PL-TR-95-2168

A GEOLOGICAL AND GEOPHYSICAL INFORMATION SYSTEM FOR EURASIA, THE MIDDLE EAST AND NORTH AFRICA

DIGITAL DATABASE DEVELOPMENT FOR THE MIDDLE EAST AND NORTH AFRICA

Muawia Barazangi
Dogan Seber
Marisa Vallve
Bryan Isacks

Cornell University
Institute for the Study of the Continents (INSTOC)
Snee Hall
Ithaca, NY 14853

30 November 1995

Final Report
30 August 1993-30 November 1995

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

PHILLIPS LABORATORY
Directorate of Geophysics
AIR FORCE MATERIEL COMMAND
HANSCOM AIR FORCE BASE, MA 01731-3010

19960321 096
The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either express or implied, of the Air Force or the U.S. Government.

This technical report has been reviewed and is approved for publication.

JAMES F. LEWKOWICZ
Contract Manager
Earth Sciences Division

JAMES F. LEWKOWICZ
Director
Earth Sciences Division

This report has been reviewed by the ESC Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

If your address has changed, or if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify PL/IM, 29 Randolph Road, Hanscom AFB, MA 01731-3010. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document requires that it be returned.
REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

<table>
<thead>
<tr>
<th>1. AGENCY USE ONLY (Leave Blank)</th>
<th>2. REPORT DATE</th>
<th>3. REPORT TYPE AND DATES COVERED</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Geological and Geophysical Information System for Eurasia, the Middle East and North Africa. Digital Database Development for the Middle East and North Africa.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. FUNDING NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE 62301E</td>
</tr>
<tr>
<td>PR NM93 TA GM WU AO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muawia Barazangi</td>
</tr>
<tr>
<td>Dogan Seber</td>
</tr>
<tr>
<td>Marisa Vallé</td>
</tr>
<tr>
<td>Bryan Isacks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornell University</td>
</tr>
<tr>
<td>Institute for the Study of the Continents (INSTOC)</td>
</tr>
<tr>
<td>Snee Hall</td>
</tr>
<tr>
<td>Ithaca, NY 14853</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract F19628-93-K-0030</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phillips Laboratory</td>
</tr>
<tr>
<td>29 Randolph Road</td>
</tr>
<tr>
<td>Hanscom AFB, MA 01731-3010</td>
</tr>
<tr>
<td>Contract Manager: James Lewkowicz/GPE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSORING/MONITORING AGENCY REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI-TR-95-2168</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12a. DISTRIBUTION / AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12b. DISTRIBUTION CODE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>13. ABSTRACT (Maximum 200 words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As the target date (end of 1996) for the completion of multilateral comprehensive nuclear test ban treaty approaches, it is essential for the monitoring efforts that multidisciplinary information on any given region is readily available and accessible in a digital, on-line format via electronic networks for use by concerned researchers and decision makers. Our objective has been to collect and organize all available seismological, geophysical, and geological datasets for the Middle East and North Africa into a digital information system that is accessible via the Internet from Cornell and can be utilized by the International Data Center and by other ARPA/AFOSR/DOE/APTAC researchers. We digitized many cross sections showing the depth to basement and Moho crustal velocity and density structures. We also organized seismicity, focal mechanisms, and gravity data for most of the region. We digitized data from Egypt, Iran, Iraq, Israel, Jordan, Syria, Lebanon, Saudi Arabia, and Morocco. We have also digitized key geologic features for the Middle East. All data are being stored in our Arc/Info Geographic Information System. A new user interface has been developed in Arc Macro Language which allows easy display and analysis of the available data. We currently hold a comprehensive bibliography of all the relevant references in a computer database. We also developed WWW tools for easy access to some of our databases. The "Profile Maker" and the "Focal Mechanism Maker" are tools that allow any user to make crustal scale cross sections between two arbitrary points and focal mechanism maps using our Web page. Our Web address is “http://www.geo.cornell.edu/geology/me_na/main.html”.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middle East</td>
</tr>
<tr>
<td>North Africa</td>
</tr>
<tr>
<td>Crustal Structure</td>
</tr>
<tr>
<td>Moho</td>
</tr>
<tr>
<td>3-D models</td>
</tr>
<tr>
<td>Seismology</td>
</tr>
<tr>
<td>Geophysics</td>
</tr>
<tr>
<td>Geology</td>
</tr>
<tr>
<td>Geographic Information System</td>
</tr>
<tr>
<td>Satellite imagery</td>
</tr>
<tr>
<td>Bibliography</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. PRICE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. SECURITY CLASSIFICATION OF REPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. SECURITY CLASSIFICATION OF THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. SECURITY CLASSIFICATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
</table>

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102
TABLE OF CONTENTS

1. Introduction ... 1
2. Digital Database Development for the Middle East and North Africa 1
 2.1. Developing a digital database of crustal-scale cross sections 2
 2.1.1. Digitizing Procedure ... 2
 2.2. Geology .. 3
 2.3. Satellite Imagery .. 4
 2.4. Seismicity and Focal Mechanisms .. 4
 2.5. Explosions .. 5
 2.6. Bibliography ... 5
3. Status of Databases ... 5
 3.1. Eurasia ... 5
 3.2. Middle East .. 6
 3.2.1. Egypt ... 6
 3.2.2. Iran ... 6
 3.2.3. Israel ... 7
 3.2.4. Jordan .. 8
 3.2.5. Saudi Arabia .. 9
 3.2.6. Syria .. 10
 3.2.7. Lebanon .. 11
 3.2.8. Basement Map of the Middle East ... 11
 3.3. North Africa .. 11
 3.4. Chart of the World ... 12
 3.5. Profile Maker and Focal Mechanism Map maker 12
4. Access to Databases .. 13
 4.1. Anonymous FTP And World-Wide Web (WWW) 13
 4.2. Customized ArcInfo Menu .. 14
5. References ... 15
6. Figures .. 18

Appendix I: File formats ... 46
 Figures .. 46
 Data Files .. 46
 Line files .. 46
 Point files .. 47
 AAT files ... 47

Appendix II: Bibliography of the Middle East and North Africa 49
 Middle East: Geology ... 49
 Middle East: Geophysics ... 65
 North Africa: Geology ... 79
 North Africa: Geophysics ... 87
LIST OF FIGURES

Figure 1: Map of the Middle East showing locations of crustal profiles. Both refraction and gravity profiles are shown as thick lines..........................PAGE 18

Figure 2(a): Map of the Middle East and North Africa showing earthquake locations extracted from the USGS/NEIC data base. The difference in the magnitudes is represented by the size of the circles. Seismicity shown covers the period of 1960-1990. A more comprehensive earthquake catalog will be developed in the future as part of our database..........................PAGE 19

Figure 2(b): Map of the Middle East and North Africa showing focal mechanism solutions for the period 1977-1992 as reported by Harvard. A more complete catalog for different size earthquakes will be developed as part of our database..PAGE 20

Figure 3: Map of the Middle East and North Africa showing only explosion locations (black triangles), extracted from the USGS database (1960-1990). We plan to considerably expand and update this important database..PAGE 21

Figure 4: Contour map of Moho depth in Egypt derived from gravity and refraction data after Makris and others (1987). Medium and thick solid lines are contours on Moho. Contour depths are labeled in km. Thick gray lines mark locations of refraction profiles used to constrain Moho........PAGE 22

Figure 5: Location map of gravity interpretation profiles in Iran from Snyder and Barazangi (1986). The three profiles are thick gray lines. The Main Zagros Thrust (MZT) is the suture zone between the Arabian plate and the Eurasian plate and is shown as a thick black line, and the Zagros deformation front is shown as a thick black dashed line. Numbers 1–3 show profile numbers of Figure 6..PAGE 23

Figure 6: Three crustal density profiles interpreted from gravity data by Snyder and Barazangi (1986). Densities are shown in g-cm$^{-3}$ with the crustal interfaces (thick solid lines). The profiles have been vertically exaggerated by a factor of two for better readability. See Figure 5 for location of these profiles..PAGE 24

Figure 7: Location map for Israel, occupied areas, and nearby countries. Refraction profiles are shown by thick black lines, with Roman numbering, from Ginzburg and Folkman (1980) and Ginzburg and others (1981). Shot point locations are marked with stars and numbered with Arabic numerals. The approximate location of the Dead Sea Fault is shown with a thick gray line and transform motion marked with arrows. The two basins of the Dead Sea and the Sea of Galilee are filled light gray..........................PAGE 25
Figure 8: Two-dimensional velocity structure interpretations of two Israeli refraction lines IIIa and IV running through northern and central Israel, respectively, from the Dead Sea to the Mediterranean, after Ginzburg and Folkman (1980) (see Figure 7 for locations). Refraction interfaces are shown by thick lines, with the associated velocities in km/s indicated. Profiles are shown without vertical exaggeration..........................PAGE 26

Figure 9: Two-dimensional velocity structure interpretation of Israeli refraction line VI running through southern Israel and northern Sinai, after Ginzburg and others (1981). Refraction interfaces are shown by thick lines, with the associated velocities in km/s indicated. Profile is shown without vertical exaggeration at 1:2,000,000 scale. See Figure 7 for location..PAGE 27

Figure 10: One-dimensional velocity structure beneath southern Israel and northern Sinai, derived from a Dead Sea shot and arrivals at receivers along line VI (Ginzburg and others, 1981). See Figure 7 for location and Figure 8 for structure of line VI..........................PAGE 28

Figure 11: Composite interpretation of two-dimensional velocity structure along Dead Sea “rift” system after Ginzburg and others (1981). Refraction lines I, II and IIIb were shot along the western margin of the “leaky transform” running along the Gulf of Aqaba through the Dead Sea and Sea of Galilee. Note ~5 km thick transition zone above Moho. Refraction interfaces are shown by thick lines, with the associated velocities in km/s indicated. Deep interface within mantle was observed by wide-angle reflections. Profile is shown with vertical exaggeration, to enhance readability, at 1:4,000,000 horizontal scale. See Figure 7 for location of these profiles..........PAGE 29

Figure 12: One-dimensional velocity structure along the Jordan-Dead Sea Rift derived from shotpoint 4 and arrivals at receivers along line I and II, see Figure 7 for location of this shot point and the lines (Ginzburg and Makris, 1979) and Figure 11 for structure along these lines. The velocity transition zone above the Moho is shown by curved portion..PAGE 30

Figure 13: Bouguer gravity map of Syria, Lebanon and Israel. Contour maps of Bouguer gravity anomalies were digitized and gridded using a 1 km grid cell size...PAGE 30

Figure 14: Location map for Jordan. Refraction profiles and interpreted section A–B are shown by thick black and gray lines with Roman numbering for the refraction lines from El-Isa and others (1987). Shot point locations are marked with stars and numbered with Arabic numerals. The approximate location of the Dead Sea Fault is shown with a thick gray line and transform motion marked with arrows..PAGE 32
Figure 15: One-dimensional velocity function beneath central Jordan derived from quarry explosion at shot point 3 and recorded along line II (El-Isa and others, 1987). Model 1 (solid line) corresponds to the two-dimensional model of Figure 16 and Model 2 (dashed line) corresponds to a reflectivity synthetic seismogram interpretation of the same data. See Figure 14 for location of line II...PAGE 33

Figure 16: Two-dimensional velocity structure interpretation of Jordan refraction line II running through central and southeast Jordan, after El-Isa and others (1987). Refraction interfaces are shown by thick lines, with the associated velocities in km/s indicated. Profile is shown without vertical exaggeration at 1:1,000,000 scale.. PAGE 34

Figure 17: Two-dimensional velocity structure interpretation of Jordan refraction line I running from central to northwest Jordan, after El-Isa and others (1987). Refraction interfaces are shown by thick lines, with the associated velocities in km/s indicated. Profile is shown without vertical exaggeration at 1:1,000,000 scale. Note that there is a transition zone above the Moho in this interpretation of the line running east of the Dead Sea rift zone..PAGE 35

Figure 18: Two-dimensional velocity structure composite section across southern Israel and Jordan, along line A–B of Figure 14, after El-Isa and others (1987). Interpretations of Israeli refraction lines V and II (which are nearly normal to the section) are combined with an interpretation of Jordan lines III and IV in southwestern Jordan. Refraction interfaces are shown by thick lines, with the associated velocities in km/s indicated. Profile is shown without vertical exaggeration at 1:1,000,000 scale. Note that there is a transition zone above the Moho in this interpretation east of the Dead Sea rift zone..PAGE 36

Figure 19: Location map for the 1978 profile in Saudi Arabia after Healy and others (1982). Refraction profile receiver locations are shown by thick gray lines. Shot point locations are marked with stars and numbered with large Arabic numerals. The strike-line for the interpreted section is a thick straight line, with small filled squares marking projected Moho points with their depths indicated in km. The boundaries of the exposed Precambrian basement of the Arabian shield are shown as thin solid lines, with the Arabian platform sedimentary rocks to the east and the coastal plain sediments along the Red Sea rift to the west. The extensive Neogene-to-Recent mafic volcanics are filled dark gray. Map projection is Lambert conformal conic with standard parallels at 17°N and 33°N..PAGE 37
Figure 20: Two-dimensional velocity structure interpretation of the 1978 Saudi Arabian refraction line running from the Red Sea to central Saudi Arabia, after Healy and others (1982) (see Figure 19 for location). Refraction and reflection interfaces and inferred iso-velocity lines are shown by thick lines, with the associated velocities in km/s indicated. Shot point locations are marked with stars at the top of the section. Distance is measured northeast from shot point 6. Note rapid structure change in transition zone from Arabian shield to Red Sea rift beneath shot point 5. Profile is shown with larger vertical exaggeration, to enhance readability, at 1:5,000,000 horizontal scale..PAGE 38

Figure 21: Grid of thickness of sedimentary cover in most of the Middle East after Beydoun (1989). The white areas in the grid represent Precambrian basement outcrops..PAGE 39

Figure 22: A cross section across the Arabian plate showing surface topography and seismic basement. See Figure 21 for location of this profile. The very thick sedimentary cover in the Mesopotamian foredeep could significantly affect the propagation characteristics of high-frequency crustal seismic phases, such as Pg and Lg...PAGE 40

Figure 23: Main menu for access to the database. Land and oceans shades as well as coast lines, country borders and a latitude-longitude grid are the selected choices to be displayed..PAGE 41

Figure 24: Map of the Middle East and North Africa obtained by the selection showed in Figure 23..PAGE 42

Figure 25: Submenu obtained by clicking on the "display crustal cross sections..." button on the main menu. It allows the user to display a location map with the seismic refraction and gravity lines. By selecting one line with the mouse from the screen, the cross section is displayed next to the location map..PAGE 43

Figure 26: An example showing the type of display obtained by using the menu from Figure 25..PAGE 44

Figure 27(a): Submenu obtained by clicking on the "seismicity menu...". It allows the user to select by magnitude, depth and time interval.......PAGE 45

Figure 27(b): Submenu obtained from the "selecting by the type of phenomena..." (see Figure 27(a)). It allows to select by the type of phenomena. In the figure, as an example, all the explosions have been selected from the database..PAGE 46
1. INTRODUCTION

Crustal and lithospheric structure variations as well as major topographic relief along seismic wave propagation paths and at the source and receiver sites are crucial information to understand the excitation and propagation of high-frequency regional seismic phases, and other aspects of the problems of verification and estimation of the yield of nuclear and chemical explosions. Our objective is to collect and organize all available seismological, geophysical, topographical, and geological datasets for the Middle East and North Africa into a digital information system that is accessible via the Internet from Cornell and can be utilized by display programs running at the Center for Monitoring Research (CMR) and by other ARPA/AFOSR/DOE/AFTAC researchers.

We began a comprehensive effort to compile and digitize information on the crustal structure of the Middle East and North Africa to expand our existing database for Eurasia developed under previous contracts. Our first work was in the Middle East where we located and digitized published data on the depth to Moho and basement and crustal velocity and density structures, primarily as interpreted from seismic refraction, gravity, and drill hole datasets. We also maintain a comprehensive bibliography of all the relevant references in a computer database. All data are stored in our Arc/Info Geographic Information System (GIS). The format of the files being released is detailed in Appendix I.

2. DIGITAL DATABASE DEVELOPMENT FOR THE MIDDLE EAST AND NORTH AFRICA

We have continued to add more information into our database for our goal of a complete crustal structure database as well as other types of geophysical and geological databases for the Middle East and North Africa. In this data release, we present some of the data interpretations country by country, including Egypt, Iran, Israel, Jordan, and Saudi Arabia. Soon, we will be integrating these individual observations and our own analyses into a regional gridded database of the best available information on crustal structure and velocities. This database
can then be used to derive crustal structure profiles along any path through the region to compare with observations or simulate the propagation of regional seismic phases as described in the final report of our previous contract (Fielding and others, 1993).

2.1. Developing a digital database of crustal scale cross sections

A number of interpretations of seismic refraction and gravity lines from many of the countries of the region have been published. We collected and digitized these cross sections and their locations. A map showing the Middle East refraction and gravity profiles included in our database and several others that will be added in the future is shown in Figure 1. With this digital cross section data, it is possible to obtain gridded surfaces of depth to Moho and depth to basement.

2.1.1. Digitizing Procedure

From gravity interpretation publications, we first digitized the locations and the interfaces of the gravity profiles. Then, we converted the lines to distance-depth coordinates in km. Distance along the profile is always measured from the left edge of the cross section and depth is always negative below sea level. Each “arc” or interface is then assigned “attributes” that indicate the density above and below the interface (stored in the Arc Attribute Table or AAT in Arc/Info). At this stage, the cross section is still a separate coverage not geographically registered. Therefore, we can describe this as a two dimensional dataset where the horizontal distances are represented on the x axis and the depth on the y axis. Then, we resampled the digitized cross section at 1 km intervals. These simple x-y cross sections are converted into x-z cross sections when depth "z" is computed at one kilometer intervals along the x axis. At the same time, the points are added to the location map, and the attributes (depth and density) are attached to each point. Thus, the third dimension, depth, is stored in info files which can simply be displayed as graphs in ArcInfo or can be used to generate grids.
We digitized seismic refraction results from published literature in a similar way. The profile locations and shot points were digitized and converted to latitude-longitude geographic coordinates. The interfaces of interpreted refraction profiles were digitized and converted into distance-depth coordinates in km then attributes were assigned to each interface to store the velocities above and below the interface in the AAT. Finally, the depth of each interface was re-sampled at one kilometer intervals and the velocities above and below each interface were entered as attributes to the points along the cross section. We do not keep the distance origin used by the authors, which is usually taken to be the location of a shot used for ray-tracing the 2-D velocity model, instead we always take the origin as on the left border of the cross section. A 1-D velocity (or density) versus depth sections at a specific point on the profiles can also be plotted by just selecting the point location along any profile.

Contour maps of depth of the Moho or other crustal structures are digitized in Arc/Info by recording the depth value of each contour as an attribute of the “arc” or contour line. As for all maps, the locations are converted to geographic coordinates by taking known points and estimating the proper map projection parameters to invert the projection used in making the map.

These contour datasets are then converted into grids by using the topogrid command of Arc/Info software. Topogrid uses an iterative finite difference interpolation technique. Based upon the ANUDEM program developed by Hutchinson (1989), this procedure is specifically designed for creating hydrologically correct digital topography. However, it can be used for other purposes like gravity, moho depth, or basement depth grids without drainage restrictions.

2.2. Geology

Our efforts under this project concentrated on geophysical data on crustal structure, but we plan to add more geological data in the future. Many geologic maps and information on stratigraphy and structure from sources such as drill holes are available throughout the Middle East and North Africa. These data are useful to better understand the tectonic structure and development of the region,
and especially useful for mapping the distribution of special geologic units such as salt beds that have a large effect on the generation or propagation of seismic signals. A few of the major tectonic features in the Middle East were digitized at a relatively crude scale suitable for regional maps and are shown on some of the figures in this report.

2.3. Satellite Imagery

Under other projects at Cornell, we have acquired some digital satellite imagery for areas of the Middle East, North Africa, and Eurasia. The most extensive coverage are complete sets of Landsat Multispectral Scanner (MSS) images for Syria and Morocco and several Thematic Mapper (TM) images from North Africa and Syria. A big advantage of Landsat MSS scenes is that they are not copyrighted and are freely shareable with other researchers.

2.4. Seismicity and Focal Mechanisms

The hypocenters located between 50°N 10°S and 70°E 20°W, were extracted from two different sources: the International Seismological Center (ISC) and the United States Geological Survey (USGS). The catalog from the ISC includes events from January 1964 through August 1987, while the one from the USGS includes events from 2000 B.C. through December 1990. Each event in the data base is described according to date, time, latitude, longitude, magnitude, depth, intensity and associated phenomena. An Arc/Info coverage has been generated from the USGS data base (Figure 2a) and the characteristics of each event have been included as separate items in the Point Attribute Table (PAT) of this coverage. Figure 2b shows the Harvard database of focal mechanism solutions in the region of interest. This database includes all earthquakes of magnitudes ≥ 5.5.
2.5. Explosions

The USGS/NEIC data base includes identified explosions. All the explosions in the Middle East and North Africa region are extracted from the Arc/Info coverage and shown in Figure 3. There are other explosion sites in the region. We are currently working on digitizing newly available database to provide a map of large industrial explosion sites in the Middle East and North Africa.

2.6. Bibliography

We are building our bibliographic database (see Appendix II) in the Macintosh program called EndNote. References to books, journal articles, reports and other published literature are stored with the usual information on title, date, authors, journal, page numbers, etc. and with searchable keywords on the content. Automatically (by keyword search) or manually selected subsets of the EndNote dataset can be extracted and formatted in a variety of formats. This is becoming a comprehensive database of crustal structure, geology, and geophysics literature for the Middle East and North Africa, and we have copies of nearly all the references, including many hard-to-find reports, in our files. We continue to add to this bibliographic database, but we are releasing this version now to aid other researchers.

3. STATUS OF DATABASES

3.1. Eurasia

All of the crustal structure databases produced for Europe and Asia under our previous contracts continue to be available via “anonymous ftp” and our raster server. We continue to fill requests for these databases from seismic researchers around the world under ARPA/AFOSR/DOE/AFTAC contracts.
3.2. Middle East

3.2.1. Egypt

Both gravity and deep seismic refraction data have been collected in Egypt. A dissertation by Marzouk (1988) describes much of the data.

We digitized a contour map of the depth to the Moho that is based on gravity and refraction data (Figure 4). We also digitized a contour map of Bouguer gravity anomalies of this area. Grids have been built by using the topogrid command of Arc/Info.

Most of Egypt has crust 30-33 km thick, but it thins dramatically in the Red Sea rift zone to 20 km or less. Only the beginning of the crustal thinning of the Red Sea rift is shown in Figure 4. Southern and western Egypt has thicker crust reaching more than 35 km, while the northernmost part of Egypt includes part of the transition into the Mediterranean oceanic crust with crust down to 27 km thick at the coastline. The sediment thicknesses increase gradually to the north in Egypt where the large delta of the Nile extends into the Mediterranean.

3.2.2. Iran

We have begun our database for Iran with the digitization of the crustal structure profiles interpreted from gravity data by Snyder and Barazangi (1986). The locations of the three profiles of crustal density structure, interpreted primarily from gravity, were digitized from the location map and are shown in Figure 5, along with two of the major tectonic features of the area digitized from the same location map, the Main Zagros Thrust (MZT) and the Zagros deformation front.

The profiles are shown together on Figure 6, with a vertical exaggeration. Note that the major change in Moho depth is the crustal root of the high elevation part of the Zagros, in the region of the MZT, which reaches down past 60 km depth. Much of the rest of Iran, the Arabian/Persian Gulf, and northeast margin of the Arabian plate has Moho depths close to 40 km depth.
A Bouguer gravity grid has been built for the Zagros Mountains in Iran, Iraq and nearby regions, from a point data set. In addition, a contour map was generated from this grid. Free air gravity values are also available for the area and the same procedure is in process to obtain both the grid and the contours.

3.2.3. Israel

Deep seismic refraction data were collected along six profiles in Israel and occupied territories in 1977 and first described by Ginzburg and others (1979a, b). Large shots in the Dead Sea, Mediterranean, and Gulf of Aqaba provided strong sources. The detailed interpretation of the refraction profiles are described by Ginzburg and Folkman (1980) and Ginzburg and others (1981). In addition, four shorter refraction profiles were shot across central and northern Israel by the Israel National Oil Co., only one of which was long enough to provide data on the deep crust (Ginzburg and Folkman, 1980). The locations of the profiles were digitized and are shown on Figure 7. Also shown on Figure 7 are the locations of the shot points 1–8 used in the 1977 survey. Their naming scheme for refraction receiver lines used line 3 for the longest of the oil exploration profiles and lines I–VI for the 1977 profiles, but to avoid confusion on our figures between shot point numbers and line numbers, we have renamed the line 3 as line IIIa and the 1977 line III as line IIIb. The location of the major tectonic feature in the Israel/Jordan area, the Dead Sea fault system, which forms the margins of the Dead Sea “rift” and marks the “leaky transform” plate boundary between the Arabian Plate to the east and the Mediterranean plate to the west has been digitized and plotted on Figure 7 for reference.

All of the interpreted 1D and 2D velocity structure figures of Ginzburg and Folkman (1980) and Ginzburg and others (1981) have been digitized. The crustal structure of northern and central Israel is shown on Figure 8 by interpretations of the two refraction lines (IIIa and IV) running from the Dead Sea to the Mediterranean (Ginzburg and Folkman, 1980). The structure of the northern Sinai and southern Israel from line VI is shown in Figure 9 (Ginzburg and others, 1981). The depth of the Moho between the Dead Sea and the Mediterranean decreases northward from more than 40 km in the Sinai to less than 25 km in northern Israel. The crustal thickness also decreases and sediment thickness
increases towards the Dead Sea and Mediterranean. The one-dimensional velocity-depth function for line VI is shown in Figure 10.

The crustal structure of the Dead Sea “rift” from the Sea of Galilee to the Gulf of Aqaba is shown by the composite section of Figure 11 (from lines I, II, and IIIb) and the profiles of individual ray tracing models (Ginzburg and others, 1981). The large shots at shot point 4 in the Dead Sea provided good records out to long distances. The amplitude variations of secondary arrivals indicate the presence of a 5 km thick transition zone at the base of the crust with a gradation in P velocity from 6.72 to 7.9 km/s, and this zone is interpreted to extend along the entire composite section of the “rift”. The depth to the Moho varies slowly from a maximum of about 35 km near Elat to about 27 km on the western margin of the southern Gulf of Aqaba and about 30 km in the north. A one-dimensional velocity-depth function is shown in Figure 12 for the Dead Sea shot point 4 along the “rift”.

A contour map of Bouguer gravity of Israel has been digitized (Ginzburg and others, 1993) and a grid has been built from it. This grid has been merged with the grids for Lebanon and Syria (Khair and others, 1993; Best and others, 1990) (Figure 13). To be able to append these adjacent grids, the contours have been smoothed and joined through the country borders.

3.2.4. Jordan

A set of four refraction lines were collected in Jordan in May 1984 by the University of Jordan, Amman with the Institutes of Geophysics of Hamburg and Karlsruhe Universities (El Isa and others, 1987). We have digitized the line and shot-point locations, shown as Figure 14. Also shown on Figure 14 is the location of the Dead Sea fault system. The best long-range refraction results were obtained using large shots at shot-points 1 to 5, with recordings out to 200 km distances at a station spacing of 5 km along lines I to IV. A more detailed short-range dataset was collected along line II with smaller shots at shot-points 6 to 10 with stations out to 30 km distance and a station spacing of 1 to 2 km.

One-, two-, and three-dimensional velocity structures were interpreted and published by El Isa and others (1987), and we have digitized the one- and two-dimensional figures (due to perspective distortion it is not possible to digitize the
three-dimensional figure). The one-dimensional velocity-depth functions beneath central Jordan are shown in Figure 15, derived from quarry explosion at shot point 3 and recorded along line II. Model 1 corresponds to the two-dimensional model of Figure 16 and Model 2 corresponds to a reflectivity synthetic seismogram interpretation of the same data. The two-dimensional velocity-depth-distance profiles are shown in Figures 16-18. The depth to Moho is between 30 and 40 km for all of Jordan, shallower to the west (closer to the Dead Sea rift) and deeper to the east. Depth to crystalline basement increases towards the northeast from zero at the Precambrian (Proterozoic) surface outcrops in the southwest corner of Jordan to about 5 km in central Jordan.

3.2.5. Saudi Arabia

Two deep refraction surveys have been shot in Saudi Arabia, one very long profile was collected across southern Saudi Arabia, and several shorter profiles were collected in NW Saudi Arabia in collaboration with German researchers. The ~1200 km long refraction line from the Farasan Islands in the Red Sea across to the other side of the Arabian Shield in central Saudi Arabia was conducted mostly by the USGS in 1978 (Blank and others, 1979; Healy and others, 1982; Mooney and others, 1985). The locations of the receiver arrays were digitized from the 1:2,000,000 scale map of Plate 7 of Healy and others (1982) and are shown on Figure 19, along with the digitized locations of the seven shot points (two shot points were located close together and are both adjacent to the label 6 on the figure).

An IASPEI workshop was held in 1980 to compare a wide variety of different interpretations of the 1978 refraction profile data and the results were published in a proceedings volume (Mooney and Prodehl, 1984). The interpretations were quite similar in the relatively simple Arabian shield area, but varied widely in the transition into the Red Sea rift where the velocity structure changes rapidly. We chose to start with the interpretation of the USGS group for our database. The large 1:2,000,000-scale interpreted section in Plate 9 of Healy and others (1982), which is similar to that of Mooney and others (1985), was digitized, converted to distance-depth coordinates in km, and plotted in Figure 20.
The next step was to convert the distance-depth coordinates of the interpreted section (Figure 20; Healy and others, 1982) to geographic coordinates that can be plotted on a map. We selected the interpreted Moho interface from the database, converted the vertices along the Moho to points, and then projected the points onto a strike-line running along the length of the refraction survey to obtain latitude-longitude-depth triplets for points of the Moho. The strike-line and Moho points are shown on Figure 19, with the depth of the points in km below sea level marked next to the point locations. In this interpretation from Healy and others (1982), the steepest slope of the Moho from about 38 km to 18 km depth occurs beneath shot point 5, some 50 km inland of the present Red Sea coastline, near the position of the topographic scarp, the Hijaz-Asir escarpment, that marks the edge of the rift zone and the beginning of the sediments of the coastal plain. On the Arabian shield, where Precambrian basement is exposed, the Moho is close to 40 km deep and the P velocities start over 6 km/s at the surface. At the NNE end of the profile, a thin layer of Phanerozoic sediments cover the basement surface that gently slopes eastward under the Arabian platform.

3.2.6. Syria

No deep refraction data have been collected in Syria, but several DSS lines with detailed information on the upper and middle crust were shot. These profiles have been reinterpreted at Cornell (using the original analog seismic recordings) and provide excellent information on the thickness of the sedimentary basins and depth to basement in Syria (Seber and others, 1993). An ongoing Cornell collaboration with the Syrian Petroleum Company has brought to Cornell many other datasets for Syria, including seismic reflection lines, drill hole, and gravity data.

The gravity data have already been digitized and gridded with 1000 meters cell size (Figure 13). We have digitized crustal profiles based on gravity interpretation (Best et al., 1990). Figure 1 shows the location of these profiles.
3.2.7. Lebanon

The contours from a Bouguer gravity map of Lebanon (Khair and others, 1993) have been digitized. From this Arc/Info coverage a grid has been built with 1000 meters cell size. The contours were appropriately joined to that from Syria and Israel so the appended Syria-Lebanon-Israel grid does not show abrupt changes in the country borders due to differences in resolution in adjacent maps (see Figure 13). We have also digitized three crustal profiles based on gravity interpretation (Figure 1). No refraction profiles are available in Lebanon.

3.2.8. Basement Map of the Middle East

We have digitized a preliminary map of the thickness of sedimentary cover for most of the Middle East (Figure 21). This map was prepared by Beydoun (1989) and shows the major variations in sedimentary thickness for the area. The western part of the Arabian plate, the Arabian shield, has Precambrian basement exposed at the surface, and the basement slopes eastward under sediments up to 45,000 ft (~14 km) thick in the Zagros. To the west of the Arabian shield, a steep scarp forms the edge of the Red Sea rift zone with up to 15,000 ft (~4.5 km) of sediments. This map should only be used to get an overall view of the sediment thicknesses. We converted the depths to metric units and generated a grid from these contours (Figure 21). A better gridded surface will be generated from the refraction and gravity cross sections, and available wells. Two grids, the basement and the topography, are subtracted one from the other in order to obtain the thickness of the sedimentary layer. Figure 22 shows an example of a cross section across the Arabian plate showing surface topography and seismic basement. The very thick sedimentary cover in the Mesopotamian foredeep could significantly affect the propagation characteristics of high- frequency crustal seismic phases, such as Pg and Lg.

3.3. North Africa

An extensive point dataset of Bouguer and free air gravity values from the Bureau Gravimétrique International (BGI), allowed the generation of a gravity
grid of North Africa. The density of the spatial distribution of the data varies considerably for different areas. The best represented countries are Morocco and Egypt. These grids have been generated with 1000 meters cell size for small areas and then merged together by using the ArcInfo Grid function, mosaic. It uses a weighted average method on the overlapping areas giving smooth transition. Moreover, we expect to include considerably more geophysical and geological databases for North Africa in our database, including refraction profiles in Morocco, and detailed seismicity catalog for northwest Africa and southern Iberia.

3.4. Chart of the World

The Digital Chart of the world is a 1:1,000,000 scale basemap of the world published by the USGS. This database is originally divided in 5° by 5° tiles. The tiles have been appended together as well as their arc, point, and polygon attribute tables in a region covering the Middle East and North Africa. These descriptive attributes are codes in the individual tiles (i.e., popytype = 1 indicates land, and popytype = 2 indicates oceans). However, after appending the tiles, new character-type items were added, describing the code numbers for each attribute table. The following layers are available: “Drainage”, “Physiography”, “Political and Oceans”, “Populated place”, “Roads, Railroads and Transport Structure” and “Utility”. The coverage with the country borders (“political and oceans”) will be updated soon for countries like the former Yugoslavia and Soviet Union by digitizing the new country borders and replacing them only were changes have occurred.

3.5. Profile Maker and Focal Mechanism Map Maker

Under our World Wide Web (WWW) server, a profile maker and a focal mechanism map maker have been developed. These tools can be accessed through a client software such as Mosaic or Netscape. In order to obtain a cross section including topography, basement, and moho, the user enters the coordinates of two or more arbitrary points and the program computes the cross section by "slicing"
the available grids along great circle paths and presents the results both in hardcopy and ASCII text files.

We are using the Harvard CMT data for the focal mechanism map maker. It includes events from 1977 to 1994 globally. If a rectangular region is defined, the available focal mechanisms are selected and displayed. It is also possible to download the selected events with all their attributes.

4. ACCESS TO DATABASES

4.1. Anonymous FTP and World-Wide Web (WWW)

We are releasing our developed databases in several different forms, all accessible over the Internet. We are now using the well-established anonymous FTP protocol, however our main focus now is the World-Wide Web (WWW) protocol that is rapidly increasing in popularity on the Internet due to its more sophisticated functions. Our Web address is

“http://www.geo.cornell.edu/geology/me_na/main.html”.

Our anonymous FTP server is hugo.geo.cornell.edu and the data are stored in the pub/arpa directory and subdirectories. There is a new subdirectory pub/arpa/mideast with further subdirectories below that for each country described above. We are releasing the data in several different forms on our Web server, the finished figures of this report in PostScript and Adobe Illustrator form, and the raw data in flat ASCII files as extracted from Arc/Info are also available. The PostScript files (with the “.ps” suffix) can be printed on PostScript printers. The Adobe Illustrator files (with the “.ai” suffix) can be read by drawing and page layout programs that can handle Illustrator v. 5 format files. The raw data files have several different formats for different types of information, and the file formats are explained in Appendix I (below) and in “README” files for each type available on the FTP server. Please address all questions, comments, and
suggestions on the format and content of our network database to “seber@geology.cornell.edu”.

4.2. Customized ArcInfo menu

We have been building a new menu system for display and query of our database. This new user interface is designed to permit an easy and efficient access to our databases with no need of knowing ArcInfo. This menu allows the user to select specific geographic features for display like country borders, rivers, etc., As well as search and query our databases. The main menu is shown in Figure 23. Some features have been selected in this menu for display by simply clicking on them. Thus, the land and the oceans are shaded and the coast lines, country borders and a latitude-longitude grid displayed (see Figure 24). The little, square boxes are called "check boxes". By simply checking the boxes the user have access to the coverages and there is no need to type any commands. The small scrolling windows contain point, line and shade symbols which can be selected to switch the default ones if they do not satisfy the user. The other kind of buttons launch other menus if they end with three points "...", Or simply perform an action like the quit button which quits the entire menu. As an example, the "display crustal cross section button" (see Figure 25), is another menu which allows the user to select a cross section location by clicking on "select profile1", and then selecting the profile of interest interactively on the screen. The menu then displays the profile next to the location map. It is also possible to obtain numerical values in ASCII files or print the profiles. The cross sections are displayed with density or velocity information for each interface (see Figure 26). Another important feature in the main menu is the "xsection info" button which permits the user to obtain the references about a particular profile, these include author name, year of publication and journal name, etc.

The "seismicity menu..." actually launches a submenu which can also launches another submenu. The first menu launched is shown in Figure 27a. Selections using Mb or Ms magnitude ranges, depth ranges, or time intervals can be easily performed with this menu. The button "selecting by the type of phenomena..." launches the second submenu (see Figure 27b), which allows the user to make a selection according to the type of event. Many events in the database have not been identified, but any event that was identified as an
explosion, for example, will be displayed if that selection is done (see Figure 3). In the main menu (see Figure 23), there is a button, "earthquake info" which gives the user all the information about an event selected with the mouse from the screen once the seismicity of an area is displayed.

There are other menus and submenus which allow to display grids, Landsat TM imagery, change the projection of maps, shade some countries with a different color, or display the bibliography. It will be possible soon to obtain cross sections between any two arbitrary points where grids like moho depth, basement depth, and topography are available. This feature is already available through our "profile maker" on our Web server described in section 3.5. This user interface not only makes things easier for the user but also it is very simple to update when new data are available. In addition, new features like an ArcInfo profile maker, can be easily implemented without major modifications to the existing menu.

5. REFERENCES

Middle East crustal profiles

Transverse Mercator projection scale 1:25,000,000

Figure 1
Seismicity of the Middle East and North Africa (1960-1990)

Figure 2a
Egypt Moho depth

Transverse Mercator projection

Figure 4
Iran profiles

Figure 5
Figure 6
Israel refraction line IIIa

Israel refraction line IV

Figure 8
Israel refraction line VI

Figure 9
Velocity function beneath S Israel/N Sinai

P velocity (km/s)

depth (km)

vertical scale 1:500,000

Figure 10
Velocity function beneath Dead Sea rift

P velocity (km/s)

depth (km)

vertical scale 1:500,000

Figure 12
Velocity function beneath Jordan line II

P velocity (km/s)

Model 1
Model 2

vertical scale 1:250,000

Figure 15
Figure 19
Middle East thickness of sedimentary cover

Transverse Mercator projection

Figure 21
Figure 23
Figure 25
Figure 27
APPENDIX I: FILE FORMATS

This is a description of the formats of the files from release #2 on our anonymous FTP server. Please address all questions, comments, and suggestions on the format and content of our network database to “seber@geology.cornell.edu”.

Figures

The PostScript files (with the “.ps” suffix) are for the figures contained in this report and can be printed on PostScript printers. These files were created by Adobe Illustrator v. 3.5 and conform to Adobe PostScript standard v. 3.

The Adobe Illustrator files (with the “.ai” suffix) are for the same figures and can be read by drawing and page layout programs that can handle Illustrator v. 3 format files, including Adobe Illustrator v. 3.5 available for Sun workstations.

Data Files

The raw data files, extracted from Arc/Info, have several different flat ASCII formats for different types of information, and the file formats are explained below and in “README” files for each type available on the FTP server.

Line files

The files with the “.line” suffix contain “arcs” or line data such as refraction line locations or crustal interfaces. These files were extracted from Arc/Info with the UNGENERATE LINE command, and can be reloaded into Arc/Info with the GENERATE and LINE commands. The lines are stored with an arc ID number for each line and a list of coordinates for the vertices along the line. The coordinates are either in “geographic” latitude-longitude coordinates in decimal degrees
(denoted “.dd.line”) or in distance-depth coordinates in km (denoted “.km.line”),
with depth positive upward and negative below sea level. The line files look like this (*italics indicates comments*):

```
arcID (integer)
x1 (longitude or distance), y1 (latitude or elevation) (floats)
x2, y2
.
.
xn, yn
END (end of this line)
arcID
x1, y1
...
xn, yn
END
END (end of file)
```

Point files

The files with the “.point” suffix contain point data such as shot-point locations
or Moho depth points. These files were extracted from Arc/Info with the
`UNGENERATE POINT` command, and can be reloaded into Arc/Info with the
`GENERATE` and `POINT` commands. The points are stored with a point ID number
and coordinates for each point. The coordinates are either in “geographic”
latitude-longitude coordinates in decimal degrees (denoted “.dd.point”) or in
distance-depth coordinates in km (denoted “.km.point”), with depth positive
upward and negative below sea level. The point files look like this (*italics indicates comments*):

```
pointID (integer), x1 (longitude or distance), y1 (latitude or elevation) (floats)
pointID, x2, y2
...
pointID, xn, yn
END (end of file)
```

AAT files

The files with the “.aat” suffix contain arc attribute data such as velocities
above and below crustal interfaces. These files are a simple ASCII listing of the
AAT (Arc Attribute Table) in Arc/Info. They were created with the `PRINT`
command in INFO, and can be loaded with the ADD FROM command of INFO. The
AAT files for the 2-D crustal sections (.km.aat suffix) contain the P velocities in
km/s (for refraction profiles) or densities in g/cm3 (for gravity profiles) for each
interface (referenced according to the arclD) in the following format:

arclD (integer) vel_above vel_below (floats) for refraction profiles
arclD (integer) dens_above dens_below (floats) for gravity profiles

... The AAT files for the contour line maps (.dd.aat suffix) contain the depths or
thicknesses for the interface or layer in km. The arclD is again used for reference,
but in this case the arclD may not be unique because it is usually set to an integer
version of the depth (multiplied times 10 if the contours do not have integer
intervals). Depths are negative below sea level. The file has the following format:
arclD (integer) depth (or thickness) (float)

...
APPENDIX II

BIBLIOGRAPHY OF THE MIDDLE EAST
AND NORTH AFRICA

NOVEMBER 30, 1995

The references have been separated into four categories below: Middle East Geology, Middle East Geophysics, North Africa Geology, and North Africa Geophysics.

MIDDLE EAST: GEOLOGY

Bender, V. F., 1968, on the age and evolution of the Jordan Graben: an example from the southern section (Wadi Arabia): Geol. Jb. (GERMAN), v. 3, p. 177-196.
Berberian, F., Muir, I. D., Pankhurst, R. J., and Berberian, M., 1982, Late Cretaceous and early Miocene Andean-type plutonic activity in northern

Christian, L., Projection of Triassic, Permian, and Carboniferous isopach trends from Arabia across the gulf into Iran, and proposed sinistral displacement of Permian isopachs along the main Zagros fault: (submitted)

Dilek, Y., and Delaloye, M., 1992, Structure of the Kizildag ophiolite, a slow-
spread Cretaceous ridge segment north of the Arabian promontory: Geology, v.
20, p. 19-22.
Dilek, Y., and Moores, E. M., 1990, Regional tectonics of the eastern
Mediterranean ophiolites, Proceedings of the Symposium on Ophiolites and
in Mesozoic Southern Turkey: Tectonics, v. 12, No. 4, p. 954-970.
Dilek, Y., and Thy, P., 1990, Tectonic evolution of the troodos ophiolite within the
Tethyan framework: Tectonics, v. 9, p. 811-823.
Dubertret, L., 1970, Review of the structural geology of the Red Sea and
surrounding areas: Royal Society of London Philosophical Transactions, Series
Dubertret, L., 1932, Les formes structurales de la Syrie et de la Palestine: C. R.
Tertiary As-Sarat Volcanic Field, Southwestern Saudi-Arabia: Tectonophysics,
v. 198, No. 2-4, p. 155-180.
Duncan, I. J., Rivard, B., Arvidson, R. E., and Sultan, M., 1990, Structural
Interpretation and Tectonic Evolution of a Part of the Najd Shear Zone (Saudi-
Arabia) Using Landsat Thematic-Mapper Data: Tectonophysics, v. 178, No. 2-4,
p. 309-335.
Hazar (Eastern Taurus Mountains), in Tekeli, O., and Gönçüoğlu, M. C., eds.:
Ankara, Turkey, MTA, p. 229-235.
Dunnington, H. V., 1958, Generation, Migration, Accumulation, and Dissipation
of Oil in Northern Iraq, Habitat of Oil, American Association of Petroleum
Geologists, p. 1194-1250.
Dunnington, H. V., 1967, Stratigraphical Distribution of Oilfields in the Iraq-
Iran-Arabia Basin: Journal of the Institute of Petroleum, v. 53, no. 520, p. 129-
161.
Miocene Evaporites of the Red Sea Rift, Yemen-Republic - Sedimentology of the
Elramly, M. F., Greiling, R. O., and Rashwan, A. A., 1990, Extension of the Najd
Shear System from Saudi-Arabia To the Central Eastern Desert of Egypt
Based on Integrated Field and Landsat Observations - Comment: Tectonics, v.
9, No. 3, p. 535-538.
Erendil, M., 1984, Petrology and structure of the upper crustal units of the
Kizildag ophiolite, in Tekeli, O., and Gönçüoğlu, M. C., eds., Geology of the
Taurus Belt: Ankara, Turkey, MTA, p. 269-284.
Everett, J. R., 1991, Tectonic context of the Palmyrides of Syria (abstract):
American Association of Petroleum Geologists.
Eyal, M., Eyal, Y., Bartov, Y., and Steinitzer, G., 1981, The tectonic development of
the western margin of the Gulf of Elat (Aqaba) Rift: Tectonophysics, v. 80, p.
39-66.
Eyal, Y., 1983, Tectonic analysis of the Dead Sea Rift region since the Late-

Freund, R., 1965, a model of the structural development of Israel and adjacent areas since Upper Cretaceous times: Geological Magazine, v. 102, p. 189-205.

Kashai, E. L., a review of the relations between the tectonics, sedimentation and petroleum occurences of the Dead Sea - Jordan Rift system, in Manspeizer, W., ed., Triassic-Jurassic Rifting; Continental Breakup and the Origin of the Atlantic Ocean and Passive Margins: Amsterdam, Elsevier.

Khair, K., Aker, N., and Zahruddinne, K., 1992, Hydrogeologic Units of Lebanon: Applied Hydrogeology, v. 1, p. 34-.

Nasir, S., 1990, K-Ar age determinations and volcanological evolution of the northwestern part of the Arabian Plate, Jordan: European Journal of Mineralogy, v. 2, p. 188.

Ponikarov, V. P., 1964, Tectonic map of Syria: scale 1:1,000,000: Ministry of Industry.

Saif, S. I., 1986, a new dual regime plate tectonic interpretation to explain the origin of the megatectonic elements and magmatism in the Afro-Arabian region: Tectonics (submitted to).

Taviani, M., Bonatti, E., Colantoni, P., and Piermaria, L. R., 1984, Tectonically Uplifted Crustal Blocks in the Northern Red Sea: Data from the Brothers Islets: Memorial Society of Italian Geology, v. 27, p. 47-50.

Tromp, S. W., 1949, Blockfolding phenomena in the Middle East: Geologie en Mijnbouw, v. 9, p. 273-278.

Ustaomer, T., and Robertson, A. H. F., 1993, a Late Palaeozoic Early Mesozoic Marginal Basin Along the Active Southern Continental Margin of Eurasia - Evidence from the Central Pontides (Turkey) and Adjacent Regions: Geological Journal, v. 28, No. 3-4, p. 219-238.

Winter, T., Avouac, J.-P., and Lavenu, A., 1993, Late Quaternary kinematics of the Pallatanga strike-slip fault (Central Ecuador) from topographic

MIDDLE EAST: GEOPHYSICS

seismotectonic observations, and its tectonic significance: Bulletin of the Seismological Society of America, v. 82, no. 4, p. 1726-1755.

68

El-Isa, Z., 1992, Seismicity of Wadi Araba-Dead Sea Region: Geology of the Arab World, v. 1, no. , p. 245-?

Geiss, E., 1987, The lithosphere in the Mediterranean region; a contribution on structure, gravity field and deformation [Doctoral thesis]: University of Munich.

Hadiouche, O., and Zurn, W., 1992, on the structure of the crust and upper mantle beneath the Afro-Arabian region from surface wave dispersion: Tectonophysics, v. 209, p. 179-196.

Khair, K., 1992, a review of Geophysical data in Lebanon and their significance to the Levantine Plate structure: Geology of the Arab World, v. 1, no. , p. 231-?

Snyder, D. B., and Barazangi, M., 1985, Deep crustal structure and flexure of the Arabian Plate beneath the Zagros collisional mountain belt as inferred from gravity observations [Abstract]: Eos, Transactions, American Geophysical Union, v. 66, no. 46, p. 1074.

Tulcotte, T., and Arich, E., 1986, Catalog of earthquakes in and around Israel: Nuclear power plant - Shveta site, The Israel Electric Corporation LTD.

NORTH AFRICA: GEOLOGY

Reuber, I., Michard, A., Chalouan, A., Juteau, T., and Jermoumi, B., 1982, Structure and emplacement of the alpine-type peridotites from Beni Bousera,

NORTH AFRICA: GEOPHYSICS

Watts, A. B., and Torne, M., 1992, Subsidence history, crustal structure, and thermal evolution of the Valencia Trough; a young extensional basin in the

Young, M. E., Izzeldin, H. G., and Burr, A. F., 1989, Bouger and isostatic gravity anomalies in NW Sudan and their implication for petroleum exploration:

Prof. Thomas Ahrens
Seismological Lab, 252-21
Division of Geological & Planetary Sciences
California Institute of Technology
Pasadena, CA 91125

Prof. Keiiti Aki
Center for Earth Sciences
University of Southern California
University Park
Los Angeles, CA 90089-0741

Prof. Shelton Alexander
Geosciences Department
403 Deike Building
The Pennsylvania State University
University Park, PA 16802

Dr. Thomas C. Bache, Jr.
Science Applications Int'l Corp.
10260 Campus Point Drive
San Diego, CA 92121 (2 copies)

Prof. Muawia Barazangi
Cornell University
Institute for the Study of the Continent
3126 SNEE Hall
Ithaca, NY 14853

Dr. Douglas R. Baumgardt
ENSCO, Inc
5400 Port Royal Road
Springfield, VA 22151-2388

Dr. T.J. Bennett
S-CUBED
A Division of Maxwell Laboratories
11800 Sunrise Valley Drive, Suite 1212
Reston, VA 22091

Dr. Robert Blandford
AFTAC/TT, Center for Seismic Studies
1300 North 17th Street
Suite 1450
Arlington, VA 22209-2308

Dr. Stephen Bratt
ARPA/NMRO
3701 North Fairfax Drive
Arlington, VA 22203-1714

Mr. Dale Breding
Sandia National Laboratories
Organization 9236, MS 0655
Albuquerque, NM 87185

Dr. Jerry Carter
Center for Seismic Studies
1300 North 17th Street
Suite 1450
Arlington, VA 22209-2308

Mr Robert Cockerham
Arms Control & Disarmament Agency
320 21st Street North West
Room 5741
Washington, DC 20451,

Dr. Zoltan Der
ENSCO, Inc.
5400 Port Royal Road
Springfield, VA 22151-2388

Dr. Stanley K. Dickinson
AFOSR/NM
110 Duncan Avenue
Suite B115
Bolling AFB, DC 20332-6448

Dr. Petr Firbas
Institute of Physics of the Earth
Masaryk University Brno
Jecna 29a
612 46 Brno, Czech Republic

Dr. Mark D. Fisk
Mission Research Corporation
735 State Street
P.O. Drawer 719
Santa Barbara, CA 93102

Dr. Cliff Frolich
Institute of Geophysics
8701 North Mopac
Austin, TX 78759

Dr. Holly Given
IGPP, A-025
Scripps Institute of Oceanography
University of California, San Diego
La Jolla, CA 92093

Dr. Jeffrey W. Given
SAIC
10260 Campus Point Drive
San Diego, CA 92121

Dan N. Hagedon
Pacific Northwest Laboratories
Battelle Boulevard
Richland, WA 99352
Dr. James Hannon
Lawrence Livermore National Laboratory
P.O. Box 808, L-205
Livermore, CA 94550

Dr. Roger Hansen
University of Colorado, JSPC
Campus Box 583
Boulder, CO 80309

Prof. David G. Harkrider
Phillips Laboratory
Earth Sciences Division, PL/GPE
29 Randolph Road
Hanscom AFB, MA 01731-3010

Prof. Danny Harvey
University of Colorado, JSPC
Campus Box 583
Boulder, CO 80309

Prof. Donald V. Helmberger
Division of Geological & Planetary Sciences
California Institute of Technology
Pasadena, CA 91125

Prof. Eugene Herrin
Geophysical Laboratory
Southern Methodist University
Dallas, TX 75275

Prof. Robert B. Herrmann
Department of Earth & Atmospheric Sciences
St. Louis University
St. Louis, MO 63156

Prof. Lane R. Johnson
Seismographic Station
University of California
Berkeley, CA 94720

Prof. Thomas H. Jordan
Department of Earth, Atmospheric & Planetary Sciences
Massachusetts Institute of Technology
Cambridge, MA 02139

Mr. Robert C. Kemeraid
ENSOCO, Inc.
445 Pineda Court
Melbourne, FL 32940

U.S. Dept of Energy
Max Koontz, NN-20, GA-033
Office of Research and Develop.
1000 Independence Avenue
Washington, DC 20585

Dr. Richard LaCoss
MIT Lincoln Laboratory, M-200B
P.O. Box 73
Lexington, MA 02173-0073

Prof. Charles A. Langston
Geosciences Department
403 Deike Building
The Pennsylvania State University
University Park, PA 16802

Jim Lawson, Chief Geophysicist
Oklahoma Geological Survey
Oklahoma Geophysical Observatory
P.O. Box 8
Leonard, OK 74043-0008

Prof. Thorne Lay
Institute of Tectonics
Earth Science Board
University of California, Santa Cruz
Santa Cruz, CA 95064

Dr. William Leith
U.S. Geological Survey
Mail Stop 928
Reston, VA 22092

Mr. James F. Lewkowicz
Phillips Laboratory/GPE
29 Randolph Road
Hanscom AFB, MA 01731-3010(2 copies)

Dr. Gary McCarrter
Department of Physics
Southern Methodist University
Dallas, TX 75275

Prof. Thomas V. McEvilley
Seismographic Station
University of California
Berkeley, CA 94720

Dr. Keith L. McLaughlin
S-CUBED
A Division of Maxwell Laboratory
P.O. Box 1620
La Jolla, CA 92038-1620
Prof. Tuncay Taymaz
Istanbul Technical University
Dept. of Geophysical Engineering
Mining Faculty
Maslak-80626, Istanbul Turkey

Phillips Laboratory
ATTN: GPE
29 Randolph Road
Hanscom AFB, MA 01731-3010

Prof. M. Nafi Toksoz
Earth Resources Lab
Massachusetts Institute of Technology
42 Carleton Street
Cambridge, MA 02142

Phillips Laboratory
ATTN: TSML
5 Wright Street
Hanscom AFB, MA 01731-3004

Dr. Larry Turnbull
CIA-OSWR/NED
Washington, DC 20505

Phillips Laboratory
ATTN: PL/SUL
3550 Aberdeen Ave SE
Kirtland, NM 87117-5776 (2 copies)

Dr. Karl Veith
EG&G
2341 Jefferson Davis Highway
Suite 801
Arlington, VA 22202-3809

Dr. Michel Campillo
Observatoire de Grenoble
I.R.I.G.M.-B.P. 53
38041 Grenoble, FRANCE

Prof. Terry C. Wallace
Department of Geosciences
Building #77
University of Arizona
Tuscon, AZ 85721

Dr. Kin Yip Chun
Geophysics Division
Physics Department
University of Toronto
Ontario, CANADA

Dr. William Wortman
Mission Research Corporation
8560 Cinderbed Road
Suite 700
Newington, VA 22122

Prof. Hans-Peter Harjes
Institute for Geophysics
Ruhr University/Bochum
P.O. Box 102148
4630 Bochum 1, GERMANY

ARPA, OASB/Library
3701 North Fairfax Drive
Arlington, VA 22203-1714

Prof. Eystein Husebye
IFJF
Jordskjelvstasjonen
Allegaten, 5007 BERGEN NORWAY

HQ DNA
ATTN: Technical Library
Washington, DC 20305

David Jepsen
Acting Head, Nuclear Monitoring Section
Bureau of Mineral Resources
Geology and Geophysics
G.P.O. Box 378, Canberra, AUSTRALIA

Defense Technical Information Center
8725 John J. Kingman Road
Ft Belvoir, VA 22060-6218
(2 copies)

Ms. Eva Johannisson
Senior Research Officer
FOA
S-172 90 Sundbyberg, SWEDEN

TACTEC
 Battelle Memorial Institute
 505 King Avenue
 Columbus, OH 43201 (Final Report)
Dr. Bernard Massinon, Dr. Pierre Mechler
Societe Radiomana
27 rue Claude Bernard
75005 Paris, FRANCE (2 Copies)

- Dr. Svein Mykkeltveit
NTNT/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY (3 Copies)

Dr. Jorg Schlittenhardt
Federal Institute for Geosciences & Nat'l Res.
Postfach 510153
D-30631 Hannover, GERMANY

Dr. Johannes Schweitzer
Institute of Geophysics
Ruhr University/Bochum
P.O. Box 1102148
4360 Bochum 1, GERMANY

Trust & Verify
VERTIC
Carrara House
20 Embankment Place
London WC2N 6NN, ENGLAND