JASON M. GILREATH
Mechanical Engineer

DAVID FILSINGER
Mechanical Engineer

Design, Fabrication and Testing of the
Micom-ISU
Shipping and Storage Container

DSN: 787-2638
Commercial: (937) 257-2638

AFMC LSO/LOP
AIR FORCE PACKAGING TECHNOLOGY AND ENGINEERING FACILITY
5215 THURLOW STREET
WRIGHT-PATTERSON AFB, OH 45433-5540
June 1997
AFPTEF PROJECT NO.: 96-P-105
TITLE: MICOM-ISU Shipping Container

ABSTRACT

This project was initiated to design, fabricate, test and provide a production drawing package for the MICOM-ISU container. The objective of the test series was to qualify the container for production release by AFMC LSO/LOP. The container is designed to hold one of three items: the Integrated Sight Unit (ISU), the ISU with BELRF, or the IBAS Target Acquisition System (TAS).

The container utilizes standard AFPTEF extrusion designs and is completely designed using PTC's Pro/Engineer three dimensional solids modeling software. This is an unpainted, welded, controlled breathing, aluminum container. It is a low base design with an internal cradle system that is mounted to the base via four stainless steel cable or flex mounts. Some of the design features are humidity indicator, pressure relief valve, desiccant port, stacking capability, tiedown rings, quick release latches, air filling valve, four way forklift entry and an integral base-skid design.

The test plan referenced MIL-STD-648A, FED-STD-101C and MIL-STD-810E. The tests were performed both at the AFPTEF and Redstone Technical Test Center (RTTC), Redstone Arsenal, Alabama.

PROJECT ENGINEER MAN-HOURS: 1005
PREPARED BY: JASON M. GILREATH
Mechanical Engineer

TESTED BY: DAVID FILSINGER
Mechanical Engineer

REVIEWED BY: TED HINDS
Chief, Container Design and Engineering
AFPTEF

REVIEWED BY: LARRY A. WOOD
Supervisor, Materials Engineering
AFPTEF

APPROVED BY: LESLIE K. CLARKE, III
Chief, AF Packaging Technology and Engineering Facility
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>ii</td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>Requirements</td>
<td>1</td>
</tr>
<tr>
<td>Development</td>
<td></td>
</tr>
<tr>
<td>Design of the Container</td>
<td>1</td>
</tr>
<tr>
<td>Testing</td>
<td></td>
</tr>
<tr>
<td>Container Description</td>
<td>2</td>
</tr>
<tr>
<td>Test Specimen</td>
<td>2</td>
</tr>
<tr>
<td>Test Load</td>
<td>2</td>
</tr>
<tr>
<td>Test Procedures</td>
<td>2</td>
</tr>
<tr>
<td>Test Sequences</td>
<td>3</td>
</tr>
<tr>
<td>Container Face Identification</td>
<td></td>
</tr>
<tr>
<td>Instrumentation & Equipment Used</td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>Test Conclusions</td>
<td>7</td>
</tr>
<tr>
<td>Project Conclusions</td>
<td>7</td>
</tr>
<tr>
<td>APPENDICES</td>
<td></td>
</tr>
<tr>
<td>Appendix 1: Test Plan</td>
<td>8</td>
</tr>
<tr>
<td>Appendix 2: Test Data</td>
<td>13</td>
</tr>
<tr>
<td>Appendix 3: Test Waveforms</td>
<td>15</td>
</tr>
<tr>
<td>Appendix 4: Photographs</td>
<td>29</td>
</tr>
<tr>
<td>Appendix 5: Statement of Work</td>
<td>34</td>
</tr>
<tr>
<td>Appendix 6: Distribution List</td>
<td>37</td>
</tr>
<tr>
<td>Appendix 7: Report Documentation</td>
<td>42</td>
</tr>
</tbody>
</table>
INTRODUCTION:

BACKGROUND:
This project was initiated to design, fabricate, test and provide a production drawing package for the MICOM-ISU container for the US Army Missile Command (MICOM) CCAWS Project Office (SFAE-MSL-CC-LO) located at Redstone Arsenal, Alabama. The container is designed to hold one of three items: the Integrated Sight Unit (ISU) (see Figure 1), the ISU with BELRF, or the IBAS Target Acquisition System (TAS). The ISU is an item that has been in the field for many years. The BELRF is a new attachment for the ISU, and the TAS is a completely new item designed to replace the ISU.

The container utilizes standard AFPTEF extrusion designs and is completely designed using Parametric Technology Corporation’s (PTC) Pro/Engineer three dimensional solids modeling software. This is an unpainted, welded, controlled breathing, aluminum container. It is a low base design with an internal cradle system that is mounted to the base via four stainless steel cable or flex mounts (see Figure 2). Some of the design features are humidity indicator, pressure relief valve, desiccant port, stacking capability, tiedown rings, quick release latches, air filling valve, four way forklift entry and an integral base-skid design.

The present container for the ISU is a round steel drum-type engine container. Justification by the program office for this project was a lighter, more economical container with less maintenance requirements and better protection for the items.

REQUIREMENTS:
AFPTEF in conjunction with SFAE-MSL-CC-LO developed a Statement of Work (SOW) for the design of the container. This was a tailoring of SAE ARP1967. See Appendix 5 for Statement of Work. The vibration test requirements were specified in the Critical Item Development Specification for the IBAS TAS (MIS-50318, CAGE Code Ident 18876)

DEVELOPMENT:

DESIGN OF THE CONTAINER:
This is a welded aluminum, controlled breathing, reusable container (see Figure 3). The base is a one piece skid/double walled base extrusion with integral forklift openings, humidity indicator, pressure relief valve, air filling valve and desiccant port for easy replacement of desiccant (the desiccant controls dehumidification). A silicone rubber gasket and quick release latches create a seal at the base/lid interface. The lid is a single sheet of aluminum fit into channels in the corner post and lid extrusions. Stacking pads on the lid provide for stacking of like containers up to 16 feet high. The container is unpainted which reduces the containers original cost, environmental hazardous waste, and the life-cycle cost of the container.

The interior cradle of the container is an aluminum plate and channel structure. Stainless steel pins locate the item in the cradle and steel bar clamps secure the item (see Figure 4). A second item, named the Commander’s Relay, is included with the ISU and ISU with BELRF. It is
mounted in the cradle on a contoured saddle and clamped in place by two nylon webbing straps (see Figure 5).

TESTING:

CONTAINER DESCRIPTION

The ISU container is a sealed, reusable, aluminum container engineered for physical and environmental protection for selected ISU assemblies during transportation and storage. Each container consists of a cover and base equipped with the special features listed below.

<table>
<thead>
<tr>
<th>ISU CONTAINER FEATURES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESSURE RELIEF VALVE</td>
<td>1.5 PSI</td>
</tr>
<tr>
<td>HUMIDITY INDICATOR</td>
<td>YES</td>
</tr>
<tr>
<td>DESICCANT PORT</td>
<td>YES</td>
</tr>
<tr>
<td>FORKLIFTABLE</td>
<td>YES</td>
</tr>
<tr>
<td>COVER LATCHES</td>
<td>8</td>
</tr>
<tr>
<td>COVER LIFT HANDLES</td>
<td>4</td>
</tr>
<tr>
<td>COVER LIFT RINGS</td>
<td>NONE</td>
</tr>
<tr>
<td>BASE LIFT HANDLES</td>
<td>NONE</td>
</tr>
<tr>
<td>BASE TIE DOWN RINGS</td>
<td>4</td>
</tr>
</tbody>
</table>

TEST SPECIMEN

The test specimen was a container fabricated at AFPTAF in accordance with the container drawing package for this project (13566198 - 13566242, CAGE code ident 18876).

TEST LOAD

The test load was an unserviceable ISU on loan from the item manager at Redstone Arsenal. Some of the interior components of the ISU were replaced with lead and steel weights to simulate the weight of the new IBAS TAS item.

TEST PROCEDURES

The ISU container was tested in accordance with the Air Force Packaging Technology & Engineering Facility (AFPTAF) standard long life container test plan. The test plan referenced MIL-STD-648A, FED-STD-101C and MIL-STD-810E. See Appendix I for test plan.

The test methods specified in the container test plan constitute the procedure for performing the tests on that container. The performance criteria for evaluation of container acceptability was specified at 30 G's maximum and an initial and final leak rate of 0.0035 kg/cm²/hr (0.05 psi/hr) at 0.1 kg/cm² (1.5 psi). These tests are commonly applied to special shipping containers providing rough handling protection to sensitive items. The tests were performed at AFPTAF,
Container Face Identification

The correlation between numbered and designated container sides was as follows:

<table>
<thead>
<tr>
<th>NUMBERED SIDE</th>
<th>DESIGNATED SIDE ISU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Top</td>
</tr>
<tr>
<td>2</td>
<td>Forward (Desiccant Port)</td>
</tr>
<tr>
<td>3</td>
<td>Bottom</td>
</tr>
<tr>
<td>4</td>
<td>Aft</td>
</tr>
<tr>
<td>5</td>
<td>Left</td>
</tr>
<tr>
<td>6</td>
<td>Right</td>
</tr>
</tbody>
</table>

Instrumentation

The test load was instrumented with a piezoelectric triaxial accelerometer mounted to the top of the extra weight added internally to the load. Accelerometer positive axis orientations were as follows:

- X Axis - Directed through container Side 4 (Longitudinal motion).
- Y Axis - Directed through container Side 6 (Transverse motion).
- Z Axis - Directed through container Side 1 (Vertical motion).

Since random vibration was performed at Redstone Arsenal two sets of instrumentation were used. The following is a list of AFPTF instrumentation.

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>MANUFACTURER</th>
<th>MODEL</th>
<th>SN</th>
<th>CAL. DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shock Amplifier</td>
<td>Endevco</td>
<td>2740BT</td>
<td>FY49</td>
<td>Jan 97</td>
</tr>
<tr>
<td>Shock Amplifier</td>
<td>Endevco</td>
<td>2740BT</td>
<td>FW23</td>
<td>Jan 97</td>
</tr>
<tr>
<td>Shock Amplifier</td>
<td>Endevco</td>
<td>2740BT</td>
<td>FY07</td>
<td>Jan 97</td>
</tr>
<tr>
<td>Item Accelerometer</td>
<td>Endevco</td>
<td>2223D</td>
<td>F1.34</td>
<td>Dec 95</td>
</tr>
<tr>
<td>Data Acquisition</td>
<td>GHI Systems</td>
<td>CAT</td>
<td>Ver. 2.11a</td>
<td>N/A</td>
</tr>
</tbody>
</table>
LEAK TESTING - Test Sequences 1 and 10
The following equipment was used for leak testing:

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>MANUFACTURER</th>
<th>MODEL</th>
<th>SN</th>
<th>CAL. DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Manometer</td>
<td>Yokogawa</td>
<td>2655-22</td>
<td>83D/6001</td>
<td>Jan 95</td>
</tr>
<tr>
<td>Data Acquisition Board</td>
<td>Data Translations</td>
<td>2601A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Data Acq. Software</td>
<td>Laboratory Tech.</td>
<td>Labtech Notebook</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Vacuum/Pressure Pump</td>
<td>Thomas Industries</td>
<td>TA-0040-V</td>
<td>21663</td>
<td>N/A</td>
</tr>
</tbody>
</table>

TEST SEQUENCE 1 - FED-STD-101C
Method 5009.3, Leaks in Containers, Pressure Test.
The container pressure relief valve in the desiccant port was removed and the relief valve hole
used for attachment of the digital manometer and vacuum/pressure pump lines, and an internal
temperature probe. The container was closed and sealed. The leak tests were conducted in
accordance with FED-STD-101C, Method 5009.3, at ambient temperature and pressure. The
pneumatic pressure leak technique was used and the container was pressurized to 0.1 kg/cm2 (1.5
psi). A leak rate of less than 0.0035 kg/cm2/hr (0.05 psi/hr) sustained for a period of at least one
half hour was required to pass the test.

ROUGH HANDLING TESTING - Test sequences 2 through 5.
The following equipment was used for the rough handling tests:

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>MANUFACTURER</th>
<th>MODEL</th>
<th>SN</th>
<th>CAL. DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Chamber</td>
<td>Tenney Eng.</td>
<td>12791</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Pendulum Impact</td>
<td>AFPEF</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

TEST SEQUENCE 2 - FED-STD-101C
Method 5005.1 Corners-Drop (Rotational) Test
Method 5008.1 Edges-Drop (Rotational) Test
The container was conditioned at 60°C. The cornerwise-drop tests were conducted in accordance
with FED-STD-101C, Method 5005.1 and the edgewise drops in accordance with Method
5008.1. The required Level A drop height was 812.8 mm (32 in). The tip over balance point was
used as this drop height could not be reached. The container was dropped onto a one-inch thick
steel plate inside the environmental chamber. One drop was made on each of two opposite
corners and two adjacent sides.

TEST SEQUENCE 3 - FED-STD-101C
Method 5012, Pendulum-Impact Test
The container was conditioned at 74°C. The pendulum-impact tests were conducted in
accordance with FED-STD-101C, Method 5012. The required container impact velocity of 2.1
m/sec attained by raising the pendulum 22.5 cm. The container was removed from the
conditioning chamber and moved quickly to the pendulum for two impacts. One impact was
made on each of two adjacent sides.
TEST SEQUENCE 4 - Test Sequence 2 (Rotational Drop) was repeated at low temperature. The container was conditioned at -29°C. One drop was made on each of two opposite corners and two adjacent edges not used in Sequence 2.

TEST SEQUENCE 5 - Test Sequence 3 (Pendulum Impact) was repeated at low temperature. The container was conditioned at -54°C. One impact was made on each of two adjacent sides not used in Sequence 3.

STANDARD VIBRATION TESTING - Test sequences 6 and 7. These test sequences were performed at AFPTF using the following equipment:

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>MANUFACTURER</th>
<th>MODEL</th>
<th>SN</th>
<th>CAL. DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servohydraulic Vibration</td>
<td>Team Corp.</td>
<td>Special</td>
<td>1988</td>
<td>N/A</td>
</tr>
<tr>
<td>Machine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedback Hardware Controller</td>
<td>Data Physics Corp.</td>
<td>DP540</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Controller</td>
<td>Data Physics Corp.</td>
<td>Ver. 1 22</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Controller</td>
<td></td>
<td>7 CH.DWL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedback Amplifier</td>
<td>Endeveco</td>
<td>2740HT</td>
<td>FW26</td>
<td>Dec 96</td>
</tr>
</tbody>
</table>

TEST SEQUENCE 6 - FED-STD-101C Method 5019.1, Vibration (Repetitive Shock Test)
A sheet of 3/4-inch plywood was bolted to the top of the vibration table, and the container was placed on the plywood. Restraints were used to prevent the container from sliding off the table. The container was allowed about 1/2-inch unrestricted movement in any direction in the horizontal table plane. The test was conducted in accordance with FED-STD-101C, Method 5019.1, at ambient temperature. Using a constant one inch double amplitude table motion the table frequency was increased from 3.5 Hertz (Hz) until the container left the table surface (approximately 4.5 Hz). When a 1/16 inch thick metal bar could be inserted between table and the container the frequency sweep was halted and the container was allowed to bounce for a 2 hour period.

TEST SEQUENCE 7 - FED-STD-101C Paragraph 5.3.2, Resonance Strength
The test plan did not require this test. However, the resonant frequency and associated transmissibility were of interest. Therefore, the resonance strength portion of the test was run. The container was rigidly attached to the vibration platform. The test was conducted in accordance with MIL-STD-648A, Paragraph 5.3.2, at ambient temperature. A sinusoidal vibration excitation was applied in the vertical direction and cyclically swept for 7.5 minutes at 2 minutes per octave to locate the resonant frequency. Input vibration from 5 to 12.5 Hz was at 0.125 inch double amplitude. Input vibration from 12.5 to 50.0 Hz was at 1.0 G (0 to peak). Transmissibility values during the frequency sweeps were calculated and recorded using the Data Physics software (Appendix 2 for test data).
RANDOM VIBRATION TESTING - Test sequences 8 through 9
The following test sequences were performed at the Army Redstone Arsenal test facility because AFPTEF does not have the necessary equipment to perform the required horizontal random vibration or vibration at temperature extremes. Except for the AFPTEF triaxial item accelerometer the instrumentation and equipment were furnished by Redstone Arsenal. A total of 6 test sequences were run: Two test types according to tables 514.4-AI (32 minutes) and All (40 minutes), on each of three mutually perpendicular axes (vertical, longitudinal, and transverse) at a temperature extreme of 71°C. For the vertical tests the container bottom was fastened rigidly to a vibration table surface oriented to vibrate vertically. For the longitudinal and transverse tests the container bottom was placed on a slip table and the appropriate side fastened rigidly to a vibration table oriented to vibrate horizontally (see Figure 6). Full test descriptions, data and conclusions are available in Special Report SR-RD-TE-97-42 from Redstone Technical Test Center, STERT-TE-P, attn: Leah Green, Redstone Arsenal, Alabama 35898.

TEST SEQUENCE 8 - MIL-STD-810E
Method 514.4, Procedure 1, Condition I-3.3.1, in accordance with tables AI and All Mission/Field Vibration
The container’s vertical axis was randomly vibrated at a temperature of 71°C for 32 minutes in accordance with Table 514.4-AI and for 40 minutes in accordance with Table 514.4-All.

TEST SEQUENCE 9 - MIL-STD-810E
Method 514.4, Procedure 1, Condition I-3.3.1, in accordance with tables AI and All Mission/Field Vibration
The container’s longitudinal axis was randomly vibrated at a temperature of 71°C for 32 minutes in accordance with Table 514.4-AI and for 40 minutes in accordance with Table 514.4-All.

TEST SEQUENCE 10 - Test Sequence 1 (Leaks in Containers, Pressure Test) was repeated to determine if previous test sequences had caused any container leaks.

Test Sequences 1 and 10 - Container Leak Test
The container passed both the initial and final leak tests with a rate less than the maximum allowed leak rate of 0.0035 kg/cm²/hr (0.05 psi/hr).

RESULTS:

Test Sequences 2 and 4 - High and Low Temperature Rotational Drop Tests
Impact shock values (Gs) for all drops were below the specified fragility level (30 Gs). No damage to the load suspension system or simulated item was visible after any of the tests. See Appendix 2.

Test Sequences 3 and 5 - Pendulum Impact Tests
Impact shock values (Gs) for all impacts were below the specified fragility level (30 Gs). No damage to the load suspension system, simulated item or container was visible after the tests. See Appendix 2.
Test Sequence 6 - Repetitive Vibration Shock Test
No damage was visible to either the container, the load suspension system or the modified test load at the end of the 2 hours of testing.

Test Sequence 7 - Resonance Strength Test
The initial resonant frequency of the container system was 14.9 Hz with a transmissibility of 3.1.

Test Sequences 8 through 9 - Random Vibration
No damage was visible to either the container, the load suspension system or the modified test load as a result of these test sequences.

TEST CONCLUSIONS

Vibration and leak test results met the quantitative requirements of the test plan for all the container. No damage occurred to the container or test load. Therefore, this container is considered to have met all test requirements.

PROJECT CONCLUSIONS:

Elastomeric shock mounts were tested for this application, but due to the weight of the suspended item and the severity of the vibration tests, the steel flex mounts were chosen. Also, due to the severe vibration requirements, the support structure for the cradle was extraordinarily strengthened (see Figures 7 and 8). These design requirements became evident following several failures during the vibration testing at RTTC.
APPENDIX 1

TEST PLAN
<table>
<thead>
<tr>
<th>TEST NO.</th>
<th>REF STD/SPEC AND TEST METHOD OR PROCEDURE NO'S</th>
<th>TEST TITLE AND PARAMETERS</th>
<th>CONTAINER ORIENTATION</th>
<th>INSTRUMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>EXAMINATION OF PRODUCT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIL-C-4150 Para. 4.5.3 Table II</td>
<td>The container shall be examined to determine conformance with material, workmanship, and requirements as specified in Table II of MIL-C-4150.</td>
<td>Ambient temp.</td>
<td>Visual Inspection (VI)</td>
</tr>
<tr>
<td>2.</td>
<td>QUALITY CONFORMANCE TESTS, WEIGHT TEST</td>
<td>Container tare weight shall not be greater than 150 kg. Gross weight to be 260 kg.</td>
<td>Ambient Temp.</td>
<td>Scale</td>
</tr>
<tr>
<td></td>
<td>MIL-C-4150 Para. 4.5.4 Para. 4.6.3.6 Performance Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Reusability MIL-C-4150</td>
<td>The case shall be opened and closed five times to demonstrate reusability without degradation. Ease of operation and freedom from interference shall constitute acceptance.</td>
<td>Ambient Temp.</td>
<td>VI</td>
</tr>
<tr>
<td>4.</td>
<td>LEAK TEST FED-STD-101 Method 5009.2 (4.7.2)</td>
<td>Pneumatic pressure at 10.34 kPa. 0.3 Pa/hr leakage allowed after temperature stabilization. Test duration to be a minimum of 30 minutes.</td>
<td>Test performed in ambient condition from compressed air supply.</td>
<td>Pressure Transducer or Water Manometer</td>
</tr>
</tbody>
</table>
AIR FORCE PACKAGING TECHNOLOGY & ENGINEERING FACILITY (Container Test Plan)

<table>
<thead>
<tr>
<th>CONTAINER SIZE (L x W x D) (INCHES)</th>
<th>WEIGHT (lbs)</th>
<th>CUBE (cu. ft)</th>
<th>QUANTITY</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>785.0 x 785 x 942.8</td>
<td>178.2</td>
<td>0.8</td>
<td>1</td>
<td>30 May 96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM NAME</th>
<th>MANUFACTURER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Sight Unit (ISU)</td>
<td>AFPTEF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTAINER NAME</th>
<th>CONTAINER COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISU/TAS Container</td>
<td></td>
</tr>
</tbody>
</table>

PACK DESCRIPTION: Aluminum Container, Test Load of ISU or simulated load with identical center of gravity and tie down points.

CONDITIONING:

As noted below

TESTS AND TEST SPECIFICATIONS

<table>
<thead>
<tr>
<th>TEST NO.</th>
<th>TEST TITLE AND PARAMETERS</th>
<th>CONTAINER ORIENTATION</th>
<th>INSTRUMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Vibration Test</td>
<td></td>
<td>71°C</td>
<td>(VI)</td>
</tr>
<tr>
<td>a. MIL-STD-810E Method 514.4 Procedure 1 Condition 1-3.3.1</td>
<td>Mission/Field vibration according to Tables 514.4-AI through 514.4-AIII and Figures 514.4-4 through 514.4-5. Test duration shall be as follows: Table 514.4-AI 32 minutes per axis Table 514.4-AII 40 minutes per axis</td>
<td>Accelerometer located in back, bottom, left hand side of case. Normal shipping position</td>
<td>Tri-axial accelerometer to measure G-forces</td>
</tr>
<tr>
<td>b. FED-STD-101 Method 5019</td>
<td>Test for not less than 2 hours at 3 to 5 Hz and 25.4 mm double amplitude. A 3.25 mm feeler gauge shall be able to move freely under the container during the downstroke of the cycle.</td>
<td>Ambient temp. Accelerometer located in back, bottom, left hand side of case. Normal shipping position</td>
<td>(VI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tri-axial accelerometer to measure G-forces</td>
</tr>
</tbody>
</table>

COMMENTS:

PREPARED BY: Jason Gilreath, Mechanical Engineer

APPROVED BY: Ted Hinds, Chief, Container Engineering & Design Branch
AIR FORCE PACKAGING TECHNOLOGY & ENGINEERING FACILITY (Container Test Plan)

<table>
<thead>
<tr>
<th>CONTAINER SIZE (L x W x D) (INCHES)</th>
<th>WEIGHT (Kgs)</th>
<th>CUBE (CU. FT)</th>
<th>QUANTITY</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>75.0 x 103 x 94.2</td>
<td>178.2</td>
<td>0.8</td>
<td>1</td>
<td>30 May 98</td>
</tr>
</tbody>
</table>

CONTAINER NAME: ISU/TAS Container

MANUFACTURER: AFPTEF

PACK DESCRIPTION: Aluminum Container. Test Load of ISU or simulated load with identical center of gravity and tie down points.

CONDITIONING: As noted below

TEST NO. 6. ROUGH HANDLING TESTS (High temperature 60 deg C.)

<table>
<thead>
<tr>
<th>REF STD/PROCEDURE AND TEST METHOD/PROCEDURE NO'S</th>
<th>TEST TITLE AND PARAMETERS</th>
<th>CONTAINER ORIENTATION</th>
<th>INSTRUMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. FED-STD-101, Method 5005.1, Level A</td>
<td>Cornerwise-drop (rotational) test. Condition to 60deg C (+5.6/-0) for not less than 24 hours. Drop height 812.8 mm.</td>
<td>Drop on diagonally opposite bottom corners. Total of 2 drops.</td>
<td>Tri-axial accelerometer to measure G-forces</td>
</tr>
<tr>
<td>b. FED-STD-101, Method 5008.1, Level A</td>
<td>Edgewise-drop (rotational) test. Condition to 60deg C (+5.6/-0) for not less than 24 hours. Drop height 812.8 mm.</td>
<td>Drop on adjacent sides. Total of 2 drops.</td>
<td>Tri-axial accelerometer to measure G-forces</td>
</tr>
<tr>
<td>c. FED-STD-101, Method 5012</td>
<td>Pendulum Impact test Condition at 73.9 C for not less than 24 hours. Impact velocity 2.13 m/sec.</td>
<td>One impact on a side and an adjacent end. Total of two impacts.</td>
<td>Tri-axial accelerometer to measure G-forces</td>
</tr>
</tbody>
</table>

COMMENTS:

PREPARED BY: Jason Gilreath, Mechanical Engineer

APPROVED BY: Ted Hinds, Chief, Container Engineering & Design Branch
<table>
<thead>
<tr>
<th>TEST NO.</th>
<th>REF STD/SPEC AND TEST METHOD OR PROCEDURE NO.</th>
<th>TEST TITLE AND PARAMETERS</th>
<th>CONTAINER ORIENTATION</th>
<th>INSTRUMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td>FED-STD-101 Method 5005.1 Level A</td>
<td>Cornerwise-drop (rotational) test. Condition to -28.8°C (+0/-5.6) for not less than 24 hours. Drop height 812.8 mm.</td>
<td>Drop on diagonally opposite bottom corners. Total of 2 drops. Drop on corners not tested in 6a.</td>
<td>(VI) Tri-axial accelerometer to measure G-forces</td>
</tr>
<tr>
<td>b.</td>
<td>FED-STD-101 Method 5008.1 Level A</td>
<td>Edgewise-drop (rotational) test. Condition to -28.8°C (+0/-5.6) for not less than 24 hours. Drop height 812.8 mm.</td>
<td>Drop on adjacent sides. Drop on sides not tested in 6b. Total of 2 drops.</td>
<td>(VI) Tri-axial accelerometer to measure G-forces</td>
</tr>
<tr>
<td>c.</td>
<td>FED-STD-101 Method 5012</td>
<td>Pendulum Impact test. Condition at -53.9°C for not less than 24 hours. Impact velocity 2.13 m/sec.</td>
<td>One impact on a side and an adjacent end. Impact sides not tested in 6c. Total of 2 impacts.</td>
<td>(VI) Tri-axial accelerometer to measure G-forces</td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FED-STD-101 Method 5009.2 (4.7.2)</td>
<td>Pneumatic pressure at 10.34 kPa. 0.3 Pa/hr leakage allowed after temperature stabilization. Test duration to be a minimum of 30 minutes.</td>
<td>Test performed in ambient condition from compressed air supply.</td>
<td>Pressure Transducer or Water Manometer</td>
</tr>
</tbody>
</table>

COMMENTS:

PREPARED BY: Jason Gilreath, Mechanical Engineer
APPROVED BY: Ted Hinds, Chief, Container Engineering & Design Branch
APPENDIX 2

TEST DATA
TABLE 1. Cornerwise and Edgewise Rotational Drops

<table>
<thead>
<tr>
<th>CONTAINER</th>
<th>IMPACT LOCATION</th>
<th>-60°C</th>
<th>PEAK G</th>
<th>-29°C</th>
<th>PEAK G</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISU</td>
<td>3-2-6</td>
<td>13</td>
<td>13</td>
<td>3-2-5</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>3-4-5</td>
<td>12</td>
<td>12</td>
<td>3-4-6</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>3-4</td>
<td>16</td>
<td>3-2</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-5</td>
<td>11</td>
<td>3-6</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2. Pendulum Impacts

<table>
<thead>
<tr>
<th>CONTAINER</th>
<th>IMPACT FACE</th>
<th>-74°C</th>
<th>PEAK G</th>
<th>-54°C</th>
<th>PEAK G</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISU</td>
<td>6</td>
<td>11</td>
<td>5</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10</td>
<td>4</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3. Container Resonant Frequency and Transmissibility Values.

<table>
<thead>
<tr>
<th>CONTAINER</th>
<th>FREQUENCY</th>
<th>TRANSMISSIBILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISU</td>
<td>14.9 Hz</td>
<td>3.1</td>
</tr>
</tbody>
</table>
APPENDIX 3

TEST WAVEFORMS
Waveform Test Report
GHI SYSTEMS, INC. CAT SYSTEM

DATE / TIME : Wed Feb 05 97 09:53 TEST ENGINEER : FILSINGER
ROTATIONAL DRP: 60 DEG C (140 DEG F) IMPACT POINT : 326
TEST ITEM : ISU-2 DROP HEIGHT : 622mm (24.5in)

Sensitivity:
Ch. 1: 6.25 g'a/Div 1
Ch. 2: 6.25 g'a/Div
Ch. 3: 6.25 g'a/Div
Ch. 4: 6.25 g'a/Div

Filter:
Ch. 1: 300 Hz
Ch. 2: 300 Hz
Ch. 3: 300 Hz
Ch. 4: 300 Hz

Vert. Angle = 84.8
Horiz. Angle = 287.5
Trig. Ch. : ALL
Polarity : Window
Level : 7.93 g's
Mode : Single Event
Pretrigger : 28 x

<table>
<thead>
<tr>
<th>CH</th>
<th>TIME</th>
<th>CUR AMP</th>
<th>PEAK AMP</th>
<th>1ST INT</th>
<th>2ND INT</th>
<th>TIME/DIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76.88 ms</td>
<td>0.17 g's</td>
<td>0.60 g's</td>
<td>3.71 in/s</td>
<td>12.8 ms</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>76.88 ms</td>
<td>0.56 g's</td>
<td>9.11 g's</td>
<td>35.59 in/s</td>
<td>12.8 ms</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>76.88 ms</td>
<td>-1.76 g's</td>
<td>10.25 g's</td>
<td>45.23 in/s</td>
<td>12.8 ms</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>76.88 ms</td>
<td>1.85 g's</td>
<td>13.31 g's</td>
<td>68.86 in/s</td>
<td>12.8 ms</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

CH1 X-AXIS (TRANSVERSE MOTION RELATIVE TO DESICANT PORT)
CH2 Y-AXIS (LONGITUDINAL MOTION)
CH3 Z-AXIS (VERTICAL MOTION)
CH4 RESULTANT
Waveform Test Report
GSI SYSTEMS, INC. CAT SYSTEM

DATE / TIME : Wed Feb 05 97 10:05 TEST ENGINEER : FILSINGER
ROTATIONAL DRP: 60 DEG C (140 DEG F) IMPACT POINT : 345
TEST ITEM : ISU-2 DROP HEIGHT : 622mm (24.5 in)

Sensitivity:
Ch. 1: 6.25 g's/Div 1
Ch. 2: 6.25 g's/Div
Ch. 3: 6.25 g's/Div
Ch. 4: 6.25 g's/Div 2

Filter:
Ch. 1: 300 Hz
Ch. 2: 300 Hz
Ch. 3: 300 Hz
Ch. 4: 300 Hz

Vert. Angle = 90.0
Horiz. Angle =243.1

Trig. Ch. : ALL
Polarity : Window
Level : 7.93 g's
Mode : Single Event
Pretrigger : 2s

CH TIME AMP PEAK AMP 1ST INT 2ND INT TIME/Div
1 76.88 mS 8.88 g's 1.18 g's 6.81 in/s 12.8 mS
2 76.88 mS -8.71 g's -3.71 g's -34.77 in/s 12.8 mS
3 76.88 mS -3.32 g's 8.65 g's 68.31 in/s 12.8 mS
4 76.88 mS 1.82 g's 11.76 g's 69.95 in/s 12.8 mS

Remarks:
CH1 X-AXIS (TRANSVERSE MOTION RELATIVE TO DESICANT PORT)
CH2 Y-AXIS (LONGITUDINAL MOTION)
CH3 Z-AXIS (VERTICAL MOTION)
CH4 RESULTANT
DATE / TIME: Wed Feb 05 97 10:09
TEST ENGINEER: FILSINGER
ROTATIONAL DRP: 60 DEG C (140 DEG F)
IMPACT POINT: 34
TEST ITEM: ISU-2
DROP HEIGHT: 648mm (25.5in)

Sensitivity:
- Ch. 1: 6.25 g's/Div
- Ch. 2: 6.25 g's/Div
- Ch. 3: 6.25 g's/Div
- Ch. 4: 6.25 g's/Div

Filter:
- Ch. 1: 300 Hz
- Ch. 2: 300 Hz
- Ch. 3: 300 Hz
- Ch. 4: 300 Hz

Vert. Angle = 91.3
Horiz. Angle = 251.0

Trigger: All
Polarity: Window
Level: 5.38 g's
Mode: Single Event
Pretrigger: 20 µs

<table>
<thead>
<tr>
<th>Ch</th>
<th>TIME (µs)</th>
<th>CUR AMP</th>
<th>PEAK AMP</th>
<th>1ST INT</th>
<th>2ND INT</th>
<th>TIME-DIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76.88</td>
<td>-0.18 g's</td>
<td>8.57 g's</td>
<td>1.34 in/s</td>
<td></td>
<td>12.8 µs</td>
</tr>
<tr>
<td>2</td>
<td>76.88</td>
<td>-1.18 g's</td>
<td>-13.18 g's</td>
<td>-74.63 in/s</td>
<td></td>
<td>12.8 µs</td>
</tr>
<tr>
<td>3</td>
<td>76.88</td>
<td>-4.64 g's</td>
<td>16.68 g's</td>
<td>58.67 in/s</td>
<td></td>
<td>12.8 µs</td>
</tr>
<tr>
<td>4</td>
<td>76.88</td>
<td>4.27 g's</td>
<td>15.66 g's</td>
<td>69.88 in/s</td>
<td></td>
<td>12.8 µs</td>
</tr>
</tbody>
</table>

Remarks:
CH1 X-AXIS (TRANSVERSE MOTION RELATIVE TO DESICANT PORT)
CH2 Y-AXIS (LONGITUDINAL MOTION)
CH3 Z-AXIS (VERTICAL MOTION)
CH4 RESULTANT
Waveform Test Report
GHI SYSTEMS, INC. CAT SYSTEM

DATE / TIME : Wed Feb 05 97 10:13
TEST ENGINEER : Filsinger

ROTATIONAL DROP: 60 DEG C (140 DEG F)
IMPACT POINT : 35

TEST ITEM : ISU-2
DROP HEIGHT : 648mm (25.5in)

Sensitivity:
Ch. 1: 6.25 g/Div 1
Ch. 2: 6.25 g/Div
Ch. 3: 6.25 g/Div
Ch. 4: 6.25 g/Div 2

Filter:
Ch. 1: 300 Hz
Ch. 2: 300 Hz
Ch. 3: 300 Hz
Ch. 4: 300 Hz

Vert. Angle = 85.2
Horiz. Angle = 273.2

Trig. Ch. : All
Polarity : Window
Level : 5.98 g/s
Mode : Single Event
Pretrigger : 20 ms

<table>
<thead>
<tr>
<th>CH</th>
<th>TIME</th>
<th>CUR AMP</th>
<th>PEAK AMP</th>
<th>1ST INT</th>
<th>2ND INT</th>
<th>TIME/DIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76.68 mS</td>
<td>0.87 g/s</td>
<td>1.23 g/s</td>
<td>4.51 in/s</td>
<td>12.8 mS</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>76.68 mS</td>
<td>0.85 g/s</td>
<td>2.34 g/s</td>
<td>12.99 in/s</td>
<td>12.8 mS</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>76.68 mS</td>
<td>0.81 g/s</td>
<td>11.34 g/s</td>
<td>43.28 in/s</td>
<td>12.8 mS</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>76.68 mS</td>
<td>0.81 g/s</td>
<td>11.40 g/s</td>
<td>45.41 in/s</td>
<td>12.8 mS</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
CH1 X-AXIS (TRANSVERSE MOTION RELATIVE TO DESICANT PORT)
CH2 Y-AXIS (LONGITUDINAL MOTION)
CH3 Z-AXIS (VERTICAL MOTION)
CH4 RESULTANT
Waveform Test Report

DATE / TIME : Fri Feb 07 97 09:27 TEST ENGINEER : PILSINGER
ROTATIONAL DRP: -28.9DegC (-20DegF) IMPACT POINT : 325
TEST ITEM : ISU-2 DROP HEIGHT : 622mm (24.5in)

Sensitivity:
Ch. 1: 5.00 g'/Div Ch. 2: 5.00 g'/Div Ch. 3: 5.00 g'/Div Ch. 4: 5.00 g'/Div 1
Filter:

Vert. Angle = 47.3
Horiz. Angle = 356.4

Trig. Ch. : ALL Polarity : Window Level : 5.99 g's Mode : Single Event Pretrigger : 20 %

Remarks:
CH1 X-AXIS (TRANSVERSE MOTION RELATIVE TO DESCANT PORT)
CH2 Y-AXIS (LONGITUDINAL MOTION)
CH3 Z-AXIS (VERTICAL MOTION)
CH4 RESULTANT

CH TIME CUR AMP PEAK AMP 1ST INT 2ND INT TIME/DIV
1 76.60 ms 1.63 g's 7.26 g's 32.38 In/s 12.8 ms
2 76.60 ms 1.12 g's 8.72 g's 23.31 In/s 12.8 ms
3 76.60 ms -0.07 g's 9.55 g's 52.94 In/s 12.3 ms
4 76.60 ms 1.52 g's 13.31 g's 66.29 In/s 12.8 ms

Vert. X-AXI (TRANSVERSE MOTION RELATIVE TO DESCANT PORT)
Waveform Test Report
GSI Systems, Inc. Cat System

DATE / TIME : Fri Feb 07 97 09:32
TEST ENGINEER : Filsinger
ROTATIONAL DRP: -28.9 DegC (-20 DegF)
IMPACT POINT : 346
TEST ITEM : ISU-2
DROP HEIGHT : 622mm (24.5in)

Sensitivity:
Ch. 1: 5.00 g's/Div 1
Ch. 2: 5.00 g's/Div
Ch. 3: 5.00 g's/Div
Ch. 4: 5.00 g's/Div 2

Filter:

Vert. Angle = 97.7
Horiz. Angle = 129.8

Trig. Ch.: ALL R
Polarity: Window
Level: 5.99 g's
Mode: Single Event
Pretrigger: 20 %

<table>
<thead>
<tr>
<th>CH</th>
<th>TIME</th>
<th>CUR AMP</th>
<th>PEAK AMP</th>
<th>1ST INT</th>
<th>2ND INT</th>
<th>TIME/DIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>73.73 s</td>
<td>-8.19 g's</td>
<td>-7.11 g's</td>
<td>-22.93 in/s</td>
<td></td>
<td>12.8 s</td>
</tr>
<tr>
<td>2</td>
<td>73.73 s</td>
<td>-8.89 g's</td>
<td>-9.81 g's</td>
<td>-32.46 in/s</td>
<td></td>
<td>12.8 s</td>
</tr>
<tr>
<td>3</td>
<td>73.73 s</td>
<td>1.87 g's</td>
<td>9.21 g's</td>
<td>49.84 in/s</td>
<td></td>
<td>12.8 s</td>
</tr>
<tr>
<td>R</td>
<td>73.73 s</td>
<td>1.48 g's</td>
<td>13.16 g's</td>
<td>63.75 in/s</td>
<td></td>
<td>12.8 s</td>
</tr>
</tbody>
</table>

Remarks:
CH1 X-AXIS (TRANSVERSE MOTION RELATIVE TO DESICANT PORT)
CH2 Y-AXIS (LONGITUDINAL MOTION)
CH3 Z-AXIS (VERTICAL MOTION)
CH4 RESULTANT
Waveform Test Report
CH1 SYSTEMS, INC. CAT SYSTEM

DATE / TIME : Fri Feb 07 97 09:36 TEST ENGINEER : FILSINGER
ROTATIONAL DRP: -28.9DegC (-20DegF) IMPACT POINT : 32
TEST ITEM : ISU-2 DROP HEIGHT : 648mm (25.5in)

Ch. 1: 19.60 g/Div 1
Ch. 2: 19.60 g/Div
Ch. 3: 19.60 g/Div
Ch. 4: 19.60 g/Div

Filter:

Vert. Angle = 99.8
Horiz. Angle = 341.1

Trig. Ch. : ALL
Polarity : Window
Level : 5.99 g/s
Mode : Dyeed Bient
Pretrigger : 20

<table>
<thead>
<tr>
<th>CH</th>
<th>TIME</th>
<th>CUR AMP</th>
<th>PEAK AMP</th>
<th>1ST INT</th>
<th>2ND INT</th>
<th>TIME/DIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76.68 ms</td>
<td>0.00 g/s</td>
<td>5.13 g/s</td>
<td>8.34 in/s</td>
<td>12.8 ms</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>76.68 ms</td>
<td>1.41 g/s</td>
<td>13.62 g/s</td>
<td>76.55 in/s</td>
<td>12.8 ms</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>76.68 ms</td>
<td>-0.48 g/s</td>
<td>14.25 g/s</td>
<td>53.25 in/s</td>
<td>12.8 ms</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>76.68 ms</td>
<td>1.49 g/s</td>
<td>19.42 g/s</td>
<td>93.63 in/s</td>
<td>12.8 ms</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

CH1 X-AXIS (TRANSVERSE MOTION RELATIVE TO DESICANT PORT)
CH2 Y-AXIS (LONGITUDINAL MOTION)
CH3 Z-AXIS (VERTICAL MOTION)
CH4 RESULTANT
DATE / TIME : Fri Feb 07 97 09:42 TEST ENGINEER : FILSINGER
ROTATIONAL DRP: -28.9DegC (-20DegF) IMPACT POINT : 36
TEST ITEM : ISU-2 DROP HEIGHT : 648mm (25.5in)

Sensitivity:
Ch. 1: 18.08 g's/Div 1
Ch. 2: 18.08 g's/Div
Ch. 3: 18.08 g's/Div
Ch. 4: 18.08 g's/Div

Filter:

Vert. Angle =177.8
Horiz. Angle =243.9

Trig. Ch. : ALL
Polarity : Window
Level : 5.99 g's
Mode : Single Event

Pretrigger : 20 μs

<table>
<thead>
<tr>
<th>CH</th>
<th>TIME</th>
<th>CUR AMP</th>
<th>PEAK AMP</th>
<th>1ST INT</th>
<th>2ND INT</th>
<th>TIME/DIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76.68 μs</td>
<td>-2.25 g's</td>
<td>-13.75 g's</td>
<td>-74.68 In/s</td>
<td>12.8 μs</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>76.68 μs</td>
<td>-9.85 g's</td>
<td>5.94 g's</td>
<td>3.82 In/s</td>
<td>12.8 μs</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>76.68 μs</td>
<td>-4.11 g's</td>
<td>13.58 g's</td>
<td>49.41 In/s</td>
<td>12.8 μs</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>76.68 μs</td>
<td>2.25 g's</td>
<td>18.73 g's</td>
<td>89.68 In/s</td>
<td>12.8 μs</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

CH1 X-AXIS (TRANSVERSE MOTION RELATIVE TO DESICANT PORT)
CH2 Y-AXIS (LONGITUDINAL MOTION)
CH3 Z-AXIS (VERTICAL MOTION)
CH4 RESULTANT
Havform Test Report
CH1 SYSTEMS, INC. CAT SYSTEM

DATE / TIME : Wed Feb 05 97 16:00 TEST ENGINEER : FILSINGER
PENDULUM IMPACT : 73.9DEG C (160DEG F) IMPACT FACE : 6
TEST ITEM : ISU-2 IMPACT VELOCITY 2.13m/sec (7ft/sec

Sensitivity:
Ch. 1: 5.00 g's/Div 1
Ch. 2: 5.00 g's/Div
Ch. 3: 5.00 g's/Div
Ch. 4: 5.00 g's/Div

Filter:

Vert. Angle =126.9
Horiz. Angle =283.5

Trig. Ch. : ALL 8
Polarity : Window
Level : 5.99 g's
Mode : Single Event
Pretrigger : 28 %

<table>
<thead>
<tr>
<th>CH</th>
<th>TIME</th>
<th>CUR AMP</th>
<th>PEAK AMP</th>
<th>1ST INT</th>
<th>2ND INT</th>
<th>TIME/DIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76.88 eS</td>
<td>-2.15 g's</td>
<td>-16.65 g's</td>
<td>-62.41 In/s</td>
<td>12.8 eS</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>76.88 eS</td>
<td>0.68 g's</td>
<td>2.59 g's</td>
<td>1.45 In/s</td>
<td>12.8 eS</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>76.88 eS</td>
<td>-2.04 g's</td>
<td>3.06 g's</td>
<td>29.34 In/s</td>
<td>12.8 eS</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>76.88 eS</td>
<td>3.65 g's</td>
<td>11.29 g's</td>
<td>87.58 In/s</td>
<td>12.8 eS</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
CH1 X-AXIS (TRANSVERSE MOTION RELATIVE TO DESICANT PORT)
CH2 Y-AXIS (LONGITUDINAL MOTION)
CH3 Z-AXIS (VERTICAL MOTION)
CH4 RESULTANT
Waveform Test Report
CHI SYSTEMS, INC. CAT SYSTEM

DATE / TIME : Wed Feb 05 97 16:06 TEST ENGINEER : FILSINGER
PENDULUM IMPAC: 73.9DEG C (160DEG F) IMPACT FACE : 2
TEST ITEM : ISU-2 IMPACT VELOCITY 2.13m/sec (7ft/sec

Sensitivity:
Ch. 1: 5.88 g’s/Div 1
Ch. 2: 5.88 g’s/Div
Ch. 3: 5.88 g’s/Div
Ch. 4: 5.88 g’s/Div

Filter:
Ch. 1: 300 Hz
Ch. 2: 300 Hz
Ch. 3: 300 Hz
Ch. 4: 300 Hz

Vert. Angle = 86.7
Horiz. Angle = 205.6

Trig. Ch.: ALL
Polarity: Window
Level: 5.79 g’s
Mode: Inclined
Pretrigger: 50 %

<table>
<thead>
<tr>
<th>CH</th>
<th>TIME</th>
<th>CUR AMP</th>
<th>PEAK AMP</th>
<th>1ST INT</th>
<th>2ND INT</th>
<th>TIME/DIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76.88 mS</td>
<td>6.14 g’s</td>
<td>1.57 in/s</td>
<td>1.92 g’s</td>
<td>1.71 in/s</td>
<td>12.8 mS</td>
</tr>
<tr>
<td>2</td>
<td>76.88 mS</td>
<td>6.66 g’s</td>
<td>9.64 g’s</td>
<td>75.16 in/s</td>
<td>73.43 in/s</td>
<td>12.8 mS</td>
</tr>
<tr>
<td>3</td>
<td>76.88 mS</td>
<td>-2.36 g’s</td>
<td>3.78 g’s</td>
<td>33.63 in/s</td>
<td>34.05 in/s</td>
<td>12.8 mS</td>
</tr>
<tr>
<td>4</td>
<td>76.88 mS</td>
<td>2.45 g’s</td>
<td>18.33 g’s</td>
<td>86.81 in/s</td>
<td>87.83 in/s</td>
<td>12.8 mS</td>
</tr>
</tbody>
</table>

Remarks:

CH1 X-AXIS (TRANSVERSE MOTION RELATIVE TO DESICANT PORT)
CH2 Y-AXIS (LONGITUDINAL MOTION)
CH3 Z-AXIS (VERTICAL MOTION)
CH4 RESULTANT
Waveform Test Report
GSI SYSTEMS, INC. CAT SYSTEM

DATE / TIME : Fri Feb 07 97 16:00
TEST ENGINEER : FILSINGER
PENDULUM IMPAC : -53.9DegC (-65DegF) IMPACT FACE : 5
TEST ITEM : ISU-2 IMPACT VELOCITY 2.13m/sec (7ft/sec)

Sensitivity:
Ch. 1: 5.08 g's/Div
Ch. 2: 5.08 g's/Div
Ch. 3: 5.08 g's/Div
Ch. 4: 5.08 g's/Div

Filter:

Vert. Angle = 63.1
Horiz. Angle = 245.3

Trig. Ch. : ALL
Polarity : Window
Level : 5.99 g's
Mode : Single Event
Pretrigger : 20 x

<table>
<thead>
<tr>
<th>CH</th>
<th>TIME</th>
<th>CUR AMP</th>
<th>PEAK AMP</th>
<th>1ST INT</th>
<th>2ND INT</th>
<th>TIME/DIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76.88 m3</td>
<td>0.68 g's</td>
<td>9.56 g's</td>
<td>64.69 in/l</td>
<td>12.8 m3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>76.88 m3</td>
<td>0.58 g's</td>
<td>-2.76 g's</td>
<td>1.74 in/l</td>
<td>12.8 m3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>76.88 m3</td>
<td>-1.80 g's</td>
<td>5.35 g's</td>
<td>22.91 in/l</td>
<td>12.8 m3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>76.88 m3</td>
<td>1.34 g's</td>
<td>19.55 g's</td>
<td>68.65 in/l</td>
<td>12.8 m3</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
CH1 X-AXIS (TRANSVERSE MOTION RELATIVE TO DESICANT PORT)
CH2 Y-AXIS (LONGITUDINAL MOTION)
CH3 Z-AXIS (VERTICAL MOTION)
CH4 RESULTANT
Wavform Test Report

DATE / TIME : Fri Feb 07 97 16:05 TEST ENGINEER : FILSINGER
PENDULUM IMPAC : -53.9DegC (-65DegF) IMPACT FACE : 4
TEST ITEM : ISU-2 IMPACT VELOCITY 2.13m/sec (7ft/sec

Sensitivity:
Ch. 1: 5.88 g's/DIV 1
Ch. 2: 5.88 g's/DIV 2
Ch. 3: 5.88 g's/DIV 2
Ch. 4: 5.88 g's/DIV 2

Vert. Angle = 75.8
Horiz. Angle =779.1

Trig. Ch. : ALL
Polarity : Window
Level : 5.99 g's
Mode : Single Event
Pretrigger : 20

CH TIME CURR AMP PEAK AMP 1ST INT 2ND INT TIME/DIV
1 76.89 ms 8.63 g's -3.16 g's -9.32 in/s 12.8 ms
2 76.89 ms 8.39 g's -18.78 g's -68.66 in/s 12.8 ms
3 76.89 ms -2.45 g's 3.97 g's 27.61 in/s 12.8 ms
4 76.89 ms 2.56 g's 18.93 g's 74.32 in/s 12.8 ms

Remarks:
CH1 X-AXIS (TRANSVERSE MOTION RELATIVE TO DESICANT PORT)
CH2 Y-AXIS (LONGITUDINAL MOTION)
CH3 Z-AXIS (VERTICAL MOTION)
CH4 RESULTANT
APPENDIX 4

PHOTOGRAPHS
Figure 1: Container base with ISU test load.

Figure 2: Container base and cradle mounting configuration.
Figure 3: Container showing standard hardware.

Figure 4: Bar clamp and locating pin.
Figure 5: Commander’s Relay mounting straps.

Figure 6: Horizontal random vibration test.
Figure 7: Cradle support structure (exterior view).

Figure 8: Cradle support structure (interior view).
APPENDIX 5

STATEMENT OF WORK
Statement of Work
For
Integrated Sight Unit Container
18 March 1996

1. Introduction. The Air Force Packaging Technology and Engineering Facility will design an aluminum, reusable, long-life, container for the storage and transportation of one Integrated Sight Unit (ISU). The container configuration will also house the ISU with Bradley Eye-safe Laser Range Finder (BELRF) and IBAS Target Acquisition Subsystem (TAS) units as well. This common container will protect the items during world-wide transportation and storage.

2. Scope.

2.1 The proposed internal/external size (in inches) of the container is:

ID 30.9" L X 30.9" W X 36.0" H
OD 34.5" L X 34.5" W X 41.5" H

3. Specification of Design. The ISU Container will be designed in accordance with SAE ARP 1967, with the following modifications:

A. Par. 3.1 N/A
B. Par. 3.2.1 Cadmium plated parts shall not be used in the interior of the container.
C. Par. 3.3.2 Any container surface or cavity that may collect water will be either convex to allow run-off or have drainage holes in accordance with the provided drawing package.
D. Par. 3.3.3.2.1 Wide handle, cam-over-center latches requiring no use of tools to open or close and meeting arctic glove requirements shall be used.
E. Par. 3.3.3.2.2 Container will be designed and testing for a 1.5/1.5 PSIG pressure vacuum.
F. Par. 3.3.4.2 Tiedown provisions will be provided, no special towing provisions will be incorporated.
G. Par. 3.3.5.1 A desiccant port with cover shall be provided as well as a confined space using foam or aluminum for desiccant storage, a desiccant receptacle will not be used.
H. Par. 3.3.5.3 N/A
I. Par. 3.3.5.6 N/A
J. Par. 3.3.5.8 N/A
K. Par. 3.3.5.9 N/A
L. Par. 3.4.3 Interrupted or tack welds will be used when a continuous seal weld is not required. No caulking will be used on these types of welds.
M. Par. 3.7 N/A
N. Par. 3.9, Section a Text shall be 12.7mm high. No arrows will be included.
O. Par. 3.9, Section b “DO NOT DROP” and “CAUTION: RELEASE PRESSURE BEFORE OPENING CONTAINER” will not be included. Text shall be 25.4mm high.
P. Par. 3.9, Section c N/A
Q. Par. 3.9, Section d Text shall be 12.7mm high.
R. Par. 3.9, Section e “DO NOT DISTURB” and “CAUTION: RELEASE PRESSURE
BEFORE OPENING CONTAINER” will not be included. Text shall be 12.7mm high.
S. Par. 3.9, Section f N/A
T. Par. 3.9, Section g Text shall be 12.7mm high.
U. Par. 3.9, Section h N/A
V. Par. 3.9, Section i N/A
W. Par. 3.9, Section j N/A
X. Par. 3.9, Section k No arrows will be included.
Y. Par. 3.9, Section l Text shall be 12.7mm high.
Z. Par. 3.9, Section m N/A
AA. Par. 3.9, Section n N/A
BB. Par. 3.10 One name plate on cover with the following information:
 “Container, Shipping & Storage”
 NSN
 NSN Bar Code
 Part Number
 Contract Number
 Manufacturer
 Tare Weight, Dimensions, and Cube
 Design Activity
 “Property of the U.S. ARMY”
CC. Par. 3.10.1 N/A
DD. Par. 3.11 N/A
EE. Par. 4.5.2 A pressure transducer and data acquisition can be used in testing.
FF. Par. 4.5.2.1 and 4.5.2.2 Container will be designed and tested at 1.5/1.5
 PSIG.
GG. Par. 4.5.2.3 N/A
HH. Par. 4.5.3 Corner-wise and Edge-wise drop tests will be performed according to
 container size and weight.
II. Par. 4.5.4 N/A
JJ. Par. 4.5.7 N/A, container design have passed these tests previously.
KK. Par. 4.5.8 N/A, container design have passed these tests previously.
APPENDIX 6
DISTRIBUTION LIST
DISTRIBUTION LIST

DTIC-OC 1
8725 JOHN J KINGMAN RD, SUITE 0944
FT BELVOIR VA 22060-6218

HQ AFMC/LG 1
4375 CHIDLAW ROAD SUITE 6
WRIGHT-PATTERSON AFB OH 45433-5006

HQ AFMC/LGT 1
4375 CHIDLAW ROAD SUITE 6
WRIGHT-PATTERSON AFB OH 45433-5006

AFMC LSO/LO 1
4375 CHIDLAW ROAD SUITE 6
WRIGHT-PATTERSON AFB OH 45433-5006

AFMC LSO/LOP (LIBRARY) 3
5215 THURLOW ST
WRIGHT-PATTERSON AFB OH 45433-5540

H* USAF/ILTT 1
1630 AIR FORCE PENTAGON
RM 4B322
WASHINGTON DC 20330-1030

72 ABW/LGTP 1
7516 SENTRY BLVD SUITE 201
TINKER AFB OK 73145-8912

75 ABW/LGTP 1
7973 UTILITY DR
HILL AFB UT 84056-5306

76 ABW/LGTP 1
410 NORTH LUCK RD
SUITE 289
KELLY AFB TX 78241-5312

77 ABW/LGTP 1
1961 IDZOREK ST
BLDG. 783A
MCCLELLAN AFB CA 95652-1620
DISTRIBUTION LIST (Cont'd)

78 ABW/LGTP
455 BYRON ST
BLDG 376 SUITE 1150
ROBINS AFB GA 31098-1860

ASC/SYLS
2475 K STREET
BLDG 52 SUITE 1
WRIGHT-PATTERSON AFB OH 45433-7642

COMMANDER
NAVAL INVENTORY CONTROL POINT
ATTN: E. H. BRIGGS (CODE 0512)
700 ROBBINS AVENUE
PHILADELPHIA PA 19111-5098

COMMANDER
NAVAL INVENTORY CONTROL POINT
ATTN: F SECHRIST (CODE 054X)
5450 CARLISLE PIKE
MECHANICSBURG PA 17055-0788

DEFENSE LOGISTICS AGENCY
ATTN: MMLSD MR. JOE MALONEY
8725 JOHN KINGMAN RD
SUITE 2533
FORT BELVOIR VA 22060-6221

HQ PACAF/LGT
25 E. STREET
BLDG 1102 STE 1326
HICKAM AFB HI 96853-5426

HQ USAFE/LGT
UNIT 3050 BOX 105
APO AE 09094-0105

HQ ACC/LGT
130 DOUGLAS ST STE 210
LANGLEY AFB VA 23665-2791

39
DISTRIBUTION LIST (Cont'd)

HQ AF SPACECOM/LGT
150 VANDENBURG ST.
STE 1105
PETERSON AFB CO 80914-4540

US TRANSCOM/JTCC
203 W LOSEY
SCOTT AFB IL 62225-5219

HQ AMC/DONC
402 SCOTT DR, UNIT 3A1
BLDG 1600 ROOM 132
SCOTT AFB IL 62225-5302

COMMANDER, US ARMY MISSILE COMMAND
AMSMI-MMC-MM-LS-MDP
ATTN: JOHN WHEELER
REDSTONE ARSENAL AL 35898-5239

DEAN
SCHOOL OF MILITARY PACKAGING TECHNOLOGY
AMXMC-SMTP-T/A
BLDG 360
ATTN: LARRY FRANKS
ABERDEEN PROVING GROUND MD 21005-5001

COMMANDER, US ARMY
AVIATION AND TROOP COMMAND
AMSAT-I-SDP
4300 GOODFELLOW BLVD
ATTN: DAVE SANSON
ST. LOUIS MO 63120-1798

US ARMY ARDEC
BLDG. 455
ATTN: SMCAR-AEP PACKAGING DIVISION
EUGENE FARRELL
PICATINNY ARSENAL NJ 07806-5000

40
DISTRIBUTION LIST (Cont'd)

COMMANDING OFFICER 1
NAVAL WEAPONS STATION EARLE
201 HIGHWAY ROUTE 34 SOUTH (CODE 5022)
ATTN: JAMES RAEVIS
COLTS NECK NJ 07722-5023

ASC/VXYC 1
102 WEST D AVE STE. 168
EGLIN AFB FL 32542-6807

CCAWS PROJECT OFFICE 5
SFAE-MSL-CC-LO
ATTN: DAVID NOBLE
REDSTONE ARSENAL AL 35898

REDSTONE TECHNICAL TEST CENTER 1
STERT-TE-M-DY
TEST AREA 2
ATTN: OSCAR ESTRADA
REDSTONE ARSENAL AL 35898-8052
APPENDIX 7

REPORT DOCUMENTATION
This project was initiated to design, fabricate, test and provide a production drawing package for the MICOM-ISU container. The objective of the test series was to qualify the container for production release by AFMC LSO/LOP. The container is designed to hold one of three items: the Integrated Sight Unit (ISU), the ISU with BELRF, or the IBAS Target Acquisition System (TAS).

The container utilizes standard AFPTEF extrusion designs and is completely designed using PTC's Pro/Engineer three-dimensional solids modeling software. This is an unpainted, welded, controlled breathing, aluminum container. It is a low base design with an internal cradle system that is mounted to the base via four stainless steel cable or flex mounts. Some of the design features are humidity indicator, pressure relief valve, desiccant port, stacking capability, tiedown rings, quick release latches, air filling valve, four way forklift entry and an integral base-skid design.

The test plan referenced MIL-STD-648A, FED-STD-101C and MIL-STD-810E. The tests were performed both at the AFPTEF and Redstone Technical Test Center (RTTC), Redstone Arsenal, Alabama.