REPORT DOCUMENTATION PAGE

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Final 01 Jul 92 TO 30 Jun 95

4. TITLE AND SUBTITLE
(FY91 ASSET), RECEPTIVE FIELD NEURAL NETWORK ANALYSIS
OF COLOR CONSTANCY AND COLOR CONTRAST

5. FUNDING NUMBERS
F49620-92-J-0316
61103D
3484/S4

6. AUTHOR(S)
Dr Gershon Buchsbaum

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Pennsylvania
department of Bioengineering
Suite 120 Hayden Hall
3320 Smith Walk
Philadelphia PA 19104-6392

8. PERFORMING ORGANIZATION REPORT NUMBER
AFOSR-TR-93-0041

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFOSR/NL
110 Duncan Ave Suite B115
Bolling AFB DC 20332-8080

10. SPONSORING/MONITORING AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE
19960201 117

13. ABSTRACT (Maximum 200 words)
Color constancy, or the ability of the visual system to perceive color independently of the ambient illumination, was investigated in the context of a biologically-based neural network. In particular, the role of retinal adaptation and higher level visual operations in mediating color constancy was investigated. The study incorporated properties of individual cells and how they combine to make complex color and spatial operations. The neural network simulations indicate how early visual stages complement each other to compensate and maintain relatively constant color perception under conditions of varying illumination and spatial context in the image. The network takes advantage of several mechanisms in the human visual system, including retinal adaptation, spectral opponency, and spectrally-specific long-range inhibition. This last stage is a novel mechanism based on color constancy, as described in cortical area V4. All stages include non-linear response functions. The model emulates human performance in several psychophysical paradigms designed to test color constancy and color induction. We measured the amount of constancy achieved with both natural and artificial simulated illuminants, using homogeneous gray backgrounds and more complex backgrounds, such as Mondrians. On average, the model performs as well or better than the average human color constancy performance under similar conditions.

14. SUBJECT TERMS

15a. NUMBER OF PAGES

15b. PRICE CODE

16. SECURITY CLASSIFICATION OF REPORT
(U) (U)

17. SECURITY CLASSIFICATION OF THIS PAGE
(U) (U) (U)

18. SECURITY CLASSIFICATION OF ABSTRACT
(U) (U) (U)

19. LIMITATION OF ABSTRACT

20. NUMBER OF REFERENCES

21. ABSTRACT

Department of Defense Form 147, Rev. 6/95
Not to be used for official purposes
A. Publications:

Papers

Conference Proceedings/Abstracts:

Courtney, Susan, M., Finkel, Leif, H., Buchsbaum, Gershon, "A Multi-Stage Biological Network Model for Color Constancy and Color Induction", International Conference on Neural Networks 1996 (submitted)

B. Researchers:

Faculty:

Buchsbaum, Gershon
Finkel, Leif, H.
Graduate students, Thesis title and present position:

Courtney, Susan, M., (Ph.D.) Retinal and Cortical Contributions to Color Constancy and Color Induction in a Multi-Stage Network (1993). Presently, Postdoctoral Fellow, NIH

Fan, Lawrence (M.Sc.) Research area: "Properties of Illuminant - Reflectance products and their relevance in Color Constancy" Accepted position with consulting company in computing and pharmaceuticals.

Hsu, Andrew (Ph.D. Candidate), "Signal processing in the primate retina: An ideal observer model." Graduation expected 9/96.

C. Honors:

Buchbaum, Gershon, Elected Fellow of the Optical Society of America
Buchbaum, Gershon, Elected Fellow American Institute for Medical and Biological Engineering

AFOSR F49620-92-J-0316 New Invention Report 8/31/95

No patents or new inventions were created.

Gershon Buchbaum