nonnegative integers, and P the domain of propositional (boolean) values.

The interpretations of the VHDL time symbols are fairly self-explanatory.

Function vhdltime takes two nonnegative integers, \( m \) and \( n \), and constructs \( \text{vhdltime}(m,n) \), a VHDL time object.

Function timeglobal takes a VHDL time object \( \text{vhdltime}(m,n) \) and returns \( m \), the global time component.

Function timedelta takes a VHDL time object \( \text{vhdltime}(m,n) \) and returns \( n \), the delta time.
Table 14: VHDL Time Symbols

<table>
<thead>
<tr>
<th>function symbol</th>
<th>simp symbol</th>
<th>description</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>vhdftime</td>
<td>VHDLTIME</td>
<td>time constructor</td>
<td>N × N → T</td>
</tr>
<tr>
<td>timeglobal</td>
<td>TIMEGLOBAL</td>
<td>global time selector</td>
<td>T → N</td>
</tr>
<tr>
<td>timedelta</td>
<td>TIMEDELT</td>
<td>delta time selector</td>
<td>T → N</td>
</tr>
<tr>
<td>timeplus</td>
<td>TIMEPLUS</td>
<td>time addition</td>
<td>T × T → T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>predicate symbol</th>
<th>simp symbol</th>
<th>description</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>timelel</td>
<td>TIMELT</td>
<td>time less than</td>
<td>T × T → P</td>
</tr>
<tr>
<td>timele</td>
<td>TIMELE</td>
<td>time less than or equal</td>
<td>T × T → P</td>
</tr>
<tr>
<td>timegt</td>
<td>TIMEGT</td>
<td>time greater than</td>
<td>T × T → P</td>
</tr>
<tr>
<td>timege</td>
<td>TIMEGE</td>
<td>time greater than or equal</td>
<td>T × T → P</td>
</tr>
</tbody>
</table>

Component.

Function \(\text{timeplus}\) takes two VHDL time objects, \(\text{vhdftime}(m_1, n_1)\) and \(\text{vhdftime}(m_2, n_2)\), and returns a VHDL time object that is their sum, according to the following (idiosyncratic) definition:

- if \(m_2 = 0\), then
  \[\text{timeplus}(\text{vhdftime}(m_1, n_1), \text{vhdftime}(m_2, n_2)) = \text{vhdftime}(m_1, n_1 + n_2)\]

- if \(m_2 \neq 0\), then
  \[\text{timeplus}(\text{vhdftime}(m_1, n_1), \text{vhdftime}(m_2, n_2)) = \text{vhdftime}(m_1 + m_2, 0)\]

Predicates \(\text{timelel}, \text{timele}, \text{timegt}\) and \(\text{timege}\) compare two VHDL time objects according to the lexicographic order in their components.

9.11 VHDL WAVEFORMS

The character “w” is used to denote the theory of VHDL waveforms. The command “activate w” activates the solver for the theory of VHDL waveforms; “deactivate w” deactivates this solver.

The language of the theory of VHDL waveforms contains the function and predicate symbols described by Table 15 in which \(W\) denotes the domain of waveform objects, \(TR\) the domain of transaction objects, \(T\) the domain of time objects, \(N\) the domain of nonnegative integers, \(P\) the domain of propositional (boolean) values, and \(U\) the universal domain (any arbitrary object is in \(U\)).

We describe the interpretations of the VHDL waveforms symbols.
Table 15: VHDL Waveforms Symbols

<table>
<thead>
<tr>
<th>function symbol</th>
<th>simp symbol</th>
<th>description</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>waveform</td>
<td>WAVEFORM</td>
<td>waveform constructor</td>
<td>TR+ → W</td>
</tr>
<tr>
<td>transaction</td>
<td>TRANSACTION</td>
<td>transaction constructor</td>
<td>T × U → TR</td>
</tr>
<tr>
<td>inertial_update</td>
<td>INERTIAL_UPDATE</td>
<td>waveform &quot;inertial&quot; update</td>
<td>W × TR+ → W</td>
</tr>
<tr>
<td>transport_update</td>
<td>TRANSPORT_UPDATE</td>
<td>waveform &quot;transport&quot; update</td>
<td>W × T → U</td>
</tr>
<tr>
<td>val</td>
<td>VAL</td>
<td>driver value</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>predicate symbol</th>
<th>simp symbol</th>
<th>description</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>preemption</td>
<td>PREEMPTION</td>
<td>preemption test for update</td>
<td>W × TR → P</td>
</tr>
</tbody>
</table>

Function *waveform* takes a sequence of transaction objects, \( \text{transaction}_1, \text{transaction}_2, \ldots \), and constructs \( \text{waveform}(\text{transaction}_1, \text{transaction}_2, \ldots) \), a waveform object.

Function *transaction* takes a VHDL time object \( \text{vhdltim}(m,n) \) and a value \( v \), and constructs a transaction object \( \text{transaction}(\text{vhdltim}(m,n), v) \).

Function *inertial_update* (respectively *transport_update*) takes a waveform object and a sequence of transaction objects, and returns the updated waveform according to the *VHDL Language Reference Manual*’s algorithm for updating projected output waveforms, assuming inertial (respectively transport) delays (Section 8.3.1 of [24]).

Function *val* takes a waveform object and a VHDL time object, and returns the value of that transaction in the waveform whose time is nearest to but not greater than the time object.

Predicate *preemption* takes a waveform and a transaction, and determines whether that transaction will preempt (replace) prior transactions on the waveform as a result of the VHDL algorithm for inertial driver update.
10  SDVS EXERCISES

Exercise 1. Create a state delta expressing the computation

\[ x := x + 1 \]

Create a state delta expressing the claim that if \( x \) has initial value 1, then after the above computation \( x \) will have the value 2. Prove it.

Exercise 2. Create a state delta expressing the computation

\[ x := x + 1; \]
\[ x := x + x \]

Create a state delta expressing the claim that if \( x \) has initial value 1, then after the above computation \( x \) will have the value 4. Prove it.

Exercise 3. Create a state delta expressing the computation

\[ x := x + 1; \]
\[ y := x + y \]

Create a state delta expressing the claim that if \( x \) and \( y \) are disjoint places having initial value 1, then after the above computation, \( y \) will have the value 3. Prove it.

Exercise 4. Go into the editor and look at testproofs/manual/isps/chost.isp. Go back to SDVS and isps it (giving the argument testproofs/manual/isps/chost.isp). ppsd isps it. Create the following state delta (calling it s10):

[pre: isps(chost.isp), |x| = 1, machinex\upc = machinex\started
  comod: ()
  mod: all
  post: |#x| = 4]

Type prove <CR> s10. Type "*" after SDVS responds with "proof[]:"

Now let’s do it again in slow motion. Type init <CR>. Hit <CR> after SDVS responds with "proof[]". Now type prove <CR>, s10 <CR>, and again <CR> after SDVS responds with "proof[]".

1. Type usable <CR>
2. Type ppeq <CR> .machinex\upc
3. Type simp <CR> .x
4. Type simp <CR> |.x|

331
5. Type `apply <CR><CR>`

6. Repeat steps 1 through 4

7. Type `whynotapply <CR> u <CR> 2 <CR>`

8. Type `apply <CR> <CR>`

9. Type `usable <CR>`

**Exercise 5.** Go over the Ada example on page 173 of this manual.

**Exercise 6.** Write a state delta expressing the computation

\[ x := x + 1; \]

\[ \text{if } x = 2 \text{ then } x := x - 1 \text{ else } x := 1 \]

Write a state delta expressing the claim that if the above fragment is executed, then \( x \) will eventually get the value 1.

**Exercise 7.** Prove

\[ \text{[sd pre: } x = 1 \]
\[ \quad \text{[sd pre: } TRUE \]
\[ \quad \text{comod: ()} \]
\[ \quad \text{mod: } x \]
\[ \quad \text{post: } #x = .x + 1] \]
\[ \quad \text{comod: ()} \]
\[ \quad \text{mod: } x \]
\[ \quad \text{post: } #x = 5] \]

by execution and by induction.

**Exercise 8.** Prove

\[ \text{[sd pre: } x = 1 \]
\[ \quad \text{[sd pre: } TRUE \]
\[ \quad \text{comod: ()} \]
\[ \quad \text{mod: } x \]
\[ \quad \text{post: } #x > .x] \]
\[ \quad \text{comod: ()} \]
\[ \quad \text{mod: } x \]
\[ \quad \text{post: } #x \geq 1000] \]

**Exercise 9.** Show that the following `simp` to `true:`
1. \( a = b \land b = c \rightarrow a = c \)

2. \( f(f(f(a))) = a \land f(f(f(f(a)))) = a \rightarrow f(a) = a \)

3. \( (x \lt 4 + y \land x \gt 3 \rightarrow y \leq 1) \rightarrow (x \lt 4 + y \rightarrow x \leq 3) \)

4. \( x = 9(5) \rightarrow x < 3 : 2 \geq 2(2) \)

**Exercise 10.** Type \texttt{readaxioms} <CR> \texttt{axioms/bitstring.axioms}

\texttt{simp} \( (x\{7 : 0\} + y\{5 : 0\})\{4 : 1\} = (x + y)\{4 : 1\} \)

Create a static state delta representing the truth of the above equality.

Prove it using the axiom \texttt{ussub\usplus\ussub}.

**Exercise 11.** Type \texttt{read} <CR> \texttt{lemmas/lemmas.lemmas}

Prettyprint (\texttt{pp}) the lemma \texttt{carrylemma} and its \texttt{lemmaproof carrylemma}

Prove the state delta \texttt{carry.sd}:

\[
[\text{sd pre: covering(all, a, b, c), a = 1(1), lh(.b) = 1, c = 1(1)}
\text{ comod: ()}
\text{ mod: ()}
\text{ post: ((a + .b) + .c)\{1 : 1\} = 1(1)}]
\]

by using \texttt{rewritebylemma} on the term \(((a + .b) + .c)\{1 : 1\}) and the lemma \texttt{carrylemma}.

**Exercise 12.** Write a state delta representing the static claim that

\( 0 \leq i \land i \leq 8 \land a\{9 : i\} = b\{9 - i : 0\} \rightarrow a\{9 : 8\} = b\{9 - i : 8 - i\} \)

Activate \texttt{b3} and use \texttt{notice} \( a\{9 : 8\} = a\{9 : i\}\{9 - i : 8 - i\}) to prove the above state delta.

**Exercise 13.** Write the state delta equivalent to the program fragment

\[
\text{if } x = \ 0 \ \text{then } y := 1 \ \text{else } z := 1
\]

Write the state delta representing the claim (and prove) that after execution of the above program fragment some place will have the value 1. (Use quantification.)

Using the following Ada program (on the file \texttt{testproofs/manual/ada/distribute.ada}):

\[
\begin{align*}
\text{with text.io; use text.io;}
\text{with integer.io; use integer.io;}
\text{procedure dist is}
\quad x, y, z : integer;
\text{begin}
\end{align*}
\]

333
get(x);
get(y);
get(z);
put((y+z)*x);
end;

prove the following state deltas:

**Exercise 14. dist0.thm**

[\[ \text{sd pre: (} \text{ada(distribute.ada)} \text{)} \text{ mod: (} \text{all} \text{)} \text{ post: (} \text{terminated(dist)} \text{)} \text{)]}

**Exercise 15. dist1.thm**

[\[ \text{sd pre: (} \text{ada(distribute.ada)} \text{)}
mod: (all)
post: (\#stdout[1]
terminated(dist))\]

**Exercise 16. dist2.thm**

[\[ \text{sd pre: (} \text{ada(distribute.ada)} \text{)}
mod: (all)
post: (\exists a(\exists b(\exists c(\#stdout[1] = (.b + .c) \ast .a))))\]
References


335


336


Comprehensive SDVS Bibliography


ration, 1989.


Index

* 18
*ada-tests* 170
*isp-tests* 147
*negation-tests* 111
*quant-tests* 237
*vhdl-tests* 211
Ada characters 325
Ada 167
Adalemma 180
Adawindow 167
Command-* 18
Command-activate 46, 70
Command-adasubprogeny 30, 180
Command-adatr 23, 171
Command-applicable 30
Command-apply 23, 47
Command-applydecls 23, 171, 172, 180
Command-applydeclsandstats 23
Command-automatedatatype 23
Command-axiommnames 30
Command-bye 34
Command-cases 23, 49, 180
Command-cd 34
Command-clearedate 23
Command-close 23, 46
Command-comment 24
Command-compose 34, 131
Command-consider 24, 87
Command-continue 34, 90, 95
Command-creadalemma 24, 180
Command-createaxiom 34
Command-createdatatype 34, 265
Command-createklaxiom 34
Command-createformula 34, 127
Command-createformulas 35, 127
Command-createlemma 35, 81
Command-createmacro 35
Command-createproof 35, 137
Command-createsd 18, 35, 41
Command-createvhdllemma 24, 235
Command-datatypeaxiom 35
Command-datatypes 30
Command-date 98
Command-deactivate 24, 46
Command-deautomatedatatype 35
Command-decls 30, 105, 109
Command-defer 24, 90
Command-delete 35
Command-deleteaxioms 35, 250
Command-deletelemmas 36
Command-dump 36
Command-dump-proof 18, 138
Command-ename 29, 239
Command-eval 30
Command-execute 24, 47
Command-exit 36
Command-finduct 24, 54
Command-flags 30, 95, 109
Command-go 25, 172
Command-goals 30
Command-help 22, 30
Command-hidepropagations 25
Command-implementation 36, 121, 124, 162
Command-induct 25, 54, 180
Command-init 18, 36, 46
Command-instantiate 29, 240
Command-interpret 25
Command-invokedalemma 25, 180
Command-invokelvhdllemma 25, 235
Command-ips 18, 25, 147
Command-isps 25, 164
Command-fasterror 31, 141
Command-lemmanames 31
Command-let 26, 55, 105
Command-letsd 26, 105, 180
Command-linearize 26, 116, 271
Command-ls 36
Command-mcases 26, 51, 180
Command-mpisps 26, 123, 147, 162
Command-mptr 26
Command-natinduct 26, 120
Command-negate 26, 111, 284
Command-next 31, 98
Command-notice 26, 65, 87
Command-noticeconcurrentsd 26, 280
Command-noticeinvariant 26, 269, 270
Command-nsd 31, 100
Command-omegainduct 27, 287
Command-parse 27
Command-placevalue 31, 99
Command-pop 36, 93
Command-pp 31
Command-ppeq 32, 100
Command-ppl 32, 99
Command-ppsd 18, 32
Command-proofcommands 33
Command-proofstate 17, 33
Command-prove 18, 27, 46
Command-proveadalemma 27, 180
Command-provebyaxiom 27, 66
Command-provebyeklaxiom 29, 250
Command-provebygeneralization 29, 243
Command-provebyinstantiation 29, 244
Command-provebylemma 27, 81
Command-provebymakeboundedquantifier 30, 248
Command-provelemma 27, 46, 81
Command-provevhdllemma 27, 235
Command-ps 18, 33
Command-pwd 36
Command-quantification 27, 46, 237
Command-quit 18, 36, 46
Command-range 33
Command-read 18, 27, 81, 137
Command-readaxioms 28, 250
Command-readlemmas 28
Command-restorepropagations 28
Command-rewritebyaxiom 28, 70
Command-rewritebylemma 28
Command-run-test-proofs 8, 36, 111, 147, 170, 211, 237
Command-selecti 28
Command-setflag 28, 96, 109
Command-shell 36
Command-simp 33
Command-skip 36
Command-solvers 33
Command-step 37, 90
Command-stop 28, 90, 95, 98
Command-subcases 28, 53, 180
Command-tr 28
Command-until 28, 48
Command-usable 33
Command-usablequantifiers 33, 238
Command-usablesds 33, 44
Command-usabletrs 33
Command-values 33
Command-vhdl-processes 33, 223
Command-vhdl-signals 223
Command-vhdlsubprogenv 33, 236
Command-vhdttime 33, 223
Command-vhdltr 28, 211
Command-whynotapply 17, 33, 101
Command-whynotgoal 17, 34, 104
Command-write 18, 37, 81, 137
Command-writeaxioms 37
Command-writelemmas 37, 81
Command-vhdl-signals 33
EKL 237
GCD 147
ISPS 3, 145
SDVS 1
TR 145, 167, 211
VHDL time 327
VHDL waveforms 328
VHDL 211
Vhdllemma 235
abbreviationlevel 39
abs 135, 299
absolute value 73, 304
acceptfileproofs 39, 96
acone 135, 312
activate 46, 70
activating solvers 88
adasubprogenv 30, 180
adatr 23, 171
all 14, 136, 316
alldisjoint 14, 316
allocate 108, 109
and 135, 296
applicable 12, 30
apply 23, 47
applydecls 23, 171, 172, 180
weaknext_tr 40, 98
whynotapply 17, 33, 101
whynotgoal 17, 34, 104
window 167
write 18, 37, 81, 137
writeaxioms 37, 81
zeros 135, 308