TECHNICAL REPORT 3976

PERFORMANCE
OF
CURRENT AND NEW WATERVAPOR
BARRIER MATERIALS WHEN USED IN BAGS
FOR
PACKING AMMONIUM NITRATE

SYLVESTRO RUFFINI

MARCH 1970

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC
RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED.

DTIC QUALITY INPECTED 3

PICATINNY ARSENAL
DOVER, NEW JERSEY

DEPARTMENT OF DEFENSE
PLASTICS TECHNICAL EVALUATION CENTER
PICATINNY ARSENAL, DOVER, N. J.
The findings in this report are not to be construed as an official Department of the Army Position.

DISPOSITION

Destroy this report when no longer needed. Do not return to the originator.
Technical Report 3976

PERFORMANCE OF CURRENT AND NEW WATERVAPOR
BARRIER MATERIALS WHEN USED IN BAGS FOR
PACKING AMMONIUM NITRATE

by

Sylvestro Ruffini

March 1970

This document has been approved for public release and
sale; its distribution is unlimited.
The citation in this report of the trade names of commercially available products does not constitute official indorsement or approval of the use of such products.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Discussion, Phase 1</td>
<td>2</td>
</tr>
<tr>
<td>Conclusions, Phase 1</td>
<td>5</td>
</tr>
<tr>
<td>Discussion, Phase 2</td>
<td>6</td>
</tr>
<tr>
<td>Conclusions, Phase 2</td>
<td>7</td>
</tr>
<tr>
<td>Recommendations</td>
<td>9</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>9</td>
</tr>
<tr>
<td>Appendix A</td>
<td>10</td>
</tr>
<tr>
<td>Appendix B</td>
<td>16</td>
</tr>
<tr>
<td>Distribution List</td>
<td>19</td>
</tr>
</tbody>
</table>

Tables

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Companies supplying bags to contractor packaging NH₄NO₃</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Summation of pertinent data from AMCPSC Test Report WAL 71-69</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Barrier materials and bag constructions selected for Phase 2</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Pertinent data from AMCPSC letter report dated 19 September 1969</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Summation of WVTR data. (Both Phase 1 and Phase 2)</td>
<td>8</td>
</tr>
</tbody>
</table>
SUMMARY

During the first stage of this investigation (Phase 1), the performance of the multiwall Kraft paper/polyethylene bag currently used to pack and ship ammonium nitrate (NH$_4$NO$_3$) was studied. It was found that the 1½ mil polyethylene barrier will provide water vapor protection for only 2-5 days without exceeding the allowable moisture pickup for NH$_4$NO$_3$ (.15% by weight, i.e., till solidification, or "caking" begins). This period of protection is not considered adequate, since it may reasonably be expected that the NH$_4$NO$_3$ will be in storage at the loading plant for 30-60 days.

Since solidification of the NH$_4$NO$_3$ (an ingredient in the manufacture of explosives) is objectionable during processing at loading plants, work was initiated on a second phase (Phase 2) to improve bag performance. All barrier materials and bag constructions tried in Phase 2 were judged to be better than the bag currently used. The Tyvek and all polyethylene bags, two of the materials selected, improved protection of the contents from water vapor to 40 and 22 days, respectively.

It should be understood that the performance determined in this report for each of the materials was based on laboratory tests conducted on the water vapor barrier material only, and that a final evaluation of any bag material should be based on actual user tests of the complete bag.
INTRODUCTION

The Special Munitions Container Development Section (SMCDS), MPL, FRL, received a request from Bomb and Bomb Fuze Laboratory (BBFL), AED, to investigate the solidification (caking) of the ammonium nitrate (NH₄NO₃), which is occurring in the current multiwall packing bag at Army ammunition loading plants.

In preliminary discussions with BBFL personnel, it was established that the caking may be a result of any of the following 3 factors, alone or in combination:

1. Crystalline phase change of the NH₄NO₃ due to temperature changes.

2. Pressure induced through stacking of bags at loading plants.

3. Water vapor permeation through the bag used to pack the NH₄NO₃.

For the purpose of this investigation, it was assumed that NH₄NO₃ starts to cake when the moisture pickup of .15%, permitted by Specification PAPD-3087A, is exceeded. It was also established that the bag should provide a 30-60 day storage capability without caking of NH₄NO₃.

This report will be confined to investigating factor 3 as if it were the sole contributor to the solidification of NH₄NO₃. The report is divided into 2 phases: Phase 1 deals with the investigation of the effectiveness of the current bag material as a water vapor barrier, and Phase 2 contains an evaluation of other types of water vapor barriers and/or bag constructions which were investigated in an effort to improve the effectiveness of the bag.

DISCUSSION, PHASE 1

The first phase of this investigation was conducted to determine the water vapor transmission rate (WVTR) of the bag now used for packing NH₄NO₃. The currently used bag consists of an inner ply of 50-lb Kraft paper, a second ply of 1 1/2 mil polyethylene (PE), third and fourth plies of 50-lb Kraft paper, and an outer ply of 50-lb W. S. Kraft paper. The companies currently supplying this bag to NH₄NO₃ producers are listed in Table 1.
TABLE 1

Companies supplying bags to contractor packaging the NH₄NO₃

Bag Co. NH₄NO₃ Producer
------------ ---------------
Olin Bag Co U. S. Powder Co
Bemis Bag Co DuPont Co
Crown Zellerback Corp Hercules Co
Arkel Safety Bag Co (Chase) National Powder Co

Since SMCDS does not have facilities at Picatinny to perform WVTR tests, sample specimens of new bags from each company were forwarded to AMC Packaging and Storage Center (AMCPSC) at Tobyhanna Army Depot for evaluation. The test methods used, thickness measurements, and WVTR results obtained in tests of these specimens are given in AMCPSC Test Report WAL 71-69 dated June 1969 (Appendix A).

A summation of pertinent data is presented in Table 2.

TABLE 2

Summation of pertinent data from AMCPSC Test Report WAL 71-69

<table>
<thead>
<tr>
<th>Bag Co.</th>
<th>AVG WVTRa (g/100 sq in/24 hrs)</th>
<th>AVG THICKNESSc (MIL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olin (large bag)</td>
<td>0.4</td>
<td>2</td>
</tr>
<tr>
<td>Olin (small bag)</td>
<td>0.5</td>
<td>1.7</td>
</tr>
<tr>
<td>Bemisb</td>
<td>0.7</td>
<td>1.5</td>
</tr>
<tr>
<td>CZ Corp</td>
<td>0.8</td>
<td>1.5</td>
</tr>
<tr>
<td>Chase</td>
<td>0.9</td>
<td>1.0</td>
</tr>
</tbody>
</table>

*aWVTR based on test temperature of 100°F and relative humidity (RH) of 90%.

bThis was a used bag. New specimen did not arrive on time.

cThickness applies to PE film ply only. PE film is the only barrier in bag construction that provides water-vapor protection.
As is indicated above, the average thickness of the PE film varies from 1 to 2 mil and the average WVTR varies from .4 to .9. To evaluate bag performance, it is necessary to establish the time required for the NH₄NO₃, when packed in the current bag, to reach and exceed the maximum moisture pickup requirement of .15% specified in the NH₄NO₃ purchase description, PA-PD-3087A.

An analytical evaluation was carried out involving the following assumptions:

1. The moisture content of the NH₄NO₃ is controlled at a maximum level of .075% during the packing process.

2. Caking begins when .15% moisture pickup is exceeded. Subtracting the .075% moisture that may be picked up during packing (see 1 directly above) leaves only .075% moisture that may be picked up by the bag.

3. Weight per bag: 50 pounds

5. Bag surface area: 865 sq. in.

On the basis of the above assumptions, the following calculations can be performed to determine bag performance:

Grams (g)/50 lb of NH₄NO₃ - X (Conversion factor: \(2.205 \times 10^{-3} \text{ lb/g}\))

\[
X = \frac{50 \text{ lb}}{2.205 \times 10^{-3} \text{ lb/g}}
\]

\[
X = 22.8 \times 10^3 \text{ g/50 lb of NH₄NO₃}
\]

Total moisture pickup (grams) in 50 lb of NH₄NO₃ - Y

Based upon .075% moisture pickup permitted after packing of NH₄NO₃,

\[
Y = X \times (.075%)
\]

\[
Y = 22.8 \times 10^3 \times .75 \times 10^{-3}
\]

\[
= 17.1 \text{ g/50 lb of NH₄NO₃}
\]
Using the WVTR values of .4 g/100 sq. in./24 hr (Olin) and .9 g/100 sq. in./24 hr (Chase) obtained from Table 2, the following can be determined:

Total moisture pickup (grams) /bag/24 hr = \(Z \)
(bag area = 865 sq. in.)

\[
\begin{align*}
\text{Olin Bag} & \quad Z_1 = \frac{.4g}{100 \text{ sq in./24 hr}} \times 865 \text{ sq in.} = 3.46 \text{ g/24 hr/bag} \\
\text{Chase Bag} & \quad Z_2 = \frac{.9g}{100 \text{ sq in./24 hr}} \times 865 \text{ sq in.} = 7.8 \text{ g/24 hr/bag}
\end{align*}
\]

Number of hours (H) to exceed max moisture (Y)

\[
\begin{align*}
H_1 = \frac{Y}{Z_1} = \frac{17.1 \text{ g}}{3.46 \text{ g/24 hr}} = 120 \text{ hours or 5 days (best)} \\
H_2 = \frac{Y}{Z_2} = \frac{17.1 \text{ g}}{7.8 \text{ g/24 hr}} = 53 \text{ hours or 2.2 days (min)}
\end{align*}
\]

CONCLUSIONS, PHASE 1

It appears that the best watervapor protection that can be expected from the currently supplied bags is 5 days (minimum 2.2 days), after NH$_4$NO$_3$ is packed, before the .15% moisture pickup (start of caking) allowed by specification is exceeded. However, it should be understood that the bag performance data is based on specimen test results obtained at a temperature of 100°F and an RH of 90%. Therefore any variation in temperature-RH conditions, and even allowable moisture pickup, would tend to increase or decrease bag performance (most likely increase). However, the temperature-RH condition of 100°F and 90% can be obtained for a sustained period of time during the summer months, especially if the loading plants are located in a southerly geographic area and if storage areas are not temperature-RH controlled.

After discussions with BBFL personnel, it was decided, because of the possibility that the current Kraft paper/PE
bag might perform poorly, that a Phase 2 study should be initiated. This phase of the investigation would involve trying to improve the barrier material and/or construction of the bag to meet the requirement that, during a 30-60 day storage period, moisture pickup should not exceed .15%.

DISCUSSION, PHASE 2

Various barrier materials and bag constructions were considered for use in the second phase of the investigation. The barrier materials and bag constructions selected are listed in Table 3.

TABLE 3

Barrier materials and bag constructions selected for Phase 2

<table>
<thead>
<tr>
<th>Bag Material and Construction</th>
<th>Bag Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Tyvek (aluminum particles dispersed in spun polyethylene), meets requirements of Spec MIL-B-131</td>
<td>Chase</td>
</tr>
<tr>
<td>All polyethylene film (7-9 mil)</td>
<td>Chase</td>
</tr>
<tr>
<td>4 Kraft plies w/1 ply PE (5 mil)</td>
<td>Crown-Zellerback</td>
</tr>
<tr>
<td>4 Kraft plies w/1 ply aluminium foil (7 mil) sandwich between layers of PE (1 mil)</td>
<td>Crown-Zellerback</td>
</tr>
</tbody>
</table>

Specimens of the bags listed in Table 3 were forwarded to AMCPSC for evaluation as had previously been done in Phase 1. Test methods used, thickness measurements and WVTR results are given in a letter report from AMCPSC dated 19 Sep 69 (Appendix B). Pertinent test results are listed in Table 4.

<table>
<thead>
<tr>
<th>Bag Material</th>
<th>Avg WVTR, g/100 sq in./24 hrs</th>
<th>Avg Thickness, (mil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyvek</td>
<td>.05</td>
<td>10.2</td>
</tr>
<tr>
<td>All PE film</td>
<td>.09</td>
<td>8.9</td>
</tr>
<tr>
<td>Kraft plies w/PE Liner<sup>a</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w/seam</td>
<td>0.2</td>
<td>4.4 (PE), 6.9</td>
</tr>
<tr>
<td>w/o seam</td>
<td>0.1</td>
<td>(Each Kraft ply)</td>
</tr>
<tr>
<td>Kraft plies w/Aluminum Liner<sup>a</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w/seam</td>
<td>0.5</td>
<td>7.1 (Al), 6.9</td>
</tr>
<tr>
<td>w/o seam</td>
<td>0.3</td>
<td>(Each Kraft ply)</td>
</tr>
</tbody>
</table>

^aOnly the liner provides watervapor protection.

Analytical calculation to delineate bag performance, using the assumptions established for Phase 1 produced the information in Table 5. In addition to bag performance data for Phase 2 (Item 2 through 5, Table 5), estimated cost and average bag performance values for the current bag (Item No. 1) are included in Table 5 for purposes of comparison.

CONCLUSIONS, PHASE 2

It can be concluded that every barrier material and bag construction considered in Phase 2 is better than the bag material currently used. Tyvek gives the best results, 40 days before exceeding the moisture pickup requirement; the all polyethylene material gives fair results and certainly should be considered from a cost viewpoint. The results are considered conservative in terms of the assumptions made to determine bag performance and the laboratory controlled techniques; i.e., if the maximum allowable moisture pickup through the bag could be increased to .15% instead of the .075% reported without caking of NH₄NO₃ becoming intolerable for processing, it would double the bag performance for all of the barrier materials. In other words, a Tyvek bag would be capable of providing 80 days of watervapor protection. Therefore, an improvement of 50 to 100% for each barrier material could be realized under actual user conditions.
<table>
<thead>
<tr>
<th>Bag Identification</th>
<th>Bag Construction(^a)</th>
<th>WVTR, g/100 sq in./24 hr</th>
<th>Barrier Thickness Mil</th>
<th>Total Moisture Pickup g/24 hr</th>
<th>Time to Exceed (0.15%) Moisture Pickup Hr/Days</th>
<th>Estimated Price/1000 Bags(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Current Bag</td>
<td>Inner Ply-50 lb Kraft 2nd Ply-1 1/2 mil PE 3rd & 4th Plies - 50 lb Kraft Outer Ply-50 lb W.S. Kraft</td>
<td>.7 (Avg)</td>
<td>1.5 (Avg)</td>
<td>6.1</td>
<td>67/2.8</td>
<td>$100.00</td>
</tr>
<tr>
<td>2 Kraft Plies w/Alum Foil</td>
<td>Inner Ply-50 lb Kraft 2nd Ply)1 mil PE 7 mil Alum Foil 1 mil PE 3rd & 4th Plies - 50 lb Kraft Outer Ply-50 lb W.S. Kraft</td>
<td>.5 (w/seam)</td>
<td>7.1</td>
<td>4.3</td>
<td>96/4</td>
<td>$198.00</td>
</tr>
<tr>
<td>3 Kraft Plies w/PE Liner</td>
<td>Inner Ply-50 lb Kraft 2nd Ply-5 mil PE 3rd & 4th Plies - 50 lb Kraft Outer Ply-50 lb W.S. Kraft</td>
<td>.2 (w/seam)</td>
<td>4.4</td>
<td>1.7</td>
<td>240/10</td>
<td>$150.00</td>
</tr>
<tr>
<td>4</td>
<td>All Polyethylene (9 mil)</td>
<td>.09</td>
<td>8.9</td>
<td>.78</td>
<td>528/22</td>
<td>$107.00</td>
</tr>
<tr>
<td>5</td>
<td>Tyvek 1 Ply-Aluminum Particles in Spun PE</td>
<td>.05</td>
<td>10.2</td>
<td>.43</td>
<td>960/40</td>
<td>$330.00</td>
</tr>
</tbody>
</table>

\(^a\)Total bag surface area, 865 sq in.; weight of contents, 50 pounds.

\(^b\)17.1 grams/50 lb of \(\text{NH}_4\text{NO}_3\).

\(^c\)Based on 100,000 lots.
RECOMMENDATIONS

Before any final selection of bag materials is made, further studies should be conducted under actual user conditions. A program using 2 or possibly 3 of the better barrier materials, along with the corresponding bag constructions, should be used in a field test program consisting of shipment from bag company to NH₄NO₃ producer to loading plant, with pertinent data, such as temperature, relative humidity, and moisture pickup, recorded at various time intervals. A similar type of program, with reduced-size bags filled with NH₄NO₃ and using laboratory techniques and facilities, may also be considered as an expedient means of getting the required information.

ACKNOWLEDGMENTS

The author is indebted to Messrs. Richard DeVore of the Munitions Packaging Laboratory and Anthony Alfano of the AMC Packaging and Storage Center, Tobyhanna Army Depot, for their invaluable assistance in this work. Mr. DeVore's contribution included setting up the WVTR test program and coordinating it with AMCPSC. Mr. Alfano produced the test results shown in Appendixes 1 and 2.
APPENDIX A

AMCPSC Test Report WAL 71-69, WVTR
Tests of 5-Ply Bags Used to Package Ammonium Nitrate
AMCPSC
Test Report
WAL 71-69

WVTR TESTS OF 5-PLY BAGS
USED TO PACKAGE AMMONIUM NITRATE

ANTHONY ALFANO

June 1969
1. **Introduction.**

This report is the result of a request from Picatinny Arsenal to determine the water vapor transmission rate through bags constructed of 4-ply kraft paper and 1-ply polyethylene. These bags are used to package ammonium nitrate, an ingredient in explosives. It had been observed at Picatinny that the ammonium nitrate was caking in the bags. This caking, which is indicative of moisture pickup, is undesirable because it favors the misfiring of explosives and munitions; and presents a difficulty in dispensing. In their investigation of the caking problem associated with bagged ammonium nitrate, the Picatinny people wanted to know the water vapor transmission rate of the bags.

2. **Discussion.**

a. **Test Method.**

(1) **Identification of samples.**

The samples submitted for tests were separated into groups and coded at the AMCPSC laboratory. The following table shows the code, the number of specimens taken per bag, and the identification of the bags in each group:

<table>
<thead>
<tr>
<th>Group</th>
<th>No. of bags</th>
<th>No. of Specimens taken</th>
<th>Identification of bags</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3 (large)</td>
<td>1 per bag</td>
<td>U.S. Powder Company</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prch No. 5551</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>488</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8-5347</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rec'd. 4-18-69</td>
</tr>
<tr>
<td>B</td>
<td>3 (small)</td>
<td>1 per bag</td>
<td>U.S. Powder Company</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lot No. 19 C-10/68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>400-69-C-0565</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>488</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8-4526</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-200</td>
</tr>
<tr>
<td>Group</td>
<td>No. of bags</td>
<td>No. of Specimens taken</td>
<td>Identification of bags</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| C* | 1 | 2 | E.I.DuPont De Nemours Co. C2-69
Lot No. 13-16
DSA 400-69-C-3318
Polywall
Dura-Grid
Bemis Bag Co., Inc., Mobile
1-69
HOD-1012 |
| D | 2 | 1 per bag | Hercules, Inc.
DSA 400-69-C-4550
2-85862
17005.5
Crown Zellerbach Corp.
Bogalusa, Louisiana
PO 081-01855
4-200 Plus PE
Crown polyethylene ply |
| E | 2 | 3 | National Powder Co.
C-3/69 Lot No. 27
Contr DSA-400-69-C-3317
Stack Aide
Arkell Safety Bag Co.
A-9
Rec'd 4/18/69 |

* This was a used bag.

(2) Construction of bags

The bags were constructed of 5-ply material. Four plies consisted of kraft paper and one ply consisted of polyethylene. The bags in group A were constructed with the polyethylene as the first innermost ply. All other bags were constructed with the polyethylene as the second ply after the innermost paper ply.

(3) Procedure

The water vapor transmission rate was determined according to Method 182 of UU-P-31b, Paper; General Specifications and Methods of Testing.
b. Test Results

<table>
<thead>
<tr>
<th>Group</th>
<th>g/24 hr/sq meter</th>
<th>g/24 hr/100 sq in</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6.9</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>6.9</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>6.9</td>
<td>0.4</td>
</tr>
<tr>
<td>B</td>
<td>N.G. (polyethylene not sealed)</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>7.7</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>7.7</td>
<td>0.5</td>
</tr>
<tr>
<td>C</td>
<td>11.5</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>10.8</td>
<td>0.7</td>
</tr>
<tr>
<td>D</td>
<td>13.1</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>13.1</td>
<td>0.8</td>
</tr>
<tr>
<td>E</td>
<td>N.G. - hole in dish N.G. - hole in polyethylene</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>14.6</td>
<td></td>
</tr>
</tbody>
</table>

3. Other tests

The thickness of the polyethylene barrier was measured. The following results were obtained from the specimens after the WVTR was determined. Included in this tabulation is the average WVTR corresponding with the specimens.

<table>
<thead>
<tr>
<th>Group</th>
<th>Average thickness (mils)</th>
<th>Average WVTR (g/24 hr/100 sq in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>B</td>
<td>1.7 (estimated)</td>
<td>0.5</td>
</tr>
<tr>
<td>C</td>
<td>1.5 (estimated)</td>
<td>0.7</td>
</tr>
<tr>
<td>D</td>
<td>1.5 (estimated)</td>
<td>0.8</td>
</tr>
<tr>
<td>E</td>
<td>1.0</td>
<td>0.9</td>
</tr>
</tbody>
</table>
4. Conclusion

The test results bear out the fact that there is an inverse relationship between the thickness of the polyethylene and the water vapor transmission rate. The thickness of the polyethylene is primarily responsible for the variation in WVTR among the bags tested.

5. Remarks

Although the selection of specimens from each bag was limited (only one to two specimens per bag), it was nevertheless observed that two out of the five bags tested were constructed with a defect in the polyethylene barrier. Such bags offer no protection against moisture. The defective barrier in the type of 5-ply bags submitted for tests may be the main factor for the caking of bagged ammonium nitrate.
APPENDIX B

Ltr 19 Sept 1969, Subject: WVTR of Shipping Bags. From E. H. Borkenhagen to SMUPA-VP-2
AMXT0-TL

19 Sep 1969

SUBJECT: WVTR of Shipping Bags

Commanding Officer
Picatinny Arsenal
ATTN: SMUPA-VP-2
Dover, New Jersey 07801

1. This report confirms the information given by Mr. Alfano of this center to Messrs. Steve Ruffini and Richard DeVore of your facility on 26 August 1969 by telephone.

2. The water vapor transmission rate was determined according to Method 182 of UU-P-31b, Paper: General Specifications and Methods of Testing, after low temperature flexing of the bag materials according to para 4.6.5 of MIL-B-131E(1) Barrier Material, Water-vaporproof, Flexible, Heat Sealable.

3. Thickness measurements were determined according to Method 1003 of Federal Test Method Standard No. 101B after the specimens were conditioned to equilibrium in the environment prescribed in Federal Standard No. 1.

4. The following test results were obtained:

<table>
<thead>
<tr>
<th>Bag Material</th>
<th>WVTR in g/24 hrs/100 sq in</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIL-B-131E (Tyvek-backed) (10.2 mils)</td>
<td>0.05</td>
</tr>
<tr>
<td>Polyethylene (8.9 mils)</td>
<td>0.09</td>
</tr>
<tr>
<td>Kraft paper plies with polyethylene (4.4 mils) liner</td>
<td>w/seam 0.2 w/o/seam 0.1</td>
</tr>
<tr>
<td>Kraft paper plies with aluminum foil liner (7.1 mils aluminum foil and kraft paper ply)</td>
<td>w/seam 0.5 w/o/seam 0.3</td>
</tr>
</tbody>
</table>
AMXTO-TL
SUBJECT: WVTR of Shipping Bags

5. The kraft paper in each of the two bags submitted measured approximately 6.9 mils per ply.

FOR THE COMMANDER:

E. H. BORKENHAGEN
Chief, Engineering and Laboratory Division
AMC Packaging and Storage Center
DISTRIBUTION LIST

Commanding Officer
Picatinny Arsenal
ATTN: Scientific and Technical Information Branch
SMUPA-DC
Dover, New Jersey 07801

Commanding General
U. S. Army Materiel Command
Room BlA, Nassif Building
5611 Columbia Pike
ATTN: AMCRD-TC
Falls Church, Virginia 22041

Commanding General
U. S. Army Munitions Command
ATTN: AMSMU-RE
Dover, New Jersey 07801

Plastics Technical Evaluation Center
ATTN: Chief, Mr. H. Pebly
Picatinny Arsenal
Dover, New Jersey 07801

Commanding General
U. S. Army Weapons Command
ATTN: AMSWE-RDR
Rock Island, Illinois 61202

Redstone Scientific Information Center
U. S. Army Missile Command
ATTN: Chief, Document Section
Redstone Arsenal, Alabama 35808

Commanding Officer
Aberdeen Proving Ground
ATTN: Technical Library, Bldg. 313
Maryland 21005

Commanding General
Army Tank-Automotive Center
ATTN: Technical Information Section
Warren, Michigan 48090

Copy No.
1-5
6
7
8
9
10-11
12-13
14-15
16

19
Director
U. S. Army Coating & Chemical Laboratory
Aberdeen Proving Ground
Maryland 21005

Commanding Officer
Frankford Arsenal
ATTN: Pitman Dunn Laboratories, Dr. H. Gisser
Mr. Paul Holtzman, Code 6252
Library Branch, 0270
Philadelphia, Pa. 19137

Commanding Officer
Rock Island Arsenal
ATTN: Mr. Z. Ossefort
Rock Island, Illinois 61202

Commanding Officer
U. S. Army Materials & Mechanics Research Center
ATTN: Technical Information Section
Watertown, Massachusetts 02172

Commanding Officer
Watervliet Arsenal
ATTN: SEWV-RDA
Watervliet, N. Y. 02189

Commanding General
U. S. Army Ammunition Procurement & Supply Agency
ATTN: SMUAP-F
Joliet, Illinois 60436

Commanding Officer
Harry Diamond Laboratories
ATTN: Library, Room 211, Bldg 92
Connecticut Ave & Van Ness St, NW
Washington, D. C. 20438

Commanding General
White Sands Missile Range
ATTN: Technical Library
New Mexico 88002
Commanding Officer
U. S. Army Aviation Materiel Laboratories
ATTN: SAVFE-SOS
Fort Eustis, Virginia 23604

Commandant
U. S. Army Ordnance Center and School
ATTN: AISO-SL
Aberdeen Proving Ground
Maryland 21005

Commanding General
U. S. Army Missile Command
ATTN: AMSMI-RLM
Redstone Arsenal, Alabama 35809

Supply & Maintenance Packaging Center
Tobyhanna Army Depot
Tobyhanna, Pennsylvania 18466

Commanding Officer
Edgewood Arsenal
ATTN: Mr. Milton A. Raun
Chief, Packaging & Materials Branch
Defense Development & Engineering Laboratories
Edgewood Arsenal, Maryland 21010

Commander
Naval Ordnance Systems Command
ATTN: ORD-9333
Washington, D. C. 20360

Commanding Officer
Naval Ammunition Depot (Earle)
ATTN: NWHL, Mr. James Syde
Colts Neck, New Jersey 07722

Commanding General
U. S. Army Materiel Command
ATTN: AMCDT-BA
Washington, D. C. 20315

Hq, U. S. Air Force (AFRDDA)
Washington, D. C. 20330

Hq. Air Force Armament Laboratory (ATX)
Eglin Air Force Base, Florida 32542
Hq. Air Force Systems Command (SCTS)
Andrews Air Force Base, Maryland 20331

Hq. Air Force Weapons Laboratory (WLX)
Kirtland Air Force Base, N.M. 87117

Copy No.
99

100
UNCLASSIFIED

DOCUMENT CONTROL DATA - R & D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author)
Picatinny Arsenal, Dover, New Jersey 07801

2a. REPORT SECURITY CLASSIFICATION
Unclassified

2b. GROUP

3. REPORT TITLE
PERFORMANCE OF CURRENT AND NEW WATERVAPOR BARRIER MATERIALS WHEN USED IN BAGS FOR PACKING AMMONIUM NITRATE

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

5. AUTHOR(S) (First name, middle initial, last name)
Sylvestro Ruffini

6. REPORT DATE
March 1970

7a. TOTAL NO. OF PAGES
28

7b. NO. OF REFs

8a. CONTRACT OR GRANT NO.

b. PROJECT NO.

c.

d.

9. ORIGINATOR'S REPORT NUMBER(S)
Technical Report 3976

10. DISTRIBUTION STATEMENT
This document has been approved for public release and sale; its distribution is unlimited.

11. SUPPLEMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY

13. ABSTRACT
During the first stage of this investigation (Phase 1), the performance of the multiwall Kraft paper/polyethylene bag currently used to pack and ship ammonium nitrate (NH₄NO₃) was studied. It was found that the mil polyethylene barrier will provide watervapor protection for only 2-5 days without exceeding the allowable moisture pickup for NH₄NO₃ (.15% by weight, i.e., till solidification, or "caking" begins). This period of protection is not considered adequate, since it may reasonably be expected that the NH₄NO₃ will be in storage at the loading plant for 30-60 days.

Since solidification of the NH₄NO₃ (an ingredient in the manufacture of explosives) is objectionable during processing at loading plants, work was initiated on a second phase (Phase 2) to improve bag performance. All barrier materials and bag constructions tried in Phase 2 were judged to be better than the bag currently used. The Tyvek and all polyethylene bags, two of the materials selected, improved protection of the contents from watervapor to 40 and 22 days, respectively.

It should be understood that the performance determined in this report for each of the materials was based on laboratory tests conducted on the watervapor barrier material only, and that a final evaluation of any bag material should be based on actual user tests of the complete bag.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water vapor barrier material</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonium nitrate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bag material</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiwall Kraft paper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyethylene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyvek</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>