ADVANCED TURBINE AEROTHERMAL RESEARCH RIG (ATARR) MONITOR AND CONTROL SYSTEM (MCS) HARDWARE REFERENCE MANUAL--VERSION 2

C. Haldeman
M. Dunn

Calspan Corp
Advanced Technology Center
PO Box 400
Buffalo NY 14225

MAY 1993

FINAL

DTIC QUALITY INSPECTED

Approved for public release; distribution unlimited

19961011 106

AERO PROPULSION & POWER DIRECTORATE
WRIGHT LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7251
NOTICE

WHEN GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY GOVERNMENT-RELATED PROCUREMENT, THE UNITED STATES GOVERNMENT INCURS NO RESPONSIBILITY OR ANY OBLIGATION WHATSOEVER. THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA, IS NOT TO BE REGARDED BY IMPLICATION, OR OTHERWISE IN ANY MANNER CONSTRUED, AS LICENSING THE HOLDER, OR ANY OTHER PERSON OR CORPORATION; OR AS CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC, INCLUDING FOREIGN NATIONS.

THE TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.

CHRISTIAN E. RANDELL, Lt, USAF
Turbine Design Engineer
Turbine Engine Division

CHARLES D. MacARTHUR
Chief, Turbine Branch
Turbine Engine Division

RICHARD J. HILL
Chief of Technology
Turbine Engine Division
Aero Propulsion & Power Directorate

IF YOUR ADDRESS HAS CHANGED, IF YOU WISH TO BE REMOVED FROM OUR MAILING LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION PLEASE NOTIFY WL/POTT WPAFB OH 45433-7251 HELP MAINTAIN A CURRENT MAILING LIST.

COPIES OF THIS REPORT SHOULD NOT BE RETURNED UNLESS RETURN IS REQUIRED BY SECURITY CONSIDERATIONS, CONTRACTUAL OBLIGATIONS, OR NOTICE ON A SPECIFIC DOCUMENT.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

C. Haldeman
M. Dunn

Calspan Corp
Advanced Technology Ctr
PO Box 400
Buffalo NY 14225

Aero Propulsion & Power Directorate
Wright Laboratory
Air Force Materiel Command
Wright Patterson AFB OH 45433-7251
POC: Lt Christian E. Randell, WL/POTT, 513-255-3150

Approved for public release; distribution is unlimited

This manual is presented to WPAFB as an aid in sorting out the Monitor and Control System (MCS) hardware that was implemented by Belcan Corporation. Several revisions of the actual hardware have occurred, but until now, the documentation was scattered and not completely up-to-date. The main goals of this manual are to:
1. Consolidate the various hardware reference manuals and coordinate the manual with the existing wiring.
2. Outline the changes made by Calspan with regards to the main valve activation system and the isolation valve.
3. Provide a formal list of Calspan recommendations for the MCS system for future efforts.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>I: General MCS Discussions</td>
<td>2</td>
</tr>
<tr>
<td>I.1 Consolidation of Different Manuals</td>
<td>2</td>
</tr>
<tr>
<td>I.2 Calspan’s Main Valve Activation System</td>
<td>2</td>
</tr>
<tr>
<td>I.3 Isolation Valve Wiring</td>
<td>4</td>
</tr>
<tr>
<td>I.4 Calspan’s Formal Recommendations Regarding the Future of the MCS</td>
<td>4</td>
</tr>
<tr>
<td>I.4.1 MCS Limitations</td>
<td>4</td>
</tr>
<tr>
<td>I.4.2 MCS Suggestions</td>
<td>5</td>
</tr>
<tr>
<td>Appendix: Computer Disks and Listings</td>
<td>7</td>
</tr>
</tbody>
</table>
Introduction:

This manual is presented to WPAFB as an aide in sorting out the Monitor and Control System (MCS) hardware that was implemented by Belcan Corporation. Several revisions of the actual hardware have occurred, but until now, the documentation was scattered and not completely up-to-date. The main goals of this manual are to:

1) Consolidate the various hardware reference manuals and coordinate the manual with the existing wiring.

2) Outline the changes made by Calspan with regards to the main valve activation system and the isolation valve.

3) Provide a formal list of Calspan recommendations for the MCS system for future efforts.

The report is organized into two main sections. The first section is a discussion of the three items listed above. The second section contains the wiring diagrams and the reference material for the parts installed by Calspan. The wiring diagrams are organized a little differently from the original MCS hardware reference manual. In this section, all of the wiring diagrams generated by Paul Fuller are in Tab A. Tab B contains the general diagrams which show the power connections, placement of instruments, etc. (pages 3-7, 11-12, and 17-19 of the original manual). These pages have not been checked by Calspan and are most probably incorrect, since many of the instruments, and the power supply for them have changed. Tab C contains the wiring diagrams for each Genius I/O block, grouped according to block number. To our knowledge these are presently correct. Tab D contains the wiring diagrams generated by Calspan for the main valve activation system. Finally, Tab E contains some reference information about the power supply, relays, and LEDs used in the main valve activation system.

All of the wiring diagrams were printed using MacDraft (Macintosh based software) and this document is generated using Microsoft Word. Computer disks are provided at the back of this report as well as a directory listing. Just about any computer drawing program and word processing program should be capable of accessing these files.
Section I: General MCS Discussion

I.1 Consolidation of Different Manuals

The wiring diagrams come from the original MCS hardware reference manual, Paul Fuller's working notebook, and Calspan wiring diagrams for the main valve system. In general, most of the wiring diagrams were generated before the entire system was installed. There were several items called out in the original plans for both the hardware and the software which were not fully implemented. The most notable example is the limit switches on many of the valves. While these valves were wired with limit switches, and the wires connected to the Genius I/O stations, they were either not connected to the Genius I/O blocks or the software was not implemented to use the limit switches. Since the Genius I/O blocks can be changed from input to output, several of these limit switches have been removed from the wiring diagrams, freeing up space to do other valve manipulations. These limit switches can be easily connected by finding (at the Genius I/O box) the appropriate wires (since the wires are already run to the limit switches). However, one may need to change the software to incorporate those changes.

Paul Fuller reworked most of the main circuitry for controlling the speed of the turbine. These changes are reflected in his drawings (contained in Tab. A). However, his power connections are almost certainly different from the drawings noted in the introduction. Calspan has not been in a position to check these drawings for accuracy. This is a book keeping task that the Air force will have to assume.

At this point, we believe that these drawings represent the most up-to-date version of the MCS. However, as parts are added (such as a cooling system or an enunciator panel) these connections will probably change. We encourage the Air force to keep this manual up-to-date, and remove non-functioning or outdated equipment quickly.

I.2 Calspan's Main Valve Activation System

Calspan assumed responsibility for developing the main valve activation system when it became clear that Belcan could not develop either the fast-acting valves or the fail-safe piping arrangement. The majority of this system is described in more detail in the "Main Valve Report"; here, only the electrical components are described.

The valves chosen to control the main valve activation system are Whitey 45 series valves with 120 VAC electric actuators. These actuators differ from the ones chosen by Belcan for many of their applications. These valves, when a set of leads are activated, move to a preset position and then shut the power off. Re-energizing the same leads will not make the valve move. This is extremely useful because power is only flowing when the valve is changing position. This makes for a much quieter (electrical) system. The downfall of this system is that the Genius I/O blocks are not isolated. Even when the power is off, high voltage potentials can exist between the two
terminals (when power is off, the Genius manufactures mean that a very low current will flow). These voltage potentials were enough to cause some valves to actuate when they were not supposed to (an intermittent problem). This situation is solved by using a set of isolating relays. In fact GE manufactures relay blocks for the Genius I/O but they were not ordered because Belcan was using a system which had power on the entire time for all of their actuated valves (this approach results in the generation of lots of electrical noise).

Calspan built a set of relays to run the main valve activation system. There is nothing exceeding complex about the system. In fact many of the relays came from Radio Shack. These relays, as well as the power supply for the Marrotta valves, are enclosed in a box which has been attached to the Genius I/O box mounted near the supply tank. The wiring diagrams for the main valve are shown in Tab D. The first page shows the wiring diagram for the three Marrotta valves. One can see that the power for valve EV602 can only be obtained if EV603 and EV603’ are activated.

Originally there were only two Marrotta valves (EV602 and EV603’). However, we ran into a problem with the system not maintaining pressure during one step of the activation process. This was because the limiting choke in the activation system is the Marrotta valves which required us to add one more valve (EV603’). This valve is activated exactly the same time as EV603 and is thus virtually indistinguishable from valve EV603. One will also note on this page the presence of the LM7812 chip. This was used to convert the power from the Power One #F28-12-A power supply into 12 VDC. This power was originally used to run the positioning LED’s (on the Calspan actuators), and latter to power the positioning LED’s on the main valve. The present system exists so that one could place two LED’s on each of the Calspan actuators and channel that information to the MCS (in order to provide a reading of the position of the Calspan actuators). This diagram is shown on page two. Note that information about the Power One, LED’s and Relays are contained in Tab E.

Page two shows the relays that have been installed to take the 12 VDC signal which is generated by the LEDs and use it as a control to the MCS. Presently the relays exist as does a power source for the LEDs, but the software is not written to interrogate these Genius I/O blocks, nor are there enough LEDs. Even if one did not wish to pursue this exact instrumentation, those relays could be used in other 12 VDC signal cases.

The third page shows the four relays used with the Whitey valves and actuators. Note that the Whitey actuators have built in limit switches of which only the main ones are wired. There are other switches which are available (such as an off position for three-way valves, and a motor running switch) which could easily be connected if desired.

One important point is that limit switches on the valves are used (for the Whitey valves), and the power is taken from the relay for the Marrotta valves. There is no implicit assumption
made in the MCS that because you told the valve to move to a position that it is in that position. This is really a hardware closure versus a software closure. Originally the MCS software often assumed because the computer told a valve to change positions that it had done so. We have gone through the system and tried to remove those type of implicit assumptions when possible.

1.3 Isolation Valve Wiring

1.4 Calspan’s Formal Recommendations Regarding the Future of the MCS

The MCS system is really a combination of three different sub-systems. First there is the MCS software and its operating environment. Secondly, there is the Genius I/O. Finally there is the instrumentation and valves. Calspan is uneasy about the existing MCS system. Presently it performs its functions, although we have concerns about its future. It is limited in what it can do, it cost to much to change and update, and it uses old technology. Be that as it may, we are compelled to use the system as it exists for now. However, we feel there are several cost effective ways of using the existing system while achieving better overall performance. In addition we feel that everyone involved must understand the limitations of the existing system. We feel that there will come a time in the not too distant future when the decision will need to be made to update the existing system at a substantial cost, or replace it. This sub-section intends to focus on some of the MCS limitations and make some suggestions for improving its overall operation.

1.4.1 MCS Limitations

As a forward, the overall MCS system is not limited by any one component in general, but rather it suffers from a cumulative effect of inadequacies in all three groups listed above. The software is extremely limiting. When Calspan first arrived, we created a new menu to control four valves on the main valve activation system. That additional space made the software un compilable. After consultation with Belcan who indicated that they had a great deal of trouble compiling the code, an effort was undertaken to eliminate and streamline the code. At this point the software is approximately 2/3 of the original size. The unfortunate part is that the actual logic contained in the code (i.e. if this valve is open check this and that) can be written in about 10 pages (out of over 100). Most of the written code is used to run the windows format. Clearly as the facility expands to include a cooling system, temperature generator, etc., the main control software could easily reach its limits. It seems rather arcane to spend so much software overhead trying to generate a windows atmosphere (which can not run separate windows), while there are operating systems that already do that (UNIX).

In terms of the hardware, the Genius I/Os are limited to a finite number of blocks (30) per controller. While there is still some expansion room, clearly the software may limit one to an effective number which is probably smaller than the maximum hardware limit. More importantly,
as the number of blocks grow, the communication time delay increases. Already at this point, the MCS cannot be used to do highly accurate timing, which will be a problem when systems such as the cooling system are brought on line. Buying some Genius relay blocks should alleviate the need to do extra relay wiring when using electrically actuated valves, which has been a limitation, to some degree.

Our biggest concern has always been with the MCS instrumentation, particularly the pressure transducers. While we are not happy that many of the valves are AC activated and remain as power drains during the entire time they are activated, this is not as large a problem as the pressure transducers.

Much of the cost of these transducers was spent on the communications components of the transducers. The actual transducers are not very accurate, plus one needs two of them for every tank which is both evacuated and pressurized. These transducers are expensive because there is an A/D chip inside every one. That is why one can scale the output at the transducer itself. This, when coupled with the A/D in the Genius I/O and the A/D inside the computer makes for a system with three potential places to do A/D work (or confuse the signal). The transducers are designed for systems which do not have computers to do the digitization (or for those systems which need a back-up independent of the main computer system), neither of which we need. In addition the frequency response is extremely low, making them almost completely worthless as diagnostic equipment. They cannot be moved easily, nor can they all be calibrated together. They must be calibrated separately, which could cause a bias error to develop in the system, limiting the overall relative accuracy that could be obtained. In addition, they were selected to have 4-20 ma current loops. This probably seemed advantageous to the designer because only two wires are needed for each instrument; however, it adds cost to the instrument and makes on-line diagnostics annoying (even if using the programmer) and impossible without the device.

Finally as a clear indication of the quality of the transducers themselves, the MCS software vents the tanks until the pressure transducers read atmospheric conditions. However, even after calibration, the difference between atmospheric pressure and the pressure transducer readings could be a few psi. This event has occurred on several occasions where we removed an access plate only to hear more air escaping. Since then, manual MCS vents (i.e. ones that stay open until someone closes them) have been installed in the software which allow the operator to override the pressure transducer signals and make sure the tanks are fully vented before starting to work on the system.

1.4.2 MCS Suggestions

Clearly we feel that the pressure transducers should be replaced as they begin to fail. These can be replaced much more inexpensively by using standard high voltage output transducers (such as from Omega). Most of these can be obtained in absolute format which will mean that only one
transducer will need to be used for both vacuum and pressure readings. This would cut-down on the MCS software needed and the hardware slots. One would have to obtain a power supply, but that is relatively inexpensive and could be used to power all the transducers. The MCS could then be reconfigured to use a voltage input rather than a 4-20 ma current loop. This will make diagnostic work much easier since it can all be done at the Genius I/O blocks. In addition, if the pressure transducers were all standardized to 1/2" swagelock caps, they could be removed and calibrated together and with the test rig instrumentation. This would help reduce the overall relative error in the system. Plus, these types of pressure transducers generally have much higher frequency response.

Another suggestion is to actively limit what the MCS software needs to do. One example is that the traversing rings will be run from the Sun computer. Another example is to make a separate hardware timed trigger system, which controls the timing of the main valve, isolation valve, eddy, brake, etc. Thus all the MCS software has to do is send one initial trigger signal. Finally, if there are going to be large subsystems (such as cooling), think about adding a different PC controlled system with a different operating system. This provides both experience with other systems, and reduces the overall burden on the MCS.
Appendix: Computer Disks and Listings
<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Kind</th>
<th>Label</th>
<th>Last Modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.V. Box pg 1 of 3</td>
<td>22K</td>
<td>MacDraft document</td>
<td></td>
<td>Thu, Apr 29, 1993, 5:25 PM</td>
</tr>
<tr>
<td>M.V. Box (page 3 of 3)</td>
<td>28K</td>
<td>MacDraft document</td>
<td></td>
<td>Fri, Apr 30, 1993, 10:45 AM</td>
</tr>
<tr>
<td>M.V. Box (pg 2 of 3)</td>
<td>19K</td>
<td>MacDraft document</td>
<td></td>
<td>Fri, Apr 30, 1993, 9:47 AM</td>
</tr>
<tr>
<td>MCS Hardware reference...</td>
<td>19K</td>
<td>Microsoft Word doc...</td>
<td></td>
<td>Fri, Apr 30, 1993, 2:03 PM</td>
</tr>
<tr>
<td>sheet 10 of 31</td>
<td>37K</td>
<td>MacDraft document</td>
<td></td>
<td>Wed, Apr 28, 1993, 1:30 PM</td>
</tr>
<tr>
<td>Sheet 15 of 31</td>
<td>34K</td>
<td>MacDraft document</td>
<td></td>
<td>Wed, Aug 19, 1992, 8:55 PM</td>
</tr>
<tr>
<td>Sheet 17</td>
<td>27K</td>
<td>MacDraft document</td>
<td></td>
<td>Wed, Apr 28, 1993, 7:34 PM</td>
</tr>
<tr>
<td>Sheet 2 of 31</td>
<td>133K</td>
<td>MacDraft document</td>
<td></td>
<td>Wed, Apr 28, 1993, 1:17 PM</td>
</tr>
<tr>
<td>Sheet 25 of 31</td>
<td>37K</td>
<td>MacDraft document</td>
<td></td>
<td>Fri, Apr 30, 1993, 11:10 AM</td>
</tr>
<tr>
<td>Sheet 26</td>
<td>34K</td>
<td>MacDraft document</td>
<td></td>
<td>Fri, Apr 30, 1993, 11:37 AM</td>
</tr>
<tr>
<td>Sheet 27</td>
<td>33K</td>
<td>MacDraft document</td>
<td></td>
<td>Wed, Apr 28, 1993, 5:45 PM</td>
</tr>
<tr>
<td>Sheet 30</td>
<td>42K</td>
<td>MacDraft document</td>
<td></td>
<td>Wed, Apr 28, 1993, 6:25 PM</td>
</tr>
<tr>
<td>sheet 30 of 31</td>
<td>42K</td>
<td>MacDraft document</td>
<td></td>
<td>Thu, Aug 13, 1992, 2:35 PM</td>
</tr>
<tr>
<td>Sheet 31</td>
<td>46K</td>
<td>MacDraft document</td>
<td></td>
<td>Wed, Apr 28, 1993, 6:19 PM</td>
</tr>
<tr>
<td>Sheet 5 of 31</td>
<td>22K</td>
<td>MacDraft document</td>
<td></td>
<td>Wed, Aug 19, 1992, 8:21 PM</td>
</tr>
<tr>
<td>Sheet 6 of 31</td>
<td>20K</td>
<td>MacDraft document</td>
<td></td>
<td>Wed, Aug 19, 1992, 8:49 PM</td>
</tr>
<tr>
<td>sheet 8 of 31</td>
<td>36K</td>
<td>MacDraft document</td>
<td></td>
<td>Wed, Apr 28, 1993, 1:46 PM</td>
</tr>
<tr>
<td>sheet 9 of 31</td>
<td>38K</td>
<td>MacDraft document</td>
<td></td>
<td>Fri, Apr 30, 1993, 11:37 AM</td>
</tr>
</tbody>
</table>
Section II: Wiring Diagrams
(Test Section) HEDS-6000 Encoder

(TC) Overspeed Control Box

(Dump Tank) I/O Station #1

24 VDC CHASSIS GND 115 VAC
DC GND

12-14 AWG 14-6 AWG 14-6 AWG

10' Maximum 1000 revolution To DAS (Second Option)

10 pin, x .100" female plug

16-18 AWG

Control Room Tachometer (Detail, p. 3 of 3)

Note: 14 conductors enter/exit the Overspeed Control Box via conduit.

BELCAN CORPORATION
ENGINEERS & ARCHITECTS CINCINNATI

ATARR
Overspeed, Communications Wiring
(Overspeed Control Box External Connections,
[partial internal connections—see circuit detail, 1 of 3])
Note 1. Dual STP used for possible conversion to balanced transmission if environment requires.

Note 2. 18 AWG Shielded wire on all illus. floor-to-control-room circuits.
Genius Blocks 14, 15
Input

PT210
Supply Tank Pressure

Supply Tank
N₂ Charge

Supply Tank
CO₂ Charge

UDC6003

Input #1

Input #3

PT503
Cooling Tanks Pressure

Genius Block 14
Output

UDC6002

Input #1

Input #2

Note: All resistors are 250 Ohm as supplied.

BELCAN CORPORATION
ENGINEERS & ARCHITECTS CINCINNATI

Honeywell UDC6002, UDC6003 Hookup Detail
As Built Drawing, 1/09/92, P. Fuller

Sheet #29a of 31 P. Fuller 1/10/92
Main Roughing Pump 10 HP, 460V, 38, 60Hz.
Booster Pump 7.5HP, 460V, 38, 60Hz.

Note
CR1 Must Be Added To Existing Vacuum Pump Control

BELCAN CORPORATION
ENGINEERS & ARCHITECTS CINCINNATI

USAF/WPAFB/ATARR System

Vacuum Pump Control (Typical See Stokes Wiring Diagram)
Control Panel is made up of five standard 19" X 84" X 32" units.

These racks are complete and assembled with 6" wheels and the desk top secured in the correct position.

Some 19" cover/mounting plates are presently in place. However, some obsolete instrumentation mounted, this instrumentation along with the wiring must be removed for USAP storage. The Contractor shall provide the necessary new panel mounting/covers to complete the control panel.

All mounting/cover plates shall be the same color (color selected by the end user of the equipment).

Ventilation to meet the requirements of the Original Equipment Vendor must be provided by the Contractor. Two 19" rack rear vent fan units are provided as part of this existing unit and may be used for ventilation.
Calspan Corp

BELCAN
ENGINEERS & ARCHITECTS CINCINNATI

Removes reference to original main valve activation valves

Genius I/O (115 VAC Type)
Block #7
Located At Supply Tank I/O

Revised 8-12-92
G. Haukman

Sheet # 22 of 31 W.R. Mullen
PT 134A
Boundary Bleed Pressure

PT 134B
Boundary Bleed Vacuum

PT 103
Supply Tank Main Valve Close Reservoir Gauge

PT 116
Supply Tank Main Valve Open Reservoir Gauge

PV 233
Nitrogen Supply, Supply Tank Regulator

115
Boundary Bleed
4 To 20

I/O Reference
137 to 161

Shield In
Shield Out

Calspan Corporation
Changes made according to Paul Fuller

BELCAN
ENGINEERS & ARCHITECTS CINCINNATI

4-28-93
C. Haideman

39
Genius I/O Connections

Genius Block 10-6
LED 1 input (Optional)

Genius Block 10-7
LED 2 input (Optional)

Genius Block 10-8
LED 3 input (Optional)

Genius Block 11-1
LED 4 input (Optional)

120 VAC

Relay 7

STD
276XAXH-12D

Relay 8

STD
276XAXH-12D

Relay 9

STD
276XAXH-12D

Relay 10

STD
276XAXH-12D

Genius I/O 10-6 output (optional) LED 1 output

Genius I/O 10-7 output (optional) LED 2 output

Genius I/O 10-8 output (optional) LED 3 output

Genius I/O 11-1 output (optional) LED 4 output

Calspan Corporation

Main Valve Activation Syst.
Loc: Main Valve Relay Box

Designed by: C. Haldeman and J. Barton
Built by J. Barton

Date: 4-29-93 Page 2 of 3
Genius I/O Connections

Genius Block 18-1
EV601 open (active)
Close (deactive)
input

Genius Block 18-2
EV604 Hp (active)
Vent (deactive)
input

Genius Block 18-4
EV605 open (active)
Close (deactive)
input

Genius Block 18-5
EV606 HP (active)
Vent (deactive)
input

Relay 1
120 VAC
+ N

Valve EV601 output
10
3 (Close)
1 (Open)

Valve EV604 output
10
5 (Vent)
1 (HP)

Valve EV605 output
10
3 (Close)
1 (Open)

Valve EV606 output
10
5 (Vent)
1 (HP)

Genius 9-1
(EV601 Open)

Genius 9-2
(EV601 Close)

Genius 9-5
(EV604 HP)

Genius 9-6
(EV604 Vent)

Genius 10-1
(EV606 HP)

Genius 10-2
(EV606 Vent)

Calspan Corporation
Main Valve Activation Syst.
Loc: Main Valve Relay Box
Designed by: C. Haldeman and J. Barton
Built by: J. Barton
Date: 4-29-93 Page 3 of 3
INSTRUCTION BULLETIN

"C" SHAPE SENSOR - EYE-C-50-12

Product Description:
The EYE-C-50-12 is a complete photoelectric system designed for use in a wide variety of non-contact sensing applications. The entire photoelectric system consisting of an LED light source, a photodiode receiver, amplifying circuitry, Schmitt trigger, voltage regulator, and output transistor, is neatly packaged in a "C" shaped, anodized aluminum housing. The "C" shape eliminates the need for added bracketry, plus eliminates alignment difficulties associated with individual sensors, when small object detection is the objective. This system is capable of detecting objects as small as .012" in diameter with a response time as short as 50 microseconds.

The EYE-C-50-12 has been designed to be driven by low amperage D.C. power sources, which makes the system ideally suited for direct interface with counters, programmable controllers, computers, microprocessors, and custom electronic circuits requiring high/low logic level switching.

Features:
- Self-contained photoelectric system
- Detection of .012" Dia. object
- Response time 50 microseconds
- Repeatability within .001"
- TTL/CMOS compatible
- Rugged construction
- Easy mounting
- No alignment adjusting

Specifications:
- Supply voltage -------12 VDC
- Supply current -------20 milliAmps
- Detectable object size .012" Dia.
- Repeatability ------- within .001"
- Output voltage level
 - Logic High---------12 VDC illuminated
 - Logic low--------- 0 VDC darkened
- Output current sink---50 milliAmps
- Operating temperature---500 F-1500 F

Specifications:
- Light Source ----GA AL AS infrared LED
- Photoreceiver----Photodiode
- Material ---------Blue anodized aluminum
- Cable ----------- 5 conductor 26 AWG 6' long
- Shielding ------- Tinned copper braid
- Weight ----------- 3 ounces

Detectable object size-This system is designed to detect objects of .012" dia. and larger. If smaller object size detection is needed, simply add an external resistor or variable resistor in series with the LED, as shown on wiring diagram (optional).

Detection of object sizes as small as .008" dia. are possible.

Ambient Light

Note: that contains a great deal of infrared light, such as sunlight, incandescent lighting and high-intensity work lamps, should be restricted from shining directly on the photoreceiver orifice, for best results.
ELECTRICAL SPECIFICATIONS

- SUPPLY VOLTAGE: 12VDC
- SUPPLY CURRENT: 20 mA
- OBJECT SIZE DETECTABLE: .012" DIA.
- LOGIC OUTPUT VOLTAGE: 0-12 VDC
- OUTPUT SINK CURRENT: 50 mA

Diagram:
- Red: 12VDC
- Black: Ground
- Orange: Output
- Blue: 12VDC
- Brown: Ground

Legend:
- 12VDC
- 5K Ohms
- 1000 Ohms
- IRFRAED LED
- PHOTO RECEIVER
- Optional
- Ground

Note:
The photo receiver is located on the side stamped "Frost Controls"
TYPICAL APPLICATIONS

LOGIC OUTPUT

12 VDC
Red Blue Orange
Brown Black

EYE-C SENSOR

LOGIC OUTPUT

RELAY OUTPUT

12 VDC
Red Blue Orange
Brown Black

EYE-C SENSOR
Inductive Transient Voltage Protection Diode

SENSITIVITY ADJUSTMENT
TRANSLUCENT and EXTREMELY SMALL PART DETECTION

12 VDC
Red Blue Orange
Brown Black

2K ohm

EYE-C SENSOR

LOGIC OUTPUT
to Counters, Processors, Programmable Controls, etc.

Increase R1 to detect objects less than .012" in diameter.

VISIBLE STATUS INDICATION

12 VDC
Red Blue Orange
Brown Black

EYE-C SENSOR

LED
Current limiting resistor
Glow
Red

COMBINING MULTIPLE SENSORS

TRANSISTOR LOGIC

12 VDC
Red Blue Orange
Brown Black

EYE-C SENSOR

ANDING/ORING CIRCUITRY

12 VDC
Red Blue Orange
Brown Black

EYE-C SENSOR

EYE-C SENSOR

LOGIC GATE

All EYE-C series sensors may be battery operated.

Check control unit manufacturers electrical specifications before interfacing sensors.

Example: Counter's minimum input pulse duration:
LED's maximum current
INTERNATIONAL SERIES DESCRIPTION

The INTERNATIONAL SERIES is a high reliability line of open-frame power supplies designed to operate from the wide range of AC power sources found worldwide.

This feature greatly simplifies your inventory and service considerations by allowing the use of one standard power supply regardless of destination.

Finally, these models are designed to meet domestic and international regulatory agency requirements.

If you plan to distribute your products worldwide, obtaining necessary agency approvals can be greatly simplified by specifying POWER-ONE, INC. INTERNATIONAL SERIES.

INTERNATIONAL SERIES

DC POWER SUPPLIES

DRAWING NO. 53250 REV G

SPECIFICATIONS AND APPLICATION DATA

VOLTAGE/CURRENT RATING CHART

<table>
<thead>
<tr>
<th>MODEL</th>
<th>+5V</th>
<th>+12V</th>
<th>+15V</th>
<th>+24V</th>
<th>+28V</th>
<th>-12V</th>
<th>-15V</th>
<th>CASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH POWER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-25/OWP-A</td>
<td>Δ</td>
<td>25Ω</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F15-15-A</td>
<td>Δ</td>
<td>15Ω</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F24-12-A</td>
<td>Δ</td>
<td>12Ω</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-25/OWP-A</td>
<td>Δ</td>
<td>35Ω</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP197-A</td>
<td>Δ</td>
<td>50Ω</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRIPLE

<table>
<thead>
<tr>
<th>C-150W-A</th>
<th>12Ω</th>
<th>3.4 or 3</th>
<th>3.4 or 3</th>
<th>3.4 or 3</th>
<th>3.4 or 3</th>
</tr>
</thead>
</table>

DISK DRIVES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>+5V</th>
<th>+12V</th>
<th>+24V</th>
<th>-5V</th>
<th>-12V</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP340-A</td>
<td>0.2, 7.7Ω</td>
<td>0.1, 1.8Ω</td>
<td>340-A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP510-A</td>
<td>0.6</td>
<td>2.5</td>
<td>7.5Ω</td>
<td>510-A</td>
<td></td>
</tr>
<tr>
<td>CP384-A</td>
<td>0.9</td>
<td>0</td>
<td>2/8Ω</td>
<td>1.2 or 1.2</td>
<td>131</td>
</tr>
<tr>
<td>CP379-A</td>
<td>0.8</td>
<td>0</td>
<td>3/8Ω</td>
<td>1.2 or 1.2</td>
<td>131</td>
</tr>
<tr>
<td>CP323-A</td>
<td>2.0</td>
<td>0</td>
<td>6Ω</td>
<td>8AA</td>
<td></td>
</tr>
<tr>
<td>CP206-A</td>
<td>2.5</td>
<td>0</td>
<td>3/3.4Ω</td>
<td>0.5</td>
<td>CBB</td>
</tr>
<tr>
<td>CP205-A</td>
<td>1.0</td>
<td>0</td>
<td>1.5/1.7Ω</td>
<td>0.5</td>
<td>131</td>
</tr>
<tr>
<td>CP182-A</td>
<td>3.0</td>
<td>0</td>
<td>5/6Ω</td>
<td>0.6</td>
<td>131</td>
</tr>
<tr>
<td>CP498-A</td>
<td>8.0</td>
<td>0</td>
<td>5/11Ω</td>
<td>0.25 or 0.55</td>
<td>131</td>
</tr>
<tr>
<td>CP503-A</td>
<td>6.0</td>
<td>0</td>
<td>1.0</td>
<td>2.4/4Ω</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Δ REFER TO SPECIAL OPERATING NOTE
- Indicates OVP
- Indicates remote sense

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

FEATURES

- **VOE transformer construction**
- **±0.5% regulation**
- **T.C. burned-in to MIL-883, B, B**
- **Chassis notched for AC input**
- **100/120/220/230-240 VAC**
- **Industry standard size**

SPECIFICATIONS

- **AC INPUT:**
 - 100/120/220/240 VAC+/-10%/1-13%/47-63 Hz (Derate output current 10% for 50 Hz operation.)
 - See AC connection table under APPLICATION NOTES for jumper information. Fuse information is next to outline and mounting drawings.

- **DC INPUT:**
 - **VOLTAGE/CURRENT RATING CHART:** Adjusted range: -5Ω minimum, ±5 non-adjustable on CP340-A model.
 - **LINE REGULATION:** ±0.5% for a 10% line change (±2Ω for FCP & CP197-A).
 - **LOAD REGULATION:** ±0.5% for a 5Ω load change (±0.2Ω for FCP & CP197-A).
 - **OUTPUT RISE:**
 - 2V to 15V units: 5.0Ω VCC-PK-PK maximum.
 - 20V to 200V units: 0.2Ω VCC-PK-PK maximum.
 - **TRANSIENT RESPONSE:** ≤50Ωs for a 5Ω load change.

- **SHORT CIRCUIT AND OVERLOAD PROTECTION:** Automatic current limit/feedback.

- **OVERVOLTAGE PROTECTION:**
 - Built-in on all 5V outputs. Set at 6.2V ±4V.
 - Other models use optional overvoltage protection.

- **REMOTE SENSING:**
 - Provided on most models, open sense load protection built-in.

- **STABILITY:**
 - ±0.3% for 24 hour period after 1 hour warm-up.

- **TEMPERATURE RATING:**
 - 0°C to 50°C full-rated, derated linearly to 40°C at 70°C. 12 CFM forced air or cooling required to meet IEC 380/800 above 80% of total rated output power.

- **TEMPERATURE COEFFICIENT:** ±0.03%/°C maximum.

- **EFFICIENCY:**
 - 5V units: 45%
 - 12V and 15V units: 55%
 - 20V and 24V units: 60%

- **VIBRATION:**
 - Per MIL-STD-810C, Method 514, Procedure X, CAT G-1

- **SHOCK:**
 - Per MIL-STD-810C, Method 516, Procedure V

- **Tolerance for 230VAC operation is +15%/ -10%**

WARRANTY

POWER-ONE, INC. warrants each power supply of its manufacture that does not perform to published specifications, as a result of defective materials or workmanship, for a period of two (2) full years from the date of original delivery.

POWER-ONE, INC. assumes no liabilities for the consequential damages of any kind through the use or misuse of its products by the purchaser or others, no other obligations or liabilities are expressed or implied.

PRODUCTS RETURNED FOR REPAIR

Please follow procedure when returning products for servicing:

1. Contact Power-One’s Customer Service Department for authorization to return products:
 - **POWER-ONE, INC.**
 - PHONE: (805) 257-8714
 - 740 Corte Primo
 - Camarillo, CA 93012
 - FAX: (805) 385-0476
 - USA
 - TWX: 910-336-1297
 - **POWER-ONE, INC.**
 - PHONE: (800) 678-9445
 - FAX: (805) 385-0476

2. A Returned Material Authorization (RMA) will be issued and must appear on all shipping documents and containers.

3. Products must be returned freight pre-paid.
 - Products returned freight collect or without an RMA number will be rejected and returned freight collect.
APPLICATION NOTES:

REMOTE SENSE

Remote sense terminals may be used to compensate for output line losses and provide for a remote point of regulation. Figure 1 shows the proper termination for a power supply with remote sensing.

![Figure 1](image)

Load lines must be sized to prevent excessive voltage drop from the output to the load. Since the point of regulation is at the load, the power supply must compensate for line losses. Excessive load line losses may affect current limiting. AC line dropout point and OVP margin (if applicable).

Leads should be sized to drop no more than 0.5V — the less the better. Use of a twisted pair or shielded pair for the sense lines is recommended for noise immunity. In problem applications, the use of a small AC decoupling capacitor (1 to 10uF) across the sense terminals is highly recommended. In some applications there may be a tendency for the power supply to oscillate due to additional phase shift caused by the series resistance and inductance in the load leads. The addition of capacitor C1 will reduce output impedance and provide stability. The recommended value of C1 is 100uF per amperes or 50uF per foot and can be the sum of the distributed decoupling capacitors found in most systems.

All Power-One supplies have open source lead protection to protect the load from overvoltage condition if the sense leads are removed. There is no need to strap the sense terminals to the output terminals in the local sense mode.

OVERVOLTAGE PROTECTION (OVP)

An overvoltage protection circuit, commonly referred to as a crowbar, is used to prevent damage to voltage sensitive loads such as TTL logic. Trip point of the OVP is usually set at 115% — 135% of the output voltage. The OVP will short the output terminals upon sensing a fault condition. The primary fuse of the supply will blow if the supply is not fast enough to interrupt the current. Noise tripping of the OVP is a common problem. Noise from input line spikes or load noise can cause an OVP to fire. The INTERNATIONAL SERIES has OVP noise filtering to prevent nuisance tripping and reduce transformer interwinding capacitance to minimize input line susceptibility.

COMMON-MODE LATCH UP

In certain instances dual power supplies can exhibit a problem known as common-mode latch up. This occurs when the positive supply comes up first and forces a reverse bias condition on the negative supply. The negative supply latches up in a current limit condition. Power-One has incorporated a unique anti-latch circuit into every dual power supply in the INTERNATIONAL SERIES which will minimize this problem.

EMI/RFI

These linear power supplies have inherently low conducted and radiated noise levels. For most system applications they will meet the requirements of FCC Doctet 20780 for Class A equipment and VDE 0871 for Class A equipment without additional noise filtering. For special applications consult factory.

COOLING

Convection cooling is adequate where non-restricted air flow is available. When operating in a confined area, moving air or convection cooling is recommended.

SAFETY SPECIFICATIONS

The INTERNATIONAL SERIES power supplies were designed to meet or exceed requirements for the following specifications: IEC 380, IEC 435, DE 0730 Part 2, VDE 6004, ECMA-57, CEE 10 Part 29, UL 1012, CSA 22.2 No. 143, CSA 22.2 No. 154. Specifically field terminal to primary terminal spacing is 5.25 mm with 9.0 mm creepage to other metal. Leakage current is less than 5.0uA and dielectric withstand voltages are 3750 VAC input to chassis, 3750 VAC input to output and 300 VDC output to chassis.

GROUNDING

Grounding considerations in designing a power distribution system are often overlooked but can have a significant impact on overall system performance. A single point system ground should be employed where possible to eliminate ground loops and improve regulation.

![Figure 2](image)

Figure 2 shows a simple but undesirable connection scheme. Regulation at loads 2 and 3 becomes progressively worse due to voltage drops in the finite wire resistance between loads. Figure 3 shows an improved connection system in which regulation is maintained at all three loads because wire losses are not cumulative.

AC INPUT CONSIDERATIONS

Almost all power supplies use a capacitive input filter that draws current only at the peaks of the AC input voltage. The peak to RMS ratio can be very high, typically 3 to 1. When a supply is turned on, the input capacitor has a very low impedance and draws an initially high surge current until it charges to its nominal voltage. The input surge current can be as high as 20 times the rated input current and lasts for several cycles of the AC input.

AC CONNECTION AND FUSING

The five wire input to the INTERNATIONAL SERIES provides four voltage ranges: 100/120/220/230-240V = ±10%, ±13%. See chassis AC connection table (Figure 4) for the jumpering requirements. For convenience the jumper sequence from the Hi-Vol series is retained. Extended low line tolerance provides additional drop out margin in areas where line voltages are marginal. Inputs must be fused.

![Figure 3](image)

![Figure 4](image)

NOTE: This product is a Class 1 power supply and requires the chassis to be connected to earth ground at end application. Flat pin 6 on the chassis is the ground pin. Use 700°C IR film for soldering input connections. Vanish acts as flux and is solder strippable.

NOTE: Use of non-commissioned and alternative transformers will void the warranty.
SPECIAL OPERATING NOTE:
MASTER/SLAVE USAGE:
General Notes - In Master/Slave connection, the master unit will control up to 5 slaves; however, in an over
load condition, each supply will operate its own current limit/hotback circuit for protection.

The sharing of current at full load is within ±10%.

OVP - If any supply senses an over voltage condition, it will trip and shut off drive to all units. No power is
consumed in the OVP mode and OVP may be reset by removal of input power or the momentary grounding of inhibit (to
out).

Remote program, remote V. adj., remote OVP and inhibit may be connected to the master and will operate identically
to a single unit (inhibit is 50mA per unit).

Individual fusing is recommended for each supply. In the case of any blown input fuse, the output voltage will be
reduced to c 3V with a nominal load.

SLAVE CONFIGURATION:
To make any unit a slave, adjust R12 (R16) (V. Adj.) fully counter-clockwise.

MASTER CONFIGURATION:
1) Connect all master and slave + and - output terminals to the load with separate equal length wires of adequate size.
2) Fuse each power supply individually to the AC power input.
3) Connect a #20GA wire from "ExtDr." on the master to the "ExtLdr." on all the slaves (up to 5 slaves).
4) Apply input power and set master to desired voltage.

REMOTE PROGRAM:
Remove R21 (R20). Install program resistors between power supply "+ sense" and user "+ load" terminals. Programming
is approximately 500nA/volt. Use "Make-Before Break" switch or equivalent.

REMOTE V. ADJ:
1) Cut open-load protection resistor R21 (R20) out of the circuit board.
2) Connect remote 1K Ohm. pot from power supply "+ sense" terminal to users "+ load" terminal. (Power supply will
then sense to "+ load" terminal and be remotely adjustable). Adjust R12 (R16) on circuit board fully counter-clockwise.
3) Adjust remote pot to desired voltage.

ADJUSTABLE OVP:
To set OVP at desired voltage:
A) Set R16 to max. (fully clockwise).
B) Set supply to desired trigger voltage.
C) Reduce R16 resistance until OVP trips.
D) Ground inhibit to reset OVP, then recheck OVP trigger point.
E) Reset supply voltage to normal output.

OPERATING NOTES ABOVE APPLY TO F, C AND CP197-A UNITS ONLY.
NOTE: () DENOTES DESIGNATIONS USED FOR
THE OTHER DESIGNATIONS ARE USED ON FS-25/OVP-A,
GS-35/OVP-A, AND CP197-A MODELS.

SERIES OPERATION
Any Power-One supply may be operated in series with any other Power-One power supply. The only restriction is that the current required by load
3 must be less than half the current rating of the lesser unit.

PARALLEL OPERATION
Any 2 or more Power-One units of the same voltage may be operated in paralleled. The following rules apply:
1) The units must be set to the same voltage within .2%.
2) Local sense must be used.
3) Units may be of different current ratings.
4) Proper hook-up wire must be utilized.

Calculate wire size and length to drop 25, 50, or 100 mV on 5, 15, or 24V units respectively, at unit rated current.

F CASE
WT. 19 lbs.

DCC CASE
WT. 12 lbs.

IN FUSING RECOMMENDATION, REFER TO CHASSIS SILKSCREEN.
277 SERIES 5-AMP MINIATURE PC RELAYS

- 2 Form C
- Silver Contacts Rated 5 Amps

277 Series relays have PC terminals on 0.1" (2.54) grid spacing, and are available with AC or DC coils. Epoxy sealed terminal base prevents contamination during soldering. 10kV surge resistance, 8mm separation between coil and contacts are featured. Operate and release times are under 15 milliseconds. Silver contacts pick up at 75% nominal, drop out at 100%. Resistive load: 5 amps, 240VAC @ 30VDC. UL recognized, CSA certified at 5amps and 1/10HP.

Stock No.	Type	Coil	Ohms	25-	50-
48F5359 | 277X9X | 24VAC | 248 | 5.01 | 4.51 |
48F5359 | 277X9X | 120VAC | 680 | 8.80 | 8.51 |
48F5359 | 277X9X | 5VDC | 92 | 4.34 | 3.42 |
48F5370 | 277X9X | 120VAC | 275 | 4.54 | 3.84 |
48F5371 | 277X9X | 24VDC | 1100 | 5.34 | 4.28 |

276 SERIES 7-AMP PC RELAYS

- Only 0.4 square inch footprint
- Silver Contacts Rated 7 Amps
- Permanent Magnet Polarity: Single-Side Stabili-Design
- 1 Form C

276 Series feature grid pin spacing of 0.1" and require 0.32" clearance above the board. Available with sealed PBT case for automatic wave-soldering and re-soldering, units provide maximum contact current at 7 amps, 240VAC @ 30VDC and up to 500VAC and 125VDC at lower currents. 8kV surge resistance, 4mm separation between coil and silver contacts. UL recognized, CSA certified at 7amps 1/10 HP.

Stock No.	Type	Coil	Ohms	25-	50-
48F5383 | 276XAXH | 5VDC | 125 | 3.85 | 3.47 |
48F5390 | 276XAXH | 12VDC | 720 | 3.85 | 3.47 |
48F5391 | 276XAXH | 24VDC | 2880 | 3.38 | 2.77 |

MR-Y SERIES MINIATURE DRY REED RELAYS

MR-Y Series encapsulated dry reed relays are available with end pin terminations on 1-inch centers. Type MR-Y5 offer 0.100 Inch pin spacing, and type MR-Y7 offer 0.150 Inch pin spacing. Available 1 form A, 2 form A and 1 form C (see type chart). Form A contacts are rated for 10 watts maximum at 200VDC maximum. 0.500 amp max. Form C contacts have a rating of 3 watts max. at 28VDC maximum. 0.250 amp max. 0.125" height for all models.

Stock No.	Type	VDC	LxWxH"	Ohms	25-	50-
89F1875 | MR30Y1A | 12 | 1.000 x 0.400 x 0.312 | 400 | 8.09 | 5.79 |
89F1874 | MR30Y1A | 24 | 1.000 x 0.400 x 0.312 | 400 | 8.09 | 5.79 |
89F1875 | MR30Y2A | 12 | 1.000 x 0.550 x 0.312 | 400 | 8.48 | 5.99 |
89F1876 | MR30Y2A | 24 | 1.000 x 0.550 x 0.312 | 400 | 8.48 | 5.99 |
89F1878 | MR30Y1B | 12 | 1.000 x 0.400 x 0.312 | 400 | 8.09 | 5.79 |
89F1878 | MR30Y1B | 24 | 1.000 x 0.400 x 0.312 | 400 | 8.09 | 5.79 |
89F1878 | MR30Y1C | 12 | 1.000 x 0.400 x 0.312 | 400 | 8.09 | 5.79 |
89F1878 | MR30Y1C | 24 | 1.000 x 0.400 x 0.312 | 400 | 8.09 | 5.79 |
89F1879 | MR35Y1A | 12 | 1.000 x 0.400 x 0.312 | 400 | 8.09 | 5.79 |
89F1880 | MR35Y1A | 24 | 1.000 x 0.400 x 0.312 | 400 | 8.09 | 5.79 |
89F1882 | MR35Y1C | 12 | 1.000 x 0.400 x 0.312 | 400 | 8.09 | 5.79 |
89F1882 | MR35Y1C | 24 | 1.000 x 0.400 x 0.312 | 400 | 8.09 | 5.79 |
89F1884 | MR35Y1C | 12 | 1.000 x 0.400 x 0.312 | 400 | 8.09 | 5.79 |
89F1884 | MR35Y1C | 24 | 1.000 x 0.400 x 0.312 | 400 | 8.09 | 5.79 |