Pulsed Microwave Irradiation of Graphite/Epoxy Composites

(To be published in Microwave Processing of Materials)

R. B. James, P. R. Bolton, R. A. Alvarez

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-76DP00789
Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of the contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof or any of their contractors or subcontractors.
PULSED MICROWAVE IRRADIATION OF
GRAPHITE/EPOXY COMPOSITES

R. B. James
Theoretical Division
Sandia National Laboratories, Livermore, CA 94550

P. R. Bolton, R. A. Alvarez
Lawrence Livermore National Laboratory, Livermore, CA 94550

ABSTRACT

We have measured the microwave-induced damage to the near-surface region of a
graphite/epoxy composite material for 1.1-μs pulses at a frequency of 2.865 GHz and
a pulse power of up to 8 MW. Rectangular samples were irradiated by single-pass
TE_{10} traveling wave pulses inside a WR-284 waveguide, and in situ and post
irradiation studies were performed to characterize the material modifications induced
by the microwave pulses. The results of time-resolved optical measurements in
vacuo show that surface decomposition of the epoxy resin occurs for incident pulse
powers exceeding 1.1 MW, and that the surface damage is accompanied by a large
increase in the reflected microwave power. Simultaneous with the onset of surface
decomposition, we observe significant light emission from the sample and a large
enhancement of the gas pressure in the test cell. The large increments in the reflected
power and light emission are attributed to the formation of a plasma due to electrical
breakdown of the gas at (or near) the sample surface.
INTRODUCTION

Graphite/epoxy composite materials are rapidly replacing metals, especially in applications where high strength, weight and dimensional stability are important. Furthermore, it is common practice to design and produce graphite/resin composites that optimize particular selected properties, such as tensile, compressive and flexural strengths. The reinforcing graphite filaments in the composite are used to obtain the desired mechanical properties, and the epoxy is used to yield a finished part with stable, high strength laminates and low void contents. In this paper a study of the energy deposition and material damage of a graphite/epoxy composite due to excitation by high-power pulsed microwave radiation is presented. The primary goals are to determine the damage threshold as a function of the excitation conditions and to use the data in the design and materials selection of radiation-resistant composites.

EXPERIMENT

A high-power pulsed klystron was used to generate microwave pulses having a frequency of 2.856 GHz and a maximum peak power of 10 MW. By gating the rf drive, the pulse duration was varied between 135 ns and 2 μs with a risetime of approximately 70 ns. A schematic diagram of the experimental setup is shown in Fig. 1. The output of a highly stable cw master oscillator is gated by a PIN diode that provides a variable-length 500-mW drive pulse to a driver klystron, which in turn produces a 135-2000 ns drive pulse for the high-power klystron. The output pulse from the klystron passes through a high-power cir-
culator, which then feeds into a WR-284 copper waveguide. The waveguide is terminated with an impedance-matched, water-cooled load to minimize reflections and ensure that the sample is irradiated by a single-pass, TE_{10} traveling-wave pulse.

The test cell consists of a copper waveguide section that allows insertion of a sample into the microwave field without requiring the venting of the waveguide system. The samples are inserted into the test cell with a linear motion feedthrough and are suspended in the center of the WR-284 waveguide by an alumina holder. An E-H tuner is used in the test section to reduce the impedance mismatch associated with the presence of the sample in the waveguide cavity. Using a cw low-power microwave source, the tuner is adjusted to minimize the reflected signal when the sample is inserted into the waveguide. The test cell was evacuated to a pressure of about 4×10^{-7} torr, and the waveguide assembly, not including the test cell, was pressurized to 30 psig with Freon-12.

In this paper values of the incident microwave power are quoted rather than the power density, because the presence of the sample may cause some local modification of the field of the TE_{10} traveling wave pulse. If one assumes that the presence of the sample does not significantly perturb the TE_{10} guided mode in the test cell, then the power density incident on the sample can be obtained by dividing the pulse power by 12.25 cm2.

The graphite/epoxy samples used in the experiment were Thornel 300 graphite filaments and Narmco 5208 epoxy, which is one of the most common graphite/epoxy composites. The samples had a unidirectional layup and a thickness of 3.18 mm. Each sample was cut to a size of 5x5 mm, so that the cross-sectional area of the sample (≈ 0.25 cm2) would be much smaller than the cross-sectional
area of the test cell (≈ 24.5 cm²). The Narmco 5208 epoxy was cured at a
temperature of 450 K. The graphite filaments in the composite have a diameter
of about 6 μm and comprise approximately 61% of the sample volume. The elec-
trical resistivity of the graphite is about 20 μΩ·cm, from which a calculated
linear absorption coefficient of about 230 cm⁻¹ is obtained for 2.856-GHz
microwave radiation [1].

RESULTS AND DISCUSSION

Time-resolved measurements of the microwave reflectivity (R) from the
graphite/epoxy samples were performed. Each sample was initially impedance-
matched at low microwave powers (i.e., VSWR < 1.05), in order to minimize the
reflected power. For incident microwave pulse powers exceeding about 1.1 MW,
an abrupt increase in the microwave reflectivity was observed near the end of
the 1.1-μs pulse. (When the sample was removed from the test cell, no change
in R was observed over the same range of microwave powers.) For higher inci-
dent microwave pulses, the onset of the increased reflectivity occurred at
earlier times during each pulse. Figure 2 shows the time required for the
sudden increase in R as a function of the incident microwave power. Each data
point was obtained by averaging 20 different shots at a fixed pulse power, and
each error bar designates the standard deviation of the data from the differ-
ent shots at a fixed (± 5%) incident pulse power.

The surface topography of the samples was studied with a scanning elec-
tron microscope (see Fig. 3). For incident microwave powers exceeding the
threshold value (~ 1.1 MW) at which the high reflectivity is observed, the
samples show evidence for localized surface decomposition of the epoxy. Further increases in the pulse power beyond 1.1 MW cause more of the epoxy to be lost from the sample. After exposure to several shots at pulse powers above about 5 MW, only bare graphite filaments are visible on the surface. Figures 3b and 3c are SEM photographs of samples after excitation by twenty shots, each shot having an incident pulse power of 5.1 and 6.9 MW, respectively. Several graphite filaments are broken at pulse powers exceeding approximately 6 MW, which is most likely due the electrical discharge associated with the breakdown of the gas near the target surface [2].

The onset of depolymerization of the epoxy in a vacuum occurs at a temperature of about 600 K [3], whereas the melting point of graphite is approximately 4300 K [4]. Thus, the damage threshold for the epoxy is expected to be much lower than for the graphite filaments, which is consistent with the SEM results shown in Fig. 3.

A video camera was used to monitor each sample before and after excitation by the high-power microwave pulses. We found that the microwave irradiation caused the emission of visible light from the sample surface. When the sample and holder were removed from the waveguide, no light emission was detected from the empty waveguide. A Hamamatsu R2055 photomultiplier tube was employed to measure the light emission as a function of the incident microwave power. The results for the maximum photomultiplier output are displayed in Fig. 4 for 1.1-μs pulses and a photocathode voltage of 900 V. The light emission incident on the photocathode was attenuated by a 10%-transmission broadband neutral density filter and two fused silica windows. Each data point in the figure represents the average of twenty different shots at a fixed incident pulse power, and each error bar designates the standard deviation of the
data. The threshold for the light emission occurs at about 1 MW, which is approximately equal to the threshold for the sudden increase in the reflected microwave power.

The pressure of the gas in the test cell was continuously monitored by an ion gauge, which was located about 40 cm downstream from the sample. Figure 5 shows the maximum increase in the gas pressure as measured at the ion gauge for several different pulse powers. Each data point designates the average increase resulting from ten different 1.1-μs pulses. The initial base pressure of the gas at the ion gauge was in the range of 3-8 x 10^{-7} torr.

Our interpretation of the experimental results is as follows: The small increase in the gas pressure at a pulse power near 1 MW is probably caused by microwave heating and a subsequent desorption of water, oxygen and other absorbed species from the sample. The electric field associated with the high-power microwave radiation accelerates the electrons and desorbed ionized species and causes further ionization via collisions with neutral particles. The additional electrons are also accelerated to high velocities by the pulse, leading to more charged species and subsequent electrical breakdown of the gas near the target surface.[4] The electrical discharge associated with the gas breakdown causes further heating and decomposition of the surface. The additional loss of material from the surface leads to much larger enhancements in the plasma density and gas pressure. The presence of the microwave-induced plasma is responsible for the abrupt increase in the reflectivity of the microwave pulse from the test cell, which reduces the duration of the exposure of the sample to the high-power microwave pulse. The emission of the visible light results from the relaxation of the plasma at (or near) the target surface.
SUMMARY AND CONCLUSIONS

Graphite/epoxy composite samples were irradiated in a waveguide by single-pass high-power microwave pulses, and post-irradiation studies show that the surfaces of the samples can be damaged by the microwaves. For pulses with a duration of 1.1-μs, surface damage is apparent for incident microwave powers exceeding about 1.1 MW. The onset of surface damage is accompanied by a large increase in reflected microwave radiation and significant emission of light from the target area. Examination of the irradiated samples shows that the epoxy at the surface decomposes, whereas the graphite filaments appear primarily undamaged. We believe that the increase in reflected microwave power, emission of visible light from the target area, and surface damage are attributed to the formation of a plasma due to electrical breakdown of the gas at (or near) the sample surface.

ACKNOWLEDGMENTS

This work was supported by the U. S. Department of Energy. The authors would like to acknowledge W. H. Christie, D. P. Byrne, J. R. Spingarn, W. R. Even, Jr., W. L. Hsu and J. B. Adams for many useful discussions.
REFERENCES

Fig. 1 Schematic diagram of the experimental setup.
Fig. 2 Time required for the abrupt increase in the reflectivity of the microwave radiation as a function of the incident pulse power.
Fig. 3 SEM micrographs of the sample surface. Fig. 3(a) shows an unirradiated sample, 3(b) shows a sample after irradiation by twenty 1.1-µs pulses at a power of 5.1 MW, and 3(c) shows a sample after irradiation by twenty 1.1-µs pulses at a power of 6.9 MW. The magnifications and scale markers are shown at the bottom of each photograph.
Fig. 4 Peak photomultiplier output as a function of the incident microwave power.
Fig. 5 Measured increase of the gas pressure in the test cell as a function of the incident microwave power.
UNLIMITED RELEASE
INITIAL DISTRIBUTION

Army Material Systems
Analysis Agency
Attn: DRXSY-CCS, B. Bradley
Aberdeen Proving
Ground, MD 21005-5071

Commander
US Army Foreign Science and
Technology Center
Attn: DRXST-SD1/Dr. T. A. Caldwell
220 Seventh Street, NE
Charlottesville, VA 22901

U. S. Army Research Office
Attn: DRXRO-PH/Dr. B. D. Guenther
P.O. Box 12211
Research Triangle Park, NC 27709

Commander, US Army CAORA
Attn: ATORO-CAS-SO, Mr. Hansen
 Ft. Leavenworth, KS 66027

Director
US Army Ballistic Research Lab.
Attn: DRSMC-BLV-R (A), J. McNeilly
Aberdeen Proving Ground, MD 21005

Director
U. S. Army Ballistic Research Lab.
Attn: DRSMC-BLV-A (A), M. Vogen
Aberdeen Proving Ground, MD 21005

US Army Electronics Technology &
Devices Laboratory (ERADCOM)
Attn: DELET-MW/Mr. Wilson
Evans Area
Fort Monmouth, NJ 07703

Director, Defense Research
and Engineering
ATTN: Asst. Director
The Pentagon
Washington, DC 20301

HQ-USAF/RD-D
Attn: R. Rankine, Jr.,
Brigadier General, USAF
The Pentagon
Washington, DC 20301

HQ-USAF/RD-D
Attn: J. MacCallum
The Pentagon
Washington, DC 20301

Defense Intelligence Agency (3)
Attn: DT-4C, J. Coleman
DC-7B, Cpt. R. Hoffman
DB-4C2, D. Spohn
Washington, DC 20301

Director
National Security Agency
Attn: A4, Ms. G. Reinheimer
 Ft. Meade, MD 20755

Director
Defense Communications Agency
Attn: P. Jain
8th St. & S. Courthouse Road
Washington, DC 20305

Administrator (2)
Defense Technical Info Center
Attn: DTIC-DDA
Cameron Station
Alexandria, VA 22304-6145

HQDA
DAMA-WSN-T
Washington, DC 20310

HQDA
DAMA-WA
Washington, DC 20310

HQDA
DAMA-AR
Washington, DC 20310

HQDA
DAMA-ART-M
Washington, DC 20310

HQDA
DAMA-RAA
Washington, DC 20310

Commander
U. S. Army Aviation Center
Attn: ATZQ-D-CC, Maj. R. Stark
Fort Rucker, AL 36362-5000
Department of the Army (2)
Deputy Chief of Staff, RDA
Attn: DAMA-ARZ-D, F. Verderame
DAMA-ARZ-D, Col. Rhinehardt
Washington, DC 20310

Director (2)
U. S. Army BMD Advanced Tech. Ctr.
Attn: ATC-O
ATC-T, J. Hagemstratur
P. O. Box 1500
Huntsville, AL 35807

Commander
U. S. Army Intelligence Threat
Analysis Center
Attn: AIAIT-WC, D. Stefanik
Building 203, Stop 314, WNY
Washington, DC 20374

Commander
U. S. Army Materiel Command
Attn: AMCDRA-ST, R. Haley
5001 Eisenhower Avenue
Alexandria, VA 2233-0001

Commander
U. S. Army Materiel Command
Attn: AMCDRA-ST
5001 Eisenhower Avenue
Alexandria, VA 2233-0001

Commander
U. S. Army Materiel Command
Attn: AMCLD, J. Stekert
5001 Eisenhower Avenue
Alexandria, VA 2233-0001

Commander
Armament R&D Center
U. S. Army AMDDOM
Attn: SMCAR-TSS
Dover, NJ 07801-5001

Commander
Armament R&D Center
U. S. Army AMCCOM
Attn: SMCAR-TDC
Dover, NJ 07801-5001

Director
Benet Weapons Laboratory
Armament R&D Center
U. S. Army AMCCOM
Attn: SMCAR-LCB-TL
Watervliet, NY 12189

Commander
U. S. Army Armament, Munitions,
and Chemical Command
Attn: SMCAR-ESP-L
Rock Island, IL 61299

Commander (2)
U. S. Army Aviation Research
and Development Command
Attn: AMSAV-E
AMSAV-EXS
4300 Goodfellow Blvd.
St. Louis, MO 63120-1798

Director
U. S. Army Air Mobility Research
and Development Laboratory/Ames Research
Center
Moffett Field, CA 94035

Director (3)
Applied Technology Laboratory
U. S. Army Research and Technical
Laboratories (AVRACOM)
Attn: AMDDL-EU-MOS, C. Pedriani
AMDDL-EU-MOS, M. Taylor
AMDDL-ATL-ASR, H. Carper
Ft. Eustis, VA 23604-5577

Commander
U. S. Army Communications-
Electronics Command
Attn: AMSEL-ED
Fort Monmouth, NJ 07703-5301

Commander
U. S. Army Communications-
Electronics Command
Attn: AMSCO-PPA-SA
Fort Monmouth, NJ 07703-5301
Commander
U. S. Army Training and Doctrine Command
Ft. Bliss, TX 97716

Commandant (2)
U. S. Army Infantry School
Attn: ATSH-CD-CSO-OR
 ATSH-CD-MLS-F
Ft. Benning, GA 31905

Commander
U. S. Army Development and
Employment Agency
Attn: MODE-TED-SAB
Ft. Lewis, WA 98433-5000

Commander (4)
Naval Medical R&D Command
National Naval Medical Center, Bldg. 142
Attn: P. Tyler
 Code AIR-50313, R. Hume
 Code AIR-5204
 Code PMA 242, Cpt. R. Shumacker
Bethesda, MD 20814-5044

Commander
Naval Sea Systems Command
Code PMS-405
Washington, DC 20362

Commander (2)
Naval Sea Systems Command
Attn: Code PMS-405-300, G. Bates
 Code 072.4, R. Wildt
Washington, DC 20362

Naval Intelligence Support Center
Attn: A. Leavitt
4301 Suitland Road
Washington, DC 29390

Naval Intelligence Support Center
Attn: NISC-51, A. Cobleigh, Jr.
4301 Suitland Road
Washington, DC 29390

TRADOC Research Element
Department of Physics and Chemistry
Code 2124
Prof. J. Neighbors, Library
Monterey, CA 93940

Commander (2)
Pacific Naval Missile Test Ctr.
Attn: Code 1234, K. Knudson
 Code 1132, P. Toly
Point Mugu, CA 93042

Department of the Air Force
Secretary of Air Force Space Systems
Pentagon Rm 4C1052
Attn: LTC M. Hodgenson
Washington, DC 20330

Department of the Air Force
Attn: INYX, Maj. C. Bose
Washington, DC 20330

Air Force Armament Laboratory
Attn: AFATL-DLODL
Elgin AFB, FL 32542-5000

Headquarters
Air Force Electronic Warfare Center
Attn: SAXA
San Antonio, TX 78243

Headquarters
Air Force Systems Command/SDOA
Attn: DLWM, Cpt. J. Cook
Andrews AFB, MD 20334

USAFSAM/RZP
Attn: D. Erwin
Brooks AFB, TX 78235

RADC/OSCE
Attn: Mr. R. Urtz
Griffiss AFB, NY 13441

OOALC/MMW
Attn: Maj. Roden
Hill AFB, UT 84406

MMWRBC
Attn: W. Ferguson
Hill AFB, UT 84406

AAI Corporation
P. O. Box 126
Hunt Valley, MD 21030-0126
Maxwell Laboratories, Inc.
Attn: F. Marc de Piolenc
8835 Balboa Avenue
San Diego, CA 92123

Naval Intelligence Center
Attn: Mr. Albert Leavitt
4301 Suitland Road
Washington, DC 20390

Mission Research Co.
Attn: M. W. Bollen
8560 Cinderbed Rd, #700
Newington, VA 22122

Naval Research Laboratory (4)
Attn: Sidney L. Ossakow, 4700
W. Ali, 4700.1
M. Friedman, 4700.1
J. Pasour, 4704.2
4555 Overlook Ave., SW
Washington, DC 20375

Mission Research Corp.
Attn: Ms. Dawn Higgs
P. O. Box 279
Springfield, VA 22150

Naval Research Laboratory (4)
Attn: A. Fliffet
S. Gold
R. K. Parker
I. Vlkovitsky
4555 Overlook Ave., SW
Washington, DC 20375

Mission Research Corp.
Attn: V. J. Lint
5434 Ruffin Rd.
San Diego, CA 92123

Naval Research Laboratory (4)
Attn: B. Sheleg, 5733
G. Mueller, 6652
N. Seeman, 6652
T. Wieting, 6652
4555 Overlook Avenue, SW
Washington, DC 20375

Mission Research Corp.
Attn: B. Goldstein
C. Longmire
P. O. Box 719
735 State Street
Santa Barbara, CA 93102

Naval Sea Systems Command
PMS-405-300
Attn: R. L. Topping
Washington, DC 20301

Mission Research Corp.
Attn: D. Sullivan
1720 Randolph Rd., SE
Albuquerque, NM 78106

Naval Surface Weapons Center
Attn: V. Pugiel/R. Richardson
Dahlgren, VA 22448

National Bureau of Standards (3)
Attn: N. Nahman
J. Reeve
A. Newell
Electromagnetic Technology Division
325 Broadway
Boulder, CO 80303

New Mexico State University
Physical Science Laboratory
Attn: A. K. Pattini
Box 3-PSL
Las Cruces, NM 88003

National Bureau of Standards (2)
Attn: D. Hill
C. Miller
Electromagnetic Fields Division
325 Broadway
Boulder, CO 80303

N. T. Amherd
39510 Paseo Padre Parkway
Fremont, CA 94538

Naval Electronics Supply Engr. Center
Attn: D. Ensley
Bldg. 509, Mare Island
Vallejo, CA 94592

Office of Missile Elec. Warfare
US Army Elec. Warfare Lab.
Attn: D. P. Ames
Dept. H220, Bldg. 1110
White Sands Missile Range, NM 88002
The Ohio State University (2)
Attn: L. Peters
P. H. Pothak
Electro Science Laboratory
1320 Kinnear Road
Columbus, OH 43212

Pacific Sierra Research
Attn: W. W. Carter
1401 Wilson Blvd.
Suite 1100
Arlington, VA 22209

Pacific Sierra Research (2)
Attn: L. Schlessinger
L. Johnson
1234 Santa Monica Blvd.
Los Angeles, CA 90025

Physics International Co. (5)
Attn: J. R. Anderson
J. Benford
Emil Kottun
H. Sze
T. Young
2700 Merced St.
San Leandro, CA 94577

Physics International Research & Development Div.
Attn: Dr. Alan J. Toepfer
2700 Merced Street
San Leandro, CA 94577

Pulse Sciences Inc. (2)
Attn: Philip D'A. Champney
R. DeGenuario
14796 Wicks Blvd.
San Leandro, CA 94577

Quest Research Corporation
Attn: Robert S. Ohanesian
6858 Old Dominion Drive
McLean, VA 22101

R&D Associates
Attn: Mr. B. Moller
P. O. Box 9695
Marina del Rey, CA 90291

R&D Associates
Attn: R. L. Parker
2720-B Broad Bent Parkway, NE
Albuquerque, NM 87107

RAND
Attn: Alexander F. Brewer
Santa Monica, CA 90406

Rockwell International
Attn: G. Morgan
Autonetics Strategic Systems Div.
P. O. Box 4192
Anaheim, CA 92803

W. J. Schafer Associates, Inc.
Attn: Dr. James P. Reilly
Corporate Place 128
Building 2, Suite 300
Wakefield, MA 01880

Science Applications, Inc. (2)
Attn: C. Yee
E. Cornet
1710 Goodridge Dr.
McLean, VA 22102

Science Applications, Inc.
Attn: R. Johnston
5 Palo Alto Square
Suite 200
Palo Alto, CA 94304

Science Applications, Inc.
Attn: Linda Whitmeyer
1215 Jefferson Davis Hwy., Suite 3
Arlington, VA 22202

SRI Inc.
Attn: Dr. Gerald August
Electromagnetic Sci. Lab.
333 Ravenswood Ave.
Menlo Park, CA 94025

Stanford Research Institute (3)
Attn: D. Douglas
A. MacDonald
D. Tremain
333 Ravenswood Avenue
Menlo Park, CA 94025
8360 W. J. McLean
8400 R. C. Wayne
8478 J. Hinton
8500 P. E. Brewer

8535 Publication Div./ Technical
 Library Processes Div., 3141

3141 Technical Library Processes
 Div. (3)

8524-2 Central Technical Files (3)