AD

GRANT NUMBER: DAMD17-94-J-4321

TITLE: Multidrug Resistance in Breast Cancer: Occurrence and Therapeutic Implications

PRINCIPAL INVESTIGATOR: Franco Muggia, M.D.

CONTRACTING ORGANIZATION: University of Southern California
Los Angeles, California 90033

REPORT DATE: October 1995

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Multidrug Resistance in Breast Cancer: Occurrence and Therapeutic Implications

Franco Muggia, M.D.

University of Southern California
Los Angeles, California 90033

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Approved for public release; distribution unlimited

We are continuing study of the therapeutic and biological implications of the over-expression of MDR1-P-glycoprotein in breast cancer. Two major thrusts have been initiated: 1) organizing a clinical trial of paclitaxel without and with reversal of MDR1-P-glycoprotein action with the cyclosporin analog PSC-833; and 2) study of P-glycoprotein immunostaining in patients with primary and metastatic breast cancer available through our tumor bank. In addition, we are pursuing technical development to confirm these studies can be done from fixed section. The clinical trial that is to start will be a definitive test of the hypothesis that MDR1 is an important factor in determining response to paclitaxel in advanced breast cancer, and that a potent reversal agent will have therapeutic efficacy, at least in MDR1 overexpressing tumors. In addition, pharmacodynamic information in relation to paclitaxel without or with PSC-833 will be forthcoming.
GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

<table>
<thead>
<tr>
<th>Block 1. Agency Use Only (Leave blank).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Block 2. Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Block 3. Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Block 4. Title and Subtitle. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Block 5. Funding Numbers. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:</th>
</tr>
</thead>
</table>

C - Contract	PR - Project
G - Grant	TA - Task
PE - Program	W/U - Work Unit
Element	Accession No.

<table>
<thead>
<tr>
<th>Block 6. Author(s). Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Block 7. Performing Organization Name(s) and Address(es). Self-explanatory.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Block 8. Performing Organization Report Number. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Block 10. Sponsoring/Monitoring Agency Report Number. (If known)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Block 11. Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of...; To be published in... When a report is revised, include a statement whether the new report supersedes or supplements the older report.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Block 12a. Distribution/Availability Statement. Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).</th>
</tr>
</thead>
</table>

| DOD - See DoDD 5230.24, "Distribution Statements on Technical Documents." |
| DOE - See authorities. |
| NTIS - Leave blank. |

<table>
<thead>
<tr>
<th>Block 12b. Distribution Code.</th>
</tr>
</thead>
</table>

| DOD - Leave blank. |
| DOE - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports. |
| NASA - Leave blank. |
| NTIS - Leave blank. |

<table>
<thead>
<tr>
<th>Block 13. Abstract. Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Block 14. Subject Terms. Keywords or phrases identifying major subjects in the report.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Block 15. Number of Pages. Enter the total number of pages.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Block 16. Price Code. Enter appropriate price code (NTIS only).</th>
</tr>
</thead>
</table>

| --- |

<table>
<thead>
<tr>
<th>Block 20. Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.</th>
</tr>
</thead>
</table>
Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the US Army.

Where copyrighted material is quoted, permission has been obtained to use such material.

Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

Citations of commercial organizations and trade names in this report do not constitute an official Department of Army endorsement or approval of the products or services of these organizations.

In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).

For the protection of human subjects, the investigator(s) adhered to policies of applicable Federal Law 45 CFR 46.

In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

In the conduct of research utilizing recombinant DNA, the investigator(s) adhered to the NIH Guidelines for Research Involving Recombinant DNA Molecules.

In the conduct of research involving hazardous organisms, the investigator(s) adhered to the CDC-NIH Guide for Biosafety in Microbiological and Biomedical Laboratories.

PI - Signature 10/27/95
Date
Table of Contents

Cover Page page 1
SF 298 page 2
Foreword page 3
Table of Contents page 4
Introduction page 5
Body page 5
Future Plans page 6
References page 8-9
Appendix I
Appendix II
Introduction

During year 1 the underpinnings for a randomized clinical trial to explore the role of MDR1 resistant reversal strategies on results of paclitaxel in advanced breast cancer were developed, and methods for studying the distribution of MDR1P glycoprotein (Pgp) immunostaining in a breast cancer population were set up. We shall elaborate on each one of these areas:

Body

1) Clinical trials evaluating paclitaxel in relation to MDR1 expression. We have used paclitaxel by 96-h infusion together with megestrol acetate (study #1B-93-8) in patients with advanced breast cancer previously failing paclitaxel. This study is ongoing but we have already concluded that the 96-h infusion will prove unsatisfactory for logistical reasons to evaluate the role of MDR1 and resistance reversal strategies in improving the therapeutic results of paclitaxel in breast cancer. The 96-h infusion requires central venous catheters and is also fraught with a propensity for drug precipitation within the catheter, which we have noted may predispose to catheter infections. In fact, we have initiated a prospective and retrospective study of such paclitaxel-associated catheter infections within our institution with other sources of support. Moreover, our future plans will seek MDR1-reversal strategies utilizing only the 3-h paclitaxel infusion (see Future Plans).

Independently from this grant support, we have completed two studies utilizing paclitaxel as 3-h infusions (1,2) in order to further gain appreciation of its pharmacokinetics by itself (study #OC-93-5) and with an agent possibly acting via MDR1 reversal: estramustine phosphate (EMP) (study #OC-93-4). These studies have indicated that pharmacokinetics parameters are quite reproducible in an individual patient, and that EMP (preliminary data) does not appear to interfere with the pharmacokinetics disposition for paclitaxel. Moreover, these studies will allow us to propose and perform sophisticated pharmacodynamic analyses of similar data with paclitaxel alone or together with a resistance-reversal agent in patients with breast cancer (see Future Plans).

We have also completed a study of paclitaxel, initially by 24-h infusion and subsequently by 3-h infusion, in patient with advanced breast cancer who have had biopsy evaluation for MDR1-Pgp immunostaining prior to therapy. Preliminary results of this study have been published (3). This study strongly suggests that MDR1 overexpression may occur in 20% of patients with breast cancer and that such overexpression confers resistance to paclitaxel. On the other hand, failure of doxorubicin therapy does not confer resistance to paclitaxel. Such trial is the direct forerunner of the currently proposed study, and will close upon activation of the proposed study.

2) MDR1-Pglycoprotein (Pgp) immunostaining in relation to breast cancer patient characteristics. We have been assembling a tumor bank of primary breast cancer specimens at a rate exceeding 100 specimens per year. We have also developed a computerized system to capture retrospectively and prospectively the key clinical information for subsequent analysis (Appendix
I). We have piloted this data collection on 86 patients with specimens in our breast cancer tumor bank.

Future Plans/Conclusions:

The following three areas are about to be activated, in full development, or in the planning stage as noted:

1) **Clinical trials:** Protocol #1B-95-4 has completed internal review and is being submitted for approval by the DOD (Appendix II). We are the Principal Investigators and Central Laboratory for a Phase II randomized clinical trial to include 3 other institutions (each securing permission from respective IRB's and having their own sources of support for clinical trials: UC Davis and City of Hope are part of a consortium with us for Phase II studies under sponsorship by the NCI, and the University of Toronto's Bayside Hospital). This trial will randomize patients with advanced breast cancer and available pre-treatment biopsy material to paclitaxel or to paclitaxel + PSC-833, a multidrug resistance reversal agent that is a Pgp substrate, and has a superior therapeutic index. The drug PSC-833, a cyclosporin analogue being developed by Sandoz Pharmaceuticals, will be provided by this pharmaceutical company to the 4 institutions involved. The trial will provide definitive information on the role of MDR1-Pgp immunostaining in determining resistance to paclitaxel, and the ability of PSC-833 to reverse such resistance. The detailed pharmacokinetic study will, in addition, provide key information on pharmacological determinants of paclitaxel response as they apply to breast cancer pretreated with doxorubicin.

The previously approved study of 96-h paclitaxel and megestrol acetate will remain open for selected patients who fail short infusions of paclitaxel until its accrual goal is met, since no conflict with the above trial is present.

2) **MDR1-Pgp immunostaining: correlation with clinical features.** We anticipate steady accrual into this study now that methods for computerized clinical date retrieval and tissue banking have been established. The key personnel for this portion of the study (and in support of the clinical study) have been recruited. We, therefore, anticipate to have immediate accrual, initially from the existing banked tissue. As first planned, the study will be confined to the previously proposed correlates of MDR1-Pgp immunostaining with clinical characteristics: age, menopausal status, tumor size and stage, and hormone receptors. As has been suggested (4) other new important immunocytochemical correlates will be explored subsequently as these become suitable and relevant for future study. For example, experience with p53 immunostaining, and immunocytochemical identifiers of drug resistance other than MDR1 (5-10) such as MRP and LRP suggest there may also be important determinants of chemosensitivity for a wide range of drugs. Therefore, characterization in our banked tissue study may provide leads for our clinical trial where tissue specimens will be more limited in size, and therefore less suitable for exploratory study.

3) **Technical development:** Although MDR1-Pgp immunostaining has proved most reliable in identifying overexpression of MDR1 and presence of
multidrug resistance, it cannot provide a functional assessment of Pgp action. Rhodamine 123 exclusion assay has been used by others (11) to identify drugs which reverse rhodamine efflux. This functional study relies on flow cytometry and evaluating a single cell suspension. Confirmed MDR1 positive cell lines will be developed from patients, identified throughout studies, and subjected to this functional assay. Because of our initial experience with estramustine phosphate (2), in vitro studies with this drug will be expected to further investigate its interaction with Pgp (12-15) and with drugs such as paclitaxel (15).

We are also committed to explore development of MDR1-Pgp immunostaining from paraffin blocks. This may require special retrieval techniques and study with a wide range of antibodies. Even if this technique will be very time-consuming, achieving identification of MDR1-Pgp immunostaining paraffin tissues will greatly simplify future clinical studies and will expand the implications of any results that may be obtained in our initial study.

Budget Justification:

Franco Muggia, M.D. supervises the overall project, including the planning and execution of the clinical studies, and recruiting collaborators in biostatistics (Susan Groshen), in pathology (Michael Press), and in Pharmacology (Robert Koda). Cell line studies will be carried out by recruiting the collaboration of Peter Danenberg and Colin Hill.

Valerie Israel, M.D. (10%) and Christy Russell, M.D. (10 %) are medical oncologists who will carry out the clinical study of paclitaxel without or with PSC-833 in advanced breast cancer. Moreover, they will supervise the collections of specimens and clinical data on patients entered on studies as well as on those with tumor being banked.

Susan Groshen, Ph.D. (5%) is providing statistical input into the clinical study, data acquisition and laboratory determinants being studied. She is involved in the planning of all studies with Dr. Muggia.

Michael Press, M.D. (5%) supervises all work relating to MDR-Pgp expression in human tumor specimens. He also will supervise the development of new technical methods to detect Pgp, and other determinants of chemotherapy response. He is also responsible for the fresh tumor acquisition.

Xiao Wei Yang, Ph.D. (100%) has joined Dr. Press' lab to directly perform all studies dealing with immunostaining and to explore the development of new methods assessing the reliability of various monoclonal antibodies in paraffin-embedded tissues.

Robert Koda, Ph.D. (5%) will supervise the pharmacology studies of paclitaxel and PSC-833 performed in the clinical trials and the pharmacodynamic and pharmacokinetic analyses.
References

Family History for Breast Cancer: _Yes_ _No_
If yes, indicate which relatives, age at diagnosis, and if bilateral:

(If age at diagnosis is unknown indicate <50, >50, if this is known.)

History of Birth Control Use: _Yes _No _Don't Know
If yes, use of birth control pills: _Yes _No
If yes, indicate type if known:

History Hormone Replacement Therapy: _Yes _No _Don't Know
If yes, use of estrogen replacement: _Yes _No
If yes, indicate type if known:

If yes, use of estrogen + progesterone replacement: _Yes _No
If yes, indicate type if known:

Disease Status At First USC-KNJCCC Visit:

- Newly Diagnosed (no prior treatment) When First Seen at LACH or NH
 - loco-regional disease
 - metastatic disease
- Previously Treated When First Seen at LACH or NH
 - loco-regional disease (at first USC-KNJCCC visit)
 - metastatic disease (at first USC-KNJCCC visit)

DATE THAT FORM IS COMPLETED: _ _ / _ _ / 199_
HISTORY OF PRIOR MALIGNANCIES (complete for all PRIOR cancers add pages if necessary)

Prior Malignancy? _No_ _Yes (if yes, complete below)

1. Site of Malignancy

 Date of Diagnosis.___/_____/__
 Treatments Received for this cancer (check all that apply)
 - Surgery
 - Chemotherapy
 - Radiation
 - Hormone/Endocrine Therapy
 - Immunotherapy
 - Bone Marrow Transplantation
 Current Status _No Evidence of Disease (NED)_
 - With Active Disease

2. Site of Malignancy

 Date of Diagnosis.___/_____/__
 Treatments Received for this cancer (check all that apply)
 - Surgery
 - Chemotherapy
 - Radiation
 - Hormone/Endocrine Therapy
 - Immunotherapy
 - Bone Marrow Transplantation
 Current Status _No Evidence of Disease (NED)_
 - With Active Disease

3. Site of Malignancy

 Date of Diagnosis.___/_____/__
 Treatments Received for this cancer (check all that apply)
 - Surgery
 - Chemotherapy
 - Radiation
 - Hormone/Endocrine Therapy
 - Immunotherapy
 - Bone Marrow Transplantation
 Current Status _No Evidence of Disease (NED)_
 - With Active Disease

 Check here if patient has more than 3 prior malignancies and another page is appended.

DIAGNOSIS INFORMATION, STAGING AND PATHOLOGY

Date of Initial Awareness of Mass or Symptoms: ___/_____/19__

Menopausal Status (at time of diagnosis of breast cancer)
 - Pre-menopausal
 - Peri-menopausal (1 year or less since LMP),
 - Post-menopausal (over 1 year since LMP)
 - unknown

Date of Diagnosis ___/_____/19__

Diagnosis at
 - LACH
 - Other (in U.S.)
 - Other (outside U.S.)

Check one: _unilateral breast cancer_ _synchronous bilateral breast cancer_ (i.e. < 6 months apart)

Check one: _invasive cancer only_ _non-invasive only_ _both_

If synchronous bilateral cancer, describe the breast with the largest lesion first. Then repeat for the second breast (use extra copy of this form).

Laterality: _Left_ _Right_
Location: _Upper Outer_ _Lower Outer_ _Upper Inner_ _Lower Inner_ _Nipple_

Histologic diagnosis (check primary diagnosis)

Ductal:
 - intraductal (in situ)
 - invasive with predominant intraductal component
 - invasive (infiltrating ductal)
 - comedo
 - inflammatory
 - medullary with lymphocytic infiltrate
 - mucinous (colloid)
 - papillary
 - scirrhous
 - tubular
 - other

Lobular:
 - in situ
 - invasive with predominant in situ component
 - invasive (infiltrating)

Nipple:
 - Paget's disease (NOS?)
 - Paget's disease with intraductal carcinoma
 - Paget's disease with invasive ductal carcinoma
 - Other

 Yes:

DCIS Present in the Ipsilateral Breast: _Yes_ _No_ _Info. not Available_
DCIS Present in the Contralateral Breast: _Yes_ _No_ _Info. not Available_

 Check here if contralateral breast has invasive disease and pages 2 & 3 are added to include diagnostic information regarding the second breast
Local/Regional Presentation of Tumor

Local:
- single lesion
- multifocal
- diffuse
- none

Clinical Evidence of Involved Axillary Lymph Nodes: _yes _no

Other Sites of Disease: _no _yes: (specify)

Local/Regional Signs/Symptoms (check all that apply)

- erythema
- edema
- pain
- discharge
- other local/regional symptoms
- none

Systemic Signs/Symptoms

- no _yes (if yes, specify)

Size of Primary Tumor

clinical assessment: __ mm X __ mm
radiographic/mammographic size: __ mm X __ mm
based on pathologic specimen: __ mm X __ mm

Number of lymph nodes involved: __ (or unknown _)
as determined at pathology after _Lymph node dissection_
(if bilateral, only account for each lymph node once)

TNM Staging

T stage: primary tumor

Clinical: Pathological:

- _T0: no evidence of primary tumor
- _Tis: carcinoma in situ or Paget's disease of the nipple with no tumor
- _T1: tumor 20 mm or less in greatest dimension
- _T2: tumor more than 20 MM but less than or equal to 50 MM
- _T3: tumor greater than 50 mm in greatest dimension
- _T4a: extension to chest wall
- _T4b: edema (including peau d'orange) or ulceration of the skin of breast or satellite skin nodules confined to same breast
- _T4c: both T4a and T4b
- _T4d: inflammatory carcinoma

Was Pathologic Staging of Primary Following (Neoadjuvant) Chemotherapy? _Yes _No _Information Not Available

N stage (lymph nodes)

Clinical: Pathological:

- _NX: regional lymph nodes cannot be assessed
- _N0: no regional lymph node metastasis
- _N1: metastasis to movable ipsilateral axillary lymph node(s)
- _N2: metastasis to ipsilateral axillary lymph node(s) fixed to one another or to other structures
- _N3: metastasis to ipsilateral internal mammary lymph node(s)

M stage (distant metastasis)

Clinical: Pathological:

- _MX: presence of distant metastasis cannot be assessed
- _M0: no distant metastasis
- _M1: distant metastasis (including metastasis to ipsilateral supraclavicular lymph nodes)

List Sites:

Histologic grade

- low
- moderate
- high
- special type - not graded
- cannot evaluate

ER status

By Immunocytochemistry _positive _negative

By Biochemistry _ _ _ fmoles

PR status

By Immunocytochemistry _positive _negative

By Biochemistry _ _ _ fmoles

Vascular Invasion: _yes _no _information not available

Lymphatic Invasion: _yes _no _information not available

Additional (other than surgical/pathological) Methods of Staging:

CHECK ALL THAT APPLY

- Clinical Assessment
- X-ray
- Bone Scan (isotopes)
- Liver Scan (isotopes)
- CT Scan (chest)
- CT Scan (abdomen)
- CT Scan (pelvis)
- MRI
- PET Scan
- IHC (micrometastasis in BM or LN)
- Other

Information Not Available
TREATMENT FOLLOWING INITIAL DIAGNOSIS OF BREAST CANCER

Surgical Procedure for Removal of Primary: no yes.
 If yes, date ___ / ___ / 19 ___
Surgery performed at LACH NH Other (in U.S.)
 Other (outside U.S.)
Surgical Procedures for Initial Treatment of Primary (check all that apply):
 _radical/extended radical mastectomy
 _total mastectomy
 _partial mastectomy/lumpectomy
 _excisional biopsy
 _needle-directed biopsy
Was Patient Free of All Gross Tumor After Surgery yes no not sure
Negative Margins yes no not sure/information not available
Axillary Lymph Node Dissection Performed: yes no

Radiation Therapy (RT) no yes
 If yes, delivered at: LACH NH Other (in U.S.)
 Other (outside U.S.)
 Date start ___ / ___ / 19 ___
 Date finish ___ / ___ / 19 ___
Cumulative RT Dose Delivered: ___ ___ ___ cGy
Was RT Completed? yes no information not available
Number of Days of RT Planned: ___
Number of Days Actually Given: ___

Maximum Hematologic Toxicity Observed (NCI Common Toxicity) type of toxicity: __________
Maximum Non-Hematologic Toxicity Observed (NCI Common Toxicity) type of toxicity: __________
Was Patient Hospitalized as a Results of Side Effects: yes no not sure

Response to Chemotherapy CR PR Stable Progression Not Evaluable
 not applicable (e.g. adjuvant therapy)
 information not available
 too early to assess
Reason CX stopped: completed course disease progression complications other
too early to evaluate

Chemotherapy (CX) no yes
 If yes, delivered at: LACH NH Other (in U.S.)
 Other (outside U.S.)
 Date start ___ / ___ / 19 ___
 Date finish ___ / ___ / 19 ___
Purpose of CX: neoadjuvant (Neo) adjuvant (Adj)
 _Front line (F-L)
 _other (Oth)
CIC Protocol Number (if applicable): __________
Chemotherapy Agents Received (check all that apply):
 Neo Adj F-L Oth
 Doxorubicin (Adriamycin)
 5-FU (5-Fluorouracil)
 Ifosfamide
 Cyclophosphamide (Cytoxan)
 Methotrexate
 Vinca alkaloids (Vinblastine, Vincristine, Navelbine)
 Paclitaxel (Taxol)
 other Taxanes
 other alkylating agents (specify)
 other drugs (specify)
Number of Kept Appointments for Chemotherapy: ___
Number of Missed Appointments for Chemotherapy: ___
Maximum Hematologic Toxicity Observed (NCI Common Toxicity) type of toxicity: __________
Maximum Non-Hematologic Toxicity Observed (NCI Common Toxicity) type of toxicity: __________
Was Patient Hospitalized as a Results of Side Effects: yes no not sure

Was patient considered free of disease at end of surgery and/or radiation:
 yes no information not available not applicable

Was patient considered free of disease at end of surgery and/or radiation:
 yes no information not available not applicable
TREATMENT FOLLOWING INITIAL DIAGNOSIS OF BREAST CANCER

Endocrine Therapy (ET) no yes
If yes, delivered at: _LACH _NH _Other (in U.S.)__ _Other (outside U.S.)

Purpose of ET: _neoadjuvant (Neo) _adjuvant (Adj)
 _front line (F-L) _other (oth)

CIC Protocol Number (if applicable): ______________________

Endocrine Therapies Received (check all that apply and list the agent):

Neo Adj F-L Oth

--- --- --- Tamoxifen Date Started __/__/19__

--- --- --- Progestins (e.g. Megace) Date Started __/__/19__

--- --- --- Other Hormones Date Started __/__/19__

--- --- --- Aromatase Inhibitors Date Started __/__/19__

--- --- --- LH-RH agonists Date Started __/__/19__

--- --- --- Surgical ablation Date __/__/19__

Number of Kept Appointments for Endocrine Therapy: __
Number of Missed Appointments for Endocrine Therapy: __

Maximum Hematologic Toxicity Observed (NCI Common Toxicity) __
type of toxicity: ________________________________

Maximum Non-Hematologic Toxicity Observed (NCI Common Toxicity) __
type of toxicity: ________________________________

Was Patient Hospitalized as a Result of Side Effects: _yes _no _not sure

Response to Endocrine Therapy _CR
 _PR
 _Stable
 _Progression
 _Not Evaluable
 _not applicable (e.g., adjuvant therapy)
 _information not available
 _too early to assess

Reason ET stopped: _completed course
 _disease progression
 _complications
 _other
 _too early to evaluate

Summary: Was patient considered to be free of disease at completion of treatment following initial diagnosis?

_yes (medical records available)
_probably (based on patient's statement, medical records not available)
_no (medical records available)
_probably not (based on patient's statement, medical records not available)
_information not available

Total Number of Recurrences/Progressions following Initial Therapy: ______
(if no progressions or recurrences, then go to the last page for follow-up information.)
---FIRST RECURRENCE/PROGRESSION: DIAGNOSIS---

Date of First Recurrence or Progression __/__/19
(if patient was NED after initial therapy, then: recurrence
if patient was never NED then: progression)

If date of first recurrence or progression is not known, date that the patient
was last seen free of disease: __/__/__

Site(s) of first recurrence/progression
 __Local (list):__________________________
 __Regional (list):__________________________
 __Distant (list):__________________________

Was tumor rebiopsied: __yes__ no _information not available
Path. #: __LACH__ Norris Hospital

Surgical Procedure for Treatment of First Recurrence/Progression: __no__ yes.
 If yes, date __/__/19
 Surgery performed at __LACH__ NH _Other (in U.S.)__________________________
 __Other (outside U.S.)__________________________

Surgical Procedures for Local Disease (check all that apply):
 __radical/extended radical mastectomy
 __simple extended/modifed radical mastectomy
 __total mastectomy
 __partial mastectomy/lumpectomy
 __excisional surgery

Other Surgical Procedure: __yes__ no. If yes__________________________

Radiation Therapy (RT) for First Recurrence/Progression __no__ yes
 If yes, delivered at: __LACH__ NH _Other (in U.S.)__________________________
 __Other (outside U.S.)__________________________

 Date start __/__/19
 Date finish __/__/19

Cumulative RT Dose Delivered: ___ cGy

Was RT Completed? __yes__ no _information not available
Number of Days of RT Planned: ___
Number of Days Actually Given: ___

Maximum Hematologic Toxicity Observed (NCI Common Toxicity) __
 type of toxicity: ____________________________

Maximum Non-Hematologic Toxicity Observed (NCI Common Toxicity) __
 type of toxicity: ____________________________

Was Patient Hospitalized as a Result of Side Effects: __yes__ no _not sure

Response to Surgery or Radiation Treatment after First Recurrence/Progression
 __surgically free of disease
 __CR following systemic treatment or radiotherapy
 __PR
 __stable disease
 __progression
 __no treatment

---TREATMENT FOLLOWING FIRST RECURRENCE/PROGRESSION OF BREAST CANCER---
TREATMENT FOLLOWING FIRST RECURRENT/PREGRESSION OF BREAST CANCER

Chemotherapy (CX) for First Recurrence/Progression:
- **No** __yes__
 If yes, delivered at:
 - __LACH__
 - __NH__
 - __Other (in U.S.)__
 - __Other (outside U.S.)__

 Date start:__ / __ / __19__
 Date finish:__ / __ / __ __
 Purpose of CX: __adjuvant (Adj)__
 __front line (FL)__
 __other (Oth)__

Chemotherapy Agents Received (check all that applied):

<table>
<thead>
<tr>
<th>Agent</th>
<th>FL</th>
<th>Oth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjuvant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-FU (5-Fluorouracil)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ifosfamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclophosphamide (Cytoxan)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methotrexate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinca alkaloids (Vinblastine, Vincristine, Vavelbine)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paclitaxel (Taxol)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>other Taxanes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>other alkylating agents (specify)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>other drugs (specify)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of Kept Appointments for Chemotherapy: ____
Number of Missed Appointments for Chemotherapy: ____

Maximum Hematologic Toxicity Observed (NCI Common Toxicity):
- **Type of toxicity:** __________

Maximum Non-Hematologic Toxicity Observed (NCI Common Toxicity):
- **Type of toxicity:** __________

Was Patient Hospitalized as a Result of Side Effects: __yes__ __no__ __not sure

Response to Chemotherapy:
- **CR**
- **PR**
- **Stable**
- **Progression**
- **Not Evaluable**
- **not applicable (e.g. adjuvant therapy)**
- **information not available**
- **too early to assess**

Reason CX stopped:
- __completed course__
- __disease progression__
- __complications__
- __other__
- __too early to evaluate__

Endocrine Therapy following First Recurrence/Progression (ET):
- __no__ __yes__
 If yes, delivered at:
 - __LACH__
 - __NH__
 - __Other (in U.S.)__
 - __Other (outside U.S.)__

 Purpose of ET:
 - __adjuvant (Adj)__
 - __front line (FL)__
 - __other (Oth)__

Endocrine Therapies Received (check all that apply and list the agent):

<table>
<thead>
<tr>
<th>Agent</th>
<th>Date Started</th>
<th>Date Stopped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamoxifen</td>
<td>__ / __ / 19</td>
<td>__ / __ / 19</td>
</tr>
<tr>
<td>Progestins (e.g. Megace)</td>
<td>__ / __ / 19</td>
<td>__ / __ / 19</td>
</tr>
<tr>
<td>Other Hormones</td>
<td>__ / __ / 19</td>
<td>__ / __ / 19</td>
</tr>
<tr>
<td>Aromatase Inhibitors</td>
<td>__ / __ / 19</td>
<td>__ / __ / 19</td>
</tr>
<tr>
<td>LH/RH agonists</td>
<td>__ / __ / 19</td>
<td>__ / __ / 19</td>
</tr>
</tbody>
</table>

Surgical ablation
- **procedure:**
 - __ Date __ / __ / __19__

Number of Kept Appointments for Endocrine Therapy: ____
Number of Missed Appointments for Endocrine Therapy: ____

Maximum Hematologic Toxicity Observed (NCI Common Toxicity):
- **Type of toxicity:** __________

Maximum Non-Hematologic Toxicity Observed (NCI Common Toxicity):
- **Type of toxicity:** __________

Was Patient Hospitalized as a Result of Side Effects: __yes__ __no__ __not sure

Response to Endocrine Therapy:
- **CR**
- **PR**
- **Stable**
- **Progression**
- **Not Evaluable**
- **not applicable (e.g. adjuvant therapy)**
- **information not available**
- **too early to assess**

Reason ET stopped:
- __completed course__
- __disease progression__
- __complications__
- __other__
- __too early to evaluate__
---TREATMENT FOLLOWING SECOND OR LATER RECURRENCE/PROGRESSION OF BREAST CANCER---

Chemotherapy (CX) for This Recurrence/Progression: no yes
If yes, delivered at: _LACH _NH _Other (in U.S.) _Other (outside U.S.)

Date start __ / __ / 19 __
Date finish __ / __ / 19 __

Purpose of CX: _adjuvant (Adj) _front line (F-L) _other (Oth)

Chemotherapy Agents Received (check all that applied):

CIC Protocol Number (if applicable): __________________________

Endocrine Therapy (ET) following This Recurrence/Progression: no yes
If yes, delivered at: _LACH _NH _Other (in U.S.) _Other (outside U.S.)

Purpose of ET: _adjuvant (Adj) _front line (F-L) _other (Oth)

Endocrine Therapies Received (check all that apply and list the agent):

Adf F-L Oth

--- Tamoxifen Date Started __ / __ / 19 __
--- Progestins (e.g. Megace) Date Started __ / __ / 19 __
--- Other Hormones Date Started __ / __ / 19 __
--- Aromatase Inhibitors Date Started __ / __ / 19 __
--- LH/RH agonists Date Started __ / __ / 19 __
--- Surgical ablation Date __ / __ / 19 __

procedure: __

Number of Kept Appointments for Chemotherapy: __ __
Number of Missed Appointments for Chemotherapy: __ __

Maximum Hematologic Toxicity Observed (NCI Common Toxicity) __
type of toxicity: ___

Maximum Non-Hematologic Toxicity Observed (NCI Common Toxicity) __
type of toxicity: ___

Was Patient Hospitalized as a Result of Side Effects: yes no not sure

Response to Chemotherapy _ CR _ PR _ Stable _ Progression Not Evaluable
--- not applicable (e.g. adjuvant therapy) _ Information not available _ too early to assess

Reason CX stopped: __ completed course _ disease progression _ complications _ other _ too early to evaluate

Response to Endocrine Therapy _ CR _ PR _ Stable _ Progression Not Evaluable _
--- not applicable (e.g. adjuvant therapy) _ Information not available _ too early to assess

Reason ET stopped: __ completed course _ disease progression _ complications _ other _ too early to evaluate
- Status at Last Follow-Up -

Date of last follow-up: ___ / ___ / 19 ___

Status at last follow-up:
- alive and continuously without evidence of disease
- alive and NED following a recurrence
- alive - never free of disease
- alive - with disease following a recurrence
- alive - disease status not known
- dead

If patient died, date of death: ___ / ___ / 19 ___

Cause of Death:
- Breast Cancer
- Treatment Related Complications
- Other cancer (but not breast)
- Other non-cancer cause
- Cause unknown (but NOT breast cancer)
- Cause unknown (specify)

Site of Death:
- LACH
- Norris Hospital
- Other

Was Autopsy Performed? ___Yes ___No

- Quality of Survival:

At 6 Months AFTER Diagnosis or AFTER Last Recurrence/Progression (whichever occurred last).

At 12 Months AFTER Diagnosis or AFTER Last Recurrence/Progression (whichever occurred last).

0: Normal Activity
1: Symptomatic and Ambulatory
2: Ambulatory > 50%; Occasionally Needs Assistance
3: Ambulatory < 50%; Nursing Care Needed
4: Bedridden, May Require Hospitalization
6: Alive but status unknown
9: Expired

-8: Symptoms and Status are probably due to Non-Cancer Cause (describe briefly):

-9: Not yet 6 (12) months since last recurrence/too early

10/26/95
C:\biostat\tum_bank\muggia.db2
PROTOCOL NUMBER: 1B-95-4
TITLE: Phase II Randomized Study of Paclitaxel Versus Paclitaxel + PSC 833 for Advanced Hormonally Insensitive Breast Cancer (Recurring Less Than One Year Since Adjuvant or as Second-Line for Advanced Disease).
SITE: Breast
HISTOLOGY: Breast CA
STAGE: Advanced
MODALITY: Chemotherapy
TYPE: Phase II
ARMS: Randomized
PRINCIPAL INVESTIGATOR: Franco Muggia, M.D.
CO-INVESTIGATORS: Christy Russell, M.D.
Valerie Israel, M.D.
Susan Groshen, Ph.D.
James Doroshow, M.D. (City of Hope)
David Gandara, M.D. (UC Davis)
DATE OF IRB APPROVAL: 9-21-95
DATE OF ACTIVATION:
PARTICIPANTS: LAC+USC Medical Center
USC+Norris Cancer Hospital
City of Hope
UC Davis
RESEARCH COMMITTEE NUMBER: #959031
GRANT NUMBER:
DATE OF AMENDMENTS/REVISIONS

THE UNIVERSITY OF SOUTHERN CALIFORNIA ASSUMES NO RESPONSIBILITY FOR THE USE OF THIS EXPERIMENTAL PROTOCOL OUTSIDE THE PARTICIPATING INSTITUTIONS
TABLE OF CONTENTS

SCHEMA

1.0 OBJECTIVES

2.0 BACKGROUND AND HYPOTHESES

3.0 DRUG INFORMATION

4.0 STAGING CRITERIA

5.0 PATIENT ELIGIBILITY

6.0 DESCRIPTIVE FACTORS/STRATIFICATION/RANDOMIZATION SCHEME

7.0 TREATMENT PLAN AND PHARMACOKINETIC STUDIES

8.0 TOXICITIES MONITORED AND DOSAGE MODIFICATIONS

9.0 STUDY PARAMETERS

10.0 CRITERIA FOR EVALUATION AND ENDPOINT DEFINITIONS

11.0 SPECIAL INSTRUCTIONS

12.0 STATISTICAL CONSIDERATIONS

13.0 REGISTRATION GUIDELINES

14.0 DATA SUBMISSION SCHEDULE

15.0 MINORITIES AND WOMEN STATEMENT

16.0 ETHICAL AND REGULATORY CONSIDERATIONS

17.0 REPORTING REQUIREMENTS

18.0 REFERENCES

19.0 APPENDICES
Phase II Randomized Study of Paclitaxel Versus Paclitaxel + PSC 833 for Advanced Hormonally Insensitive Breast Cancer (Recurring Less Than One Year Since Adjuvant or as Second-Line for Advanced Disease)

SCHEMA

Biopsy of tumor tissue for MDR1-Pgp and advanced breast cancer (One prior therapeutic chemo or < 6 months from end of adjuvant chemotherapy)

Stratify

- Recurrence < 6 months vs progression after one prior therapy
- Measurable vs evaluable
- Institution

1.0 OBJECTIVES

Specific Aims

1. To evaluate the response rate and time to treatment failure of paclitaxel without and with PSC-833 in advanced hormonally-insensitive breast cancer.

2. For each treatment arm, to relate paclitaxel AUC, and/or time above .05 μm, to myelosuppression and/or to response.

3. To estimate the association of efficacy to paclitaxel or to paclitaxel + PSC-833 with respect to MDR as measured by MDR1-Pgp immunostaining in pre-treatment biopsies.

4. To make preliminary comparisons of the benefit from PSC-833 in patients who do and do not show MDR1 Pgp immunostaining.
2.0 BACKGROUND AND HYPOTHESIS

2.1 General Breast cancer is sensitive to a number of different cytotoxic chemotherapeutic agents, but cures remain elusive when treatment is applied after the development of overt metastatic disease (1). Endocrine therapies are favored for metastatic disease when the disease is known to be hormone-sensitive (60% of ER + and/or PR + tumors, and < 10% ER/PR negative tumors). For hormone-insensitive tumors and for those eventually refractory to endocrine therapies, combination chemotherapy has been the mainstay of treatment. Most often such treatment has consisted of cyclophosphamide, Adriamycin (doxorubicin), and 5-Fluorouracil (CAF) or methotrexate substituting for the more toxic Adriamycin in the combination CMF. With these combinations, objective responses for an average duration of less than a year take place in more that 50% of patients, as long as there has been no prior exposure to chemotherapy or the metastatic disease has become manifest one year or more from completion of adjuvant therapy (1,2).

2.2 Drug resistance. The causes of early relapse and eventual drug failure, or primary refractoriness of breast cancer are largely unknown. Overexpression of P-glycoprotein (Pgp) encoded by the Multidrug resistance gene, MDR1, has been found in association with multiple prior treatments, and in some instances of shorter survival (3-10). Moreover, it is reasonable to expect that a percentage of patients treated with doxorubicin will fail because of overexpression of Pgp. Such overexpression may also affect the responsiveness of breast cancer to the new anticancer drug, paclitaxel.

2.3 Paclitaxel in breast cancer. Paclitaxel has shown striking antitumor activity against untreated breast cancer (11). The response to Taxanes, both paclitaxel and docetaxel declines significantly in previously treated patients, as compared to untreated patients (13-15). In our paclitaxel Phase II trial in doxorubicin refractory breast cancer (protocol #1B-92-3), no responses were observed among nine patients who had Pgp positive immunostaining, whereas all the objective responses were seen among 35 with negative immunostaining (15). Analysis of prior therapy indicated no relation with cumulative doxorubicin dose (Appendix I, Figure 1), although a history of recent exposure to doxorubicin was most common in Pgp positive patients (Appendix I, Figure 2). A trend towards unfavorable survival was noted among Pgp positive patients (Appendix I, Figure 3). Others have noted no correlation between prior doxorubicin and paclitaxel response (16).

2.4 Reversal of MDR1-mediated resistance. Cells exhibiting the MDR phenotype can become responsive to anti-cancer drugs by treatment with MDR reversing agents. These agents come from diverse groups of drugs that include various membrane active agents, calmodulin antagonists, calcium channel blockers, local anesthetics and cyclosporine A (CsA). CsA has been extensively studied in the clinic as a modulator of MDR but its utility is limited by nephrotoxicity and other adverse effects.

In a search for more potent and less toxic modulators of MDR expression, several hundred cyclosporine analogs were screened. This search yielded a non-immunosuppressive analog, PSC 833, which is approximately 10-fold more potent than cyclosporine A in its ability to modulate MDR in vitro(18). While CsA binds to both P-glycoprotein and to cyclophilin, the
latter accounting for its immunosuppressive effects, PSC 833 appears to interact specifically with P-glycoprotein. PSC 833 is a member of the cyclosporine family, an analogue of cyclosporine D, with the chemical formula: [3'-keto-BMT₁]-[Val²]-cyclosporine.

In vitro resistance to paclitaxel is clearly related to MDR1 overexpression (19). Refractoriness to paclitaxel’s action may also be related to cytokinetic factors (20), and to mutations in the β-tubulin binding site of paclitaxel (21). Also, prolonged exposure may restore sensitivity to paclitaxel, and this could be related to the insensitivity of the S-phase to its actions (20). Nevertheless, strategies to overcome resistance associated with MDR1 overexpression deserve testing in improving the outlook of prior chemotherapy-treated patients with advanced breast cancer (17,22-27,29). Paclitaxel is an excellent choice for second-line therapy and the ability to increase its activity and/or duration of choice for second-line therapy and the ability to increase its activity and/or duration of effect makes study of paclitaxel + an MDR1 reversal agent also worthy of exploration. PSC-833 has been combined with paclitaxel and has restored cytotoxicity patterns following anticancer drug exposure in MDR1 overexpressing cell lines (17).

Pharmacologic changes with MDR1 reversal: In vitro studies with cancer cell lines showed that PSC 833 is approximately one order of magnitude more potent in reversing chemotherapy resistance than CSA, which itself is about one order of magnitude more active than equimolar concentrations of other known chemosensitizers (including verapamil, quinidine and amiodarone). In vitro studies also suggest that MDR reversal can be achieved at approximate concentrations of 1000-2000 ng/mL of PSC 833. In vivo studies demonstrated that PSC 833 reversed the resistance to vinca alkaloids and doxorubicin in MDR-tumor bearing mice. On the other hand, PSC 833 does not possess cytotoxic, cytostatic or immunosuppressive effects (18).

Clinical studies indicate interference of paclitaxel disposition when the two drugs are combined so that 40% of the dose of paclitaxel yields equivalent AUCs to paclitaxel when given alone. An equitoxic schedule of paclitaxel + PSC 833 to paclitaxel alone by 3 h infusion has been worked out by Sikic et al (26). A Phase III study of these two regimens in advanced breast cancer represents a test of the hypothesis that MDR1 overexpression is in large part responsible for treatment failure or early relapse. Of additional interest is whether prior treatment with doxorubicin contributes to such overexpression (27).

Selection of PSC 833 dose schedule: In general, reversible cerebellar dysfunction as manifested by ataxia and dysmetria appears to be the dose limiting toxicity in patients receiving PSC 833 by either the IV or oral route of administration. With the IV formulation, dose limiting ataxia (grade 3 or 4) has occurred in patients receiving 12.5 or 15 mg/kg/d. The ataxia reportedly required several weeks to completely resolve in one patient. No serious or severe adverse events due to SDZ PSC 833 have occurred in patients receiving intravenous doses up to and including 10 mg/kg/d. At this dose, blood concentrations of PSC 833 have ranged from 2,200-3,500 ng/mL. These concentrations are sufficient to modulate P-gp in highly resistant cell lines in vitro. Hence, 10 mg/kg/d when administered as a continuous infusion is considered the MTD for the IV formulation.

Dose limiting ataxia and dysmetria of PSC 833 have been encountered at 33 mg/kg/d divided into Q 12 hour dosing using the old drink solution and at 24 mg/kg/d divided into Q 8 hour
or Q 6 hour dosing using the soft gelatin capsule. These symptoms vary in intensity throughout the dosing interval and appear to be maximal one to three hours after dosing thus suggesting a peak concentration effect. In at least one patient, moderate hypertension was clearly associated with the above symptoms and recurred upon rechallenge but was completely reversible and without clinical sequelae.

The dose of PSC 833 chosen for this trial is based on clinical tolerability and achievement of blood concentrations known to reverse MDR1. In phase I studies B151 (PSC 833 + Etoposide) and B153 (PSC 833 + Paclitaxel) one in six patients receiving 18 mg/kg/day (6 mg/kg, q 8 hr) developed grade 3 ataxia while 6 of eight patients experienced grade 3 ataxia at a dose of 24 mg/kg/day (three at 8 mg/kg, q 8 hr and three at 6 mg/kg, q 6 hr). These events were transient and recovery was complete in all patients (28).

Preliminary data on 31 patients from protocols B151 and B 153 who have received PSC 833 for at least one cycle at 20 mg/kg/day (5 mg/kg, q 6 hr or four times daily) indicate that 12 patients have experienced grade 1 and 14 have experienced grade 2 reversible ataxia. No grade 3 ataxia has been seen at this dose level. Other toxicities which have been reported in this group of patients are summarized in the following table (without regard to assessed drug relationship):

No. Patients with PSC 833 Related Toxicities, 5mg/kg, PO, q 6 hr or 4x daily

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Grade of Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>Peripheral Neuropathy</td>
<td>31 0 0 0</td>
</tr>
<tr>
<td>Ataxia</td>
<td>12 14 0 0</td>
</tr>
<tr>
<td>Nausea and Vomiting</td>
<td>15 1 0 1</td>
</tr>
<tr>
<td>Increased Bilirubin</td>
<td>0 6 6 2</td>
</tr>
<tr>
<td>Myalgia</td>
<td>6 0 0 0</td>
</tr>
<tr>
<td>Chest Tightness</td>
<td>5 0 0 0</td>
</tr>
<tr>
<td>Hypotension</td>
<td>1 2 2 0</td>
</tr>
<tr>
<td>Cough</td>
<td>3 0 0 0</td>
</tr>
<tr>
<td>Anxiety</td>
<td>2 2 0 0</td>
</tr>
<tr>
<td>Pain</td>
<td>3 0 0 0</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>2 0 0 0</td>
</tr>
<tr>
<td>Fatigue</td>
<td>2 0 0 0</td>
</tr>
<tr>
<td>Dizziness</td>
<td>2 0 0 0</td>
</tr>
<tr>
<td>Perioral Numbness</td>
<td>2 0 0 0</td>
</tr>
</tbody>
</table>

Two patients have experienced pre-syncopal episodes associated with hypotension and one patient experienced an episode of syncope which lasted approximately 5 minutes. Other single occurrences of adverse events observed in this group of patients (all grade 1) include the following: tachycardia, pruritis, chills, weakness, dyspnea, lightheadedness, epistaxis, sinus drainage, constipation, upper respiratory infection, heartburn and hyperglycemia.
Severe elevations of alkaline phosphatase, SGOT, bilirubin, creatinine, BUN and LDH were observed in one patient who died of progressive disease while on study.

At the present time, 20 mg/kg/d administered Q 6 hours or 4 times daily represents the MTD for the oral formulation of PSC 833 when administered as the microemulsion-based soft gel capsule. In these ongoing studies in cancer patients, 5 mg/kg/dose of PSC 833 given Q 6 hours or 4 times daily has been well tolerated with average blood PSC 833 concentrations estimated to be at least 2,000 mg/ml.

A study of the absolute and relative bioavailability of PSC 833 in 20 normal human volunteers, when given as the labrafil-based drink solution (ODS), as the soft gelatin capsule (SGC) and as the new microemulsion-based drink solution (NDS) showed that the SGC and NDS were bioequivalent. The bioavailability of the microemulsion-based formulations was approximately two times higher than that of the ODS formulation used in tolerability studies. The new drink solution will be used in this study.

It must be emphasized that the use of potent MDR reversal agents such as PSC 833 will result in inhibition of the clearance of anticancer drugs principally due to modulation of P-gp in the kidney and biliary tract. The dose of paclitaxel used in combination with PSC 833 was chosen based upon the clinical tolerability and pharmacokinetic interaction profiles as determined in the phase I studies.

The starting dose of paclitaxel in this study will be reduced by approximately 60% of standard in order to achieve equal exposure and equal myelosuppression as compared to the standard paclitaxel dose (175 mg/m²) administered without PSC 833. There is wide variability in the way patients respond to treatment with the paclitaxel/PSC 833 regimen in terms of myelotoxicity. Of the 3 patients in study B153 who received 1 cycle each at the 40% paclitaxel dose (70 mg/m²) with PSC 833 at 5 mg/kg, q6h, one had a granulocyte nadir < 500/mm³ and 2 patients had nadirs between 500/mm³ and 1000/mm³ and 2 patients had nadirs between 500/mm³ and 1000/mm³. No one experienced fever during their therapy.

Ten patients have received 11 cycles of treatment at the 50% paclitaxel (87.5 mg/m²)/5 mg/kg PSC 833 dose level. During 7 cycles, patients experienced granulocyte nadirs < 500/mm³ (range = 20-456, median = 299); four of these events were accompanied by fever. A granulocyte nadir between 500 and 1000/mm³ was seen during one cycle while during 3 cycles, nadirs never fell below 1500/mm³ (one patient had a nadir > 1500/mm³ during one cycle and < 500/mm³ during the subsequent cycle). Three patients to date have had their paclitaxel doses increased to 60% (105 mg/m²) and all maintained nadirs > 1000 granulocytes/mm³.

Hypothesis 1: MDR1 overexpression contributes to treatment failure in advanced breast cancer treated with paclitaxel,

Hypothesis 2: Reversal of MDR1 Pgp activity with PSC-833 may lead to activity in this disease even if MDR1-Pgp is expressed in the tumor.
Hypothesis 3: MDR1-P-glycoprotein immunostaining may identify a patient population with overexpression and that is particularly likely to benefit from the combined treatment of paclitaxel with PSC-833.

Hypothesis 4: Responses in the Pgp negative cohorts will be more frequent with higher paclitaxel AUCs or with time above a .05 μm threshold. On the other hand, in the Pgp positive cohort such responses and correlations will only be seen in the PSC-833 arm.

3.0 DRUG INFORMATION

3.1 Taxol

3.1.1 Formulation: Taxol is a poorly soluble plant product from the Western Yew, taxus brevifolia. Improved solubility requires a mixed solvent system with further dilutions of either 0.9% sodium chloride or 5% dextrose in water.

3.1.2 Supplier/How Supplied: Bristol Myers, Oncology Division. A sterile solution concentrate, 6 mg/ml in 5 ml vials (30 mg/vial) in polyoxyethylated castor oil (Cremophor EL) 50% and dehydrated alcohol, USP, 50%. The contents of the vial must be diluted just prior to clinical use.

3.1.3 Solution Preparation: Taxol will be prepared by diluting the total dose with the appropriate volumes of either 0.9% sodium chloride injection, USP, or 5% dextrose injection, USP (D5W). Taxol must be prepared in glass or polyolefin containers due to leaching of diethylhexylphthalate (DEHP) plasticizer from polyvinyl chloride (PVC) bags and intravenous tubing by the Cremophor vehicle in which Taxol is solubilized. Each bag/bottle should be prepared immediately before administration.

NOTE: Formulation of a small number of fibers in solution (within acceptable limits established by the USP Particle Matter Test for LVPs) have been observed after preparation of Taxol. Therefore, in-line filtration is necessary for administration of Taxol solutions. In-line filtration should be accomplished by incorporating a hydrophilic, microporous filter of pore size not greater than 0.22 microns (e.g., MillexGV, Millipore Products) into the IV fluid pathway distal to the infusion pump. Although particulate formation does not indicate loss of drug potency, solutions exhibiting excessive particulate matter formation should not be used.

3.1.4 The intact vials should be stored under refrigeration (2-8°C).

3.1.5 Shelf-life surveillance of the vials is ongoing. All solutions of Taxol exhibit a slight haziness directly proportional to the concentration of drug and the time elapsed after preparation, although when prepared as described above, solutions of Taxol (0.3-1.2 mg/ml) are physically and chemically stable for 24 hours.

3.1.6 Administration of Taxol: Taxol, at the appropriate dose and dilution, will be given as a 3-hour continuous IV infusion. Taxol will be administered via an infusion
control device (pump) using non-PVC tubing and connectors, such as the IV administration sets (polyethylene or polyolefin) and through a .22 micron filter. Nothing else is to be infused through the line where Taxol is being administered.

3.1.7 **Adverse Effects:**

A comprehensive listing may be found in the package insert. The most frequent effects include the following:

- **Hematologic:** Myelosuppression
- **Gastrointestinal:** Nausea and vomiting, diarrhea, stomatitis, mucositis, pharyngitis.
- **Heart:** Asymptomatic bradycardia is common.
- **Neurologic:** Sensory (taste), peripheral neuropathy, seizures, mood swings.
- **Allergy:** Anaphylactoid and urticarial reactions (acute), flushing, rash, pruritus.
- **Liver:** Increased bilirubin alkaline phosphatase and SGOT.
- **Other:** Alopecia, fatigue, arthralgia, myalgia.

3.2 **SDZ PSC-833**

3.2.1 **Formulation:** SDZ PSC 833 is available in an oral solution. It will be supplied by Sandoz in 50 mL bottles containing 5000 mg at a concentration of 100mg/mL. Bottles will be labeled with tear off labels which meet the FDA criteria for investigational drug packaging.

3.2.2 **Storage:** SDZ PSC 833 must be stored in a secure location and must be carefully controlled in accordance with regulations governing Investigational New Drugs. PSC 833 must be stored between 15°C and 25°C in a secure location and must be carefully controlled in accordance with regulations governing Investigational New Drugs.

3.2.3 **Adverse Effects:** (Also See Background Section)

3.2.3.1 **Neurologic:** Numbness and tingling in the lips, tongue, and fingers and reversible cerebellar ataxia
3.2.3.2 **Liver:** Increased bilirubin and transaminases
3.2.3.3 **Other:** Light-headedness, dizziness, urge to cough, chest tightness or pressure
3.2.4 **Supplier:** SDZ PSC 833 is an investigational new drug supplied by Sandoz Pharmaceuticals Corporation.

3.2.5 **Administration of PSC 833:** PSC 833 dosing should be on an empty stomach; i.e., at least one hour before and two hours after a meal. The oral solution should be diluted (i.e. 1:10) preferably with orange juice or apple juice, however, other non-alcoholic drinks such as soft drinks can be used according to each patient’s individual taste. Grapefruit juice should be avoided as a diluent.

To dilute, withdraw the prescribed amount of solution from the bottle using the syringe (supplied) and add it to the beverage. Each dose will be rounded to the nearest 50 mg. Stir well and administer to the patient within 10 minutes after preparation.

For each cycle, on treatment Day 1 patients will receive PSC 833, 5 mg/kg/dose, on a four times daily schedule with no two doses being administered less than 5 hours apart. On Day 2, approximately 2 hours after the fifth or sixth dose of PSC 833 (depending on convenience), and subsequent to the patient receiving prophylactic premedications, paclitaxel will be administered as a 3 hour IV infusion at a dose of 70 mg/m². PSC 833 oral dosing will continue on a four times daily schedule until the patient has received 12 doses, ending on either day 3 or 4 of the cycle. The doses of PSC 833 and paclitaxel will be adjusted according to the tolerance of each patient as defined in sections 8.1 (PSC 833) and 8.2 (paclitaxel).

3.2.6 **Drug Accountability Records:** The Principal Investigator will maintain an accurate record of receipt, disposition, and return of all study medication on the Drug Disposition form supplied by the sponsor. Drug supplies are to be used only in accordance with this protocol under the supervision of the Principal Investigator. The Principal Investigator agrees not to destroy any labels, empty bottles or unused drug supply.

At the completion of the study, the Principal Investigator will ship all used and unused tear-off labels and study medication bottles to the sponsor at the following address:

J. Dana Associates
11 Princess Road; Suite A
Lawrenceville, N.J. 08648
Attn. Jack Yarin

A written explanation will be provided for missing bottles of medication and for any missing tear-off labels.
4.0 STAGING

4.1 Staging of breast cancer: UICC/AJCC System

Primary tumor (T)
Tx Primary tumor cannot be assessed
T0 No evidence of primary tumor
Tis Carcinoma in situ
T1 tumor 2 cm or less in greatest diameter
T1a 0.5 or smaller
T1b larger than 0.5 cm, but less than 1 cm.
T1c Larger than 1 cm., but less than 2 cm.
T2 tumor larger than 2 cm but less than 5 cm in greatest diameter
T3 tumor larger than 5 cm. in greatest diameter
T4 tumor of any size with extension to chest wall or skin
T4a fixation to chest wall
T4b edema, ulceration of the skin of the breast, or satellite skin nodules
confined to the same breast
T4c both 4a and 4b
T4d inflammatory breast cancer

Regional Nodes (N)
Nx nodes cannot be assessed clinically
N0 no regional lymph node metastases
N1 metastases to moveable ipsilateral axillary nodes
N2 metastases to ipsilateral axillary lymph nodes fixed to one another or to other
structure
N3 metastases to ipsilateral internal mammary lymph node(s)

Distant Metastases (M)
Mx presence of distant metastases cannot be assessed
M0 no distant metastases
M1 distant metastases (including metastases to ipsilateral supraclavicular node(s))

Stage Grouping
Stage 0 TisN0M0
Stage I T1N0M0
Stage IIA T0N1M0, T1N1M0, T2N0M0
Stage IIB T2N1M0, T3N0M0
Stage IIIA T0N2M0, T1N2M0, T2N2M0, T3N1M0, T3N2M0
Stage IIIB T4 any N M0, any T N3 M0
Stage IV any T any N M1
5.0 ELIGIBILITY CRITERIA

5.1 Inclusion Criteria

5.1.1 Metastatic disease within 6 months of an adjuvant anthracycline-based chemotherapy and no chemotherapy for advanced disease, or failure of one prior anthracycline-based chemotherapeutic regimen for advanced breast cancer. (Exception: When anthracyclines are contraindicated, metastatic disease within 6 months of any adjuvant cytotoxic regimen, or failure of one prior cytotoxic chemotherapeutic regimen for advanced breast cancer also qualifies.)

5.1.2 Evaluable or measurable disease, with indicator lesion not radiated.

5.1.3 Presence of a lesion readily accessible for biopsy.

5.1.4 No radiation therapy within 3 weeks, and evaluable or measurable disease in at least one non-irradiated area.

5.1.5 No hormonal therapy within 2 weeks.

5.1.6 Performance Status 0, 1, or 2. (Appendix II).

5.1.7 Patients of childbearing potential must have a negative serum beta HCG pregnancy test within two weeks prior to study entry and agree to employ a barrier method of birth control for the duration of this clinical study.

5.1.8 Patients must give written informed consent to participate in the study.

5.2 Exclusion Criteria

Exclusion from the study will be required if:

5.2.1 Prior Taxol.

5.2.2 Patient has impairment of hepatic, renal or hematologic function as defined by the following baseline laboratory values:

a) Serum SGOT and/or SGPT > 2 times the institutional upper limit of normal (IULN).
b) Total serum bilirubin > 1.5 mg/dL.
c) History of chronic active hepatitis or cirrhosis.
d) Serum creatinine > 2.0 mg/dL.
e) Platelets < 100,000/mm³
f) Absolute neutrophil count (ANC) < 1500/mm³
g) Hemoglobin < 8.0 g/dL.
5.2.3 Patient has severe or uncontrolled concurrent medical disease (e.g. uncontrolled diabetes, unstable angina, myocardial infarction within 6 months, congestive heart failure, etc.).

5.2.4 Patient has known HIV infection (pre-study testing is not mandatory).

5.2.5 Patient has impairment of gastrointestinal function which might significantly alter the absorption of PSC 833. This includes uncontrolled nausea, vomiting, diarrhea, malabsorption syndrome or bowel obstruction.

5.2.6 Patient has been treated with myelosuppressive chemotherapy within four weeks prior to study entry or within six weeks if administered nitrosoureas.

5.2.7 Patient is pregnant or breast feeding.

5.2.8 Patient has not recovered from previous surgery.

5.2.9 Patient has received investigational therapy within four weeks of study entry.

5.2.10 Patient has a known hypersensitivity to ingredients of the study medication or cyclosporine A.

5.2.11 Patients with a history of a second malignancy (with the exception of non-melanoma skin cancer or carcinoma in situ of the cervix).

5.2.12 Patient is currently receiving treatment with the following agents known to decrease the blood concentration of cyclosporine A (Column 2. Table 1) and treatment cannot be discontinued.

5.2.13 Patient is currently receiving oral administration of agents known to increase cyclosporine A blood concentrations (Column 1. Table 1) and treatment cannot be withheld during PSC 833 administration.

5.2.14 Brain metastases or other neurologic problems requiring treatment.

5.2.15 Unable to reliably follow instructions.
<table>
<thead>
<tr>
<th>Drugs Increasing the Serum Concentrations of CSA</th>
<th>Drugs Decreasing the Serum Concentrations of CSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allopurinol</td>
<td>Carbamazepine</td>
</tr>
<tr>
<td>Amiodarone</td>
<td>Metamizole</td>
</tr>
<tr>
<td>Bromocriptine</td>
<td>Nafcillin</td>
</tr>
<tr>
<td>Cholic acid and derivatives</td>
<td>Octreotide</td>
</tr>
<tr>
<td>Danazol</td>
<td>Phenobarbital</td>
</tr>
<tr>
<td>Diltiazem</td>
<td>Phenytoin</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>Probufol</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>Rifampin</td>
</tr>
<tr>
<td>Ethynglestradiol</td>
<td>Sulfadimidine i.v.</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>Ticlopidine</td>
</tr>
<tr>
<td>Glybenclamide</td>
<td>Trimethoprim i.v.</td>
</tr>
<tr>
<td>Itraconazole</td>
<td></td>
</tr>
<tr>
<td>Josamycin</td>
<td></td>
</tr>
<tr>
<td>Ketoconazole</td>
<td></td>
</tr>
<tr>
<td>Lovastatin</td>
<td></td>
</tr>
<tr>
<td>Methylprednisolone</td>
<td></td>
</tr>
<tr>
<td>Metoclopramide</td>
<td></td>
</tr>
<tr>
<td>Nicardipine</td>
<td></td>
</tr>
<tr>
<td>Nifedipine</td>
<td></td>
</tr>
<tr>
<td>Ondansetron</td>
<td></td>
</tr>
<tr>
<td>Oral Contraceptives</td>
<td></td>
</tr>
<tr>
<td>Ponsinomycin</td>
<td></td>
</tr>
<tr>
<td>Pristinamycin</td>
<td></td>
</tr>
<tr>
<td>Propafenone</td>
<td></td>
</tr>
<tr>
<td>Verapamil</td>
<td></td>
</tr>
</tbody>
</table>
6.0 STRATIFICATION/DESCRIPTIVE FACTORS/RANDOMIZATION SCHEME

This is a multi-centered Phase II study. The coordinating center is the City of Hope. The participating centers are the City of Hope, USC and UC Davis. All patients will be registered at the City of Hope through the Biostatistics Office. (See Section 13.0).

6.1 This is a randomized study.

6.2 Stratifications:

6.2.1 Treatment within six months of adjuvant chemotherapy vs. progression on chemotherapy for advanced disease.

6.2.2 Measurable vs. evaluable disease.

6.2.3 Institution.

6.3 Randomization: To be done centrally at CISO, USC (213) 764-0450.

7.0 TREATMENT PLAN AND PHARMACOKINETIC STUDIES

7.1 Treatment will be randomized

All patients will be pre-treated during cycle 1 (premedication dosages may be modified for subsequent cycles) with:

1. Dexamethasone, 20 mg orally or intravenously, 12 and 6 hours before paclitaxel.

2. Diphenhydramine, 50 mg, 30 to 60 minutes before paclitaxel.

3. Cimetidine, 300 mg or Ranitidine, 50 mg, 30 minutes before paclitaxel.

7.1.1 Regimen I

Paclitaxel 175 mg/m² by 3-hour continuous infusion Day 1, every 21 days.

7.1.2 Regimen II

Patients should be advised that the use of alcohol, sedatives or sleeping medications should be avoided during administration of PSC 833 as this could increase the likelihood of falling. Patients should also be advised not to drive a car or other vehicle during initial treatment with PSC 833 until effects on coordination in that patient have been determined.

SDZ PSC 833 - 5 mg/kg po qid for 12 doses, Day 1, and ending Day 3 or 4, every 21 days. Paclitaxel 70 mg/m² by 3-hour continuous infusion, Day 2,
every 21 days. Patients may continue to receive paclitaxel or PSC 833 and paclitaxel as long as their absolute neutrophil count (ANC) is ≥ 1500/mm3 and platelet count is ≥ 100,000/mm3 prior to the start of each cycle.

NOTE: Because of possible anaphylactic reactions, patients should be closely observed and vital signs monitored during the first 15 minutes of paclitaxel infusion.

7.2 **Pharmacokinetic Studies:** To determine the disposition of paclitaxel with and without concomitant PSC 833, pharmacokinetic studies will be performed with the first course of therapy in a subset of patients from both regimens I and II. For these studies, 5 ml of peripheral blood will be collected from a vein contralateral to the drug infusion at the following times: immediately before paclitaxel, at 1, 2, and 3 hours during the paclitaxel infusion, then at 0.25, 0.5, 1, 2, 3, 6, 10, and 24 hours after the end of infusion. Plasma will be separated by centrifugation and stored at -20°C until analysis. Paclitaxel concentrations in plasma will be determined by an HPLC-ultraviolet detection assay adapted from a previously described method (30).

7.3 **Frequency of Therapy:** Treatment cycles are to be repeated at 3 week intervals and can be delayed for up to two weeks if a reversible toxicity develops. If delay of treatment interval is greater than two weeks because of drug toxicity the patient is to be discontinued from the study. Treatment will be discontinued due to progression of disease, unacceptable toxicity, death or at the investigator’s discretion. Patients will be considered to have completed study when the above conditions have been met and the patient is off protocol treatment. Patients off study because of CR should be followed at every 9 week intervals.

8.0 **TOXICITIES TO BE MONITORED AND DOSAGE MODIFICATIONS**

8.1 **Dose Modification for PSC 833 Related Toxicity**

8.1.1 **Hepatic toxicity**
If end of cycle SGOT or SGPT concentrations rise to > 3 times the Institutional Upper Limit of Normal (IULN), the patient will be discontinued from the study.

8.1.2 **Neurotoxicity**
PSC 833 may cause reversible cerebellar dysfunction (ataxia, dysmetria) or paresthesias. If these occur during PSC 833 administration and are of ≥ grade 3 in severity, the dose of PSC 833 should be reduced by 25%.

Cerebellar dysfunction is the dose limiting toxicity of PSC 833. Since the definitions used in the Common Toxicity Criteria (CTC) are ill-suited to classifying the actual dysfunction observed in patients, the following definitions for grades 1 through 4 ataxia will be utilized.
Grade 1: Slight subjective sense of incoordination. No difficulty walking. Physical examination normal or equivocally normal.

Grade 2: Definite subjective incoordination on walking but able to walk without assistance. On examination, evidence of cerebellar dysfunction, such as broad-based gait, mild dysmetria, difficulty walking heel-to-toe or difficulty with rapid alternating movements.

Grade 3: Unable to walk without assistance from another person or a walker. On examination, markedly abnormal gait and inability to walk heel-to-toe.

Grade 4: Unable to walk because of incoordination, even with assistance.

If ≥ grade 3 neurotoxicity occurs before paclitaxel is administered, treatment should be discontinued until the toxicity resolves. The patient can then be restarted at 3.75 mg/kg/dose of PSC 833 and should receive the complete cycle of therapy (12 doses PSC 833 / paclitaxel, 3 hr., d2) at this dose.

If ≥ grade 3 neurotoxicity occurs after paclitaxel has been administered, treatment should be delayed until the toxicity resolves completely. Continued treatment with the reduced dose of PSC 833 (3.75 mg/kg/dose) may be resumed at the dose number the patient would have received if the cycle had gone uninterrupted. For example, if grade 3 ataxia occurs in a patient after dose #6 and she recovers completely by the time dose #9 would have been given, treatment should resume with dose #9 and continue through dose #12. Doses #7 and #8 would not be administered.

8.1.3 Patients should be advised that the use of alcohol, sedatives or sleeping medications should be avoided during administration of PSC 833 as this could increase the likelihood of falling. Patients should also be advised not to drive a car or other vehicle during initial treatment with PSC 833 until effects on coordination in that patient have been determined.

8.2 Dose Modifications for Paclitaxel

After the first cycle of paclitaxel alone or PSC 833 and paclitaxel, the paclitaxel dose:

8.2.1 may be increased by 10% (of 175 mg/m²) in subsequent cycles if the patient’s nadir ANC was ≥ 1000/mm³ and nadir platelet count was ≥ 100,000/mm³ during the previous cycle.
8.2.2 - should be attenuated in subsequent cycles if during the previous cycle any of the following occurred:

- the patient's nadir ANC was < 500/mm³ for ≥ 7 days
- nadir platelet count was < 50,000/mm³
- the patient experienced febrile neutropenia
- the ANC fails to recover for retreatment by day 1 of the next cycle (ie. day 22)

8.2.2.1 For patients who have not had their paclitaxel dose escalated beyond the starting dose of 70 mg/m² (PSC 833 arm), the dose should be attenuated by 20% to 56 mg/m².

8.2.2.2 For patients who have had their paclitaxel dose escalated beyond the starting dose of 70 mg/m², the dose should be attenuated to the next lower level that the patient previously tolerated.

8.2.2.3 In neutropenic patients who have already been dose-reduced and experienced infectious complications during the previous cycle, we suggest G-CSF should be given beginning on day 3 (5 μg/kg/d, SC), approximately 24 hours after the completion of the paclitaxel infusion and continuing until hematopoietic recovery (ANC ≥ 1500/mm³). If G-CSF cannot be provided, another grade 4 neutropenia extending beyond day 14 will mandate a second 20% dose reduction to be carried out, and dose re-escalated to the previous baseline if an infectious complication is no longer encountered.
9.0 STUDY CALENDAR

<table>
<thead>
<tr>
<th>Cycle 1</th>
<th>Cycle 2 and subsequent cycles</th>
<th>At Progression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>8</td>
<td>15</td>
</tr>
</tbody>
</table>

- Ht, Wt, BSA
- Performance Status
- Physical Exam
- CBC diff., plat.
- SMAC panel*
- Urinalysis
- PT, PTT
- CEA, CA 15-3

- CXR**
- EKG
- Scans***
- Biopsy for PCR of MDR gene expression****
- Pharmacokinetic Studies*****
 - (day 1, reg I; day 2, reg II)
- Taxol administration
 - (day 1, reg I; day 2, reg II)
- PSC 833 administration
 - (regimen II)

*Includes electrolytes, BUN, creatinine, glucose, calcium, albumin, LDH, alkaline phosphatase, SGOT, and SGPT. If used for treatment, should be performed within 4 days.
** CXR to be repeated every other cycle if used for disease assessment; otherwise every 4 months.
*** Scans to be repeated every 3 cycles if used for disease assessment.
**** See Appendix VIII for method of preservation & transport.
***** Mandatory on cycle 1 unless approved by PI (exceptions will be made for poor venous access).

10.0 CRITERIA FOR EVALUATION AND ENDPOINT DEFINITIONS

10.1 Disease status

10.1.1 Measurable disease: Bidimensionally measurable lesions with clearly defined margins by 1) medical photograph (skin or oral lesions) or plain x-ray, with at least one diameter .5 cm or greater (bone lesions not included) or 2) CT, MRI, or other imaging scan, with both diameters greater than the distance between cuts of the imaging study or 3) palpation, with both diameters 2 cm or greater.
10.1.2 Evaluable disease: Unidimensionally measurable lesions, masses with margins not clearly defined, lesions with both diameters less than 0.5 cm, lesions on scan with either diameter smaller than the distance between cuts, palpable lesions with either diameter less than 2 cm, bone disease. (Markers which have been shown to be highly correlated with extent of disease are also considered to be evaluable. Disease committees must specify markers considered to be evaluable. ‘Committees may also clarify sites with margins not clearly defined.’)

10.1.3 Nonevaluable disease: Pleural effusions, ascites, disease documented by indirect evidence only (e.g., by lab values).

10.2 Objective status

(To be recorded at each evaluation.) If an organ has too many measurable lesions at each evaluation, choose three to be followed before the patient is entered on study. The remaining measurable lesions in that organ will be considered evaluable for the purpose of objective status determination.

10.2.1 Complete response (CR): Complete disappearance of all measurable and evaluable disease. No new lesions. No disease-related symptoms. No evidence of nonevaluable disease, including normalization of markers and other abnormal lab values. All measurable, evaluable, and nonevaluable lesions and sites must be assessed using the same technique as baseline. Refers to clinical CR. (When restaging surgery is required, a separate pathologic response variable is incorporated in the response data).

10.2.2 Partial response (PR): Applies only to patients with at least one measurable lesion. Greater than or equal to 50% decrease under baseline in the sum of products of perpendicular diameters of all measurable lesions. No progression of evaluable disease. No new lesions. All measurable and evaluable lesions and sites must be assessed using the same techniques as baseline.

10.2.3 Partial response in nonmeasurable disease (PRNM). Disease specific. Defines specific types of evaluable disease that may be followed for partial response if there are no measurable lesions. Defines response for these types. Patients with both measurable and evaluable disease are assessed according to the definition in 10.2.2, partial response.

10.2.4 Stable/No response: Does not qualify for CR, PR, or progression. All measurable and evaluable sites must be assessed using the same techniques as baseline.
10.2.5 Progression: 50% increase OR an increase of 10 cm\(^2\) (which ever is smaller) in the sum of products of all measurable lesions over smallest sum observed (over baseline if no decrease) using the same techniques as baseline, OR clear worsening of any evaluable disease, OR reappearance of any lesion that had disappeared, OR appearance of any new lesion/site, OR failure to return for evaluation due to death OR deteriorating condition (unless clearly unrelated to this cancer). For “scan-only” bone disease, increased uptake does not constitute clear worsening. Worsening of existing nonevaluable disease does not constitute progression. Lesions that appear to increase in size due to presence of necrotic tissue will not be considered to have progressed unless associated with clear symptomatic progression in evaluation by attending MD.

Exceptions: In cases for which initial tumor flare reaction is possible (hypercalcemia, increased bone pain, erythema of skin lesions), either symptoms must persist beyond 4 weeks or there must be additional evidence of progression.

10.2.6 Unknown Progression has not been documented and one or more measurable or evaluable sites have not been assessed.

Notes

1) Nonevaluable disease does not affect objective status except in determination of CR (all disease must be absent - a patient who otherwise has a CR, but who also has had nonevaluable disease present or not assessed, will be classified as having a PR) and in determination of progression (if NEW sites of nonevaluable disease develop). Patients with only nonevaluable disease cannot be assessed for response.

2) For evaluable disease other then types specified in 2.3, the only objective statuses which apply are CR, stable/no response, progression and unknown.

3) Objective statuses must stay the same or improve over time until progression (unknown excepted).

4) PR and PRNM cannot apply to the same patient.

10.3 Best Response: Best response is determined from the sequence of objective statuses.

10.3.1 Disease assessment every 3 weeks. Two objective status determinations of CR before progression are required for a best response of CR. Two determinations of PR or better before progression, but not qualifying for a CR, are required for a best response of PR. Two determinations of PRNM or better before progression, but not qualifying for CR, are required for PRNM.
Two determinations of stable/no response or better before progression, but not qualifying as CR, PR or PRNM, are required for a best response of stable/no response; if the first objective status is unknown, only one such determination is required. Patients with an objective status of progression on or before the second evaluation (second AFTER the prestudy evaluation) will have a best response of increasing disease. Best response is unknown if the patient does not qualify for a best response of increasing disease and if all objective statuses after the first determination and before progression are unknown.

Use of the definition is illustrated in Table 1 with several sequences of objective statuses and the corresponding best response.

<table>
<thead>
<tr>
<th>1st objective status</th>
<th>2nd objective status</th>
<th>3rd objective status</th>
<th>Best response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progression</td>
<td></td>
<td></td>
<td>Progression</td>
</tr>
<tr>
<td>Stable, PR, CR, unk</td>
<td>Progression</td>
<td></td>
<td>Progressive</td>
</tr>
<tr>
<td>Stable*</td>
<td>Stable</td>
<td>Progression</td>
<td>Stable</td>
</tr>
<tr>
<td>Stable, unk*</td>
<td>PR, CR</td>
<td>Progression</td>
<td>Stable</td>
</tr>
<tr>
<td>Stable, unk</td>
<td>Unknown*</td>
<td>Progression</td>
<td>Unknown</td>
</tr>
<tr>
<td>PR*</td>
<td>PR</td>
<td>Progression</td>
<td>PR</td>
</tr>
<tr>
<td>PR*</td>
<td>CR</td>
<td>Progression</td>
<td>PR</td>
</tr>
<tr>
<td>PR, CR</td>
<td>Unknown*</td>
<td>Progression</td>
<td>PR (Unconfirmed)</td>
</tr>
<tr>
<td>CR*</td>
<td>CR</td>
<td>Progression</td>
<td>CR</td>
</tr>
<tr>
<td>Unknown*</td>
<td>Stable</td>
<td>Progression</td>
<td>Stable</td>
</tr>
</tbody>
</table>

*aBest response is the same if these sequences are preceded by the objective statuses of unknown or stable, or if unknowns separate the first objective status from the second.

*bBest response is the same if these sequences are preceded by the objective statuses of unknown, stable or PR, or if unknowns separate the first objective status from the second.

*cBest response is the same if these sequences are preceded by the objective statuses of unknown, stable, PR or CR, or if unknowns separate the first CR from the second.

*dBest response is the same if followed by additional unknowns.

*Evaluation codes allow identification of these patients with best response of stable or unknown who had unconfirmed PR or CR.
10.4 ENDPOINT DEFINITIONS

10.4.1 Overall Survival. Defined as the time from first day of treatment to time of death due to any cause. If a patient is still alive, survival time is censored at the time of last follow-up.\(^1\)

10.4.2 Progression-free survival (or relapse-free survival for adjuvant studies). Defined as the time from first day of treatment to the first observation of disease progression or death due to any cause. If a patient has not progressed or died, progression-free survival is censored at the time of last follow-up.\(^2\)

10.4.3 Time to treatment failure. Defined as the time from first day of treatment to the first observation of disease progression, death due to any cause, or early discontinuation of treatment. If failure has not occurred, failure time is censored at the time of last follow-up.\(^3\)

10.4.4 Time to progression. Defined as the time from first day of treatment to the first observation of disease progression or death due to disease. If failure has not occurred, failure time is censored at the time of last follow-up.\(^4\)

10.4.5 Duration of response (CR/PR). Defined as the time from first objective status assessment of CR/PR to the first time or progression or death due to any cause. If a responding patient has not progressed or died, duration is censored at the time of last follow-up.\(^5\)

\(^1\) Time to death to disease (defined the same way, except for censorship at the time of death, if the death is due to other causes) generally is not used, since unbiased estimation is possible only if deaths due to other causes are independent of the cancer being studied, and since cause of death information is often unreliable.

\(^2\) This endpoint is preferred to "time to progression" (censorship at the time of death, if the death is due to other cause) for reasons similar to those noted above.

\(^3\) This endpoint is often appropriate in studies of advanced disease where early discontinuation typically is related to poor patient response or tolerance.

\(^4\) This endpoint is often appropriate in studies of advanced disease where early discontinuation typically is related to poor patient response or tolerance.

\(^5\) Since it can be misleading to report failure times only in a subset of patients, this endpoint is used less often that the other four.

10.5 Definition of performance status levels. (Appendix II)
11.0 SPECIAL INSTRUCTIONS:

The concomitant use of investigational agents other than PSC 833 will NOT be permitted during this study.

Antiemetic agents may include intravenous ondansetron. Orally administered metoclopramide or ondansetron should be avoided during the administration of PSC 833.

Other medications required to maintain the patient’s baseline condition or to treat a coexistent condition may be administered at the discretion of the Principal Investigator. Patients who require a concomitant medication for a chronic condition may continue to use that medication if it is agreed upon by the sponsor’s medical expert and provided that the medication’s use is not contraindicated.

Information regarding the administration of all concomitant prescription medications used during the course of this study should be entered on the appropriate case report form.

12.0 STATISTICAL CONSIDERATIONS

This is a multi-center Phase II study. The co-ordinating center is located at the City of Hope National Medical Center. The participating centers are the City of Hope (COH), the USC-Norris Cancer Center (USC), and the University of California at Davis (UCD).

The primary objective of this study is to assess the response to paclitaxel alone and to paclitaxel with PSC-833 in similar groups of women with advanced hormonally-insensitive breast cancer who have failed anthracycline-based therapy or for whom anthracyclines are contraindicated. The first period of this study is designed to meet this goal and is a randomized Phase II trial which will accrue a maximum of 86 patients (43/treatment arm). The secondary objectives of this study are to describe the plasma pharmacokinetics of paclitaxel with and without PSC-833, to estimate the response rates for patients with MDR+ and MDR- tumors, and to obtain (preliminary) information regarding the difference or similarity of these in the treatment arms. For the objectives involving MDR, additional patients will be accrued to a second period of this study (requiring approximately 60 additional patients to be randomized, for a total of 116 patients with completed MDR determinations).

12.1 Study Design and Justification

12.1.1 First Period of the Trial

For each arm separately, a design with three stages of accrual suggested by Ensign et al (34) will be used. The design selected is based on the following assumptions: a true response rate less than 5% would not warrant further study of the agent(s) at the proposed dose and schedule; a response rate of 20% would be considered promising for further studies in these patients. A three-stage design was selected since paclitaxel+PSC-833 has not been studied
extensively in this group of patients and the dose of paclitaxel is lower in the paclitaxel+PSC-833 arm; although it is not anticipated, should the combination be ineffective, this design will allow for early termination.

In the first stage, 14 evaluable patients will be entered. If no responses are observed, then accrual will stop with the conclusion that the regimen is not promising for further study. If 1 or more responses are observed in the first 14 patients, then an additional 15 patients will be accrued during the second stage. If 2 or fewer responses out of 29 patients are observed, then accrual will stop with the conclusion that the regimen is not promising for further study. If 3 or more responses are observed in the 29 patients, then an additional 14 patients will be accrued during the third and final stage. Five or more responses out of 43 patients will be taken as evidence warranting further study of the regimen providing other factors, such as toxicity and survival appear favorable. If 4 or fewer responses out of 43 patients are observed, further study of the regimen would not be considered.

12.1.1.1 Rationale for the Design of the First Period

With this proposed design, the probability of falsely declaring an agent with a 5% response rate as warranting further study, is 0.05 (alpha), and the probability of correctly declaring a regimen with a 20% response rate as warranting further study is 0.90 (power). With 43 patients, the true probability of response can be estimated with a maximum standard error equal to 0.076.

Assuming that biopsies will be evaluable and analyzable in at least 80% of patients enrolled on the trial, there will be approximately 34 patients per treatment arm for which MDR status will be available. Twenty percent of patients enroling in this study are expected to be MDR+, resulting in approximately 7 MDR+ and 17 MDR- patients in each treatment arm. This estimate of MDR positivity is conservative; the actual rate may be higher. Pharmacokinetics will be required of all patients in the first stage of the trial. Descriptive comparisons will be performed to examine the relationship between the pharmacokinetic parameters, treatment, and MDR status.

Based on current projections expected accrual is approximately 70 patients per year; it should take slightly longer than one year to complete accrual to this portion of the trial.
12.1.2 Second Period of the Trial

At the completion of the first period of the trial, the members of the Phase I/II Consortium will discuss whether to continue or to terminate the trial. In consultation with the NCI staff, a decision will be made, based on the proportion of patients with biopsy specimens which were adequate for analysis (at least 80%), the proportion of patients who were MDR+ (at least 20%), the response rates and toxicity observed in the first stage, and the difference in response rates between the two arms (not significantly different at the 0.05 level - i.e. an observed difference of less than 21%).

If a decision is made to continue, accrual will proceed until a total of 116 of the randomized patients have been treated and are evaluable for response and MDR, and until 10 patients per arm are found to be MDR+. Approximately 60 more patients will be randomized in order to have 116 patients evaluable for the MDR analyses. It should take approximately one more year to complete the second period of this study.

12.1.2.1 Rationale for the Design of the Second Period

Once accrual is completed for the second period, the odds ratio for the association between MDR status and response will be estimated for each treatment arm and 95% confidence intervals will be constructed. The odds ratios will be formally compared using the (one-sided) test for a three-way interaction in a loglinear model. (The odds ratio is the ratio of the odds of responding to treatment for patients who are MDR+ compared to the odds of responding to treatment for patients who are MDR-.) If this test is not significant at the 0.05 level and if the ratio of the odds ratio is less than 3.00, then we will combine the two treatment arms and compare the response rates for patients with MDR+ tumors to patients with MDR- tumors (one-sided 0.05-level test). If the observed ratio of the odds ratios is greater than 3.0, but the formal test is not significant at the 0.05 level, the individual odds ratios and response rates will be examined in order to decide whether to combine the two treatment arms.

Two of the underlying biological hypotheses of this trial are (1) patients whose tumors are tested to be MDR+ are less likely to respond to paclitaxel and (2) PSC-833 will reverse MDR1 Pgp activity and lead to responses to paclitaxel in patients whose tumors are tested to be MDR+. If the formal test to compare the odds ratios between the two treatments, is significant at the 0.05 level, then this will be strong evidence to support the second hypothesis. However, with 116 evaluable patients, there will be little power (see column 12 in Table 2) for this test. If
the formal test is not significant at the 0.05 level, then the confidence intervals and the ratio of the odds ratios will be used to decide whether to combine the results of the two treatment arms in order to compare the response rates of MDR+ and MDR- tumors. In this situation, although we will not conclude formally that the odds ratios are similar or different, we will be able to present estimates that are compatible or incompatible with the second hypothesis. For example, if PSC-833 reverses MDR1 Pgp activity, then depending on the response rate in patients who are MDR-, there will be a reasonable chance (i.e. greater than 70%, if the overall response rate to paclitaxel is 25% or better) that the observed ratio of the odds ratios will be 3.0 or greater (see column 13 in Table 2).

If we do not find the differences in the odds ratios to be strong, then we will combine the results of both treatment arms to compare the MDR+ (n=23) and MDR- (n=93) tumors in terms of response rates. In this situation (if PSC-833 has no effect), 116 patients will insure that we have at least 0.80 power using a one-sided 0.05-level test when the true response rates are 5% and 30% for MDR+ and MDR- tumors respectively, and 20% of patients have MDR+ tumors (35). In certain situations, when PSC-833 only has a moderate effect, there will also be reasonable power (i.e. greater than 0.80, see column 16 in Table 2) to observe a significant difference in response rates.

12.2 **Stratification and Randomization**

Prior to randomization, each patient will be stratified according to (a) whether she recurred within 6 months of completion of adjuvant therapy or progressed after one prior therapy for advanced disease, (b) whether she has measurable vs. evaluable disease, and (c) the responsible institution (USC, COH, UC Davis). An adaptive randomization algorithm will be used to ensure that the two treatment arms will be balanced for the three potential prognostic factors (36).

12.3 **Analysis of Results**

12.3.1 **First Period of the Trial**

12.3.1.1 **Analysis of Clinical Endpoints**

Objective tumor response (CR, PR or Improvement), survival, and time to treatment failure (disease progression, termination of treatment due to toxicity, or death due to any cause whatever occurs first) will be used to evaluate efficacy. 95% confidence intervals will be constructed for the response rates (37) and for the median time to failure and survival. For the
comparison of paclitaxel alone and paclitaxel + PSC-833, an intent-to-treat analysis will be performed; all patients randomized will be included in the analyses. For response, patients who go off-study prior to the evaluation of response will be included in the group of non-responders. Patients who terminate treatment early will be followed for progression; patients who begin another therapy will be counted as having failed this protocol.

Toxicity as classified by the NCI Common Toxicity Criteria will be used to assess the side effects except for neurotoxicity (see Section 8.1.2). Since the dose of paclitaxel is lower in the paclitaxel + PSC-833 arm, all tests performed and all p-values reported will be two-sided. All toxicities, the time of onset, severity, duration and reversibility will be examined and summarized for each arm separately. In addition to the toxicity grades, the nadir WBC, ANC, and platelet counts will be compared, as well as maximum bilirubin, SGOT, and alkaline phosphatase determinations. Primarily, chi-square tests and t-tests (or Wilcoxon tests) will be used for these comparison.

12.3.1.2 Analysis of Pharmacokinetic Studies

For each patient who undergoes the pharmacokinetic studies, the estimate of the paclitaxel AUC and the estimate of the time that the serum paclitaxel levels are above 0.05 μm will be computed (for the first course) (38). Descriptive analysis will be performed to compare these values among patients who are MDR+ (n=14) and MDR- (n=55), and who received PSC-833 (n=43) or not (n=43). In addition, the association of these levels with response and grade 4 myelosuppression (during the first course) will be examined. Finally, the WBC and ANC nadirs will be plotted as a function of the pharmacokinetic determinations to further describe the association. A regression analysis (after transformation, if necessary) will be used to compare the pharmacokinetic values among patients who show Pgp immunostaining or not, and who received PSC-833 or not.

To compare the pharmacokinetic determinations in terms of whether or not the patient showed Pgp immunostaining (≈14 MDR+; ≈54 MDR-) there will be 90% power, and in terms of the treatment received (≈43/group) there will be greater than 95% power, for detecting a difference of 1.0 standard deviations, using a two-sided 0.05-level t-test.
12.3.2 Second Period of the Trial

Response rates and 95% confidence intervals will be estimated for MDR+ and MDR- subgroups within the treatment arms; for each treatment arm the odds ratio for the association between MDR status and response will be estimated and 95% confidence intervals constructed. If the odds ratios are found to be similar (see Section 12.1.2.2) then treatment groups will be combined for overall estimates.

For the paclitaxel and paclitaxel+PSC-833 arms separately, the objective response rates will be reported, and the survival and time to treatment failure will be summarized using Kaplan-Meier plots (39). Confidence intervals will be constructed for the response rates and the median times to failure.

12.4 Analysis of Ethnic Subgroups

No differences between ethnic groups are known in terms of MDR expression or efficacy of paclitaxel with or without PSC-833. At completion of this study, we will summarize the results by ethnicity - per NIH requirements. In particular, we will compare the Hispanic patients and the non-Hispanic white patients in terms of toxicity experienced, response rate, time to treatment failure, and the results of the Pgp immunostaining.

13.0 REGISTRATION GUIDELINE

13.1 Baseline serum measurements, CXR (PA and L), performance status, height, and weight must be performed within 1 week of treatment.

13.2 Other imaging studies must be completed within 2 weeks prior to initiation of therapy.

13.3 Once signed informed consent has been obtained and all pretreatment evaluations have been performed, patients will be entered on study. To register a patient the research nurse or data manager must complete the Eligibility Checklist and FAX a copy of this and the informed consent including the Patient Human Rights to the Phase II coordinator at City of Hope (FAX # 818-301-8393). The research nurse or data manager will call the coordinator at 818-359-8111 x2468, and after verifying the eligibility, the coordinator will register the patient onto the study and assign a patient accession number. See appendix (Registration Procedures for Phase II Trials) for details.

COH patients may be screened for registration by calling the Department of Biostatistics, 818-359-8111, extension 2468.

The individual accepting registrations should ascertain the date of IRB approval at each participating institution before registering the first patient from that institution.
Multicenter study records at each participating institution will be randomly selected for audit.

14.0 **DATA SUBMISSION SCHEDULE**

All data will be collected using COH Biostatistics Information Tracking System (BITS) data collection forms. According to the submission schedule specified in Appendix V (forms submission for Phase II Trials) completed forms should be submitted to the City of Hope Department of Biostatistics c/o the assigned COH data manager. The original data collection forms will be stored in a secure location at COH. USC and UCD will store a copy of all forms and mail the originals to COH.

15.0 **MINORITIES AND WOMEN STATEMENT**

TABLE - ETHNIC AND GENDER DISTRIBUTIONS OF CANCER PATIENTS IN 1992 IN LOS ANGELES COUNTY

<table>
<thead>
<tr>
<th>PRIMARY SITE OF TUMOR</th>
<th>TOTAL</th>
<th>WHITE %</th>
<th>HISPANIC %</th>
<th>BLACK %</th>
<th>ASIAN/OTHER %</th>
<th>FEMALE %</th>
<th>MALE %</th>
</tr>
</thead>
<tbody>
<tr>
<td>BONES & JOINTS</td>
<td>66</td>
<td>48</td>
<td>40</td>
<td>6</td>
<td>6</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>BREAST</td>
<td>4584</td>
<td>67</td>
<td>15</td>
<td>11</td>
<td>7</td>
<td>99</td>
<td>1</td>
</tr>
<tr>
<td>EYE & ORBIT</td>
<td>62</td>
<td>75</td>
<td>18</td>
<td>5</td>
<td>2</td>
<td>44</td>
<td>56</td>
</tr>
<tr>
<td>SOFT TISSUE INCLUDING HEART</td>
<td>205</td>
<td>57</td>
<td>27</td>
<td>10</td>
<td>6</td>
<td>48</td>
<td>52</td>
</tr>
<tr>
<td>CERVIX</td>
<td>526</td>
<td>34</td>
<td>46</td>
<td>12</td>
<td>8</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>OVARY</td>
<td>662</td>
<td>68</td>
<td>18</td>
<td>7</td>
<td>8</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>URINARY SYSTEM</td>
<td>1569</td>
<td>72</td>
<td>14</td>
<td>9</td>
<td>5</td>
<td>33</td>
<td>67</td>
</tr>
<tr>
<td>LEUKEMIAS</td>
<td>864</td>
<td>60</td>
<td>23</td>
<td>9</td>
<td>8</td>
<td>44</td>
<td>56</td>
</tr>
<tr>
<td>NON-HODGKINS LYMPHOMA</td>
<td>1224</td>
<td>67</td>
<td>18</td>
<td>8</td>
<td>7</td>
<td>42</td>
<td>58</td>
</tr>
<tr>
<td>LUNG & BRONCHUS</td>
<td>4274</td>
<td>70</td>
<td>10</td>
<td>14</td>
<td>6</td>
<td>42</td>
<td>58</td>
</tr>
<tr>
<td>UNKNOWN PRIMARY</td>
<td>993</td>
<td>67</td>
<td>15</td>
<td>12</td>
<td>6</td>
<td>54</td>
<td>46</td>
</tr>
<tr>
<td>TOTAL</td>
<td>15025</td>
<td>67</td>
<td>15</td>
<td>11</td>
<td>7</td>
<td>64</td>
<td>36</td>
</tr>
</tbody>
</table>

The numbers above reflect the ethnic and gender distribution of cancer patients in the County of Los Angeles. Although distributions may vary by disease type, our recruitment procedures have been developed to enroll patients who are representative of the target population.
16.0 ETHICAL AND REGULATORY CONSIDERATIONS

All institutional, NCI, Department of Defense and Federal regulations concerning the Informed Consent form will be fulfilled.

17.0 REPORTING REQUIREMENTS

17.1 Any life-threatening and/or unexpected and serious (grade 3 or 4) toxicity will be reported immediately to the study chairman who, in turn, must notify the IRB (and, if applicable, the sponsoring agency).

17.2 Report by phone to Investigational Drug Branch (IDB) within 24 hours (301-230-2330), available 24 hours, recorder after hours) all life-threatening and lethal (grade 4 and 5) unknown reactions. Written report to follow within 10 working days. Information may be FAXED to 301-230-0159.

17.3 Report in writing within 10 working days:

17.3.1 Life-threatening and lethal (grade 4 and 5) known reactions (except grade 4 myelosuppression).

17.3.2 Grade 2 and 3 unknown reactions.

Address for submitting ADR reports: Investigational Drug Branch
Box 30012
Bethesda, MD 20824-9998

17.4 ADRs will be reported as outlined in the Appendix (Reporting Guidelines for Adverse Drug Reactions). Questions regarding ADR reporting should be directed to the COH data manager at 818-359-8111 extension 2468.
18.0 REFERENCES

19.0 APPENDICES
Figure 3

Estimated Probability of Event-Free Survival

MDR: + or ++ (9 Pts)

MDR: Negative (37 Pts)

(Logrank P = 0.10)

Months From First Taxol Treatment
STANDARD CRITERIA FOR ESTIMATION OF PERFORMANCE STATUS

<table>
<thead>
<tr>
<th>SWOG Criteria Grade</th>
<th>Karnofsky Scale Grade</th>
<th>Scale Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>90-100</td>
<td>Fully active, able to carry on all predisease performance without restriction.</td>
</tr>
<tr>
<td>1</td>
<td>70-80</td>
<td>Restricted in physically strenuous activity but ambulatory and able to carry out work of a light or sedentary nature, e.g., light housework, office work.</td>
</tr>
<tr>
<td>2</td>
<td>50-60</td>
<td>Ambulatory and capable of all self-care but unable to carry out any work activities. Up and about more than 50% of waking hours.</td>
</tr>
<tr>
<td>3</td>
<td>30-40</td>
<td>Capable of only limited self-care, confined to bed or chair more than 50% of waking hours.</td>
</tr>
<tr>
<td>4</td>
<td>10-20</td>
<td>Completely disabled. Cannot carry on any self-care. Totally confined to bed or chair.</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>Dead</td>
</tr>
</tbody>
</table>