Equipment for Contaminated Sediment Dredging

by Trimbak M. Parchure

Approved For Public Release; Distribution Is Unlimited

Prepared for Headquarters, U.S. Army Corps of Engineers
The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
Equipment for Contaminated Sediment Dredging

by Trimbak M. Parchure

U.S. Army Corps of Engineers
Waterways Experiment Station
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Final report
Approved for public release; distribution is unlimited

Prepared for U.S. Army Corps of Engineers
Washington, DC 20314-1000
Waterways Experiment Station Cataloging-in-Publication Data

Parchure, T. M. (Trimbak Mukund), 1943-
 Equipment for contaminated sediment dredging / by Trimbak M. Parchure ; prepared for
 U.S. Army Corps of Engineers.
 100 p. : ill. ; 28 cm. -- (Technical report ; HL-96-17)
 Includes bibliographical references.
 1. Contaminated sediments. 2. Dredging -- Techniques. 3. Dredging -- Equipment and
 supplies. I. United States. Army. Corps of Engineers. II. U.S. Army Engineer Waterways
 Experiment Station. III. Hydraulics Laboratory (U.S. Army Engineer Waterways Experiment
 Station) IV. Title. V. Series: Technical report (U.S. Army Engineer Waterways Experiment
 Station) ; HL-96-17.
TA7 W34 no.HL-96-17
Contents

Preface ... v
Conversion Factors, Non-SI to SI Units of Measurement vi
1—Introduction ... 1
2—Background .. 2
3 —The Problem ... 3
4 —General Comments 5
5— Equipment Survey 6
6— Promising Equipment 8
 Keene Engineering Company, Northridge, CA 9
 Aquatics Unlimited, Martinez, CA 9
 Ellicott Machine Corporation, Baltimore, MD 9
 Dredgемasters International, Hendersonville, TN 10
 Dredging Supply Company, Harvey, LA 10
 Innovative Material Systems, Olathe, KS 11
 Oceaneering International, Inc., Upper Marlboro, MD .. 11
7— Overseas Development 13
8 —Additional Information 15
Bibliography ... 16
Appendix A: Lists of Companies Contacted A1
Appendix B: List of Companies Used for Present Information Processing B1
Appendix C: Copy of Letter Sent for Obtaining Information on Dredgers Suitable for Contaminated Sediment Dredging C1

Appendix D: List of Companies Which Sent Information Under Present Survey .. D1

Appendix E: Response Received from Companies Under Present Survey ... E1

Appendix F: List of Companies with Promising Equipment for Contaminated Sediment Dredging F1

Appendix G: Details of Promising Equipment G1

SF 298
Preface

This survey was conducted by personnel of the Hydraulics Laboratory of the U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, in 1993. Funding for this project was received through the Dredging Operations Technical Support (DOTS) program.

The study was conducted by Dr. Trimbak M. Parchure, Waterways and Estuaries Division, Hydraulics Laboratory, under the general supervision of Messrs. William H. McAnally, Jr., Chief, Waterways and Estuaries Division; Robert F. Athrow, Acting Assistant Director, Hydraulics Laboratory; and Richard A. Sager, Acting Director, Hydraulics Laboratory. Messrs. McAnally and William D. Martin, Chief, Hydro-Sciences Division, Hydraulics Laboratory, provided encouragement and guidance during the course of the project. Advice received from Dr. Robert M. Engler and Mr. Thomas R. Patin of Environmental Laboratory, WES, is gratefully acknowledged.

Cooperation offered by the various vendors of dredging equipment in the United States is greatly appreciated.

During the preparation and publication of this report, Dr. Robert W. Whalin was Technical Director of WES. Commander was COL Bruce K. Howard, EN.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
Conversion Factors, Non-SI to SI Units of Measurement

Non-SI units of measurement used in this report can be converted to SI units as follows:

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To Obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>cubic yards</td>
<td>0.7645549</td>
<td>cubic meters</td>
</tr>
<tr>
<td>feet</td>
<td>0.3048</td>
<td>meters</td>
</tr>
<tr>
<td>inches</td>
<td>25.4</td>
<td>millimeters</td>
</tr>
<tr>
<td>pounds (mass)</td>
<td>0.4535924</td>
<td>kilograms</td>
</tr>
</tbody>
</table>
1 Introduction

Under the research program entitled Improvement of Operations and Maintenance Techniques (IOMT), a survey of portable hydraulic dredges was undertaken at the Hydraulics Laboratory of Waterways Experiment Station, Vicksburg, MS. Technical Report HL-83-4 (Clark 1983) was published on this study in March 1983. Under the program Dredging Operations Technical Support (DOTS), the guidance provided in the earlier Technical Report was updated and expanded in order to address the aspect of contaminated sediment dredging. Information was compiled on dredging equipment, dredging procedures and monitoring techniques for dredging contaminated sediments.

The objective of the present report is not to select, recommend or promote any particular equipment currently available in the U. S. market, but to simply compile and present the information obtained through an extensive market survey in order to make it easier for the prospective users to select the equipment suitable for the job at hand. The report explains the problem associated with contaminated sediment dredging and presents the findings of the market survey. The scope of this project includes considerations of monitoring during dredging operations involving removal of contaminated sediments; however, there were no opportunities to participate in any field operation; hence, this component of the study is not covered under the present report.

An inseparable part of dredging operation consists of disposal of dredged material without or with treatment. The type of dredging equipment selected at any site would also depend, among other factors, on the method of treatment, if any, and disposal of the dredged material. Innovative technologies are being developed for treatment and placement of contaminated sediments. This aspect, however, is outside the scope of the present study and the report essentially deals with the aspect of only the removal of contaminated sediment from shallow water areas.
2 Background

Contaminated sediments are likely to be found predominantly in inland water bodies such as rivers, estuaries, lakes, ponds and man-made reservoirs which receive organic and/or inorganic nutrients and pollutants from the human habitats in the vicinity. The contaminants may be in the form of heavy metal derivatives, complex organic compounds, bacteria and micro-organisms or radio-active substances which may have reached the water body through agricultural practices, sewage outfalls, industrial effluents, surface runoff, or ground water seepage. Occurrence of contaminated sediment in water is a relatively recent phenomenon subsequent to the industrial revolution. Rapid industrialization and urbanization occurred during the past century on the banks of major water bodies which were exploited for various human needs. In the absence of regulations on the quality of industrial or sewage effluent, these discharges were released indiscriminately into the same or adjacent water bodies with partial or no treatment. Hence the deposits of contaminated sediments are mostly confined to the uppermost, relatively thin layer at the sediment-water interface. Contaminated sediment dredging essentially consists of removing this thin muddy layer from the bed surface. The depth of accumulation of such contaminated sediments varies from a few centimeters to several meters. Dredging of the bottom sediments may be necessary either for initial cutting, deepening or maintenance of navigational channels and harbors, or it may be necessary for removing contaminated sediments with an objective of reducing health hazards to the nearby communities.
3 The Problem

Most natural water bodies have sediment beds consisting of a relatively wide range of particle sizes such as, for example, a mixture of clays and sand, i.e. a mixture of very fine, cohesive sediments and coarse, non-cohesive sediments. Due to the electro-chemical properties and availability of extremely large surface area of fine sediments particles, the pollutants are mostly found to be adsorbed to that component of sediments which consists of fine sediments, namely, clays and fine silt. Coarse sediments such as sand and gravel are mostly free from any contaminants and hence they do not pose significant problems in their removal and disposal.

Three major problems are associated with dredging the fine sediments that are contaminated. The first is related to the physical properties. The fine sediments are cohesive and they form aggregates while settling through the water column. The aggregates collapse on the bed and the self-weight consolidation results in sediment layers which have a high bulk shear strength. It is quite difficult to remove such sediment economically in large quantities by using suction dredging techniques alone. Devices such as cutters, augers, clam shell and water jets are needed for loosening and dislodging the stiff material from the bed which can then be removed from the site by other means. The second problem concerns the ease with which the fine sediment can be resuspended. Although the bulk shear strength of consolidated cohesive sediments is high, the uppermost unconsolidated or partially consolidated layer has a very low shear strength and can be eroded very easily with any low-energy disturbance. Erosion of a few-millimeter-thick top layer increases the suspension concentration of the upper water column by several milligrams per liter. The fine material in its dispersed state gets distributed over the vertical due to turbulence and the dispersed sediment may remain in suspension in the water column for a long period of time. Even a weak ambient current may transport suspended fine sediment over great distances to other areas far away from the dredging site. This phenomenon, therefore, can have profound environmental consequences in rivers and estuaries with flowing water. On the other hand, the dredging requirement may consist of removing bottom sediment from a small, isolated pond with stagnant water. The factor of greater concern could be to find suitable equipment which can pump highly viscous bottom material, which is the third problem encountered in dredging. The aspect of keeping resuspension to a minimum may be less critical in this case.
A concise review of the conventional methods and equipment used for
dredging and dredged material disposal is given in Engineer Manual 1110-2-
5025 of March 1983. These have been successfully used over the last several
decades for removing several millions of cubic yards of sediment from water
bodies. However, in order to effectively handle the contaminated sediments
without causing adverse environmental impact, resuspension of bed sediment in
any large quantity needs to be avoided while dredging in rivers and estuaries.
Dredging activity results in resuspension of at least some of the bed material in
the water column. Resuspension characteristics of selected dredges have
already been examined, the results of which are available in U. S. Army
Engineer ETL-1110-2-531 of November 1984. Spreading of contaminants
during dredging can be minimized through the use of specialized techniques
which are being developed with the prime objective of minimizing resuspension
of bed material during dredging operations.
4 General Comments

High energy environments such as beaches and near-shore areas often do not contain deposits of contaminated sediments because the fine sediment gets washed away and the coarse sediments do not readily adsorb pollutants. Hence the need for ocean-going dredges for removal of contaminated sediments is somewhat uncommon. To determine when dredged material is contaminated enough to require special management, either in upland or island containment areas or by capping, Corps of Engineers (COE) generally relies on a series of screening tests. Based on these tests in the year 1987, COE considered about 3 percent (approximately 7 million wet metric tons) of all material dredged in its coastal climates to be highly contaminated and to require special management. It was also estimated that about 30 percent of all maintenance dredging material might be contaminated to some degree. This estimate will change with a revised definition of the degree of contamination, however, the order of magnitude is not expected to change substantially. Due to both these reasons, namely, small volume of dredging and relatively sheltered dredging sites, the specialized dredges available in the market are small in terms of size and production rates, and they are suitable for operation in shallow water in protected, confined environment. Some are designed to be portable by road transport.

Among mechanical devices, the clamshell is effective in removing consolidated fine sediments, provided that the sediment does not contain larger size material which can prevent the bucket from closing completely. The dipper dredge and backhoe dredge are unsuitable for removing fine sediments because a substantial quantity of material may be washed during hoisting the bucket through water column. Among hydraulic dredges, the plain suction dredge is useful mainly for removing sand and sometimes mud with a very low compaction. A cutter suction dredge is effective and efficient in removing consolidated muds. Hopper dredges are most efficient for removing and transporting loose, non-cohesive sediments. Several specialized devices have been designed and manufactured for contaminated sediment dredging. Such devices include the Matchbox Draghead, Clean-up Draghead, Refresher Dredge, Dustpan Dredge, Disc-bottom Dredge, Pneumatic Dredge and Watertight Buckets. A detailed review is given in the WES Misc. Paper EL-91-20 entitled 'Innovative Technologies For Dredging Contaminated Sediments'.
5 Equipment Survey

The problem of dredging contaminated sediments has also engaged the attention of several agencies in countries other than the USA. However, according to the present regulations, dredging work in USA can be carried out only by indigenously manufactured dredges. Special dredging equipment, although available in other countries, cannot be readily employed for dredging operations in USA. Hence the equipment survey is limited mainly to the U.S. market. Only a brief mention of the successful techniques developed abroad is included under the present report.

The earlier WES survey report dated March 1983 was based upon inquiries sent to 29 companies. A literature and market search undertaken under the present study identified 42 additional domestic companies, thus creating a data base for a total of 71 companies. A list of these 71 companies is given in Appendix A.

Preliminary inquiries revealed that 13 companies from the earlier list had closed down. Inquiry letters were therefore mailed to 57 companies and periodic follow-up was done over telephone. Seven letters were returned by the Post Office although their addresses were obtained from published literature. Three companies had acquired a new name/address. Hence letters were sent to them again. A list of 64 companies which was used for the present information processing exercise is given in Appendix B. The letter addressed to the companies is given in Appendix C.

Out of the total of 64 companies that received the inquiry letters, 32 responded with letters, brochures, phone calls and/or FAX messages. A list of these companies is given in Appendix D and the type of information from them is listed in Appendix E.

It was experienced that, in general, the companies are not readily willing to share any technical or other information to a Government agency such as WES, probably due to the fear of its possible use or misuse by other Government agencies such as EPA in giving adverse remarks on its use without knowing full details. The information could also be misused by the competitors of respective industries. Besides, the companies fail to see a possible direct financial or any other tangible benefits to their company by making this
information available to WES, which is not the end user of the equipment. Companies showed absolutely no interest in allowing WES representatives during the field operation of their equipment for obvious fears that they will probably note many or all the adverse features and make negative publicity which might have a damaging impact not only to the reputation of the company but may also result in heavy financial losses in the future. These are serious issues and must be kept in mind in appreciating whatever information that has been obtained and compiled in this report.
6 Promising Equipment

The parameters determining the preference and suitability of equipment for contaminated sediment dredging are the following:

a. Small size and low operating draft

b. Low weight and portability by road

c. Minimum water content and maximum sediment content in discharge pipe

d. Acceptable and economical production rate

e. Minimum resuspension of bed sediment during dredging

f. Low initial and operating cost

g. Adaptability for varying types of bed sediment

h. Alternative uses during idle time

i. Availability

All of the above requirements may not be satisfied by any single dredger and some compromise may be needed depending on site requirements. After examining information received from each of the vendors, it was noted that equipment offered by seven companies was promising based on the details provided by them. A list of these companies is given in Appendix F. Although not complete in respect to each parameter, the information as received from the vendors is summarized below in no particular order. For further details see Appendix G.
Keene Engineering Company, Northridge, CA

The company has offered their portable Model 8DX reclamation dredge NESSIE. Out of several cutter heads available, the company has stated that the Bucket Wheel Cutterhead lifts and cuts sediment extremely fast with a minimum of turbidity. It is also claimed that turbidity screens are normally not required with this type of cutterhead. The details of Model 8DX are given below:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight: 14,500 lb.</td>
<td>Operating Depth: 21 ft 9 in.</td>
<td></td>
</tr>
<tr>
<td>Suction and Delivery Pipe Diameters: 8 in. x 8 in.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production Rate: 200 cubic yards per hour.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aquatics Unlimited, Martinez, CA

The company has offered portable dredges under their series AQUAMOG. It is stated by the company that these are shallow draft multi-purpose vessels that perform functions from debris / oil cleanup to bucket / suction dredging to emergent / submerged aquatic plant control using interchangeable attachments. The machines are available with cutter heads and / or augers depending upon the type of materials to be dredged and job-specific requirements. The company has stated that the system minimizes turbidity on account of the shrouded auger and the high suction available. The details of Model PRX 163 are given below:

<table>
<thead>
<tr>
<th>Length: 30 ft 6 in.</th>
<th>Width: 10 ft</th>
<th>Draft: 18 in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight: 18,500 lb.</td>
<td>Operating Depth: 20 ft</td>
<td></td>
</tr>
<tr>
<td>Suction and Delivery Pipe Diameters: 6 in. x 6 in.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production Rate: 60 cubic yards per hour with 6 inch pipe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ellicott Machine Corporation, Baltimore, MD

The company has offered their MUDCAT, which is designed as a portable hydraulic dredge mounted on pontoons. A horizontal auger feeds slurry to the suction intake of a centrifugal pump. The dredge is propelled along an anchored cable and the dredged material may be discharged through a floating pipeline. It can operate in water depth ranging from 1.5 ft to 20 ft. The
company has stated that low rate of resuspension can be achieved by adjusting the rotation speed of auger, depth of cut and the suction rate. Further, the auger can also be shielded for reducing turbidity. The details of their Model SP-815 are given below:

<table>
<thead>
<tr>
<th>Length: 31 ft 1 in.</th>
<th>Width: 8 ft</th>
<th>Draft: 22 in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight: 13,200 lb.</td>
<td>Operating Depth: 15 ft</td>
<td></td>
</tr>
<tr>
<td>Suction and Delivery Pipe Diameters: 6 in. x 6 in.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production Rate: 50 cubic yards per hour.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dredgemasters International, Hendersonville, TN

The company have stated that their standard model units, which are portable, hydraulic cutter suction dredgers, have been used in the past for contaminated sediment dredging. The standard production units are available in 8, 10, 12, 14, and 16 inch size. The standard units can also be modified for a specific purpose. However, no details of the proposed modifications are given by the company. Details of Model HPC-8EC, which is one of their several standard models, are given below:

<table>
<thead>
<tr>
<th>Length: 36 ft</th>
<th>Width: 10 ft</th>
<th>Draft: Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight: Custom designed</td>
<td>Operating Depth: Custom designed</td>
<td></td>
</tr>
<tr>
<td>Suction and Delivery Pipe Diameters: 10 in. x 8 in.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production Rate: cubic yards per hour.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dredging Supply Company, Harvey, LA

The company has stated that they are presently designing a bucket dredge with a pump-off system for a large superfund project. No further details are given by the company. The dredges are available either on lease or on sale and the standard models can be modified to meet specific requirements. The company has also developed a Bio-remediation process in which microscopic organisms are used to digest contaminated sediments and produce waste products that are less hazardous and toxic than the original sediments. Out of the three standard portable models, namely, Piranha, Barracuda and Shark, details of the Barracuda 8 inch size cutterhead dredge with swinging ladder are given below:
Innovative Material Systems, Olathe, KS

The company has stated that they have designed dredge pumps especially for pumping exceptionally thick, viscous materials and for minimizing turbidity in the surrounding waters. The system has been used in Florida and Michigan. The company has stated that they have a hydraulic submersible pump called VERSI-DREDGE, which has a shrouded cutterhead and hence it is particularly suited for contaminated sediment dredging. Details of the Model 4010 are given below:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight: 12,000 lb.</td>
<td>Operating Depth: 20 ft</td>
<td></td>
</tr>
<tr>
<td>Suction and Delivery Pipe Diameters: 10 in. x 10 in.</td>
<td>Production Rate: Variable</td>
<td></td>
</tr>
</tbody>
</table>

It may be noted that field operation of each of the models described above will have to be monitored carefully before endorsing their suitability for contaminated sediment dredging.

Oceaneering International, Inc., Upper Marlboro, MD

The company has not yet marketed the product which is pending for a patent. They are currently developing an underwater excavation device that is specifically designed for contaminated sediment retrieval. The Total Contaminant Clamshell Dredge (TCCD) is designed to precision dredge "hot" zones while minimizing all possibilities of spreading the contamination. Two primary objectives were set during the TCCD design. The first objective was that disturbed sediments would not be able to escape the system. The second was that the volume of associated water be kept to an absolute minimum.
Total containment is accomplished by incorporating a hyperbaric soil receiving chamber. This is an air-void that provides space for the incoming sediments. This void eliminates the displacement of an equal volume of contaminated water. It also minimizes the volume of associated water captured with each "bite" of sediment. Leakage containment is assured by operating in a negative pressure differential mode. Essentially, the pressure within the system is adjusted to be less than ambient water pressure during system operation. This results in leakage into the apparatus rather than outward.

Total containment is further assured by active silt curtains. Hard curtains that seal the sides of the clamshell buckets are lowered to close off the gap between them during closure. This prevents disturbed soil from extruding out of the system.

A working prototype of the TCCD is currently in factory testing with operational field testing scheduled in the early spring of 1996. The TCCD will be produced in three sizes to accommodate a variety of applications. A second TCCD is designed to use a vessel of opportunity as a floating base which provides the flexibility to bid projects in any market area.
7 Overseas Development

Although the objective of present data collection effort was to concentrate on domestic market, letters were also mailed to 21 overseas companies in order to explore the stage of development and availability of suitable equipment in foreign market. Response was received from 3 companies, out of which 1 appears promising. Ham Company, Rotterdam, The Netherlands, have offered an Auger dredger in which the auger is fitted as T head to the dredger’s suction pipe. A flexible skirt is provided around the draghead and the dredging is carried out within the area enclosed by the skirt. The second device offered by this company is a visor dredging grab. Inside the regular grab, there is a revolving visor flap closed by means of two hydraulic cylinders. After the grab is filled, the visor is closed before raising the grab. A rubber strip along the edge of the visor ensures a watertight closure. Both these devices are claimed to be effective in contaminated sediment dredging.

Information on the past and recent developments in The Netherlands, Japan and Canada was obtained through literature search, the salient details of which are given below:

Volker Stevin Dredging Company, The Netherlands, have developed a hydraulic suction type matchbox dredge which consists of a draghead with funnel intake provided with valves and a triangular cover. This was used successfully in 1981-1983 in the First Petroleum Harbor, The Netherlands, for dredging polluted sediment containing pesticides and chlorinated hydrocarbons. The suspended solids at a distance of 2 to 5 m from the suction head during dredging were about 12 mg/l near the water surface and 12 to 80 mg/l at 7 to 11 m depth below the surface. These were only marginally higher over the background concentrations in the area.

TOA Harbor Works, Tokyo, Japan, have developed Clean-up dredges for removing contaminated sediments which has been used at 45 projects as of the end of 1981. This device consists of a rectangular cover fitted over an auger cutter and a centrifugal pump for suction. A sonar device monitors the elevation of the draghead and ensures its horizontal position.

Environment Canada have published a brief report in March 1993 entitled 'Selecting and Operating Dredging Equipment: A Guide to Sound
Environmental Practices'. In addition to giving a limited description of the specialized dredging equipment, the report covers important phases of any dredging project, namely, planning, designing, drafting technical specifications and environmental monitoring.
8 Additional Information

Additional information may be obtained from Dr. T. M. Parchure, Research Hydraulic Engineer, (Tel: 601-634-3213), or Mr. W. H. McAnally, Chief, Waterways and Estuaries Division, (Tel: 601-634-3822), Hydraulics Laboratory, U. S. Army Corps of Engineer Waterways Experiment Station, 3909 Halls Ferry Road, Vicksburg, MS, 39180.
Bibliography

Appendix A
Lists of Companies Contacted
Lists of Companies Contacted in 1983 and New Additions
(29 + 42 = 71 Companies)

Notes:
1. Several companies closed down or changed their address. Details of these are given.
2. Companies to whom letters were sent are shown by *#* followed by serial number.
3. Companies to whom letters were not sent are printed in *Italics*, starting with ****. Their correct addresses were searched and are given next, wherever applicable. Letters were sent on the correct address.

#1.	Ajax Company	1284 Miller Road	Tel: 216 - 934 - 4442
		Avon, OH, 44011	
	**** AAMCO	P.O.Box 100923	Tel: 615 - 641 - 7533
		Nashville, TN, 37210	

| #2. | American Marine & Machinery Co., Inc. (AAMCO) | 178 Center Point Road South | Tel: 615 - 824 - 9699 |
| | | Hendersonville, TN, 37075 | FAX: 615 - 822 - 0002 |

| #3. | Assemblers, Inc. | 1115 North Elm Street | No Phone listed |
| | No Phone listed | West Liberty, LA 52776 | 319 - |

| #4. | Clyde Iron / Wiley Mfg. | 2300 West Loop South | No Phone listed |
| | No Phone listed | Suite 102 | 713 - |

| #5. | Delta Dredge and Pump Corp. | 11743 Lackland Road | Incorrect Address |
| |Incorrect Address | St. Louis, Missouri 63141| Tel: 314 - 968 - 4433 |

| #3. | Delta Dredge and Pump Corp. | 344 Gray Avenue | Tel: 314 - 968 - 4433 |
| | | St. Louis, Missouri 63119-3608 | FAX: 314 - 968 - 9635 |

| #6. | Dixie Dredge Corporation | 8222 Polk Street | Incorrect Address |
| | No Phone listed (314- | St. Louis, Missouri 63111 | See #57 for new address|

Appendix A Lists of Companies Contacted
7. **** Dravo Corporation
 4800 Neville Island
 Pittsburg, PA, 15225
 Incorrect Address
 Tel: 412 - 771 - 1200

#4. 7. Dravo Corporation
 Engineering Works Division
 1800 Neville Island
 Pittsburg, PA 15225
 Tel: 412 - 566 - 3000

8. Dredge Economy Inc.
 12700 Biscane Blvd.
 North Miami, FL 33181 305 -
 No Phone listed

9. **** Dredgemasters International Inc. Incorrect Address
 Number One Dredge Park
 Hendersonville, TN 37075
 Tel: 615 - 822 - 3500

#5. 9. Dredgemasters International
 200 Center Point Road South
 Hendersonville, TN, 37075 - 2060
 Tel: 615 - 822 - 3500
 FAX: 615 - 822 - 0002

10. **** Eagle Iron Works
 129 Holcomb
 Des Moines, Iowa 50304
 Incorrect Address
 Tel: 515 - 243 - 1123

#6. 10. Eagle Iron Works
 127 Holcomb
 Des Moines, Iowa, 50313
 Tel: 515 - 243 - 1123
 FAX: 515 - 243 - 8214

#7. 11. Ellicott Machine Corp.
 1611 Bush Street
 Baltimore, MD 21230 - 7900
 Tel: 410 - 837 - 7900
 FAX: 410 - 752 - 3294

 Attn: Mr. Edward H. Bond
 General Manager
 MUD CAT Division
 National Car Rental
 P.O.Box 16247
 St. Louis Park, MN 55416
 Tel: 612 - 542 - 8332

12. **** Guntert and Zimmerman
 Construction Division, Inc.
 P.O.Box 1688
 Stockton, CA 95201
 No Phone listed
 209 -
#8. 13. Hardcastle Industries Inc.
 229 N. Meridian Ave.
 Tampa, FL 33602
 Tel: 813 - 878 - 2288

 1415 Lake Lansing Road
 Lansing, MI 48912
 Tel: 517 - 485 - 9493

#10. 15. Intercontinental Engineering
 Manufacturing Corpo.
 P.O.Box 9055
 Kansas City, Missouri, 64168
 Tel: 816 - 741 - 0700
 800 - 821 - 3182
 FAX: 816 - 741 - 5232

 6655 Amberton Drive
 Baltimore, MD 21227
 Tel: 410 - 796 - 8585

#12. 17. Kenner Marine and Machinery Inc.
 Closed down in 1990
 P.O.Box 1200
 Laplace, LA 70068
 Tel: 504 - 652 - 2548
 See # 23 for New Business

18. *Levingston Shipbuilding Co.*
 Second and Front Streets
 Orange, TX 77630
 No Phone listed
 409 -

 P.O.Box 349
 Tell City, IN 47586
 Tel: 812 - 547 - 2341

20.**** *Meckum Engineering Division*
 The Peltier Glass Company
 2027 Champlain St.
 Ottawa, IL 61350
 No Phone listed
 309 -

#14. 21. Minco Inc
 P.O.Box 553
 Westwego, LA 70094
 Tel: 504 - 581 - 3855

22.**** *Mini Dredge Co. Ltd.*
 1422 Crown Street
 North Vancouver, BC, V7J 1G5
 No Phone listed
 604 -

Appendix A Lists of Companies Contacted
23.**** Paulson Engineering Inc.
188 Eighth Avenue
Hawthorne, NJ 07507
No Phone listed

#15. 24. Quality Industries Inc
P.O.Box 406
1920 Canal Blvd.
Thibodaux, LA 70301-5214
Tel: 504 - 447 - 4021
FAX: 504 - 447 - 4028

25.**** Sefab Inc.
78 S. Hudson Street
Seattle, WA 98134
No Phone listed

26.**** Todd Shipyards Inc.
P.O.Box 9666
Houston, TX 77015
No Phone listed

27.**** Twin City Shipyard Inc.
P.O.Box 43032
St. Paul, MN 55164
No Phone listed

28.**** VMI Inc.
4310 N. Martin
Bethany, OK 73008
No Phone listed

#16. 29. W & S Development Inc.
4957 Main Street
Greenbush, MI 48738
Tel: 517 - 724 - 5463

Additional Domestic Companies Located During Present Survey
(42 Companies)

#17. H & H Pump and Dredge Co.
520 Highway 322
Clarksdale MS 38614
Attn: Mr. Howard Stovall
Tel: 601 - 627 - 9631

#18. Keene Engineering Co.
9330 Corbin Avenue
Northridge California, 91324
"Nessie" Portable Cutterhead Dredger
Tel: 818 - 993 - 0411
FAX: 818 - 993 - 0447

#19. Aquatics Unlimited
2150 Franklin Canyon Road
Martinez, California 94553
"Aquamog"
Tel: 415 - 370 - 9175
FAX: 415 - 370 - 9179
#20. SeaArk Marine Inc.
P.O.Box 210
Monticello, Arkansas, 71655
Custom-designed Dredgers
Tel: 501 - 367 - 9755
FAX: 501 - 367 - 2120

2122 York Road
Oak Brook, Illinois, 60521
Tel: 708 574 3000
FAX: 708 574 2980

#22. **** Gulf Coast Trailing Co.
P.O.Box 10
Kenner, LA 70063
Incorrect Address
Tel: 504 - 468 - 3608

Gulf Coast Trailing Co.
P.O.Box 20116
New Orleans, LA, 70141
Atten: Mr. Steve Chatry
Tel: 504 - 461 - 9230

#23. Dredging Supply Co., Inc.
701 Peters Road
Harvey, LA, 70058
Tel: 504 - 367 - 2314
FAX: 504 - 368 - 8359

P.O.Box 940
401 Shearer Blvd.
Cocoa, FL, 32923
Tel: 305 - 636 - 5783

#25. B & B Boatbuilding Inc.
Strar Route Box 3
Brownsville, TX, 78520
Tel: 512 - 831 - 3122
FAX: 512 - 831 - 2745

610 Prentice Road
Vestal, NY, 13850
Tel: 607 - 729 - 1536
FAX: 607 - 797 - 3931

#27. Bay Machinery Corp.
543 South 8th Street
Richmond, CA, 94804
Tel: 415 - 236 - 9000
FAX: 415 - 236 - 7212

#28. Best Equipment Technologies
P.O.Box 429, Hwy 53 South
Poplarville, MS, 39470
Tel: 601 - 795 - 2208
#29. Cargile Co. Incorrect Address
1201 S. Flagler Dr. B-4
W. Palm Beach, FL, 33401
Tel: 407 - 833 - 9878
OR
American Mining and Machinery Corp.
3000 S. Washington Road
West Palm Beach, FL, 33405
FAX: 407 - 820 - 0049
OR
Envirotech Corporation (See # 35)

#30. Consolidated Placer Dredging Co. Tel: 714 - 474 - 1120
17951 Sky Park Circle, Suite C
Irvine, CA, 92714
FAX: 714 - 863 - 9261

#31. Crisafulli Pump Co. Tel: 406 - 365 - 3393
P.O.Box 1051
Crisafulli Dr.
Glendive, Montana, 59330
FAX: 406 - 365 - 8088

#32. Dredging Specialists Tel: 217 - 234 - 3344
43 Dewitt Avenue
Mattoon, IL, 61938
FAX: 217 - 234 - 3347

#33. **Dredge Technology Corp. Returned by P.O.
Atlantic Stewardship Bank Build.
630 Godwin Avenue, Suite 201
Midland park, New Jersey, 07432-1405
Tel: 201 - 444 - 0581
Dredge Technology Corp.
P.O.Box 1520
Wayne, NJ
Tel: 201-696-1559
FAX: 201-696-3572

#34. Envirotech
1700 Embassy Drive-712
W. Palm Beach, FL, 33401
Tel: 407 - 684 - 4774
FAX: 407 - 684 - 4664

#35. Greenville Manufacturing Works
600 Pine Street
Greenville, OH, 45331
Tel: 513 - 548 - 6100

#36. Harnischfeger Corp.
P.O.Box 554
Milwaukee, WI, 53201
Tel: 414 - 671 - 4400

Appendix A Lists of Companies Contacted
A7
#37. Hendry Corp.
5107 S. Westshore Blvd.
Tampa, FL, 33681
Tel: 813 - 831 - 1211

#38. Hitachi Construction Machinery
611 Lockhaven Drive
Houston, TX, 77073-5599
Tel: 713 - 821 - 2400

#39. Humphreys Mineral Industries
2219 Market Street
Denver, CO, 80205
Tel: 303 - 296 - 8000

#40. Innovative Material Systems Inc.
15630 South Keeler
Olathe, Kansas, 66062
Tel: 913 - 829 - 2900
FAX: 913-829-2989

#41. Kahl Scientific Instrument Corp.
P.O.Box 1166
737 W. Main Street
El Cajon, CA, 92022
Tel: 619 - 444 - 2158
1-800 - 800 - 4010

#42. Land and Sea Diesel Co.
P.O.Box 151
East Falmouth, MA, 02536
Tel: 617 - 540 - 5350

#43. McDermott Inc.
1010 Common Strret
New Orleans, LA, 70160
Tel: 504 - 587 - 4441

#44. Nippon Kokan K K
450 Park Avenue
New York, NY, 10022
Tel: 212 - 826 - 6250

#45. Oenstein & Koppel
700 Route 46
Clifton, NJ, 07015
Tel: 201 - 478 - 8900

#46. R.A. Hanson Co. Inc.
P.O.Box 7400
Spokane, WA, 99207
Tel: 509 - 467 - 0770
FAX: 509 - 466 - 0212

#47. ROHR Corp.
P.O.Box 30-J
Cincinnati, OH, 45230
Tel: 513 - 624 - 9220
FAX: 513 - 624 - 9221

Appendix A Lists of Companies Contacted
#48. Smalley Excavators
71 Hartford Turnpike South
Wallingford, Connecticut, 06492
Tel: 203 - 265 - 9352

#49. Spectrum Enterprises Inc.
178 Center Point Road-South
Hendersonville, TN, 37075-2060
Tel: 615 - 824 - 9699
FAX: 615 - 822 - 0002

#50. Tacoma Boatbuilding Co., Inc.
1840 Marine View Drive
Tacoma, WA, 98422
Tel: 206 - 572 - 3600

#51. Twinkle Co.
P.O.Box 79
West Liberty, Iowa, 52776
Tel: 319 - 627 - 6655
FAX: 319 - 627 - 4444

#52. United Marine International Inc.
1436 W. River Road
P.O.Box 750
Waterloo, NY, 13165
Tel: 315 - 539 - 5665
FAX: 315 - 539 - 5667

#53. Assemblers, Inc.
P.O.Box 508
Pleasant Valley, Iowa, 52767
Tel: 319 - 332 - 5600
FAX: 319 - 332 - 10089
Assemblers Inc.
2355 Yankee Avenue
Durant IA 52747
Tel: 319-785-6539

#54. Sludge Engineering
43 Dewitt Avenue
Mattoon, Illinois, 61938
Tel: 217 - 234 - 3344
FAX: 217 - 234 - 3347

#55. Allis Mineral Systems
4800 Grand Avenue
Pittsburgh, PA, 15225-1599
Tel: 412 - 269 - 5000
FAX: 412 - 269 - 5050

#56. T.L.James & Co. Inc.
P.O.Box 826
Kenner, LA, 70063
Tel: 504 - 467 - 6000
FAX: 504 - 469 - 1332

#57. Dixie Dredge Co.
No. 1, Dredge Park
190 Center Point Road, South
Hendersonville, TN, 37075
Tel: 615 - 822 - 3901
FAX: 615 - 822 - 0002

Appendix A Lists of Companies Contacted
#58 Dredgemasters International
200 Center Point Road South
Hendersonville, TN, 37075 - 2060
Tel: 615 - 822 - 3500
FAX: 615 - 822 - 0002

#59 Ellicott Machine Corp.
1611 Bush Street
Baltimore, MD 21230 - 7900
Tel: 410 - 837 - 7900
FAX: 410 - 752 - 3294

#60 Keene Engineering Co.
9330 Corbin Avenue
Northridge California, 91324
"Nessie" Portable Cutterhead Dredger
Tel: 818 - 993 - 0411
FAX: 818 - 993 - 0447

#61 Aquatics Unlimited
2150 Franklin Canyon Road
Martinez, California 94553
"Aquamog"
Tel: 415 - 370 - 9175
FAX: 415 - 370 - 9179

#62 Dredging Supply Co., Inc.
701 Peters Road
Harvey, LA, 70058
Tel: 504 - 367 - 2314
FAX: 504 - 368 - 8359

#63 Innovative Material Systems Inc.
15630 South Keeler
Olathe, Kansas, 66062
Tel: 913 - 829 - 2900
FAX: 913-829-2989

#64 Oceanengineering Technologies
501 Prince George's Blvd
Upper Marlboro, MD, 20772
Tel: 301 - 249 - 3300
FAX: 301 - 249 - 4022
Appendix B
List of Companies Used for Present Information Processing
List of Companies Used For Present Information Processing
(64 Companies)

#1. Ajax Company
1284 Miller Road
Avon, OH, 44011
Tel: 216 - 934 - 4442

#2. American Marine & Machinery Co., Inc.
(AAMCO)
178 Center Point Road South
Hendersonville, TN, 37075
Tel: 615 - 824 - 9699
FAX: 615 - 822 - 0002

#3. Delta Dredge and Pump Corp.
344 Gray Avenue
St. Louis, Missouri, 63119-3608
Tel: 314 - 968 - 4433
FAX: 314 - 968 - 9635

#4. Dravo Corporation
Engineering Works Division
1800 Neville Island
Pittsburg, PA 15225
Tel: 412 - 566 - 3000

#5. Dredgemasters International
200 Center Point Road South
Hendersonville, TN, 37075 - 2060
Tel: 615 - 822 - 3500
FAX: 615 - 822 - 0002

#6. Eagle Iron Works
127 Holcomb
Des Moines, Iowa, 50313
Tel: 515 - 243 - 1123
FAX: 515 - 243 - 8214

#7. Ellicott Machine Corp.
1611 Bush Street
Baltimore, MD 21230 - 7900
Tel: 410 - 837 - 7900
FAX: 410 - 752 - 3294

#8. Hardcastle Industries Inc.
229 N. Meridian Ave.
Tampa, FL 33602
Tel: 813 - 878 - 2288

#9. Hartman Fabco Inc.
1415 Lake Lansing Road
Lansing, MI 48912
Tel: 517 - 485 - 9493
#10. Intercontinental Engineering
Manufacturing Corpo.
P.O.Box 9055
Kansas City, Missouri, 64168
Tel: 816 - 741 - 0700
800 - 821 - 3182
FAX: 816 - 741 - 5232

6655 Amberton Drive
Baltimore, MD 21227
Tel: 410 - 796 - 8585

#12. Kenner Marine and Machinery Inc.
P.O.Box 1200
Laplace, LA 70068
Closed down in 1990
Tel: 504 - 652 - 2548
See # 23 for New Business

#13. Maxon Marine Industries Inc.
P.O.Box 349
Tell City, IN 47586
Tel: 812 - 547 - 2341

#14. Minco Inc
P.O.Box 553
Westwego, LA 70094
Tel: 504 - 581 - 3855

#15. Quality Industries Inc
P.O.Box 406
1920 Canal Blvd.
Thibodaux, LA 70301-5214
Tel: 504 - 447 - 4021
FAX: 504 - 447 - 4028

#16. W & S Development Inc.
4957 Main Street
Greenbush, MI 48738
Tel: 517 - 724 - 5463

#17. H & H Pump and Dredge Co.
520 Highway 322
Clarksdale MS 38614
Attn: Mr. Howard Stovall
Tel: 601 - 627 - 9631

#18. Keene Engineering Co.
"Nessie" Portable Cutterhead Dredger
9330 Corbin Avenue
Northridge California, 91324
Tel: 818 - 993 - 0411
FAX: 818 - 993 - 0447

#19. Aquatics Unlimited
"Aquamog"
2150 Franklin Canyon Road
Martinez, California 94553
Tel: 415 - 370 - 9175
FAX: 415 - 370 - 9179
<table>
<thead>
<tr>
<th>#</th>
<th>Company Name</th>
<th>Address Details</th>
<th>Contact Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>SeaArk Marine Inc.</td>
<td>P.O.Box 210, Monticello, Arkansas, 71655</td>
<td>Tel: 501 - 367 - 9755</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FAX: 501 - 367 - 2120</td>
</tr>
<tr>
<td>21</td>
<td>Great Lakes Dredge & Dock Co.</td>
<td>2122 York Road, Oak Brook, Illinois, 60521</td>
<td>Tel: 708 574 3000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FAX: 708 574 2980</td>
</tr>
<tr>
<td>22</td>
<td>Gulf Coast Trailing Co.</td>
<td>P.O.Box 10, Kenner, LA 70063</td>
<td>Incorrect Address</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tel: 504 - 468 - 3608</td>
</tr>
<tr>
<td>23</td>
<td>Dredging Supply Co., Inc.</td>
<td>701 Peters Road, Harvey, LA, 70058</td>
<td>Tel: 504 - 367 - 2314</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FAX: 504 - 368 - 8359</td>
</tr>
<tr>
<td>24</td>
<td>American Marine Inc.</td>
<td>P.O.Box 940, 401 Shearer Blvd., Cocoa, FL, 32923</td>
<td>Tel: 305 - 636 - 5783</td>
</tr>
<tr>
<td>25</td>
<td>B & B Boatbuilding Inc.</td>
<td>Star Route Box 3, Brownsville, TX, 78520</td>
<td>Tel: 512 - 831 - 3122</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FAX: 512 - 831 - 2745</td>
</tr>
<tr>
<td>26</td>
<td>Barney & Dickenson Inc.</td>
<td>610 Prentice Road, Vestal, NY, 13850</td>
<td>Tel: 607 - 729 - 1536</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FAX: 607 - 797 - 3931</td>
</tr>
<tr>
<td>27</td>
<td>Bay Machinery Corp.</td>
<td>543 South 8th Street, Richmond, CA, 94804</td>
<td>Tel: 415 - 236 - 9000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FAX: 415 - 236 - 7212</td>
</tr>
<tr>
<td>28</td>
<td>Best Equipment Technologies</td>
<td>P.O.Box 429, Hwy 53 South, Poplarville, MS, 39470</td>
<td>Tel: 601 - 795 - 2208</td>
</tr>
<tr>
<td>29</td>
<td>Cargile Co.</td>
<td>1201 S. Flagler Dr. B-4, W. Palm Beach, FL, 33401</td>
<td>Incorrect Address</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tel: 407 - 833 - 9878</td>
</tr>
<tr>
<td>30</td>
<td>Consolidated Placer Dredging Co.</td>
<td>17951 Sky Park Circle, Suite C, Irvine, CA, 92714</td>
<td>Tel: 714 - 474 - 1120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FAX: 714 - 863 - 9261</td>
</tr>
</tbody>
</table>
#31. Crisafulli Pump Co.
P.O.Box 1051
Crisafulli Dr.
Glendive, Montana, 59330
Tel: 406 - 365 - 3393
FAX: 406 - 365 - 8088

#32. Dredging Specialists
43 Dewitt Avenue
Mattoon, IL, 61938
Tel: 217 - 234 - 3344
FAX: 217 - 234 - 3347

#33. ***Dredge Technology Corp.
Atlantic Stewardship Bank Bldg.
630 Godwin Avenue, Suite 201
Midland Park, New Jersey, 07432-1405
Returned by P.O.

#34. Envirotech
1700 Embassy Drive-712
W. Palm Beach, FL, 33401
Tel: 407 - 684 - 4774
FAX: 407 - 684 - 4664

#35. Greenville Manufacturing Works
600 Pine Street
Greenville, OH, 45331
Tel: 513 - 548 - 6100

#36. Harnischfeger Corp.
P.O.Box 554
Milwaukee, WI, 53201
Tel: 414 - 671 - 4400

#37. Hendry Corp.
5107 S. Westshore Blvd.
Tampa, FL, 33681
Tel: 813 - 831 - 1211

#38. Hitachi Construction Machinery
611 Lockhaven Drive
Houston, TX, 77073-5599
Tel: 713 - 821 - 2400

#39. Humphreys Mineral Industries
2219 Market Street
Denver, CO, 80205
Tel: 303 - 296 - 8000

#40. Innovative Material Systems Inc.
15630 South Keeler
Olathe, Kansas, 66062
Tel: 913 - 829 - 2900
FAX: 913-829-2989
#41. Kahl Scientific Instrument Corp.
P.O.Box 1166
737 W. Main Street
El Cajon, CA, 92022
Tel: 619 - 444 - 2158
1-800 - 800 - 4010

#42. Land and Sea Diesel Co.
P.O.Box 151
East Falmouth, MA, 02536
Tel: 617 - 540 - 5350

#43. McDermott Inc.
1010 Common Stret
New Orleans, LA, 70160
Tel: 504 - 587 - 4441

#44. Nippon Kokan K K
450 Park Avenue
New York, NY, 10022
Tel: 212 - 826 - 6250

#45. Oenstein & Koppel
700 Route 46
Clifton, NJ, 07015
Tel: 201 - 478 - 8900

#46. R.A. Hanson Co. Inc.
P.O.Box 7400
Spokane, WA, 99207
Tel: 509 - 467 - 0770
FAX: 509 - 466 - 0212

#47. ROHR Corp.
P.O.Box 30-J
Cincinnati, OH, 45230
Tel: 513 - 624 - 9220
FAX: 513 - 624 - 9221

#48. Smalley Excavators
71 Hartford Turnpike South
Wallingford, Connecticut, 06492
Tel: 203 - 265 - 9352

#49. Spectrum Enterprises Inc.
178 Center Point Road-South
Hendersonville, TN, 37075-2060
Tel: 615 - 824 - 9699
FAX: 615 - 822 - 0002

#50. Tacoma Boatbuilding Co., Inc.
1840 Marine View Drive
Taco, WA, 98422
Tel: 206 - 572 - 3600

#51. Twinkle Co.
P.O.Box 79
West Liberty, Iowa, 52776
Tel: 319 - 627 - 6655
FAX: 319 - 627 - 4444
#52. United Marine International Inc.
 1436 W. River Road
 P.O.Box 750
 Waterloo, NY, 13165
 Tel: 315 - 539 - 5665
 FAX: 315 - 539 - 5667

#53. Assemblers Inc.
 2355 Yankee Avenue
 Durant IA 52747
 Tel: 319-785-6539

#54. Sludge Engineering
 43 Dewitt Avenue
 Mattoon, Illinois, 61938
 Tel: 217 - 234 - 3344
 FAX: 217 - 234 - 3347

#55. Allis Mineral Systems
 4800 Grand Avenue
 Pittsburg, PA, 15225-1599
 Tel: 412 - 269 - 5000
 FAX: 412 - 269 - 5050

#56. T.L.James & Co. Inc.
 P.O.Box 826
 Kenner, LA, 70063
 Tel: 504 - 467 - 6000
 FAX: 504 - 467 - 1332

#57. Dixie Dredge Co.
 No. 1, Dredge Park
 190 Center Point Road, South
 Hendersonville, TN, 37075
 Tel: 615 - 822 - 3901
 FAX: 615 - 822 - 0002

#58. Dredgemasters International
 200 Center Point Road South
 Hendersonville, TN, 37075 - 2060
 Tel: 615 - 822 - 3500
 FAX: 615 - 822 - 0002

#59. Ellicott Machine Corp.
 1611 Bush Street
 Baltimore, MD 21230 - 7900
 Tel: 410 - 837 - 7900
 FAX: 410 - 752 - 3294

#60. Keene Engineering Co.
 "Nessie" Portable Cutterhead Dredger
 9330 Corbin Avenue
 Northridge California, 91324
 Tel: 818 - 993 - 0411
 FAX: 818 - 993 - 0447

#61. Aquatics Unlimited
 "Aquamog"
 2150 Franklin Canyon Road
 Martinez, California 94553
 Tel: 415 - 370 - 9175
 FAX: 415 - 370 - 9179

#62. Dredging Supply Co., Inc.
 701 Peters Road
 Harvey, LA, 70058
 Tel: 504 - 367 - 2314
 FAX: 504 - 368 - 8359
#63. Innovative Material Systems Inc.
15630 South Keeler
Olathe, Kansas, 66062
Tel: 913 - 829 - 2900
FAX: 913-829-2989

#64. Oceaneering Technologies
501 Prince George's Blvd
Upper Marlboro, MD, 20772
Tel: 301 - 249 - 3300
FAX: 301 - 249 - 4022
Appendix C
Copy of Letter Sent for
Obtaining Information on
Dredgers Suitable for
Contaminated Sediment
Dredging
Copy of letter sent for obtaining information on
dredgers suitable for contaminated sediment dredging

Estuaries Division
Hydraulics Laboratory

You probably know that the U.S. Army Corps of Engineers is responsible for executing about 500 million cubic yards of dredging per year in the United States. About 20 percent of this volume is undertaken by the District Offices of the Corps and the remaining is executed through contractors.

In recent years, we have been required to handle contaminated sediments as a part of the dredging operations. Hence, at the Waterways Experiment Station, we have undertaken the task of preparation of a reference manual which will contain information on the latest technology and equipment available for dredging contaminated sediments from small and shallow water bodies such as lakes and ponds as well as from larger and deeper water bodies such as bays and estuaries. The manual will essentially be a reference catalogue containing details of equipment along with a performance evaluation and applicability of each type of equipment. The dredging equipment to be reported may be portable / non-portable, it may have been marketed for general sale / custom-designed, or it may even be made available for temporary use by domestic or overseas contractors.

Copies of the proposed manual will be made available to the district offices of the Corps of Engineers as well as to practicing engineers and others involved in the planning and execution of small and large dredging operations in order to facilitate selection of proper equipment to meet their specific needs.

We have undertaken a detailed literature search in this connection and we would appreciate receiving your input in order to make this manual as up-to-date and comprehensive as possible. We therefore request you to please send copies of the catalogs and pamphlets giving information on the various types of dredging equipment marketed by your company for handling contaminated sediment. They should include all the technical specifications and details of capabilities and special features of each type.

1. We would like to have the following basic information in particular:

- dimensions and weight of the dredger,
- size of suction and delivery pipe,
- pump type and capacity (flow rate and H.P.),
- cutter assembly details,
- working capacity of the dredger,
- anchoring system,
- transport requirements in case of portable dredger,
- description of special design features that make it particularly suitable for dredging contaminated sediment with a minimum of adverse environmental impact,
- a line drawing and a photograph.

2. If the dredger has been already deployed, please give a list of sites, the year of use, volume of material dredged, type of soil, nature of contaminants, and the order of magnitude of cost of dredging per cubic yard. In case such information is not readily available with you, please provide the name and address of the agencies who have used the equipment, so that we might be able to get this information directly from them.

3. We are also considering preparation of a video to accompany this manual in order to provide an audio-visual presentation of the equipment and its actual working features. In case you have a short video which either gives a description of the dredger and / or its field use, we would appreciate receiving a copy of the same along with your written permission to include it in our video, in case it is copy-righted.

4. If you have collaboration with any Company based in U.S.A., please give their name and address so that we will be able to correspond with them for any further information.

We hope that you will consider the proposed manual as an excellent opportunity to directly reach the prospective users of your equipment and extend your cooperation in its preparation by providing the requested information.

If you have any questions, please contact Dr. T. M. Parchure at 601-634-3213 or Mr. Mike Alexander at 601-634-3904.

Sincerely,

T.M. Parchure
Appendix D
List of Companies Which Sent Information Under Present Survey
<table>
<thead>
<tr>
<th>No.</th>
<th>Company Name</th>
<th>Address</th>
<th>Telephone No.</th>
<th>Fax No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>American Marine & Machinery Co., Inc. (AAMCO)</td>
<td>178 Center Point Road South, Hendersonville, TN, 37075</td>
<td>Tel: 615-824-9699</td>
<td>FAX: 615-822-0002</td>
</tr>
<tr>
<td>02</td>
<td>Dredgemasters International</td>
<td>200 Center Point Road South, Hendersonville, TN, 37075 - 2060</td>
<td>Tel: 615-822-3500</td>
<td>FAX: 615-822-0002</td>
</tr>
<tr>
<td>03</td>
<td>Eagle Iron Works</td>
<td>127 Holcomb, Des Moines, Iowa, 50313</td>
<td>Tel: 515-243-1123</td>
<td>FAX: 515-243-8214</td>
</tr>
<tr>
<td>04</td>
<td>Ellicott Machine Corp.</td>
<td>1611 Bush Street, Baltimore, MD 21230-7900</td>
<td>Tel: 410-837-7900</td>
<td>FAX: 410-752-3294</td>
</tr>
<tr>
<td>05</td>
<td>Intercontinental Engineering Manufacturing Corpo.</td>
<td>P.O.Box 9055, Kansas City, Missouri, 64168</td>
<td>Tel: 816-741-0700</td>
<td>FAX: 816-741-5232</td>
</tr>
<tr>
<td>06</td>
<td>W & S Development Inc.</td>
<td>4957 Main Street, Greenbush, MI 48738</td>
<td>Tel: 517-724-5463</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>H & H Pump and Dredge Co.</td>
<td>520 Highway 322, Clarksdale MS 38614</td>
<td>Tel: 601-627-9631</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attn: Mr. Howard Stovall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>Keene Engineering Co.</td>
<td>9330 Corbin Avenue, Northridge California, 91324</td>
<td>Tel: 818-993-0411</td>
<td>FAX: 818-993-0447</td>
</tr>
<tr>
<td>09</td>
<td>Aquatics Unlimited</td>
<td>2150 Franklin Canyon Road, Martinez, California 94553</td>
<td>Tel: 415-370-9175</td>
<td>FAX: 415-370-9179</td>
</tr>
</tbody>
</table>
10 Gulf Coast Trailing Co.
P.O.Box 20116
New Orleans, LA, 70141
Atten: Mr. Steve Chatry
Tel: 504-461-9230

11 Dredging Supply Co., Inc.
701 Peters Road
Harvey, LA, 70058
Tel: 504-367-2314
FAX: 504-368-8359

12 Barney & Dickenson Inc.
610 Prentice Road
Vestal, NY, 13850
Tel: 607-729-1536
FAX: 607-797-3931

13 American Mining and Machinery Corp.
3000 S. Washington Road
West Palm Beach, FL, 33405
Tel: 407-820-0049
FAX: 407-820-0049

14 Consolidated Placer Dredging Co.
17951 Sky Park Circle, Suite C
Irvine, CA, 92714
Tel: 714-474-1120
FAX: 714-863-9261

15 Crisafulli Pump Co.
P.O.Box 1051
Crisafulli Dr.
Glendive, Montana, 59330
Tel: 406-365-3393
FAX: 406-365-8088

16 Innovative Material Systems Inc.
15630 South Keeler
Olathe, Kansas, 66062
Tel: 913-829-2900
FAX: 913-829-2989

17 ROHR Corp.
P.O.Box 30-J
Cincinnati, OH, 45230
Tel: 513-624-9220
FAX: 513-624-9221

18 Assemblers Inc.
2355 Yankee Avenue
Durant IA 52747
Tel: 319-785-6539

19 Sludge Engineering
43 Dewitt Avenue
Mattoon, Illinois, 61938
Tel: 217-234-3344
FAX: 217-234-3347

20 T. L. James & Co. Inc.
P.O.Box 826
Kenner, LA, 70063
Tel: 504-467-6000
FAX: 504-469-1332
<table>
<thead>
<tr>
<th></th>
<th>Company Name</th>
<th>Address</th>
<th>Tel:</th>
<th>FAX:</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Dixie Dredge Co.</td>
<td>No. 1, Dredge Park</td>
<td>615 - 822 - 3901</td>
<td>615 - 822 - 0002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>190 Center Point Road, South</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hendersonville, TN, 37075</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Aquarius Smalley</td>
<td>P. O. Box 215</td>
<td>414 - 392 - 2162</td>
<td>414 - 392 - 2984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>220 N. Harrison</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>North Prairie, WI, 53153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Commerce Consultants International</td>
<td>4838, 25 th Road North,</td>
<td>703 - 243 - 8978</td>
<td>703 - 276 - 7338</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arlington, VA, 22207</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Oceaneering Technologies</td>
<td>501 Prince George's Blvd</td>
<td>301 - 249 - 3300</td>
<td>301 - 249 - 4022</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upper Marlboro, MD, 20772</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix E
Response Received from Companies Under Present Survey
Response Received From Companies Under Present Survey
(24 Companies)

Note: Names of companies which have offered promising equipment are shown in bold and with *

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>American Marine & Machinery Co.</td>
<td>Lr. Dt. 3/9/93</td>
<td>Folder</td>
</tr>
<tr>
<td></td>
<td>Hendersonville, TN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02*</td>
<td>DredgeMasters International Inc.</td>
<td>Lr. Dt. 2/1/93</td>
<td>Folders</td>
</tr>
<tr>
<td></td>
<td>Hendersonville, TN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>Eagle Iron Works</td>
<td>No letter</td>
<td>Brochure</td>
</tr>
<tr>
<td></td>
<td>Des Moines, IA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04*</td>
<td>Ellicott Machine Corp.</td>
<td>No letter</td>
<td>Brochures</td>
</tr>
<tr>
<td></td>
<td>Baltimore, MD</td>
<td>Dredge 'Mud Cat'</td>
<td>Video</td>
</tr>
<tr>
<td>05</td>
<td>Intercontinental Engineering Manufacturing</td>
<td>Lr. Dt. 1/11/93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufacturing Corpo.</td>
<td>Only custom made</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kansas City, MO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>W & S Development Inc.</td>
<td>Lr. Dt. 5/13/93</td>
<td>Brochure</td>
</tr>
<tr>
<td></td>
<td>Greenbush, MI</td>
<td></td>
<td>Video</td>
</tr>
<tr>
<td>07</td>
<td>H & H Pump and Dredge Co.</td>
<td>Lr. Dt. 4/29/93</td>
<td>Folder</td>
</tr>
<tr>
<td></td>
<td>Clarksdale, MS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08*</td>
<td>Keene Engineering Co.</td>
<td>Lr. Dt. 1/21/93</td>
<td>Video</td>
</tr>
<tr>
<td></td>
<td>Northridge, CA</td>
<td>Dredge "Nessie"</td>
<td>Catalog</td>
</tr>
<tr>
<td>09*</td>
<td>Aquatics Unlimited</td>
<td>Lr. Dt. 2/3/93</td>
<td>Video</td>
</tr>
<tr>
<td></td>
<td>Martinez, CA</td>
<td>Dredge "Aquamog"</td>
<td>Catalog, Folder</td>
</tr>
<tr>
<td>10</td>
<td>Gulf Coast Trailing Co.</td>
<td>No letter</td>
<td>Brochure</td>
</tr>
<tr>
<td></td>
<td>New Orleans, LA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11*</td>
<td>Dredging Supply Co.</td>
<td>Lr. Dt. 2/5.93</td>
<td>Folder</td>
</tr>
<tr>
<td></td>
<td>Harvey, LA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Barney & Dickenson Inc.</td>
<td>Lr. Dt. 2/2/93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vestal, NY</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Company Name</td>
<td>Date Received</td>
<td>Date</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------------</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>13</td>
<td>American Mining & Machinery Co.</td>
<td>Lr. Dt. 2/4/93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>West Palm Beach, FL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Consolidated Placer Dredging Co.</td>
<td>Lr. Dt. 2/1/93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irvine, CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Crisafulli Pump Co.</td>
<td>Lr. Dt. 2/93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glendale, MT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16*</td>
<td>Innovative Material Systems Inc.</td>
<td>Lr. Dt. 2/16/93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Olathe, KS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>ROHR Corp.</td>
<td>No letter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cincinnati, OH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Assemblers Inc.</td>
<td>Lr. Dt. 1/6/93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Durant, IA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Sludge Engineering</td>
<td>Lr. Dt. 2/15/93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mattoon, IL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>T. L. James & Co. Inc.</td>
<td>No letter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ruston, LA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Dixie Dredge Co.</td>
<td>Lr. Dt. 2/5/93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hendersonville, TN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Aquarius Smalley</td>
<td>Lr. Dt. 5/13/93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>North Prairie, WI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Commerce Consultants International</td>
<td>Lr. Dt. 8/12/93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arlington, VA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24*</td>
<td>Oceaneering Technologies</td>
<td>FAX Dt. 9/19/95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>501 Prince George's Blvd</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper Marlboro, MD, 20772</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix F
List of Companies with Promising Equipment for Contaminated Sediment Dredging
<table>
<thead>
<tr>
<th>No.</th>
<th>Company Name</th>
<th>Equipment</th>
<th>Address</th>
<th>Contact Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Keene Engineering Co.</td>
<td>"Nessie"</td>
<td>9330 Corbin Avenue</td>
<td>Tel: 818 - 993 - 0411</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Northridge, California, 91324</td>
<td>FAX: 818 - 993 - 0447</td>
</tr>
<tr>
<td>2.</td>
<td>Aquatics Unlimited</td>
<td>"Aquamog"</td>
<td>2150 Franklin Canyon Road</td>
<td>Tel: 415 - 370 - 9175</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Martinez, California, 94553</td>
<td>FAX: 415 - 370 - 9179</td>
</tr>
<tr>
<td>3.</td>
<td>Ellicott Machine Corp.</td>
<td>"Mudcat"</td>
<td>1611 Bush Street</td>
<td>Tel: 410 - 837 - 7900</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Baltimore, MD, 21230 - 7900</td>
<td>FAX: 410 - 752 - 3294</td>
</tr>
<tr>
<td>4.</td>
<td>Dredgemasters International</td>
<td>"Mudmaster"</td>
<td>200 Center Point Road South</td>
<td>Tel: 615 - 822 - 3500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hendersonville, TN, 37075 - 2060</td>
<td>FAX: 615 - 822 - 0002</td>
</tr>
<tr>
<td>5.</td>
<td>Dredging Supply Co., Inc.</td>
<td>"Barracuda"</td>
<td>701 Peters Road</td>
<td>Tel: 504 - 367 - 2314</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Harvey, LA, 70058</td>
<td>FAX: 504 - 368 - 8359</td>
</tr>
<tr>
<td>6.</td>
<td>Innovative Material Systems Inc.</td>
<td>"Versi-Dredge"</td>
<td>15630 South Keeler</td>
<td>Tel: 913 - 829 - 2900</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Olathe, Kansas, 66062</td>
<td>FAX: 913 - 829 - 2989</td>
</tr>
<tr>
<td>7.</td>
<td>Oceaneering Technologies</td>
<td>"TCCD"</td>
<td>501 Prince George's Blvd</td>
<td>Tel: 301 - 249 - 3300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Upper Marlboro, MD, 20772</td>
<td>FAX: 301 - 249 - 4022</td>
</tr>
</tbody>
</table>
Appendix G
Details of Promising Equipment
Details of Promising Equipment

Information received from the following companies is presented in this Appendix:

1. Keene Engineering Co. "Nessie"
2. Aquatics Unlimited "Aquamog"
3. Ellicott Machine Corp. "Mudcat"
4. Dredgemasters International "Mudmaster"
5. Dredging Supply Co., Inc. "Barracuda"
6. Innovative Material Systems Inc. "Versi-Dredge"
7. Oceaneering Technologies "TCCD"
Keene Engineering Co. "Nessie"
NESSIE-8DX DREDGE

SPECIFICATIONS MODEL 8DX

<table>
<thead>
<tr>
<th>GENERAL</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of Frame</td>
<td>19'1"</td>
<td>7'2"</td>
</tr>
<tr>
<td>Width with Outriggers</td>
<td>13'10"</td>
<td>8'9"</td>
</tr>
<tr>
<td>Draft (Depth in Water)</td>
<td>17"</td>
<td>16"</td>
</tr>
<tr>
<td>Flotation, Outriggers</td>
<td>8 Floats</td>
<td>14,500 Lbs.</td>
</tr>
<tr>
<td>Trailer Dimensions</td>
<td>28' x 8'4"</td>
<td>2,500 Lbs.</td>
</tr>
<tr>
<td>Spuds (3 each)</td>
<td>5" x 5" x 22'</td>
<td>400 Lbs.</td>
</tr>
<tr>
<td>Cutterhead - 8 Inch Bucketwheel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions:</td>
<td>36 inch Diameter x 24 inches Wide</td>
<td></td>
</tr>
<tr>
<td>Hydraulic with 18:1 Gearbox</td>
<td>Weight: 540 Lbs.</td>
<td></td>
</tr>
<tr>
<td>Torque:</td>
<td>4,167 Foot Pounds</td>
<td></td>
</tr>
<tr>
<td>Automatic Swing Motion</td>
<td>Lenght of Cut: 6 Feet at 45 Degrees</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENGINE</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Caterpillar Model 3208T</td>
<td>V-8 Diesel-Turbocharged</td>
<td></td>
</tr>
<tr>
<td>12 Volt, Electric Start</td>
<td>Alternator: 12volts / 51Amps</td>
<td></td>
</tr>
<tr>
<td>Max. Flywheel</td>
<td>Brake Horse Power at 2,800 RPM 300 HP</td>
<td></td>
</tr>
<tr>
<td>Intermittend Duty**</td>
<td>Brake Horse Power at 2,600 RPM 250 HP</td>
<td></td>
</tr>
<tr>
<td>Continuous Duty***</td>
<td>Brake Horse Power at 2,400 RPM 200 HP</td>
<td></td>
</tr>
<tr>
<td>FUEL CONSUMPTION</td>
<td>(FULL LOAD) at: 2,200 RPM 11.7 GPH</td>
<td>1,800 RPM 10.0 GPH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KEENE DREDGING PUMPS:

Impeller Design: Vortex, 8"x 8" x 25" Weight of Pump: 2,130 Lbs.
Maximum Volume at 250 Horse Power: 4,600 Gallons Per Minute
Maximum Working Pressure: 231 Feet of head / 100 P.S.I.
Maximum Size of Passing Solid Sphere is 8 inches in diameter.
Priming Pump-Model 350 Hydraulic Powered. Size: 4x3 Intake & Discharge

HYDROSTATIC TRANSMISSION (Closed Loop):

Pump Sundstrand Model 90-Variable Displacement
Motor Volvo Model F-250-Fixed Displacement

HYDRAULIC POWER SYSTEM (Open Loop):

EATON "70422-RAU" Piston Pump, variable displacement with pressure / flow, compensated with Load Sensing Control. 2.77 cu.in / rev. = 29 GPM at 2,400 RPM
Max. Rated Speed & Pressure = 3,000 RPM & 3,100 P.S.I.
Directional Valves Fully Integrated Electro-Hydraulic Cartridge System
Directional Controls Twin Joysticks

Model 8DX Price F.O.B. Factory (Less Hydraulic Trailer) $127,000.00
Model 8DXT Price F.O.B. Factory (Including Hydraulic Trailer) $135,000.00

** One hour of operation followed by an hour at or below the continuous rating.
*** Without interruption (Continuous)

Prices and equipment are subject to change without notice.
2

Aquatics Unlimited "Aquamog"
ENVIRONMENTAL RESPONSE VESSELS

Aquatics Unlimited is a design, manufacturing and service company that offers a complete line of Aquatic Ecosystem Creation, Restoration and Maintenance Equipment.

The HARBOR MOG is a shallow draft/multi-purpose work boat designed to perform functions ranging from debris/oil cleanup to bucket/suction dredging to aquatic plant control operations to fire fighting to general maintenance activities using interchangeable attachments.

The AQUATIC DEBRIS/OIL ABSORBENT RECOVERY SYSTEMS are designed to harvest, transport and unload aquatic plants/kelp, debris and oil absorbents.

Call us now to meet your OPA 90 oil spill recovery requirements. The AQUAMOGS and HARBOR MOG can be equipped with the different types of skimmer and processor attachments available on the market and various tank configurations are available for oil storage.

AQUATICS UNLIMITED
2150 Franklin Canyon Road • Martinez, California 94553 • USA
Phone (510) 370-9175 • 1-800-243-8664 • Fax (510) 370-9179
Debris Control Tools
- Skimmer/Collector Head 12' to 18'
- Clam Rake 8' x 5'
- Rake 8'
- Tool Rotator, 360 Continuous
- Hydraulic Winch, 9,600 Pound
- Crane Hook, 3,000 Pound

Oil Spill Control Tools
- Submersible Skimming Head
- 3,000 Gallon Processing Tank

Fire Fighting System
- 2,000 G.P.M. @ 100 F.S.I.

Hydraulic Dredging Tools
- Auger Head 8" Pump, Dredges to a Depth of 15 ft. 150 T.D.H.
- Cutter Head 36" Diameter, 30,000 lb./In Torque, 150 ft. T.D.H.

Bucket Dredging Tools
- Clam Bucket 48" – 0.7 Cubic Yard
- Clam Bucket 24" – 0.35 Cubic Yard
- Mud Bucket 48" – 0.4 Cubic Yard
- Digging Bucket 18" – 0.2 Cubic Yard

Aquatic Plant Control Tools
- T-Bar Cutter, For Submerged Plant Control
- Rototiller, Submerged Root Removal
- Flail Chopper, Emergent Plant Control

HARBOR MOC HRX-109 SPECIFICATIONS

<table>
<thead>
<tr>
<th>Category</th>
<th>Measurement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>22' - 6"</td>
<td>40' 6"</td>
</tr>
<tr>
<td>Height</td>
<td>20' 0"</td>
<td>25' 6"</td>
</tr>
<tr>
<td>Weight</td>
<td>12,300 lbs.</td>
<td>15,600 lbs.</td>
</tr>
</tbody>
</table>
| Dimensions | Length Operating | 6' 6" to 27' 6"
| | Height Operating | 10' 6" to 20' 6"
| | Height Maximum | 10' 6" |
| | Height Minimum | 10' 6" |
| | Width Above Water Line | 10' 6" |
| Width | 10' 6" | 15' 6" |
| Depth | 9' 0" | 15' 6" |
| Material | 307 Stainless Steel | Stainless Steel |
| Tonnage | 5 | 9 |
| Payload Cap.: | Length | 22' - 6"
| | Height | 15' 6"
| | Storage Volume | 500 cu. ft.
| | Load | 15,000 lbs. |
| Supports | Anchor | 8
| | Bollard Movement | 180 Deg
| | Depth Maximum | 6' 6" |
| | Propulsion | 5' 6" |

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Measurement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excavator</td>
<td>Depth of cutting</td>
<td>22' - 6"</td>
</tr>
<tr>
<td></td>
<td>Horizontal Reach</td>
<td>15' 6"</td>
</tr>
<tr>
<td></td>
<td>Vertical Reach</td>
<td>15' 6"</td>
</tr>
<tr>
<td></td>
<td>Tonnage</td>
<td>9</td>
</tr>
<tr>
<td>Power Unit</td>
<td>Engine</td>
<td>John Deere</td>
</tr>
<tr>
<td></td>
<td>Model</td>
<td>602TPI</td>
</tr>
<tr>
<td></td>
<td>Tonnage</td>
<td>284 hp</td>
</tr>
<tr>
<td></td>
<td>HP</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Torque</td>
<td>1,250 lb-ft</td>
</tr>
<tr>
<td>Controls</td>
<td>System</td>
<td>W.M.C. 2300/2900</td>
</tr>
<tr>
<td></td>
<td>Control Functions</td>
<td>All Speeds Unlimited, Adjustable</td>
</tr>
<tr>
<td></td>
<td>Visibility</td>
<td>All 360 deg.</td>
</tr>
<tr>
<td></td>
<td>Control Console</td>
<td>All 360 deg.</td>
</tr>
<tr>
<td></td>
<td>Control Pedals</td>
<td>All 360 deg.</td>
</tr>
<tr>
<td>Corrosion Protection</td>
<td>Paint</td>
<td>Epoyc System</td>
</tr>
<tr>
<td></td>
<td>Sealing</td>
<td>Sacrificial</td>
</tr>
</tbody>
</table>

All Specifications Subject to Change Without Notice
Aquatics Unlimited's AQUAMOG PRX 163 LTL is the ultimate multi-purpose aquatic ecosystem creation, restoration and maintenance vessel.

The AQUAMOG performs functions ranging from bucket/suction dredging to submerged/emergent aquatic weed control using interchangeable attachments. Standard attachments range from clam/digging buckets to hydraulic cutter/auger heads for dredging and flail/sickle mowers to rototillers and rakes for aquatic weed control. Other attachments are available to meet specific job requirements such as stump cutters and tool rotators.

The AQUAMOG's excavating arm can reach a depth of more than 20 feet, a height of 20 feet, and swings a minimum of 180 degrees. A unique feature of the Aquamogs is their capacity for quick tool exchange that allows for interchangability from hydraulic to bucket dredging in a matter of minutes.

The AQUAMOG is the only piece of equipment available to perform all pond, lake, reservoir, canal, marsh or wetland maintenance requirements.

Aquatics Unlimited also produces the AQUAMOG SRX 109, the HARBOR MOG, and a complete line of Aquatic Weed Harvesting and Aeration Systems.

<table>
<thead>
<tr>
<th>AQUAMOG PRX 163 LTL</th>
<th>Bucket Dredging</th>
<th>Hydraulic Dredging, Auger/Cutter Heads</th>
<th>5,000 Foot Pumping Capacity</th>
<th>Submerged/Emergent Aquatic Plant Control</th>
<th>Debris Removal System</th>
<th>Oil Spill Recovery System</th>
<th>Interchangeable Tools</th>
</tr>
</thead>
</table>

Aquatics Unlimited
2150 Franklin Canyon Road • Martinez, California 94553 • USA
Phone (510) 370-9175 • 1-800-243-8664 • Fax (510) 370-9179
Hydraulic Dredging Tools
- Auger Head 8" Pump, Dredges to a depth of 15', 180 T.D.H.
- Cutter Head 32" Diameter, 32,000 lb./in. torque, 180 ft. T.D.H.

Bucket Dredging Tools
- Clam Bucket 48", 0.7 cu. yd.
- Clam Bucket 24", 0.35 cu. yd.
- Mud Bucket 48", 0.4 cu. yd.
- Digging Bucket 18", 0.2 cu. yd.
- Tool Rotator
- Hydraulic Reach Extensions

Oil Spill Control Tools
- Submersible Skimming Head
- 3,000 Gallon Processing Tank

Aquatic Plant Control Tools
- T-Bar Cutter, For submerged weed control. Cuts 10' swath up to a depth of 20'
- Flail Chopper, Emergent plant control cuts Cattails and Brush up to a 4" diameter in a 5' swath
- Rotodiller, Submerged root removal cuts an 8' swath at up to a 15' depth
- Clam Rake, 8' width for trash/weed pick-up and disposal
- Sweeper Rake, Sweeps floating vegetation and debris in a 20' wide swath

AQUAMOG PRX 183LTL Specifications

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>36' 4" (11,000 mm)</td>
</tr>
<tr>
<td>Width</td>
<td>12' 4" (3,710 mm)</td>
</tr>
<tr>
<td>Height</td>
<td>10' 10" (3,300 mm)</td>
</tr>
<tr>
<td>Operating Min.</td>
<td>30' 4" (9,300 mm)</td>
</tr>
<tr>
<td>Operating Max.</td>
<td>42' 0" (12,800 mm)</td>
</tr>
<tr>
<td>Height Above Water Line</td>
<td>14' 0" (4,260 mm)</td>
</tr>
<tr>
<td>Material</td>
<td>10-14 GA Steel</td>
</tr>
<tr>
<td>Fuel Capacity</td>
<td>180 US gal. (695 l)</td>
</tr>
</tbody>
</table>

Support:
- Number: 3
- Vertical Movement: 100" (2,500 mm)
- Horizontal Reach: 100" (2,500 mm)
- Vertical Reach: 90" (2,280 mm)

Power Unit:
- Engine: John Deere
- Model: 608D
- Suspension: Turbocharged
- Power Rating: 185 HP (135 kw)
- Electrical System: 12 V
- Fuel Tank Capacity: 180 US gal. (695 l)

Hydraulic System:
- System Pressure: 3,500 psi (24,140 kPa)
- Pumps: 4
- Pressure Compensated, Variable
- Valves and Sensors: Proportional, Manual/Remote
- Valves Control: 13 Functions
- All Spares: In Stock, Adjustable
- Oil Coolant: Forced Air
- Oil Reservoir: 120 US gal. (455 l)

Control Bridge:
- Enclosed: Heated, Heated and Air
- Visibility: 360°
- HVAC: Automatic, Controls Included
- Anti-Rattle:

All Specifications Subject to Change Without Notice
Aquatics Unlimited's AQUAMOG SRX 109 is a multi-purpose aquatic ecosystem creation, restoration and maintenance vessel — economy and transportability combined.

The AQUAMOG performs functions ranging from bucket/suction dredging to submerged/emergent aquatic weed control using interchangeable attachments. Standard attachments range from clam/digging buckets to hydraulic cutter/auger heads for dredging and flail/sickle mowers to rototillers and rakes for aquatic weed control. Other attachments are available to meet specific job requirements such as stump cutters and tool rotators.

The AQUAMOG's excavating arm can reach a depth of more than 20 feet, a height of 20 feet, and swings a minimum of 180 degrees. A unique feature of the Aquamogs is their capacity for quick tool exchange that allows for interchangability from hydraulic to bucket dredging in a matter of minutes.

The AQUAMOG is the only piece of equipment available to perform all pond, lake, reservoir, canal, marsh or wetland maintenance requirements.

Aquatics Unlimited also produces the AQUAMOG PRX 163, the HARBOR MOG, and a complete line of Aquatic Weed Harvesters and Aeration Systems.

AQUATICS UNLIMITED
2150 Franklin Canyon Road • Martinez, California 94553 • USA
Phone (510) 370-9175 • 1-800-243-8664 • Fax (510) 370-9179
Hydraulic Dredging Tools

- Auger Head 6" Pump, Dredges to a Depth of 15", 90 Ft. T.D.H.
- Cutter Head 26" Diameter, 15,000 Lb./In. Torque, 90 Ft. T.D.H.

Bucket Dredging Tools

- Clam Bucket 48" - 0.7 Cubic Yard
- Clam Bucket 24" - 0.35 Cubic Yard
- Mud Bucket 48" - 0.4 Cubic Yard
- Digging Bucket 18" - 0.2 Cubic Yard
- Tool Rotator
- Hydraulic Reach Extensions

Aquatic Plant Control Tools

- T-Bar Cutter, For Submersed Weed Control Cuts 10' Swath up to a Depth of 20'
- Flail Chopper, Emergent Plant Control Cuts Cattails and Brush up to a 4" Diameter in a 5' Swath
- Rototiller, Submerged Root Removal Cuts a 6' 6" Swath at up to a 15' Depth
- Clam Rake, 8' Width for Trash/Weed Pick-up and Disposal
- Sweeper Rake, Sweeps Floating Vegetation and Debris in a 20' Wide Swath

AQUAMOG SRX 109 SPECIFICATIONS:

Transport:
- Length: 37'-6" (1,143 mm)
- Width: 6'-6" (1,980 mm)
- Height: 7'-4" (2,250 mm)
- Weight: 11,800 lbs (5,350 kg)

Working Dimensions:
- Length Max. Operating: 36'-6" (1,105 mm)
- Width Max. Operating: 6'-6" (2,000 mm)
- Height: 7'-4" (2,250 mm)
- Height Above Water Line: 2'-4" (710 mm)

Vessel:
- Length: 26'-6" (8,092 mm)
- Width: 6'-6" (2,000 mm)
- Depth: 30" (762 mm)
- Material: 16 GA Steel (1.5 mm)
- Water Tight Compartments: 1

Supports:
- Number: 2
- Vertical Movement: 90°
- Depth Range: 9'-1" (2,775 mm)
- Tires: Dual
- Tire Diameter: 33" (840 mm)
- Tire Width: 15" (380 mm)
- Tread: Good Year Terra
- Tire Size: 12.5R-16

Propulsion:
- 36" dia. 4 x 30" (1,440 x 760 mm)
- Propeller Wheels Tandem
- Hydraulically for Transport.

Excavator:
- Depth (at swing point): 14' (4,290 mm)
- Vertical Reach: 16' 8" (5,080 mm)
- Swing: 180°

Power Unit:
- Engine: John Deere
- Model: 6239
- Application: Turbo Charged
- Power Rating (Max): 109 hp (81.2 kW)
- Power Rating (Work): 82 kw/300 rpm
- Electrical System: 12 V
- Fuel Tank Capacity: 160 U.S. Gal. (600 liters)

Hydraulic System:
- System Pressure: 2,850/2,000 psi (200/140 bar)
- Pumps: 2
- Pressure Compensated, Variable Volume Pumps and Load Sensing Valves Control 12 Functions
- All Speeds are Ininitely Adjustable
- Oil Cooling: Forced Air
- Oil Reservoir: 78 U.S. Gal. (300 liters)

Control Bridge:
- Cage Type with Roof, Front and Rear Windows with Windshield and Open Sides
- Visibility 360°

Corrosion Protection:
- Epoxy System

All Specifications Subject to Change Without Notice
Ellicott Machine Corp. "Mudcat"
Machine Specifications

Model SP-810

<table>
<thead>
<tr>
<th>General:</th>
<th>Length (O.A.)</th>
<th>25’6”</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Width (O.A.)</td>
<td>8’0”</td>
</tr>
<tr>
<td></td>
<td>Height (O.A.)</td>
<td>9’3”</td>
</tr>
<tr>
<td></td>
<td>Weight</td>
<td>12,200 lbs. dry</td>
</tr>
<tr>
<td></td>
<td>Draft</td>
<td>22”</td>
</tr>
<tr>
<td></td>
<td>Fuel Capacity</td>
<td>100 gallons</td>
</tr>
</tbody>
</table>

Flotation:
- Pontoon: Two 30’ x 32” x 22” 12 Gauge Steel with Internal Bulkheads and Stiffeners; formed for rigidity; polyurethane foam filled.

Cutter Assembly:
- Auger Diameter: 9”
- Pitch: 9”
- Flighting: 4”
- Speed: Variable to 89 RPM
- Cutter Knives: Detachable Heat-Treated Blades
- Auger Torque: 11,000 in. lbs. (nominal) 12,000 in. lbs. (peak)

Mud Shield:
- 14”x8” Adjustable position

Working:
- Cut 8’ wide x 18” maximum depth

Capacity:
- Operating Depth: 15’ maximum

Engine:
- Detroit Diesel 4-53T Model 5043-8001 w/N-65 injectors; 160 BHP @ 2100 RPM

Drive:
- Engine: Direct Hydraulic Dual Pump Drive
- Pump: Centrifugal Recessed Impeller
- Impeller Diameter: 10”
- Suction Diameter: 6” (8” available as option)
- Discharge Diameter: 6”
- Nominal Pump Performance: 1000 GPM against 100’ Head (water) @ 1600 RPM
- Lead in Screw (optional)

Hydraulic System:
- Variable Displacement, Axial Piston, Hydraulic Pump
- Fixed Displacement Hydraulic Motor
- Capacity Total: 67.6 GPM @ 2100 RPM (engine speed)
- Reservoir: 30 Gallons at full mark
- Circuit One: Auger Drive, Boom, Mud Shield and Winch
- Circuit Two: Centrifugal Pump Drive
- Relief Valve Setting: Auger and Accessories: 2000 PSI
- Centrifugal Pump: 3750 PSI

Propulsion:
- Treble Sheave Hydraulic Winch (6” Drum Winch optional)*
- Traverse Speed: 32 FPM Maximum Forward & Reverse
- Average Cutting Speed: 8 to 12 FPM

Electrical System:
- Voltage: 12V
- Alternator Output: 42 Ampere
- Battery: 12V, 205 Ampere Hour

Finish:
- Polyurethane finish coat on corrosion inhibitive primer.

Colors:
- Standard Colors: Red, White and Blue

NOTE:
- Specifications Subject To Change Without Notice.
- Optional configurations quoted upon request.
- These options are recommended for applications involving thick viscous sludges.

Theoretical Pump Performance Curve (SP-810 & SP-815)

<table>
<thead>
<tr>
<th>RPM</th>
<th>H.C. (ft)</th>
<th>(gpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>880</td>
<td>32%</td>
<td>1750</td>
</tr>
<tr>
<td>1180</td>
<td>35%</td>
<td>1600</td>
</tr>
<tr>
<td>1480</td>
<td>38%</td>
<td>1450</td>
</tr>
<tr>
<td>1780</td>
<td>41%</td>
<td>1200</td>
</tr>
</tbody>
</table>

Impeller Dia — 12 Inch

Type of Vanes — Recessed

S.G. of Liquid — 1.0

NOTE: The theoretical performance curve indicates capacity for pumping water only. Contact MUD CAT DIV. ELLICOTT for information regarding capacities for pumping material.
MACHINE SPECIFICATIONS

Model SP-815

General:
- Length (O.A.) …………………. 31' x 1'
- Width (O.A.) …………………. 8' x 1'
- Height (O.A.) ………………… 8' 9" x 1'
- Weight ………………………. 13,200 lbs. dry
- Draft ………………………. 22"
- Fuel Capacity …………………. 100 gallons

Flotation:
- Pontoon—Two 30" x 32" x 25'0" 12-Gauge Steel with Internal Bulkheads and Stiffeners; formed for rigidity; polyurethane foam filled.

Cutter Assembly:
- Auger:
 - Diameter ………………………. 9"
 - Pitch ………………………. 9"
 - Flighting ……………………4/4"
- Speed ………………………. Variable to 89 RPM
- Cutter Knives: Detachable Heat-Treated Blades
- Auger Torque …………………. 11,000 in. lbs. (nominal)
- 12,000 in. lbs. (peak)

Mud Shield: 14" x 8" Adjustable position

Working:
- Cut 8" wide x 18" maximum depth

Capacity:
- Operating Depth ………………. 15' maximum

Engine:
- Detroit Diesel 4-53T Model 5043-8301 w/N-65 injectors; 160 BHP @ 2100 RPM

Drive:
- Engine ………………… Direct Hydraulic Dual Pump Drive

Pump:
- Centrifugal Recessed Impeller
- Impeller Diameter ………………. 12"
- Suction Diameter ………………. 6" (8" available as option)*
- Discharge Diameter ………………. 6"
- Nominal Pump Performance ………………. 1000 GPM against 100' Head (water) @ 1600 RPM
- Lead in Screw (optional)*

Hydraulic System:
- Variable Displacement, Axial Piston, Hydraulic Pump
- Fixed Displacement Hydraulic Motor
- Total Capacity …………………. 67.5 GPM @ 2100 RPM (engine speed)
- Reservoir ………………………. 30 Gallons at full mark
- Circuit One ………………… Auger Drive, Boom, Mud Shield and Winch
- Circuit Two ………………… Centrifugal Pump Drive
- Relief Valve Setting: Auger and Accessories ………………. 2000 PSI
- Centrifugal Pump ……………. 3750 PSI

Propulsion:
- Triple Shaeve Hydraulic Winch (9" Drum Winch optional)*
- Traverse Speed ………………. 32 FPM Maximum Forward & Reverse
- Average Cutting Speed ………………. 8 to 12 FPM

Electrical System:
- Voltage ………………………. 12V
- Alternator Output ……………… 42 Ampere
- Battery ……………………….. 12V, 205 Ampere Hour

Finish:
- Polyurethane finish coat on corrosion inhibitive primer.

Colors:
- Standard Colors ……………….. Red, White and Blue

NOTE:
Specifications Subject To Change Without Notice.
Optional configurations quoted upon request.

*These options are recommended for applications involving thick viscous sludges.

THEORETICAL PUMP PERFORMANCE CURVE

(SP-810 & SP-815)

<table>
<thead>
<tr>
<th>Total Head (ft)</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>120</th>
<th>140</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head Loss (%)</td>
<td>32%</td>
<td>35%</td>
<td>35%</td>
<td>39%</td>
<td>41%</td>
<td>38%</td>
<td>36%</td>
<td>35%</td>
<td>41%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow Rate (gpm)</th>
<th>0</th>
<th>150</th>
<th>300</th>
<th>450</th>
<th>600</th>
<th>750</th>
<th>900</th>
<th>1050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horsepower (hp)</td>
<td>0</td>
<td>30</td>
<td>60</td>
<td>90</td>
<td>120</td>
<td>150</td>
<td>180</td>
<td>210</td>
</tr>
</tbody>
</table>

Impeller Dia — 12 Inch
No. of Vanes — 8
Type of Vanes — Recessed
S.G. of Liquid — 1.6

NOTE:
The theoretical performance curve indicates capacity for pumping water only.
Contact MUD CAT DIV.
ELLIOTT for information regarding capacities for pumping material.

G18

Appendix G Details of Promising Equipment
MACHINE SPECIFICATIONS

Model SP-915

General:
- Length (O.A.) 39'5½"
- Width (O.A.) 9'0"
- Height (O.A.) 8'8"
- Weight 23,000 lbs. dry
- Draft 21"
- Fuel Capacity 305 gallons

Flotation:
- Pontoons—Two 36" x 32" x 33"/0 10 Gauge Steel with internal Bulkheads and Stiffeners; formed for rigidity; polyurethane foam filled.

Cutter Assembly:
- Auger Diameter 13¼"
- Pitch 11"
- Flighting ¾"
- Speed Variable to 92.5 RPM
- Cutter Knives Detachable Heat-Treated Blades
- Auger Torque 16,660 in. lbs.

Mud Shield: 10"x9" Hydraulically Adjustable

Working Capacity:
- Cut 9" wide x 18" maximum depth

Engine:
- Detroit Diesel 6-71N; 175 Continuous BHP @ 1800 RPM

Drive:
- Engine Direct Hydraulic Dual Pump Drive

Pump:
- Centrifugal Recessed Impeller
- Impeller Diameter 18"
- Suction Diameter 8" (10" available as option)*
- Discharge Diameter 6"
- Nominal Pump Performance .. 2000 GPM @ 1180 RPM against 124' Head (water)
- Lead in screw (option)*

Hydraulic System:
- Auger and Accessory Drive—Dual Pumps
- Capacity Total 26.1 GPM @ 1800 RPM (Engine Speed)
- Reservoir 47 Gallons at full mark
- Circuit One—Auger Drive
- Circuit Two Boom, Mud Shield and Winch
- Relief Valve Setting:
 - Auger 3000 PSI
 - Others 1800 PSI
- Main Pump Drive—Single Pump
- Variable Displacement Hydraulic Pump
- Fixed Displacement Hydraulic Motor
- Capacity 76 GPM @ 1800 RPM (Engine Speed)
- Reservoir 30 Gallons at full mark
- Relief Valve Setting 3750 PSI

Propulsion:
- Double Wrap Sheave Hydraulic Winch
- Traverse Speed 31 FPM Maximum Forward & Reverse
- Average Cutting Speed 8 to 12 FPM

Electrical System:
- Voltage 12V
- Alternator Output 65 Ampere
- Batteries (2) 12V, 205 Ampere Hour, Parallel Wired
- Circuits 2 Wire System Full Ground

Finish:
- Polyurethane finish coat on corrosion inhibitive epoxy primer.

Colors:
- Standard Colors Red, White and Blue.

NOTE:
- Specifications Subject To Change Without Notice.
- Optional configurations quoted upon request.

*These options are recommended for applications involving thick viscous slurries.

THEORETICAL PUMP PERFORMANCE CURVE

SP-915 & SP-920

Impeller Dia — 18 Inch
No. of Vanes — 6
Type of Vanes — Recessed
S.G. of Liquid — 1.0

NOTE:
The theoretical performance curve indicates capacity for pumping water only.
Contact MUD CAT DIV. ELLICOTT for information regarding capacities for pumping material.
MACHINE SPECIFICATIONS

Model MC-915

General:
Length (O.A.) 39 1/2"
Width (O.A.) 9 3/4"
Height (O.A.) 8 1/2"
Weight 22,000 lbs. dry
Draft 21"
Fuel Capacity 360 gallons

Flotation:
Pontoon—Two 36" x 32" x 33" 10 Gauge Steel with internal Bulkheads and stiffeners; formed for rigidity; polyurethane foam filled.

Cutters:
Assembly:
Diameter 13 3/4"
Pitch 11"
Flighting ½"
Speed Variable to 106 RPM
Cutting Knives Detachable Heat-Treated Blades
Auger Torque 16,500 in. lbs.
Rotates to Cut Slope up to 45 degrees

Mud Shield: 19"x9' Hydraulically Adjustable

Working Capacity:
Cut 5' wide x 18" max depth
Max Depth 15' max

Engine:
Detroit Diesel 6-71N 228 BHP @ 2100 RPM

Drive:
Clutch—Manual, 14" Dia. Disc & Pressure Plate
Single Gear Reduction Ratio 1.6:1
Drive Coupling—Flexible Element Type

Pump:
Centrifugal, Closed Impeller, 3 Vane
Impeller Diameter 19 3/4"
Suction Diameter 6"
Discharge Diameter 6"
Shaft Diameter 2 7/8"
Nominal Pump Performance 2000 GPM @ 1160 RPM against 176' Head

Service:
Capacity 75 GPM @ 2300 RPM
Water Pump Pressure 184 Ft. Total Dynamic Head

Hydraulic System:
Capacity Total 30.0 GPM @ 2100 RPM
Reservoir 47 Gallons at full mark
Circuit One Auger Drive
Circuit Two Boom, Mud Shield and Winch
Relief Valve Setting:
Auger 3000 PSI
Others 1800 PSI

Propulsion:
Trebble Sheave Hydraulic Winch (13" Drum Winch optional)*
Traverse Speed 34 FPM Maximum Forward & Reverse
Average Cutting Speed 8 to 12 FPM

Electrical System:
Voltage 12V
Alternator Output 65 Ampere
Batteries (2) 12V, 205 Ampere Hour, Parallel Wired
Circuits 2 Wire System Full Ground

Finish:
Polyurethane finish coat on corrosion inhibitive epoxy primer.

Colors:
Standard Colors Red, White and Blue.

NOTE:
Specifications subject to change without notice.
Optional configurations quoted upon request.

CALCULATED OUTPUT CURVES
SERIES MC-915 & MC-920 DREDGES

- Silt (0.01mm Average Diameter)
- Fine Sand (0.1mm Average Diameter)
- Coarse Sand (1.0mm Average Diameter)
- 6 Inch (152.4mm) Suction
- 8 Inch (203.2mm) Discharge
- 18.5 Inch (470mm) Dia. Impeller
- Max. RPM = 1600
- Max. SHP = 140
- 15 Ft (4.57m) Terminal Elevation
- 30 Ft (9.14m) Digging Depth

NOTE:
Calculated output curves indicate pumping capability only. When used for estimating actual outputs, the nature of the material and job conditions must be considered.

Copyright 1986—ELLIOTT MACHINE CORPORATION
Dredgemasters International "Mudmaster"
Progress at DredgeMasters International has evolved from our success in solving dredging problems, with each new obstacle demanding a bit more ingenuity than the last. Over the years, various other dredge manufacturers throughout the industry have attempted to develop original designs of one kind or another. Generally, the results of these ventures have either been too costly or too restricted in their application.

Real technological advances have been closely linked with answers to specific, clearly identified client needs. The MudMaster is indeed a technological breakthrough. It is widely regarded as the most revolutionary machine introduced to the dredging industry in the last quarter of a century.

The MudMaster, like its companion line of standard model DMI dredges, is a product of experienced dredge professionals. The same practicality, performance and quality engineered and built into our larger dredges has been the basic goal in the development of the MudMaster. It is a superbly crafted machine, inspired by a long standing tradition of excellence. It has the strong bloodlines of quality, designed and built to far exceed your production expectations.

This is not just a small dredge. This is a machine that has been critically needed by the dredging industry for years. A machine the industry has been waiting for...has, indeed, been demanding for many years. And now, it’s available from DredgeMasters International.

SIMPLICITY IN DESIGN, FLEXIBILITY IN OPERATION

Simplicity is the cornerstone of MudMaster’s success. The new arrangement is designed to facilitate economical construction, ease of mobilization and assembly, simplicity of operation and maintenance, and high operating efficiency. The overall design concept features many cost saving ideas which, at the same time, improve performance and reliability. This design also enables the MudMaster to operate and work in extremely shallow depths, which is critically important in the success or failure of many operations.

The flexibility and versatility of the MudMaster is completely unmatched in the industry. It is designed to handle a wide range of projects from cleaning small lakes and ponds, reservoirs and settling basins, to streams, canals, and drainage ditches. It is the first standard model machine ever introduced to back up, unconditionally, claims that other small dredge manufacturers only make. It is designed and built not just for normal small dredge operations, but for an extremely wide range of conditions. It is a truly functional piece of equipment that can be adapted and implemented to satisfy your small dredge needs whatever they may be. A variety of unique interchangeable ladder heads is available, designed to specifically and efficiently handle different materials and job conditions. The MudMaster is the only machine to offer the right tool for the right job.
MudMaster offers the broadest range of compact dredges in the world. They are available in six model sizes, from 4-inch, 40 horsepower units, to powerful 16-inch, 275 horsepower machines. Each is designed and engineered to provide for maximum efficiency and production at each model level. This means that you can select a standard model machine which will offer precisely the right amount of power without having to purchase more than you need, or having to overwork an undersized unit. The MudMaster is an innovative engineering concept with properly matched and balanced systems throughout, resulting in higher efficiency ratios at all levels.

Special consideration has been given to insure precise compatibility between the engine and the dredge pump for maximum efficiency and power savings. In a time of energy conservation, it is vital to invest in equipment offering real energy savings. MudMaster is in tune with our critical energy problems. The result is more production at less operating cost. That's important to consider.

The dredge pump is designed and built to meet the same basic requirements of all HydraMaster pumps—simplicity, efficiency, long service life and smooth performance. Its application means no priming problems, and pump cavitation is virtually impossible. More importantly, the increased operational efficiency of the pump and direct drive result in higher output at significantly reduced power demand...more output, less power consumption...higher profits.

As increasing emphasis is placed on energy conservation, industry is faced with the need to design more fuel-efficient machines. DMI and MudMaster recognize and accept this important challenge.

Another prime consideration is the proper balance between cutter excavation capability and swing winch speed and capacity. Both of these systems are designed to complement each other for maximum performance and smooth operation.

MudMaster is also the most portable machine of its kind anywhere. It can be transported from one job to another on one truck and, in most cases, fully assembled, without permits. While in some cases it may be necessary to remove the flotation pontoons, it only takes a few minutes and is hardly a factor when calculating mobilization time.

A specially designed road package featuring retractable wheels is also available as a special production option.
Here at last is a carefully engineered, rugged dredging machine designed and built for small dredging jobs. Tough jobs, like freeing lakes of weed-choked overgrowth, mining coal or cleaning industrial waste settling ponds to meet environmental regulations are routine for the MudMaster. There's practically no limit to its capabilities. This is an amazing unit that can handle jobs the competition wouldn't even consider. It is designed to operate for long periods of time with minimum maintenance. And when maintenance is required, the MudMaster is so designed that maintenance procedures can be facilitated by normal operating personnel. That's an important point to remember when you're working dredges day after day under really tough conditions. Probably the greatest advantage of all is that the MudMaster is engineered, manufactured and guaranteed by DredgeMasters International, Inc., THE DREDGE PEOPLE!

- Maintenance of sewage sludge lagoons.
- Maintenance of canals and boating access areas.
- Maintenance of water works projects of all types.
- Maintenance of fisheries and irrigation projects.
- Maintenance of lakes and marinas, both public and private, launching sites, and recreation areas.
- Maintenance of dock facilities of all types.
- Maintenance of lakes and rivers to prevent silt buildups.
- Construction of dikes, sanitary landfills and land development projects.
- Construction of inland canals.
- Handling wash fines of mining operations.
- Reclaiming coal slurry and coal tailings.
- Recovering sand and gravel as well as other aggregate mining projects.
- Recovering mineral resources.
- Recycling and cleaning fly-ash ponds for environmental and safety purposes.
- Removing vegetation over-growth in all type water or marshy areas.
- Cleaning water areas of dead organic waste materials.
- Cleaning and maintaining manufacturing cooling water ponds of all types.
- Cleaning lagoons, swamps and other marshy areas.
- Cleaning and maintaining waste sites of all kinds, including steel mills, canneries, chemical sites, tanneries, and foundries.
- Cleaning water treatment settling ponds.

THE LIST IS ENDLESS!
COMPLETE LINE

The MudMaster is available in three basic model sizes with a broad range of power applications and pump sizes to fit your specific requirements. The list of options is extensive and includes a number of DMI innovations, all designed to enhance convenience and production, to solve your problems surely and economically.

MINI-MUDSTER
The MiniMudster is the smaller in the range of small dredges, ranging from 4-inch (100 mm) and 48 horsepower, to 6-inch (150 mm) and 64 horsepower.

MIGHTY-MUDSTER
The mid-range or medium duty machines ranging from 6-inch (150 mm) and 87 horsepower to 8-inch (200 mm) and 175 horsepower.

SUPER-MUDSTER
The large range or heavy duty machines that range from 8-inch (200 mm) and 180 horsepower, to 10-inch (250 mm) and 275 horsepower.

STANDARD SPECIFICATIONS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>SIZE</th>
<th>STD* ENGINE</th>
<th>BHP (Cont)</th>
<th>STD. DREDGING DEPT (FL)</th>
<th>OPERATING WGT (NOMINAL) (Tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP-100 MN</td>
<td>4-inch</td>
<td>GM3-71</td>
<td>48</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>HP-150 MN</td>
<td>6-inch</td>
<td>GM3-53</td>
<td>64</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>HP-150 MT</td>
<td>6-inch</td>
<td>GM4-53</td>
<td>87</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>HP-200 MT</td>
<td>8-inch</td>
<td>GM7-57</td>
<td>175</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>HP-200 SM</td>
<td>8-inch</td>
<td>CAT 3306</td>
<td>190</td>
<td>18</td>
<td>18.5</td>
</tr>
<tr>
<td>HP-250 SM</td>
<td>10-inch</td>
<td>CAT 3406</td>
<td>275</td>
<td>18</td>
<td>19.5</td>
</tr>
</tbody>
</table>

*Alternate engines available as regular production option

AMPHIBIOUS MODELS

AHP-150 MT 6-inch GM4-53 67 14 24.5
AHP-200 MT 8-inch GM5-71 175 14 25.5
AHP-200 SM 8-inch CAT 3006 190 18 30.5
AHP-250 SM 10-inch CAT 3006 275 18 32

Special larger models are also available, custom-built for individual requirements. Please consult DredgeMasters International for details.

PERFORMANCE CHART

DISCHARGE DISTANCE

Note: Capacity ranges are calculated for general sizing purposes only and should not be used for any other purpose. Please contact DMI for detailed calculations.

Appendix G Details of Promising Equipment
INTERCHANGEABLE LADDERHEADS

Each MudMaster model is offered with a choice of four basic, interchangeable ladderheads. Each ladderhead has its own unique application and advantages and allows you to adapt one machine to many different jobs, efficiently and economically.

ROTATING CUTTERHEAD
A conventional rotating cutterhead is available for more difficult dredging applications involving clay, compacted sand, gravel and other tough materials. This cutter system also offers a more efficient direct drive, including these important features:
- Sealed Shaft
- Oil Lubricated, Anti-Friction Bearings
- No Service Water
- Minimum Maintenance

DUAL CUTTERHEAD
The new DMI Dual Cutterhead allows the dredge to excavate tough materials with equal effectiveness in both swing directions. This results in much improved operating efficiency, substantially higher output per operating hour.

REVOVING HORIZONTAL CUTTER
A revolving horizontal cutter is available to handle softer materials such as mud, fly ash, light sand, coal tailings, silt, lake deposits, sludge and other non-compacted materials. This configuration is very effective in small ponds.

OPEN SUCTION “DUSTPAN” ATTACHMENT
An open suction system to handle most loosely compacted and free-flowing materials. It is an extremely effective and economical option and is available in both and easily mount on the MudMaster. This system is available with or without water jets to aid in moving material.

Each of the cutter systems is powered by long-life, gear-type, hydraulic motors, each with variable speed control for optimum operating speed. Each hydraulic circuit is protected against overload damage by automatic pressure relief valves.

OPTIONAL POSITIONING SYSTEMS

Three optional hauling and positioning systems are available that will adapt the MudMaster to your conditions or operating preference.

SWING WINCH SYSTEM WITH SPUDS
A conventional dredge maneuvering system which is used primarily with the rotating and dual cutterhead attachments.

FOUR CORNER POSITIONING WITH FAIRLEADS
An economical system of positioning and maneuvering the MudMaster that can be used in conjunction with any ladderhead configuration.

SINGLE WIRE LONGITUDINAL HAULING
A system designed for effectively operating in conjunction with the revolving horizontal cutter or open suction dustpan attachment.

All hauling/positioning systems feature modern, efficient planetary drive hydraulic winches designed and engineered by DMI specifically for their respective purposes. Variable speed control is provided for each winch for optimum operational speed, and each hydraulic circuit is protected against overload by automatic pressure relief valves.
There is absolutely no compromise in the MudMaster. Not in the development and design. Not in the quality of materials or craftsmanship in construction. Not in the quality controls used to monitor each piece of equipment that goes into its assembly. And not in its versatility and production capability, which, from the standpoint of practicality and performance, represents one of the ultimate achievements in the dredging industry.

When you're true to an ideal, achievement is bound to follow. DredgeMasters International has been dedicated and true to the ideal of excellence since its inception, and the new line of MudMaster Dredges reinforces that ideal.
Dredging Supply Co., Inc. "Barracuda"
Our SHARK dredges are manufactured in sizes that permit transportation in a fully erect configuration. All models are 11'-10" wide (3.61m), thus allowing the units to be hauled over the highway. The only preparation required for transportation is to pull the spud keeper pin and recline the spuds on the deck.

The cutterhead ladder on all models is powered up and down for maximum digging efficiency. The overall height from the water is 9 feet (2.7m) with the spuds down.

Each dredge is equipped with two spuds. The dredge hull is an all-steel welded, single-piece constructed hull. The hull length is 39'-6" (12.04m).

General Machinery:

- Swing Winches - Hydraulic Planetary
- Spud Winches - Hydraulic Planetary
- Cutterhead - Basket type with replaceable edges
- Cutter Motor - Hydraulic motor
- Cutter Reduction - Gear box
- Main Engine - Diesel (Cummins, Caterpillar or Detroit)
- Engine Cooling - Keel cooling
- Electrical - D.C. System
- Dredge Pump - Pekor or equal
- Service Pump - Peerless
- General - sizes available
 - 10" (25.4cm)
 - 12" (30.48cm)

DREDGING SUPPLY COMPANY, INC.
701 PETERS ROAD
HARVEY, LOUISIANA 70058
(504) 367-2314 FAX (504) 368-8359

"The World's Leader in Small Dredges"
SHARK CUTTERHEAD DREDGE
TECHNICAL DATA

<table>
<thead>
<tr>
<th></th>
<th>10 INCH</th>
<th>12 INCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>DREDGE PUMP:</td>
<td>10x10-32</td>
<td>12x12-32</td>
</tr>
<tr>
<td>MAIN PUMP POWER:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caterpillar</td>
<td>3406 TA</td>
<td>3406 TA</td>
</tr>
<tr>
<td>Continuous Rating</td>
<td>322 hp @ 1800 rpm</td>
<td>402 hp @ 1800 rpm</td>
</tr>
<tr>
<td>Intermittent Rating</td>
<td>402 hp @ 2100 rpm</td>
<td>500 hp @ 2100 rpm</td>
</tr>
<tr>
<td>MAIN PUMP DRIVE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tonan TM 729S</td>
<td>Tonan TM 828S</td>
</tr>
<tr>
<td>CUTTER:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basket w/replaceable edges</td>
<td>31" I.D.</td>
<td>34" I.D.</td>
</tr>
<tr>
<td>Rating</td>
<td>41 hp @ 34 rpm</td>
<td>52 hp @ 34 rpm</td>
</tr>
<tr>
<td>SWING WINCH:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pullmaster</td>
<td>M-6</td>
<td>H-8</td>
</tr>
<tr>
<td>Line Pull</td>
<td>6000 lb.</td>
<td>8000 lb.</td>
</tr>
<tr>
<td>SPUD WINCH:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pullmaster</td>
<td>PL-4</td>
<td>PL-4</td>
</tr>
<tr>
<td>Line Pull</td>
<td>4000 lb.</td>
<td>4000 lb.</td>
</tr>
<tr>
<td>LADDER RAM:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic Cylinder</td>
<td>6" bore</td>
<td>6" bore</td>
</tr>
<tr>
<td></td>
<td>2½" rod</td>
<td>2½" rod</td>
</tr>
<tr>
<td>SERVICE WATER PUMP:</td>
<td>2½x2-10</td>
<td>2½x2-10</td>
</tr>
<tr>
<td>ELECTRIC SYSTEM:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 volt</td>
<td>24 volt</td>
</tr>
</tbody>
</table>

GENERAL:
- Length of Hull: 39'-6" 45'-0"
- Length Overall: 61'-0" 70'-0"
- Beam: 11'-10" 11'-10"
- Hull Depth: 4'-0" 4'-6"
- Ladder Length: 31'-0" 35'-0"
- Dry Weight (approx.): 62,000 lb. 74,000 lb.
- Fuel Oil Capacity: 800 gals. 1000 gals.
- Digging Depth, max.: 28 ft. 31 ft.
- Cutting width @ max. depth: 58 ft. 65 ft.
- Cutting width @ 1'-2" digging: 82'-9" 97 ft.
- Loads to Transport: one one/two

THE ABOVE BRAND NAMES ARE SUBJECT TO AVAILABILITY OR EQUAL SUBSTITUTION

DREDGING SUPPLY COMPANY, INC.

701 PETERS ROAD
HARVEY, LOUISIANA 70058
(504) 367-2314 FAX (504) 368-8359

"The World’s Leader in Small Dredges"
This versatile dredge is capable of swinging the cutterhead from side to side and advancing forward without the aid of swing cables and a remote anchoring system.

The unit can easily be converted to a dredge using a conventional anchoring system.

The Barracuda can be transported on one truck from job to job for reduced mobilization and demobilization cost.

The Barracuda is capable of digging to a depth of 18".

The dredge is portable and the fabricated hull is an all-steel welded, single-piece construction with side stability tanks. The dredge is complete with the spuds, two digging and one walking.

General Machinery:

Swing Winches - Hydraulic Planetary
Spud Winches - Hydraulic Planetary
Cutterhead - Basket type with replaceable edges
Cutterhead Motor - Hydraulic motor
Cutter Reduction - Gear box
Main Engine - Caterpillar or equal

Engine Cooling - Keel cooling
Electrical - D.C. System
Dredge Pump - Pekor or equal
Service Pump - Peerless

DREDGING SUPPLY COMPANY, INC.

701 PETERS ROAD
HARVEY, LOUISIANA 70058
(504) 367-2314 FAX (504) 368-8359

"The World's Leader in Small Dredges"
BARRACUDA SWINGING LADDER DREDGE TECHNICAL DATA

<table>
<thead>
<tr>
<th>DREDGE PUMP:</th>
<th>8 INCH</th>
<th>10 INCH</th>
<th>12 INCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN PUMP POWER:</td>
<td>8X8-25</td>
<td>10X10-32</td>
<td>12X12-32</td>
</tr>
<tr>
<td>Caterpillar</td>
<td>3306 TA</td>
<td>3406 TA</td>
<td>3406 TA</td>
</tr>
<tr>
<td>Continuous Rating</td>
<td>260 hp @</td>
<td>322 hp @</td>
<td>402 hp @</td>
</tr>
<tr>
<td></td>
<td>2000 rpm</td>
<td>1800 rpm</td>
<td>1800 rpm</td>
</tr>
<tr>
<td>Intermittent Rating</td>
<td>300 hp @</td>
<td>402 hp @</td>
<td>500 hp @</td>
</tr>
<tr>
<td></td>
<td>2200 rpm</td>
<td>2100 rpm</td>
<td>2100 rpm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CUTTER:</td>
<td>25" I.D.</td>
<td>31" I.D.</td>
<td>34" I.D.</td>
</tr>
<tr>
<td>Basket w/replaceable</td>
<td>25 hp @ 34 rpm</td>
<td>41 hp @ 34 rpm</td>
<td>52 hp @ 34 rpm</td>
</tr>
<tr>
<td>edges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rating</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| SWING WINCH: | PL-4 | M-6 | H-8 |
| Line Pull | 4000 lb. | 6000 lb. | 8000 lb. |

SPUD WINCH:	PL-2	PL-4	PL-4
Pullmaster	2200 lb.	4000 lb.	4000 lb.
Line Pull			

LADDER RAM:	4" bore	5" bore	6" bore
	1¼" rod	2" rod	2½" rod
Hydraulic Cylinder (2)			

| WALKING SPUD KICK RAM:| 4" bore | 4" bore | 4" bore |
| | 2" rod | 2" rod | 2" rod |

| SERVICE WATER PUMP: | 2½x2-10 | 2½x2-10 | 2½x2-10 |

ELECTRIC SYSTEM:	12 volt	24 volt	24 volt
Length of Hull	35'-0"	40'	40'
Length Overall	54'-9"	65'	66'
Beam with side tanks	17'-8"	17'-8"	17'-8"
Hull Depth	4'-0"	4'-0"	4'-0"
Ladder Length	20'-0"	25'	25'
Dry Weight (approx.)	50,000 lb.	72,000 lb.	83,000 lb.
Fuel Oil Capacity	800 gals.	900 gals.	1000 gals.
Digging Depth, max.	13'-6"	18'	18'
Cutting width @ max. depth	14'-2"	19'	19'
Cutting width @ surface	20'-0"	26'	26'
Loads to Transport	one	one	one/two

THE ABOVE BRAND NAMES ARE SUBJECT TO AVAILABILITY OR EQUAL SUBSTITUTION

DREDGING SUPPLY COMPANY, INC.
701 PETERS ROAD
HARVEY, LOUISIANA 70058
(504) 367-2314 FAX (504) 368-8359

"The World's Leader in Small Dredges"

Appendix G Details of Promising Equipment G37
Innovative Material Systems Inc. "Versi-Dredge"
INNOVATIVE MATERIAL SYSTEMS
DREDGES, PUMPS & PUMPING SYSTEMS
VOLUME 2, ISSUE 1

CASE HISTORY

VERSI-DREDGE® Clears Channels for Luna Pier Harbor Club

BACKGROUND
It had always been Al Towsey’s dream to build a marina on his 23 acres of Michigan soybean fields. The property seemed ideal. It was located one hour south of Detroit and had an adjacent canal to Lake Erie. In 1985, with the help of his nephews, construction began. Today, the Luna Pier Harbor Club is a 392-slip, privately owned marina. According to Mel Briskey, Towsey’s nephew and one of the current owners, the marina will expand on 8.3 acres of recently purchased land.

PROBLEM
From the start, keeping Luna Pier’s channel to Lake Erie clear proved to be a major problem for the developers. Sand larger basket cutterhead dredges, were often called on to keep the channel open.

The contractors hired to remove the settled sand were also asked to remove 2 feet of virgin clay. It was hoped that by removing the clay, the channel would take more time to fill in, thus extending the time between required dredgings. According to Briskey, "The real problem was that they weren’t doing a real good job. They didn’t take any time at all. They were leaving hills out there, and they couldn’t even cut that hard, blue clay. The channel would fill up again in about three months time. And we were having trouble with our boaters complaining."

SOLUTION
Last April, the owners of the marina decided to purchase a Model 4010 VERSI-DREDGE®, manufactured by IMS, and do the work themselves. Walleye season had just begun, and Luna Pier’s boaters wanted clear access to the lake.

Dean Wickoren, IMS director of new product development, and Jim Sauerman, customer service technician, were on hand for the customary machine startup and new operator training session. The session lasted two days and allowed IMS further evaluation of its recently introduced high-pressure dredge pump. The pump easily removed the sand, clay, and zebra (continued on page 2)

LETTER FROM THE PRESIDENT

Not so long ago, the two-man crosscut saw was the tool of choice in the logging industry. With advances in technology, specifically the introduction of the chain saw, logging has changed a great deal.

Switching to the chain saw made economic sense. Chain saws were small enough to be carried to a job site by a single individual. In addition, they needed only one operator. Finally, chain saws offered consumers more power and production at a relatively low cost.

Innovative Material Systems is dedicated to developing products that have the same impact on our marketplace as the chain saw had on its. Particularly, we look to improve upon the status quo by producing technology that is more portable, more powerful and more resource-efficient than current products.

I encourage you to read this newsletter and learn more about our small dredge and submersible pump product lines. Welcome to our company, I hope you enjoy "Systems."

INSIDE SYSTEMS

Ask the Expert ..2
Pump Talks: Digester Cleaning Package3
Employee Profile: Barbara Smith4
IMS: Your Single Source for Accessories4

Appendix G Details of Promising Equipment
Designing a Spoil Area

What can be done about spoil?

Finding space to store spoil even temporarily may be the most difficult problem a designer faces on a dredging project. IMS can’t find space for you, but we can make suggestions that will help utilize available space.

The ideal location for a spoil area is immediately adjacent to the impoundment being dredged on either a perfectly level site or, at most, with a slight slope away from the inlet. It should be large enough for long-term storage of the slurry that will be pumped in clearing the impoundment. If the ideal site exists, the designer of a small project may simply estimate the total volume that will have to be pumped to clear the dredge site and build a spoil area to hold more than that.

On larger projects, available space and money may take precedence. This forces the designer to adapt the site to its needs and sometimes, to tailor the entire dredging project to the spoil area design constraints. A series of tests can be run to assist the designer, and IMS can help our customers in the running and interpretation of these tests. Some of the considerations in spoil area design are:

- How many cubic yards of material are to be dredged? Add at least 10 percent to this figure for design purposes. As mentioned above, on small projects where space is available, this is the spoil area design. Build it to hold the calculated volume and dredge.
- How much slurry will have to be pumped to dredge this amount of material? In other words, how much material will have to be handled to do the job?
- Will the material settle out of the slurry? How fast? If a settling test shows that the material will settle out of the slurry and decanting of water is permitted, the volume of the spoil area can be reduced by the amount of water that can be decanted. Settling will only occur in a quiescent setting. Will there be long periods (overnight) when no material is being pumped to the spoil area? The settling test should be limited to this length of time.
- How rapidly will the material dry to the point where it can be removed or pushed out of the way? This depends not only upon the material but upon the climate. Drying is enhanced by turning the material. This can only be done when fresh slurry is not being added.
- If settling and decanting appear viable, the material dries readily, and equipment is available to assist in the drying process, consider the construction of multiple cells. The cells are sited to contain several days production and are used alternately. While a cell is in service, the others are being decanted and dried, and the material is removed or pushed aside.

What steps must be taken to construct a spoil area?

There is no foolproof recipe for designing and building a spoil area. In designing the spoil area, the designer should avoid being merely hopeful. Apply what is known about the material realistically. Test results are always suspect because it’s usually impossible to be certain that the samples are truly representative of the entire site. Be conservative! Few things are more frustrating than having a full spoil area with a third of the site yet to be dredged.

A Few Suggestions

- Know as much as possible about the behavior of the material.
- Build the area as large as available space and money permit.
- Be prepared to operate the spoil area. That is, use all options such as decanting and drying that are economically feasible.

VERSI-DREDGE® Clears Channels

(continued from page 1)

mussel shells to a spoil area 2,900 feet away at an elevation of 20 feet. Production rates often exceed 100 cubic yards an hour.

Since walleye season, Briskey says, the small dredge has been used to do a more thorough job on the 1,800-foot-long by 30-foot-wide channel, as well as 500 feet of problematic lake area. "It has done a tremendous job," he says. "We’ve cut through the blue clay – none of the others have ever done that."

RESULTS

The boaters are very pleased with the changes, according to Briskey. "The biggest problem has always been the navigable waters off the channel mouth, and we have that well corrected now."

While other marinas in the area are about 40 percent occupied, Luna Pier’s rate is up from last year to about 85 percent, Briskey says. The new dredge, he believes, is giving the club an advantage over the competition.

In fact, while some of Briskey’s neighbors were initially skeptical of Luna Pier’s new dredge, they are now believers. Several have come by to watch the VERSI-DREDGE® run and have even asked Briskey to contract his services. "They have been very impressed with it. And they should be. We have been very satisfied, and we know that the dredge will pay for itself," he says.

Luna Pier’s owners are still undecided as to whether they will take the competitors up and contract the dredge, he adds. "We have put the cost into running our marina, and we are trying our level best to do a good job on our own property!"

For further information on the Luna Pier Harbor Club, please contact Mel or Mike Briskey at 313/848-8777.

* Registered Trademark of IMS, Inc., Olathe, Kansas.
PUMP TALK

Digester Cleaning Package

Anaerobic digesters require periodic cleaning. This is particularly true in plants without grit and grease removal systems and/or facilities for screening trash.

Grease, trash and grit often accumulate to the point where the digester will not function because it can no longer be mixed and heated. This loss of mixing can result in the buildup of sludge and solids so thick that the tank cannot be drained or pumped down using existing plant equipment.

Digesters are usually cleaned by pumping out through the manways in the cover. The material is pumped to sludge beds, lagoons or pressers. If pumping direct to disposal is impossible, material may be pumped into a truck for hauling. This can be the most expensive item on a cleaning job.

IMS offers a complete digester cleaning package, including: a diesel/hydraulic or electro/hydraulic power unit, a hydraulically driven sludge pump with slurry gate, a 200-foot pair of hydraulic hoses, riser pipe assembly, a 100-foot discharge hose, a pump hoisting frame with winch, and a truck loading chute.

The usual procedure in setting up a project is as follows:

- Set up the power unit in an area where it can be easily refueled (if diesel) and serviced.
- Lower the pump through the large access manhole above the ladder, forcing it through the sludge if necessary. Sometimes it can be "jetted" into the sludge with a fire hose.
- Attach the riser as the pump is lowered.
- When the pump is as deep as possible, connect the discharge hose to the riser pipe, and the pipeline to the process or the truck loading chute.
- If the sludge is being trucked, set up the loading chute, if possible, so that trucks can drive in, load and leave without turning around.
- Begin pumping.

The thin, easiest to pump material will naturally be pumped out first. As the pump works its way down assisted by the slurry gate, the thicker sludge will form an angle of repose, and the pump finally will be at the bottom of a "cone" of the more solid sludge. At this point, a fire hose should be used to loosen the sludge, causing it to tumble or flow to the pump.

When the center (or low spot if not the center) of the digester floor becomes visible, the pump is moved there and reconnected to the riser pipe with a section of the flexible discharge hose. The sludge left clinging to the digester floor and walls is then "blasted" off with the fire hose and washed to the pump.

The amount of water used to flush the digester can be critical. If the sludge is pumped out too wet, a drying bed or press could be flooded or the number of truck-loads required to haul might increase greatly. If the material is pumped too dry, the press might not handle it or it may not drain from the trucks.

When pumping to trucks, the amount of solids pumped can often be controlled well enough to avoid disaster by simply timing the loading. For instance, with an 8-inch system, thin sludge will pump at 1,000 g.p.m. and a thick sludge at 400 to 500 g.p.m. A 6,000-gallon truck will load in 6 to 15 minutes.

If it is determined that a sludge that can be handled is produced when the pump is discharging 750 g.p.m., the truck will load in 8 minutes. Time the loading until the truck is half full. If it takes less than 4 minutes, the sludge is too thin and the water can be cut back for the second half of the load. If it takes more than 4 minutes to get a half load, the material is too thick, and the water should be increased for the second half of the load.

One of the greatest problems normally encountered in digester cleaning is the so-called "ragball." These masses of rags, plastic and string are formed in the rolling action induced by the digester mixer. Many of them are too large to pass through a pump or pipe and are not welcome in a tank truck or pond. Unfortunately, they may have to be lifted out and disposed of separately.

Sand and grit can pose a similar problem. Although they can be pumped out of the digester, they may not drain from a tank truck and often are not wanted by a downstream process. If there are large amounts of grit, it may be necessary to pump out the sludge and handle the grit separately from the sludge.

The digester cleaning packages are available with 6-inch and 8-inch pumps. The 6-inch pump package, provided with 8-inch riser pipe, hose and loading chute, will handle 80 percent of jobs. The 8-inch pump package, which includes 10-inch pipe, hose and loading chute, will handle nearly all jobs.

Stay Tuned ...

In our next newsletter, "Pump Talk" will discuss sewer bypass systems.

G42 Appendix G Details of Promising Equipment
Employee Profile

During her four-year career with IMS, Barbara Smith has worn many hats. As our receptionist, she is the first person to speak to customers, and therefore is the first impression they receive of our company. Her highly visible position, combined with her knowledge of IMS, our products, and our staff, makes her a valuable resource for customers and prospects.

She also is regarded highly by co-workers. "Barbara has a very helpful attitude and possesses an appropriate sense of urgency when dealing with our customers," says IMS President Jim Horton. "We have complete confidence in her ability to handle simultaneous projects in addition to helping customers when they call."

Barbara also is administrative assistant to Jim, and handles a range of office functions, including travel arrangements, invoices and ordering office supplies.

Despite her importance to IMS, Barbara emphasizes her greatest accomplishment has been raising a daughter by herself. Gabriella, now a 17-year-old high school honor student, has high aspirations like her mother, who is attending college at night. "You’re never too old to learn something new," Barbara says.

Not only is Barbara a dedicated mother and a hardworking employee in pursuit of a college degree, she also sells Mary Kay cosmetics and is a zealous dancer. In fact, she ballroom dances three times a week and considers dancing to be her ultimate stress-reliever: "It’s about the same price as a therapist. So I do it for myself," she says.

An intriguing past has contributed to Barbara’s zest for life. She lived in Germany for 20 years and England two years before moving to the United States in 1965. While she misses the delicious foods of Germany and England’s traditional tea time, she loves the wide open spaces of America.

"I would like to resume my travels one day, and the Far East will probably be my first stop," she says. Until then, IMS appreciates Barbara’s many contributions to our growing business.

IMS: Your Single Source for Accessories

In addition to its dredge and pump line, IMS carries a full range of discharge line accessories. These items range from routine valves (check valves, shut-off valves, etc.), to made-to-order adapters, to discharge hose and pipe. IMS is a distribution source for dredging and pumping products from manufacturers such as Goodyear (discharge hose), Phillips Petroleum (discharge pipe), and Gheen (quick disconnect fittings). If you have a need, chances are IMS has the answer. For further information on our line of parts and accessories, please call: 800/800-4010

Environmental Fact

Americans, including U.S. businesses, use about 90 billion gallons of groundwater every day; 14 percent is drinking water. Contamination of this water comes from dangerous chemicals that end up in unmonitored pits and lagoons. The EPA has found 98 percent of these dump sites within a mile of underground drinking water, and 93 percent of them threatened groundwater supplies.
Oceaneering Technologies "TCCD"
A New Device for the Retrieval of Contaminated Marine Sediments
The Total Containment Clamshell Dredge

Oceaneering International, Inc. is currently developing a new underwater excavation device that has been specifically designed for contaminated sediment retrieval. The patent pending Total Containment Clamshell Dredge (TCCD) is designed to precision dredge "hot" zones while minimizing all possibilities of spreading the contamination. Two primary objectives were set during the TCCD design. The first objective was that disturbed sediments would not be able to escape the system. The second was that the volume of associated water be kept to an absolute minimum.

Total containment is accomplished by incorporating a hyperbaric soil receiving chamber. This is an air void that provides space for the incoming sediments. This void eliminates the displacement of an equal volume of contaminated water. It also minimizes the volume of associated water captured with each "bite" of sediment. Leakage containment is assured by operating in a negative pressure differential mode. Essentially, the pressure within the system is adjusted to be less than the ambient water pressure during system operation. This results in leakage into the apparatus rather than outward.

Total containment is further assured by active silt curtains. Hard curtains that seal against the sides of the clamshell buckets are lowered to close off the gap between them during closure. This prevents disturbed soil from extruding out of the system.

A working prototype of the TCCD is currently in factory testing with operational field testing scheduled in the early spring of 1996. The TCCD will be produced in three sizes to accommodate a variety of applications and is designed to use a vessel of opportunity as a floating base which provides the flexibility to bid projects in any market area.

With the TCCD, Oceaneering International will continue to be a leading international participant in the field of underwater contaminated sediments operations.
Equipment for Contaminated Sediment Dredging

Author(s)
Trimbak M. Parchure

Performing Organization Name(s) and Address(es)
U.S. Army Engineer Waterways Experiment Station
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Sponsoring/monitoring agency name(s) and address(es)
U.S. Army Corps of Engineers
Washington, DC 20314-1000

Supplementary notes
Available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

Distribution/availability statement
Approved for public release; distribution is unlimited.

Abstract
The objective of the present task was to compile the latest available information on equipment, procedures, and monitoring techniques for dredging contaminated sediments. A readily available published document offering technical information collected under this project will benefit the U.S. Army Corps of Engineers and others involved in dredging of contaminated sediments.

Subject terms
- Contaminated sediment
- Innovative dredging
- Dredger
- Muds
- Dredger survey
- Piston-type dredge
- Dredging

Security classification
- Report: UNCLASSIFIED
- This page: UNCLASSIFIED
- Abstract: UNCLASSIFIED

Number of pages
100

Price code

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102