Parallel Data Mining for Association Rules on Shared-Memory Multi-Processors

M.J. Zaki, M. Ogihara, S. Parthasarathy, and W. Li

Technical Report 618
May 1996
Parallel Data Mining for Association Rules on Shared-memory Multi-processors *

M. J. Zaki, M. Ogihara, S. Parthasarathy, and W. Li
{zaki, ogihara, srini, wei}@cs.rochester.edu

The University of Rochester
Computer Science Department
Rochester, New York 14627

Technical Report 618
May 1996

Abstract

Data mining is an emerging research area, whose goal is to extract significant patterns or interesting rules from large databases. High-level inference from large volumes of routine business data can provide valuable information to businesses, such as customer buying patterns, shelving criterion in supermarkets and stock trends. Many algorithms have been proposed for data mining of association rules. However, research so far has mainly focused on sequential algorithms.

In this paper we present parallel algorithms for data mining of association rules, and study the degree of parallelism, synchronization, and data locality issues on the SGI Power Challenge shared-memory multi-processor. We further present a set of optimizations for the sequential and parallel algorithms. Experiments show that a significant improvement of performance is achieved using our proposed optimizations. We also achieved good speed-up for the parallel algorithm, but we observe a need for parallel I/O techniques for further performance gains.

Keywords: Data Mining, Association Rules, Load Balancing, Hash Tree Balancing, Hashing, Shared-Memory Multi-processor

*This work was supported in part by an NSF Research Initiation Award (CCR-9409120) and ARPA contract F19628-94-C-0057.
Title and Subtitle

Parallel Data Mining for Association Rules on Shared-Memory Multiprocessors

Author(s)

M.J. Zaki, M. Ogihara, S. Parthasarathy, and W. Li

Performing Organization Name(s) and Addresses

Computer Science Dept.
734 Computer Studies Bldg.
University of Rochester
Rochester NY 14627-0226

Sponsoring/Monitoring Agency Name(s) and Addresses(es)

ARPA
3701 N. Fairfax Drive
Arlington VA 22203

Supplementary Notes

Distribution of this document is unlimited.

Abstract

(Maximum 200 words)

(see title page)

Subject Terms

data mining; association rules; load balancing; hash tree balancing; hashing; shared-memory multiprocessor

Security Classification

- Report: unclassified
- This Page: unclassified
- Abstract: unclassified

Number of Pages

22 pages

Price Code

free to sponsors; else $2.00

Limitation of Abstract

UL
1 Introduction

With large volumes of routine business data having been collected, business organizations are increasingly turning to the extraction of useful information from such databases. Such high-level inference process may provide information on customer buying patterns, shelving criterion in supermarkets, stock trends, etc. Data mining is an emerging research area, whose goal is to extract significant patterns or interesting rules from such large databases.

Data mining is in fact a broad area which combines research in machine learning, statistics and databases. It can be broadly classified into three main categories [1]: Classification – finding rules that partition the database into disjoint classes; Sequences – extracting commonly occurring sequences in temporal data; and Associations – find the set of most commonly occurring groupings of items. In this paper we will concentrate on data mining for association rules.

The problem of mining association rules over basket data was introduced in [2]. Basket data usually consists of a record per customer with a transaction date, along with items bought by the customer. An example of an association rule over such a database could be that 80% of the customers that bought bread and milk, also bought eggs. The data mining task for association rules can be broken into two steps. The first step consists of finding all the sets of items, called as itemsets, that occur in the database with a certain user-specified frequency, called minimum support. Such itemsets are called large itemsets. An itemset of k items is called a k-itemset. The second step consists of forming implication rules among the large itemsets found in the first step. The general structure of most algorithms for mining association rules is that during the initial pass over the database the support for all single items (1-itemsets) is counted. The large 1-itemsets are used to generate candidate 2-itemsets. The database is scanned again to obtain occurrence counts for the candidates, and the large 2-itemsets are selected for the next pass. This iterative process is repeated for $k = 3, 4, \ldots$, until there are no more large k-itemsets to be found.

1.1 Related Work

Many algorithms for finding large itemsets have been proposed in the literature since the introduction of this problem in [2] (AIS algorithm). In [7] a pass minimization approach was presented, which uses the idea that if an itemset belongs to the set of large $(k+e)$-itemsets, then it must contain $\binom{k+e}{k}$ k-itemsets. The Apriori algorithm [4] also uses the property that any subset of a large itemset must itself be large. These algorithms had performance superior to AIS. Newer algorithms with better performance than Apriori were presented in [8, 10]. The DHP algorithm [8] uses a hash table in pass k to do efficient pruning of $(k+1)$-itemsets. The Partition algorithm [10] minimizes I/O by scanning the database only twice. In the first pass it generates
the set of all potentially large itemsets, and in the second pass the support for all these is measured. The above algorithms are all specialized black-box techniques which do not use any database operations. Algorithms using only general-purpose DBMS systems and relational algebra operations have also been proposed [5, 6].

There has been very limited work in parallel implementations of association algorithms. In [9], a parallel implementation of the DHP algorithm [8] is presented. However only simulation results on a shared-nothing or distributed-memory machine like IBM SP2 were presented. Parallel implementations of the Apriori algorithm on the IBM SP2 were presented in [3]. There has been no study on shared-everything or shared-memory machines to-date. In this paper we present parallel implementations of the Apriori algorithm on the SGI Power Challenge shared-memory multi-processor. We study the degree of parallelism, synchronization, and data locality issues in parallelizing data mining applications for such architectures. We also present a set of optimizations for the sequential Apriori algorithm, and for the parallel algorithms as well.

The rest of the paper is organized as follows. In the next section we formally present the problem of finding association rules, and briefly describe the Apriori algorithm. Section 3 presents a discussion of the parallelization issues for each of the steps in the algorithm, while section 4 presents some effective optimizations for mining association rules. Section 5 presents our experimental results for the different optimization and the parallel performance. Finally we conclude in section 6.

2 Sequential Data Mining

We now present the formal statement of the problem of mining association rules over basket data. The discussion below closely follows that in [2, 4].

Let $I = \{i_1, i_2, \cdots, i_m\}$ be a set of m distinct attributes, also called items. Each transaction T in the database D of transactions, has a unique identifier TID, and contains a set of items, such that $T \subseteq I$. An association rule is an expression $A \Rightarrow B$, where itemsets $A, B \subseteq I$, and $A \cap B = \emptyset$. Each itemset is said to have a support s if $s\%$ of the transactions in D contain the itemset. The association rule is said to have confidence c if $c\%$ of the transactions that contain A also contain B, i.e., $c = \text{support}(A \cup B)/\text{support}(A)$, i.e., the conditional probability that transactions contain the itemset B, given that they contain itemset A. For example, we may have that 80% of the customers that bought bread and milk also bought eggs. The number 80% is the confidence of the rule, while the support of the rule is $\text{support}(A \cup B)$. Data mining of association rules from such databases consists of finding the set of all such rules which meet the user-specified minimum confidence and support values.

The task of data mining for association rules can be broken into two steps:

1. Find all the large k-itemsets for $k = 1, 2, \cdots$.

2
2. Generate rules from these large itemsets. Given that X is a large k-itemset, for every non-empty subset $A \subseteq X$, a rule of the form $A \Rightarrow B$ is generated, where $B = X - A$, and provided that this rule has the required confidence. We refer the reader to [4] for more detail on rule generation. Henceforth, we will deal only with the first step.

In this paper we will discuss the parallelization of the Apriori algorithm on the SGI Challenge shared-memory machine. We begin by presenting a brief discussion of the algorithm.

2.1 The Apriori Algorithm

The naive method of finding large itemsets would be to generate all the 2^m subsets of the universe of m items, count their support by scanning the database, and output those meeting minimum support criterion. It is not hard to see that the naive method exhibits complexity exponential in m, and is quite impractical. Apriori follows the basic iterative structure discussed earlier. However the key observation used is that any subset of a large itemset must also be large. During each iteration of the algorithm only candidates found to be large in the previous iteration are used to generate a new candidate set to be counted during the current iteration. A pruning step eliminates any candidate which has a small subset. The algorithm terminates at step t, if there are no large t-itemsets. The general structure of the algorithm is given in figure 1, and a brief discussion of each step is given below (for details on its performance characteristics, we refer the reader to [4]). In the figure L_k denotes the set of large k-itemsets, and C_k the set of candidate k-itemsets.

```
L_1 = \{\text{large 1-itemsets}\};
for (k = 2; L_{k-1} \neq \emptyset; k++)
    /*Candidate Itemsets generation*/
    C_k = \text{Set of New Candidates};
    /*Support Counting*/
    for all transactions $t \in D$
        for all $k$-subsets $s$ of $t$
            if ($s \in C_k$) $s.count$ += 1;
    /*Large Itemsets generation*/
    L_k = \{c \in C_k|c.count \geq \text{minimum support}\};
Set of all large itemsets = \bigcup_k L_k;
```

Figure 1: The Apriori Algorithm
• **Candidate Itemsets Generation:** The candidates C_k for the k-th pass are generated by joining L_{k-1} with itself, which can be expressed as:

$$x[k] = B[k - 1], A[k - 1] < B[k - 1], \text{ where } A, B \in L_{k-1} \}$$

where $x[a : b]$ denotes items at index a through b in itemset x. Before inserting x into C_k, we test whether all $(k - 1)$-subsets of x are large. This pruning step eliminates any itemset at least one of whose subsets is not large. The candidates are stored in a hash tree to facilitate fast support counting. An interior node of the hash tree at depth d contains a hash table whose cells point to nodes at depth $d + 1$. The size of the hash table, also called the fan-out, is denoted as F. All the itemsets are stored in the leaves. To insert an itemset in C_k, we start at the root, and at depth d we hash on the d-th item in the itemset until we reach a leaf. If the number of itemsets in that leaf exceeds a threshold value, that node is converted into an internal node. We would generally like the fan-out to be large, and the threshold to be small, to facilitate fast support counting. The maximum depth of the tree in iteration k is k.

• **Support Counting:** To count the support of candidate k-itemsets, for each transaction T in the database, we form all k-subsets of T in lexicographical order. This is done by starting at the root and hashing on items 0 through $(n - k + 1)$ of the transaction. If we reach depth d by hashing on item i then we hash on items i through $(n - k + 1) + d$. This is done recursively, until we reach a leaf. At this point we increment the count of all itemsets in the leaf that are contained in the transaction (note: this is the reason for having a small threshold value).

• **Large Itemsets Generation:** Each itemset in C_k with minimum support is inserted into L_k, a sorted linked-list denoting the large k-itemsets. L_k is used in generating the candidates in the next iteration.

We now present a simple example of how $Apriori$ works. Let the database, $D = \{ T_1 = (1, 4, 5), T_2 = (1, 2), T_3 = (3, 4, 5), T_4 = (1, 2, 4, 5) \}$. Let the minimum support value $MS = 2$. Running through the iterations, we get

$$L_1 = \{ \{1\}, \{2\}, \{4\}, \{5\} \}$$

$$C_2 = \{ \{1, 2\}, \{1, 4\}, \{1, 5\}, \{2, 4\}, \{2, 5\}, \{4, 5\} \}$$

$$L_2 = \{ \{1, 2\}, \{1, 4\}, \{1, 5\}, \{4, 5\} \}$$

$$C_3 = \{ \{1, 4, 5\} \}$$

$$L_3 = \{ \{1, 4, 5\} \}$$

Note that while forming C_3 by joining L_2 with itself, we get three potential candidates, $\{1, 2, 4\}$, $\{1, 2, 5\}$, and $\{1, 4, 5\}$. However only $\{1, 4, 5\}$ is a true candidate, and the
first two are eliminated in the pruning step, since they have a 2-subset which is not large (the 2-subset \{2, 4\}, and \{2, 5\} respectively).

3 Parallel Data Mining: Design Issues

In this section we present the design issues in parallel data mining for association rules on shared memory architectures. We separately look at each of the three steps – candidate generation, support counting, and large itemsets generation.

3.1 Candidate Itemsets Generation

Optimized Join and Pruning

Recall that in iteration \(k \), \(C_k \) is generated by joining \(L_{k-1} \) with itself. For example, let \(L_2 = \{AB, AC, AD, AE, BE, BF, BG, DE\} \). The naive way of doing the join is to look at all \(\binom{8}{2} = 28 \) combinations. However, since \(L_{k-1} \) is lexicographically sorted, we partition the itemsets in \(L_{k-1} \) into equivalence classes based on their common \(k - 2 \) prefixes, i.e., the equivalence class of \(a \in L_{k-2} \), is given as

\[
[a] = \{b \in L_{k-1} \mid a[1:k-2] = b[1:k-2]\}
\]

The partition of \(L_2 \) above would give us the equivalence classes: \(S_1 = [A] = \{AB, AC, AD, AE\} \), \(S_2 = [B] = \{BE, BF, BG\} \), and \(S_3 = [D] = \{DE\} \). Let \(\mathcal{I}([X]) = \{b[k-1] \mid b \in [X]\} \), denote the items at the \((k-1)\)-st position. Then \(\mathcal{I}([A]) = \{B, C, D, E\} \), \(\mathcal{I}([B]) = \{E, F, G\} \), and \(\mathcal{I}([D]) = \{E\} \). \(k\)-itemsets are formed only from items within a class by taking all \(\binom{\mid S_i \mid}{2} \) item pairs and prefixing them with the class identifier. For example, consider the items in \(\mathcal{I}([B]) \). By choosing all pairs, we get \(EF, EG, \) and \(FG \), and after prefixing the class identifier we obtain the candidates \(BEF, BFG, \) and \(BFG \). (note: any equivalence class with a single element (e.g. \(S_3 \)) cannot produce a new itemset. Thus such classes can be eliminated from the generation step. However we must still retain them for the pruning step). We thus only have to look at \(\binom{2}{1} + \binom{3}{2} = 6 + 3 = 9 \) combinations. In general we have to consider

\[
\sum_{i=0}^{n} \binom{\mid S_i \mid}{2}
\]

combinations instead of \(\binom{\mid L_{k-1} \mid}{2} \) combinations.

While pruning a candidate we have to check if all \(k \) of its \((k-1)\)-subsets are large. Since the candidate is formed by an item pair from the same class, we need only check for the remaining \(k - 2 \) subsets. Furthermore, assuming all \(S_i \) are lexicographically sorted, these \(k - 2 \) subsets must come from classes greater than the current class. Thus, to generate a candidate, there must be at least \(k - 2 \) equivalence classes after a given class. In other words we need consider only the first \(n - (k - 2) \) equivalence classes. We can even further refine the estimate of how many classes follow a given
class by considering only those classes with elements greater than any of the item pairs. For example, there is no need to form 3-itemsets from S_2. Consider the result of join of items E and F, which produces EF. Although there is a class after $[B]$, namely $[C]$, since it is lexicographically smaller than EF we can safely reject S_2 from further consideration.

Adaptive Hash Table Size (\mathcal{F}): Having equivalence classes also allows us to accurately adapt the hash table size \mathcal{F} for each iteration. For iteration k, and for a given threshold value \mathcal{T}, i.e., the maximum number of k-itemsets per leaf, the total k-itemsets that can be inserted into the tree is given by the expression: $\mathcal{T} \mathcal{F}^k$. Since we can insert up to $\sum_{i=0}^{n} \binom{|S_i|}{2}$ itemsets, we get the expression: $\mathcal{T} \mathcal{F}^k \geq \sum_{i=0}^{n} \binom{|S_i|}{2}$. This can be solved to obtain:

$$\mathcal{F} \geq \left(\frac{\sum_{i=0}^{n} \binom{|S_i|}{2}}{\mathcal{T}} \right)^{1/k}$$

Computation Balancing

Let the number of processors $\mathcal{P} = 3$, $k = 2$, and $L_1 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. There is only 1 resulting equivalence class since the $k - 2$ (= 0) length common prefix is null. The number of 2-itemsets generated by an itemset, called the work load due to itemset i, is given as $w_i = n - i - 1$, for $i = 0, \ldots, n - 1$. For example, itemset 0 contributes nine 2-itemsets $\{01, 02, 03, 04, 05, 06, 07, 08, 09\}$. There are different ways of partitioning this class among \mathcal{P} processors.

Block partitioning: A simple block partition generates the assignment $\mathcal{A}_0 = \{0, 1, 2\}$, $\mathcal{A}_1 = \{3, 4, 5\}$ and $\mathcal{A}_2 = \{6, 7, 8, 9\}$, where \mathcal{A}_p denotes the itemsets assigned to processor p. The resulting workload per processor is: $W_0 = 9 + 8 + 7 = 24$, $W_1 = 6 + 5 + 4 = 15$ and $W_2 = 3 + 2 + 1 = 6$, where $W_p = \sum_i w_i \in \mathcal{A}_p$. We can clearly see that this method suffers from a load imbalance problem.

Interleaved partitioning: A better way is to do an interleaved partition, which results in the assignment $\mathcal{A}_0 = 0, 3, 6, 9$, $\mathcal{A}_1 = 1, 4, 7$ and $\mathcal{A}_2 = 2, 5, 8$. The work load is now given as $W_0 = 9 + 6 + 3 = 18$, $W_1 = 8 + 5 + 2 = 15$ and $W_2 = 7 + 4 + 1 = 12$. The load imbalance is much smaller, however it is still present.

Bitonic Partitioning (Single Equivalence Class): We propose a new partitioning scheme, called **bitonic partitioning**. This scheme is based on the observation that the sum of the workload due to itemsets i and $(2\mathcal{P} - i - 1)$ is a constant:

$$w_i + w_{2\mathcal{P} - i - 1} = n - i - 1 + (n - (2\mathcal{P} - i - 1) - 1) = 2n - 2\mathcal{P}t - 1$$
We can therefore assign itemsets i and $(n - i - 1)$ as one **unit** with uniform work $(2n - 2P - 1)$.

![Diagram showing Work Load per Itemset and Bitonic Partitioning]

Figure 2: Bitonic Partitioning

Let $r = n \mod (2P)$. If $r \neq 0$, then there is an imbalance caused by the last r itemsets. In this case $n = 2Ps - r$, where s is a positive integer. Let $z = 2Ps$. These itemsets can be assigned to each processor as follows:

$$A_p = \{y \mid y = p + j(2P) \text{ or } y = 2P - p - 1 + j(2P), \; j = 0, \ldots, s\}$$ \hspace{1cm} (1)

The remaining r itemsets are assigned as:

$$A_p = A_p \cup \{y < n \mid y = z + p \text{ or } y = z + 2P - 1\}$$ \hspace{1cm} (2)

Going back to our example, we first compute $r = 10 \mod 6 = 4$. The assignments to processors is given as: $A_0 = \{0, 5\}$, $A_1 = \{1, 4\}$, and $A_2 = \{2, 3\}$. We call this approach **bitonic partitioning**, since the itemsets are assigned to processors in an increasing and decreasing fashion, i.e., we assign itemsets 0, 1, 2 to the 3 processors followed by assigning itemsets 5, 4, 3 (instead of 3, 4, 5, as in the interleaved case). The remaining 4 itemsets are assigned using equation 2. The final assignment is given as $A_0 = \{0, 5, 6\}$, $A_1 = \{1, 4, 7\}$, and $A_2 = \{2, 3, 8, 9\}$, with corresponding workload given as $W_0 = 9 + 4 + 3 = 16$, $W_1 = 8 + 5 + 2 = 15$ and $W_2 = 7 + 6 + 1 = 14$. This partition scheme is better than the interleaved scheme and results in almost no imbalance. Figure 2 illustrates the difference between the interleaved and bitonic partitioning schemes.
Bitonic partitioning (Multiple Equivalence Classes): Above we presented the simple case of C_1, where we only had a single equivalence class. In general we may have multiple equivalence classes. Observe that the bitonic scheme presented above is a greedy algorithm, i.e., we sort all the w_i (the work load due to itemset i), extract the itemset with maximum w_i, and assign it to processor 0. Each time we extract the maximum of the remaining itemsets and assign it to the least loaded processor. This greedy strategy generalizes to the multiple equivalence class as well. For a single equivalence class all the work loads are unique. However, for multiple classes all the values may not be distinct. For example, let $L_2 = \{AB, AC, AD, AE, BC, BD, BE, DE\}$. The sorted list based on the work load due to each itemset (ignoring those with no work load) is given as: $\{w_{AB} = 3, w_{AC} = 2, w_{BC} = 2, w_{AD} = 1, w_{BD} = 1\}$. The resulting assignment is $A_0 = \{AB\}$, $A_1 = \{AC, AD\}$, and $A_2 = \{BD\}$. The total work is given as: $W_0 = 3$, $W_1 = 2 + 1 = 3$ and $W_2 = 2 + 1 = 3$.

Adaptive Parallelism

Let m be the total number of items in the database. Then there are potentially $\binom{n}{k}$ large k-itemsets that we would have to count during iteration k (however, fortunately there are usually only a small number of large itemsets). $\binom{n}{k}$ is maximum at the median value of k; after which it starts decreasing (for example, for $\binom{5}{k}$, we have the values $1, 5, 10, 10, 5, 1$ for successive values of k). This suggests a need for some form of dynamic or adaptive parallelization based on the number of large k-itemsets. If there aren’t a sufficient number of large itemsets, then it is better not to parallelize the candidate generation.

Parallel Hash Tree Formation

We could choose to build the candidate hash tree in parallel, or we could let the candidates be temporarily inserted in local lists (or hash trees). This would have to be followed by a step to construct the global hash tree.

In our implementation we build the tree in parallel. We associate a lock with each leaf node in the hash tree. When processor i wants to insert a candidate itemset into the hash tree it starts at the root node and hashes on successive items in the itemsets until it reaches a leaf node. At this point it acquires a lock on this leaf node for mutual exclusion while inserting the itemset. However, if we exceed the threshold of the leaf, we convert the leaf into an internal node (with the lock still set). This implies that we also have to provide a lock for all the internal nodes, and the processors will have to check if any node is acquired along its downward path from the root. This complication only arises at the interface of the leaves and internal nodes.

With this locking mechanism, each process can insert the itemsets in different parts of the hash tree in parallel. However, since we start with a hash tree with the
root as a leaf, there can be a lot of initial contention to acquire the lock at the root. However, we did not find this to be a significant factor on 12 processors.

3.2 Support Counting

For this phase, we could either split the database logically among the processors with a common hash tree, or split the hash tree with each processor traversing the entire database. We will look at each case below.

Partitioned vs. Common Candidate Hash Tree

One approach in parallelizing the support counting step is to split the hash tree among the processors. The decisions for computation balancing directly influence the effectiveness of this approach, since each processor should ideally have the same number of itemsets in its local portion of the hash tree. Another approach is to keep a single common hash tree among all the processors. There are several ways of incrementing the count of itemsets in the common candidate hash tree.

Counter per Itemset: Let assume that each itemset in the candidate hash tree has a single count field associated with it. Since the counts are common, more than one processor may try to access the count field and increment it. We thus need a locking mechanism to provide mutual exclusion among the processors while incrementing the count. This approach may cause contention and degrade the performance. However, since we are using only 12 processors, and the sharing is very fine-grained (at the itemset level), we found this to be the best approach. 1

Partitioned vs. Common Database

We could either choose to logically partition the database among the processors, or each processor can choose to traverse the entire database for incrementing the candidate support counts.

1 we also implemented two other versions described below, but we did not get any improvement in performance. 1) Separate Counters: we associate different count fields with each itemset, one per processor. This would obviate the need for synchronization. However, it may cause false sharing, since the counters would probably share the same cache line, causing the line to be exchanged between the processors even though the processors are accessing different counters. A solution is to pad the counters to the cache line. This eliminates false sharing, but it consumes more memory. 2) Local Counter Array: The other approach is to keep a \(|C_k|\) length local counter array per processor, with an entry for each itemset. This avoids both contention and false sharing. We would expect this to work well for large number of processors. However any gain in the support counting step will be offset by the extra reduction step at the end.
Balanced Database Partitioning: In our implementation we partition the database in a blocked fashion among all the processors. However, this strategy may not result in balanced work per processor. This is because the work load is a function of the length of the transactions. If l_t is the length of the transaction t, then during iteration k of the algorithm, we have to test whether all the $\binom{t}{k}$ subsets of the transaction are contained in C_k. Clearly the complexity of the work load for a transaction is given as $O(\min(l_t^k, l_t^{l_t-k}))$, i.e., it is polynomial in the transaction length. This also implies that a static partitioning won’t work. However, we could devise static heuristics to approximate a balanced partition. For example, one static heuristic is to estimate the maximum number of iterations we expect, say T. We could then partition the database based on the mean estimated work load for each transaction over all iterations, given as $(\sum_{k=1}^{T} \binom{t}{k})/T$. Another approach is to re-partition the database in each iteration. In this case it is important to respect the locality of the partition by moving transactions only when it is absolutely necessary. We plan to investigate different partitioning schemes as part of future work.

3.3 Parallel Data Mining: Algorithms

Based on the discussion in the previous section, we consider the following algorithms for mining association rules in parallel:

- **Common Candidate Partitioned Database (CCPD):** This algorithm uses a common candidate hash tree across all processors, while the database is logically split among them. The hash tree is built in parallel (see section 3.1). Each processor then traverses its local database and counts the support (see section 3.2) for each itemset. Finally, the master process selects the large itemsets.

- **Partitioned Candidate Common Database (PCCD):** This has a partitioned candidate hash tree, but a common database. In this approach we construct a local candidate hash tree per processor. Each processor then traverses the entire database and counts support for itemsets only in its local tree. Finally the master process performs the reduction and selects the large itemsets for the next iteration.

Note that the common candidate common database (CCCD) approach results in duplicated work, while the partitioned candidate partitioned database (PCPD) approach is more or less equivalent to CCPD. For this reason we did not implement these parallelizations.

4 Optimizations

In this section we present some optimizations to the association rule algorithm. These optimizations are beneficial for both sequential and parallel implementation.
4.1 Hash Tree Balancing

Although the computation balancing approach results in balanced work load, it does not guarantee that the resulting hash tree is balanced.

Balancing C_2 (No Pruning): We'll begin by a discussion of tree balancing for C_2, since there is no pruning step in this case. We can balance the hash tree by using the bitonic partitioning scheme described above. We simply replace P, the number of processors with the fan-out \mathcal{F} for the hash table. We label the n large 1-itemsets from 0 to $n - 1$ in lexicographical order, and use $P = \mathcal{F}$ to derive the assignments $\mathcal{A}_0, \ldots, \mathcal{A}_{\mathcal{F} - 1}$ for each processor. Each \mathcal{A}_i is treated as an equivalence class. The hash function is based on these equivalence classes, which is simply given as, $h(i) = \mathcal{A}_i$, for $i = 0, \ldots, \mathcal{F}$. The equivalence classes are implemented via an indirection vector of length n. For example, let $L_1 = \{A, D, E, G, K, M, N, S, T, Z\}$. We first label these as $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Assume that the fan-out $\mathcal{F} = 3$. We thus obtain the 3 equivalence classes $\mathcal{A}_0 = \{0, 5, 6\}$, $\mathcal{A}_1 = \{1, 4, 7\}$, and $\mathcal{A}_2 = \{2, 3, 8, 9\}$, and the indirection vector is shown in table 1. Furthermore, this hash function is applied at all levels of the hash tree. Clearly, this scheme results in a balanced hash tree as compared to the simple $g(i) = i \mod \mathcal{F}$ hash function (which corresponds to the interleaved partitioning scheme from section 3.1).

<table>
<thead>
<tr>
<th>Label</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash Value</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 1: Indirection Vector

Balancing $C_k (k > 2)$: Although items can be pruned for iteration $k > 3$, we use the same bitonic partitioning scheme for C_3 and beyond. Below we show that even in this general case bitonic hash function is very good as compared to the interleaved scheme. Theorem 1 below establishes an upper and lower bound on the number of itemsets per leaf for the bitonic scheme.

Theorem 1 Let $k \geq 1$ denote the iteration number, $\mathcal{I} = \{0, \ldots, d - 1\}$ the set of items, \mathcal{F} the fan-out of the hash table, $\mathcal{T} = \{0, \ldots, \mathcal{F} - 1\}$ the set of equivalence classes modulo \mathcal{F}, $\mathcal{T} = T^k$ the total number of leaves in C_k, and \mathcal{G} the family of all size k ordered subsets of \mathcal{I}, i.e., the set of all k-itemsets that can be constructed from items in \mathcal{I}. Suppose $\frac{d}{2\mathcal{F}}$ is an integer and $\frac{d}{2\mathcal{F}}, \mathcal{F} \geq k$. Define the bitonic hash function $h: \mathcal{I} \rightarrow \mathcal{T}$ by:

$$h(i) = i \mod \mathcal{F} \text{ if } 0 \leq (i \mod 2\mathcal{F}) < \mathcal{F} \text{ and } 2\mathcal{F} - 1 - (i \mod 2\mathcal{F}) \text{ otherwise},$$

11
and the mapping \(H : \mathcal{G} \rightarrow \mathcal{T} \) from \(k \)-itemsets to the leaves of \(C_k \) by \(H(a_1 \ldots, a_k) = (h(a_1), \ldots, h(a_k)) \). Then for every leaf \(B = (b_1, \ldots, b_k) \in \mathcal{T} \), the ratio of the number of \(k \)-itemsets in the leaf \(||H^{-1}(B)|| \) to the average number of itemsets per leaf \(||\mathcal{G}||/||\mathcal{T}|| \) is bounded above and below by the expression,

\[
\exp^{-\frac{1}{2} \frac{\sigma^2}{\|H^{-1}(B)\|}} \leq \frac{\|H^{-1}(B)\|}{||\mathcal{G}||/||\mathcal{T}||} \leq \exp^{\frac{1}{2} \frac{\sigma^2}{\|H^{-1}(B)\|}}.
\]

Proof. Let \(w = d/2\mathcal{F} \). Partition \(\mathcal{T} \) into disjoint \(w \) intervals of size \(2\mathcal{F} \). Split each of the intervals into halves, each of size \(\mathcal{F} \), where the smaller half is called the left block and the other the right block. Let \(B = (b_1, \ldots, b_k) \in \mathcal{T} \) be given. For each \(i, 1 \leq i \leq k \), the elements in \(h^{-1}(b_i) \) are enumerated as

\[
N_{i,1} \overset{\text{def}}{=} b_1, \ N_{i,1,R} \overset{\text{def}}{=} (2\mathcal{F} - 1) - b_1, \ N_{i,2} \overset{\text{def}}{=} 2\mathcal{F} + b_1, \ N_{i,2,R} \overset{\text{def}}{=} (4\mathcal{F} - 1) - b_1, \\
\ldots, \ N_{i,w} \overset{\text{def}}{=} (2w - 2)\mathcal{F} + b_i, \ N_{i,w,R} \overset{\text{def}}{=} (2w\mathcal{F} - 1) - b_i.
\]

Clearly, \(N_{i,j} \) is in the \(j \)th left block and \(N_{i,j,R} \) in the \(j \)th right block. So, for any \(A = (a_1, \ldots, a_k) \in \mathcal{G} \), \(A \in H^{-1}(B) \) if and only if there exist a sequence \(\sigma = [c_1, \ldots, c_k] \in \{L, R\}^k \) and a nondecreasing sequence \(\tau = [j_1, \ldots, j_k] \in \{1, \ldots, w\}^k \) such that

\[
N_{i,j_1,c_1} < \ldots < N_{i,j_k,c_k} \tag{3}
\]

For every \(A = (a_1, \ldots, a_k) \in H^{-1}(B) \), there is a unique \((\sigma, \tau)\) satisfying (3). So, \(||H^{-1}(B)|| \) is the number of \((\sigma, \tau)\) satisfying (3). Let us fix \(\sigma \) and then partition \(\sigma \) into maximal subsequences, each consisting of a single value. Then, for every \(\tau, (\sigma, \tau) \) satisfies (3) if and only if

\[
N_{p,j_p,c_p} < \ldots < N_{q,j_q,c_q} \tag{4}
\]

holds for every maximal subsequence \([j_p, \ldots, j_q]\). Note here for any maximal subsequence \([j_p, \ldots, j_q]\), that (i) if \(p = q \), then (4) holds regardless of \(c_p \), (ii) if \(p + 1 = q \), then (4) holds with \(c_p = 0 \) and \(c_q = 1 \), and (iii) if \(p < q \) and if (4) holds, then \([c_p, \ldots, c_q]\) is nondecreasing, where \(L \) precedes \(R \). Furthermore, we claim that (iv) if \(p < q \), then there are at most 2 choices for \([c_p, \ldots, c_q]\) to satisfy (4). Assume, by way of contradiction, that there are three subsequences to satisfy (4) and take the largest and the smallest of the three. By (iii), they are \(L_u R^{u+1-v} \) and \(L^v R^{v+1-u} \) for some \(u, v \) with \(u \leq v - 2 \). Since (4) holds for both subsequences, we have \(N_{u,j_u,L} < N_{u+1,j_{u+1},L} \) and \(N_{u,j_u,R} < N_{u+1,j_{u+1},R} \). However, this is impossible because \(N_{u,j_u,L} < N_{u+1,j_{u+1},L} \) if and only if \(N_{u,j_u,R} > N_{u+1,j_{u+1},R} \).

Now from (iv) it follows that \(||H^{-1}(B)|| \) is maximized if \(B \) guarantees the existence of two \([c_p, \ldots, c_q]\) to satisfy (4) for every maximal subsequence. An example of such \(B \) is \((0, 1, \ldots, k-1)\). For this specific example, \((\sigma, \tau)\) satisfies (3) if and only if for every maximal subsequence \([j_p, \ldots, j_q]\) of \(\sigma \), \([c_p, \ldots, c_q]\) is either \(L^{p+q} \) or \(L^{q+1} \). This implies that \(||H^{-1}(0, \ldots, k-1)|| \) is equal to the number of ways of choosing a
block from the $2w$ blocks k times under the constraint that each right block can be chosen at most once. Thus,

$$
\|H^{-1}(0, \ldots, k-1)\| = \sum_{i=0}^{k} {w + i - 1 \choose i} {w \choose k - i} < \sum_{i=0}^{k} {w + k - 1 \choose i} {w \choose k - i} = {2w + k - 1 \choose k}.
$$

By dividing the right hand side by $\|\mathcal{G}\|/\|\mathcal{T}\|$, which is $\binom{2w}{k}/\mathcal{F}^k$, we get the upper bound

$$
\left(\frac{2w + k - 1}{2w - k - 1/\mathcal{F}}\right)^k = \left(1 + \frac{k - 1}{2w}\right)^k < (1 + \frac{k}{2w})^k < e^{k^2/2w}.
$$

On the other hand, $\|H^{-1}(B)\|$ is minimized if B does not allow to choose two a's from the same block. An example of such B is $(0, 0, \ldots, 0)$. For this specific example, $\|H^{-1}(B)\| = \binom{2w}{k}$. By dividing this number by $\|\mathcal{G}\|/\|\mathcal{T}\|$, we get the lower bound

$$
\left(\frac{2w - k + 1}{2w}\right)^k = (1 - \frac{k - 1}{2w})^k > e^{-k^2/2w}.
$$

This proves the theorem.

We obtain, by a similar analysis, the same lower and upper bound for the interleaved hash function also. However, the two functions behave differently. Note that the average number of k-itemsets per leaf $\|\mathcal{G}\|/\|\mathcal{T}\|$ is $\binom{2w}{k}/\mathcal{F}^k \approx (2w/k)^k$. Let $\alpha(w)$ denote this polynomial. We say that a leaf has a capacity close to the average if its capacity, which is a polynomial in w of degree at most k, is of the form $(2w/k)^k + \beta(w)$, with $\beta(w)$ being a polynomial of degree at most $k - 2$.

For the bitonic hash function, a leaf specified by the hash values (a_1, \ldots, a_k) has capacity close to $\alpha(w)$ if and only if $a_i \neq a_{i+1}$ for all i, $1 \leq i \leq k - 1$. Thus, there are $\mathcal{F}(\mathcal{F} - 1)^{k-1}$ such leaves, and so, $(1 - \mathcal{F}^{-1})^{k-1}$ fraction of the leaves have capacity close to $\alpha(w)$. Note also that clearly, $(1 - \mathcal{F}^{-1})^{k-1}$ approaches 1.

On the other hand, for the interleaved hash function, a leaf specified by (a_1, \ldots, a_k) has capacity close to $\alpha(w)$ if and only if $a_i \neq a_{i+1}$ for all i, and the number of i such that $a_i < a_{i+1}$ is equal to $(k - 1)/2$. So, there is no such leaf if k is even. For odd $k \geq 3$, the ratio of the “good” leaves decreases as k increases, achieving a maximum of $2/3$ when $k = 3$. Thus, at most $2/3$ of the leaves achieve the average.

From the above discussion it is clear that while both the simple and bitonic hash function have the same maximum and minimum bounds, the distribution of the number of itemsets per leaf is quite different. While a significant portion of the leaves are close to the average for the bitonic case, only a few are close in the simple hash function case.

4.2 Short-circuited Subset Checking

Recall that while counting the support, once we reach a leaf node, we check whether all the items in the leaf are contained in the transaction. This node is then marked as VISITED to avoid processing it more than once for the same transaction. A further optimization is to associate a VISITED flag with each node in the hash tree. We mark an internal node as VISITED the first time we touch it. This enables
us to preempt the search as soon as possible. We would expect this optimization to be of greatest benefit when the transaction sizes are large. For example, if our transaction is \(T = \{A, B, C, D, E\} \), \(k = 3 \), fan-out = 2, then all the 3-subsets of \(T \) are: \{ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE, CDE\}. Figure 3 shows the candidate hash tree \(C_3 \). We have to increment the support of every subset of \(T \) contained in \(C_3 \). We begin with the subset \(ABC \), and hash to node 11 and process all the itemsets. In this downward path from the root we mark nodes 1, 4, and 11 as visited. We then process subset \(ADB \), and mark node 10. Now consider the subset \(CDE \). We see in this case that node 1 has already been marked, and we can preempt the processing at this very stage. This approach can however consume a lot of memory. For a given fan-out \(\mathcal{F} \), for iteration \(k \), we need additional memory of size \(\mathcal{F}^k \) to store the flags. In the parallel implementation we have to keep a VISITED field for each processor, bringing the memory requirement to \(p \cdot \mathcal{F}^k \). This can get very large, especially with increasing number of processors.

Reducing Memory Requirement

We now present a way to reduce the memory from \(\mathcal{F}^k \) to only \(k \cdot \mathcal{F} \). This is based on the observation that we only need to maintain a vector of length \(\mathcal{F} \) at each depth (which is equal to the current iteration, \(k \)). Since we generate the \(k \) subsets of a transaction in lexicographical order, once we hash on item \(i \), with the hash value \(h(i) \), at depth \(i \), we are guaranteed to have looked at all subsets of the transaction whose \(i \)-th item hashes to the same hash value. Thus we need only one array entry for each hash value at a given depth, i.e, we only need an array of length equal to the
fan-out \mathcal{F}. Each time we go down a level we draw a new unique flag value from a simple counter. The flag value remains the same while going up the hash tree. This process is illustrated in figure 4. Let the transaction $T = \{A, B, C, D, E\}$, $k = 3$, fan-out $\mathcal{F} = 2$. So we need an array \mathcal{H} of size $k \cdot \mathcal{F} = 3 \cdot 2 = 6$, for our short-circuit optimization. The hash value of $A, C,$ and E is 1, while the hash value of B and D is 0. We have to look at all the 3-subsets of T in lexicographical order. The first subset is ABC. We initialize our flag value counter to 1. We hash on item A at the root of C_3 (given in figure 3) at depth 0, set the array element $\mathcal{H}(0,1)$ to 1 (note: For $\mathcal{H}(0,1)$, the row represents the depth, and the column the hash value. We then hash on B at depth 2, and set the $\mathcal{H}(1,0)$ to 2. After hashing on C at depth 3, we mark $\mathcal{H}(2,1)$ with 3. At this point we are at the node 11 in C_3. We process all the items in its children (the leaf node). At depth 3, we look at the next item in the itemset, D, and mark $\mathcal{H}(2,0)$ with 3. However, when we try to process ABE, we see that $\mathcal{H}(2,1)$ has already been marked, so we move to the next subset ACD. We have to move up a depth, i.e., go go back to depth 2 and look at the item, C, and mark $\mathcal{H}(1,1)$ with 2. When we descend to depth 3, we invoke a new flag value 4, and mark $\mathcal{H}(2,0)$ with 4. This process continues till all subsets have been processed. To realize the effectiveness of this optimization, consider the case of CDE. In this case we can pre-empt the search at depth 0, since all hash values have been visited (see the last step in figure 4). For the parallel version we keep a local copy of a $k \cdot \mathcal{F}$ sized array for each processor (total $k \cdot \mathcal{F} \cdot \mathcal{P}$). This approach avoids the problem of false sharing, and also conserves memory.
5 Experimental Evaluation

5.1 Experimental Setup

<table>
<thead>
<tr>
<th>Database</th>
<th>T</th>
<th>I</th>
<th>D</th>
<th>Total Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>T5.I2.D100K</td>
<td>5</td>
<td>2</td>
<td>100,000</td>
<td>2.6MB</td>
</tr>
<tr>
<td>T10.I4.D100K</td>
<td>10</td>
<td>4</td>
<td>100,000</td>
<td>4.3MB</td>
</tr>
<tr>
<td>T15.I4.D100K</td>
<td>15</td>
<td>4</td>
<td>100,000</td>
<td>6.2MB</td>
</tr>
<tr>
<td>T20.I6.D100K</td>
<td>20</td>
<td>6</td>
<td>100,000</td>
<td>7.9MB</td>
</tr>
<tr>
<td>T10.I6.D400K</td>
<td>10</td>
<td>6</td>
<td>400,000</td>
<td>17.1MB</td>
</tr>
<tr>
<td>T10.I6.D800K</td>
<td>10</td>
<td>6</td>
<td>800,000</td>
<td>34.6MB</td>
</tr>
<tr>
<td>T10.I6.D1600K</td>
<td>10</td>
<td>6</td>
<td>1,600,000</td>
<td>69.8MB</td>
</tr>
</tbody>
</table>

Table 2: Database properties

All the experiments were performed on a 12-node SGI Power Challenge shared-memory multiprocessor. Each node is a MIPS processor running at 100MHz. There’s a total of 256MB of main memory. The primary cache size is 16 KB (64 bytes cache line size), with different instruction and data caches, while the secondary cache is 1 MB (128 bytes cache line size). The databases are stored on an attached 2GB disk. All processors run IRIX 5.3, and data is obtained from the disk via a NFS file server.

![Large Itemsets per Iteration](image)

Figure 5: Large Itemsets per Iteration

We used different synthetic databases with size ranging form 3MB to 70MB, generated using the procedure described in [4]. These database mimic the transactions
in a retailing environment. Each transaction has a unique ID followed by a list of items bought in that transaction. The data-mining provides information about the set of items generally bought together. Table 2 shows the databases used and their properties. The number of transactions is denoted as $|D|$, average transaction size as $|T|$, and the average maximal potentially large itemset size as $|I|$. The number of maximal potentially large itemsets $|L| = 2000$, and the number of items $N = 1000$. We refer the reader to [4] for more detail on the database generation. All the experiments were performed with a minimum support value of 0.5%, and a leaf threshold of 2 (i.e., max of 2 itemsets per leaf). Figure 5 shows the number of iterations and the number of large itemsets found for different databases. In the following sections all the results are reported for the CCPD parallelization. We do not present any results for the PCCD approach since it performs very poorly, and results in a speed-down on more than one processor.

5.2 Computation and Hash Tree Balancing

![Graph showing % Improvement across Databases](image)

Figure 6: Effect of Computation and Hash Tree Balancing

Figure 6 shows the improvement in the performance obtained by applying the computation balancing optimization (discussed in section 3.1), and the hash tree balancing optimization (described in section 4.1). The figure shows the % improvement over a run without any optimizations. Results are presented for different databases and on different number of processors. We first consider only the computation balancing optimization (COMP) using the multiple equivalence classes algorithm. As expected this doesn't improve the execution time for the uni-processor case, as there is nothing
to balance. However, it is very effective on multiple processors. We get an improvement of around 20% on 8 processors. The second column (for all processors) shows the benefit of just balancing the hash tree (TREE) using our bitonic hashing (the unoptimized version uses the simple mod interleaved hash function). Hash tree balancing by itself is an extremely effective optimization. It improves the performance by about 30% even on uni-processors. On smaller databases and 8 processors however it is not as good as the COMP optimization. The reason that the hash tree balancing is not sufficient to offset inherent load imbalance in the candidate generation in this case. The most effective approach is to apply both optimizations at the same time (COMP-TREE). The combined effect is sufficient to push the improvements in the 40% range in the multiple-processor case. On 1 processor only hash tree balancing is beneficial, since computation balancing only adds extra cost.

5.3 Short-circuited Subset Checking

![Graph showing % Improvement vs. # procs across Databases]

Figure 7: Effect of Short-circuited Subset Checking

Table 7 shows the improvement due to the short-circuited subset checking optimization with respect to the unoptimized version (in the unoptimized version only the leaves are marked as visited, to avoid counting an itemset more than once). The results are presented for different number of processors across different databases. The results indicate that while there is some improvement for databases with small transaction sizes, the optimization is most effective when the transaction size is large. In this case we get improvements of around 25% over the unoptimized version.

To gain further insight into this optimization, consider figure 8. It shows the percentage improvement obtained per iteration on applying this optimization on the T20.I6.D100K database. It shows results only for the uni-processor case, however similar results were obtained on more processors. We observe that as the iteration k
increases, there is more opportunity for short-circuiting the subset checking, and we get increasing benefits of up to 60%. The improvements start to fall off at the high end where the number of candidates becomes small, resulting in a small hash tree and less opportunity for short-circuiting. It becomes clear that is an extremely effective optimization for larger transaction sizes, and in cases where there are large number of candidate k-itemsets.

5.4 Common Candidate Hash Tree: Contention

Recall our discussion in section 3.2 on keeping a common hash tree among the processors, with a support counter per itemset. Mutual exclusion for incrementing the
counter is provided by a locking mechanism at the itemset level. Here we study the amount of potential contention that may be caused in this approach. This is done by eliminating the locks altogether (NOLCK) and measuring the execution time. Figure 9 shows the % difference in execution time of NOLCK with respect to the version with the locking mechanism for each itemset. Note that the NOLCK time also eliminates the extra instructions to acquire and release the locks, and thus represents an upper bound on the amount of contention. For all the databases and processors we get a difference within 4%, which leads us to conclude that contention is not a big problem due to the fine-grained locking of the support counters at the itemset level.

5.5 Parallel Performance

![Graphs showing speedup](image)

Figure 10: CCPD: Speed-up a) without reading time b) with reading time

Figure 10 presents the speedups obtained on different databases and different processors for the CCPD parallelization. The results presented on CCPD use all the optimization studied above – computation balancing, hash tree balancing and short-circuited subset checking. The figure on the left presents the speed-up without taking the initial database reading time into account. We observe that as the number of transactions increase we get increasing speed-up, with a speed-up of more than 8 on 12 processors for the largest database (T10.I6.D1600K, with 1.6 million transactions). However, if we were to account for the database reading time, then we get speed-up of only 4 on 12 processors.

Table 3 shows the total time spent reading the database, and the percentage of total time this constitutes on different number of processors. The results indicate
<table>
<thead>
<tr>
<th>Database</th>
<th>Reading Time</th>
<th>(P = 1)</th>
<th>(P = 2)</th>
<th>(P = 4)</th>
<th>(P = 8)</th>
<th>(P = 12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T5.I2.D100K</td>
<td>9.1s</td>
<td>39.9</td>
<td>43.8</td>
<td>52.6</td>
<td>56.8</td>
<td>59.0</td>
</tr>
<tr>
<td>T10.I4.D100K</td>
<td>13.7s</td>
<td>15.6</td>
<td>22.2</td>
<td>29.3</td>
<td>36.6</td>
<td>39.8</td>
</tr>
<tr>
<td>T15.I4.D100K</td>
<td>18.9s</td>
<td>8.9</td>
<td>14.0</td>
<td>21.6</td>
<td>29.2</td>
<td>32.8</td>
</tr>
<tr>
<td>T20.I6.D100K</td>
<td>24.1s</td>
<td>4.9</td>
<td>8.1</td>
<td>12.8</td>
<td>18.6</td>
<td>22.4</td>
</tr>
<tr>
<td>T10.I6.D400K</td>
<td>55.2s</td>
<td>16.8</td>
<td>24.7</td>
<td>36.4</td>
<td>48.0</td>
<td>53.8</td>
</tr>
<tr>
<td>T10.I6.D800K</td>
<td>109.0s</td>
<td>19.0</td>
<td>29.8</td>
<td>43.0</td>
<td>56.0</td>
<td>62.9</td>
</tr>
<tr>
<td>T10.I6.D1600K</td>
<td>222.0s</td>
<td>19.4</td>
<td>28.6</td>
<td>44.9</td>
<td>59.4</td>
<td>66.4</td>
</tr>
</tbody>
</table>

Table 3: Database Reading Time

that on 12 processors upto 60% of the time can be spent just on I/O. This suggests a great need for parallel I/O techniques for effective parallelization of data mining applications since by its very nature data mining algorithms must operate on large amounts of data.

6 Conclusions

In this paper, we presented a parallel implementation of the Apriori algorithm on the SGI Power Challenge shared memory multi-processor. We also discussed a set of optimizations which include optimized join and pruning, computation balancing for candidate generation, hash tree balancing, and short-circuited subset checking. We then presented experimental results on each of these. Improvements of more than 40% were obtained for the computation and hash tree balancing. The short-circuited optimization was found to be extremely effective for databases with large transaction sizes. Finally we reported the parallel performance of the algorithm. While we achieved good speed-up, we observed a need for parallel I/O techniques for further performance gains.
References

