REPORT DOCUMENTATION PAGE

1. AGENCY USE ONLY (Leave blank)
2. REPORT DATE
 Final 1 Jul 92 – 30 Apr 94
3. REPORT TYPE AND DATES COVERED
4. TITLE AND SUBTITLE
 Nanolithography of Semiconductor Structures Using Scanning Probe Microscopy
5. FUNDING NUMBERS
 DAAL03-92-G-0292
6. AUTHOR(S)
 Dror Sarid
7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES)
 University of Arizona
 Tucson, AZ 85721
8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 U.S. Army Research Office
 P.O. Box 12211
 Research Triangle Park, NC 27709-2211
10. SPONSORING / MONITORING AGENCY REPORT NUMBER
 ARO 30557.1-EL-SDI
11. SUPPLEMENTARY NOTES
 The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
 Approved for public release: distribution unlimited.
12b. DISTRIBUTION CODE
 19960524 150
13. ABSTRACT (Maximum 200 words)
 The work reported here consisted of the fabrication and characterization of Si nano- and micro-structures useful for electronic and optical applications. The fabrications were all done in an ultrahigh vacuum chamber (UHV), and the characterization was accomplished by using air and UHV scanning tunneling microscopy (STM), atomic force microscopy (AFM), infrared (IR) spectra, high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and optical microscopy.
14. SUBJECT TERMS
15. NUMBER OF PAGES
16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT
 UNCLASSIFIED
18. SECURITY CLASSIFICATION OF THIS PAGE
 UNCLASSIFIED
19. SECURITY CLASSIFICATION OF ABSTRACT
 UNCLASSIFIED
20. LIMITATION OF ABSTRACT
 UL

NSS 7540-01-280-5500
DTIC QUALITY INSPECTED 1
FINAL REPORT TO THE ARO
NANOLITHOGRAPHY OF SEMICONDUCTOR STRUCTURES
USING SCANNING PROBE MICROSCOPY
Dror Sarid

Scanning Probe Microscopy Laboratory
Optical Sciences Center, University of Arizona, Tucson AZ 85721

1 Abstract

The work reported here consisted of the fabrication and characterization of Si nano- and micro-structures useful for electronic and optical applications. The fabrications were all done in an ultrahigh vacuum chamber (UHV), and the characterization was accomplished by using air and UHV scanning tunneling microscopy (STM), atomic force microscopy (AFM), infrared (IR) spectra, high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and optical microscopy.

2 Fabrication of SiC films

3 Fabrication of patterned SiC films

We exploited the fact that fullerenes do not adsorb on SiO₂, even at elevated temperatures, while they decompose and form SiC when incident on a bare Si surface.
Therefore, we obtained SiO$_2$ patterned Si wafers, heated them to around 800°C, and
bombarded them with fullerenes. The samples were removed from the UHV cham-
ber, characterized, rinsed in HF and characterized again. The results demonstrated
that one can use this method to obtain patterned SiC films. The results, that de-
monstrated that one can obtain patterned SiC films, will appear in Nanotechnology
(in print, 1995).

4 Dynamics of photoexcited charge carriers

We have demonstrated that the STM can be operated on a nsec time scale using, for
example, the beat of the longitudinal modes of a HeNe laser at the tip-semiconductor
junction. We are currently developing a similar method that employs fast laser diodes,
and plan on characterizing the lifetime of charge carriers, on and around nanostruc-
tures, with nm and nsec resolutions. This work appeared in Appl. Phys. Lett. 64,
1995).

5 Note

Part of this work appeared in The Update, a quarterly newsletter that describes
current technologies that have evolved from the ballistic Missile Defense Organization
(BMDO)-funded projects.