Studies of Environmental Fates of DIMP and DCPD, Monthly Progress Report

Authors: SPANGGORD, R.; CHOU, T.; MABEY, W.

Performing Organization: SRI INTERNATIONAL, MENLO PARK, CA

Sponsoring/Monitoring Agency: ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND, FORT DETRICK, FREDERICK

Abstract:

The objectives of this research are to conduct laboratory experiments that will predict the photochemical and biological transformations of DCPD and DIMP in the soils and waters of Rocky Mountain Arsenal and will provide a semiquantitative evaluation of decomposition rates of and products resulting from DCPD and DIMP. During October, analytical methods were developed to determine concurrently methylphosphonate (MP) and isopropylmethylphosphonate (IMP) in the presence of DIMP. The photochemistry of DCPD in natural waters was investigated, and microbial studies of 14C-labeled DCPD and DIMP were initiated.

Subject Terms: CONTAMINANTS, FAUNA, FLORA, SOIL, GROUNDWATER, CHEMICALS, BIODEGRADATION

Security Classification: UNCLASSIFIED

Report Date: 11/05/78

Funding Numbers: DAMD 17 78 C 8053

Performing Organization Report Number: 81340R09

Distribution/Availability Statement: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

Distribution Code:

Number of Pages:

Price Code:

Standard Form 298 (Rev. 2-89)

Prepared by ANSI Std. 239-18

298-102
STUDIES OF ENVIRONMENTAL FATES OF DIMP AND DCPD

Monthly Progress Report 4
5 November 1978

By:

Ronald J. Spanggord, Ph.D.
Tsong-Wen Chou, Ph.D.
William R. Mabey, Ph.D.

Prepared for:

Commander
U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND
ATTN: SGRD-UBG
Fort Detrick
Frederick, Maryland 21701

Contract No. DAMD 17-78-C-8053
Jesse J. Barkley, Jr., Project Officer

SRI Project LSU-7551

Approved by:

Peter Lim, Director
Pharmaceutical Analysis Laboratory

W. A. Skinner, Executive Director
Life Sciences Division
INTRODUCTION

The U.S. Army Medical Bioengineering Research and Development Laboratory has the responsibility of developing environmental standards for pollutants that contaminate the environment at Army installations. Two such pollutants at the Rocky Mountain Arsenal (RMA) are dicyclopentadiene (DCPD) and diisopropylmethylphosphonate (DIMP).

The objectives of this research are to conduct laboratory experiments that will predict the photochemical and biological transformations of DCPD and DIMP in the soils and waters of Rocky Mountain Arsenal and will provide a semiquantitative evaluation of decomposition rates of and products resulting from DCPD and DIMP.

PROGRESS

During October, analytical methods were developed to determine concurrently methylphosphonate (MP) and isopropylmethylphosphonate (IMP) in the presence of DIMP. The photochemistry of DCPD in natural waters was investigated, and microbial studies of 14C-labeled DCPD and DIMP were initiated.

Analytical Chemistry

Analytical methods were developed to determine MP and IMP, two expected transformation products of DIMP, in the presence of DIMP. Methyl-8$^\text{N}$ (dimethylformamidamide, dimethyl acetal) and Methelute$^\text{TM}$ (trimethylanilinium hydroxide) were evaluated as methylating agents to convert these compounds to derivatives that lend themselves to gas chromatographic analysis. Methelute was found to be the superior reagent, yielding quantitative methylation and little chromatographic interference. The methyl derivatives of MP and IMP (as well as trimethylphosphate, an added metabolite) were resolved from DIMP by use of capillary gas chromatography and alkali-flame ionization detection, as shown in Figure 1.

Photochemistry

In improving our experimental procedures to alleviate the problem of volatility in photolysis experiments, we found that very little, if any, photolysis of DCPD occurs in distilled water. Samples of DCPD at 2 ppm in distilled water were photolyzed for 110 hours in a
Figure 1 GAS CHROMATOGRAPHIC SEPARATION OF DIMP, TMP, and the methyl derivatives of IMP and MP
mercury light merry-go-round reactor. DCPD concentrations changed less than 2.0% relative to controls during that time.

The photolysis of DCPD (2 ppm) was also investigated in deep natural water obtained from Rocky Mountain Arsenal. After 94 hours of photolysis, an average loss of 32.2 ± 2.2% (0.34%/hr) was observed compared with controls. We are conducting another experiment to obtain a more detailed kinetic profile of this photolysis. Table 1 presents the data obtained to date.

Table 1

<table>
<thead>
<tr>
<th>Time, ΔT</th>
<th>Loss of DCPD (%)</th>
<th>Rate (% hr⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>17.1</td>
<td>0.71</td>
</tr>
<tr>
<td>48</td>
<td>26.4</td>
<td>0.55</td>
</tr>
<tr>
<td>101</td>
<td>35.3</td>
<td>0.35</td>
</tr>
<tr>
<td>48 control</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

These results indicate that naturally occurring organics (such as humic acids) may be participating in the phototransformation of DCPD, acting either as singlet oxygen ¹O₂ sensitizers or free radical oxidation initiators. These mechanisms are currently under investigation.

Biodegradation

The acclimation of DCPD- and DIMP-biodegrading organisms from RMA North Bog water and Palo Alto sewage plant effluent is continuing. However, after 7 weeks of acclimation, no transformation of either compound has been detected.

In phosphate-deficient medium, microbes from both RMA and Palo Alto sewage effluent were found to utilize MP, IMP, and trimethyl-phosphate readily. This indicates that the rate-limiting step is the initial transformation of DIMP, assuming that transformation occurs by a "hydrolysis" type of mechanism (Eq. 1).

\[
\begin{align*}
\text{CH}_3 \quad \text{O} \\
\text{CH-O} \\
\text{CH}_3 \quad \text{P-CH}_3 \\
\text{CH}_3 \\
\end{align*} \quad \text{slow} \quad \begin{align*}
\text{CH}_3 \\
\text{O} \\
\text{CH-O-P-CH}_3 \\
\text{CH}_3 \quad \text{OH} \\
\end{align*} \quad \begin{align*}
\text{HO-P-CH}_3 \\
\text{OH} \\
\end{align*} \quad \text{Biodegradable} \quad \text{Biodegradable}
\]
IMP and MP were added as co-metabolic substrates to assist DIMP transformation, but no co-metabolism has been observed to date.

Our preliminary studies of DIMP biodegradation in soil have been initiated. 14C-DIMP was added to RMA and local soils (moistened with water), and the generated 14CO$_2$ was trapped in KOH solution. After 1 week, indications of radioactivity appeared in the KOH trap. However, when the CO$_2$ was precipitated with barium ion and the BaCO$_3$ was washed with water and ethanol, most of the activity was found in the supernatants. We are investigating whether this activity results from 14C-DIMP contamination or from volatile metabolites generated by the soil organisms.

The same phenomenon has been observed with 14C-DCPD in soil studies. Radioactivity is observed in KOH traps but, barium precipitation of CO$_2$ incorporates little activity in barium carbonate. Because of its volatility, DCPD and possibly its volatile metabolites may accumulate in these traps. These possibilities are currently under investigation.

FUTURE WORK

Our future plans are to continue investigating DCPD and DIMP biotransformation using labeled compounds both in soil and liquid media. We also will investigate local eutrophic water samples for the development of DCPD- and DIMP-degrading organisms.

The photochemical studies will continue with the investigation of the photolysis of DCPD in natural waters as well as the initiation of solar photolysis studies in deep and shallow RMA waters.

Exhibit A is the performance schedule for project tasks, and Exhibit B is a graph of expenditures to date.
EXHIBIT A PERFORMANCE SCHEDULE FOR PROJECT TASKS

<table>
<thead>
<tr>
<th>TASK DESCRIPTION</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample collection</td>
<td></td>
</tr>
<tr>
<td>Preliminary photochemical studies of DCPD</td>
<td></td>
</tr>
<tr>
<td>Detailed photochemical studies of DCPD</td>
<td></td>
</tr>
<tr>
<td>Preliminary photochemical studies of DIMP</td>
<td></td>
</tr>
<tr>
<td>Detailed photochemical studies of DIMP</td>
<td></td>
</tr>
<tr>
<td>Culture acclimation</td>
<td></td>
</tr>
<tr>
<td>Biodegradation of DIMP</td>
<td></td>
</tr>
<tr>
<td>Mineralization, DIMP water</td>
<td></td>
</tr>
<tr>
<td>Mineralization, DIMP soil</td>
<td></td>
</tr>
<tr>
<td>Soil activation, DIMP</td>
<td></td>
</tr>
<tr>
<td>Biodegradation, DCPD</td>
<td></td>
</tr>
<tr>
<td>Mineralization, DCPD water</td>
<td></td>
</tr>
<tr>
<td>Mineralization, DCPD soil</td>
<td></td>
</tr>
<tr>
<td>Soil activation, DCPD</td>
<td></td>
</tr>
<tr>
<td>Analytical Development</td>
<td></td>
</tr>
<tr>
<td>Product identifications</td>
<td></td>
</tr>
<tr>
<td>Monthly reports</td>
<td></td>
</tr>
<tr>
<td>Final report</td>
<td></td>
</tr>
</tbody>
</table>

Note: The diagram indicates the timeline for each task with bars representing the duration and overlap of activities across the months.