Naval Electromagnetic Radiation Facilities Description

Author(s): John Crim

Performing Organization Name(s) and Address(es):

Commander, Naval Air Warfare Center Aircraft Division
22541 Millstone Road
Paxtuxent River, Maryland 20670-5304

Sponsoring/Monitoring Agency Name(s) and Address(es):

Naval Air Systems Command
Department of the Navy
1421 Jefferson Davis Highway
Arlington, VA 22243

Abstract (Maximum 200 words):

This presentation shows the facilities available at the Naval Electromagnetic Radiation Facility. Some areas include: Test areas, Continuous Steel Ground Plane, Aircraft Anechoic Test Facility, the hangar, Test Vans, Telemetry Van Layout, Radar Transmitters, Amplifiers, Modulation Sources, etc.

19960506 147

Subject Terms: Electromagnetic, Radiation, Aircraft Anechoic Test Facility, Waveforms, Pulse

Security Classification of Report: UNCLASSIFIED

Security Classification of this Page: UNCLASSIFIED

Security Classification of Abstract: N/A

NSN 7540-01-280-5500

Prescribed by ANSI Std. Z39-16
Presentational NERF Capabilities

Attached material has been submitted for public release. Please review the material and complete the form. Please make any necessary changes by bracketing the material to be changed or deleted and indicating why the change must be made (i.e., security, accuracy, or policy). Do not cross out material - use brackets.

Security Review

A. Indicate type cognizance your division has, if partial or none, add the cognizant code.

- PRIME
- PARTIAL
- NONE

B. What contract is this release associated with? Contract #: ____________________________

C. Does this document contain critical technology as listed in the Military Critical Technologies List (MCTL)?

- YES
- NO

D. Is this document classified?

- YES
- NO

E. If other than UNCLASSIFIED, have you paragraph marked the classified parts and cited supporting rationale?

- YES
- NO

II. General Review

A. Is the matter, as submitted, factually accurate?

- YES
- NO

B. Is review outside NAVAIRSYSCOM considered necessary?

- YES
- NO

C. Do you recommend release of the attached material?

- YES
- NO

D. If the answer to (C) above is NO, check one: (1) Objection is based on security.

(2) Objection is based on reasons other than security. If (2), indicate why under remarks.

E. Signature and code of person(s) completing this form:

F. Remarks:

DEADLINE: ASAP

AIR-7.4.1: ____________________________ AIR-7.4.1: ____________________________

PLEASE RETURN TO ROOM 1260, JP1-- DO NOT PLACE IN INTRAOFFICE MAIL.

GRACE - 604-2822, X4605
Naval Electromagnetic Radiation Facility Capabilities Description
Naval

Electromagnetic Radiation Facility

Capabilities Description

Naval Electromagnetic Radiation Facility January 2, 1996
Facilities

- Test Areas
- Test Vans
- Transmitter Equipment
- E-Field Calibration Equipment
Test Areas

- **Hangar Apron** (embedded ground plane)

- **AATF**
Test Areas

- Inside Hangar
- Inside AATF

Naval Electromagnetic Radiation Facility

January 2, 1996
Continuous Steel Ground Plane

- 100' Wide x 240' Long Steel Ground Plane with a modified set of Alameda Chocks with blast deflector
 - Electric Service
 - 480VAC, 60 Hz, 3-Phase Delta, 400 Amps (8 100 AMP Receptacles)
 - 120/208 VAC, 60 Hz, 3-Phase Wye 100 KVA Service
 - 115VAC, 400 Hz, 3-Phase Delta, 200 KVA Service (Standard DOD Aircraft Plugs)
Hangar Apron

- 300' wide x 600' long Apron in front of the Shielded Hangar
 - Embedded 200' wide x 400' long, wire grid (10' x 10') ground plane under the concrete
 - Electric Service
 480VAC, 60 Hz, 3-Phase Delta, 400 Amps (5 100 AMP Receptacles)
 - Aircraft Turns Allowed

Naval Electromagnetic Radiation Facility
January 2, 1996
Aircraft Anechoic Test Facility (limited frequency coverage)

- Electric Service
 - 480VAC, 60 Hz, 3-Phase Delta
 - 120/208 VAC, 60 Hz, 3-Phase Wye 100 A Service
 - Standard DOD 28VDC Aircraft Power
 - 115VAC, 400 Hz, 3-Phase Delta, 200 kVA Service (Standard DOD Aircraft Plugs)
Inside the Shielded Hangar (limited frequency coverage)

- Electric Service

480VAC, 60 Hz, 3-Phase Delta, 400 Amp Service

120/208 VAC, 60 Hz, 3-Phase Wye 100 KVA Service

Standard DOD 28VDC Aircraft Power

115VAC, 400 Hz, 3-Phase Delta, 200 KVA Service (Standard DOD Aircraft Plugs)
Frequencies and power levels are limited to those frequencies and power levels for which safety of personnel and equipment can be maintained and must be evaluated on a case by case basis. Generally, frequencies above 1 GHz are ok.
TV#1

- Contains Class A High Power Amplifier Systems
- 45' Semitrailer
- Self Contained Heating and Cooling
- Two Separate, Completely Shielded Rooms
- 30' Waveguide Cart Attached to Side
- Requires 3 480VAC, 60 Hz, 3-phase, 100 Amp Standard GSE Power Receptacles

Naval Electromagnetic Radiation Facility

January 2, 1996
TV#2

- Contains the Cober 1-34 GHz Magnetron Transmitter
- 45' Semitrailer
- Self Contained Heating and Cooling
- 30' Waveguide Cart Attached to Side
- Requires 480VAC, 60 Hz, 3-phase, 100 Amp Standard GSE Power Receptacle

Naval Electromagnetic Radiation Facility

January 2, 1996
TV#3

- Contains the B&C (400 & 900 MHz) Transmitters
- 45' Semitrailer
- Self Contained Heating and Cooling
- Requires 480VAC, 60 Hz, 3-phase, 100 Amp Standard GSE Power Receptacles
TV#4

- Contains the A Band (200 MHz) Transmitter
- 25' Lowboy Semitrailer
- Self Contained Heating and Cooling
- Requires 480VAC, 60 Hz, 3-phase, 100 Amp Standard GSE Power Receptacle (1 50 Amp min.)
Telemetry Van

- 8' x 25' Shielded Military COMM Van
- Self Contained Heating and Cooling
- 120/208, 60 Hz Power Available
- Minimum 50' of Power Cord
- Requires 408VAC, 60 Hz, 3-phase Delta, 100 Amp GSE Receptacle
- Built In Work Benches and Open Floor Space
- Bulkhead Feedthrus, VHF Radio

Naval Electromagnetic Radiation Facility

January 2, 1996
Radar Transmitters

- Discrete Frequency Tuned
- Magnetron and Tetrode Tube Based
- Antenna Scan Parameter Simulations
- No EW Modulation Capabilities
Radar Transmitter Parameters

<table>
<thead>
<tr>
<th>Transmitter</th>
<th>Band</th>
<th>Freq Range (GHz)</th>
<th>PW (μS)</th>
<th>PRF (Hz)</th>
<th>Max Duty Cycle</th>
<th>Max Peak Power (KW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-6 A</td>
<td>A</td>
<td>.2-.24</td>
<td>1-200</td>
<td><1000</td>
<td>.01</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.007</td>
<td>325</td>
</tr>
<tr>
<td>H-6 B</td>
<td>B</td>
<td>.39-.48</td>
<td>1-200</td>
<td><1000</td>
<td>.01</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.007</td>
<td>325</td>
</tr>
<tr>
<td>H-6 C</td>
<td>C</td>
<td>.870-.940</td>
<td>1-50</td>
<td><1000</td>
<td>.01</td>
<td>100</td>
</tr>
<tr>
<td>Cober</td>
<td>D</td>
<td>1.22-1.35</td>
<td>1,1.5,2,3,4</td>
<td><1000</td>
<td>.001</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>2.88+.03</td>
<td>.5,1.5,2</td>
<td><1600</td>
<td>.0008</td>
<td>2850</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>3.1-3.65</td>
<td>1,1.5</td>
<td><1466</td>
<td>.002</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>5.4-5.9</td>
<td>.5,1,1.5,2</td>
<td><2000</td>
<td>.001</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>14-15.2</td>
<td>1,1.5,2</td>
<td><2000</td>
<td>.001</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>35</td>
<td>.5,1</td>
<td><2000</td>
<td>.001</td>
<td>125</td>
</tr>
</tbody>
</table>
Radar Transmit Antennas

<table>
<thead>
<tr>
<th>Band</th>
<th>Antenna Make</th>
<th>Part Number</th>
<th>Freq. (MHz)</th>
<th>Gain (dBi)</th>
<th>3 dB BW E/H Plane</th>
<th>2M Illum. Area (ft²)</th>
<th>E Plane Width (M)</th>
<th>H Plane Width (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Chu Corner Reflector</td>
<td>CA-3524</td>
<td>195</td>
<td>12.8</td>
<td>56.5/37</td>
<td>30</td>
<td>2.1</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>220</td>
<td>11.1</td>
<td>50/38.5</td>
<td>19.8</td>
<td>1.3</td>
<td>1.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>245</td>
<td>12.9</td>
<td>44/35.5</td>
<td>20.6</td>
<td>1.6</td>
<td>1.28</td>
</tr>
<tr>
<td>B</td>
<td>Chu Corner Reflector</td>
<td>CA-3525</td>
<td>385</td>
<td>11.5</td>
<td>53.5/45</td>
<td>35.5</td>
<td>2</td>
<td>1.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>435</td>
<td>11.8</td>
<td>55.5/40.5</td>
<td>33.2</td>
<td>2.1</td>
<td>1.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>485</td>
<td>12.8</td>
<td>48.5/35.5</td>
<td>24.5</td>
<td>1.78</td>
<td>1.28</td>
</tr>
<tr>
<td>C</td>
<td>Seavey Engr Assoc Horn</td>
<td>SGA-07</td>
<td>850</td>
<td>15.1</td>
<td>27/30</td>
<td>10.3</td>
<td>.96</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>900</td>
<td>15.5</td>
<td>27/30</td>
<td>10.3</td>
<td>.96</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>910</td>
<td>15.6</td>
<td>27/30</td>
<td>10.3</td>
<td>.96</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>940</td>
<td>15.8</td>
<td>27/30</td>
<td>10.3</td>
<td>.96</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>Scientific Atlanta Horn</td>
<td>12-1.1</td>
<td>1250</td>
<td>15.2</td>
<td>30/27</td>
<td>10.3</td>
<td>1</td>
<td>.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1300</td>
<td>15.5</td>
<td>30/27</td>
<td>10.3</td>
<td>1</td>
<td>.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1350</td>
<td>15.7</td>
<td>30/27</td>
<td>10.3</td>
<td>1</td>
<td>.96</td>
</tr>
<tr>
<td>E</td>
<td>Seavey Engr Assoc Horn</td>
<td>HPH-27</td>
<td>2700</td>
<td>16.7</td>
<td>30/27</td>
<td>10.3</td>
<td>1</td>
<td>.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2800</td>
<td>17</td>
<td>24/22</td>
<td>7.0</td>
<td>.85</td>
<td>.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2900</td>
<td>17.3</td>
<td>23/27</td>
<td>8.3</td>
<td>.81</td>
<td>.96</td>
</tr>
<tr>
<td>F</td>
<td>Scientific Atlanta Horn</td>
<td>12-2.60</td>
<td>3100</td>
<td>18.2</td>
<td>23/22</td>
<td>6.7</td>
<td>.81</td>
<td>.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3600</td>
<td>19.15</td>
<td>23/22</td>
<td>6.7</td>
<td>.81</td>
<td>.77</td>
</tr>
<tr>
<td>G</td>
<td>Scientific Atlanta Horn</td>
<td>12-3.9</td>
<td>5650</td>
<td>19.38</td>
<td>23/22</td>
<td>6.7</td>
<td>.81</td>
<td>.77</td>
</tr>
<tr>
<td>I</td>
<td>Systron Donner Horn</td>
<td>HPH-520</td>
<td>9200</td>
<td>20.05</td>
<td>16/14</td>
<td>3</td>
<td>.56</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9400</td>
<td>20.22</td>
<td>16/14</td>
<td>3</td>
<td>.56</td>
<td>.49</td>
</tr>
<tr>
<td>J</td>
<td>Scientific Atlanta Horn</td>
<td>12-12</td>
<td>14 GHz</td>
<td>24.15</td>
<td>9/10</td>
<td>1.1</td>
<td>.31</td>
<td>.34</td>
</tr>
<tr>
<td>K</td>
<td>Scientific Atlanta Horn</td>
<td>12A-26</td>
<td>35 GHz</td>
<td>24.7</td>
<td>9/10</td>
<td>1.1</td>
<td>.31</td>
<td>.34</td>
</tr>
<tr>
<td>K</td>
<td>4' Dish</td>
<td>SPN-42</td>
<td>35 GHz</td>
<td>48</td>
<td>0.5/0.5</td>
<td>1 @ 80'</td>
<td>.3</td>
<td>.3</td>
</tr>
</tbody>
</table>
Radar Transmitters
Maximum Peak Power Densities at the Near Field Boundary

<table>
<thead>
<tr>
<th>BAND</th>
<th>DISTANCE (M)</th>
<th>PEAK POWER DENSITY (MW/CM²)</th>
<th>PEAK FIELD INTENSITY (V/M)</th>
<th>DUTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6.5</td>
<td>2,131</td>
<td>2,835</td>
<td>.007</td>
</tr>
<tr>
<td>B</td>
<td>3.5</td>
<td>1,188</td>
<td>2,116</td>
<td>.01</td>
</tr>
<tr>
<td>C</td>
<td>3.8</td>
<td>1,243</td>
<td>2,165</td>
<td>.01</td>
</tr>
<tr>
<td>D</td>
<td>2.7</td>
<td>11,319</td>
<td>6,533</td>
<td>.002</td>
</tr>
<tr>
<td>E</td>
<td>2.0</td>
<td>73,562</td>
<td>16,653</td>
<td>.0008</td>
</tr>
<tr>
<td>F</td>
<td>2.5</td>
<td>30,200</td>
<td>10,669</td>
<td>.001</td>
</tr>
<tr>
<td>G</td>
<td>1.8</td>
<td>100,410</td>
<td>19,456</td>
<td>.001</td>
</tr>
<tr>
<td>I</td>
<td>1.0</td>
<td>106,554</td>
<td>20,043</td>
<td>.001</td>
</tr>
<tr>
<td>J</td>
<td>2.1</td>
<td>2,238</td>
<td>2,905</td>
<td>.001</td>
</tr>
<tr>
<td>K</td>
<td>23.0</td>
<td>2,500</td>
<td>3,070</td>
<td>.001</td>
</tr>
</tbody>
</table>
Class A High Power Amplifier Systems

- Block Diagram
- Class A Amplifiers
- Synthesized Signal Generators
- Modulation Sources
- Summary Capabilities & Antennas
- E-Field Calibration Equipment
- Typical Maximum E-Field Levels

Naval Electromagnetic Radiation Facility

January 2, 1996
Class A Amplifiers

<table>
<thead>
<tr>
<th>Freq Range</th>
<th>Model Number</th>
<th>Min CW Power Output</th>
<th>Gain Flatness</th>
<th>Harmonic Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 KHz - 100 MHz</td>
<td>AR 10,000L</td>
<td>10 KW</td>
<td>±1.5 dB</td>
<td><20dB</td>
</tr>
<tr>
<td>100 MHz - 1000 MHz</td>
<td>AR LM10000W</td>
<td>1 KW</td>
<td>±2 dB</td>
<td><20dB</td>
</tr>
<tr>
<td>1 GHz - 2 GHz</td>
<td>Logimetrics A682/L</td>
<td>1 KW</td>
<td>±1.5 dB</td>
<td><20dB</td>
</tr>
<tr>
<td>2 GHz - 4 GHz</td>
<td>Logimetrics A682/S</td>
<td>1 KW</td>
<td>±1.5 dB</td>
<td><50dB</td>
</tr>
<tr>
<td>4 GHz - 8 GHz</td>
<td>Logimetrics A682/C</td>
<td>1 KW</td>
<td>±1.5 dB</td>
<td><50dB</td>
</tr>
<tr>
<td>8 GHz - 18 GHz</td>
<td>Logimetrics A682/IE</td>
<td>800 Watts</td>
<td>±1.5 dB</td>
<td><50dB</td>
</tr>
</tbody>
</table>

Naval Electromagnetic Radiation Facility

January 2, 1996
CWPS Synthesized Signal Generators

<table>
<thead>
<tr>
<th>Freq Range</th>
<th>Model Number</th>
<th>Internal Modulation</th>
<th>External Modulation</th>
<th>Modulation Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 KHz - 1.28 GHz</td>
<td>HP8662</td>
<td>AM:0-95% Depth</td>
<td>AM:0-95% Depth</td>
<td>AM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400 Hz or 1 KHz Rate</td>
<td>DC- 10 KHz(freq dependent) Rate</td>
<td>FM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FM:400 Hz or 1 KHz Rate</td>
<td>FM:DC - 100 KHz Rate</td>
<td>AM/FM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rate</td>
<td>Deviation: ,100 KHz; very Frequency Dependent</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 MHz - 20 GHz</td>
<td>HP 83732B</td>
<td>Waveforms: Sine, Ramp, Square, Triangle, Uniform Noise,</td>
<td>Any Waveform compatible with band width considerations.</td>
<td>Linear/Log AM AM/PM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Guassian Noise</td>
<td>AM:0-99.9% Depth</td>
<td>FM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AM: 0-99.9% Depth</td>
<td>DC - 100 KHZ Rate</td>
<td>PM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FM: 1KHz-1 MHz Rate</td>
<td>FM:10 Hz - 5 MHz Rate</td>
<td>AM/PM</td>
</tr>
<tr>
<td></td>
<td></td>
<td><10MHz Peak Dev</td>
<td><10 MHz Deviation</td>
<td>Phase</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM: 3Hz-3MHz PRF</td>
<td>PM: PRF: 5 Hz - 5 MHz</td>
<td>Scan Modulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25nS-419mS PW</td>
<td>PW: >50 nSec</td>
<td>Phase/FM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scan: >60dB Depth</td>
<td>On/Off Ratio >80 dB</td>
<td>AM/PM/FM/Phase</td>
</tr>
</tbody>
</table>
Modulation Sources

☐ Custom In House Developed Function Generators

☐ TV Signal Simulator
 Standard and CATV Channels
 Test Patterns or Live action
 Choice of Audio

☐ Pulse Generator
 1-99% Duty Cycle
 250nS Rise Time
 50nS Fall Time

☐ Wobulator
 300-6000Hz Sweep Generator
 0.3-33 Hz Sweep Rate
Modulation Sources

- HP3326A
 - DC - 13 MHz
 - Sine, Square, Pulse, DC Waveforms
 - Modes
 - 2 Phase
 - 2 Tone
 - Pulse
 - Swept Frequency

Naval Electromagnetic Radiation Facility

January 2, 1996
Modulation Sources

- External Source
 - Any source compatible with the HP8662 or the HP83732 signal generators.
 - Any source that can drive a class A amplifier.

Naval Electromagnetic Radiation Facility

January 2, 1996
Antenna Scan Simulation

- HP33120A Function/Arbitrary Waveform Generator

 Standard Waveforms: Sine, Square, Triangle, \(\frac{\sin (X)}{X} \)

 Arb Waveforms: 8 to 16K Points, 12 Bit Resolution

- Purpose: Realistic Emitters
 Limit/Control Personnel RADHAZ Exposure

Naval Electromagnetic Radiation Facility

January 2, 1996
Class A High Power Transmitters

Summary Capabilities and Antennas

<table>
<thead>
<tr>
<th>Freq Range</th>
<th>Modulation</th>
<th>Transmitter Power</th>
<th>Antenna Type</th>
<th>Antenna Polarization</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 KHz - 4 MHz</td>
<td>AM, FM, Pulsed, AM/FM, Wobulated(swept audio)</td>
<td>>15 KW</td>
<td>Long Wire</td>
<td>Vertical</td>
</tr>
<tr>
<td>4 MHz - 30 MHz</td>
<td>AM, FM, Pulsed, AM/FM, Wobulated, SSB</td>
<td>>15 KW</td>
<td>37' Trussed Whip</td>
<td>Vertical</td>
</tr>
<tr>
<td>30 MHz - 100 MHz</td>
<td>AM, FM, Pulsed, phase, Wobulated(swept audio)</td>
<td>>10 KW</td>
<td>10' Discone</td>
<td>Vertical</td>
</tr>
<tr>
<td>50 MHz - 100 MHz</td>
<td>AM, FM, Pulsed, phase, Wobulated(swept audio)</td>
<td>>10 KW</td>
<td>12' Log Periodic</td>
<td>Horizontal</td>
</tr>
<tr>
<td>100 MHz - 200 MHz</td>
<td>AM, FM, Pulsed, phase, Wobulated(swept audio)</td>
<td>1000 W</td>
<td>6' Log Periodic</td>
<td>Horz or Vert</td>
</tr>
<tr>
<td>200 MHz - 1000 MHz</td>
<td>AM, FM, Pulsed, phase, Wobulated(swept audio)</td>
<td>1000 W</td>
<td>Custom Double Ridge Horn</td>
<td>Horz or Vert</td>
</tr>
<tr>
<td>1 GHz - 2 GHz</td>
<td>AM, FM, Pulsed, phase, Wobulated(swept audio)</td>
<td>1000 W</td>
<td>Custom Double Ridge Horn</td>
<td>Horz or Vert</td>
</tr>
<tr>
<td>2 GHz - 4 GHz</td>
<td>AM, FM, Pulsed, phase, Wobulated(swept audio)</td>
<td>1000 W</td>
<td>Custom Double Ridge Horn</td>
<td>Horz or Vert</td>
</tr>
<tr>
<td>4 GHz - 8 GHz</td>
<td>AM, FM, Pulsed, phase, Wobulated(swept audio)</td>
<td>1000 W</td>
<td>Custom Double Ridge Horn</td>
<td>Horz or Vert</td>
</tr>
<tr>
<td>8 GHz - 18 GHz</td>
<td>AM, FM, Pulsed, phase, Wobulated(swept audio)</td>
<td>800 W</td>
<td>Custom Double Ridge Horn</td>
<td>Horz or Vert</td>
</tr>
</tbody>
</table>

Naval Electromagnetic Radiation Facility

January 2, 1996
Class A High Power Antennas

* 50-100 MHz

* 30-100 MHz

Naval Electromagnetic Radiation Facility
Class A High Power Antennas

* 100-200 MHz

* 200-1000 MHz

Naval Electromagnetic Radiation Facility

January 2, 1996
Class A High Power Antennas

* 4-30 MHz

* 10 KHz-4 MHz

Naval Electromagnetic Radiation Facility

January 2, 1996
Class A High Power Antennas

* 100-1100 MHz
E-Field Calibration Equipment

- **Amplifier Research FM 2000 Meter**, FP 2080 Probe
 - 80 MHz - 40 GHz
 - 1 - 300 V/M
 - 4 Probes, 1 Meter Available

- **3-Axis E-Field Probe**
 - Amplifier Research FP2000 Probe/FM2000 Meter
 - 10 KHz - 1 GHz
 - 4-300 V/M ± 1 dB
 - Up to 8 Probes, 2 meters Available

Naval Electromagnetic Radiation Facility

January 2, 1996
E-Field Calibration Equipment (Cont.)

- E x H Field Probe
 - ARA IBS-30
 - Freq: 0.075-30 MHz
 - E-Field: 6-1500 V/M
 - H-Field: 0.04-6 A/M

- Features
 - Simultaneous E&H Field Measurements
 - Evaluation of Poynting Vector & Power Density
 - Evaluation of Wave Impedance

Naval Electromagnetic Radiation Facility

January 2, 1996
Typical Maximum E-Field Levels

- 10KHz - 18 GHz
- 10KHz - 4 MHZ
- 4MHz - 30 MHz
- 30 MHz - 100 MHz
- 100 MHz - 1 GHz
- 1 GHz - 18 GHz
Max Possible Field Levels
4MHz - 30 MHz

V/m

FREQ (MHz)

0 100 150 200 250

37° Trussed Whip

Naval Electromagnetic Radiation Facility

January 2, 1996
30 MHz - 100 MHz

Max Possible Field Levels

MHz

V/M

30 40 50 60 70 80 90 100

3109@1M Discone@10', 6'H 12' Log Periodic@1.5M

Naval Electromagnetic Radiation Facility

January 2, 1996
Naval Electromagnetic Radiation Facility

Contact John Crim
PH: 301-826-1068
FAX: 301-737-0305

Address: Naval Air Warfare Center Aircraft Division
ATTN: John Crim
Bldg 1328, Code 5.1.7.1, Mail Stop 3
Patuxent River, Maryland 20670-5304

Email: CRIM_JB%PAX@MR.NAWCAD.NAVY.MIL

January 2, 1996