GRANT NUMBER DAMD17-94-J-4315

TITLE: Multiple Genetic Alterations in Breast Cancer

PRINCIPAL INVESTIGATOR: Mien-Chie Hung, Ph.D.

contracting organization: M. D. Anderson Cancer Center
Houston, Texas 77030

REPORT DATE: September 1996

TYPE OF REPORT: Annual

PREPARED FOR: Commander
U.S. Army Medical Research and Materiel Command
Fort Detrick, Frederick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release;
distribution unlimited

The views, opinions and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision unless so
designated by other documentation.
ABSTRACT

Multiple Genetic Alterations in Breast Cancer

Mien-Chie Hung, Ph.D.

M. D. Anderson Cancer Center
Houston, Texas 77030

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

M. D. Anderson Cancer Center
Houston, Texas 77030

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Commander
U.S. Army Medical Research and Materiel Command
Fort Detrick, Frederick, Maryland 2170-25012

Approved for public release; distribution unlimited

Overexpression of HER-2/neu (a member of the EGF receptor family) and inactivation of estrogen receptor (ER) or the tumor suppressor gene, Rb, are known to be involved in the development of human breast cancer. Expression of HER-2/neu can be regulated by ER or Rb. In addition, expression of other EGF receptor family genes (EGF receptor, HER-3 and HER-4) and Herregulin, a ligand for the HER-3 and HER-4 encoded receptor has also been found in some breast cancer cells and may contribute to malignant transformation of breast cancer. The current progress report focuses on the role of the EGF receptor family genes, Herregulin, ER, Rb, and their interrelationship in breast cancer. The technical objectives are: (1) Systematic studies on the expression of EGF receptor family genes, Herregulin, and ER in breast tumor specimens and correlation of the expression with tumor stages and patient survival. (2) Potential paracrine and autocrine loops for EGF receptor family molecules and Herregulin. (3) Effects of ER on malignant transformation phenotypes of breast cancer cells. (4) Effects of Rb on malignant transformation phenotypes of HER-2/neu-overexpressing breast cancer cells. Expression of EGF receptor family genes, Herregulin, and ER in the same breast tumor specimens were examined by immunohistochemical staining, and western blotting. The relationship between expression of these molecules, tumor grades, and patient's survival will be evaluated. Using gene transfer technique, Herregulin, ER or Rb gene are being introduced into HER-2/neu-expressing breast cancer cells. The effect on their malignant transformations will be examined. This project may help to develop a more reliable molecular prognostic strategy and to understand how interactions among multiple genetic factors are involved in the development of breast cancer.

SUBJECT TERMS

Breast Cancer, Oncogene, HER-2/neu, Estrogen Receptor, Tumor Suppressor Gene, Herregulin, DNA Transfection

SECURITY CLASSIFICATION OF REPORT

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

SECURITY CLASSIFICATION OF ABSTRACT

Unclassified

LIMITATION OF ABSTRACT

Unlimited

NSN 7540-01-280-5500
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF COLOR PAGES WHICH DO NOT REPRODUCE LEGIBLY ON BLACK AND WHITE MICROFICHE.
Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the US Army.

Where copyrighted material is quoted, permission has been obtained to use such material.

Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

Citations of commercial organizations and trade names in this report do not constitute an official Department of Army endorsement or approval of the products or services of these organizations.

In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).

For the protection of human subjects, the investigator(s) adhered to policies of applicable Federal Law 45 CFR 46.

In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

In the conduct of research utilizing recombinant DNA, the investigator(s) adhered to the NIH Guidelines for Research Involving Recombinant DNA Molecules.

In the conduct of research involving hazardous organisms, the investigator(s) adhered to the CDC-NIH Guide for Biosafety in Microbiological and Biomedical Laboratories.

[Signature] 9/18/96
TABLE OF CONTENTS

Front Cover..page 1
SF 298...page 2
Foreword...page 3
Table of Contents....................................page 4
Introduction...page 5-7
The Purposes..page 8
Body..page 9-21
Conclusion..page 22
References...page 23-25

Appendix: 5 publications

INTRODUCTION

A. Background

The data from the Surveillance, Epidemiology, and End Results (SEER) Program indicates breast cancer remains a major cause of death in this country (1). It was estimated that approximately 180,000 new cases of breast cancer will be diagnosed in the United States in 1995, and 46,000 women will die from this disease. Many oncogenes and tumor suppressor genes were shown to be involved in the development of breast cancer. The clinical value of each of these genes in prognostic and potential therapeutic applications has been studied to some extent (2). Yet, none of these molecular markers alone was found to be a better prognosis factor than the prognosis factors currently used for breast cancer patients (e.g. number of metastatic lymph nodes). Identification of a set of related genes that are involved in breast cancer may be critical to develop a better molecular prognostic strategy. Studies on the role of a set of related genes and their interrelationship in breast cancer may also provide a more productive avenue to understand the basic biology of breast cancer cells. Loss of estrogen receptor (ER) expression or function has been known for a long time to be associated with poor prognosis for breast cancer patients. The HER-2/neu oncogene encodes a growth factor receptor-like molecule and overexpression of HER-2/neu is also reported to correlate positively with poor survival for breast cancer patients. Some studies, including our own, demonstrate that estrogen-stimulated ER can repress HER-2/neu overexpression, suggesting a possible causal relationship between HER-2/neu overexpression and non-function of ER in breast cancer cells. We also have recently found that the tumor suppressor gene, Rb, can repress HER-2/neu expression. These studies raised an interesting possibility that ER and Rb may suppress the effects on the malignant transformation phenotype induced by HER-2/neu overexpression. The Rb gene is known to be inactivated in approximately 20% of breast tumors. It is not yet clear whether Rb might have prognosis value in breast cancer.

A-1. The HER-2/neu Proto-oncogene Encoding an Epidermal Growth Factor (EGF) Receptor-related Protein is a Potent Transforming Oncogene

The rat neu oncogene was a transforming gene originally isolated from rat neuroblastoma and later its cellular counterpart, the normal neu gene, was also isolated from rat and human libraries (3-6). Detailed structural and functional analysis of the transforming rat neu and the normal neu genes (neu proto-oncogene) indicates that a single point mutation in the transmembrane region is responsible for the conversion of the normal neu gene into a transforming neu oncogene (7). The human homologue (HER-2 or c-erbB-2) of rat neu oncogene was isolated based on its homology to chicken v-erbB gene (HER-2 represents Human EGF Receptor-2 and c-erbB-2 means the second gene homologous to v-erbB; EGF receptor gene was the first). It is now known that neu, HER-2, and c-erbB2 are the same gene. We will use HER-2/neu to represent this gene since HER-2/neu seems to be the most frequently used in the literature. Structural comparison between the HER-2/neu-encoded p185 protein and EGF receptor revealed significant sequence homology and identical gross structural organization including ligand-binding, transmembrane, and tyrosine-kinase domains between these two proteins (5-8). Both EGF receptor and p185 proteins can form either homodimers or heterodimers (9-11). The homodimer is believed to be an active receptor form for ligand binding. Two other EGF receptor-related genes, HER-3 and HER-4, have also recently been cloned. Recent experimental evidence indicates that these four EGF receptor-related proteins are able to form heterodimers among each other, suggesting different combination of heterodimers may interact with distinct ligands and induce signal transduction in specific cell type (12,13). A molecule (named Heregulin or NDF), thought to be a ligand for HER-2/neu, recently has been shown to be a ligand for HER-3 and HER-4 (14-19). Heregulin is able to bind HER-3 and HER-4 homodimers but cannot bind to HER-2/neu or EGF receptor homodimers. However, Heregulin is able to interact with HER-2/neu through heterodimerization of HER-2/neu with HER-3 or with HER-4 (12,13). Since Heregulin and the four EGF receptor-related proteins (EGF receptor, HER-2/neu, HER-3 and HER-4) can interact with each other, it is likely that they may all be involved in the development of breast cancer. In this Progress Report, we have begun to investigate their expression in breast tumor specimen by immunohistochemical staining.

Unlike the rat neu oncogene that is activated by a single point mutation, the human HER-2/neu gene is activated by overexpression in human cancers. Amplification/overexpression of the HER-2/neu gene was first found in approximately 30% of human breast cancers (20-25) and later in many other human cancers (31-36). In the case of breast, ovarian, lung and gastric cancers, several reports further indicated that HER-2/neu overexpression correlates with a poor survival rate (25-31), suggesting that HER-2/neu overexpression may be used as a prognosis factor (25-27, 20, 22). However, some studies disagree that HER-2/neu overexpression can be a poor prognostic factor in breast cancer (32-34). Although the discrepancy could be caused by reasons such as patient population and treatment differences, the methods and reagents used for detection of HER-2/neu overexpression and the way tumor specimens were collected, other more significant reasons may also contribute to this discrepancy. Considering the fact that the development of breast cancer requires multi-step activations, it is possible that HER-2/neu overexpression alone may not be an ideal prognosis factor for breast cancer patients. Combined data from the expression of multiple oncogenes and tumor suppressor genes involved in breast cancer may provide a more accurate prognosis. Both ER and Rb are shown to be involved in breast cancer and our studies also indicate that they can regulate HER-2/neu expression (see below). In addition, the other EGF receptor-related molecules and Heregulin that can interact with HER-2/neu as discussed earlier, may also be involved in the development of breast cancer.

Steroid hormones play an essential part in regulating the growth of both normal and neoplastic breast cells. Specifically, estrogen has a marked effect on the proliferation of breast cells in vivo and in vitro. Although the mechanisms by which estradiol (E2) induces proliferation in estrogen receptor (ER) positive breast cells are incompletely defined, modulation in expression of certain growth related cellular proto-oncogenes by estradiol-stimulated estrogen receptor (E2/ER) has been well-described using cell lines established from human breast tumors. The function of ER in breast cancer is unclear; however, the significant correlation between loss of functional estrogen receptor and poor patient prognosis is very well described (35,36). Evidence that ER may play a role in the regulation of HER-2/neu expression comes from several diverse observations. Several studies of human breast tumor tissue specimens have shown an inverse relationship between ER and HER-2/neu expression (37-40). Furthermore, during development of rat mammary glands, expression of HER-2/neu is inversely related to ER status (41). Those breast cancer cell lines with the highest levels of HER-2/neu overexpression are generally ER negative or have very low levels of estrogen receptor. We and others have previously shown that ER through estrogen stimulation can negatively regulate the expression of HER-2/neu in ER positive but not ER negative breast cancer cell lines (42-44). We further demonstrated that the ER-mediated HER-2/neu repression can occur at the transcriptional level (44). The result suggests that HER-2/neu overexpression may be caused by inactivation of ER in some breast tumors. It also raises an interesting possibility that expression of ER in the ER negative and HER-2/neu-overexpressing breast cancer cells may suppress malignant transformation induced by HER-2/neu overexpression. If this indeed is correct, it may provide an interpretation for a well-known clinical phenomenon, namely, some ER positive breast cancer patients do not respond to hormone treatment such as Tamoxifen (TAM), an estrogen antagonist. Our hypothesis is that ER positive breast tumors with HER-2/neu overexpression may not respond to TAM treatment since TAM competes with estrogen to interact with ER, and in one way blocks the stimulating effect of tumor cell growth (Estrogen can stimulate growth of ER positive cells), but in another way enhance HER-2/neu overexpression, which enables the tumor cells to become more malignant. In this Progress Report, we have completed the study indicating that ER can suppress cellular transformation of HER-2/neu-overexpressing breast cancer cells through E2/ER-mediated HER-2/neu repression.

The retinoblastoma susceptibility gene (Rb) is a well-characterized tumor suppressor gene (45). The existence of this gene was initially predicted based upon genetic predispositions to certain pediatric malignancies (46). Tumor formation or transformation occurs when these genes are inactivated, suggesting that their normal function is to limit cellular proliferation. Inactivation or deletion of Rb has been found in a variety of human cancers including breast cancer (45). Using retroviral-mediated gene transfer, it has been shown that the Rb gene can suppress tumor formation of retinoblastoma, osteosarcoma, and breast carcinoma in which the endogenous Rb gene is inactivated (47-49).
The Rb gene encodes a 105kDa protein (RB) and is known to form a protein complex with adenovirus E1A protein as well as large T (LT) antigen of SV40 virus and E7 protein of papilloma virus (50-52). It is believed that the DNA virus-associated proteins such as E1A, LT and E7 may inactivate the RB function through RB-E1A (or LT, E7) complex. Biochemically, RB can function as a transcriptional factor that can regulate transcription of cellular genes including c-myc, TGF-b, c-fos and HER-2/neu (53-56). More recently, RB has been shown to form a protein complex with a DNA-binding protein E2F and may, therefore, act as a transcriptional factor by complexing with other factors (57,58). We have previously demonstrated that E1A gene products inhibit HER-2/neu expression in both rodent and human breast cancer cells (59-61). The results allow us to further discover that the E1A gene functions as a tumor suppressor gene for the HER-2/neu-overexpressing tumor cells through transcriptional repression of HER-2/neu gene. Since E1A and RB proteins can form E1A-RB protein complexes and it is believed that E1A proteins may inactivate RB function through E1A-RB complexes, our results which clearly demonstrated that E1A gene is a tumor suppressor gene for the HER-2/neu transformed cells seemed to be surprising at the beginning. However, it has recently been shown that E1A can stabilize the tumor suppressor, p53, and induce cell program death (Apoptosis) (62-65). This property strongly supports tumor suppressor function of E1A. We have now shown that RB alone can also inhibit HER-2/neu transformation through transcriptional repression (56). The effect of RB-E1A complexes on HER-2/neu expression is very complex as RB can enhance E1A-mediated HER-2/neu repression in some cell types but not in other cell types (our unpublished observation). Our preliminary results suggest an interesting phenomenon: that E1A and RB may cooperate to enhance a biological activity in one cell type while antagonizing each other to suppress a biological function in another cell type. This complex issue will not be addressed in the current Progress Report. Instead, we will focus on the RB effect on HER-2/neu-overexpressing breast cancer cells. If RB can also suppress malignant transformation of HER-2/neu-overexpressing cancer cells, the tumor suppressor function of the Rb gene will not be limited only to the Rb-defective tumors and may extend to the tumors with HER-2/neu overexpression. This will become an important issue when the gene therapy technique is developed well enough to allow delivery of the Rb gene into patient's cancer cells.
B. THE PURPOSES

The major purposes are:

B-1. Systematic studies on the expression of EGF receptor family, Herregulin, ER in breast tumor specimens and correlation of the expression with tumor stages and patient survival.

Our hypothesis is that the combination of EGF receptor family, Herregulin, ER may be a better prognosis factor than each of these molecules individually. Therefore, expression of EGF receptor family, Herregulin, ER, in the same breast tumor specimens will be examined by immuno-histochemical staining, and western blots. The relationship between expression of these molecules, tumor grades and patients' survival will be evaluated.

B-2. Potential paracrine and autocrine interactions between EGF receptor family and Herregulin in breast cancer cells.
Potential paracrine and autocrine loops between EGF receptor family and Herregulin ligand will be tested by using expression vectors and model cell lines. Effects of Herregulin on transformation phenotypes of breast cancer cells will be examined by growth properties, soft agar colonization assay, subcutaneous (s.c.) tumorigenicity and intraperitoneal (i.p.) survival assays.

Since we have found that estrogen-stimulated ER can repress HER-2/neu gene expression, ER expression vectors will be used to modulate HER-2/neu expression in HER-2/neu overexpressing breast cancer cells. The effect of ER on transformation phenotypes of HER-2/neu overexpressing breast cancer cells will be examined. The potential effects of Tamoxifen, an estrogen antagonist, will also be tested in this system.

B-4. Effects of Rb on malignant transformation phenotypes of breast cancer cells.
The Rb-expression vectors will be introduced into the breast cancer cells. The effects of Rb on HER-2/neu expression and transformation phenotypes will be analyzed. Potential relationship among Rb, ER and HER-2/neu will also be examined.
1. **Systematic studies on the expression of EGF receptor family, Heregulin, ER and Rb.**

Heregulin was originally thought to be a ligand for HER-2/neu (12-14). However, more recent data indicate that Heregulin is a ligand for HER-3 and HER-4 (also known as c-erbB3 and c-erbB4) that are two recently identified EGF receptor family genes. Since HER-3 and HER-4 can form heterodimers with HER-2/neu and interactions between Heregulin and HER-2/neu is most likely through HER-3:HER-2/neu dimer or HER-4:HER-2/neu dimer (12-13), it is possible that HER-3 and HER-4 may also contribute to breast cancer. In addition, overexpression of EGF receptor is known to be involved in human breast cancer. In this Progress Report, we will expand our expression study in breast tumor tissues for all 4 EGF receptor family (EGF receptor, HER-2/neu, HER-3 and HER-4).

We have used specific antibodies for EGF receptor, HER-2/neu, HER-3, HER-4, and Heregulin to stain the archival paraffin-embedded sections. Up to now, 200 tumor sections have been completed for EGF receptor HER-2/neu and HER-3. One set of representative data was shown in Fig. 1 (EGF receptor), Fig. 2 (HER-2/neu) and Fig. 3 (HER-3). In these cases, we can identify tumors with high, intermediate, low and negative expression. Quantitation of antibody staining is justified by relative intensity of positive staining by professional pathologist. The relationship between the expression level with ER status tumor grades, patient survival and other clinical status is currently under investigation. One example in which 123 cases with HER-2/neu expression status were analyzed was shown in Table 1. We are continuing to collect these clinical status from our archival medical record. Table 1 is an example to compare the clinical status with HER-2/neu expression. Since the same tumor specimen were screened for multiple gene expression such as EGF receptor, HER-3, etc. Once the data is completed, the analysis can be easily compared with each individual gene expression and multiple variant analysis can also be analyzed. We will continue to determine EGF receptor family and Heregulin expression levels in these tumor sections.

Involvement of Rb in human cancer is primarily regulated by the non-function of Rb protein that could be derived from deletion or mutation of the Rb gene. In some cases, the aberrant Rb protein can still be expressed in tumors and therefore scored as "positive" by immunohistochemical staining. Although western blotting analysis may detect aberrant form of Rb protein, it may not be able to distinguish difference between single-point-mutated Rb and wild-type Rb protein. Therefore, immunohistochemical staining for Rb protein will not be a very informative strategy to detect inactivation of Rb in tumor tissues (This was also discussed in the original grant proposal.). As mentioned earlier, the newly identified molecules, HER-3 and HER-4, like HER-2/neu, belong to the EGF receptor family and interactions between Heregulin and HER-2/neu require existence of HER-3 or HER-4 (most likely through heterodimer between HER-3 and HER-2/neu or HER-4 and HER-2/neu). Overexpression of EGF receptor can be easily identified by immunohistochemical staining (e.g. Please see Fig. 1-3). We feel it will be more informative to analyze EGF receptor family expression than to analyze Rb expression, since Rb expression detected by immunohistochemical staining does not really reflect its contribution to tumor development (as discussed earlier). We would, therefore, like to focus on EGF receptor family and Heregulin in the expression studies. The ER status will be obtained from medical record (e.g. Please Table 1).

2. **Potential Paracrine and Autocrine Interactions between HER-2/neu and Heregulin in Breast Cancer Cells.**

We have previously completed the construction of Heregulin-expression vectors and anti-sense Heregulin plasmids and also identified several breast cancer cell lines that express HER-3 and also overexpress HER-2/neu. These include MDA-MB-453, MDA-MB-361, SKBr3. MDA-MB-231 and MDA-MB-435 are known to express only basal level of HER-2/neu. To establish stable transfectants, Heregulin-expression vector has been transfected into HER-3 positive and HER-2/neu-overexpressing cells and anti-sense construct into Heregulin-expressing cells (MDA-MB-231). Ten G418-resistant colonies have been selected for Heregulin transfectants (MDA-MB-453 as recipient cells). Expression of Heregulin is currently underway by using western blot analysis. Multiple G418-resistant colonies were also observed after anti-sense Heregulin construct was transfected into MDA-MB-231 cells. These colonies are currently under selection and will be expanded for analysis of down-regulation of Heregulin expression.

Using our ER-transfectants (59), we have previously shown that estrogen indeed suppresses transformation phenotype of ER+, HER-2/neu breast cancer cells as predicted in our original proposal. A manuscript described this study has been published in Oncology Report. A reprint is attached in lieu of detailed description.

The abstract of this paper is described as follows:

The mechanisms by which breast cancers progress to hormone independence does not always require the loss of estrogen receptor (ER) expression or function. Cellular alterations that disturb the normal pathway of estrogen-regulated growth may contribute to a state of hormone independence. We and others have described an inverse relationship between estrogen stimulation of ER+ breast cancer cell lines and their expression of neu. Amplification and overexpression of neu are known to enhance cellular transformation and increase the metastatic potential of cancer cells. Clinically, they are also correlated with more aggressive tumor phenotypes. Therefore, expression of neu may represent a key regulatory point in estrogenic control of cellular growth and transformation. In this communication we demonstrate that the presence of E2/ER can repress transformation of NIH/3T3 cells by the neu oncogene. Furthermore, we have investigated the effects of E2/ER on growth and transformation of an ER+, neu-overexpressing breast cancer cell line. We report that the presence of E2/ER in these cells leads to regression of the transformed phenotype (as measured by anchorage-independent growth) while stimulating cellular proliferation (in monolayer culture) and propose a model for the role of neu in progression to hormone independence based on these results.

Currently, we are titrating the ratio between TAM and E2 ratio to find the optimum condition for antagonism of TAM to the E2-mechated effects.

4. Effects of Rb on Malignant Transformation Phenotypes of HER-2/neu-overexpressing Breast Cancer Cells

In the last Progress Report, we have identified MDA-MB-468 and SK-OV-3 cell lines expressing aberrant form of Rb protein. We also co-transfected Rb expressing vector and pSV2-neo plasmid (10:1 molar ratio between Rb and neo plasmid) into SK-OV-3 cells. We selected 20 G418 resistant colonies (The pSV2-neo can convert the recipient cells to become G418-resistant) and screened for wt. Rb expression. None of these 20 colonies express wt Rb protein. This may be due to the cell growth arrest property of Rb protein. It is known in the tumor suppressor field that stable transfectants of tumor suppressor genes (such as Rb or p53) are difficult to obtain as expression of these tumor suppressor genes frequently suppress cell growth and can not grow to a colony to be selected. To overcome this problem, we have constructed adenovirus-Rb expressing vector (AdvRb). This way, we can infect cancer cells with adenovirus-Rb vector which allows transient expression of Rb gene in the infected cells and allows us to observe the effect of biological property. We also characterized more breast cancer cell lines regarding to Rb and HER-2/neu status. Three cell lines have been tested. They are SKBr3 (wt, Rb, HER-2/neu overexpression), BT549 (mut Rb, HER-2/neu basal level) and MDA-MB-468 (mut Rb, HER-2/neu basal level). The effects of Rb on cell growth rate (measured by MTT assay) and in vitro transformation phenotype (measured by soft agarose colonization assay) were shown in Figs. 4-6. There is no significant effect on cell growth based on MTT assay after AdVRb infection to breast cancer cells as shown in Panel A of Figs 4-6. However, the AdVRB infection significantly suppress soft agarose colonization activity in the two Rb mut lines. MDA-MB-468 (Fig. 5) and BT-549 (Fig. 4), indicating that wt Rb indeed can suppress transformation phenotype of Rb-defective cancer cells. Interestingly AdVRb has no significant effect on SKBr3 in which HER-2/neu is overexpressed and Rb is wt. It is not yet clear whether HER-2/neu expression in SKBr3 is repressed by the AdVRb. Further study is required to clarify the relationship between effect of AdVRb on these breast cancer cell lines.
Fig. 1. Immunohistochemical staining of breast cancer with EGFR antibody. (A) High(+++), (B) Intermediate(++) , (C) Low(+), And No expression(−). Magnification: X400
Fig. 2. Immunohistochemical staining of breast cancer with HER-2/neu antibody. (A) High(+++), (B) Intermediate(++) , (C) Low(+), And No expression(-). Magnification: X400
Fig. 3. Immunohistochemical staining of breast cancer with HER-3 antibody. (A) High(+++), (B) Intermediate(++) (C) Low(+), And No expression(-). Magnification: X400
<table>
<thead>
<tr>
<th>CHARACTERISTICS OF 123 CASES</th>
</tr>
</thead>
<tbody>
<tr>
<td>HER-2NEU</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NEG</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>TOTAL :</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AGE GROUP:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE <50</td>
</tr>
<tr>
<td>AGE =>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RACE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHITE</td>
</tr>
<tr>
<td>BLACK</td>
</tr>
<tr>
<td>HISPANIC</td>
</tr>
<tr>
<td>OTHER</td>
</tr>
<tr>
<td>Missing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MENOPAUSAL STATUS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE</td>
</tr>
<tr>
<td>PERI</td>
</tr>
<tr>
<td>POST</td>
</tr>
<tr>
<td>SURG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RSTAGE (NUMERIC):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RNODES:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missing</td>
</tr>
<tr>
<td>N=0</td>
</tr>
<tr>
<td>N=1-3</td>
</tr>
<tr>
<td>N=4-10</td>
</tr>
<tr>
<td>N>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ER:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEG</td>
</tr>
<tr>
<td>POS</td>
</tr>
<tr>
<td>UNK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATUS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALIVE/NED</td>
</tr>
<tr>
<td>ALIVE/WD</td>
</tr>
<tr>
<td>DEAD/NED</td>
</tr>
<tr>
<td>DEAD/WD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TUMOR GRADE (NUCLEAR):</th>
</tr>
</thead>
<tbody>
<tr>
<td>NG1</td>
</tr>
<tr>
<td>NG2</td>
</tr>
<tr>
<td>UNK</td>
</tr>
<tr>
<td>RRECUR:</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>NO</td>
</tr>
<tr>
<td>YES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RXRT:</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>43</td>
<td>10</td>
<td>5</td>
<td>19</td>
<td>77</td>
</tr>
<tr>
<td>YES</td>
<td>24</td>
<td>6</td>
<td>4</td>
<td>12</td>
<td>46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIRST SITE/1ST RECUR:</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BONE</td>
<td>6</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>LUNG</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>NODES</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>LIVER</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CW</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>SKIN</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>OP BREAST</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>INT-ABD</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>SOFT TISSUE</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Missing</td>
<td>53</td>
<td>10</td>
<td>7</td>
<td>27</td>
<td>97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RTSIZE:</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>47</td>
<td>7</td>
<td>4</td>
<td>22</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>6</td>
<td>3</td>
<td>9</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SURG TYPE:</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RAD</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>MOD RAD</td>
<td>50</td>
<td>15</td>
<td>7</td>
<td>27</td>
<td>99</td>
</tr>
<tr>
<td>LUMPECT</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>SEG/AX D</td>
<td>13</td>
<td>-</td>
<td>2</td>
<td>4</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROT:</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>82-79</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>86-12</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>122</td>
</tr>
</tbody>
</table>
Figure 4a. Cell Growth After Infection with AdVRb as Measured by MTT Assay

Figure 4b. Colony Formation in Soft Agarose After Infection with AdVRb

Figure 4. Effect of AdVRb on breast carcinoma cell line BT549 (Rb-null cell line).
Figure 4. Effect of AdVRb on breast carcinoma cell line BT549 (Rb-null cell line). The cell line was maintained under standard cell culture conditions. Treatment groups included i) untreated cells (BT549 C and BT549 control), ii) cells infected with the recombinant adenovirus vector containing a gene coding for an N-terminal truncated retinoblastoma (Rb) gene product (AdVRb) at a multiplicity of infection (MOI) of 200 virus particles to each breast cancer cell (BT549 Rb200), and iii) cells infected with AdVRb at a multiplicity of infection of 50 virus particles to each breast cancer cell. Figure 4a. Cell growth after infection with AdVRb as measured by MTT assay. Two days after treatment with AdVRb, cells were trypsinized and counted and then seeded onto 96-well plates at a density of 1,000 cells per well. Cell growth was then evaluated by measuring the metabolically active cells with MTT \(\text{MTT} = (3,4,5\text{-dimethylthiazol-2-yl})_2,5\text{ diphenyl tetrazolium bromide})\) staining at 24 hour intervals for five consecutive days. Optical density was determined at a wavelength of 590 nm. No significant difference was observed in the growth curves of untreated cells versus those treated with AdVRb at an MOI of 200:1 or 50:1. Figure 4b. Colony formation in soft agarose after infection with AdVRb. Two days after treatment with AdVRb, cells were trypsinized and counted and then mixed with 0.7% agarose in 1XDMEM with 10% fetal calf serum. This cell/agarose mixture was layered onto a 1.4% agarose base in 12-well plates. Cells were incubated at 37°C for three weeks. The number of colonies forming in this time period were counted and scored (measurement of anchorage independent growth). There was a significant decrease in the number of colonies which developed in the control group versus the cells treated with AdVRb at an MOI of 200:1 \(p=0.006,\) two-tailed student’s t-test.
Figure 5a. Cell Growth After Infection with AdVRb as measured by MTT Assay

Figure 5b. Colony Formation in Soft Agarose After Infection with AdVRb

Figure 5. Effect of AdVRb on breast carcinoma cell line MB-MDA-468 (Rb-null cell line).
Figure 5. Effect of AdVRb on breast carcinoma cell line MB-MDA-468 (Rb-null cell line). The cell line was maintained under standard cell culture conditions. Treatment groups included i) untreated cells (468 C and MB-MDA 468 control), ii) cells infected with the recombinant adenovirus vector containing a gene coding for an N-terminal truncated retinoblastoma (Rb) gene product (AdVRb) at a multiplicity of infection (MOI) of 200 virus particles to each breast cancer cell (468 Rb200 and MB-MDA 468 Rb200), and iii) cells infected with AdVRb at a multiplicity of infection of 50 virus particles to each breast cancer cell (468 Rb50 and MB-MDA 468 Rb50). Figure 5a. Cell growth after infection with AdVRb as measured by MTT assay. Two days after treatment with AdVRb, cells were trypsinized and counted and then seeded onto 96-well plates at a density of 1,000 cells per well. Cell growth was then evaluated by measuring the metabolically active cells with MTT (MTT=(3,4,5-dimethylthiazol-2-yl) 2,5 diphenyl tetrazolium bromide)) staining at 24 hour intervals for five consecutive days. Optical density was determined at a wavelength of 590 nm. No significant difference was observed in the growth curves of untreated cells versus those treated with AdVRb at an MOI of 200:1 or 50:1. Figure 5b. Colony formation in soft agarose after infection with AdVRb. Two days after treatment with AdVRb, cells were trypsinized and counted and then mixed with 0.7% agarose in 1XDMEM with 10% fetal calf serum. This cell/agarose mixture was layered onto a 1.4% agarose base in 12-well plates. Cells were incubated at 37°C for three weeks. The number of colonies forming in this time period were counted and scored (measurement of anchorage independent growth). There was a significant decrease in the number of colonies which developed in the control group versus the cells treated with AdVRb at an MOI of 200:1 (p=0.005, two-tailed student’s t-test).
Figure 6a. Cell Growth After Infection with AdVRb as Measured by MTT Assay

Figure 6b. Colony Formation in Soft Agarose After Infection with AdVRb

Figure 6. Effect of AdVRb on breast carcinoma cell line SKBr3 (Rb-wild-type cell line).
Figure 6. Effect of AdVRb on breast carcinoma cell line SKBr3 (Rb-wild-type cell line). The cell line was maintained under standard cell culture conditions. Treatment groups included i) untreated cells (SKBr3 C and SKBr3 control), ii) cells infected with the recombinant adenovirus vector containing a gene coding for an N-terminal truncated retinoblastoma (Rb) gene product (AdVRb) at a multiplicity of infection (MOI) of 200 virus particles to each breast cancer cell (SKBr3 Rb200), and iii) cells infected with AdVRb at a multiplicity of infection of 50 virus particles to each breast cancer cell (SKBr3 Rb50).

Figure 6a. Cell growth after infection with AdVRb as measured by MTT assay. Two days after treatment with AdVRb, cells were trypsinized and counted and then seeded onto 96-well plates at a density of 1,000 cells per well. Cell growth was then evaluated by measuring the metabolically active cells with MTT (MTT=(3-(4,5-dimethylthiazol-2-yl) 2,5 diphenyl tetrazolium bromide)) staining at 24 hour intervals for five consecutive days. Optical density was determined at a wavelength of 590 nm. No significant difference was observed in the growth curves of untreated cells versus those treated with AdVRb at an MOI of 200:1 or 50:1.

Figure 6b. Colony formation in soft agarose after infection with AdVRb. Two days after treatment with AdVRb, cells were trypsinized and counted and then mixed with 0.7% agarose in 1XDMEM with 10% fetal calf serum. This cell/agarose mixture was layered onto a 1.4% agarose base in 12-well plates. Cells were incubated at 37°C for three weeks. The number of colonies forming in this time period were counted and scored (measurement of anchorage independent growth). There was no significant difference in the number of colonies which developed in the control group versus the cells treated with AdVRb at an MOI of 200:1 (p=0.956, two-tailed student’s t-test).
CONCLUSION:

Task 1: Screening of 200 tumor sections for EGF receptor, HER-2/neu and HER-3 has been completed. Due to the complexity caused by the newly identified HER-3 and HER-4 (12, 13), we will emphasize more on the staining of EGF receptor, HER-2/neu, HER-3, HER-4 and Herengulin. We also have begun to collect data and analyze between gene expression and clinical status from medical record.

Task 2: Construction of Herengulin-expression vectors and anti-sense Herengulin plasmids have been completed. Stable transfectants of both Herengulin and anti-sense Herengulin are completed. Characterization of these stable transfectants is currently underway.

Task 3: Characterization of E2 on ER+, HER-2/neu-overexpressing breast cancer cells was completed. A manuscript describing these works was published this year. Characterization of antagonism of Tamoxifen (TAM) to estrogen (E2)-mediated effect has been started.

Task 4: Screening of Rb expression in breast cancer cell lines was completed. We will focus on SKBr3, BT549 and MDA-MB-468 as described in the Progress Report (Figs 4-6). Stable transfectants of SK-OV-3 did not result in Rb-expressing stable transfectants. We have used another approach to study the effect of Rb on breast cancer cells by construction of adenovirus Rb expressing vector (AdV.Rb). Some biological characterizations were presented in Figs 4-6. To our surprise, AdV.Rb has no effect on SkBr3. We will further characterize the biological effects and expression of Rb and HER-2/neu after AdV.Rb infection.

In addition to the those described in the BODY Section, several studies relating to HER-2/neu oncogene in breast cancer have been completed. The funding support from the current project has been appropriately acknowledged in the resulting publications. These include:

Reprints or copies of these papers are attached.
REFERENCES

65. Debbas M, and White E. Wild-type p53 mediates apoptosis by E1A which is inhibited by E1B. Genes & Development 7:546-554, 1993.
Effects of estrogen receptor expression on growth and transformation of cells overexpressing neu

KERRY STRONG RUSSELL1, EUN KYUNG LEE1, NOBUTAKA KIYOKAWA1, SAYA HIDEYUKI2 and MIEN-CHIE HUNG1

1Department of Tumor Biology and Breast Cancer Basic Research Program, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030; 2Department of Oncology, Kumamoto University School of Medicine, 2-2-1 Honjo, Kumamoto 860, Japan

Received January 8, 1996; Accepted February 3, 1996

Abstract. The mechanism by which breast cancers progress to hormone independence does not always require the loss of estrogen receptor (ER) expression or function. Cellular alterations that disturb the normal pathway of estrogen-regulated growth may contribute to a state of hormone independence. We and others have described an inverse relationship between estrogen stimulation of ER+ breast cancer cell lines and their expression of neu. Amplification and overexpression of neu are known to enhance cellular transformation and increase the metastatic potential of cancer cells. Clinically, they are also correlated with more aggressive tumor phenotypes. Therefore, expression of neu may represent a key regulatory point in estrogenic control of cellular growth and transformation. In this communication we demonstrate that the presence of E2/ER can repress transformation of NIH/3T3 cells by the neu oncogene. Furthermore, we have investigated the effects of E2/ER on growth and transformation of an ER+, neu-overexpressing breast cancer cell line. We report that the presence of E2/ER in these cells leads to repression of the transformed phenotype (as measured by anchorage-independent growth) while stimulating cellular proliferation (in monolayer culture) and propose a model for the role of neu in progression to hormone independence based on these results.

Introduction

Proto-oncogene neu (also known as HER-2 or c-erbB2) encodes a receptor protein kinase, overexpression of which is correlated with enhanced malignancy and poor clinical outcome (1-5). Conversely, repression of neu leads to loss of the transformation phenotype (4,6-8). Clinical correlations have shown neu to be an important prognostic factor in breast cancer (1-3). Another prognostic factor is estrogen receptor (ER) status (9-11). Estrogen is known to stimulate cell proliferation, and antiestrogen, such as tamoxifen, is used in ER+ breast cancer patients to suppress estradiol (E2)-stimulated cell growth. Several studies have shown that there exists an inverse correlation between expressions of neu and ER (12,13). Clinical studies have shown that coexpression of neu and ER is correlated with tamoxifen resistance (14,15). These studies together suggest that there is an interaction between the neu gene product and ER. One recent report suggested that activation of neu leads to phosphorylation of ER on tyrosine residues and subsequent activation of estrogen-responsive genes (16). On the other hand, we and others have previously shown that estrogen-stimulated ER (E2/ER) can repress expression of neu (17,18) at the transcriptional level (19). These studies together suggest a possible feedback loop between ER and neu. While the ER/neu regulatory mechanism has been studied, the question of whether repression of neu by E2/ER plays a physiologically important role in suppressing transformation by this oncogene has not been addressed yet. Our hypothesis is that E2 has dual effects on ER+, neu-overexpressing cancer cells; while it stimulates cell growth, E2 at the same time modulates neu expression and thereby inhibits transformation in these cells. In this study, using our previously established ER+, neu-overexpressing cell lines, we tested this hypothesis.

Materials and methods

Cell culture. The human breast cancer cell line BT-474 was obtained from the American Type Culture Collection (Rockville, MD). This line was routinely maintained in phenol red-free RPMI supplemented with 10% fetal bovine serum. NIH/3T3 cells were maintained in phenol red-free Dulbecco's Modified Eagle's Medium (DMEM). To remove steroid hormone agonists present in normal serum, the serum used in these experiments was treated by incubation with dextran-coated charcoal (20). The final concentration of estrogen in serum thus treated was measured by radioimmunoassay (ICN Biomedicals, Lisle, IL) and found to be ≤10-12 M. Stock solutions of E2 was dissolved

Correspondence to: Dr Mien-Chie Hung, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Box 79, Houston, TX 77030 USA

Abbreviations: ER, estrogen receptor; ER+, estrogen receptor positive; E2/ER, estrogen-stimulated estrogen receptor; ER-, estrogen receptor negative; E2, estradiol; neu+, activated neu

Key words: estrogen receptor, HER-2, breast cancer
in ethanol at concentrations of 0.1-1 mM and stored at -20°C for periods of up to one month. The concentration of ethanol in all plates, both steroid treated and deprived, was kept at 0.01%.

Focus formation assays. NIH/3T3 fibroblasts were transfected in regular DMEM/F12 plus 10% calf serum by calcium phosphate-mediated gene transfer (21). The cells were washed with phosphate-buffered saline (PBS) after 12-16 h of treatment with the DNA-CaP04 precipitate and fed with 10 ml of regular medium. The next morning, each plate was split 1:4. Two of these plates were fed with estrogen-depleted medium plus 10 nM E2, and the other two with estrogen-depleted medium plus ethanol (to bring the final concentration of ethanol in all plates to 0.01%). Plates were refed with the same medium every other day for 3-4 weeks. The plates were then washed with PBS and stained with 1% crystal violet (Sigma) in 20% ethanol. Foci of stained cells >1 mm in diameter were scored manually by using a 1-cm grid.

Formation of ER+ sublines. Stable sublines of BT-474 cells expressing ER were formed by using a viral infection scheme as described previously (19). Subclones denoted (v/ER) were infected with the PXTHER viral vector containing 2.1 kb of human ER cDNA along with the neomycin resistance gene (neo8), and those denoted (v/neo) were infected with the PXTI vector containing neo8 alone (22). Stable cell lines resistant to neomycin were subsequently subcloned and tested for expression of ER. We have previously demonstrated that the PXTHER-containing subclones B1(v/ER) and B10(v/ER) express ER mRNA, while the control PXTI-containing subclone B1(v/neo) does not express ER mRNA (19).

Soft agar assays. Plates (60 mm) were prepared by placing a 2 ml bottom layer of estrogen-depleted medium and 0.7% agarose (SeaPlaque) ± 10 nM E2. Cells were harvested from subconfluent plates by trypsinization. After the bottom layer had solidified, 3x10^4 cells were plated (in triplicate) in 2 ml of estrogen-depleted medium and 0.35% agarose ±E2 as a top layer. Plates were fed with 3 drops of medium every other day. After 3-4 weeks, colonies were stained by placing 1 ml of INT (p-iodonitrotetrazolium violet, 1 mg/ml) on each plate and incubating overnight at 37°C. Colonies of violet-stained (viable) cells were counted manually using a 5.0-mm grid.

Growth curves in monolayer culture. For each cell line, 10^4 cells/well were seeded into 6-well plates on day 0 in estrogen-depleted medium ± 10 nM E2. To those plates without added E2, ethanol was added such that its final concentration in all plates, both steroid treated or depleted, was kept at 0.01%. Medium was changed at 3-day intervals, again with or without E2. At various timepoints after plating, duplicate wells were harvested by trypsinization and the cells counted by an automated system (Coulter Instruments).

Results

The presence of E2/ER affects the ability of neu to transform NIH/3T3 cells. To test the hypothesis that regulation of neu expression by E2/ER can prevent cellular transformation by neu, a focus formation system was utilized. NIH/3T3 cells were transfected with DNA encoding transforming oncogene neu. In each plate, only a limited percentage of these cells received and expressed the oncogene. The cells that were transformed by the oncogene piled up as they proliferated to form foci of transformed cells in a background of non-transformed NIH/3T3 cells. These foci were easily visualized and counted after staining. The number of foci formed is a function of the efficiency of gene transfer as well as the efficiency of expression of the oncogene-encoded product. In later experiments, differences in gene transfer and maintenance were eliminated by comparing only plates of cells from a single transfection. This was achieved by splitting a single transfected plate into four identical plates for subsequent treatment with E2 (Table I).

Table I. Focus formation by neu* and ras transfected NIH/3T3 cells.

<table>
<thead>
<tr>
<th>Oncogene vector</th>
<th>Avg #foci (n=2)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>+E2/ER</td>
<td>-E2/ER</td>
</tr>
<tr>
<td>c-neu 104 (neu)</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
<tr>
<td>pT24-C3 (ras)</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>70</td>
</tr>
</tbody>
</table>

*Note that each row represents a single transfection, therefore data can only be compared across single rows. Direct comparisons between rows are invalid since transfection efficiency may alter the number of cells receiving the transforming vector. These data were normalized to form Fig. 1 by measuring repression by estradiol in each transfection and comparing these values.

Estradiol inhibits the ability of BT-474 (v/ER) sublines to grow in soft agar. The previous findings suggest that, by
repressing neuro expression, E2 and ER may play a role in regulating the ability of neuro to act as a transforming oncogene. To test this possibility in human breast cancer cell lines, the BT-474 breast cancer cell line, which is ER- and neuro-overexpressing (25), and its ER transfectants were chosen for these experiments. Although there is a report indicating that a BT-474 subline expressed a low level of ER (26), Northern blot analysis of our BT-474 line for ER mRNA expression established that our BT-474 cell line does not express detectable amount of ER and does not respond to E2 (19). The formation of ER-expressing subclones of the BT-474 human breast cancer cell line was previously described (19). When ER+ (i/ER) and ER- (i.neo) subclones were tested for their ability to grow in an anchorage-independent manner, we found that the ability of the (i/ER) subclones to form colonies in soft agar was significantly reduced in the presence of E2 (Figs. 2 and 3). E2 had no effect on the ability of the ER- (i.neo) subclone to form colonies in these experiments, which agrees with the idea that E2 alone cannot repress the expression of neuro in these cells (19). These results clearly indicate that E2 can suppress transformation of ER+, neuro-overexpressing cancer cells but has no effect on ER-, neuro-overexpressing cells. This suppression is most likely caused by E2/ER-mediated neuro repression.

Estradiol stimulates the ability of BT-474 (i/ER) sublines to grow in monolayer culture. The results presented above agree with data showing a correlation between increased neuro expression and cellular transformation (in this case, measured by anchorage-independent growth) (27). The addition of E2/ER to these cells both suppresses neuro expression and leads to a reduction in their anchorage-independent growth. It is important to note that in other ER+ breast cancer cell lines [e.g., MCF-7 (28) and ZR-75-1 (29)], E2 stimulates growth in monolayer cultures. Since growth in soft agar and in monolayer culture are not necessarily correlated, growth curves were constructed to assess the effects of E2 and ER on the growth of the BT-474 subclones in monolayer culture.

Table II shows the results from these experiments. Growth of the (i/ER) subclones was significantly enhanced in the presence of E2, whereas E2 had no effect on the growth of the ER- control subclone (X1/3). The presence of ER in these clones significantly altered their growth characteristics, such
that doubling times for the (i/ER) clones decreased in the presence of E2, but were higher in estrogen-depleted medium than those of the X1/3(1/neo) ER- clone. Thus, the presence of ER in these cells allows E2-stimulated growth in monolayer culture. The results shown here demonstrate that E2 indeed has dual effects on ER+; neu-overexpressing cancer cells; E2 will enhance transformation activity (measured by anchorage independence) but inhibit cell growth rate (measured by growth in monolayer).

Discussion

In this report, we have shown that E2/ER indeed has dual effects on ER+; neu-overexpressing cancer cells-stimulation of cell growth while suppressing transformation via neu repression. This further confirms the importance of the interaction between E2/ER and neu in cancer cells. Coexpression of ER and neu has been studied previously at the experimental (26) and clinical levels (14,15). It has been reported that coexpression of neu in ER+ MCF-7 cells leads to increased tumorigenesis (26). Our results show that coexpression of ER in neu-overexpressing BT474 cells leads to a decrease in transformation upon E2 stimulation. Our data do not contradict the previous report since we are proposing that E2/ER suppression of transformation is due to neu repression at the promoter level. The authors of the previous report (26) used ER+ MCF-7 cells transfected with a full-length cDNA encoding neu under exogenous promoter control. In such a system, E2/ER cannot inhibit neu expression; yet, E2 can still stimulate cell growth through the ER pathway and thereby promote tumorigenesis.

Based on our studies, the following model for transformation/progression to hormone independence of the BT-474 cell lines is proposed. In these cells, loss of ER expression results in derangement of pathways normally regulated by this receptor. The growth of these cells is no longer stimulated in the presence of E2 (Table II). Another effect of deregulation of ER pathways is the de-repression of neu expression and consequent increase in cellular transformation (as demonstrated by ability to grow in soft agar). Finally, restoring the expression of ER reestablishes these pathways such that stimulation with E2 increases cellular growth rate (in monolayer culture) and reduces the level of neu expression in response to E2 stimulation so that cells are less transformed.

This model leads to an interesting hypothesis regarding tamoxifen resistance. The mechanism of tamoxifen resistance in breast cancer is an area of intensive research. Tamoxifen is the endocrine therapy of choice for ER+ breast cancer patients and is used to suppress cell growth. Tamoxifen, however, is effective in only about 50-60% of ER+ patients (14,15,30,31). Recent clinical studies have shown that coexpression of neu in ER+ breast cancer patients is correlated with decreased response to tamoxifen treatment, compared with those ER+ patients without overexpression of neu (14,15). An experimental study has shown that coexpression of neu in ER+ MCF7 cells leads to increased tamoxifen resistance (26). In this case, the exogenous neu expressing vector is not driven by the neu promoter and therefore neu expression will not be affected by tamoxifen. However, it has been shown that tamoxifen can up-regulate neu expression in ER+ breast cancer cell lines (32). Taken together with our current study, we hypothesize that the tamoxifen-induced neu expression may be mediated by blocking the E2/ER-induced down-regulation of neu and that it contributes to the decreased response to tamoxifen for patients with ER+, neu-overexpressing breast cancer. Based on this hypothesis, we speculate that treating ER+, neu-overexpressing cells with an antiestrogen such as tamoxifen, though it may decrease cell proliferation, will increase transformation by disrupting normal E2 regulatory pathways involving neu repression. Clinically, when patients with ER+, neu-overexpressing breast cancer are treated with tamoxifen, the antiproliferative effect of tamoxifen may be antagonized by tamoxifen's indirect effect of upregulating neu expression. Currently there are numerous hypotheses for tamoxifen resistance. Our results provide one mechanism which at the same time can explain an important clinical correlation: that ER+ patients whose tumors overexpress neu may be resistant to tamoxifen.

Acknowledgments

This work was supported by NIH Grants CA58880 and CA60856, U.S. Army Research Grant 17-94-J-4315, and NCI Cancer Center Core Grant CA16672. K.S.R. received support from the University of Texas Medical School at Houston, M.D./Ph.D. program.

References

p66Shc Isoform Down-Regulated and Not Required for HER-2/neu Signaling Pathway in Human Breast Cancer Cell Lines with HER-2/neu Overexpression

Youming Xie and Mien-Chie Hung

Department of Tumor Biology and Breast Cancer Basic Research Program, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030

Received February 27, 1996

The HER2/neu protooncogene encodes a transmembrane receptor tyrosine kinase of M\textsubscript{r} 185 kDa (called p185) which is structurally and functionally homologous to the epidermal growth factor receptor. Shc proteins are important downstream signal transducers of receptor tyrosine kinases. We reported here a novel finding that p66Shc was absent or nearly absent in p185-overexpressing breast cancer cells. This inverse correlation of p185 overexpression and p66Shc expression is probably specific to breast cancer cells because this phenomenon was not observed in p185-overexpressing human ovarian, lung, or oral cancer cells, or mouse fibroblast cells. In contrast, the p52Shc and p46Shc isoforms were expressed at similar levels in both p185-overexpressing and p185 basal level breast cancer cell lines. Furthermore, tyrosine phosphorylation of p52Shc and p46Shc and subsequent formation of Shc/Grb2 complex were detected in breast cancer cells in which the p185 tyrosine kinase is activated, indicating that p66Shc is not required for mediating the HER-2/neu signaling pathway in breast cancer cells. © 1996 Academic Press, Inc.

The HER2/neu (also known as erbB-2) protooncogene encodes an M\textsubscript{r} 185,000 transmembrane glycoprotein (called p185) with intrinsic tyrosine kinase activity homologous to the epidermal growth factor (EGF) receptor (1-4). It is well known that amplification and/or overexpression of HER2/neu correlates to approximately 30% of human breast cancer (5) and that aberrant activation of its tyrosine kinase confers transforming ability on p185 (6). However, the downstream signaling pathways mediating the oncogenic signal of p185 in breast cancer are not well understood. Our recent studies have demonstrated that tyrosine phosphorylation of Shc, termed for Shc homology 2α-collagen-related (7), and subsequent formation of the Shc/Grb2/Sos complex play a major role in cell transformation mediated by the point mutation-activated p185 in mouse fibroblast NIH3T3 cells (8, 9). These observations suggest that Shc proteins may play an important role in transmitting the oncogenic signal of p185 in breast cancer. The mammalian Shc locus encodes three overlapping isoforms of 46, 52, and 66 kDa (p46Shc, p52Shc, and p66Shc) (7). p46Shc and p52Shc arise from the use of alternative translation initiation sites within the same transcript. p46Shc is an amino-terminal 59-amino acid truncation of p52Shc. In contrast, p66Shc most likely arises from an alternatively spliced transcript, since there is only Shc gene and the antibodies specific to the carboxyl-terminus cross-react with all three Shc isoforms (7). Although the importance of Shc in signal transduction of receptor tyrosine kinases has been extensively investigated, the functional differences of the three isoforms remain unclear. To study the functional role of Shc in breast cancer cells that overexpress HER2/neu, we first compared the expression levels of Shc proteins in 10 different breast cancer cell lines that overexpress or have basal level expression of HER2/neu. To our surprise, we found that no or a very little amount of p66Shc was detected in the six p185-overexpressing cell lines, whereas significant amounts of p66Shc existed in the other four cell lines that expressed p185 at basal levels. In contrast, the levels of p46Shc and p52Shc expression were comparable in each of the 10 cell lines. It is interesting that the inverse correlation of expression

1 To whom correspondence should be addressed: Fax: 713-794-4784.
of p185 and p66$^{\text{Shc}}$ appeared to be cell type specific, since p66$^{\text{Shc}}$ was detected in human ovarian, lung, and oral cancer cells and in mouse fibroblast cells irrespective of the p185 expression level. We demonstrated, furthermore, that p66$^{\text{Shc}}$ was not required for mediating the oncogenic signal of HER-2/neu to downstream signaling pathways in human breast cancer cells.

METHODS

Cell lines and culture. The human cancer cell lines used in this study were from ATCC (American Type Culture Collection, Rockville, MD). DHFR/G8 cells were derived from NIH3T3 cells expressing the transfected rat HER2/neu gene (3). Cells were grown in Dulbecco’s modified Eagle’s medium/Ham’s F-12 medium supplemented with 10% fetal calf serum under an atmosphere of 5% CO$_2$ at 37°C.

Antibodies. The monoclonal antibody c-neu-Ah3 targeting the carboxyl-terminal domain of p185 was obtained from Oncogene Science. The recombinant antiphosphotyrosine antibody (RC20), the monoclonal anti-Grb2 antibody, and the rabbit anti-Shc polyclonal antibody were purchased from Transduction Laboratories.

Immunoprecipitation and Western blotting. Cells were harvested at subconfluence and subjected to lysis in 1% Triton X-100, 150 mM NaCl, 10 mM Tris (pH 7.4), 1 mM EDTA, 0.2 mM sodium vanadate, 0.2 mM phenylmethylsulfonyl fluoride, 0.5% NP-40, 10 µg/ml leupeptin, and 5 µg/ml aprotinin. Protein concentrations were determined against standardized controls using the Bio-Rad protein assay kit. Lysates were immunoprecipitated with appropriate antibodies according to the suppliers’ specifications and separated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and transferred to nitrocellulose filters (Schleicher & Schuell). Filters were blocked with 5% dry milk powder in TBBS (0.05% Tween 20 in PBS), incubated with appropriate antibodies, incubated with goat anti-mouse or goat anti-rabbit IgG-HRP (Boehringer-Mannheim) and visualized by the ECL chemiluminescence system.

Stripping of Western blots. Used immunobLOTS were stripped by incubation with 62.5 mM Tris.Cl (pH 6.8), 2% SDS and 100 mM β-mercaptoethanol at 75°C for 30 min. Filters were then washed twice with TBBS and reprobed with other antibodies.

RESULTS AND DISCUSSION

To study the functional role of Shc proteins in HER2/neu-overexpressing breast cancer cells, we set out to evaluate the expression levels of Shc isoforms in 10 different breast cancer cell lines that express HER2/neu at various levels (10, 11). We first confirmed the p185 levels in these cells by immunoblot analysis with the monoclonal anti-p185 antibody. As shown in figure 1 (top panel), the p185 levels were readily detectable in the six HER2/neu-overexpressing cell lines, while under the same conditions the other four cell lines had no detectable p185. The p185 protein levels in these cell lines were generally consistent to previously described data on HER2/neu mRNA expression levels, with one exception. Previous data showed the HER2/neu mRNA levels in the SKBR-3 and

![FIG. 1. Inverse correlation of expression of p185 and p66$^{\text{Shc}}$ in breast cancer cells. Fifty micrograms of cell extracts from various cell lines as indicated were subject to 6% SDS/PAGE. After transfer, the top portion of the nitrocellulose filter was probed with c-neu-mAb3, a monoclonal anti-p185 antibody, the lower part was incubated with polyclonal anti-Shc antibody.](image)
MDA-MB-361 cell lines to be 128-fold and 64-fold over that of HBL100, respectively. Our western blot data indicated that the p185 protein level in MDA-MB-361 was higher than that in SKBR-3. This discrepancy may be due to heterogeneity in human breast cancer cells (12).

We compared the Shc protein levels in these cells with the anti-Shc polyclonal antibody (Fig. 1, bottom panel). To our surprise, the p66Shc isoform was clearly detected only in the four p185 basal level cell lines. No appreciable amounts of p66Shc were observed in any of the p185-overexpressing cell lines. Only a very faint band corresponding to the position of p66Shc was detected in the lanes of SKBR3 and MDA-MB-361 after longer exposure (data not shown). In contrast, the p52Shc and p46Shc protein levels were comparable in each of the 10 cell lines. These observations suggest an inverse correlation of expression of p185 and p66Shc in breast cancer cells.

To determine whether this inverse correlation of expression of p185 and p66Shc exists in other cell types, we examined by western analysis the p66Shc protein levels in human ovarian cancer cells and mouse fibroblast cells that overexpress HER2/neu. As shown in figure 2 (top panel), human ovarian cancer cell lines OVCAR3 and SKOV3 overexpress p185, while human ovarian cancer cell line 2774 does not express p185. DHFR/G8 is a NIH3T3-derived cell line overexpressing the rat HER2/neu gene (3). Down-regulation of p66Shc was not observed in cell lines OVCAR3, SKOV3, or DHFR/G8 cells (Fig. 2, bottom panel). The extra faint band on the top of p52Shc in some lanes was not always detectable in separate experiments. It is not yet clear whether this extra band represents an unidentified minor isoform of Shc. Since these cell lines have p185 levels higher than or similar to those of breast cancer cells tested in this study (Fig. 2 and data not shown), the appearance of p66Shc in these cell lines indicated that the inverse correlation of expression of p185 and p66Shc is not ubiquitous but cell type specific. Furthermore, we did not detect this inverse correlation in p185-overexpressing human oral cancer cell lines (13) or in stable transfectants derived from human lung cancer cells expressing HER2/neu cDNA (14) (data not shown). Taken together, these data suggest that the inverse correlation of p185 overexpression and p66Shc expression may be limited to human breast cancer cells.

To date the functional differences of the three Shc isoforms have not been investigated, probably because of an inability to clone the p66Shc cDNA. Our previous data have shown that the activated p185 can induce tyrosine phosphorylation of all three Shc isoforms and subsequent Shc/Grb2

![Diagram](image)

FIG. 2. Down-regulation of p66Shc is cell type specific. Fifty micrograms of cell lysates from different cell lines as indicated were subject to 6% SDS/PAGE. After transfer, the top portion of the nitrocellulose filter was probed with c-neu-mAb3, the lower part was incubated with polyclonal anti-Shc antibody.
complex formation and further downstream signaling pathways in fibroblast cells (8). It is also known that the p185 tyrosine kinase is activated in p185-overexpressing cells (15, 16). The absence of p66Shc in p185-overexpressing breast cancer cells therefore led us to examine whether the p52Shc and p46Shc isoforms can be tyrosine phosphorylated by the activated p185 in these cells and whether, in the absence of p66Shc, they can form complex with Grb2 to mediate downstream signal pathways. We used the anti-Shc polyclonal antibody to immunoprecipitate Shc and associated proteins from two p185-overexpressing cell lines, SKBR3 and MDA-MB-453, and two p185 basal level control lines, MDA-MB-231 and MDA-MB-435. After immunoprecipitation, the immunocomplexes were separated by SDS/PAGE and subjected to western analysis with anti-p185 (Fig. 3a), recombinant anti-phosphotyrosine antibody (RC20) (Fig. 3b), or monoclonal anti-Grb2 antibody (Fig. 3c). As shown in figure 3a, Shc proteins were physically associated with the activated p185 in SKBR3 and MDA-MB-453 cells, which is similar to our previous data showing the complex formation of p185 and Shc proteins in mouse fibroblast cells expressing the point mutation-activated HER2/neu (8). Both p52Shc and p46Shc were tyrosine phosphorylated in SKBR3 and MDA-MB-453 cells, while no appreciable amounts of tyrosine phosphorylated Shc proteins were detected in either MDA-MB-231 or MDA-MB-435 cells. Furthermore, the Shc/Grb2 complex formed in SKBR3 and MDA-MB-453 cells but not in the two control cell lines. To show equal loading, we stripped the filter (used in panel b) and re-probed it with the anti-Shc polyclonal antibody. As shown in figure 3d, equal amounts of various cell extracts were applied in the immunoprecipitation. This experiment again demonstrated that p66Shc was undetectable in either SKBR3 or MDA-MB-453 cells. A recent report already showed that the downstream MAP kinase signaling pathway is activated in HER-2/neu-overexpressing human breast cancer cells including SKBR3 and MDA-MB-453 (17). Taken together, these observations suggest that a lack of p66Shc

FIG. 3. Tyrosine phosphorylation of p52Shc and p46Shc by the activated p185 in breast cancer cells. Two milligrams of lysates from each cell line were immunoprecipitated with polyclonal anti-Shc antibody. Immunocomplexes were dissected by 10% SDS/PAGE, followed by immunoblotting analysis with either c-neu-Ab3 (panel a), recombinant anti-phosphotyrosine antibody (panel b), or monoclonal anti-Grb2 antibody (panel c). The filter used in panel b was stripped off and re-probed with polyclonal anti-Shc antibody (panel d). Equal loading was confirmed in panel d.

143
does not affect tyrosine phosphorylation of p52Shc and p46Shc, Shc/Grb2 complex formation, or the downstream MAP kinase signaling pathway induction by the activated p185 in breast cancer cells. In other words, p66Shc is not required for mediating the oncogenic signal of p185 in human breast cancer cells that overexpress HER-2/neu.

It is generally believed that Shc proteins are important signal mediators for receptor tyrosine kinases. However, little is known about the distinct function of any of the three Shc isoforms. All three isoforms appear to bind and be tyrosine phosphorylated by the activated p185 and EGF receptor in fibroblast cells (7–9). A recent report demonstrated that the major insulin-dependent Shc signaling pathway occurred through the p52Shc isoform, whereas the EGF receptor displayed similar substrate specificity for both the p52Shc and the p46Shc forms (18). This suggests that preferential tyrosine phosphorylation of Shc isoforms may underlie physiological specificity in the signaling pathways of different receptor tyrosine kinases. Differential physiological specificity among the Shc isoforms is further supported by the fact that p52Shc and p66Shc, but not p46Shc, are associated with the PEST tyrosine phosphatase (19,20). This interaction can be enhanced by protein kinase C activator phorbol 12-myristate 13-acetate and G protein receptor agonist, but not by EGF or serum, suggesting cross-talk between the G protein receptor and the Shc signaling pathway. In addition, p66Shc was not expressed in any human hematopoietic cell lines tested (7), which is similar to the situation in HER2/neu-overexpressing breast cancer cells described in this study. It is unclear whether a common mechanism leads to the absence of p66Shc in hematopoietic cell lines and p185-overexpressing breast cancer cell lines, but our data suggest that both cell type specificity and overexpression of p185 may contribute to the down-regulation of p66Shc.

We reported here a novel finding that p66Shc was down-regulated in p185-overexpressing breast cancer cells. This inverse correlation of p185 overexpression and p66Shc expression is probably specific to breast cancer cells because this phenomenon was not observed in p185-overexpressing mouse fibroblasts or human ovarian, oral, or lung cancer cells. In contrast, the p52Shc and p46Shc isoforms were expressed at similar levels in p185-overexpressing breast cancer cell lines as in those expressing basal levels of p185. Moreover, p52Shc and p46Shc without p66Shc appeared to be sufficient to transmit the oncogenic signal of the activated p185 in breast cancer cells. Further study of the relationship between p66Shc expression and p185 overexpression in breast cancer cells may help us understand differential physiological functions among the Shc isoforms.

ACKNOWLEDGMENTS

This work was supported by NIH grants (CA58880 and CA60856), US Army Breast Cancer Grant (DAMD 17-94-J-4315) and Breast Cancer Basic Research Program of M. D. Anderson Cancer Center to M.C.H and a Rosalie B. Hite predoctoral fellowship to Y.X.

REFERENCES

Dominant-negative Mutants of Grb2 Induced Reversal of the Transformed Phenotypes Caused by the Point Mutation-activated Rat HER-2/Neu

Youming Xie‡, Ann Marie Pendergast‡, and Mien-Chie Hung‡‡

From the ‡Department of Tumor Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and the ‡Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710

To clarify the role of the Shc-Grb2-Sos trimer in the oncogenic signaling of the point mutation-activated HER-2/neu receptor tyrosine kinase (named p185), we interfered with the protein-protein interactions in the Shc-Grb2-Sos complex by introducing Grb2 mutants with deletions in either amino- (ΔN-Grb2) or carboxyl- (ΔC-Grb2) terminal SH3 domains into B104-1-1 cells derived from NIH3T3 cells expressing the point mutation-activated HER-2/neu. We found that the transformed phenotypes of the B104-1-1 cells were largely reversed by the ΔN-Grb2. The effect of the ΔC-Grb2 was much weaker. Biochemical analysis showed that the ΔN-Grb2 was able to associate Shc but not p185 or Sos, while the ΔC-Grb2 bound to Shc, p185, and Sos. The p185-mediated Ras activation was severely inhibited by the ΔN-Grb2 but not the ΔC-Grb2. Taken together, these data demonstrate that interruption of the interaction between Shc and the endogenous Grb2 by the ΔN-Grb2 impairs the oncogenic signaling of the activated p185, indicating that (i) the ΔN-Grb2 functions as a strong dominant-negative mutant, and (ii) Shc/Grb2/Sos pathway plays a major role in mediating the oncogenic signal of the activated p185. Unlike the ΔN-Grb2, ΔC-Grb2 appears to be a relatively weak dominant-negative mutant, probably due to its ability to largely fulfill the biological functions of the wild-type Grb2.

The HER-2/neu (also known as erbB-2) protooncogene encodes an M, 185,000 transmembrane glycoprotein with intrinsic tyrosine kinase activity homologous to the epidermal growth factor (EGF) receptor (1–6). The transforming potential of the HER-2/neu receptor tyrosine kinase (named p185) has been well documented in both clinical analysis and experimental studies (7–11). The mechanism of aberrant activation of p185 have also been extensively investigated (12–19). A carcinogen-induced point mutation replacing a valine residue with a glutamic acid in the transmembrane domain confers

* This work was supported by National Institutes of Health Grants CA58880 and CA60866 and U.S. Army Breast Cancer Grant DAMD 17–94-J-4315 (to M.-C. H.) and National Institutes of Health Grant CA61023 (to A.-M. P.). The cost of publication of this article was defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† Awarded a Rosalie B. Hite predoctoral fellowship from the University of Texas M. D. Anderson Cancer Center.

‡ Whitehead Scholar and a scholar of the Leukemia Society of America.

‡‡ To whom correspondence should be addressed. Tel.: 713-792-3668; Fax: 713-794-4784.

The abbreviations used are: EGF, epidermal growth factor; ΔN-Grb2, amino-terminal SH3 domain deletion mutant; ΔC-Grb2, carboxy-terminal SH3 domain deletion mutant; PAGE, polyacrylamide gel electrophoresis; wt, wild-type.
Grb2 Dominant-negative Mutants Induce Phenotypic Reversion

ting the oncogenic signal from the activated p185 (46, 55). One way to provide more direct evidence to support this idea is to interfere with the protein-protein interactions involved in this pathway by using dominant-negative mutants and then examine whether these mutants can reverse the transformed phenotypes caused by the activated p185. Grb2 is a central component in this pathway. On the one hand, it binds tightly to Sos through its SH3 domains; on the other hand, it can bind to Shc and probably the activated p185 as well through its SH2 domain. Interestingly, recent studies suggested that the SH2 and SH3 domains of Grb2 functioned independently (47, 48). Binding of phosphopeptides to the SH2 domain of Grb2 does not appreciably affect the association of its SH3 domains with proline-rich peptides. Conversely, binding of excessive peptides derived from Sos to Grb2 does not influence the interaction between its SH2 domain with phosphopeptides. We, therefore, reasoned that deleting one of the SH3 domains of Grb2 might create dominant-negative mutants which compete with the endogenous Grb2:Sos complex for Shc or activated p185 and block the oncogenic signaling pathway of the activated p185. To test this hypothesis we transfected either an amino-terminal or a carboxyl-terminal SH3 domain deletion mutant of Grb2 into B104-1-1 cells which are transformed NIH3T3 cells expressing the mutation-activated p185. We found that the transformed phenotypes of B104-1-1 were largely reversed by the amino-terminal SH3 domain deletion mutant of Grb2 (ΔN-Grb2). The effect of the carboxyl-terminal SH3 domain deletion mutant (ΔC-Grb2) on phenotypic reversion was much weaker. Biochemical analysis data indicated that the ΔN-Grb2 functioned as a strong dominant-negative mutant, whereas the ΔC-Grb2 seemed to be a weak one. These results support the notion that the Sos/Grb2:Sos pathway plays an important role in the oncogenic signaling of the mutation-activated p185.

EXPERIMENTAL PROCEDURES

Cell Lines and Culture—B104-1-1 cells are transformed NIH3T3 cells generated by transfection with the neu oncogene, originally derived from a neuro/glioblastoma cell line (46). Cells were grown in Dulbecco’s modified Eagle’s medium/Ham’s F-12 medium supplemented with 10% calf serum under an atmosphere of 5% CO₂ at 37°C, unless otherwise indicated. Cells transfected with pSV2neo in focus forming assays as indicated below were grown under the same conditions except that G418 (600 μg/ml) was added.

Plasmids—The cosmider clone cNeu-104 carries the mutation-activated rat genomic neu (9). ΔN-Grb2 is an amino-terminal SH3 domain deletion mutant of Grb2. ΔC-Grb2 is a carboxyl-terminal SH3 domain deletion mutant of Grb2. The cDNAs encoding the ΔN-Grb2 and ΔC-Grb2 are driven by the cytomegalovirus promoter and preceded by the hemagglutinin epitope (HA 1) tag in expression vector pC`GN-Bam, which contains the hygromycin-resistant gene as a selection marker (42, 57).

Establishment of Stable Transfectants of Grb2 Deletion Mutants—B104-1-1 cells were transfected by the calcium phosphate precipitation method as described previously (50) with the plasmid pC`GN-Bam or the expression vectors encoding ΔC-Grb2 or ΔN-Grb2. After transfection, cells were subject to hygromycin (200 μg/ml) selection for 10–14 days. Individual colonies were expanded and characterized for expressing appropriate truncated Grb2 products. Vector, Grb2ΔC-11, and Grb2ΔN-11 are stable transfectants derived from B104-1-1 cells, expressing vector alone, ΔC-Grb2, and ΔN-Grb2, respectively.

Focus Forming Assays—Focus forming assays were performed as described previously (51). cNeu-104 (1 μg) was cotransfected into NIH3T3 cells with pSV2neo (0.1 μg) and 10 μg of plasmids encoding vector alone, ΔC-Grb2, or ΔN-Grb2. The filler plasmid, pGEM, was used to ensure that equal amounts of DNA were transfected into cells. Two days after transfection, cells were split 1:4, and duplicate plates were cultured in regular medium for 3–4 weeks while the other set of duplicates were grown in medium containing G418. Foci and G418-resistant colonies were stained in crystal violet solution (1% crystal violet, 20% ethanol in H₂O). The resulting number of foci from each transfection was corrected for transfection efficiency by dividing by the number of G418-resistant colonies created by the same transfection. Results are expressed as percentage of foci in control transfection with cNeu-104 (100%). Shown here is the average of three individual experiments. Standard deviation is shown by an error bar.

Microfocus Forming Assays—Microfocus forming assays were performed as described previously (52) with some modifications. Exponentially growing NIH3T3, B104-1-1, Vector, Grb2ΔC-11, and Grb2ΔN-11 cells were trypsinized and counted. One hundred fifty cells from each cell line were combined separately with 3.0 × 10⁵ NIH3T3 cells and gently mixed in a 6-cm tissue culture plate containing regular medium. Medium was replaced every 3 days over the 2–3-week period of focus formation. Foci were counted as described above. The diameters of individual foci in a random sampling from each plate were also measured.

 Colony Formation in Soft Agar—Experiments were carried as previously reported with some modifications (53). Cells (1,000/well) were plated in a 24-well plate in regular medium containing 0.35% Sea-plaque-agarose on an underlay of 0.7% agarose. After being cultured for 4–6 weeks, the colonies were stained with p-iodonitrotetrazolium violet (1 mg/ml) and counted.

Antibodies—The monoclonal antibody c-neu-Ab3 targeting at the carboxyl-terminal domain of p185 and the monoclonal anti-Ras antibody (Y13–259) were from Oncogene Science. The monoclonal anti-phosphotyrosine antibody (PY20) was from UBI. The rabbit anti-Shc and anti-Sos polyclonal antibodies and the monoclonal anti-Grb2 antibody were purchased from Transduction Laboratories. The monoclonal anti-epitope antibody (12CA5) was from Boehringer Mannheim.

Immunoprecipitation and Western Blotting—Unless otherwise indicated, all cells were harvested at subconfluence and lysed in 1% Triton X-100, 150 mM NaCl, 10 mM Tris, pH 7.4, 1 mM EDTA, 0.2 mM sodium orthovanadate, 0.2 mM phenylmethylsulfonyl fluoride, 0.5% Nonidet P-40, 10 μg/ml leupeptin, and 5 μg/ml aprotinin. Protein concentrations were determined against standards using the Bio-Rad protein assay kit. Lysates were immunoprecipitated with appropriate antibodies according to the suppliers’ specifications, and separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to nitrocellulose filters (Schleicher & Schuell). Filters were blocked with 5% dry milk powder in TBPS (0.05% Tween 20 in phosphate-buffered saline), incubated with appropriate antibodies, incubated with goat anti-mouse or goat anti-rabbit IgG Fc-homologous peroxidase (Boehringer Mannheim), and then visualized by chemiluminescence system (ECL).

Stripping of Western Blots—Used immunoblots were stripped by incubation with 62.5 mM Tris, pH 6.8, 2% SDS, and 100 mM β-mercaptoethanol at 75°C for 30 min. Filters were then washed twice with TBPS and reprobed with other antibodies.

Analysis of Ras-bound Guanine Nucleotides—The analysis was performed as described in the previous reports (64), with some modifications. 2.5 × 10⁴ cells per centimeter squared were starved overnight in phosphate-free medium supplemented with 5% dialyzed serum. Cells were then labeled for 12 h with [32P]orthophosphate (400 μCi/ml) in the same medium. Cells were put on ice, rapidly washed with ice-cold phosphate-buffered saline, and lysed in 50 mM HEPES, pH 7.5, 150 mM NaCl, 20 μM MgCl₂, 0.5% Nonidet P-40, 0.2 mM Na₃VO₄, 0.2 mM phenylmethylsulfonyl fluoride, 10 μg/ml leupeptin, and 5 μg/ml aprotinin. Nuclei and cell debris were removed by centrifugation. Ras proteins were immunoprecipitated with Y13-259, a monoclonal antibody to Ras. A goat anti-rat secondary antibody, and protein A-agarose were also applied in the immunoprecipitation. The beads were extensively washed with lysis buffer and proteins were solubilized in 1% SDS at 68°C. The bound guanine nucleotides were chromatographed on polyethyleneimine-cellulose plates in 1.3 M LiCl. The GTP/GDP ratio was determined by a Betascope 630 Blot Analyzer (Betagen, Boston, MA). The GDP-Ras percentage in the B104-1-1 cells was arbitrarily set at 100%. The percent GTP-Ras in other cell lines were standardized against that of the B104-1-1.

RESULTS

Suppression of the Transforming Ability of the Mutation-activated HER-2/neu by SH3 Domain Deletion Mutants of Grb2—To observe whether the SH3 domain deletion mutants of Grb2 (Fig. 1A) can interfere with the oncogenic signaling pathway of the mutation-activated HER-2/neu receptor tyrosine kinase, we first examined the effect of the Grb2 mutants on the transforming activity of the HER-2/neu oncogene by focus forming assays in which we cotransfected cNeu-104 (a cosmider clone containing mutation-activated rat HER2/neu, see
Grb2 Dominant-negative Mutants Induce Phenotypic Reversion

Fig. 1. A, schematic representation of Grb2 deletion mutants. ΔN-Grb2 represents the Grb2 mutant containing only the SH2 and the carboxyl-terminal SH3 domains. ΔC-Grb2 stands for the Grb2 mutant carrying only the SH2 and the amino-terminal SH3 domains. B, SH3 domain deletion Grb2 mutants suppress the transforming ability of the mutation-activated neu. Focus forming assays were performed as described under "Experimental Procedures." The resulting number of foci from each transfection was corrected for transfection efficiency by dividing by the number of G418-resistant colonies created by the same transfection. Results are expressed as percent of foci in control transfection with cNeu-104 (100%). Data shown here are the average from three individual experiments. Standard deviations are shown by error bars.

Ref. 3) together with expression vectors encoding either the amino-terminal SH3 domain deletion Grb2 (ΔN-Grb2) or the carboxyl-terminal SH3 domain deletion Grb2 (ΔC-Grb2) into NIH3T3 cells. When the expression vector encoding the ΔN-Grb2 was cotransfected with cNeu-104, the number of foci caused by cNeu-104 decreased by more than 60%. Cotransfection of the expression vector for the ΔC-Grb2 could also decrease the number of foci by only by approximately 25%. In control experiments cotransfection of cNeu-104 plus vector backbone alone did not affect the number of foci caused by cNeu-104 (Fig. 1B). Transfection of either expression vectors encoding the ΔN-Grb2, ΔC-Grb2, or the vector backbone alone into NIH3T3 cells did not result in any foci (data not shown). The results of focus forming assays indicated that the SH3 domain deletion mutants of Grb2 were able to suppress the transforming ability of the mutation-activated HER-2/neu and that ΔN-Grb2 was more effective than ΔC-Grb2.

Phenotypic Reversion of the Transformed B104-1-1 Cells by Stable Transfection of Grb2 Mutants with SH3 Domain Deletion—We next wanted to know whether expression of ΔN-Grb2 or ΔC-Grb2 could induce phenotypic reversion of established transformed cells caused by the mutation-activated HER-2/neu. To do so, we stably transfected expression vectors encoding ΔN-Grb2, ΔC-Grb2, or vector backbone into B104-1-1 cells, which are transformed NIH3T3 cells expressing the mutation-activated rat HER-2/neu. After 10–14 days of hygromycin selection, individual colonies were expanded and characterized for expressing appropriate truncated Grb2 products by Western analysis with the monoclonal antibody against the HA1 tag which was fused to the Grb2 mutants. The truncated Grb2 products are expected to be about 22 kDa. We focused our attention on two clones that showed comparable expression levels of ΔN-Grb2 and ΔC-Grb2, respectively. As shown in Fig. 2A, Grb2ΔN-11 is the stable transfectant expressing ΔN-Grb2, whereas Grb2ΔC-11 expresses the ΔC-Grb2. The expression levels of ΔN-Grb2 and ΔC-Grb2 are comparable between these two lines based on the Western blotting using anti-HA1 antibody. The mobility of the ΔN-Grb2 product is a little slower than the ΔC-Grb2 protein. Morphology studies indicated that the transfectant with the vector backbone alone looked similar to the transformed parental B104-1-1 cell line (Fig. 2B). In contrast, Grb2ΔN-11 showed morphologic reversal. This was

Fig. 2. Morphologic reversion of the transformed B104-1-1 cells by ΔN-Grb2. A, immunoblot analysis of expression of the Grb2 deletion mutants stably transinfected into B104-1-1 cells. B104-1-1 is a transformed cell line derived from NIH3T3 by stable transfection of the point mutation-activated HER-2/neu. Vector, Grb2ΔC-11, and Grb2ΔN-11 are stable transfectants derived from B104-1-1 cells, expressing vector alone, ΔC-Grb2, and ΔN-Grb2, respectively. Fifty micrograms of cell extracts from various cell lines as indicated were subject to 10% SDS-PAGE. After transfer, the top portion of the nitrocellulose filter was probed with c-Neu-Aβ3, a monoclonal anti-p185 antibody, the lower part was incubated with either 12CA5, a monoclonal antibody specific to the HA1 tag (middle panel), or monoclonal anti-Grb2 antibody (bottom panel). Endogenous Grb2 is indicated by an arrowhead. B, morphology of various cell lines. α, NIH3T3; b, B104-1-1; c, vector; d, Grb2ΔC-11; and e, Grb2ΔN-11.
Comparison of the transformed properties of parental B104-1-1 cells and transfectants of SH3 domain deletion Grb2 mutants by microfocus formation assay and soft agar assay

<table>
<thead>
<tr>
<th>Cell lines</th>
<th>Number of foci(^a)</th>
<th>Size of foci(^b)</th>
<th>Soft agar colonies(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIHT3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B104-1-1</td>
<td>100</td>
<td>2.5-5.0</td>
<td>0.15 ± 0.5</td>
</tr>
<tr>
<td>Vector</td>
<td>92.6 ± 8.5</td>
<td>2.5-5.0</td>
<td>95.1 ± 9.6</td>
</tr>
<tr>
<td>Grb2ΔN-11</td>
<td>70.2 ± 7.4</td>
<td>2.0-4.0</td>
<td>74.5 ± 5.8</td>
</tr>
<tr>
<td>Grb2ΔC-11</td>
<td>23.7 ± 2.8</td>
<td>1.0-2.0</td>
<td>20.1 ± 2.9</td>
</tr>
</tbody>
</table>

\(^a\) One hundred fifty cells from each line to be tested were mixed with 3.0 × 10^6 NIHT3 cells in a 6-cm tissue culture plate and grown as described under Experimental Procedures. The number of foci was counted after 2-3 weeks. The sizes of foci were also measured. The resulting number of foci from various cell lines in each experiment was standardized against that of the parental B104-1-1 cells (set at 100%). Data shown here are the average of three separate experiments. Standard deviation is also indicated.

\(^b\) Cells were seeded at 1 × 10^5 in 0.35% agarose containing Dulbecco's minimal essential medium/Flem's F-12 with 10% calf serum. Colonies were counted 4-6 weeks later. The resulting number of colonies from various cell lines was standardized against that of the parental B104-1-1 cells (set at 100%). Data shown here represent the average of quadruplicate experiments. Standard errors are also shown.

To ascertain whether HER-2/neu was still expressed in the stable transfectants, we performed immunoblot analysis with c-neu-Ab3, a monoclonal antibody specific to p185. As shown in Fig. 2A, the expression level of p185 was comparable between the parental B104-1-1 and its transfectants, indicating that the morphologic reversion seen in Grb2ΔN-11 cells was not due to spontaneous loss of the HER-2/neu gene or down-regulation of HER-2/neu expression by the ΔN-Grb2 mutant. Similarly, the levels of endogenous Grb2 were comparable between the parental B104-1-1 line and its transfectants along with NIHT3 cells as shown in Western analysis with anti-grb2 monoclonal antibody (Fig. 2A). Both ΔC-Grb2 and ΔN-Grb2 were also recognized by the same anti-Grb2 monoclonal antibody (Fig. 2A).

To evaluate more precisely the phenotypic reversion caused by the SH3 domain deletion Grb2 mutants, we performed microfocus formation assays (52) and soft agar colony formation assays to compare the transformed properties of the parental B104-1-1 line and its stable transfectants. As shown in Table I, the focus formation efficiency of Grb2ΔN-11 cells dramatically decreased. For example, the number of foci formed by the Grb2ΔN-11 cells was less than 25% of that of the parental B104-1-1 cells. In addition, the size of foci formed by the Grb2ΔN-11 cells was much smaller than the parental B104-1-1 cells. As expected, the Vector control cell line displayed a formation efficiency similar to the B104-1-1 cell line. The Grb2ΔC-11 cell line showed only a 30% reduction in focus formation when compared to the parental B104-1-1 line and the foci were slightly smaller. Consistent with the data from the microfocus formation assays, soft agar colony formation assays also indicated that the transformation potency of the Grb2ΔN-11 cells was significantly weakened, while the Grb2ΔC-11 cells were only moderately affected (Table I). The phenotypic reversion observed in the microfocus formation assays and soft agar colony assays was not due to the decreased growth rates of Grb2ΔN-11 and Grb2ΔC-11 cells demonstrated in in vitro growth rate assays (data not shown), since extending the culture time for these two cell lines in the above assays did not result in extra numbers of foci or colonies (data not shown). Taken together, our data indicated that the transformed phenotypes of B104-1-1 cells could be largely reversed by stable transfection of the ΔN-Grb2 mutant. The ΔC-Grb2 mutant had a relatively weak effect.

Both ΔN-Grb2 and ΔC-Grb2 Compete with the Endogenous Grb2 for Shc—To investigate the molecular basis of the phenotypic reversion caused by the SH3 domain deletion Grb2 mutants, we first compared the tyrosine phosphorylation profiles between B104-1-1 and its stable transfectants. Immunoblotting analysis indicated no obvious difference for the profiles of tyrosine phosphorylation was detected between B104-1-1 and Vector, Grb2ΔN-11, or Grb2ΔC-11 (data not shown). In particular, expression of ΔN-Grb2 or ΔC-Grb2 did not affect the expression and tyrosine phosphorylation of p185 and Shc (data not shown). We next tested the possibility that the SH3 domain deletion Grb2 mutants may compete with the endogenous Grb2 for Shc and p185. We first examined whether ΔN-Grb2 and ΔC-Grb2 could be associated with Shc and p185 by co-immunoprecipitation Western analysis. Anti-HA1 antibody was used to precipitate the ΔN-Grb2 and ΔC-Grb2 proteins along with their associated proteins. As shown in Fig. 3, comparable amounts of p56Shc were detected in the anti-HA1 immunoprecipitates in both Grb2ΔN-11 and Grb2ΔC-11 cells. Immunoblot analysis with anti-HA1 antibody indicated that comparable amounts of ΔN-Grb2 and ΔC-Grb2 were precipitated, which suggests that the ΔN-Grb2 and the ΔC-Grb2 have a similar affinity for Shc. In contrast, co-precipitation of p185 by the anti-HA1 antibody was only detected in the Grb2ΔC-11 cells. The reciprocal co-immunoprecipitation experiment with anti-p185 antibody also failed to detect a physical association between p185 and the ΔN-Grb2 in the Grb2ΔN-11 cells (data not shown). These results suggest that the ΔN-Grb2 may not be able to associate with p185. However, we cannot rule out the possibility that the association is transient and undetectable under our experimental conditions.

Detecting the association between Shc and the truncated...
Grb2 Dominant-negative Mutants Induce Phenotypic Reversion

Fig. 4. The association between Sce and the endogenous Grb2 is impaired by both ΔN-Grb2 and ΔC-Grb2. Two milligrams of lysates from each cell line were immunoprecipitated with a polyclonal anti-Sce antibody. Immunocomplexes were dissected by 10% SDS-PAGE, followed by immunoblotting analysis with either monoclonal anti-Grb2 antibody (top panel) or polyclonal anti-Sce antibody (lower panel). Immunoprecipitated Sce proteins and co-immunoprecipitated endogenous Grb2 are indicated.

Grb2 proteins prompted us to ask whether the interaction of Sce and the endogenous Grb2 is inhibited in Grb2ΔN-11 and Grb2ΔC-11 cells. To address this issue, we used anti-Sce antibody to precipitate Sce and associated proteins, followed by immunoblotting with anti-Grb2 or anti-Sce antibodies. As shown in Fig. 4, the endogenous Grb2 co-precipitated by the anti-Sce antibody dramatically decreased in both Grb2ΔN-11 and Grb2ΔC-11 cell lines, as compared to that in the parental B104-1-1 and the vector control cell lines. Consistently, co-immunoprecipitation of the ΔC-Grb2 and ΔN-Grb2 by anti-Sce antibody was detected by the anti-Grb2 antibody. Equal loading was confirmed by Western analysis with the anti-Sce antibody. These results are consistent with that seen in Fig. 3, which showed that both ΔN-Grb2 and ΔC-Grb2 products bind to p52Sce. We, therefore, concluded that both ΔN-Grb2 and ΔC-Grb2 were able to compete with the endogenous Grb2 for Sce.

The Association between Sos and Endogenous Grb2 Was Impaired by the ΔC-Grb2 but Not the ΔN-Grb2—Grb2 has been shown to bind constitutively to Sos even in the absence of extracellular stimuli (38). We wondered whether the Grb2/Sos association could be interfered with by ΔN-Grb2 or ΔC-Grb2. To answer this question we used anti-Sos antibody to co-precipitate endogenous Grb2 from NIH3T3, B104-1-1, Vector, Grb2ΔN-11, and Grb2ΔC-11. As expected, the association of Grb2 and Sos was comparable in NIH3T3, B104-1-1, and Vector cells (Fig. 5). In contrast, the association of Sos and the endogenous Grb2 was inhibited in the Grb2ΔC-11 cells. This interference was most likely due to the competition for Sos between the endogenous Grb2 and the ΔC-Grb2 since the anti-Sos antibody was able to co-precipitate ΔC-Grb2. In contrast from the ΔC-Grb2, the ΔN-Grb2 did not significantly affect the association of Sos and the endogenous Grb2 in the Grb2ΔN-11 cells (Fig. 5). Converse immunoprecipitation with the anti-HA1 antibody also failed to co-precipitate appreciable amounts of Sos in the Grb2ΔN-11 cells (data not shown), suggesting that the association of ΔN-Grb2 with Sos is very weak. Our results are consistent with a previous report which demonstrated that substitution of Gly-203 with Arg in the carboxy-terminal SH3 domain of Grb2 had little effect on its binding to Sos in vitro, whereas replacement of Pro-49 with Leu in the amino-SH3 domain (a mutation causing loss of function in C. elegans Sem-5) abrogated this binding (39). However, some previous reports claimed that binding of Grb2 to Sos depended on cooperative actions of the two Grb2 SH3 domains (38, 41). This discrepancy may be an issue of binding affinity.

Effect of Grb2 Mutants on Ras Activation—It has been proposed that formation of the SceGrb2Sos ternary complex plays an important role in Ras activation triggered by activation of the EGFR receptor, platelet-derived growth factor receptor, or insulin receptor (28–33). Given that both ΔC-Grb2 and ΔN-Grb2 mutants can compete with the endogenous Grb2 for Sce and that ΔC-Grb2 can also interact with p185 and Sos (Figs. 3–5), we examined whether signaling from the activated p185 to Ras was affected in Grb2ΔN-11 and Grb2ΔC-11 cells. Cells were labeled with [32P]Pi, and the guanine nucleotides bound to Ras were analyzed. As expected, the Vector control cells had a similar percentage of GTP-Ras, as compared to the B104-1-1 cells (Fig. 6). In contrast, the percentage of GTP-Ras in the Grb2ΔN-11 cells was less than 35% of that in the parental B104-1-1 cells while the percentage of GTP-Ras decreased to about 75% in the Grb2ΔC-11 cells. These results indicate that interruption of the interaction between Sce and the endogenous Grb2 can inhibit Ras activation by the activated p185 and that the ΔN-Grb2, which does not bind to p185 or Sos, acts as a strong dominant-negative analog of the endogenous Grb2. The ΔC-Grb2 mutant appears to be a relatively weak dominant-negative mutant, probably because it is still able to form complexes with Sos, Sce, and p185. The differential inhibition effect of ΔN-Grb2 and ΔC-Grb2 on Ras activation is consistent to the different extent of phenotypic reversion of B104-1-1 cells caused by these two Grb2 mutants. These observations support the idea that Ras activation is a key event in the process of transformation induced by the mutation-activated p185.

DISCUSSION

Grb2 consists of a single SH2 domain and two SH3 domains. Previous studies have indicated that Grb2 is a key component of the pathway leading to Ras activation by receptor tyrosine kinases (56). In the present study we tested whether deletion of the amino- or carboxy-terminal SH3 domain of Grb2 could create dominant-negative mutants which are capable of binding to tyrosine-phosphorylated Sce or mutation-activated p185 but are unable to associate with Sos. We speculate that these mutants could interfere with the recruitment of the SosGrb2 complex to Sce or p185, leading to inhibition of Ras activation. Our data demonstrated here that the ΔN-Grb2 functioned as a dominant-negative mutant that suppressed by more than 65% the activation of Ras by the mutation-activated p185 and largely reversed the transformed phenotypes of B104-1-1 cells. The
ΔC-Grb2 appears to be a weak dominant-negative mutant. It down-regulated Ras activation, by only 25%, and slightly induced phenotypic reversion of the B104-1-1 cells. Similar results have been recently obtained for the oncogenic Bcr-Abl tyrosine kinase (57). A ΔN-Grb2 mutant suppresses Bcr-Abl-mediated Ras activation and reverses the transformed phenotype. As shown above, the ΔC-Grb2 mutant is less effective in reversing Bcr-Abl-induced transformation as compared to the ΔN-Grb2.

It is of interest to note that the dominant-negative effect of the ΔC-Grb2 is much weaker than that of the ΔN-Grb2 even though the ΔC-Grb2 is able to compete with the endogenous Grb2 for Shc, p185, and Sos while the ΔN-Grb2 can only bind to Shc. One possible model to explain this phenomenon is shown in Fig. 7. Wild-type Grb2 (wt-Grb2) constitutively binds to Sos mainly through its amino-terminal SH3 domain. The wt-Grb2:Sos complex is recruited to the tyrosine-phosphorylated Shc, subsequently resulting in Ras activation. The wt-Grb2:Sos may also be directly recruited to the activated p185, which is not shown here in order to simplify the model (discussion seen in the text). When introduced into the B104-1-1 cells, the ΔN-Grb2 sequesters tyrosine-phosphorylated Shc. Therefore, recruitment of the wt-Grb2:Sos complex to Shc is severely impaired. Furthermore, ΔN-Grb2 cannot appreciably bind to Sos. Thus the complex of Shc and ΔN-Grb2 cannot lead to Ras activation. Taken together, the ΔN-Grb2 inhibits Ras activation mediated by the Shc/wt-Grb2:Sos pathway. Unlike the ΔN-Grb2, the ΔC-Grb2 can bind to both tyrosine-phosphorylated Shc and Sos. Deletion of the carboxy-terminal SH3 domain of Grb2 may not significantly affect its biological functions. In other words, the exogenously expressed ΔC-Grb2 by itself may largely fulfill the functions of the wt-Grb2. Therefore, Ras activation is not dramatically shut down and the transformed phenotypes of the B104-1-1 cells are not obviously reversed even though the endogenous Grb2 is largely competed out from the Shc/Grb2:Sos pathway by the ΔC-Grb2. This model is indirectly supported by previous studies on the C. elegans Sem-5. The mutation in Sem-5 (sem-5 allele n1619) corresponding to the G203R Grb2 mutant (C-terminal SH3) had a much weaker phenotypic effect in C. elegans than the mutation (sem-5 allele n1619) corresponding to the P49L Grb2 mutant (N-terminal SH3) (59). However, other studies suggest that both P49L and G203R Grb2 were loss-of-function mutants (55). For example, co-microinjection of either P49L or G203R Grb2 protein together with the H-ras protein did not stimulate DNA synthesis in quiescent rat embryo fibroblast cells while coinjection of the wild-type Grb2 and H-ras proteins enhanced DNA synthesis, suggesting that the two SH3 domains of Grb2 constitute an essential functional component of the protein. These conflicting observations may be explained by the use of different assays in different biological systems. The functional difference between ΔC-Grb2 and G203R Grb2 is not known currently. We speculate that the ΔC-Grb2 possesses, at least in part, the biological functions of the wild-type Grb2 since it can bind to Shc, p185, and Sos. The slight down-regulation of Ras activation and partial reversal of transformed phenotypes in Grb2ΔC-11 cells may be due to the relatively lower efficiency of recruitment of the Sos·ΔC-Grb2 complex to Shc, as compared to the complex of Sos and the endogenous Grb2. This is supported by the observation seen in Fig. 4 in which comparable amounts of the ΔC-Grb2 in the Grb2ΔC-11 cells and the endogenous Grb2 in the B104-1-1 cells were co-precipitated by the anti-Shc antibody even though the expression level of the ΔC-Grb2 was much higher in the Grb2ΔC-11 cells than that of the endogenous Grb2 in B104-1-1 cells (Fig. 2A). This finding suggests that the ΔC-Grb2 may have a lower affinity for Shc than does the endogenous Grb2. Alternatively, the nucleotide exchange activity of Sos may be relatively weaker in the Sos·ΔC-Grb2 complex than in the Sos-endogenous Grb2 complex, probably because of an unknown allosteric effect. Therefore, Ras activation in the Grb2ΔC-11 cells is not as efficient as that in the B104-1-1 cells, leading to slight reversal of the transformed phenotypes caused by the mutation-activated p185.

Previous studies on the EGF receptor signaling pathway indicated that the Grb2:Sos complex could be recruited to tyrosine-phosphorylated Shc or directly to the activated EGF receptor (38–41). The data presented here imply that the Shc/Grb2:Sos pathway is most likely the dominant one coupling the...
activated p185 to Ras since interference of the interaction between Shc and Grb2 by ΔN-Grb2 leads to a dramatic inhibition of Ras activation. This idea is consistent with our previous observation that deletion of most of the autoprophosphorylation sites, including the potential Grb2 binding site on the mutation-activated p185 did not affect its transforming ability, suggesting that direct binding of Grb2 to p185 is not essential for Ras activation (46). Similarly, recent studies using peptide competition and immunodepletion approaches also demonstrated that formation of a complex of EGF receptor with Grb2 was only responsible for a minor part of EGF-stimulated Ras activation while the formation of the Shc/Grb2/Sos complex played the major role (28, 29). Indirect evidence has been shown suggesting that Grb2 binding to tyrosine-phosphorylated Shc is more important than Grb2 binding to the insulin receptor substrate-1 in the activation of Ras in response to insulin (30, 31).

Our data, however, also suggest that the Shc/Grb2/Sos pathway may not be the sole pathway that leads to the activation of Ras by the mutation-activated p185. Disruption of the association between Shc and Grb2 by ΔN-Grb2 is unable to completely inhibit Ras activation or to completely reverse the transformed phenotypes mediated by the mutation-activated p185, suggesting the existence of multiple routes to Ras, which may not be influenced by the ΔN-Grb2. One conceivable pathway is the direct recruitment of Grb2/Sos to the activated p185 since ΔN-Grb2 appears to be unable to compete with the endogenous Grb2 for p185. Alternatively, the formation of complexes containing Grb2 and phosphorylated proteins other than Shc, which can stimulate the Ras pathway, may not be interfered with by the ΔN-Grb2. It has been shown that a complex of Sy/SHP2-PTP2 tyrosine phosphate and Grb2 can couple platelet-derived growth factor receptors to Ras (60). Recently, a Ras-GAP associated protein, named p62, has been found to form a complex with Grb2 in v-src transfected NIH3T3 cells (61). Interestingly, the presence of the Grb2-p62 complex increases with the phosphorylation of p62 and cellular transformation, suggesting that the Grb2-p62 complex may be able to lead to Ras activation. It will be of interest to test whether these complexes exist in the B104-1-1 cells and whether ΔN-Grb2 and ΔC-Grb2 are able to interfere with these pathways. Furthermore, the existence of other potential pathways to Ras, in which Grb2 or Sos is not involved, may also account for the absence of complete Ras inhibition and incomplete phenotypic reversion induced by the ΔN-Grb2. It is now known that mammalian cells contain several Ras guanine nucleotide exchange factors (GEF) apart from Sos. One of these, C3G (named for Crk SH3 binding GEF), can activate Ras in yeast (62). Intriguingly, its prolinc-rich domain C3G binds the amino-terminal domain of the adaptor protein Crk (62, 63). The Crk-C3G complex may thus, like the Grb2-Sos complex, couple the oncogenic signal of the mutation-activated p185 to Ras. However, no data exist showing that C3G is an exchange factor for Ras in mammalian cells. On the other hand, an alternative explanation for the failure to completely reverse the transformed phenotypes of B104-1-1 cells by the ΔN-Grb2 could be that additional, perhaps less efficient, signaling pathways do not involve Ras are not influenced by the ΔN-Grb2 and may culminate in cell transformation by the activated p185. Indeed, recent studies have shown that Raf can be activated by the Drosophila torso receptor tyrosine kinase in a Ras-independent pathway (68). Our studies provided direct evidence to support the hypothesis that the Shc/Grb2/Sos pathway plays a major role in the oncogenic signaling of the mutation-activated p185 and may shed light on developing therapeutic agents to block the oncogenic signaling pathway of the p185 oncoprotein.
Grb2 Dominant-negative Mutants Induce Phenotypic Reversion

(1994) J. Biol. Chem. 269, 31053-31058
Mutant SV40 large T antigen as a therapeutic agent for HER-2/neu—overexpressing ovarian cancer

Xiangming Xing,¹ Angabin Matin,¹ Dihua Yu,¹ Weiya Xia,¹ Frank Sorgi,² Leaf Huang,² and Mien-Chie Hung¹

Department of Tumor Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas¹; and the Department of Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania.²

The HER-2/neu gene is frequently amplified and/or its protein product, p185, is overexpressed in a number of human cancers. Overexpression of p185 correlates with poor prognosis and low survival rates in ovarian cancer patients. We previously found that the K1 mutant of SV40 large T antigen inhibits rat neu promoter and suppresses mutation-activated rat neu transformation in mouse fibroblasts. We show here that K1 also inhibits human HER-2/neu promoter in human ovarian cancer cells. To investigate whether K1 can suppress HER-2/neu transformation and thus is a potential therapeutic agent, we used an orthotopic ovarian cancer model in which mice were injected intraperitoneally with HER-2/neu—overexpressing human ovarian cancer cells to induce tumor development. The tumor-bearing mice were then treated with K1-liposome complex weekly. We found that liposome-mediated K1 gene transfer decreased the p185 protein level by K1 expression in these cancer cells and significantly prolonged mice survival; about 40% of these treated mice were alive for more than 1 year without any tumor development. On the other hand, the animals from control groups that did not receive this gene therapy all developed tumors and died within 7 months. The results indicate that liposome-mediated K1 gene transfer is able to suppress tumor development from HER-2/neu—overexpressing ovarian cancer cells in mice.

Key words: HER-2/neu; mutant SV40 large T; ovarian cancer; gene therapy; liposome.

Ovarian cancer is one of the major malignant diseases in women. It has a high rate of mortality because of the difficulties in early diagnosis and effective therapy. The development of novel therapeutic strategies for ovarian cancer is therefore urgently needed. The HER-2/neu (also known as c-erbB-2 or NGL) gene is frequently amplified and/or overexpressed in a number of human cancers of glandular origin.¹⁻¹⁵ Overexpression of its protein product, p185, in breast,¹⁻³ ovarian,⁴⁻⁷ and lung cancers⁸⁻¹¹ correlates with poor disease prognosis and relatively low patient survival rates. Cells with high-level p185 exhibit greater resistance to chemotherapeutic agents¹⁶,¹⁷ and cytokines¹⁸⁻²⁰ and greater ability to metastasize.²¹,²² Therefore, the HER-2/neu gene is an excellent target for development of therapeutic agents that could reverse malignant transformation of HER-2/neu—overexpressing cancer cells.

Our previous studies showed that simian virus 40 (SV40) large T antigen represses rat neu transcription in mouse fibroblast NIH3T3 cells.²³ A mutant SV40 large T antigen named K1, which, because of a single amino acid change within the retinoblastoma (Rb) binding/transformation do-

Received August 10, 1995; accepted February 4, 1996.
X. Xing and A. Matin contributed equally to this paper.
Address correspondence and reprint requests to Dr Mien-Chie Hung,
Department of Tumor Biology, Box 79, M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030.
© 1996 Appleton & Lange 0929-1903/96/33.00+0

(10^6 in 10-cm dishes) the day before transfection. The cells were cotransfected with 5 μg of pNEUlit human HER-2/neu promoter linked to luciferase reporter construct28 and 5, 10, or 15 μg of K1 plasmid DNA. Total DNA was equalized to 20 μg by control DNA pSV2E.29 Cells were harvested 3 days later, and the luciferase activity of each transfec tant was measured.30

Orthotopic human ovarian cancer nude mouse model

Four- to 6-week-old athymic female homozygous nu/nu mice were purchased from Harlan Sprague Dawley, Inc. (Indianapolis, Ind) and were cared for and used in accordance with institutional guidelines. Mice were housed for 1 to 2 weeks, and each mouse considered healthy was injected intraperitoneally (IP) with 2 × 10^6 SKOV-3 cells under aseptic conditions as described elsewhere.31

Liposome-mediated in vivo gene transfer

For measuring the in vivo transfection efficiency, a group of five female nu/nu mice were injected IP with 2 × 10^6 SKOV-3 cells. Six weeks later, a complex of 15 μg of pCHC-β-gal,32 a plasmid encoding β-galactosidase, with 200 nmol of liposome33 was injected IP into each mouse daily for 3 consecutive days. The mice were killed, and imprints of the tumors were made by touching the cross-section of the tissues onto the slides.

To test the therapeutic effects of K1-liposome complex on human ovarian cancer, the mice that had a tumor 5 days after IP injection of 2 × 10^6 SKOV-3 cells were placed into five groups. The mice in each group received weekly IP injections of 200 μL of a reagent containing 15 μg of K1 DNA complex with 200 nmol of liposome, 15 μg of control DNA (pSV2E) complex with 200 nmol of liposome, 15 μg of K1 DNA, 200 nmol of liposome, or phosphate-buffered saline (PBS). Treatment with the K1-liposome complex was discontinued after 7 months. The responses were observed for 1 year, and the survival durations of all the mice were recorded. Necropsies were performed, and tumor tissues and major organs (ie, brain, lung, liver, heart, kidney, and spleen) of the mice were collected for pathological hematoxylin-eosin staining, immunohistochemical staining, and biochemical analysis.

X-Gal staining

For X-Gal (5-bromo-4-chloro-3-indolyl-β-D-galactoside) staining, the tumor imprints on the slides were fixed with a solution containing 0.05% glutaraldehyde and 2% formaldehyde for 5 minutes. They were washed three times with PBS and stained at 37°C for 2 hours with a solution of PBS containing 1 mg/mL X-Gal, 5 mmol/L potassium ferrocyanide, 5 mmol/L potassium ferrocyanide, and 2 mmol/L MgCl2.

Immunohistochemical staining

Sections were taken from tumor samples and organs of tumor-bearing mice for histological analysis. After being fixed with formalin and embedded in paraffin, the sections were subjected to routine hematoxylin-eosin staining. p185 protein was detected by using polyclonal antibody (Dako, Carpinteria, Calif) as primary antibody, and biotinylated goat anti-rabbit immunoglobulin G (IgG) as second antibody, followed by incubation with streptavidin–alkaline phosphatase, and then developed in a phosphate substrate kit; 1% methyl green was used as a counterstain. To detect K1 protein expression, monoclonal antibody against SV40 large T Ab-2 (Oncogene Science, Cambridge, Mass) biotinylated anti-mouse IgG was used, followed by incubation with ABC reagent (Vector, Burlingame, Calif), and developed in ABC chromogen substrate solution; Mayer’s hematoxylin was used as a counterstain.

Immunoblotting

Immunoblot analyses on p185 protein in tumor cells were performed as described previously.34 Protein samples (50 μg) from tumor tissues of dead mice were run on sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to a nitrocellulose filter, which was then incubated with primary antibody against p185 (c-neu-Ab-3, Oncogene Science), followed by horse peroxidase–conjugated goat anti-mouse IgG (Bio-Rad, Hercules, Calif), and protein was visualized with enhanced chemiluminescence detection reagents (Amersham, Arlington Heights, Ill) and exposed to x-ray films. The signals on the x-ray films were scanned into a computer with OneScanner-Ofoto. The ratio of p185 expression levels was quantitated by the quotient of band intensities determined using National Institutes of Health (NIH) Image V1.57.

Reverse transcription–polymerase chain reaction analysis of K1 expression

Total RNA was extracted from tumor tissues, large T stable transfec tant BTn1423 (as positive control for reverse transcription [RT]), or its parental cell, BI04-1-1. Five micromgs of each RNA sample were reverse-transcribed to cDNA by standard procedures.34 Amplification was performed on a Perkin-Elmer (Branchburg, NJ) DNA Cycler 480 in a total volume of 50 μL containing 5 μL of cDNA (or 20 ng of plasmid pK1 as positive control, or water as the negative control) in polymerase chain reaction (PCR) buffer (20 mMol/L Tris-HCl, pH 8.4; 25 mmol/L KCl; and 1.5 mmol/L MgCl2), 50 mmol/L of each dNTP, 10 pmol of each primer, and 1 U of Taq polymerase (Promega, Madison, Mass). The primers are from within the large T coding region (5′-AAGATCTGCATCTATGAGTAGAGGA-3′ and 5′-ATCGATCTAGTCAAGGGCAACTATAC-3′). Amplification was continued for 35 cycles by denaturing at 94°C for 30 seconds, annealing at 55°C for 1 minute, and extending the primer at 72°C for 1 minute. The PCR products were analyzed by running on the 1.2% of agarose gel. Sequence analysis was performed to further prove the PCR products.

RESULTS

K1 represses human HER-2/neu transcription in SKOV-3 cells

We previously showed that K1 inhibits rat neurotrophic activity and suppresses mutation-activated rat neu transformation.23 To investigate whether K1 can also inhibit human HER-2/neu expression in human cancer cells, we examined the effects of K1 on human HER-2/neu promoter activity in human ovarian cancer cell line SKOV-3, in which HER-2/neu is overexpressed. Different amounts of K1 expression vector were transfected with human HER-2/neu promoter linked to luciferase reporter construct pNEUlit.28,30 A dose-dependent decrease of luciferase activity through repression of HER-2/neu promoter was observed by the increasing concentrations of transfected K1, and a maximum of 85% inhibition was achieved (Fig 1). Thus, K1 can repress the activity of the human HER-2/neu promoter in SKOV-3 human ovarian cancer cells.
Figure 1. K1 represses human HER-2/neu promoter activity. Human SKOV-3 ovarian cancer cells were cotransfected with 5 μg of pNEU11 along with increasing amounts of K1 plasmid DNA. The luciferase activity of each transfectant was measured as described elsewhere. Results from two experiments are represented. The bar indicates the standard deviation.

K1 prolongs the survival of mice bearing HER-2/neu-overexpressing tumors

To determine whether K1 suppresses in vivo tumor development in mice bearing HER-2/neu-overexpressing tumors, we used cationic liposome to deliver the plasmid encoding K1 into the tumor cells in an orthotopic ovarian cancer animal model. To evaluate the in vivo gene transfection efficiency of the DNA-liposome complex in this animal model, pCHC–β-gal-liposome complex (in a ratio of 15 μg of DNA to 200 nmol of liposome) was injected IP daily for 3 consecutive days into a group of tumor-bearing mice, which had been injected IP with 2 x 10^6 SKOV-3 cells 6 weeks ago. An average of 27% of the tumor cells were stained positively with X-Gal. One representative stained region of a tumor sample is shown in Fig 2. As a negative control, another group of tumor-bearing mice were injected IP with 200 nmol of liposome only. No positively stained cells could be detected in these cells (data not shown).

To detect the effect of K1-liposome complex on tumor development and mouse survival in this animal model, we induced tumor formation by injecting 2 x 10^6 SKOV-3 cells IP into 4- to 6-week-old female nu/nu mice; after 5 days, the tumor-bearing mice were separated into five groups. One group received weekly IP injections of the K1-liposome complex. The other four control groups of animals received an IP injection of PBS, control DNA pSV2E-liposome complex, K1 DNA, or liposome. The experiments were performed twice, and the cumulative results are shown in Fig 3.

The PBS-treated mice died within 3 months, while the mice of the other control groups died within 7 months. Treatment with K1-liposome complex was discontinued at the end of seventh month. The mice treated with K1-liposome complex survived significantly longer than the controls; about 40% were alive after 1 year. The autopsies showed that the mice from the control groups had large-volume (3- to 6-mL) malignant ascites and tumors within the peritoneal cavity or diaphragm or metastasis to the lungs. However, the mice that received K1-liposome complex had more locally distributed tumor nodules in their peritoneal cavities. This difference indicates that K1 suppressed the growth of HER-2/neu-overexpressing tumor cells so that tumors developed with longer latency. All of the mice survived for 1 year (ie, 40% of K1-liposome–treated mice) then were killed and examined for residual tumors, but no tumors were observed in the peritoneal cavity. Tissue sections from the major organs of the surviving mice (ie, brain, lung, heart, kidney, spleen, and liver) were analyzed by hematoxylin–eosin staining and found to be pathologically normal and free of microscopic tumor cells (data not shown). Our statistical analysis showed that the mice treated with K1-liposome complex survived significantly longer than those of the four control groups (P < .05), whereas none of the mice in the four control treatment groups survived significantly longer than any other (P > .25). Of all the treatments used in this study, K1-liposome complex is the only effective therapeutic strategy that prolonged the survival of mice bearing HER-2/neu–overexpressing tumors; 40% of the mice treated with K1-liposome complex were alive without tumors after 1 year.

K1 expression decreases the level of p185 in vivo

To determine whether the biological therapeutic effects of K1 in vivo were due to suppression of the HER-2/neu
p185 protein by the K1 gene product, histochemical and biochemical analyses were performed to examine the expression of K1 and p185 in the tumor tissues taken from the dead mice of the K1-liposome treatment group and the control groups. Hematoxylin-eosin staining confirmed that all of these tumors were adenocarcinomas (data not shown). Western blot analysis using antibody against p185 was performed to examine p185 expression in tumor samples from different groups. The average p185 expression level in the tumor samples of the K1-liposome–treated mice (not including the 40% tumor-free mice) was 54% (±8.6%) of that in the control groups. Figure 4a shows a representative set of these assays. RT-PCR experiments indicated that K1 mRNA was expressed in tumors of the K1-liposome treatment group (Fig 4b).

To detect p185 protein levels in individual tumor cells, immunohistochemical staining was performed on tumor tissue sections. In samples from K1-liposome–treated mice, K1 protein was expressed in approximately 60% of the cells and decreased p185 expression was easily detected in 50% of the total cells, while samples from other groups were negative for K1 and positive for p185 staining (Fig 5 and data not shown). Therefore, the decreased level of p185 in K1-liposome–treated tumor cells was most likely caused by K1 expression. Apparently, liposome-mediated K1 gene transfer exerted its therapeutic effects, most likely, through the repression of HER-2/neu p185. The reduction of p185 expression level by K1 suppressed the transforming activity of these tumor cells and delayed tumor development in mice. While 40% of the K1-liposome–treated mice were tumor free, the others developed tumors, which expressed 54% of p185, with longer latency and more localized distribution.

DISCUSSION

We previously showed that repression of HER-2/neu in HER-2/neu–overexpressing cancer cells results in loss of malignant phenotypes. Since SV40 large T also represses HER-2/neu expression, it is certainly inter-
Figure 5. Immunohistochemical staining analysis of the p185 and pK1 protein expression in tumor cells. Polyclonal antibody for p185 and monoclonal antibody for SV40 large T were used for immunohistochemical staining on tumor sections. Panels a and c were representative tissue sections from the pSV2E-liposome treatment group. Panels b and d were representative tissue sections from the K1-liposome treatment group. Panels a and b were stained by p185 antibody; red represents positive staining. Panels c and d were stained by SV40 large T antibody; dark red represents positive staining.

...est to examine whether large T is able to suppress malignant phenotypes of HER-2/neu-overexpressing cancer cells. However, SV40 large T antigen is an oncoprotein with multiple functional domains. Three transformation domains—the Rb binding domain, the p53 binding domain, and the amino-terminal binding domain—are critical for its transformation of human cells.38 Thus, it is not an appropriate therapeutic agent, even though it can repress HER-2/neu expression. The K1 mutant of SV40 large T, which contains a single point mutation in the Rb binding domain and is unable to bind to Rb protein, has been shown to lose its transformation activity.23,24 Since K1 represses HER-2/neu expression as effectively as wild-type large T,23 we tested whether K1 functions as a tumor suppressor for HER-2/neu-overexpressing ovarian cancer cells, and found that K1 represses HER-2/neu expression and has a significant therapeutic effect on mice with ovarian cancer. The 40% tumor-free survival rate shown in Fig 2 has a very important clinical implication, as patients with HER-2/neu-overexpressing ovarian cancers die within 2 years after diagnosis.3 It will be interesting to further localize the region of large T critical for HER-2/neu repression. If a transforming region such as p53 binding domain is not required for HER-2/neu repression, a large T mutant lacking both Rb and p53 binding domains might have a better therapeutic effect than the K1 mutant. This important issue will be addressed in the near future.

We used a transient cotransfection assay to show that K1 represses HER-2/neu promoter activity in a dose-dependent manner; a maximum of 85% repression was observed (Fig 1). As we described previously,25 because of the nature of the transient cotransfection assay, the percentage of repression based on this type of assay represents a low estimation. In the transfection assay, two plasmids such as pNEUlit and K1 are required. During transfection, some cells took both K1 and pNEUlit; the expression of luciferase in these cells was reduced by K1. However, some cells took only pNEUlit but not K1; these cells expressed high levels of luciferase, which resulted in high background for this type of assay. Thus, when we measured the luciferase activity from the whole cell population, the inhibitory effect of K1 on HER-2/neu promoter activity was diminished by cells expressing pNEUlit only, and the actual reduction of HER-2/neu promoter activity by K1 should have been more dramatic than what we detected in this assay. This point is further supported by the results shown in Fig 1. When the ratio of K1 to pNEUlit was increased, the percentage of cells with both K1 and pNEUlit transferred increased, and a more dramatic repression of promoter activity was detected.
Western blot and immunohistochemical analyses showed that the tumors from the K1-liposome–treated mice still expressed significant amounts of p185. This could be the result of limited transfection efficiency; that is, some tumor cells never received K1 DNA, and therefore p185 expression was unaffected. Alternatively, it could result from tumor heterogeneity; certain mutations that made cells resistant to K1-mediated p185 repression might have occurred in some tumor cells. These cells eventually developed into tumor masses and killed the mice. Despite of the mechanisms of this failure of K1-mediated p185 repression, the results shown in Fig 3 certainly represent a significant therapeutic efficacy. This approach has potential clinical implications for HER-2/neu–overexpressing cancers.

Toxicity is an important issue in liposome-mediated K1 gene therapy. Clinical chemistry, blood cell counts, organ histopathology, and pharmacokinetics should be systematically analyzed to address the adverse effects (if any) of this liposome system as a vehicle for the delivery of the gene. As a matter of fact, we have previously developed another HER-2/neu–targeting gene therapy strategy in which adenovirus 5 EIA is used as a tumor suppressor gene in the HER-2/neu–overexpressing human cancers.31,37 To support the EIA phase I clinical trial protocol, systematic studies have been performed to detect the toxic effects of EIA-liposome injection. At the therapeutic effective dose of EIA-liposome (15 μg of DNA to 200 nmol of liposome), no adverse effects were observed on mouse kidney and liver functions, and no abnormal pathology was detected for major organs, including brain, heart, lung, liver, kidney, spleen, and ovary (X. Xing and M.-C. Hung, unpublished data). Since the gene delivery system, the dose of DNA-liposome, and the animal model of the EIA study are identical to those in the study reported here, it is unlikely that the liposome gene delivery system will produce significant toxicity, but whether K1 has any side effects must still be pursued.

There are many ways to inhibit oncogene expression in cancer cells, which, in turn, may inhibit malignant transformation of these cells. Antisense approaches represent a common and effective strategy to block expression of a specific oncogene in cancer cells. However, for cancers caused by oncogene overexpression, the antisense strategy may not be effective, because large amounts of antisense oligonucleotides or RNA must be generated in the target cells to effectively block the overexpressed mRNA of the specific oncogene. Repression of transcription may therefore be a more effective way of stopping malignant transformation than antisense approaches. Certainly, this might be true for HER-2/neu–overexpressing cancer cells, in which transcription upregulation plays a critical role in overexpression.1,40 We previously showed that adenovirus 5 EIA can effectively repress HER-2/neu transcription and inhibit malignant transformation of HER-2/neu–overexpressing cancer cells.35–37,41 In the study presented here, we further show that another transcriptional repressor, K1, a mutant of SV40 large T, also effectively represses HER-2/neu expression in tumors and prolongs survival of tumor-bearing mice. Our results provide experimental evidence that transcriptional repression is a good strategy for inhibiting oncogene expression and suppressing malignancy. This strategy may provide a unique and effective way for treating malignancies caused by oncogene overexpression.

ACKNOWLEDGMENTS

We thank Yujiao Zhang for helping with the in vivo β-gal transfection experiment and Dr D. Karunanagar for critical reading of the manuscript. This research was supported by U.S. Department of Health and Human Services (DHHS) grants CA60488 (to D.Y.); CA59327, CA64654, DK4935, and HL50256 (to L.H.); CA58880 and CA60856 (to M.-C.H.) from NIH. Additional support was provided by grant DAMD 17-94-J-415 from the U.S. Department of Defense (to M.-C.H) and in part by DHHS Cancer Center core support grant CA16672 from the National Cancer Institute.

REFERENCES

SHORT REPORT

Liposome-mediated in vivo E1A gene transfer suppressed dissemination of ovarian cancer cells that overexpress HER-2/neu

Dihua Yu12, Angabin Matin1, Weiya Xia1, Frank Sorgi1, Leaf Huang3 and Mien-Chie Hung1

Departments of 1Tumor Biology, 2Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA and 3Department of Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA

The HER-2/neu proto-oncogene is frequently amplified or overexpressed in many different types of human cancers, a phenomenon that has been shown to correlate with shorter survival time and lower survival rate in ovarian cancer patients. We previously reported that increased HER-2/neu expression led to more severe malignancy and increased metastatic potential in animal models and that the adenovirus 5 EIA gene repressed HER-2/neu gene expression at transcriptional level and was able to suppress tumor growth when stably transfected into human ovarian cancer SKOV-3 cells which overexpress HER-2/neu. To investigate whether the EIA gene may be used as a therapeutic agent for HER-2/neu-overexpressing human cancers in living hosts, we first developed tumor-bearing mice by injecting SKOV-3 cells that overexpress HER-2/neu intraperitoneally into female nu/nu mice. Five days later, we used cationic liposomes to directly deliver the EIA gene into adenocarcinomas that developed in the peritoneal cavity and on the mesentery of the mice that received the SKOV-3 cell injection. We found that liposome-mediated EIA gene transfer significantly inhibited growth and dissemination of ovarian cancer cells that overexpress HER-2/neu in the treated mice; about 70% of these mice survived at least 365 days, whereas all the control mice that did not receive the gene therapy developed severe tumor symptoms and died within 160 days. The results suggest that liposome-mediated EIA gene transfer may serve as an effective therapy for human ovarian cancers that overexpress HER-2/neu by directly targeting the HER-2/neu oncogene.

Keywords: c-erbB-2; cationic liposome; tumor suppression; adenovirus-5 EIA; oncogene

The HER-2/neu gene (also known as c-erbB-2 or NGL) encodes a 185 kD epidermal growth factor receptor-related transmembrane protein (p185) with intrinsic tyrosine kinase activity (Padhy et al., 1982; Schechter et al., 1985; Bargmann et al., 1986; Hung et al., 1986; Ullrich and Schlessinger, 1990). The human HER-2/neu proto-oncogene is frequently amplified or overexpressed in many types of human cancers (Yu and Hung, 1995). Moreover, increased expression of HER-2/neu gene has been shown to correlate with the number of lymph node metastases in breast cancer patients (Slamon et al., 1987) and shortened survival in breast, ovarian and lung cancer patients (Slamon et al., 1989; Weiner et al., 1990). Although there have been controversial clinical reports on the correlation between lymph node metastasis and the overexpression of HER-2/neu in breast cancer patients (Gusterson et al., 1992; Toikkanen et al., 1992), we recently provided experimental evidence that the mutation-activated rat neu oncogene can induce metastatic potential in mouse 3T3 cells and that enhanced expression of the human normal HER-2 gene can lead to increased metastatic potential in human non-small-cell lung carcinoma cells by promoting multiple steps in the metastatic cascade (Yu et al., 1992, 1994; Yu and Hung, 1991). Our findings are consistent with the notion that the HER-2/neu gene plays important roles in the processes of tumorigenesis and cancer metastasis.

Ovarian carcinoma is the most lethal tumor of the female genital tract and continues to be the major cause of female cancer deaths, largely as a function of early abdominal seeding of this neoplasm, which produces carcinomatosis (Piver et al., 1991). It has been estimated that more than 23,000 new cases of ovarian cancer will be diagnosed in the United States and 13,000 women will die of this disease each year (Boring et al., 1992; Creasman and DiSaia, 1991). The 5 year survival rate of ovarian cancer patients increased only from 36% in 1975 to 39% in 1990; this lack of progress is due mainly to the difficulties in early detection of ovarian cancer, and the lack of highly effective treatment for advanced stages of the ovarian cancers when they can be detected. It is vitally important, therefore, to develop novel means of early detection and powerful treatments for later stages of these aggressive and devastating malignancies.

Previous studies demonstrated that amplification/overexpression of the HER-2/neu gene is a common phenomenon in primary ovarian cancers across different populations (Slamon et al., 1989; Zhang et al., 1989; Berchuck et al., 1990; Hung et al., 1992). We have identified HER-2/neu gene overexpression in the SKOV-3 ovarian carcinoma cell line (Hung et al., 1992) and found that the even higher level of HER-2/neu expression in the SKOV-3.ip1 ovarian cancer cell line, which was derived from SKOV-3 cells, correlates with more rapid progression of peritoneal carcinomatosis and a higher degree of malignancy than SKOV-3 cells. These observations suggest that HER-2/neu may serve as an excellent target of therapy for ovarian cancers that overexpress this gene.

In searching for repressors of the HER-2/neu gene, we discovered that when the adenovirus 5 EIA gene was stably transfected into cells, it can repress HER-2/
neu oncogene expression and suppress the tumorigenic and metastatic potential of mutation-activated neu oncogene-transformed mouse 3T3 cells and dissemination of human ovarian cancer cells that overexpress HER-2/neu (Yu et al., 1990, 1991, 1992, 1993). In the study presented here, we investigated whether the EIA gene can act therapeutically as a tumor suppressor gene for cancers that overexpress HER-2/neu if introduced into living animals bearing such cancers that had disseminated, which mimic the later stage of human ovarian cancer (Beahrs et al., 1992). We used cationic liposomes to directly deliver the EIA gene into these tumors in mice by intraperitoneal (i.p.) injection of the liposome/EIA mixture and found that the treated mice survived significantly longer than the control mice that received no appropriate treatment. Our results indicate that liposome-mediated EIA gene transfer may become a new and effective gene therapy for human ovarian cancers that overexpress HER-2/neu, including later stage ovarian cancers.

Results

Establishment of ovarian cancer animal model

To investigate whether the EIA gene can be used to treat living animals bearing disseminated human ovarian cancers overexpressing HER-2/neu, we needed to first establish an animal model of such cancers, with which the effects of treatment can be examined. Because human ovarian cancer SKOV-3 cells (American Type Culture Collection) overexpress HER-2/neu mRNA at levels at least 100-fold higher than other cancer cell lines from the female genital tract (Hung et al., 1992), and can induce tumor formation and dissemination upon i.p. injection into nu/nu mice (Yu et al., 1993), we chose i.p. injection of SKOV-3 cells into nu/nu mice as an appropriate experimental approach for studying advanced human ovarian cancer. After injecting i.p. $2 	imes 10^6$ SKOV-3 cells into individual female nu/nu mice, these mice were examined for tumor colonization and tumor dissemination by necropsy 1, 3 and 5 days postinjection. Several tumors > 0.5 mm in diameter were found on day 5 upon necropsy.

To examine whether these tumors were indeed induced by the injected SKOV-3 cells, we first stained them with hematoxylin-eosin and demonstrated that their pathologic identity was moderately differentiated adenocarcinomas (data not shown), which is consistent with the in vitro cytopathology of the SKOV-3 cell line and with the primary ovarian tumors from which the SKOV-3 cell lines was established. These tumors were further examined for HER-2/neu-encoded p185 expression by immunohistochemical staining using an avidin-biotinyl peroxidase technique (Hsu et al., 1982) with a primary polyclonal antibodies specifically recognizes p185 (1:300 dilution; Dakopatts Inc.). The protein was overexpressed in tumor sections obtained both from the mesentry (Figure 1A) and from the inner side of the abdominal wall (Figure 1B), which is also consistent with the p185 expression level of the SKOV-3 ovarian cancer cells. As negative controls, the same tumor sections reacted with anti EIA antibodies or anti large T antigen antibodies were stained negative (data not shown). These results demonstrated that nu/nu mice will produce disseminated human ovarian tumors that overexpress p185 five days after receiving i.p. injection of SKOV-3 cells,

![Figure 1](image.png)
Figure 1 Immunochemical staining of p185 in tumors from (A) mesentry and (B) the inside of the peritoneal cavity. Representative slides with polyclonal anti-p185 antibodies (magnification x 40)
and that these tumor-bearing mice are suitable for further studies on the treatment effect of liposome-mediated EIA gene transfer.

Gene therapy for mice bearing ovarian tumors that overexpress p185

To find a gene delivery system that can effectively and directly transfer the EIA gene into tumors, we tested the efficiency of the cationic liposome, DC-Chol:DOPE (3-[N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol-dioleoylphosphatidylethanolamine (3:2)), in transfecting the lacZ gene into the SKOV-3 cells, since it has been shown to transfect mammalian cells efficiently with very low toxicity (Gao and Huang, 1991). We have found that DNA: liposome ratios of 1:10 and 1:15, which give high transfection efficiency and low toxicity, seem to be the optimal conditions for DC-Chol: DOPE liposome-mediated gene transfer in vitro (data not shown). Therefore, DNA: liposome ratio of 1:13 (15 µg DNA: 200 nmole liposome) was further tested for its ability to transfer the lacZ gene dl in vivo into mice bearing tumors that overexpress p185. One week after three repeated i.p. injections of this DNA: liposome mixture, tumor-bearing mice were stained with X-gal and the tumors within the peritoneal cavity were stained blue (data not shown), indicating effective in vivo gene transfer. Therefore, the DNA: liposome ratio of 1:13 was used for in vivo liposome-mediated EIA gene transfer experiments.

Once the animal model and the optimal condition for DC-Chol: DOPE liposome-mediated gene transfer were established, we investigated the potential of using liposome-mediated EIA gene transfer as a therapy modality for ovarian tumors that overexpress p185. On day 5 after i.p. injection of SKOV-3 cells into nu/nu mice, these tumor-bearing mice were randomly divided into five groups. Group 1, the untreated control group, was intended to indicate the mortality of these mice without any treatment; group 2, the gene therapy treatment group, was initially given i.p. injections of the liposome/EIA DNA complexes (15 µg DNA and 200 nmol liposomes in serum free medium, total volume was 200 µl per injection); as other controls, group 3 was injected i.p. with EⅢs (pEIAd343 plasmid containing a 2 bp frame shift deletion in the EIA coding sequences) DNA: liposome complexes (15 µg DNA: 200 nmole liposome), group 4 was injected i.p. with 15 µg of EIA DNA only and group 5 was injected i.p. with 200 nmole liposome only. Each mouse from groups 2, 3, 4 and 5 received a repeated weekly i.p. injection. All mice were observed once a week for tumor development and then every other day when any or all of the following tumor symptoms appeared: abdominal bloating, loss of subcutaneous fat, hunched posture and decreased movement. Most of the mice died of tumor symptoms, some were killed when they appeared moribund or judged from our previous experience to be unlikely to survive more than 24 h.

Necropsies were performed on all of the mice when they died of tumor symptoms. Necropsies revealed typical tumor patterns in mice from all five groups, i.e., colonized tumor nodules on peritoneal and diaphragmatic surfaces; bowel, utero-ovarian, mesenteric, subplenic, and subhepatic nodules; and large omental cakes of tumor and most of the mice developed bloody ascites (Table 1). Although all the dead mice developed similar tumor symptoms, invasions or tumor formations outside the peritoneal cavity were detected only in mice from the control groups and not in any mice treated with the EIA/liposome complexes (Table 1). One of the mice from the untreated group and one from the group given EIA DNA only died of tumor symptoms as early as 15 days after injection, and all the other mice from the control groups (groups 1, 3, 4 and 5) died within 160 days postinjection (Figure 2). Almost 70% of the mice treated with EIA DNA: liposome complexes, however, were still alive 365 days after injection. The difference in survival of mice treated with the EIA DNA: liposome complexes and of mice in the untreated group is highly significant (P<0.01, Figure 2). The in vivo EIA gene transfer experiments have been repeated two times with different batches of DNA preparation and similar results were obtained and were combined for analysis (Figure 2).

These results demonstrate that liposome-mediated EIA gene therapy can reduce the mortality of mice bearing human ovarian carcinomas that overexpress p185. In addition, the remaining eight mice from EIA DNA: liposome complexes treated group that survived

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Summary of necropsy findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms</td>
<td>1. Untreated</td>
</tr>
<tr>
<td>Tumor dissemination sites</td>
<td>Abdominal wall, bowel, peritoneal cavity, ovary, liver, gall bladder, mesentery, diaphragm, spinal column</td>
</tr>
<tr>
<td>Tumour sizes</td>
<td>1.75 ± 0.7</td>
</tr>
<tr>
<td>Tumor numbers (average, cm³)</td>
<td>20 ± 9</td>
</tr>
<tr>
<td>Bloody Ascites, (ml)</td>
<td>3.7 ± 1.7</td>
</tr>
<tr>
<td>Invasion and Metastasis</td>
<td>Invasion into the spinal cord</td>
</tr>
<tr>
<td>Other symptoms</td>
<td>Tumors surrounding gall bladder blocked bile secretion</td>
</tr>
</tbody>
</table>
Figure 2 Mice treated with wild-type E1A:liposome complexes (heavy solid line) survived longer than untreated mice (solid line with crosses) or mice injected with wild-type E1A DNA alone, or with liposome alone, or with liposome plus E1A frame-shift DNA (EFs) (dotted lines) (P < 0.01). Mice were given i.p. injections of 2 x 10⁶ viable SKOV-3 human ovarian cancer cells 5 days before treatment. In two experiments, a total of seven or 12 mice made up each experimental group (as indicated in the figure notes). Mice were examined for tumor symptoms and were killed when they appeared moribund. Similar results were obtained from these experiments, and results were combined for analysis. The survival curves were obtained by recording the total survival days for each mouse in different groups from the day of injection with SKOV-3 cells (day 1, 100% survival) to the days they died.

at least 365 days after therapy appeared normal and healthy and no tumor was found by necropsy on a randomly selected mouse out of the eight mice that survived. No microscopic lesion was found on pathologic examination of 5 μm serial sections of this mouse’s organs, including mesentery, liver, stomach, kidney, ovary, spleen, intestine, pancreas, muscles and heart (data not shown). The results indicate that a significant fraction of treated mice can enjoy tumor-free survival after intensive liposome-mediated E1A gene therapy without noticeable side effects.

To investigate whether E1A DNA:liposome treatment will produce any significant side-effects, we examined the toxicities of E1A DNA:liposome on immunocompetent female ICR mice. The mice were injected with the effective treatment dose (15 μg E1A DNA; 200 nmol liposomes in serum free medium) for five consecutive days and their major organs were examined for pathological changes 6 weeks after injection. No abnormality was observed in liver, spleen, heart, brain, kidney and ovary of the five tested mice, except that two had slight focal penetration of lymphocytes in the lungs (data not shown). The results indicate that the effective dose of the E1A DNA:liposome that we used as gene therapy for ovarian tumors that overexpress p185 had no significantly toxicity and side-effect.

Expression of p185 in tumors obtained from mice necropsies

Since some mice treated with the E1A DNA:liposome complexes did form tumors (although with much longer latency and at lower frequency than the other control mice), we were interested in whether these tumors were similar biologically to the tumors from control mice. The tumors were excised from mice and examined histologically and biochemically. Histologic staining of frozen sections of these tumors revealed that the tumors from both the E1A DNA:liposome-treated group and the control groups were adenocarcinomas (data not shown). To measure the HER-2/neu-encoded p185 expression in these tumors, protein lysates were made from these and subjected to immunoblot analysis for the HER-2/neu-encoded p185 protein as previously described (Yu et al., 1993). The p185 proteins were readily detectable in all tumor samples from the control groups. However, p185 expression was repressed more than 50% in one small tumor (Figure 3A, lane 2) that was obtained from a mouse of the E1A DNA:liposome-treated group compared to the control groups. The heterogeneity of p185 protein is likely due to protein phosphorylation, which has recently been shown to produce heterogeneous protein bands in similar immunoblots (Kiyokawa et al., 1995). To investigate whether the tumors from mice treated with E1A:liposome complexes produced E1A proteins, we performed immunoblot analysis with anti-E1A antibodies (Figure 3B). The tumors from mice treated with E1A:liposome did express readily detectable levels of the E1A proteins (Figure 3, lanes 2), whereas none of the tumors from mice of those control groups expressed E1A proteins. Taken together, these results indicate that E1A expression were able to repress p185 expression in tumor cells from the E1A DNA:liposome-treated mice.

Discussion

One extremely important concern in gene therapy is the delivery system, for which liposomes have attracted much interest. Compared to retroviral vectors and adenovirus-associated vectors, the liposome delivery system has the advantages of easy handling, low toxicity and can be repeatedly used without eliciting
immune rejection response. As reported here, we have demonstrated that liposome-mediated EIA gene therapy for nude mice bearing ovarian cancers that overexpress HER-2/neu can lead to significantly prolonged survival and, in some cases, tumor-free survival. These results demonstrated the feasibility of using liposomes as in vivo delivery systems to transfer the EIA gene into these ovarian tumors in living hosts, a very significant progress toward the clinical application of EIA gene therapy for these ovarian cancers. Liposome-mediated gene transfer was recently reported for the treatment of melanomas in human (Nabel et al., 1993). Taken together, these studies illustrate the efficacy of using liposomes as a delivery system for gene therapy of different types of human cancers.

In the study presented here, we obtained remarkable therapeutic effects using the condition of DNA:liposome ratio at 1:13. It is possible that even better therapeutic effects may be achieved with minor modifications. One possible explanation of the significant in vivo treatment effects may be that repeated in vivo injection may result in higher transfected:untransfected cell ratio, hence more tumor cells will receive EIA gene. Since another advantage of using liposomes for in vivo gene transfection is the possibility of targeting the encapsulated genes to specific cells where appropriate cytoplphilic ligands such as monoclonal antibodies are available, one of our next efforts should be designing liposomes that can target the EIA gene to tumors that overexpress p185 by incorporating into liposomes anti-p185 antibodies or the ligand for the HER-2/neu-encoded p185 receptor (when it becomes available).

The animal model used for this study has nude mice bearing disseminated human ovarian tumors that overexpress p185 five days after receiving i.p. injection of SKOV-3 cells. This animal model mimics stage III human ovarian cancers (Beahrs et al., 1992), for which there is no effective therapeutic regimen. However, in the current study, liposome-mediated EIA gene therapy was able to effectively reduce the mortality of tumor-bearing mice and, in some cases, resulted in tumor-free survival, suggesting that liposome-mediated EIA gene therapy is a promising new therapeutic regimen for later stage ovarian cancers that overexpress HER-2/neu. In addition, this animal model will be very useful for future studies on searching effective therapies for later stage ovarian cancers.

The EIA gene of adenovirus-2, a close serotype of adenovirus-5, was shown to reduce the metastatic potential of ras-transformed rat embryo cells and to upregulate nm23 gene expression in the ras-\(^{+}\) EIA cells (Pozzatti et al., 1988; Steeg et al., 1988). We have also found that EIA can repress HER-2/neu gene expression and suppress the metastatic potential of HER-2/neu-transformed 3T3 cells by targeting the multisteps in the metastasis (Yu et al., 1992). In the study reported here, we observed metastasis in all the control groups but not in the EIA:liposome-treated group, suggesting that EIA has an in vivo metastasis suppressing function. Taken together, these studies strongly support the role of EIA as a metastasis suppressor gene.

We previously demonstrated that EIA products can dramatically inhibit HER-2/neu-mRNA level and HER-2/neu p185 expression in human breast cancer cell lines (Yu et al., 1990; Yan et al., 1991); we have also shown that the EIA gene products can repress HER-2/neu gene expression at the transcriptional level by targeting a specific DNA element in the HER-2/neu gene promoter (Yu et al., 1990). It is likely, therefore, that the EIA tumor suppressing function is due to transcriptional repression of the overexpressed HER-2/neu gene, which may be one of the diverse molecular mechanisms that account for the tumor suppressor function of EIA in SKOV-3 ovarian cancer cells. However, other molecular mechanisms could also contribute to EIA tumor suppressing function in vivo. For example, it has been shown that adenovirus EIA can render hamster cell lines more susceptible to lysis by natural killer cells and macrophages (Cook and Lewis, 1984; Sawada et al., 1985). It has also been reported that EIA can induce an increased sensitivity to cytotoxicity by tumor necrosis factor in transfected NIH3T3 cells (Cook et al., 1989). EIA protein was recently shown to induce cytotoxic responses that resembles programmed cell death (apoptosis) (Rao et al., 1992) and EIA has been reported to convert three unrelated types of human cancer cells into a nontransformed state (Frisch, 1991), which suggests that EIA may also function as a tumor suppressor gene for certain human cancer cells in which HER-2/neu is not overexpressed. Despite the potential involvement of different molecular mechanisms, our results have at least demonstrated that EIA may be a useful therapeutic agent for the treatment of human cancers that overexpress HER-2/neu.

Acknowledgements
We thank Dr RE Pollock for critical reading of the manuscript and J-X Luo, Vicky Liu for technical assistance. This research was supported by DHHS Grants CA60488 (DY), CA59327, CA64654, DK44935 and HL50256 (LH), CA58880, CA60856 (MCH) from the NIH and DAMD 17-94-J-4315 from the Department of Defense (MCH) and in part by DHHS Cancer Center Core Support Grant CA-16672 from the NCI.

References

