A Study of the Products of the Gas-Phase Reactions

M + N₂O and M + O₃, where M = Na or K, with

Ultraviolet Photoelectron Spectroscopy

1992

by

Timothy G. Wright, Andrew M. Ellis and John M. Dyke

Department of Chemistry
The University
Southampton
SO9 5NH
U.K.

to whom correspondence should be addressed

19961204 007

DTIC QUALITY INSPECTED 2

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited
PLEASE CHECK THE APPROPRIATE BLOCK BELOW:

☐ copies are being forwarded. Indicate whether Statement A, B, C, D, E, F, or X applies.

☐ DISTRIBUTION STATEMENT A:
 APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

☐ DISTRIBUTION STATEMENT B:
 DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES
 ONLY; (Indicate Reason and Date). OTHER REQUESTS FOR THIS
 DOCUMENT SHALL BE REFERRED TO (Indicate Controlling DoD Office).

☐ DISTRIBUTION STATEMENT C:
 DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES AND
 THEIR CONTRACTORS; (Indicate Reason and Date). OTHER REQUESTS
 FOR THIS DOCUMENT SHALL BE REFERRED TO (Indicate Controlling DoD Office).

☐ DISTRIBUTION STATEMENT D:
 DISTRIBUTION AUTHORIZED TO DoD AND U.S. DoD CONTRACTORS
 ONLY; (Indicate Reason and Date). OTHER REQUESTS SHALL BE REFERRED TO
 (Indicate Controlling DoD Office).

☐ DISTRIBUTION STATEMENT E:
 DISTRIBUTION AUTHORIZED TO DoD COMPONENTS ONLY; (Indicate
 Reason and Date). OTHER REQUESTS SHALL BE REFERRED TO (Indicate Controlling DoD Office).

☐ DISTRIBUTION STATEMENT F:
 FURTHER DISSEMINATION ONLY AS DIRECTED BY (Indicate Controlling DoD Office and Date) or HIGHER
 DoD AUTHORITY.

☐ DISTRIBUTION STATEMENT X:
 DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES
 AND PRIVATE INDIVIDUALS OR ENTERPRISES ELIGIBLE TO OBTAIN EXPORT-CONTROLLED
 TECHNICAL DATA IN ACCORDANCE WITH DoD DIRECTIVE 5230.25, WITHHOLDING OF
 UNCLASSIFIED TECHNICAL DATA FROM PUBLIC DISCLOSURE, 6 Nov 1984 (Indicate date of determination).
 CONTROLLING DoD OFFICE IS (Indicate Controlling DoD Office).

☐ This document was previously forwarded to DTIC on __________ (date) and the
 AD number is ________________.

☐ In accordance with provisions of DoD instructions, the document requested is not supplied because:

☐ It will be published at a later date. (Enter approximate date, if known).

☐ Other. (Give Reason)

DoD Directive 5230.24, "Distribution Statements on Technical Documents," 18 Mar 87, contains seven distribution statements, as
described briefly above. Technical Documents must be assigned distribution statements.

Dave Romine
Print or Type Name
99-011-44-171-514-4950
Telephone Number

Joyce Chair
Authorized Signature/Date
Abstract

Products of the gas-phase reactions $M + N_2O$ and $M + O_3$, where $M = Na$ or K, have been investigated with u.v photoelectron spectroscopy and bands have been assigned with the assistance of results from ab initio molecular orbital calculations.

For the $M + N_2O$ reactions, the observed products were $MO + N_2$. Measurement of the photoelectron bands associated with the metal monoxide, MO, allowed determination of the first adiabatic ionization energies of NaO and KO. The values obtained were $AIE[NaO(X^2Π)] = (7.1 \pm 0.1)$ eV and $AIE[KO(X^2Π)] = (6.9 \pm 0.1)$ eV. A similar study of the $Li + N_2O$ reaction gave $AIE[LiO(X^2Π)] = (7.6 \pm 0.2)$ eV.

The reactions $M + O_3$, with $M = Na$ or K, were observed to give $MO + O_2$ as the major reaction products. However, for each reaction a band was observed which was assigned to the first ionization energy of the secondary reaction product, MO_2. From the spectra obtained, the first adiabatic ionization energies of NaO_2 and KO_2 were measured as $AIE[NaO_2(\tilde{X}^2A_2)] = (6.2 \pm 0.2)$ eV and $AIE[KO_2(\tilde{X}^2A_2)] = (5.7 \pm 0.1)$ eV.

For both the $M + N_2O$ and $M + O_3$ reactions, production of $MO A^2Σ^+$ was found to be favoured relative to production of the $MO X^2Π$ state, a result which has important implications in understanding the sodium night-glow in the mesosphere.
Introduction

The alkali metal oxides and their singly-charged cations are of importance in atmospheric chemistry (1-8) as well as in energy technology (9) and flame chemistry (10-13). NaO is also involved in reactions that form the basis of the Na/N₂O/CO₂ chemical laser (14).

The mesospheric sodium night-glow is believed to be produced from the chemiluminescent reaction of sodium monoxide with atomic oxygen, sodium monoxide being formed by the reaction of atomic sodium with ozone (1-8). Chapman proposed a simple mechanism to explain this chemiluminescent phenomenon by postulating a scheme whereby atomic sodium catalyzes the reaction of atomic oxygen with ozone to form two diatomic oxygen molecules (3). As the ability to accurately model Chapman's mechanism depends on the availability of reliable rate constants for the reactions involved, the kinetics of atmospherically important reactions involving sodium have been studied in some detail in the last fifteen years (15-17).

Despite the importance of the alkali metal oxides, relatively few spectroscopic studies have been made on these species in the gas-phase. Mass-spectrometric experiments, using electron impact ionization, have shown that the vapour above heated Na₂O(s) consists mainly of Na(g) and O₂(g) with NaO(g) and Na₂O(g) being minor constituents (18,19). However, these results have recently been disputed (20). It was argued in reference (20) that the dissociative nature of NaO₂⁺ led to an incorrect analysis of the electron impact mass spectrometric data in references (18) and (19), and that NaO₂(g) is a major constituent of the vapour above heated Na₂O(s).

The first ionization energy of NaO has been measured in electron impact mass spectrometric studies as (6.5 ± 0.7) eV (19) and 7.41 eV (21). As well as mass spectrometric studies, NaO⁺ has been detected in merging beam reactions of sodium with some selected atmospheric molecular ions (22-24).
Also, highly excited NaO has been deduced to be formed in crossed-beam studies of electronically excited sodium with O₂ (25).

Very little thermodynamic data exists for potassium oxides in the gas-phase (26,27). There have been some electron impact mass spectrometric studies which yielded values of 7.1 ± 0.2 eV (26), and 7.5 eV (21) for the first ionization energy of KO. An electron impact mass spectrometric study by Ehlert (26) obtained a value for the first ionization energy of K₂O as 7.5 ± 0.2 eV, whereas the work of reference (21) gave 4.96 eV. As these values are clearly very different from each other, one of them must be in error. If the first ionization energy of Na₂O is considered, then three separate determinations have yielded 5.5 ± 0.5 eV (19), 5.35 eV (22), and 5.06 ± 0.10 eV (28). Since the first ionization energies of atomic sodium and potassium are 5.14 and 4.34 eV respectively (29), it seems that 4.96 eV is the more reliable value for the first ionization energy of K₂O, as the first ionization energies of Na and Na₂O are very close to each other.

Studies have also been performed on the chemiluminescence emitted in the gas-phase reaction of an alkali metal with N₂O or O₃ (30,31). In these experiments, the observed chemiluminescence was assigned to a weakly-bound excited metal monoxide Π-state emitting to the lowest Π-state. A mechanism for the formation of this excited state has recently been suggested (32) since it has been noted (33) that the excited Π-state is thermodynamically inaccessible from ground state reactants for the reactions involving sodium. As well as gas-phase studies, matrix isolation studies have been performed on the alkali metal oxides (34-39).

One of the most interesting features of the alkali monoxides is that they undergo a change in electronic ground state as the group is descended. For LiO and NaO, the ground state has been conclusively shown to be 2Π by both experimental (40-42) and theoretical methods (43-50). In contrast, RbO and
CsO have been shown to have $^2Σ^+$ ground states (40,47-49,51,52). The ground state of KO was uncertain until gas-phase microwave studies showed it to be a 2Π state with a $^2Σ^+$ state lying 202 cm$^{-1}$ higher in energy (53). Similar microwave spectroscopic measurements have shown that the ground state is 2Π for LiO (54) and NaO (55), in agreement with the results of previous work. The energy difference between the $X^2Π$ and $A^2Σ^+$ states was derived from these microwave measurements as 2565 and 2050 cm$^{-1}$ for LiO and NaO respectively.

The amount of work performed on the alkali metal monoxide cations is much less than that on the neutral species. The first observation of NaO$^+$ and KO$^+$ was by Rol and Entemann (22) in merging beam studies of sodium and potassium in collision with atmospheric ions. Subsequently, from the energy dependence of the cross-sections of the reactions of Na and K with CO$^+$, the dissociation energies of NaO$^+$ and KO$^+$ were derived as (0.8 ± 0.3) eV and (0.3 ± 0.3) eV respectively (24). No other experimental studies on the alkali metal monoxide cations appear to have been reported.

A substantial amount of experimental work has been performed on lithium oxides. The vapour above heated Li$_2$O(s) has been studied by White et al. (56) by electron impact mass spectrometry and values for the first ionization energies of LiO and Li$_2$O have been reported as (8.6 ± 0.3) eV and (6.9 ± 0.3) eV. A number of other studies of this type have also been performed. These gave the first ionization energy of LiO as (9.0 ± 0.2) eV (57), (8.45 ± 0.20) eV (58) and (8.96 ± 0.20) eV (59) and the first ionization energy of Li$_2$O as (6.8 ± 0.2) eV (57), (6.19 ± 0.20) eV (58) and (6.41 ± 0.20) eV (59). It is interesting to note that, as appears to be the case for Na$_2$O, the first ionization energy of Li$_2$O is higher than that of the atomic metal, (5.390 eV) (29). A number of matrix isolation studies on lithium oxides have also been carried out (56,60-65). These have allowed measurement of the vibrational frequencies and estimation of the equilibrium geometries of the metal oxides.
studied.

Only a small number of calculations have been performed on the alkali metal oxides to derive ionization energies. SCF ab initio calculations on NaO(X^3Π) and NaO^+(X^3Σ^-), using a double-zeta plus polarization STO basis set, gave the first adiabatic and vertical ionization energies of NaO as 7.4 and 7.7 eV respectively (43). Calculations on the ionization energies of some lithium oxides have also been reported (44).

In the present work, it was proposed to record the HeI photoelectron spectra of NaO and KO prepared by the gas phase reactions

\[M + O_3 \rightarrow MO + O_2 \] \hspace{1cm} (1)

\[M + N_2O \rightarrow MO + N_2 \] \hspace{1cm} (2)

where M = Na or K.

The preparation of the metal monoxides for p.e.s. study via a gas-phase reaction was necessary since, as noted above, mass spectrometric studies have shown that alkali metal monoxides are minor species in the vapour above heated solid alkali metal oxides. The room temperature rate constant for the Na + O_3 reaction is known to be high (33,66-68). Unfortunately, the rate constant for reaction (1) with M=K has not yet been measured although it is exothermic and is expected to be fast by analogy with the known rate constant of the sodium reaction. Reaction (2) is known to be rapid at room temperature for both sodium (67-70) and potassium (71). Photoelectron spectra recorded for both reactions (1) and (2), with M=Na or K, should provide confirmation that the spectra obtained can be associated with the metal monoxides. Some preliminary p.e.s. were also performed on the Li + N_2O reaction.
Experimental

The spectra obtained in this work were recorded on a high temperature, single detector photoelectron spectrometer which has been described previously (72,73). The metals were vaporized using radiofrequency induction heating from stainless steel furnaces, which contained a molybdenum capillary to collimate the metal beam.

Ozone was prepared prior to each experiment from a silent electric discharge through very slowly flowing molecular oxygen. It was separated from oxygen by trapping it on non-indicating silica gel in a U-tube placed in a dry ice/acetone slush bath at 196K (74,75). The presence of ozone could easily be monitored, as the gel turned a deep mauve colour as the ozone was trapped. A dry ice/acetone slush bath maintained a constant temperature for 4-5 hours before refilling was necessary and typically it took about six hours to obtain sufficient trapped ozone for a single photoelectron experiment.

In order to improve the mixing of the metal vapour with ozone, a reaction cell was used in front of the entrance slits of the spectrometer. This reaction cell also allowed higher local pressures of ozone to be used in the region of the photon beam than would otherwise have been possible. A diagram of this reaction cell is shown in Figure 1.

Figure 1

As may be seen, the metal enters the reaction cell from the top and the ozone enters from the side opposite the HeIα (21.22 eV) photon source. In order to obtain a metal vapour beam with sufficiently high partial pressure in the reaction cell to allow metal oxide spectra to be recorded, the radiofrequency inductively heated furnace had to be positioned within ~ 1 cm of the top of the reaction cell.
Computational Details: Alkali Monoxides

In this work, *ab initio* RHF and CISD calculations were performed on the low-lying neutral and ionic states of the alkali monoxides NaO and KO using basis sets of approximately triple zeta plus polarization quality.

For sodium, a [8s7p] contraction of the (12s9p) basis set of McLean and Chandler (76) was used, supplemented with one set of d functions (77). The potassium basis set was a [12s9p] contraction of the (14s11p) basis set of Wachters (78), supplemented with one set of d functions, derived from reference (77). The oxygen basis set was a [5s3p] contraction of the (7s3p) basis of Roos and Siegbahn (79), supplemented with a set of diffuse p functions (80) and a set of d functions (77).

In the CISD scheme, all electrons and orbitals were included, and the effects of quadruple excitations were allowed for using the Davidson correction (81). All calculations on the alkali metal monoxides were performed using the GAMESS package of programs (82).

The energy of each neutral or ionic state was calculated at a series of bond lengths close to the minimum and then spectroscopic constants were derived by fitting a potential curve to these values. Details of the fitting procedure used are given in reference (83). Once the equilibrium bond length had been derived from this fit, a further calculation was carried out at this bond length in order to obtain the energy of that state at the computed minimum; this allowed the calculation of adiabatic ionization energies (AIEs). In order to calculate vertical ionization energies (VIEs), calculations on the ions were performed at the computed equilibrium bond lengths of the neutral molecules. In a related study, an investigation of the effects of basis set superposition error on computed equilibrium bond lengths and vibrational frequencies for the $X^2\Pi$ and $A^2\Sigma^+$ states of NaO and KO has been recently performed (50).
The outermost electronic configurations of the two lowest electronic states of the alkali metal monoxides are:

\[\pi^3 \sigma^2 \quad \cdots \cdots \quad ^2\Pi \]

\[\pi^4 \sigma \quad \cdots \cdots \quad ^2\Sigma^+ , \]

where the \(\sigma \) and \(\pi \) orbitals are essentially oxygen 2p orbitals. These two states simply arise from positioning the unpaired electron along the internuclear axis (\(^2\Sigma^+ \) state) or perpendicular to this axis (\(^2\Pi \) state).

One-electron ionization from the outermost \(\sigma \) and \(\pi \) orbitals of the \(^2\Pi \) state give rise to five ionic states; \(^3\Sigma^- \), \(^1\Delta \) and \(^1\Sigma^+ \) states resulting from the \(\pi^{-1} \) ionization, and \(^3\Pi \) and \(^1\Pi \) ionic states resulting from the \(\sigma^{-1} \) ionization. One electron ionization from the \(^2\Sigma^+ \) state gives rise to the same \(^3\Pi \) and \(^1\Pi \) states via the \(\pi^{-1} \) ionization and another \(^1\Sigma^+ \) state is obtained from the \(\sigma^{-1} \) ionization.

In this work, the calculations described above were performed for all six ionic states. Vertical and adiabatic ionization energies to these ionic states from both the \(X^2\Pi \) and \(A^2\Sigma^+ \) neutral states were calculated, provided each ionization is allowed on the basis of the one-electron ionization selection rule.
Calculated Equilibrium Bond Lengths (r_*) and Vibrational Frequencies ($\bar{\omega}_n$) for
MO($X^2\Pi$) and MO($A^2\Sigma^+$) (M = Na or K).

The calculated values for r_* and $\bar{\omega}_n$ obtained for NaO($X^2\Pi$) and NaO($A^2\Sigma^+$)
are shown in Tables 1 and 2 respectively. The corresponding values calculated
for KO($X^2\Pi$) and KO($A^2\Sigma^+$) are listed in Tables 3 and 4. Also shown are the
results of previous calculations and the available experimental values.

Tables 1 to 4

In general, the agreement with experimental values is reasonably good,
particularly (probably fortuitously so) at the SCF level. Good agreement with
the results of some previous calculations (48) is also obtained. This
agreement is satisfying because the previous calculations (48) used very large
STO basis sets, whereas the present calculations employ basis sets of
approximately TZ + P quality. The results presented in Tables 1 to 4 have
been discussed in detail elsewhere (50). They are presented here for
comparison with the corresponding ionic state values.
Photoelectron Spectra recorded for the Na + N_2O and Na + O_3 reactions

The HeI photoelectron spectrum recorded for the Na + N_2O reaction in the ionization energy region 5.0-9.5 eV is shown in Figure 2. This figure shows three resolved bands (labelled A, B and C) which are associated with reaction products. One notable feature of the spectrum is the sharp cut-off to high ionization energy at approximately 8.35 eV.

The photoelectron spectrum recorded for the Na + O_3 reaction in the same ionization energy region is shown in Figure 3. In this case four bands (labelled A, B, C and D) were observed associated with reaction products. A summary of the measured vertical ionization energies (VIEs) of the bands, observed from the two preparative routes is shown in Table 5. Calibration of these spectra was achieved using the position of the (3s)^-1 ionization of sodium (29) and the position of the first band of methyl iodide (84), which was added as a calibrant. As N_2 and O_2, products of the Na + N_2O and Na + O_3 reactions respectively, have photoelectron bands at higher ionization energy than the region shown in Figures 2 and 3, it is clear that Bands A to D must be associated with NaO or possibly some other oxide of sodium which arises from a secondary reaction involving NaO.

The results of the ab initio calculations of the NaO vertical and adiabatic ionization energies (VIEs and AIEs) are shown in Tables 6 and 7. Ionic equilibrium bond lengths (r_e) and vibrational frequencies (ı_i) as calculated using the fitting procedure described earlier (83) are also presented in these tables.
Although reaction (2) with M–Na is known to be rapid, the secondary reaction

\[\text{NaO} + \text{N}_2\text{O} \rightarrow \text{NaO}_2 + \text{N}_2 \] \hspace{1cm} (3)

is much slower (67). Hence, the reaction product bands A, B and C, shown in Figure 2, were associated solely with ionization of NaO. Assignment of these bands was, however, not straightforward. Although it is established that the electronic ground state of NaO is a \(^2\Pi \) state, a \(^2\Sigma^+ \) lies only \(\approx 2000 \text{ cm}^{-1} \) (0.25 eV) higher (55) and is accessible in the exothermic reaction, reaction (2), used to prepare NaO. In fact, the exothermicity of reaction (2) with ground state reactants and products (i.e. yielding NaO(\(\chi^2\Pi \)) can be calculated using available heats of formation (85) as -1.09 eV and the reaction, like that leading to formation of NaO(\(\chi^2\Sigma^+ \)), is 'allowed' on the basis of Wigner-Witmer correlation rules (86). Hence, there is the possibility of both \(\chi^2\Pi \) and \(\chi^2\Sigma^+ \) states of NaO contributing to the photoelectron spectrum. If ionization from the \(^2\Pi \) state is considered, then it may be seen from Table 6 that the two lowest ionizations are to the \(\chi^3\Sigma^- \) and \(\chi^3\Pi \) ionic states. Ionization energies to other accessible states are expected to be greater than 1 eV above the ionization energies to these states. Thus the fact that there are three bands within 0.5 eV in the experimental spectrum suggests that one of the bands originates from the \(\chi^2\Sigma^+ \) state of NaO. In fact, inspection of Table 7 shows that the NaO\(^+\)(\(\chi^3\Pi \)) \rightarrow NaO(\(\chi^2\Sigma^+ \)) ionization occurs in the same ionization energy region as the NaO\(^+\)(\(\chi^3\Sigma^- \)) \rightarrow NaO(\(\chi^2\Pi \)) and NaO\(^+\)(\(\chi^3\Pi \)) \rightarrow NaO(\(\chi^2\Pi \)) ionizations. Thus the three photoelectron bands, A, B and C, are assigned to these processes. The photoelectron bands arising from ionization to the higher ionic states shown in Tables 6 and 7 will be weaker than bands A to C, since they arise from ionization to singlet states.

No higher NaO bands were observed because the experimental photoelectron spectra became complex above 9.5 eV ionization energy because of intense HeI\(\beta \)
bands from N_2O, O_2 and O_3.

Since no vibrational structure was resolved in bands A, B and C, the assignment of the observed bands in the Na + N_2O reaction was made purely on the basis of computed vertical ionization energies. The assignment can be summarised as follows:-

Band A : $\text{NaO}^+ (X^2\Sigma^-) \leftarrow \text{NaO}(X^2\Pi)$

Band B : $\text{NaO}^+ (A^3\Pi) \leftarrow \text{NaO}(A^2\Sigma^+)$

Band C : $\text{NaO}^+ (A^3\Pi) \leftarrow \text{NaO}(X^2\Pi)$

The band intensity ratio A:C in all the Na + N_2O experimental spectra was approximately 1:2, which is consistent with this assignment.

Since all the above ionizations essentially involve removal of an O 2p electron from an ionic neutral molecule, Na^+O, the photoionization cross-sections for each ionization will be approximately the same. The relative intensities of bands A, B and C will, therefore, be controlled by the degeneracy of the neutral and ionic states involved and the population of the $X^2\Pi$ and $A^2\Sigma^+$ states on ionization. Experimentally, the intensities of bands B and C were approximately equal in most spectra. As the final ionic state is the same in each case, this implies that the population of the $A^2\Sigma^+$ state is approximately twice that of the $X^2\Pi$ state on photoionization, as the degeneracy of the $^2\Pi$ state is twice that of the $^2\Sigma^+$ state. In fact, in some Na + N_2O spectra band B was more intense than band C with the maximum measured ratio being approximately 2:1. This implies that a maximum $A^2\Sigma^+:X^2\Pi$ population ratio of 4:1 was observed in this work, although most spectra were consistent with a population ratio of 2:1. This result of a preferential population of the $A^2\Sigma^+$ NaO state relative to the $X^2\Pi$ state from the Na + N_2O reaction is consistent with the work of Kolb, Herschbach and co-workers (7, 8) who have shown, by molecular beam magnetic deflection experiments, that NaO is produced from the Na + O_3 reaction, almost exclusively in the NaO($A^2\Sigma^+$)
state. A similar result is expected for the Na + N₂O reaction on the basis of the results of the present study. If in this present work, the A²Σ⁺ state of NaO is formed almost exclusively in the Na + N₂O reaction, then the X²Π state will be produced by collisional deactivation. This would then explain the observation that some spectra showed different B:C relative band intensities, although the ratio A:C was approximately constant.

Assuming that no vibrational excitation of NaO is present on ionization, the onset of band A corresponds to the first adiabatic ionization energy of NaO. The measured value, (7.1 ± 0.1) eV, is consistent with the calculated CISD + Q value obtained in this work of 6.78 eV and is in reasonable agreement with values obtained by electron impact mass spectrometry of (6.5 ± 0.7) eV (19) and 7.41 eV (21). The maximum of band A, (7.70 ± 0.06) eV, is also in reasonable agreement with the CISD + Q computed vertical ionization energy for the process NaO⁺(X²Σ⁻) → NaO(X²Π) of 7.10 eV.

The three NaO bands observed in the Na + N₂O spectra were also seen in spectra recorded for the Na + O₃ reaction (see Figure 3). These bands had the same vertical ionization energies as bands A, B and C in Figure 2 (see Table 5) and their relative intensities showed the same characteristics as the three bands observed from the Na + N₂O reaction. These bands were therefore attributed to the same NaO bands seen from the Na + N₂O reaction and, as in the Na + N₂O case, the spectra were consistent with production of the A²Σ⁺ state in preference to the X²Π state.

As well as the three bands seen from the Na + N₂O route, one other band was observed in the Na + O₃ spectra. This band (band D in Figure 3) is to lower ionization energy of the other bands, and cannot therefore be due to another ionization of the X or A states of NaO (see Table 5). However, the exothermicity of the Na + O₃ reaction (1.72 eV) is greater than that of the Na + N₂O reaction (1.09 eV) and the possibility that a higher state of NaO is
contributing to the photoelectron spectrum must therefore be considered. However, recent calculations of Langhoff et. al (87) exclude this, as the next highest states of NaO are greater than 2 eV above the $X^2\Pi$ state. The assignment that is favoured here is that band D arises from ionization of NaO$_2$, produced from the secondary reaction

$$NaO + O_3 \rightarrow NaO_2 + O_2$$

(4)

Figure 3

The rate constant of this reaction has been measured as 2×10^{-10} cm3 molecule$^{-1}$ sec$^{-1}$ at 500K (66,69) and reaction 4 is much faster than the corresponding reaction of NaO with N$_2$O to give NaO$_2$ and N$_2$ (67).

To investigate the possibility of assigning band D to NaO$_2$, ab initio calculations were performed on NaO$_2$ and its low-lying ionic states. Analogous calculations were also performed for KO$_2$ as it is expected that in the K + O$_3$ reaction sequence, KO$_2$ would be produced via the secondary reaction KO + O$_3$ under the experimental conditions used.
Computational Details: Alkali Metal Superoxides

Calculations were performed on NaO$_2$ and KO$_2$ using the same basis sets as used in the calculations on NaO and KO. Since the effects of electron correlation are known to be important in the alkali metal monoxides (this work and refs. 46-50), and since the equilibrium geometries of the neutral alkali metal superoxides are not well established, it was decided to perform geometry optimization calculations at the RHF, UHF and (U)MP2 levels of theory. A C$_{2v}$ geometry was assumed in most of these calculations as matrix-isolation infrared (34), Raman (36) and e.s.r. (51,88,98) spectroscopic studies have established that NaO$_2$ has an ionic Na$^+$O$_2^-$ structure of C$_{2v}$ symmetry in its ground electronic state. Analytic gradient methods, as implemented in the CADPAC suite of programs (89), were used. At the RHF and MP2 levels of theory, use of analytic second derivatives allowed the calculation of harmonic frequencies. For UHF and UMP2 calculations, numerical force constant calculations were performed in order to obtain harmonic vibrational frequencies. Once the optimized geometries of the ground state neutral species had been determined, CISD calculations were performed at the UMP2 geometries of the neutral states for both the ground neutral and the low-lying ionic states. This allowed vertical ionization energies to be calculated, which could then be compared with the experimental values and the computed alkali monoxide values. Again, as in the alkali monoxide computations, all electrons were included in the CISD calculations, which were performed using the GAMESS suite of programs (82).
Calculated Equilibrium Geometries and Vibrational Frequencies for NaO₂(\tilde{X}²A₂) and KO₂(\tilde{X}²A₂)

In a comprehensive \textit{ab initio} study of the LiO₂ molecule by Allen and co-workers (90), it has been demonstrated that symmetry breaking of the wavefunction is an important feature to be considered when performing \textit{ab initio} calculations on alkali-metal superoxides and a considerable part of that study (90) was devoted to devising a solution to this problem. Calculations have been performed previously on NaO₂ (91-94) and KO₂ (95), but the only investigation on these molecules to take account of symmetry breaking is that of Horner et al. (93) in which the total and relative energies, equilibrium geometries and vibrational frequencies have been computed for the NaO₂(\tilde{X}²A₂) and NaO₂(\tilde{A}²B₂) states.

Equilibrium geometries and vibrational frequencies computed in this work at the RHF, UHF and UMP2 levels, for NaO₂(\tilde{X}²A₂) and KO₂(\tilde{X}²A₂) are summarised in Tables 8 and 9.

Tables 8 and 9

As may be seen from Table 8, the agreement between the calculated equilibrium geometries for NaO₂(\tilde{X}²A₂) and the experimentally derived equilibrium geometry is good at the three levels of theory used. It is satisfying to see reasonable agreement between the calculated values obtained in this work and those obtained in a more detailed study (93).

If the vibrational frequencies are considered, the calculated value of \(\bar{\omega}_1\) obtained at the RHF level is rather high, when compared to the experimental value, both with the basis sets used in this work and those used in reference (93). Previous calculations on LiO₂ have noted similar poor agreement between calculated RHF \(\bar{\omega}_1\) values and the experimental value (44,90). A similar trend
was also observed in the calculations performed in this work for KO₂ (see Table 9). The ν_1 vibration in these molecules is effectively an O-O stretch of an O₂⁻ unit and it appears that inclusion of electron correlation is essential to treat this vibration adequately. In fact, the inadequacy of the Hartree-Fock method to describe O₂⁻ has been noted elsewhere (96). Other studies also indicate that values of $\bar{\omega}_3$ calculated for NaO₂(\tilde{X}²A₂) at the RHF level are anomalously small, and values calculated at the UMP2 level are not physically meaningful because of symmetry breaking in the reference function (93). This general trend appears to be present in the results obtained for NaO₂(\tilde{X}²A₂) and KO₂(\tilde{X}²A₂) shown in Tables 8 and 9. A detailed discussion of this symmetry breaking effect has been presented in references (90) and (93).

Mulliken population analysis of the computed wavefunctions indicates that these superoxide molecules are essentially ionic in their ground states, consistent with previous evidence (34,36,37,62,63,91,95,97). At the RHF(UMP2) level, the charge densities on each centre for NaO₂(\tilde{X}²A₂) are calculated as Na⁺^{0.74}(O₂)^{-0.74} [Na⁺^{0.68}(O₂)^{-0.68}], whereas for KO₂(\tilde{X}²A₂) the corresponding values are K⁺^{0.90}(O₂)^{-0.90} [K⁺^{0.90}(O₂)^{-0.90}]. The ionic character of these molecules can also be seen by comparing the computed ground state UMP2 equilibrium O-O bond lengths for LiO₂, NaO₂ and KO₂ with that of O₂⁻(X²Π₈) [1.30Å (90), 1.38Å and 1.37Å for LiO₂, NaO₂ and KO₂ respectively compared to 1.35Å (98) for O₂⁻(X²Π₈)]. The calculated UMP2 $\bar{\omega}_1$ values (90), where $\bar{\omega}_1$ is essentially an O-O stretching mode, are also close to the experimental O-O stretch in O₂⁻(X²Π₈) (99).

The highest occupied molecular orbitals of NaO₂ are essentially the in-plane (b₂) and out-of-plane (a₂) π^* O₂⁻ orbitals, the degeneracy of the O₂⁻ π^* orbitals being removed by the presence of the sodium cation. The valence electronic configuration of NaO₂(\tilde{X}²A₂) can be written as

\[\text{(4b₂)}^2(1a₂)^1 \text{ NaO₂ } \tilde{X}²A₂ \]

The (1a₂)^1 ionization gives a $1A_1$ ionic state whereas the (4b₂)^1 ionization
gives the 3B_1 and 1B_1 ionic states.

Computed vertical ionization energies to these states from the X^2A_2 neutral state are listed in Table 10 for NaO$_2$ and Table 14 for KO$_2$.

Table 10

As may be seen from Table 10, the VIE of band D, (7.28 ± 0.04) eV, observed for the Na + O$_3$ reaction (Figure 3) and assigned to the first ionization of NaO$_2$, is in reasonable agreement with the computed VIE for the ionization NaO$_2^+ (\tilde{X}^3B_1) \rightarrow$ NaO$_2 (\tilde{X}^2A_2)$ of 6.65 eV (CISD + Q value), although the calculated value is lower than the experimental value, as was the case for the alkali monoxide computed VIEs. In fact, a recent ΔSCF HF/6-31G* VIE value reported by Marshall (94) for the same ionization gave 7.16 eV, in good agreement with the experimental value obtained in this work. However, there must be a numerical error in the values quoted by Marshall (94), as in the same paper a ΔSCF HF/6-31G* adiabatic ionization energy value of 7.35 eV is quoted, which is higher than the quoted VIE. Later ab initio calculations using a large gaussian basis set including electron correlation via a modified coupled-pair functional method (97), showed that the ground state of NaO$_2$ has an isosceles triangle structure whereas the ground state of NaO$_2^+$ has a linear $C_{\infty v}$ structure. Adiabatic and vertical ionization energies were computed as 6.37 and 7.45 eV (97) compared with the experimental values measured in this work of (6.2 ± 0.2) and (7.28 ± 0.04) eV. The binding energy of NaO$_2^+ (^3\Sigma^-)$ with respect to Na$^+$ + O$_2$ was computed as 0.31 eV, with the vertical ionization NaO$_2^+ (\tilde{X}^3B_1) \rightarrow$ NaO$_2 (\tilde{X}^2A_2)$ lying approximately 0.81 eV above the Na$^+$ + O$_2$ products (97).

Table 10 also shows that the calculated VIE for the process NaO$_2^+ (\tilde{a}^1B_1) \rightarrow$ NaO$_2 (\tilde{X}^2A_2)$ places the associated photoelectron band under band A in Figure
3. On comparing spectra recorded from the Na + N₂O and Na + O₃ routes (i.e. Figures 2 and 3), the region of band A was of greater intensity relative to the region of bands B and C in the Na + O₃ spectra than in the Na + N₂O spectra. This would be consistent with the second ionization of NaO₂, i.e. the \(\tilde{a}^1B_1 \rightarrow \tilde{X}^2A_2 \) ionization, contributing to the 7.70 eV ionization energy region of the spectrum at one third of the intensity of the first NaO₂ band. Also, the \(\tilde{b}^1A_1 \rightarrow \tilde{X}^2A_2 \) ionization is expected to contribute to this region with a band which maximizes at \(\approx 0.1-0.2 \) eV higher than the second NaO₂ band (see Table 10). As the NaO₂ ionizations listed in Table 10 are essentially all O₂⁺ ionizations from an O₂⁻ group, their relative intensities are expected to be approximately 3:1:1 (\(^3B_1: ^1B_1: ^1A_1 \)) on the basis of the ionic state spin multiplicities.

Grow and Pitzer (44) have calculated the corresponding ionization energies of LiO₂ and have found that the \(^1A_1\) ionic state lies between the \(^3B_1\) and \(^1B_1\) ionic states. A similar result has also been obtained for the valence isoelectronic molecule HO₂ where the \(\tilde{a}^3A' \) ionic state has been calculated to lie between the \(^3A''\) and \(^1A''\) states (100). In comparison, the results obtained at the RHF level for NaO₂⁺, shown in Table 10, indicate that the \(^1A_1\) state lies slightly above the \(^1B_1\) state, although these states could interchange in order at a higher level of calculation. Nevertheless, Table 10 does indicate that the \(\tilde{a}^1B_1 \) and \(\tilde{b}^1A_1 \) ionic states are very close in energy.

Although resolved vibrational structure would have been valuable to assist band assignment, the experimental resolution was not sufficient to allow this to be achieved probably because of the contaminating conditions in the ionization chamber arising from the methods used to prepare NaO and NaO₂ and because some of the metal oxide bands were partially overlapped.
Photoelectron Spectra recorded for the K + N₂O and K + O₃ Reactions

The HeI photoelectron spectrum recorded for the K + N₂O reaction in the ionization energy region 4.5-9.0 eV is shown in Figure 4. As in the Na + N₂O case, three closely grouped bands were observed (bands A, B and C). A weaker feature was also observed to higher ionization energy and this was labelled band D. The HeI photoelectron spectrum recorded for the K + O₃ reaction over the same ionization energy range is shown in Figure 5. In contrast to the Na + O₃ case, only two bands (labelled E and F) were resolved associated with reaction products. A summary of the measured VIE's of the observed photoelectron bands, together with the measured onset of the first photoelectron band in each case, is given in Table 11.

Figures 4 and 5

Table 11

Calibration of the spectra shown in Figures 4 and 5 was achieved using the known potassium (4s)⁻¹ ionization energy (4.34 eV) (29) and the known position of some atomic features, which have been labelled K⁺ in these figures. These K⁺ bands appear at an apparent ionization energy of 6.58 and 6.84 eV on the HeI ionization energy scale (101,102) and, although they proved useful to calibrate the spectral energy scale, they unfortunately masked the structure in the product bands under the conditions used to record the K + O₃ spectra (see Figure 5). These atomic bands are known to arise from (4s)⁻¹.
ionization of atomic potassium with K 66.2 and 65.3 nm radiation (101,102). The exact mechanism for production of excited potassium that emits this radiation is not well established, although it is thought to be produced when some potassium diffuses into the photon discharge source (101,102).

Ab initio calculated ionization energies of the KO $X^2Π$ and $A^2Σ^+$ states are shown in Tables 12 and 13 respectively. These tables also list computed r_e and $ω_e$ values for the low-lying accessible ionic states.

The assignment of the $K + N_2O$ spectrum is based on that achieved for the Na + N_2O spectrum and the calculated KO VIEs. The three bands observed in the 7.0-8.0 eV ionization energy region of Figure 4 are assigned as follows.

- Band A : KO$^+(X^2Σ^-) \leftrightarrow$ KO($X^2Π$)
- Band B : KO$^+(A^3Π) \leftrightarrow$ KO($X^2Π$)
- Band C : KO$^+(A^3Π) \leftrightarrow$ KO($A^2Σ^+$),

where the assignments of bands B and C have been reversed from the Na + N_2O case on the basis of the results of the calculations shown in Tables 12 and 13. The difference between the KO$^+(A^3Π) \leftrightarrow$ KO($X^2Π$) and KO$^+(A^3Π) \leftrightarrow$ KO($A^2Σ^+$) VIE values computed at the highest level of theory used (0.13 eV) is not sufficient to allow a firm assignment to be made. However, the preferred assignment is as stated above. It can be seen from Tables 12 and 13 that, after bands A, B and C have been assigned, the next highest ionization is KO$^+(a^3Δ) \leftrightarrow$ KO($X^2Π$) and it is this ionization which is assigned to band D. No further bands that could be associated with KO were observed. As was the case for the Na + N_2O reaction, bands B and C are approximately the same intensity indicating a higher initial population of the A state relative to the X state in the photoionization region.

Assignment of the $K + O_3$ spectrum (Figure 5) is very much more difficult than assignment of the $K + N_2O$ spectrum because the bands seen from the $K + N_2O$ reaction are not resolved in Figure 5. However, as shown in Table 11,
band E occurs to lower ionization energy of the bands A to D seen in Figure 4, and is similar in position to the NaO₂ band seen from the Na + O₃ reaction. It has therefore been assigned to ionization of KO₂ by analogy with assignment of band D in the Na + O₃ reaction to NaO₂. Unfortunately, the room temperature rate constants for the reactions K + O₃ and KO + O₃ do not appear to have been measured, but by analogy with the corresponding sodium reactions, it may be inferred that they will also be high. Hence, a contribution from KO₂ to the K + O₃ experimental spectrum would be consistent with this. It also seems reasonably clear that the band labelled F in Figure 5, spans the region covered by the bands A, B and C in Figure 4. The fact that these features are unresolved suggests that there are other contributions to this energy region, possibly arising from KO₂. Band F is, therefore, assigned to unresolved contributions from bands A, B and C of KO.

Table 14

The calculated vertical ionization energies obtained in this work for KO₂ are summarised in Table 14. As for NaO₂, the measured first vertical ionization energy of KO₂ (6.01 ± 0.08 eV) is in reasonable agreement with the first vertical ionization energy computed at the highest level of theory used of 6.30 eV (CISD + Q value). Also, the calculated VIEs to the a¹B₁ and b¹A₁ ionic states indicate that the second and third KO₂ bands will contribute to the 7.0–8.0 eV ionization energy region.

The first adiabatic ionization energy of KO has been measured previously by electron impact mass spectrometry as (7.1 ± 0.2) eV (26) and 7.5 eV (21), and these values are in good agreement with the onset of the first KO band measured in the K + N₂O reaction of (6.9 ± 0.1) eV. It is also interesting to compare the first adiabatic ionization energies (AIEs) of the metal.
monoxides (MO) and metal dioxides (MO₂) measured in this work. As these oxides are highly ionic and the first ionizations essentially involve removal of an electron from O⁻ in MO or O₂⁻ in MO₂, the differences in the first AIEs of MO and MO₂ should be approximately equal to the differences in the electron affinities for O and O₂. This electron affinity difference is 1.02 eV, with the electron affinity of O taken from reference (103) and the electron affinity of O₂ taken from reference (104). The differences in the measured AIEs are (1.2 ± 0.2) eV for KO and KO₂ and (0.9 ± 0.3) eV for NaO and NaO₂ with, as expected, the dioxide occurring at lower ionization energy. Hence, these results are consistent with the qualitative picture of these ionizations involving removal of an electron from an O⁻ or an O₂⁻ anion in the metal oxides considered.
A Preliminary Study of the Li + N₂O Reaction

Some photoelectron experiments were also performed on the Li + N₂O reaction. No experiments were carried out on the Li + O₃ reaction because of problems in obtaining a stable lithium evaporation at the same time as a pure beam of ozone over a reasonable length of time. However, ten spectra were recorded from the Li + N₂O route allowing some measurements to be made. The 5.0-9.5 eV ionization energy region of a HeI spectrum recorded for the Li + N₂O reaction is shown in Figure 6.

Figure 6

As can be seen this spectrum consists of two broad bands, which have been labelled A and B. The higher band is masked in Figure 6 by the first band of methyl iodide, which was added as a calibrant (84). However, some spectra were recorded without methyl iodide present, in order to observe this band more clearly. Under these conditions, the spectral energy scale was calibrated using bands associated with the first band of N₂O recorded with HeI₉ and HeI₇ radiation (105), as well as the HeI₉ (2s⁻¹) ionization of lithium (29). The vertical ionization energies of bands A and B were measured as (8.8 ± 0.2) and (9.4 ± 0.1) eV respectively. The onset of band A was measured as (7.6 ± 0.2) eV, and this was taken as the first adiabatic ionization energy of LiO.

Ab initio calculations on the LiO X²Π and A²Σ⁺ states and their low-lying ionic states have previously been performed in this laboratory by Cockett (106). SCF and CISD calculations were performed using double zeta basis sets with one d polarization function added to each centre. The results of these calculations are summarised in Tables 15 and 16.
Tables 15 and 16

Because of the broad nature of the two bands seen from the Li + N₂O reaction, it was not possible to use the results in Tables 15 and 16 to give a definitive assignment of the Li + N₂O spectrum. Although bands A and B must correspond to the ionizations LiO⁺(X³Σ⁻) → LiO(X²Π); LiO⁺(A³Π) → LiO(Δ²Σ⁺) and LiO⁺(A³Π) → LiO(X²Π), it is not possible to decide exactly how these ionizations can be attributed to the observed bands. A tentative assignment would be that the low energy side of band A arises from the LiO⁺(X³Σ⁻) → LiO(X²Π) ionization, with the rest of the band being attributed to the LiO⁺(X³Σ⁻) → LiO(Δ²Σ⁺) ionization. Band B is then attributed to the LiO⁺(A³Π) → LiO(X²Π) ionization.

The onset of band A measured in this work, (7.6 ± 0.2) eV, is in good agreement with the ASCF CISD AIE for the process LiO⁺(X³Σ⁻) → LiO(X²Π) of 7.57 eV, listed in Table 15. However, previous values from electron impact mass spectrometry were about 1 eV higher at (8.6 ± 0.3) eV (56), (9.0 ± 0.2) eV (57), (8.45 ± 0.20) eV (58), (8.96 ± 0.20) eV (59) and 8.44 eV (21). It is interesting to note that these latter values are generally between the first AIE and VIE measured in this work, close to the steep rise in the photoelectron spectrum, at approximately 8.2 eV shown in Figure 6.

As has been noted earlier, a number of ionization energies of LiO (X²Π) have been calculated by Grow and Pitzer (44), via ab initio SCF calculations. Their computed ASCF values are in qualitative agreement with those calculated by Cockett (106), listed in Tables 15 and 16, but they are all slightly lower. Comparison of the computed and experimental ionization energies obtained for NaO and KO shows that the LiO ASCF ionization energies, which do not include electron correlation contributions, are expected to be lower than calculated
ionization energies which include electron correlation and the difference exhibited between the results of Cockett (106) and Grow and Pitzer (44) is therefore consistent with this trend.
Some Comments on the M + O₃ and M + N₂O Reactions, for M = Rb and Cs

The first point to be made concerning caesium and rubidium monoxides, which will be products of these reactions, is that they are both known to have $^2\Sigma^+$ ground states, unlike the lighter alkali metal monoxides which have $^2\Pi$ ground states (40,47-49,51,52). Also, Kolb, Herschbach and coworkers (7,8) have shown that these reactions will give the metal monoxide $X^2\Sigma^+$ state as the dominant product. Obviously, for CsO and RbO the $A^2\Pi$ state cannot be produced by collisional deactivation as it lies above the $X^2\Sigma^+$ state. Also, since the low-lying $^3\Pi$, $^1\Pi$ and $^1\Sigma^+$ states of NaO⁺ and KO⁺ are calculated to be either weakly-bound or dissociative, then it would seem that it is very unlikely that clearly resolved photoelectron spectral bands will be obtained from these reactions. It may, however, be possible to obtain photoelectron spectra for CsO₂ and RbO₂ from the M + O₃ preparative route, produced from the secondary reaction

$$\text{MO} + \text{O}_3 \rightarrow \text{MO}_2 + \text{O}.$$

Some previous work has been performed on rubidium and caesium oxides. Andrews and coworkers have carried out matrix isolation experiments to measure vibrational frequencies of these molecules (35,37,107) and electron impact mass spectrometric experiments have been performed yielding values for the first adiabatic ionization energies of RbO and CsO of 6.69 and 6.22 eV respectively (21,108). As expected, available rate constants for the Rb + N₂O (109) and Cs + N₂O (110) reactions are high, although rate constants do not appear to have been measured for the corresponding M + O₃ reactions.
Application of a Simple Electrostatic Model to Calculate Metal Oxide First Ionization Energies

As the alkali metal oxides are highly ionic, it is possible to use an electrostatic model to calculate their first ionization energies. This method has been used previously to calculate ionization energies of the alkali metal halides (111-113).

If the metal oxide, MO, is purely ionic, then the first ionization energy, which corresponds to removal of an O\(^-\) electron, can be expressed in terms of the electronic affinity of O and the coulombic interaction between M\(^+\) and O\(^-\) in the following way:

\[
\text{VIE(MO)} = E_a(O) + \frac{e^2}{4\pi\varepsilon_0 r_e} \quad \quad \quad \quad \quad \quad \quad \quad (5)
\]

where \(r_e\) is the equilibrium bond length of the neutral MO molecule and \(E_a(O)\) is the electron affinity of atomic oxygen. The results of applying equation (5) to LiO, NaO and KO are shown in Table 17.

Table 17

The values listed in this table were derived using the electron affinity of atomic oxygen from reference (103) and the CISD + Q computed equilibrium bond lengths for NaO and KO listed in Tables 1 and 3. For LiO (X^2\Pi), a CISD + Q computed value of \(r_e\) of 1.679 Å was used (106). As can be seen on comparing the VIEs calculated with this simple model, with the experimental values measured in this work, the agreement is reasonably good. For LiO, NaO and KO, the values computed using equation (5) are too high by 1.2, 0.7 and 0.3 eV respectively. This disagreement probably arises because the metal monoxides are not completely ionic. Also, no account has been taken of charge-dipole interactions, which can be included by adding a polarisation term to equation (5), as has been demonstrated in reference (111) following
the method of Rittner (114).

The simple model, outlined above, can also be applied to alkali metal dioxides following the method suggested by Andrews (63). For a MO$_2$ molecule this involves using equation (5) with the assumption that O$_2^-$ is a sphere with the distance between the cation and anion centres equal to the distance between M$^+$ and the centre of the O-O bond in a C$_2v$ MO$_2$ structure. The electron affinity of O$_2^-$ is taken from reference (104). The values calculated for LiO$_2$, NaO$_2$ and KO$_2$ with this simple approach are listed in Table 18. As can be seen for the two available vertical ionization energies measured in this work (for NaO$_2$ and KO$_2$), the agreement is surprisingly good. Overall, given the simplicity of the method, calculated MO and MO$_2$ vertical ionization energies obtained with this approach and their changes on going from one alkali metal to another, compare favourably with first ionization energies computed with *ab initio* methods.

Table 18
Dissociation Energies of the Alkali Metal Monoxides and Superoxides

a) Alkali metal monoxides

Suppose the following process is considered

\[\begin{align*}
-D_0 & \quad \text{AIE} \quad D_0^+ \\
\text{Na} + \text{O} & \quad \rightarrow \quad \text{NaO} \quad \rightarrow \quad \text{NaO}^+ + e^- \quad \rightarrow \quad \text{Na}^+ + \text{O} + e^- \quad \rightarrow
\end{align*}\] \hspace{1cm} (6)

where \(D_0\) is the dissociation energy of \(\text{NaO}(X^2\Pi)\), \(D_0^+\) is the dissociation energy of \(\text{NaO}^+(X^2\Sigma^+)\) and AIE is the first adiabatic ionization energy of \(\text{NaO}\).

Taking the first ionization energy of atomic sodium as 5.14 eV (29), then the following relation holds

\[-D_0 + \text{AIE} + D_0^+ = 5.14 \text{ eV} \hspace{1cm} (7)\]

If the first adiabatic ionization energy (AIE) of \(\text{NaO}\) is taken from this work as \((7.1 \pm 0.1) \text{ eV}\), then equation (7) becomes

\[D_0 - D_0^+ = (1.96 \pm 0.10) \text{ eV} \hspace{1cm} (8)\]

Clearly, \(D_0^+\) can be determined if \(D_0\) is available and vice versa.

Although experimental and theoretical values for \(D_0\) (\(\text{NaO}\)) have been determined as \((2.61 \pm 0.17) \text{ eV}\) (19), \((2.76 \pm 0.04) \text{ eV}\) (20), \((2.83 \pm 0.03) \text{ eV}\) (48) and \(2.43 \text{ eV}\) (50), the most reliable experimental value would appear to be \((2.56 \pm 0.21) \text{ eV}\) (19, 115). This value is based on the data determined in reference (19), an electron impact mass spectrometric study of heated \(\text{Na}_2\text{O}(g)\), but has been re-evaluated using slightly more reliable thermodynamic and spectroscopic constants (115). This value leads to \(D_0^+ = (0.60 \pm 0.31) \text{ eV}\), consistent with \(D_0\) (\(\text{NaO}^+\)) of \((0.8 \pm 0.3) \text{ eV}\) determined in a merging beams study of atomic sodium with atmospheric oxygen containing ions (24).

The first ionization energy of atomic potassium is 4.34 eV (29). Hence equation (7) can be rewritten for the potassium monoxide case as

\[-D_0 + \text{AIE} + D_0^+ = 4.34 \hspace{1cm} (9)\]

The first adiabatic ionization energy of KO determined in the present study is \((6.9 \pm 0.1) \text{ eV}\). Therefore, the difference in the KO and KO\(^+\) dissociation energies can be written as
\[D_o - D_o^+ = (2.56 \pm 0.10) \text{ eV} \]

Equation (10)

\[D_o \] (K0) has been determined in two mass spectrometric studies as \((2.86 \pm 0.13) \text{ eV} \) (26) and \((2.71 \pm 0.04) \text{ eV} \) (27) respectively. If the most recent value of \((2.71 \pm 0.04) \text{ eV} \) is used in equation (10), then \(D_o^+\) can be derived as \((0.15 \pm 0.14) \text{ eV} \), consistent with the value of \(D_o^+\), determined from a study of merging beams of atomic potassium with atmospheric oxygen containing ions of \((0.3 \pm 0.3) \text{ eV} \) (24).

A similar calculation for LiO using \(\text{AIE(LiO)} = (7.6 \pm 0.2) \text{ eV}\) gives

\[D_o - D_o^+ = (2.21 \pm 0.20) \text{ eV} \]
and using \(D_o\) as \((3.49 \pm 0.06) \text{ eV} \) (120), a value of \(D_o^+\) is obtained as \((1.28 \pm 0.26)\) for the ground state of LiO\(^+\).

In summary, it seems that the first adiabatic ionization energies of the metal monoxides measured in this work can be used to yield improved values of the dissociation energies of \(\text{NaO}^+\) and \(\text{KO}^+\) in their ground electronic states of \((0.60 \pm 0.31)\) and \((0.15 \pm 0.14) \text{ eV}\) respectively.

b) **Alkali metal dioxides**

Similar calculations can be performed for the alkali metal dioxides.

If \(\text{NaO}_2\) is considered first, then equation (6) can be rewritten in this case as

\[-D_o \quad \text{Na} + \text{O}_2 \quad \text{-----} \quad \text{NaO}_2 \quad \text{-----} \quad \text{NaO}_2^+ \quad \text{-----} \quad \text{Na}^+ + \text{O}_2 \quad \text{---------}\]

Equation (11)

where \(D_o\) and \(D_o^+\) are the dissociation energies of \(\text{NaO}_2\), \(D_o(\text{Na}-\text{O}_2)\), and \(\text{NaO}_2^+\), \(D_o(\text{Na}^+-\text{O}_2)\), in their ground states.

Using the first AIE of \(\text{NaO}_2\) measured in this work of \((6.2 \pm 0.2) \text{ eV}\), then the differences in the neutral and ionic dissociation energies of \(\text{NaO}_2\) is

\[D_o - D_o^+ = (1.06 \pm 0.20) \text{ eV} \]

Equation (12)

Unfortunately, no experimental value for \(D_o(\text{Na}^+-\text{O}_2)\) is available, and the available values for
\(D_o(\text{Na}-\text{O}_2)\) differ widely (see reference (95), Table
The lowest experimental value is \((1.51 \pm 0.22)\) eV derived by Hynes et al. (10) from flame studies, although an upper limit of 1.19 eV was derived in a mass spectrometric study in which no NaO\(_2\) could be detected on evaporation of solid sodium oxides (19,116). In contrast, a value of \((2.52 \pm 0.09)\) eV has recently been reported for \(D_0(\text{Na-O}_2)\) by Steinberg and Schofield (20) from re-analysis of data from high temperature vaporization experiments on Na\(_2\)O\(_{eq}\). However, in the light of these conflicting values, the most reliable value for \(D_0(\text{Na-O}_2)\) would appear to be that derived by Partridge et al. (121), from a series of \textit{ab initio} calculations which include the effects of electron correlation as 1.61 eV, consistent with the values derived from flame studies by Jensen (11) and Hynes et al. (10). If this value is used in equation (12), then \(D_0^+\) can be derived as \((0.55 \pm 0.20)\) eV. Alternatively, the computed value of \(D_0(\text{Na}^+\text{-O}_2)\) of 0.31 eV (97), gives \(D_0(\text{Na-O}_2)\) as \((1.37 \pm 0.2)\) eV.

In the case of KO\(_2\), the difference between the dissociation energy of the molecule and the ion can be derived as

\[
D_0 - D_0^+ = (1.4 \pm 0.1) \text{ eV} \tag{13}
\]

using the first ionization energy of atomic potassium of 4.34 eV (29) and the first ionization energy of KO\(_2\) measured in this work as \((5.7 \pm 0.1)\) eV.

As in the case of \(D_0(\text{Na-O}_2)\), available experimental values of \(D_0(\text{K-O}_2)\) vary widely (see Table 8, reference (95)), the lowest value being that of Jensen (11) of \((1.8 \pm 0.3)\) eV. The most recent \textit{ab initio} calculations, by Partridge et al. (121) give 1.76 eV, which leads via equation (13) to \(D_0^+ = (0.36 \pm 0.10)\) eV.

If \(D_0^+\) is taken as zero, then \(D_0(\text{K-O}_2)\) is \((1.4 \pm 0.1)\) eV, consistent with Jensen's value (11), but inconsistent with a value of \((2.6 \pm 0.2)\) eV obtained by Steinberg and Schofield (117). Alternatively, use of Jensen's value of \(D_0(\text{K-O}_2)\) leads to \(D_0^+\) of \((0.4 \pm 0.4)\) eV.

Clearly, in the case of the superoxides, NaO\(_2\) and KO\(_2\), reliable values
of $D_0(\text{Na-O}_2)$ and $D_0(\text{K-O}_2)$ are required to determine $D_0(\text{Na}^+\text{-O}_2)$ and $D_0(\text{K}^+\text{-O}_2)$ from equations (12) and (13), although values of (0.55 ± 0.20) and (0.36 ± 0.10) eV are expected to be the most reliable available values based on the MO$_2$ ionization energies measured in this work and the $D_0(\text{M-O}_2)$ values computed in reference (121).
Conclusions

In this work, the low ionization energy region (5.0-10.0 eV) of the HeI photoelectron spectra of the metal oxides NaO and KO have been recorded. Preliminary spectra have also been obtained for LiO. The metal monoxides (M) were prepared for p.e.s. study using the gas-phase M + N₂O and M + O₃ reactions.

In the case of NaO and KO, prepared by the M + N₂O method, three bands were observed which could be assigned on the basis of \textit{ab initio} calculations, to ionizations from the \(X^2\Pi\) neutral state, to the \(X^2\Sigma^-\) and \(A^3\Pi\) states, and to ionization from the \(A^2\Sigma^+\) low-lying excited state to the \(A^3\Pi\) ionic state. For the Na + O₃ and K + O₃ reactions, an extra band was observed for each reaction which was assigned, on the basis of available kinetic evidence and the results of \textit{ab initio} calculations, to the first ionization energy of the metal superoxide.

The measured first adiabatic ionization energy of each metal monoxide has been used with the available ground state neutral dissociation energy to calculate the dissociation energy in the ground ionic state. For the oxides NaO₂ and KO₂, similar calculations have been hampered by the lack of reliable dissociation energies in the neutral ground states.

One of the main results to be derived from this present work is that in the Na + O₃ reaction the \(A^2\Sigma^+\) state of NaO is preferentially produced relative to the \(X^2\Pi\) NaO state, with an A:X branching ratio of at least 2:1. This result is in accord with the results of recent molecular beam magnetic deflection experiments (7, 8). The mesospheric night-glow arises from the Na²P \(\rightarrow\) Na²S emission, where the \(^2P\) and \(^2S\) states of sodium are produced from the reactions
Laboratory kinetic experiments (118) performed for the NaO(X^2Π) + O reaction gave a Na \(^3P:2S\) branching ratio which is very small (≤ 0.01) and insufficient to account for the sodium night-glow. However, Herschbach and coworkers have shown, from symmetry correlation considerations (7), that the NaO(A^2Σ^+) + O reaction gives a much higher Na \(^2P:2S\) branching ratio and this should be able to account for the observed night-glow intensity. Obviously, preferential production of NaO in the A^2Σ^+ state from the Na + O\(_3\) reaction is an essential part of this mechanism and the results of this present work support this conclusion.
Acknowledgements

This work has been supported by the S.E.R.C., the European Community and the Air Force Office of Scientific Research through the European Office of Aerospace Research (EOARD), United States Air Force.

The authors wish to thank Professors D.R. Herschbach, C.E. Kolb, D.L. Hildenbrand, J.L. Gole and C. Yamada for valuable discussions and for sending reprints of unpublished work. Drs. M.C.R. Cockett and B.W.J. Gravenor are also thanked for valuable assistance in the early stages of this work.
References

1. W. Swider, Jr.,
 Planet Space Sci., 17, 1969, 1233

2. (a) E. Murad,
 (b) E. Murad and W. Swider,
 (c) D.R. Bates and P.C. Ojha,
 Nature 286, 1980, 790

3. S. Chapman,
 Astrophys. J., 20, 1939, 309

4. V.W.J.H. Kirchoff, B.R. Clemesha and D.M. Simonich,
 J. Geophys. Res., 84, 1979, 1323

5. S.C. Liu and C.C. Reid,
 Geophys. Res. Lett., 6, 1979, 283

6. C.E. Kolb and J.B. Elgin,
 Nature, 263, 1976, 488

7. (a) D.R. Herschbach, C.E. Kolb, D.R. Worsnop and X. Shi,
 (b) C.E. Kolb, D.R. Worsnop, M.S. Zahniser, G.N. Robinson, X. Shi and
 D.R. Herschbach
 in: "Chemiluminescence and Chemi-ionization: Gas-Phase Metal Atom

8. X Shi, D.R. Herschbach, D.R. Worsnop and C.E. Kolb,
 J. Chem. Phys., to be submitted

9. J.L. Gole,
10. A.J. Hynes, M. Steinberg and K. Schofield,
 J. Chem. Phys., 80, 1984, 2585
11. D.E. Jensen,
12. R.N. Newman and J.F.B. Payne,
 Comb. Flame, 33, 1978, 291
13. R.N. Newman and C.A. Smith,
14. (a) D.J. Benard, R.C. Benson and R.E. Walker,
 (b) R.C. Benson, C.B. Bargeron and R.E. Walker,
 (c) D.J. Benard,
15. (a) J.W. Ager III and C.E. Kolb,
 (b) J.A. Silver and C.E. Kolb,
16. J.M.C. Plane,
17. D. Husain,
18. L. Brewer and J. Margrave,
19. D.L. Hildenbrand and E. Murad,
20. M. Steinberg and K. Schofield,
21. Values from E.N. Verkhoturov,
Thesis, Moscow State University, 1977
22. P.K. Rol and E.A. Entemann,
23. R.H. Neynaber, B.F. Myers and S.M. Trujillo,
Phys. Rev., 180, 1969, 139
24. P.K. Rol, E.A. Entemann and K.L. Wendall,
25. (a) H. Schmidt, P.S. Weiss, J.M. Mestdagh, M.H. Covinsky and
Y.T. Lee,
Chem. Phys. Letts., 118, 1985, 539
(b) J.M. Mestdagh, D. Paillard and J. Berlande,
(c) D. Paillard and J.M. Mestdagh,
26. T.C. Ehliert,
High Temperature Science, 2, 1977, 237
27. M. Farber and R.D. Srivastava,
High Temperatures-High Pressures, 20, 1988, 119
28. K.I. Peterson, P. D. Dao and A.W. Castleman Jr.,
29. C.E. Moore, Atomic Energy levels,
30. J. Pfeifer and J.L. Gole,
31. J.R. Woodward, J.S. Hayden and J.L. Gole,

32. J.L. Gole,
private communication

33. J.W. Ager III, G.L. Talcott and C.J. Howard,

34. L. Andrews,

35. R.C. Spiker, Jr. and L. Andrews,

36. R.R. Smardzewski and L. Andrews,
J. Chem. Phys., 57, 1972, 1327

37. L. Andrews,

38. L. Andrews,
J. Mol. Spec., 61, 1976, 337

39. R.C. Spiker, Jr. and L. Andrews,

40. R.R. Herm and D.R. Herschbach,

41. S.M. Freund, E. Herbst, R.P. Mariella, Jr. and W. Klemperer,
J. Chem. Phys., 56, 1972, 1467

42. R.A. Berg, L. Wharton, W. Klemperer, A. Büchler and J.L. Stauffer,

43. P.A.G. O'Hare and A.C. Wahl,

44. D.T. Grow and R.M. Pitzer,

41
45. M.J. Glugston and R.G. Gordon,
 J. Chem. Phys., 66, 1977, 244

46. J.N. Allison and W.A. Goddard III,

47. J.N. Allison, R.J. Cave and W.A. Goddard III,

48. (a) S.R. Langhoff, C.W. Bauschlicher, Jr. and H. Partridge,

 (b) S.R. Langhoff, C.W. Bauschlicher Jr and H. Partridge
 in "Comparison of Ab Initio Quantum Chemistry with Experiment for
 357

49. S.P. So and W.G. Richards,

50. E.P.F. Lee, T.G. Wright and J.M. Dyke
 Mol. Phys. (in press)

51. D.M. Lindsay, D.R. Herschbach and A.L. Kiwram,
 J. Chem. Phys., 60, 1974, 315

52. B.C. Laskowski, S.R. Langhoff and P.E.M. Siegbahn,

53. C. Yamada,
 personal communication, work in preparation

54. C. Yamada, M. Fujitake and E. Hirota,

55. C. Yamada, M. Fujitake and E. Hirota,

56. D. White, K.S. Seshadri, D.F. Dever, D.E. Mann and M.J. Linevsky,
57. J. Berkowitz, W.A. Chupka, G.D. Blue and J.L. Margrave,
 J. Phys. Chem., 63, 1959, 644
58. D.L. Hildenbrand,
 J. Chem. Phys., 57, 1972, 4556
59. (a) C.H. Wu, H. Kudo and H.R. Ihle,
 J. Chem. Phys., 70, 1979, 1815
 (b) H. Kudo, C.H. Wu and H.R. Ihle,
 J. Nucl. Mat. 78, 1978, 380
60. L. Andrews,
61. R.C. Spiker, Jr. and L. Andrews,
62. D.A. Hatzenbuhler and L. Andrews,
63. L. Andrews and R.R. Smardzewski,
64. K.S. Seshadri, D. White and D.E. Mann,
65. H. Hüber and G. Ozin,
 J. Mol. Spec., 41, 1972, 595
66. D. Husain, P. Marshall and J.M.C. Plane,
 J.C.S. Chem. Comm., 1985, 1216
67. J.A. Silver and C.E. Kolb,
68. D.R. Worsnop, M.S. Zahniser and C.E. Kolb,
69. R.E. Walker and J.E. Creedon,
 Combustion and Flame, 21, 1973, 3960

43
70. D. Husain and P. Marshall,
 Combustion and Flame, 60, 1985, 81

71. D. Husain and Y.H. Lee,
 Combustion and Flame, 68, 1987, 177

72. J.M. Dyke, A. Morris, G.D. Josland, M.P. Hastings and P.D. Francis,
 High Temperature Science, 22, 1986, 95

 Morris,

74. G.A. Cook, A.D. Kiffer, C.V. Klumpp, A.H. Malik and L.A. Spence,
 Adv. Chem. Ser., 21, 1959, 44

75. L.F. Atyaksheva and G.I. Emelyanova,
 1990, 934)

76. A.D. McLean and G.S. Chandler.

77. R. Ahlrichs and P.R. Taylor,

78. A.J.H. Wachters,

79. B. Roos and P.E.M. Siegbahn,

80. T.H. Dunning, Jr. and P.J. Hay
 in "Methods of Electronic Structure Theory", Ed. H.F. Schaefer III
 (Plenum Press, New York, 1977) page 1

81. S.R. Langhoff and E.R. Davidson,
 Int. J. Quantum Chem, 11, 1974, 61
82. M.F. Guest and J. Kendrick,
GAMESS User Manual, SERC Daresbury Laboratory, CCP1/86/1, 1986
83. J.M. Dyke,
84. D.R. Lloyd
J. Physics E 2, 1970, 629
85. W.W. Chase, C.A. Davies, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald and A.N. Syverud,
86. (a) E. Wigner and E.E. Witmer,
Z. Physik, 51, 1928, 859
(b) G. Herzberg,
87. S.R. Langhoff, H. Partridge and C.W. Bauschlicher,
Chemical Physics, 153, 1991, 1
88. F.J. Adrian, E.J. Cochran and V.A. Bowers,
89. R.D. Amos and J.E. Rice,
Chemical Physics, 133, 1989, 11
91. J.M.C. Plane, B. Rajasekhar and L. Bartolotti,
92. P. Marshall, A.S. Narayan and A. Fontijn,

45
94. P. Marshall,
95. J.M.C. Plane, B. Rajasekhar and L. Bartolotti,
96. M. Krauss, D. Neumann, A.C. Wahl, G. Das and W. Zemke,
97. H. Partridge, C.W. Bauschlicher, M. Sodupe and S.R. Langhoff
98. D.M. Lindsay, D.R. Herschbach and A.L. Kwiram,
 Chem. Phys. Letts., 25, 1974, 175
99. K.P. Huber and G. Herzberg,
 Molecular Spectra and Molecular Structure, IV. Constants of Diatomic
 Molecules (van Nostrand, New York, 1979)
100. J.M. Dyke, N. Jonathan, A. Morris and M.J. Winter,
101. T.A. Williams and A.W. Potts,
102. A.W. Potts and E.P.F. Lee,
 Chem. Phys. Letts., 67, 1979, 93
103. H. Hotop, R.A. Bennett and W.C. Lineberger,
104. R.J. Celotta, R.A. Bennett, J.L. Hall, M.W. Siegel and J. Levine,
105. D.W. Turner, C. Baker, A.D. Baker and C.R. Brundle,
106. M.C.R. Cockett,

107. L. Andrews, J.T. Hwang, and C. Trindle,

108. A.B. Gusarov, L.N. Gorokhov and A.G. Efimova,

109. D. Husain and B.Ji,
 Combustion and Flame, 79, 1990, 250

110. D. Husain and B. Ji,

111. A.W. Potts, T.A. Williams and W.C. Price,

112. A.W. Potts and T.A. Williams,
 J.C.S. Faraday II, 72, 1976, 1892

113. A.W. Potts, and E.P.F. Lee,
 J.C.S. Faraday II, 75, 1979, 941

114. E.S. Rittner,
 J. Chem. Phys., 19, 1951, 1030

115. D.L. Hildenbrand,
 private communication.

116. R.H. Lamoreaux and D.L. Hildenbrand,

117. quoted in Table VIII of reference (95)

118. J.M.G. Plane and D. Husain
 J.C.S. Faraday II 82, 1986, 2047
119. (a) L. Serrano-Andrés, A. Sánchez de Méras, P. Pou-Amérigo and I. Nebot-Gil

Chemical Physics 162, 1992, 321

(b) L. Serrano-Andrés, A. Sánchez de Méras, P. Pou-Amérigo and I. Nebot-Gil

J. Mol. Struct (Theochem) 254, 1992, 229

120. H.M. Rosenstock, K. Draxl, B.W. Steiner and J.T. Herron

J. Phys Chem Ref Data 6(Suppl. 1) 1977

121. H. Partridge, C.W. Bauschlicher, M. Sodupe and S.R. Langhoff

Figure Captions

Figure 1
Schematic Diagram of Reaction Cell.

Figure 2
HeI Photoelectron Spectrum of the Products of the Na + N₂O Reaction in the 5.0-9.5 eV Region.

Figure 3
HeI Photoelectron Spectrum of the Products of the Na + O₃ Reaction in the 5.0-9.5 eV Region.

Figure 4
HeI Photoelectron Spectrum of the Products of the K + N₂O Reaction in the 4.2-9.0 eV Region.

Figure 5
HeI Photoelectron Spectrum of the Products of the K + O₃ Reaction in the 3.5-9.5 eV Region.

Figure 6
HeI Photoelectron Spectrum of the Products of the Li + N₂O Reaction in the 5.0-9.5 eV Region.
TABLE 1

Calculated Spectroscopic Constants (r_e and \(\overline{\omega_e} \)) for NaO(\(X^2\Pi \))(a)

<table>
<thead>
<tr>
<th>Method Used</th>
<th>(r_e / \text{Å})</th>
<th>(\overline{\omega_e} / \text{cm}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHF</td>
<td>2.053</td>
<td>498.8</td>
</tr>
<tr>
<td>CISD</td>
<td>2.068</td>
<td>476.9</td>
</tr>
<tr>
<td>CISD + Q</td>
<td>2.077</td>
<td>465.0</td>
</tr>
<tr>
<td>Experimental</td>
<td>2.052(^b)</td>
<td>492.3(^b)</td>
</tr>
<tr>
<td>Theoretical (CISD)</td>
<td>2.039(^c)</td>
<td>508(^c)</td>
</tr>
</tbody>
</table>

\(^a\) See text for computational details

\(^b\) reference (55)

\(^c\) reference (48)

TABLE 2

Calculated Spectroscopic Constants (r_e and \(\overline{\omega_e} \)) for NaO(\(A^2\Sigma^+ \))(a)

<table>
<thead>
<tr>
<th>Method Used</th>
<th>(r_e / \text{Å})</th>
<th>(\overline{\omega_e} / \text{cm}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHF</td>
<td>1.955</td>
<td>544.4</td>
</tr>
<tr>
<td>CISD</td>
<td>1.961</td>
<td>533.9</td>
</tr>
<tr>
<td>CISD + Q</td>
<td>1.965</td>
<td>528.0</td>
</tr>
<tr>
<td>Theoretical (CISD)</td>
<td>1.942(^b)</td>
<td>533(^b)</td>
</tr>
</tbody>
</table>

\(^a\) See text for computational details

\(^b\) reference (48)
TABLE 3

Calculated Spectroscopic Constants (r_e and ω_e) for KO($X^2\Pi$)

<table>
<thead>
<tr>
<th>Method Used</th>
<th>r_e/Å</th>
<th>ω_e/cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHF</td>
<td>2.386</td>
<td>390.2</td>
</tr>
<tr>
<td>CISD</td>
<td>2.391</td>
<td>382.3</td>
</tr>
<tr>
<td>CISD + Q</td>
<td>2.399</td>
<td>375.4</td>
</tr>
<tr>
<td>Experimental</td>
<td>-</td>
<td>384b</td>
</tr>
<tr>
<td>Theoretical (CISD)</td>
<td>2.328c</td>
<td>395c</td>
</tr>
</tbody>
</table>

See text for computational details; recent calculations on KO($X^2\Pi$) and A$^2\Sigma^+$ show that the ordering of the two states is critically dependent on inclusion of both dynamic and non-dynamic electron-correlation (48,50,119)

b N$_2$ matrix isolation value (35): where it was assumed that KO($X^2\Pi$) was observed

c reference (48)

TABLE 4

Calculated Spectroscopic Constants (r_e and ω_e) for KO($A^2\Sigma^+$)

<table>
<thead>
<tr>
<th>Method Used</th>
<th>r_e/Å</th>
<th>ω_e/cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHF</td>
<td>2.281</td>
<td>391.9</td>
</tr>
<tr>
<td>CISD</td>
<td>2.275</td>
<td>390.0</td>
</tr>
<tr>
<td>CISD + Q</td>
<td>2.280</td>
<td>386.4</td>
</tr>
<tr>
<td>Theoretical (CISD)</td>
<td>2.186b</td>
<td>429b</td>
</tr>
</tbody>
</table>

*See text for computational details

b reference (48)
TABLE 5

Experimental Band Positions Measured for the Na + N₂O and Na + O₃ reactions

<table>
<thead>
<tr>
<th>Photoelectron Bands Arising from Reactions between Sodium and N₂O<sup>a)</sup></th>
<th>Photoelectron Bands Arising from Reactions involving Sodium and O₃<sup>a)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Band</td>
<td>VIE/eV</td>
</tr>
<tr>
<td>A</td>
<td>7.70±0.06</td>
</tr>
<tr>
<td>B</td>
<td>7.97±0.05</td>
</tr>
<tr>
<td>C</td>
<td>8.20±0.04</td>
</tr>
<tr>
<td>D</td>
<td>Not observed</td>
</tr>
<tr>
<td>Onset of Photoelectron Band = 7.1±0.1 eV (Band A)</td>
<td>Onset of Photoelectron Band = 6.2±0.2 eV (Band D)</td>
</tr>
</tbody>
</table>

^a Errors quoted are 2σ values

TABLE 6

Calculated Ionization Energies for NaO(X²Π) and Computed Ionic State Spectroscopic Constants ^{a)}

<table>
<thead>
<tr>
<th>Ionic State</th>
<th>AIE/eV</th>
<th>VIE/eV</th>
<th>(\bar{\omega}_{\text{cm}^{-1}})</th>
<th>(r_e/\text{Å})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^1\Sigma^+)</td>
<td>5.52 (6.78)</td>
<td>5.82 (7.10)</td>
<td>187.3 (207.4)</td>
<td>2.518 (2.528)</td>
</tr>
<tr>
<td>(^3\Pi)</td>
<td>5.86 (7.13)</td>
<td>6.14 (7.40)</td>
<td>58.8 (89.5)</td>
<td>2.778 (2.958)</td>
</tr>
<tr>
<td>(^1\Delta)</td>
<td>7.72 (8.91)</td>
<td>8.02 (9.22)</td>
<td>185.4 (201.7)</td>
<td>2.513 (2.526)</td>
</tr>
<tr>
<td>(^1\Pi)</td>
<td>8.34 (9.53)</td>
<td>8.34 (9.53)</td>
<td>74.7 (114.8)</td>
<td>2.978 (2.938)</td>
</tr>
<tr>
<td>(^3\Sigma^+)</td>
<td>9.87 (10.33)</td>
<td>10.17 (10.63)</td>
<td>183.9 (197.4)</td>
<td>2.509 (2.522)</td>
</tr>
</tbody>
</table>

^a Values in parentheses are CISD + Q values, the others are RHF values. The spectroscopic constants presented are computed ionic state values. See the text for computational details. The experimental first AIE and VIE values measured in this work are (7.1 ± 0.1) and (7.70 ± 0.06) eV respectively.
TABLE 7

Calculated Ionization Energies for NaO (A^2Σ^+)
and Computed Ionic State Spectroscopic Constants (*)

<table>
<thead>
<tr>
<th>Ionic State</th>
<th>AIE/eV</th>
<th>VIE/eV</th>
<th>∆ω_e/cm⁻¹</th>
<th>r_e/Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>A^3Π</td>
<td>5.66</td>
<td>6.13</td>
<td>58.8</td>
<td>2.778</td>
</tr>
<tr>
<td></td>
<td>(6.88)</td>
<td>(7.33)</td>
<td>(89.5)</td>
<td>(2.958)</td>
</tr>
<tr>
<td>b^3Π</td>
<td>8.14</td>
<td>8.14</td>
<td>74.7</td>
<td>2.978</td>
</tr>
<tr>
<td></td>
<td>(9.28)</td>
<td>(9.28)</td>
<td>(114.8)</td>
<td>(2.938)</td>
</tr>
<tr>
<td>d^3Σ⁺</td>
<td>-</td>
<td>9.67</td>
<td>-</td>
<td>unbound</td>
</tr>
<tr>
<td></td>
<td>(10.30)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Values in parentheses are CISD + Q values, the others are RHF values. The spectroscopic constants presented are computed ionic state values. See the text for computational details.
TABLE 8
Calculated and Experimental Equilibrium Geometries
and Vibrational Frequencies for NaO₂(X²A₂) †

<table>
<thead>
<tr>
<th>Method Used</th>
<th>(r_{Na-O}/\text{Å})</th>
<th>(\theta_\circ/°)</th>
<th>(r_{O-O}/\text{Å})</th>
<th>(\bar{\omega}_1/\text{cm}^{-1})</th>
<th>(\bar{\omega}_2/\text{cm}^{-1})</th>
<th>(\bar{\omega}_3/\text{cm}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHF</td>
<td>2.122</td>
<td>35.6</td>
<td>1.298</td>
<td>1402</td>
<td>448</td>
<td>321</td>
</tr>
<tr>
<td>UHF*</td>
<td>2.124</td>
<td>35.8</td>
<td>1.305</td>
<td>1369</td>
<td>439</td>
<td>361</td>
</tr>
<tr>
<td>UMP2**</td>
<td>2.155</td>
<td>37.4</td>
<td>1.380</td>
<td>1010</td>
<td>427</td>
<td>[982]</td>
</tr>
<tr>
<td>Previous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical</td>
<td>2.122a</td>
<td>35.6a</td>
<td>1.278a</td>
<td>1456a</td>
<td>442a</td>
<td>292(a,g)</td>
</tr>
<tr>
<td>TZ + d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous</td>
<td>2.139b</td>
<td>36.5b</td>
<td>1.340b</td>
<td>1284b</td>
<td>434b</td>
<td>364b</td>
</tr>
<tr>
<td>Theoretical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TZ + d,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CISD-(\pi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental</td>
<td>2.1c</td>
<td>36.9c</td>
<td>1.33c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental</td>
<td>2.07e</td>
<td>-</td>
<td>-</td>
<td>1094d</td>
<td>391e</td>
<td>333e</td>
</tr>
</tbody>
</table>

* \(<S^2> = 0.78\)

** \(<S^2> = 0.79\)

a reference (93)

b reference (93)

c reference (86)

d reference (34)

e reference (36)

f unphysical vibrational frequency due to symmetry breaking in reference wavefunction (90)

g values affected by symmetry breaking

† for details of calculations see text
TABLE 9
Calculated and Experimental Equilibrium Geometries and Vibrational Frequencies for KO$_2$(X2A$_2$) †

<table>
<thead>
<tr>
<th>Method Used</th>
<th>r_{Na-O}/Å</th>
<th>Θ_ψ/°</th>
<th>r_{O-O}/Å</th>
<th>$\bar{\omega}_1$/cm$^{-1}$</th>
<th>$\bar{\omega}_2$/cm$^{-1}$</th>
<th>$\bar{\omega}_3$/cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHF</td>
<td>2.451</td>
<td>30.7</td>
<td>1.296</td>
<td>1412</td>
<td>337</td>
<td>276f</td>
</tr>
<tr>
<td>UHF</td>
<td>2.455</td>
<td>30.8</td>
<td>1.302</td>
<td>1379</td>
<td>335</td>
<td>301f</td>
</tr>
<tr>
<td>UMP2</td>
<td>2.459</td>
<td>32.4</td>
<td>1.372</td>
<td>1007</td>
<td>331</td>
<td>[873e]</td>
</tr>
<tr>
<td>Previous Theoretical UHF</td>
<td>2.44a</td>
<td>30.7a</td>
<td>1.29a</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Experimental</td>
<td>(3.3)b</td>
<td>(33)b</td>
<td>-</td>
<td>1108c</td>
<td>307.5d</td>
<td>ca. 260d</td>
</tr>
</tbody>
</table>

* $<S^2> = 0.78$

** $<S^2> = 0.79$

a reference (95)

b estimated values from matrix isolation data - reference (36)

c reference (37)

d reference (36) : ν_3 absorption not observed, but believed to be obscured by dimer bands in 260 cm$^{-1}$ region (36)

e unphysical vibrational frequency due to symmetry breaking in reference wavefunction (90)

f values affected by symmetry breaking

† for details of calculations - see text
<table>
<thead>
<tr>
<th>Method Used</th>
<th>Ionic State</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X^3B_1</td>
<td>a^1B_1</td>
</tr>
<tr>
<td>RHF</td>
<td>6.85</td>
<td>8.12</td>
</tr>
<tr>
<td>CISD</td>
<td>6.73</td>
<td>7.86</td>
</tr>
<tr>
<td>CISD + Q</td>
<td>6.65</td>
<td>7.70</td>
</tr>
<tr>
<td>Previous Theoretical SCF ^a</td>
<td>7.24^a</td>
<td>-</td>
</tr>
<tr>
<td>Previous Theoretical UMP4^* ^a</td>
<td>7.16^a</td>
<td>-</td>
</tr>
<tr>
<td>Experimental</td>
<td>7.28±0.04(c)</td>
<td>-</td>
</tr>
</tbody>
</table>

^a UMP4SDTQ/6-31G//HF/6-31G
^t for details of calculations - see text

^a reference (94): note in this reference the first adiabatic ionization energy seems to have been calculated to be greater than the first vertical ionization energy, that is, the adiabatic I.E. to NaO_2^+ (X^3B_1) is calculated to be 7.35 eV, whereas the vertical I.E. is calculated to be 7.16 eV

^b problems encountered in convergence of the CI wavefunction

^c This work; adiabatic value (6.2 ± 0.2) eV
TABLE 11

Measured Photoelectron Band Positions for the K + N₂O and K + O₃ Reactions (a)

<table>
<thead>
<tr>
<th>Photoelectron Bands Resulting from Reactions between K and N₂O(b)</th>
<th>Photoelectron Bands Resulting from Reactions between K and O₃(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band</td>
<td>Vertical Ionization Energy/eV</td>
</tr>
<tr>
<td>A</td>
<td>7.21±0.08</td>
</tr>
<tr>
<td>B</td>
<td>7.43±0.09</td>
</tr>
<tr>
<td>C</td>
<td>7.71±0.10</td>
</tr>
<tr>
<td>D</td>
<td>8.35±0.11</td>
</tr>
<tr>
<td>Onset of PE band = 6.9±0.1 eV (Band A)</td>
<td>Onset of PE band = 5.7±0.1 eV (Band E)</td>
</tr>
</tbody>
</table>

(a) See Figures 4 and 5
(b) errors given are 2σ values

TABLE 12

Calculated Ionization Energies for KO(X²ΙΙ) and Computed Ionic State Spectroscopic Constants (a)

<table>
<thead>
<tr>
<th>Ionic State</th>
<th>AIE/eV</th>
<th>VIE/eV</th>
<th>̅ω/cm⁻¹</th>
<th>rₑ/Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>A³Σ⁺</td>
<td>4.59 (5.81)</td>
<td>4.94 (6.13)</td>
<td>104.7 (110.8)</td>
<td>3.030 (3.000)</td>
</tr>
<tr>
<td>A³Π</td>
<td>-</td>
<td>5.09 (6.25)</td>
<td>-</td>
<td>unbound</td>
</tr>
<tr>
<td>a³Δ</td>
<td>6.80 (7.92)</td>
<td>7.14 (8.24)</td>
<td>101.2 (105.8)</td>
<td>3.055 (3.012)</td>
</tr>
<tr>
<td>b³Π</td>
<td>-</td>
<td>7.28 (8.36)</td>
<td>-</td>
<td>unbound</td>
</tr>
<tr>
<td>c³Σ⁺</td>
<td>8.94 (9.44)</td>
<td>9.29 (9.77)</td>
<td>96.3 (98.9)</td>
<td>3.040 (3.032)</td>
</tr>
</tbody>
</table>

(a) Values in parentheses are CISD values, the others are RHF values. The spectroscopic constants quoted are computed ionic state values.
See the text for computational details.
The experimental first AIE and VIE values for KO measured in this work are (6.9 ± 0.1) and (7.21 ± 0.08) eV respectively.
TABLE 13

Calculated Ionization Energies for KO(A^3Σ^+)(*)

<table>
<thead>
<tr>
<th>State</th>
<th>AIE/eV</th>
<th>VIE/eV</th>
<th>Ω_e/cm^{-1}</th>
<th>r_e/Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>A^3Π</td>
<td>-</td>
<td>5.24</td>
<td>-</td>
<td>unbound</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6.38)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b^1Π</td>
<td>-</td>
<td>7.43</td>
<td>-</td>
<td>unbound</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8.49)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d^3Σ^+</td>
<td>-</td>
<td>8.56</td>
<td>-</td>
<td>unbound</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9.12)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) Values in parentheses are CISD values, the others are RHF values. The spectroscopic constants quoted are computed ionic state values. See the text for computational details.

TABLE 14

Calculated Vertical Ionization Energies (eV) for KO_2(X^2A_2)†

<table>
<thead>
<tr>
<th>Method Used</th>
<th>Ionic State</th>
<th>X^3B_1</th>
<th>a^2B_1</th>
<th>b^1A_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHF</td>
<td></td>
<td>6.68</td>
<td>7.94</td>
<td>8.15</td>
</tr>
<tr>
<td>CISD</td>
<td></td>
<td>6.43</td>
<td>7.55</td>
<td>_ a</td>
</tr>
<tr>
<td>CISD + Q</td>
<td></td>
<td>6.30</td>
<td>7.33</td>
<td>_ a</td>
</tr>
</tbody>
</table>

† problems encountered in convergence of the CI wavefunction

* for details of calculations - see text
The experimental first AIE and VIE values of KO_2 measured in this work are (5.7 ± 0.1) and (6.01 ± 0.08) eV respectively.
TABLE 15

Calculated Ionization Energies for LiO(X^2Π) and Computed Ionic State Spectroscopic Constants

<table>
<thead>
<tr>
<th>State</th>
<th>AIE/eV</th>
<th>VIE/eV</th>
<th>(\bar{\omega}/\text{cm}^{-1})</th>
<th>(r_e/\text{Å})</th>
</tr>
</thead>
<tbody>
<tr>
<td>X^2Σ^-</td>
<td>7.57</td>
<td>7.95</td>
<td>349</td>
<td>2.123</td>
</tr>
<tr>
<td>A^3Π</td>
<td>-</td>
<td>8.45</td>
<td>-</td>
<td>unbound</td>
</tr>
<tr>
<td>a^1Δ</td>
<td>10.33</td>
<td>10.68</td>
<td>332</td>
<td>2.13</td>
</tr>
<tr>
<td>b^3Π</td>
<td>-</td>
<td>10.64</td>
<td>-</td>
<td>unbound</td>
</tr>
<tr>
<td>c^1Σ^+</td>
<td>9.77</td>
<td>10.13</td>
<td>339</td>
<td>2.12</td>
</tr>
</tbody>
</table>

Reference (106); the values quoted are obtained from CISD calculations. The experimental first AIE and VIE values of LiO measured in this work are (7.6 ± 0.2) and (8.8 ± 0.2) eV respectively.

TABLE 16

Calculated Ionization Energies for LiO(A^3Σ^+)

<table>
<thead>
<tr>
<th>State</th>
<th>AIE/eV</th>
<th>VIE/eV</th>
<th>(\bar{\omega}/\text{cm}^{-1})</th>
<th>(r_e/\text{Å})</th>
</tr>
</thead>
<tbody>
<tr>
<td>X^2Π</td>
<td>-</td>
<td>8.39</td>
<td>-</td>
<td>unbound</td>
</tr>
<tr>
<td>b^3Π</td>
<td>-</td>
<td>10.60</td>
<td>-</td>
<td>unbound</td>
</tr>
<tr>
<td>d^1Σ^+</td>
<td>-</td>
<td>11.54</td>
<td>-</td>
<td>unbound</td>
</tr>
</tbody>
</table>

Reference (106); the values quoted are obtained from CISD calculations.
TABLE 17

Calculated First Vertical Ionization Energies of the Alkali Metal Monoxides (MO, M=Li, Na, K) using an Electrostatic Model

<table>
<thead>
<tr>
<th>Molecule</th>
<th>VIE/eV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calculated</td>
</tr>
<tr>
<td>LiO</td>
<td>10.05</td>
</tr>
<tr>
<td>NaO</td>
<td>8.40</td>
</tr>
<tr>
<td>KO</td>
<td>7.47</td>
</tr>
</tbody>
</table>

a. See text for further details; calculated values obtained using equation (5)
b. this work

TABLE 18

Calculated First Vertical Ionization Energies of the Alkali Metal Dioxides (MO₂, M=Li, Na, K) using an Electrostatic Model

<table>
<thead>
<tr>
<th>Molecule</th>
<th>VIE/eV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calculated</td>
</tr>
<tr>
<td>LiO₂</td>
<td>9.04</td>
</tr>
<tr>
<td>NaO₂</td>
<td>7.39</td>
</tr>
<tr>
<td>KO₂</td>
<td>6.46</td>
</tr>
</tbody>
</table>

a. See text for further details; calculated values obtained using equation (5)
b. this work
Figure 2

Counts Sec$^{-1}$

I.E./eV

Mel

A

B

C

Na

3×10^{-2}