STRAIN RATE EFFECTS ON MECHANICAL PROPERTIES OF FIBER COMPOSITES

Final Report - Part III

by I.M. Daniel and T. Liber
IIT RESEARCH INSTITUTE

19960313 144

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
NASA - Lewis Research Center
Contract NAS3-16766
An experimental investigation was conducted to determine the strain rate effects in fiber composites. Unidirectional composite specimens of boron/epoxy, graphite/epoxy, S-glass/epoxy and Kevlar/epoxy were tested at strain rates of up to 27 \(\epsilon/\text{sec} \) to determine longitudinal, transverse and intralaminar (in-plane) shear properties. In the longitudinal direction the Kevlar/epoxy shows a definite increase in both modulus and strength with strain rate. In the transverse direction, a general trend toward higher strength with strain rate is noticed. The intralaminar shear moduli and strengths of boron/epoxy and graphite/epoxy show a definite rise with strain rate.
FOREWORD

This is the Final Report on IIT Research Institute Project No. D6073-IV, "Strain Rate Effects on Mechanical Properties of Fiber Composites," prepared by IITRI for NASA-Lewis Research Center, under Contract No. NAS3-16766. The work described in this report was conducted in the period July 1, 1974 to February 29, 1976. The work performed in the preceding period August 1, 1972 to June 30, 1974 was reported in the First Interim Report, NASA CR-134826 dated March 1975. Dr. C.C. Chamis was the NASA-Lewis Project Manager. Dr. I.M. Daniel of IITRI was the principal investigator. Additional contributions to the work reported herein were made by Dr. T. Liber and Messrs. R. LaBedz and M. Senninger.

Respectfully submitted,
IIT RESEARCH INSTITUTE

I.M. Daniel
Science Advisor
Mechanics of Materials Division

APPROVED:

S.A. Bortz
Assistant Director
Mechanics of Materials Division
STRAIN RATE EFFECTS ON MECHANICAL PROPERTIES OF FIBER COMPOSITES

ABSTRACT

An experimental investigation was conducted to determine the strain rate effects in fiber composites. Unidirectional composite specimens of boron/epoxy, graphite/epoxy, S-glass/epoxy and Kevlar/epoxy were tested at tensile strain rates of up to 27 ε/sec to determine longitudinal, transverse and intralaminar (in-plane) shear properties. In the longitudinal direction the Kevlar/epoxy shows a definite increase in both modulus and strength with strain rate. In the transverse direction a general trend toward higher strength with strain rate is noticed. The intralaminar shear moduli and strengths of boron/epoxy and graphite/epoxy show a definite rise with strain rate.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0 EXPERIMENTAL PROCEDURES</td>
<td>2</td>
</tr>
<tr>
<td>3.0 RESULTS AND DISCUSSION</td>
<td>4</td>
</tr>
<tr>
<td>4.0 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK</td>
<td>10</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>31</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>32</td>
</tr>
<tr>
<td>TABLE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>LONGITUDINAL PROPERTIES OF UNIDIRECTIONAL COMPOSITES AT VARIOUS STRAIN RATES</td>
</tr>
<tr>
<td>2</td>
<td>TRANSVERSE PROPERTIES OF UNIDIRECTIONAL COMPOSITES AT VARIOUS STRAIN RATES</td>
</tr>
<tr>
<td>3</td>
<td>INTRALAMINAR SHEAR PROPERTIES OF UNIDIRECTIONAL COMPOSITES AT HIGH STRAIN RATES</td>
</tr>
<tr>
<td>FIGURE</td>
<td>FIGURE DESCRIPTION</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
</tr>
<tr>
<td>1</td>
<td>UNIDIRECTIONAL 10-DEGREE OFF-AXIS SPECIMEN MOUNTED IN MACHINE FOR TESTING AT HIGH STRAIN RATES</td>
</tr>
<tr>
<td>2</td>
<td>EXPERIMENTAL SETUP FOR TESTING COMPOSITE SPECIMENS AT HIGH STRAIN RATES IN ELECTROHYDRAULIC TESTING MACHINE</td>
</tr>
<tr>
<td>3</td>
<td>LOAD AND STRAIN RECORDS FOR [06] BORON/EPOXY SPECIMEN LOADED AT A STRAIN RATE OF 2.7 ε/sec</td>
</tr>
<tr>
<td>4</td>
<td>LOAD AND STRAIN RECORDS FOR [06] BORON/EPOXY SPECIMENS LOADED IN TENSION AT STRAIN RATES OF 5.3 ε/sec AND 10.3 ε/sec</td>
</tr>
<tr>
<td>5</td>
<td>LOAD AND STRAIN RECORDS FOR [06] GRAPHITE/EPOXY SPECIMENS LOADED IN TENSION AT STRAIN RATES OF 1.9 ε/sec AND 5.0 ε/sec</td>
</tr>
<tr>
<td>6</td>
<td>LOAD AND STRAIN RECORDS FOR [06] S-GLASS/EPOXY SPECIMENS LOADED IN TENSION AT STRAIN RATES OF 4.5 ε/sec AND 18.8 ε/sec</td>
</tr>
<tr>
<td>7</td>
<td>LOAD AND STRAIN RECORDS FOR [06] KEVLAR/EPOXY SPECIMEN LOADED AT A STRAIN RATE OF 4.0 ε/sec</td>
</tr>
<tr>
<td>8</td>
<td>LOAD AND STRAIN RECORDS FOR [06] KEVLAR/EPOXY SPECIMEN LOADED IN TENSION AT A STRAIN RATE OF 15 ε/sec</td>
</tr>
<tr>
<td>9</td>
<td>LOAD AND STRAIN RECORDS FOR [90g] BORON/EPOXY SPECIMEN LOADED IN TENSION AT A STRAIN RATE OF 0.70 ε/sec</td>
</tr>
<tr>
<td>10</td>
<td>LOAD AND STRAIN RECORDS FOR [90g] BORON/EPOXY SPECIMEN LOADED IN TENSION AT A STRAIN RATE OF 19 ε/sec</td>
</tr>
<tr>
<td>11</td>
<td>LOAD AND STRAIN RECORDS FOR [90g] GRAPHITE/EPOXY SPECIMEN LOADED IN TENSION AT A STRAIN RATE OF 0.80 ε/sec</td>
</tr>
<tr>
<td>12</td>
<td>LOAD AND STRAIN RECORDS FOR [90g] GRAPHITE/EPOXY SPECIMEN LOADED IN TENSION AT A STRAIN RATE OF 10 ε/sec</td>
</tr>
<tr>
<td>FIGURE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>13</td>
<td>LOAD AND STRAIN RECORDS FOR [908] S-GLASS/EPOXY SPECIMEN LOADED IN TENSION AT A STRAIN RATE OF 0.50 (\varepsilon/\text{sec})</td>
</tr>
<tr>
<td>14</td>
<td>LOAD AND STRAIN RECORDS FOR [908] S-GLASS/EPOXY SPECIMEN LOADED IN TENSION AT A STRAIN RATE OF 6.3 (\varepsilon/\text{sec})</td>
</tr>
<tr>
<td>15</td>
<td>LOAD AND STRAIN RECORDS FOR [908] S-GLASS/EPOXY SPECIMEN LOADED IN TENSION AT A STRAIN RATE OF 18 (\varepsilon/\text{sec})</td>
</tr>
<tr>
<td>16</td>
<td>LOAD AND STRAIN RECORDS FOR [106] BORON/EPOXY OFF-AXIS SPECIMEN LOADED IN TENSION AT A STRAIN RATE OF 0.57 (\varepsilon/\text{sec})</td>
</tr>
<tr>
<td>17</td>
<td>LOAD AND STRAIN RECORDS FOR [106] BORON/EPOXY OFF-AXIS SPECIMEN LOADED IN TENSION AT A STRAIN RATE OF 6.3 (\varepsilon/\text{sec})</td>
</tr>
<tr>
<td>18</td>
<td>LOAD AND STRAIN RECORDS FOR [106] GRAPHITE/EPOXY OFF-AXIS SPECIMEN LOADED IN TENSION AT A STRAIN RATE OF 0.41 (\varepsilon/\text{sec})</td>
</tr>
<tr>
<td>19</td>
<td>LOAD AND STRAIN RECORDS FOR [106] GRAPHITE/EPOXY OFF-AXIS SPECIMEN LOADED IN TENSION AT A STRAIN RATE OF 4 (\varepsilon/\text{sec})</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

Most composite materials of interest to structural applications have been fully characterized under static loading conditions. Extensive data were presented in prior reports. Very little work on composite properties at high rates of loading has been reported. The need for characterization at high loading rates arises from the fact that in problems of projectile impact and foreign object damage (FOD) the material experiences very high strain rates. Strain rates in the range of 250-650 /sec were measured in impacted uniaxial and angle-ply boron/epoxy and graphite/epoxy laminates in the preceding task. One would expect that stiffnesses and ultimate values, especially those governed by the viscoelastic matrix, would be time and rate dependent. The objective of this task was to measure the stiffness, strength and ultimate strain of unidirectional composites subjected to high rates of loading. The materials investigated were the same ones used in the two previous tasks, i.e., boron/epoxy, graphite/epoxy, S-glass/epoxy and Kevlar 49/epoxy.
2.0 EXPERIMENTAL PROCEDURES

Longitudinal (0-degree) tensile properties were obtained using 6-ply coupons 1.27 cm (0.50 in.) wide with a 5.08 cm (2 in.) gage length and tabbed with fiberglass tabs. Transverse (90-degree) tensile properties were obtained using 8-ply coupons, 1.27 cm (0.50 in.) wide with a 7.62 cm (3 in.) gage length. These specimens were instrumented with a two-gage rosette on each side of the specimen. In-plane shear properties were obtained by using 10-degree off-axis coupons, 6-ply thick, 1.27 cm (0.50 in.) wide with a 7.62 cm (3 in.) gage length. They were instrumented with a three-gage rosette on each side of the specimen. Boron/epoxy, graphite/epoxy, S-glass/epoxy and Kevlar 49/epoxy specimens for uniaxial tensile testing at 0-, 90- and 10-degrees to the fibers were prepared and instrumented.

These specimens were tested in uniaxial tension at various strain rates. An MTS electro-hydraulic closed-loop system capable of delivering a wide range of input pulses at velocities up to 5.1 ms⁻¹ (12,000 in/min) was used. Special fixtures were designed and built for each type of test. One tabbed end of the specimen was clamped between two metal grips and connected through a pin to a clevis link attached to the upper crosshead of the loading frame. At the bottom end two additional fiberglass tabs extending beyond the original tabs were bonded on. These secondary tabs were connected through a pin to a load link which in turn was connected to the bottom clevis link attached to the moving ram. The fixture allowed the ram to accelerate for approximately 6.3 mm (1/4 in.) before transmitting load to the specimen. This allows for a more uniform rate of loading. A 10-degree specimen with the loading fixture mounted in the machine is shown in Fig. 1. The dynamic load initially was measured with a piezoelectric crystal load cell, however, it was found that at the higher strain rates the load signals were perturbed by resonant oscillations. Subsequently,
load measurement was done by means of an aluminum link instrumented with strain gages and connected in series with the specimen. Strain gages from the test specimen and the load cell were recorded on oscilloscopes. The overall experimental setup is shown in Fig. 2.

In all cases above a few quasistatic tests were conducted to provide a reference at very slow rates for specimens of identical geometry. These quasistatic results were used to supplement previously obtained similar results.¹²
3.0 RESULTS AND DISCUSSION

Typical load and strain oscilloscope signals for the [0₆] boron/epoxy, graphite/epoxy, S-glass/epoxy and Kevlar 49/epoxy specimens are shown in Figs. 3 through 8. Results from these tests as well as corresponding static tests are tabulated in Table 1. Results for boron/epoxy show no significant changes in modulus but some increase in strength at the higher strain rates. The ultimate strain remains relatively constant, with one exception at the 5.3 ε/sec strain rate where the limit strain is 8.4 x 10⁻³. In the case of graphite/epoxy there is a slight increase in modulus with strain rate but no significant changes in strength or limit strain. In the case of S-glass/epoxy there are no significant changes in modulus or strength but some trend towards higher ultimate strain at the higher rates of loading. Kevlar 49/epoxy shows a definite increase in modulus with strain rate and some increase in strength. The ultimate strain at the higher rates of loading are slightly lower than for static loading. In this series of tests where the properties of the composites are dominated by the fibers trends of properties with increasing strain rate are barely detectable. This is due primarily to the fact that the properties of the fiber materials, with the possible exception of Kevlar, are not very rate dependent, and due to the small number of specimens.

Unidirectional eight-ply 90-degree specimens of the four materials above were tested in tension to failure statically and at various high strain rates. A more sensitive load cell link was designed and used in these tests. Strain rates ranged from quasistatic to 27 ε/sec. Typical load and strain records are shown in Figs. 9 through 15. Results from these tests as well as corresponding static tests are tabulated in Table 2.
<table>
<thead>
<tr>
<th>Material</th>
<th>Average Strain Rate (ε/sec)</th>
<th>Maximum Strain Rate (ε/sec)</th>
<th>Time to Failure (ms)</th>
<th>Modulus E_{11} (GPa) $\times 10^6$ psi</th>
<th>Poisson's Ratio ν_{12}</th>
<th>Strength S_{11T} (MPa)</th>
<th>Strength S_{11T} (ksi)</th>
<th>Ult. Strain ε_{11}^u</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boron/Epoxy</td>
<td>1.4 x 10^{-4}</td>
<td>1.4 x 10^{-4}</td>
<td>50 x 10^3</td>
<td>201 (29.2)</td>
<td>0.17</td>
<td>1375 (199)</td>
<td>1350 (196)</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>4.2 x 10^{-4}</td>
<td>4.2 x 10^{-4}</td>
<td>17 x 10^3</td>
<td>192 (27.9)</td>
<td>0.18</td>
<td>1216 (176)</td>
<td>1200 (177)</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td>1.8</td>
<td>4</td>
<td>215 (31.1)</td>
<td>0.22</td>
<td>1457 (211)</td>
<td>1440 (207)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>2.0</td>
<td>3.6</td>
<td>212 (30.7)</td>
<td>0.21</td>
<td>1622 (235)</td>
<td>1600 (235)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>2.7</td>
<td>3.9</td>
<td>204 (29.6)</td>
<td>0.23</td>
<td>1430 (207)</td>
<td>1410 (206)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td>5.3</td>
<td>1.6</td>
<td>201 (29.2)</td>
<td>0.20</td>
<td>1300 (191)</td>
<td>1200 (177)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10.3</td>
<td>10.3</td>
<td>0.7</td>
<td>198 (28.7)</td>
<td>0.20</td>
<td>1430 (207)</td>
<td>1410 (206)</td>
<td>6.9</td>
</tr>
<tr>
<td>Graphite/Epoxy</td>
<td>4.2 x 10^{-4}</td>
<td>4.2 x 10^{-4}</td>
<td>12 x 10^3</td>
<td>196 (28.4)</td>
<td>0.25</td>
<td>980 (142)</td>
<td>960 (140)</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>4.2 x 10^{-4}</td>
<td>4.2 x 10^{-4}</td>
<td>14 x 10^3</td>
<td>202 (29.2)</td>
<td>0.26</td>
<td>1220 (177)</td>
<td>1200 (177)</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>1.9</td>
<td>3.8</td>
<td>208 (30.1)</td>
<td>0.14</td>
<td>1007 (146)</td>
<td>1000 (145)</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>3.8</td>
<td>2.0</td>
<td>217 (31.5)</td>
<td>0.17</td>
<td>1159 (168)</td>
<td>1150 (168)</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>3.1</td>
<td>5.0</td>
<td>1.6</td>
<td>207 (30.0)</td>
<td>0.23</td>
<td>1028 (149)</td>
<td>1020 (148)</td>
<td>5.3</td>
</tr>
<tr>
<td>S-Glass/Epoxy</td>
<td>1.4 x 10^{-4}</td>
<td>1.4 x 10^{-4}</td>
<td>250 x 10^3</td>
<td>50 (7.2)</td>
<td>0.29</td>
<td>1773 (257)</td>
<td>1750 (254)</td>
<td>35.6</td>
</tr>
<tr>
<td></td>
<td>4.2 x 10^{-4}</td>
<td>4.2 x 10^{-4}</td>
<td>77 x 10^3</td>
<td>53 (7.7)</td>
<td>0.28</td>
<td>1545 (224)</td>
<td>1530 (223)</td>
<td>32.5</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>4.5</td>
<td>4.6</td>
<td>52 (7.6)</td>
<td>0.22</td>
<td>1290 (187)</td>
<td>1270 (185)</td>
<td>30.5</td>
</tr>
<tr>
<td></td>
<td>4.6</td>
<td>4.6</td>
<td>7.2</td>
<td>48 (7.0)</td>
<td>0.25</td>
<td>1552 (225)</td>
<td>1530 (223)</td>
<td>37.5</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>4.8</td>
<td>7.3</td>
<td>47 (6.8)</td>
<td>0.26</td>
<td>1332 (193)</td>
<td>1310 (190)</td>
<td>35.1</td>
</tr>
<tr>
<td></td>
<td>16.0</td>
<td>16.0</td>
<td>2.3</td>
<td>50 (7.3)</td>
<td>0.28</td>
<td>1780 (258)</td>
<td>1760 (256)</td>
<td>38.4</td>
</tr>
<tr>
<td></td>
<td>18.8</td>
<td>18.8</td>
<td>2.0</td>
<td>50 (7.3)</td>
<td>0.26</td>
<td>1787 (259)</td>
<td>1767 (257)</td>
<td>38.6</td>
</tr>
<tr>
<td>Kevlar 49/Epoxy</td>
<td>1.4 x 10^{-4}</td>
<td>1.4 x 10^{-4}</td>
<td>138 x 10^3</td>
<td>69 (10.0)</td>
<td>0.40</td>
<td>1425 (207)</td>
<td>1400 (203)</td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td>4.2 x 10^{-4}</td>
<td>4.2 x 10^{-4}</td>
<td>48 x 10^3</td>
<td>72 (10.5)</td>
<td>0.33</td>
<td>1533 (222)</td>
<td>1510 (220)</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>9.6</td>
<td>4.1</td>
<td>79 (11.4)</td>
<td>0.40</td>
<td>1204 (175)</td>
<td>1180 (173)</td>
<td>18.9</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>11.7</td>
<td>4.0</td>
<td>78 (11.3)</td>
<td>0.43</td>
<td>1323 (192)</td>
<td>1300 (190)</td>
<td>18.6</td>
</tr>
<tr>
<td></td>
<td>15.0</td>
<td>15.0</td>
<td>1.1</td>
<td>83 (12.0)</td>
<td>0.38</td>
<td>1546 (224)</td>
<td>1520 (222)</td>
<td>18.5</td>
</tr>
<tr>
<td></td>
<td>15.0</td>
<td>15.0</td>
<td>1.2</td>
<td>83 (12.0)</td>
<td>0.33</td>
<td>1622 (235)</td>
<td>1600 (233)</td>
<td>19.0</td>
</tr>
<tr>
<td>Material</td>
<td>Average Strain Rate (ε/sec)</td>
<td>Maximum Strain Rate (ε/sec)</td>
<td>Time to Failure (ms)</td>
<td>Modulus E_{22} (GPa 10^6 psi)</td>
<td>Poisson's Ratio ν_{21}</td>
<td>Strength S_{22T} (MPa (ksi))</td>
<td>Ult. Strain $(10^{-3} \varepsilon_{22})$</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>-----------------------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>Boron/Epoxy</td>
<td>1.4×10^{-4}</td>
<td>1.4×10^{-4}</td>
<td>20×10^{-3}</td>
<td>$22.0 (3.1)$</td>
<td>0.02</td>
<td>56 (8.1)</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.8×10^{-4}</td>
<td>2.8×10^{-4}</td>
<td>10×10^{-3}</td>
<td>$19.0 (2.8)$</td>
<td>0.014</td>
<td>56 (8.1)</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.23</td>
<td>0.25</td>
<td>14.0</td>
<td>$19.0 (2.8)$</td>
<td>0.001</td>
<td>47 (6.8)</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.55</td>
<td>0.60</td>
<td>8.6</td>
<td>$15.2 (2.2)$</td>
<td>0.007</td>
<td>55 (8.0)</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.60</td>
<td>0.70</td>
<td>8.8</td>
<td>$14.7 (2.1)$</td>
<td>0.007</td>
<td>59 (8.5)</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>5.8</td>
<td>0.65</td>
<td>-</td>
<td>0.012</td>
<td>-</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>19</td>
<td>0.35</td>
<td>$15.9 (2.3)$</td>
<td>0.011</td>
<td>78 (11.3)</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>27</td>
<td>0.35</td>
<td>$13.4 (1.9)$</td>
<td>0.013</td>
<td>76 (11.0)</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>Graphite/Epoxy</td>
<td>2.8×10^{-4}</td>
<td>2.8×10^{-4}</td>
<td>13×10^{-3}</td>
<td>$8.3 (1.2)$</td>
<td>0.005</td>
<td>30 (4.4)</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.8×10^{-4}</td>
<td>2.8×10^{-4}</td>
<td>10×10^{-3}</td>
<td>$7.8 (1.1)$</td>
<td>0.007</td>
<td>23 (3.3)</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.35</td>
<td>0.75</td>
<td>7.5</td>
<td>$7.1 (1.0)$</td>
<td>0.009</td>
<td>25 (3.6)</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.35</td>
<td>0.80</td>
<td>7.4</td>
<td>$6.9 (1.03)$</td>
<td>0.011</td>
<td>30 (4.4)</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.2</td>
<td>10.0</td>
<td>0.50</td>
<td>$9.3 (1.35)$</td>
<td>0.005</td>
<td>32 (4.7)</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.7</td>
<td>10.3</td>
<td>0.55</td>
<td>$9.1 (1.32)$</td>
<td>0.004</td>
<td>32 (4.7)</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>S-Glass/Epoxy</td>
<td>1.4×10^{-4}</td>
<td>1.4×10^{-4}</td>
<td>33×10^{-3}</td>
<td>$19 (2.8)$</td>
<td>0.10</td>
<td>79 (11.4)</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.8×10^{-4}</td>
<td>2.8×10^{-4}</td>
<td>12×10^{-3}</td>
<td>$21 (3.1)$</td>
<td>0.10</td>
<td>61 (8.8)</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.40</td>
<td>0.50</td>
<td>9.7</td>
<td>$20.6 (3.0)$</td>
<td>0.08</td>
<td>81 (11.7)</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.40</td>
<td>0.60</td>
<td>10</td>
<td>$20.2 (2.9)$</td>
<td>0.09</td>
<td>78 (11.3)</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.3</td>
<td>6.3</td>
<td>0.90</td>
<td>$17.1 (2.5)$</td>
<td>0.07</td>
<td>75 (11.0)</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.8</td>
<td>6.8</td>
<td>0.70</td>
<td>-</td>
<td>0.09</td>
<td>-</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>13</td>
<td>0.70</td>
<td>-</td>
<td>0.09</td>
<td>-</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>18</td>
<td>0.55</td>
<td>$16.2 (2.3)$</td>
<td>0.06</td>
<td>82 (12.0)</td>
<td>5.3</td>
<td></td>
</tr>
</tbody>
</table>
In the boron/epoxy the modulus and strength are generally lower than corresponding static values, except for the highest strain rates, 19 and 27 ε/sec, where the strength is higher than the static one. The ultimate strain at the high strain rates is, with one exception, much higher than the static values. There is no plausible explanation for these results. In the graphite/epoxy there is some increase in modulus and strength at the higher rates of loading accompanied by an increase in limit strain. In the S-glass/epoxy there seems to be an unlikely reduction in modulus with strain rate, a fact which may not be significant. There is some trend toward higher strength with increasing strain rate. No significant trends in limit strain are apparent. The Kevlar 49/epoxy specimens were too fragile to handle in the electrohydraulic machine and failed at very low loads. The results above do not show any drastic changes of properties with strain rate although these properties are governed by the matrix, which should be more rate dependent.

Unidirectional six-ply specimens of the four materials above were tested in uniaxial tension at 10-degrees to the fiber direction statically and at various high strain rates. These specimens were instrumented with a three-gage rosette on each side. Signals from the load cell and from the longitudinal, transverse and 45-degree gages were recorded on four oscilloscopes. Axial strain rates ranged from quasistatic to 7.7 ε/sec. Typical load and strain records are shown in Figs. 16 through 19. Results from these tests as well as corresponding static tests are tabulated in Table 3. In the boron/epoxy both the in-plane shear modulus and shear strength show an increase with strain rate. The limit shear strain at the high rates of loading, however, is lower than the corresponding static one. The trends in graphite/epoxy are similar to those in boron/epoxy, with shear modulus and shear strength increasing with strain rate. No significant trends
<table>
<thead>
<tr>
<th>Material</th>
<th>Average Strain Rate (ε/sec)</th>
<th>Initial Strain Rate (ε/sec)</th>
<th>Time to Failure (ms)</th>
<th>Shear Modulus G₁₂ (GPa(10⁶ psi))</th>
<th>Shear Strength S₁₂ (MPa (ksi))</th>
<th>Ultimate Shear Strain ε₁₂ (10⁻³ε)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boron/Epoxy</td>
<td>1.4 x 10⁻⁴</td>
<td>1.4 x 10⁻⁴</td>
<td>33 x 10³</td>
<td>5.4 (0.80)</td>
<td>62.3 (9.1)</td>
<td>7.26</td>
</tr>
<tr>
<td></td>
<td>2.8 x 10⁻⁴</td>
<td>2.8 x 10⁻⁴</td>
<td>17 x 10³</td>
<td>6.2 (0.90)</td>
<td>56.9 (8.2)</td>
<td>7.60</td>
</tr>
<tr>
<td></td>
<td>0.59</td>
<td>0.48</td>
<td>6.6</td>
<td>6.8 (0.99)</td>
<td>65.9 (9.6)</td>
<td>5.43</td>
</tr>
<tr>
<td></td>
<td>0.57</td>
<td>0.47</td>
<td>6.5</td>
<td>7.0 (1.02)</td>
<td>66.1 (9.6)</td>
<td>6.71</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>4.1</td>
<td>1.5</td>
<td>7.9 (1.14)</td>
<td>76.7 (11.1)</td>
<td>6.99</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>5.7</td>
<td>1.4</td>
<td>7.2 (1.04)</td>
<td>62.5 (9.1)</td>
<td>5.46</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>6.3</td>
<td>1.2</td>
<td>8.1 (1.18)</td>
<td>76.3 (11.1)</td>
<td>5.42</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>6.8</td>
<td>0.8</td>
<td>6.7 (0.97)</td>
<td>72.9 (10.6)</td>
<td>7.21</td>
</tr>
<tr>
<td></td>
<td>3.9</td>
<td>7.7</td>
<td></td>
<td>7.7 (1.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphite/Epoxy</td>
<td>2.8 x 10⁻⁴</td>
<td>2.8 x 10⁻⁴</td>
<td>13 x 10³</td>
<td>5.8 (0.84)</td>
<td>53.7 (7.8)</td>
<td>5.26</td>
</tr>
<tr>
<td></td>
<td>2.8 x 10⁻⁴</td>
<td>2.8 x 10⁻⁴</td>
<td>7.5 x 10³</td>
<td>6.1 (0.89)</td>
<td>34.8 (5.1)</td>
<td>3.10</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>0.28</td>
<td>9.0</td>
<td>6.2 (0.90)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.41</td>
<td>0.41</td>
<td>6.7</td>
<td>7.5 (1.08)</td>
<td>56.4 (8.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.52</td>
<td>0.50</td>
<td>6.8</td>
<td>7.7 (1.11)</td>
<td>59.1 (8.6)</td>
<td>4.30</td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td>4.0</td>
<td>1.2</td>
<td>7.6 (1.10)</td>
<td>68.2 (9.9)</td>
<td>4.27</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>5.4</td>
<td>1.1</td>
<td>7.2 (1.05)</td>
<td>65.0 (9.4)</td>
<td>3.46</td>
</tr>
<tr>
<td>S-Glass/Epoxy</td>
<td>2.8 x 10⁻⁴</td>
<td>2.8 x 10⁻⁴</td>
<td>17 x 10³</td>
<td>4.5 (0.65)</td>
<td>59.0 (8.6)</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>0.34</td>
<td>0.29</td>
<td>15.6</td>
<td>4.3 (0.62)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>2.8</td>
<td>4.8</td>
<td>73.1 (10.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.6</td>
<td>20</td>
<td>4.2</td>
<td>67.8 (9.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.84 (0.27)</td>
<td></td>
<td>4.3 (0.62)</td>
<td>56.6 (8.2)</td>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td>Kevlar 49/Epoxy</td>
<td>2.8 x 10⁻⁴</td>
<td>2.8 x 10⁻⁴</td>
<td>12 x 10³</td>
<td>1.84 (0.27)</td>
<td>16.4 (2.37)</td>
<td>4.65</td>
</tr>
<tr>
<td></td>
<td>0.29</td>
<td>0.23</td>
<td>9.2</td>
<td>1.97 (0.29)</td>
<td>12.2 (1.77)</td>
<td>4.25</td>
</tr>
<tr>
<td></td>
<td>0.30</td>
<td>0.29</td>
<td>10.0</td>
<td>2.03 (0.29)</td>
<td>15.3 (2.22)</td>
<td>4.99</td>
</tr>
<tr>
<td></td>
<td>0.44</td>
<td>0.44</td>
<td>7.6</td>
<td>1.90 (0.28)</td>
<td>13.2 (1.91)</td>
<td>5.40</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>12.9</td>
<td>0.75</td>
<td>1.52 (0.22)</td>
<td>16.8 (2.44)</td>
<td>14.74</td>
</tr>
</tbody>
</table>
were noticed in the S-glass/epoxy and Kevlar/epoxy materials. Properties obtained at high strain rates were comparable with those obtained statically for the same batch of specimens. However, these properties are lower than those obtained initially for the same materials\(^2\), indicating aging and deterioration of the prepreg materials used. It was not possible to obtain a fresh batch of these materials as the matrix resin ERLA 4617 was no longer available.
4.0 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

An electrohydraulic system was set up for testing unidirectional composite coupons in tension at high strain rates. Four materials were investigated, boron/epoxy, graphite/epoxy, S-glass/epoxy and Kevlar 49/epoxy. Longitudinal, transverse and in-plane shear properties, including modulus, Poisson's ratio, strength and ultimate strain, were determined by testing 0-, 90- and 10-degree unidirectional coupons. Strains were measured by means of strain gages bonded on the coupons and loads were measured by means of a strain gage load cell mounted in series with the specimen. Signals from all strain gages were recorded on oscilloscopes.

In the case of 0-degree properties which are governed by the fibers, variation of properties with strain rate are barely detectable. The boron/epoxy shows some increase in strength at the higher strain rates but no significant changes in modulus or ultimate strain. In the graphite/epoxy there appears to be a slight increase in modulus with strain rate but no significant changes in strength or ultimate strain. In the S-glass/epoxy there are no significant changes in modulus or strength but some trend toward higher ultimate strains at the higher rates of loading. The Kevlar 49/epoxy shows a definite increase in modulus and strength with strain rate because the fibers in this case have more rate dependent properties.

One would expect that the 90-degree properties, which are governed by the properties of the matrix materials, would be much more rate dependent. In the boron/epoxy there is an unexplainable trend toward lower values in modulus, however, the strength and limit strain in general increase slightly with strain rate. In the graphite/epoxy there is a general slight increase in modulus, strength and ultimate strain. In the S-glass/epoxy there appear to be two contrary trends toward lower modulus and higher strength.
with increasing strain rate, however, these may not be significant.

The in-plane shear properties are also governed by those of the matrix material and as such they should be rate dependent. Both the boron/epoxy and graphite/epoxy show definite trends of increasing shear modulus and shear strength with strain rate. The increase in strength at the high strain rates over the static values is approximately 15 percent. No significant trends were detected in the S-glass/epoxy and Kevlar/epoxy materials. There is some question on the validity of results from these two materials as the specimens were prepared from an aged batch of prepreg material.

In general, properties of unidirectional composites such as modulus and strength tend to increase with strain rate. A more systematic series of tests with more replications per test is necessary to establish these trends in a reliable quantitative manner. The rate of testing must be increased further by at least an order of magnitude to achieve conditions comparable to those existing in impacted laminates. It is anticipated that strain rate effects will be more pronounced at higher strain rates.

To properly evaluate results of dynamic loading of composites the basic material properties over pertinent timescales, i.e., high strain rates, must be determined. The need exists for continuing and extending the work conducted under the task reported here. A systematic series of tests with more replications per test is needed. Compressive properties and properties of angle-ply laminates must be added. The present electrohydraulic system must be modified to increase the rate of loading by at least one order of magnitude, to achieve rates comparable to those encountered under impact loading. It is anticipated that strain rate effects will be more pronounced at higher strain rates.
Fig. 1 UNIDIRECTIONAL 10-DEGREE OFF-AXIS SPECIMEN MOUNTED IN MACHINE FOR TESTING AT HIGH STRAIN RATES
FIG. 2 EXPERIMENTAL SETUP FOR TESTING COMPOSITE SPECIMENS AT HIGH STRAIN RATES IN ELECTROHYDRAULIC TESTING MACHINE
Fig. 3 LOAD AND STRAIN RECORDS FOR [0₆] BORON/EPOXY SPECIMEN LOADED AT A STRAIN RATE OF 2.7ε/sec.
Fig. 4 LOAD AND STRAIN RECORDS FOR [0₆] BORON/EPOXY SPECIMENS LOADED IN TENSION AT STRAIN RATES OF 5.3 ε/sec and 10.3 ε/sec.
Fig. 5 LOAD AND STRAIN RECORDS FOR \([0_6] \) GRAPHITE/EPoxy SPECIMENS LOADED IN TENSION AT STRAIN RATES OF 1.9 \(\varepsilon/\text{sec}\) and 5.0 \(\varepsilon/\text{sec}\).
Fig. 6
LOAD AND STRAIN RECORDS FOR $[0_6]$ S-GLASS/EPoxy SPECIMENS LOADED IN TENSION AT STRAIN RATES OF 4.5 ε/sec and 18.8 ε/sec (Sweep: 500 μs/div).

Load/Div

Strain/Div

7325N (1625 lb)

ε_{03}

ε_{03}

ε_{03}

ε_{03}
Fig. 7 LOAD AND STRAIN RECORDS FOR [0_{6}] KEVLAR/EPoxy SPECIMEN LOADED AT A STRAIN RATE OF 4.0 ε/sec.
Fig. 8 LOAD AND STRAIN RECORDS FOR $[0_6]$ KEVLAR/EPOXY SPECIMEN LOADED IN TENSION AT A STRAIN RATE OF 15 ε/sec.
Fig. 9 LOAD AND STRAIN RECORDS FOR [90_8]
BORON/EPoxy SPECIMEN LOADED IN
TENSION AT A STRAIN RATE OF 0.70 ε/sec.
Fig. 10 LOAD AND STRAIN RECORDS FOR [90°] BORON/EPoxy SPECIMEN LOADED IN TENSION AT A STRAIN RATE OF 19 ε/sec.
Fig 11 LOAD AND STRAIN RECORDS FOR [90\textdegree] GRAPHITE/EPOXY SPECIMEN LOADED IN TENSION AT A STRAIN RATE OF 0.80 \varepsilon/\text{sec.}
Fig. 12 LOAD AND STRAIN RECORDS FOR $[90_8]$ GRAPHITE/EPOXY SPECIMEN LOADED IN TENSION AT A STRAIN RATE OF 10 ε/sec.
Fig. 13 LOAD AND STRAIN RECORDS FOR [90₃] S-GLASS/EPOXY SPECIMEN LOADED IN TENSION AT A STRAIN RATE OF 0.50 ε/sec.
Fig. 14 LOAD AND STRAIN RECORDS FOR [90₈]
S-GLASS/EPOXY SPECIMEN LOADED IN
TENSION AT A STRAIN RATE OF 6.3 ε/sec.
Fig. 15 LOAD AND STRAIN RECORDS FOR [90\,\textdegree] S-GLASS/EPOXY SPECIMEN LOADED IN TENSION AT A STRAIN RATE OF 18 \,\varepsilon/\text{sec.}
Fig. 16 LOAD AND STRAIN RECORDS FOR [106] BORON/EPoxy OFF-AXIS SPECIMEN LOADED IN TENSION AT A STRAIN RATE OF 0.57 ε/sec.
Fig. 17 LOAD AND STRAIN RECORDS FOR [10_6] BORON/EPOXY OFF-AXIS SPECIMEN LOADED IN TENSION AT A STRAIN RATE OF 6.3 \(\varepsilon / \text{sec} \).
Fig. 18 LOAD AND STRAIN RECORDS FOR [106] GRAPHITE/EPOXY OFF-AXIS SPECIMEN LOADED IN TENSION AT A STRAIN RATE OF 0.41 ε/sec.
Fig. 19 LOAD AND STRAIN RECORDS FOR \([10_6]\) GRAPHITE/EPOXY OFF-AXIS SPECIMEN LOADED IN TENSION AT A STRAIN RATE OF \(4 \varepsilon/\text{sec}\).
REFERENCES

DISTRIBUTION LIST

Advanced Research Projects Agency
Washington, D.C. 20525
Attn: Library

Advanced Technology Center, Inc.
LTV Aerospace Corporation
P.O. Box 6144
Dallas, Texas 75222
Attn: D.H. Petersen

Air Force Flight Dynamics Laboratory
Wright-Patterson Air Force Base, Ohio 45433
Attn: G.P. Sendeckyj (FBC)
 R.S. Sandhu

Air Force Materials Laboratory
Wright-Patterson Air Force Base, Ohio 45433
Attn: J.D. Ray (LTN)
 H.S. Schwartz (LN)
 T.J. Reinhart (MBM)
 G.P. Peterson (LC)
 E.J. Morrissey (LAE)
 A. Hopkins (LLN)
 S.W. Tsai (MBM)
 N.J. Pagano
 J.M. Whitney (MBM)
 J.C. Halpin

Air Force Office of Scientific Research
Washington, D.C. 20333
Attn: J.F. Masi (SREP)

Air Force Office of Scientific Research
1400 Wilson Blvd.
Arlington, VA 22209
Attn: SIGL
 W.J. Walker

Air Force Rocket Propulsion Laboratory
Edwards, CA 93523
Attn: Library

Army Mobility Research & Development Laboratory
Langley Research Center, Mail Stop 188A
Hampton, VA 22065
Attn: R.L. Foye
DISTRIBUTION LIST (Cont’d)

Bell Helicopter Co.
P.O. Box 482
Ft. Worth, Texas 76101
Attn: H. Zinberg

The Boeing Company
P.O. Box 3999
Seattle, Washington 98124
Attn: J.T. Hoggatt, MS 88-33

The Boeing Company
Vertol Division
Morton, PA 19070
Attn: W.D. Harris
R.A. Pinckney

Battelle Memorial Institute
Columbus Laboratories
505 King Avenue
Columbus, Ohio 43201
Attn: E.F. Rybicki
B. Noton

Brunswick Corporation
Defense Products Division
P.O. Box 4594
43000 Industrial Avenue
Lincoln, Nebraska
Attn: R. Morse

Chemical Propulsion Information Agency
Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, MD 20910
Attn: Library

Commander
Natick Laboratories
U.S. Army
Natick, MA 01762
Attn: Library

Commander
Naval Air Systems Command
U.S. Navy Department
Washington, D.C. 20360
Attn: M. Stander, AIR-42032D
C. Bersch
DISTRIBUTION LIST (Cont'd)

Commander
Naval Ordnance Systems Command
U.S. Navy Department
Washington, D.C. 20360
Attn: B. Drimmer, ORD-033
J. Kinna, ORD-033A

Cornell University
Thurston Hall
Ithaca, New York 14853
Attn: F.C. Moon

Defense Metals Information Center
Battelle Memorial Institute
Columbus Laboratories
505 King Avenue
Columbus, Ohio 43201

Department of the Army
U.S. Army Material Command
Washington, D.C. 20315
Attn: AMCRD-RD

Department of the Army
U.S. Army Aviation Materials Laboratory
Ft. Eustis, Va. 23604
Attn: I.E. Figge, Sr.
P. Berrisford

Department of the Army
U.S. Army Aviation Systems Command
P.O. Box 209
St. Louis, Mo. 63166
Attn: R. Vollmer, AMSAV-A-UE

Department of the Army
Plastics Technical Evaluation Center
Picatinny Arsenal
Dover, New Jersey 07801
Attn: H.E. Pebly, Jr.

Department of the Army
Watervliet Arsenal
Watervliet, New York 12189
Attn: F.W. Schmiedershoff

IIT RESEARCH INSTITUTE

34
DISTRIBUTION LIST (Cont'd)

Department of the Army
Watertown Arsenal
Watertown, Ma. 02172
Attn: A. Thomas
 D.W. Oplinger
 E.M. Lenoe

Department of the Army
Redstone Arsenal
Huntsville, Alabama 35809
Attn: R.J. Thompson, AMSMI-RSS

Department of the Navy
Naval Ordnance Laboratory
White Oak
Silver Spring, Maryland 20910
Attn: R. Simon

Department of the Navy
U.S. Naval Ship R&D Laboratory
Annapolis, Maryland 21402
Attn: C. Hersner, Code 2724

Department of the Navy
Air Vehicle Technology Dept.
Naval Air Development Center
Structures Division
Warminster, PA 18974
Attn: E.J. McQuillen

Director
Deep Submergence Systems Project
6900 Wisconsin Avenue
Washington, D.C. 20015
Attn: H. Bernstein, DSSP-221

Director
Naval Research Laboratory
Washington, D.C. 20390
Attn: Code 8430
 I. Wolock, Code 8433

E.I. DuPont DeNemours and Co.
DuPont Experimental Station
Wilmington, Delaware 19898
Attn: C.H. Zweben
DISTRIBUTION LIST (Cont'd)

Fiber Science, Inc.
245 East 157th Street
Gardena, California 90248
Attn: L.J. Ashton

General Dynamics
P.O. Box 748
Ft. Worth, Texas 76100
Attn: J.E. Ashley
 M.E. Waddoups

General Dynamics/Convair
P.O. Box 1128
San Diego, California 92112
Attn: J.L. Christian

General Electric Co.
Evendale, Ohio 45215
Attn: C. Scotter
 R. Ravenhall
 C.A. Steinhagen

Goldsworthy Engineering, Inc.
Lomiter Blvd.
Torrance, California 90505
Attn: B.H. Jones

General Motors Corp.
Detroit Diesel-Allison Division
Indianapolis, Indiana
Attn: M. Herman

Grumman Aerospace Corporation
Bethpage, Long Island, N.Y. 11714
Attn: S. Dastin
 J.B. Whiteside

Hamilton Standard Division
United Aircraft Corporation
Windsor Locks, Connecticut 06096
Attn: W.A. Percival

Hercules, Inc.
Allegheny Ballistics Laboratory
P.O. Box 210
Cumberland, Maryland 21052
Attn: A.A. Vicario
DISTRIBUTION LIST (Cont'd)

Illinois Institute of Technology
10 West 32nd Street
Chicago, Illinois 60616
Attn: L.J. Broutman

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, California 91103
Attn: A.C. Knoell
W. Jensen

Lawrence Livermore Laboratory
P.O. Box 808, L-421
Livermore, California 94550
Attn: T.T. Chiao
E.M. Wu

Lockheed-Georgia Co.
Advanced Composites Information Center
Dept. 72-14, Zone 402
Marietta, Georgia 30060

Lockheed Missiles and Space Co.
P.O. Box 504
Sunnyvale, California 94087
Attn: R.W. Fenn

McDonnell Douglas Aircraft Corporation
P.O. Box 516
Lambert Field, MS 63166
Attn: J.C. Watson

McDonnell Douglas Aircraft Corporation
3855 Lakewood Blvd.
Long Beach, California 90810
Attn: L.B. Greszczuk

Massachusetts Institute of Technology
Cambridge, MA 02139
Attn: F.J. McGarry
J.F. Mandell

Material Sciences Corporation
1777 Walton Road
Blue Bell, Pa. 19422
Attn: B.W. Rosen
DISTRIBUTION LIST (Cont'd)

NASA-Ames Research Center
Moffett Field, California 94035
Attn: Library
 D.P. Williams

NASA-Flight Research Center
P.O. Box 273
Edwards, California 93523
Attn: Library

NASA-George C. Marshall Space Flight Center
Huntsville, Alabama 35812
Attn: D.D. Thompson, S&EE, ASTN-PPA
 C.E. Cataldo, S&EE-ASTN-MX
 Library

NASA-Goddard Space Flight Center
Greenbelt, MD 20771
Attn: Library

NASA-Langley Research Center
Hampton, VA 23665
Attn: E.E. Mathauser, MS 188a
 R.A. Pride, MS 188a
 J.G. Davis, MS 188a
 L. Roderic, MS 188e
 J.R. Davidson, MS 188e
 M.C. Card
 Library

NASA-Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135
Attn: Contracting Officer, MS 500-313
Tech. Report Control, MS 5-5
Technical Utilization, MS 3-19
AFSC Liaison, MS 501-3
Rel. and Quality Assur., MS 500-211
R.A. Signorelli, MS 106-1
M.P. Hanson, MS 501-7
R.H. Kemp, MS 49-3
R.F. Lark, MS 49-3
J.C. Freche, MS 49-1
R.H. Johns, MS 49-3
N.T. Saunders, MS 105-1
C.C. Chamis, MS 49-3 (16 copies)
T.T. Serafini, MS 49-1
Library, MS 60-3 (2 copies)
Director, ASRDI, MS 6-2 (2 copies)

IIT RESEARCH INSTITUTE,
DISTRIBUTION LIST (Cont'd)

NASA-Lyndon B. Johnson Space Center
Houston, Texas 77001
Attn: R.E. Johnson, SMD-ES5
 S. Glorioso, SMD-ES52
 Library

NASA Headquarters
Washington, D.C. 20546
Attn: G.C. Deutsch

NASA Scientific and Tech. Information Facility
P.O. Box 33
College Park, MD 20740
Attn: Acquisitions Branch (10 copies)

National Aeronautics and Space Administration
Office of Advanced Research and Technology
Washington, D.C. 20546
Attn: L.A. Harris, Code RWS

National Aeronautics and Space Administration
Office of Technology Utilization
Washington, D.C. 20546

National Bureau of Standards
Eng. Mech. Section
Washington, D.C. 20234
Attn: R. Mitchell

National Technology Information Service
Springfield, VA 22151 (6 copies)

National Science Foundation
Engineering Division
1800 G Street, N.W.
Washington, D.C. 20540
Attn: Library

Northrop Space Laboratories
3401 West Broadway
Hawthorne, CA 90250
Attn: D. Stanbarger

Pratt & Whitney Aircraft
East Hartford, CT
Attn: A.J. Dennis

IIT RESEARCH INSTITUTE

39
DISTRIBUTION LIST (Cont'd)

Rockwell International
Los Angeles Division
International Airport
Los Angeles, CA 90009
Attn: L.M. Lackman

Sikorsky Aircraft Division
United Aircraft Corporation
Stratford, CT 06602
Attn: Library

Space and Missile Systems Organization
Air Force Unit Post Office
Los Angeles, CA 90045
Attn: Technical Data Center

Structural Composites Industries, Inc.
6344 N. Irwindale Avenue
Azusa, CA 91702
Attn: E.E. Morris

TRW, Incorporated
23555 Euclid Avenue
Cleveland, Ohio 44117
Attn: W.E. Winters

Union Carbide Corporation
P.O. Box 6116
Cleveland, Ohio 44101
Attn: J.C. Bowman

United Technologies Research Center
East Hartford, CT 06108
Attn: R.C. Novak

University of Dayton Research Institute
Dayton, Ohio 45409
Attn: W.S. Blain

University of Delaware
Dept. of Mechanical and Aerospace Engineering
107 Evans Hall
Newark, DE 19711
Attn: R.B. Pipes

University of Oklahoma
School of Aerospace Mechanical and Nuclear Engineering
Norman, Oklahoma 73069
Attn: C.W. Bert

IIT RESEARCH INSTITUTE
DISTRIBUTION LIST (Cont'd)

University of Wisconsin
Dept. of Engineering Mechanics
Madison, Wisconsin 53706
Attn: R.E. Rowlands

University of Wyoming
Dept. of Mechanical Engineering
Larmie, WY 82070
Attn: D.F. Adams

V.P.I. and S.U.
Blacksburg, VA 24061
Attn: R.H. Heller
H.F. Brinson