BIBLIOGRAPHY OF FLYWHEEL ENERGY STORAGE SYSTEMS

E. A. Henry, K. W. Johnson, F. E. McMurphy, and T. M. Quick

September 30, 1977

This preliminary bibliography has been prepared for distribution at the 1977 Flywheel Technology Symposium in San Francisco, California, October 5-7, 1977.

This is an informal report intended primarily for internal or limited external distribution. The opinions and conclusions stated are those of the author and may or may not be those of the laboratory.

Foreword

The Data Management Research Project in the Computation Department of the Lawrence Livermore Laboratory (LLL/DMRP) has the responsibility to advance the state of the art in the efficient use of information and data by machine. We distinguish two main activities: First, we provide support to LLL and ERDA in programs that deal with the prime mission of our Laboratory and with energy and environmentally related research and development. Second, we design and implement data base management techniques to permit a more effective use of the growing requirements for data by administrators, engineers and scientists who are not computer programmers.

One of the most challenging projects undergoing development by the staff of LLL/DMRP is the creation of an Integrated Information System (IIS) for the rapidly expanding import of energy storage. This project, under contract to the Energy Storage Division of the U.S. Energy Research and Development Administration (ERDA/STOR), is to provide a user-oriented data base and technical/management information system by interactive access to accurate and up-to-date: Material properties and their supporting bibliographies, storage technology characterization data, energy storage systems data, and models for decision analysis. Preparations are under way to aggregate these technical and administrative data bases on a PDP-11/70 computer at LLL, accessible over the ARPAnet and by telephone dialup. Contract No. E(49-1)-3835.

This bibliography on the properties and the mechanics of fiber composites, matrix materials, and on flywheel energy storage systems is one of a series of timely references to the world literature:

1. Flywheels & Fiber Composites
2. Molten Salt Electrolytes
3. Thermal Energy Storage Materials
4. Aqueous Electrolytes
5. Hydrogen Energy Storage Materials
The present Flywheel Bibliography is a preliminary edition
issued especially for the 1977 Flywheel Technology Symposium in
San Francisco, California, October 5-7. We hope that any missing
citations, or comments in general, will be brought to our attention
in time for a more complete edition to be published for the forth-
coming Second International Conference on Composite Materials (ICCM-II)
to be held in Toronto, Canada, April 16-18, 1978.

The bibliographic data bases are the precursors to numerical
data bases of material properties. These are being created at LLL
in parallel with data that is evaluated by nationally recognized
evaluation centers under auspices of the Office of Standard Reference
Data of the National Bureau of Standards, and administrative leadership
by Dr. Lew Gevantman.

In the future, these data bases will be made accessible over
the ARPAanet and by telephone dialup, as indicated earlier. At that
time, the time lag necessarily associated with a printed rendition
will be shortened considerably.

The ERDA Division of Energy Storage Systems is directed by
Dr. George F. Passdirtz. The contract of our work is being administered
by Dr. Lynne Holt of the Applications Analysis Branch. The Flywheel
Bibliography has been prepared in particular to provide the Advanced
Physical Systems Branch, under Dr. George Chang, with a useful reference
guide to ongoing research in the field.1-4

Viktor E. Hampel, Leader
Data Management Research Project
Computation Department
Lawrence Livermore Laboratory
P.O.Box 808, Mail Stop: L-316
Livermore, California, 94550
Tel.: (415) 447-1100 Ext. 4061
FTS 457-4061
Introduction

A rotating wheel contains stored mechanical energy and, if connected to an engine or machine, acts as a "flywheel" to smooth out speed variations by alternately absorbing or delivering energy as its speed is increased or decreased by the machine. The principle is probably as old as the wheel itself, and is used in the ancient potter's wheel, in steam and gasoline engines, and in large equipment such as a dragline shovel.

To achieve increased energy concentration, flywheels would need to operate at high speeds that generate tremendous centrifugal force. To reduce the possibility of accidents, recent attempts to design high capacity flywheels (for load-leveling and other applications) have concentrated on super-strong material and safety designs.

The illustration below shows a flywheel powered passenger bus built in Switzerland. Electrical energy, drawn from trolley wires at periodic stops, speeds up the large internal flywheel to store the energy needed to operate the bus at other times. Similar buses - actually large-scale versions of the familiar child's toy - are being developed for use in San Francisco, and the idea is being tested for subway cars in New York City.

Figure 1:

The first commercial vehicular use for a flywheel was a gyrobus that was used both in Switzerland and the Belgian Congo. Basically, the gyrobus drew electric power from an overhead pole to spin up a flywheel. In turn, the flywheel drove a generator that powered the road wheel motors. The "refuelling" poles were spaced about a half-mile apart, and the bus was required to stop at each pole. The vehicle itself was 35 feet long, weighed 24,000 pounds, and was designed for 35 seated and 35 standing passengers.
The amount of mechanical (or kinetic) energy that can be stored in a rotating wheel depends, of course, on its weight and the square of its speed of rotation. To stretch the limits of energy stored, problems of air- and bearing-friction have to be overcome, and new materials tested that would withstand the large centrifugal forces and depreciation of material properties as a result of fatigue from prolonged operation.

Considerable progress has been made in recent years in the design of flywheel applications and of advanced fiber composites and matrix materials to render this method of energy storage safe and cost-effective. One design of interest is the fanned brush that uses long thin fibres of various materials, such as steel wires, fiber glass, and other filaments, that have unusually high-strength properties in the long direction. Other designs are based on concentric rings of strong fiber composites separated by small gaps filled with bonded resilient material. This minimizes radial stress that tends to cause the wheel to fail at high speeds.

The advantages of these "superflywheels" for storage of electric energy are that they are 70%-80% efficient and could be placed conveniently close to points of heavy load demand. A proposed design of a large load-leveling flywheel unit is shown in Figure 2.

Clearly, as this field of energy storage is expanding, new and highly sophisticated hybrid systems are starting to evolve in competition with other contemporary techniques: Batteries, compressed air, magnetic and hydrogen-based systems, in addition to perhaps more conventional modes like thermal storage and the load-leveling of hydroelectric power generation.

This preliminary publication of the Flywheel Bibliography is meant, therefore, to provide a reasonably up-to-date survey of this specific field of the literature that is rapidly expanding. Figure 3.
Figure 2:

This peak power unit would store energy from an electric power plant during off-peak hours and would generate energy at times of peak load. The fiber composite flywheel would be about 15 feet in diameter and weigh about 200 tons. It would be coupled to a generator-motor that would function as a motor when the flywheel was being spun up to store energy and as a generator when the system was drawing on the flywheel's stored energy.

Figure 3: Number of Publications Used in the Preliminary Edition of the *Flywheel Bibliography* as a function of Time:

<table>
<thead>
<tr>
<th>Year</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1959</td>
<td>1</td>
</tr>
<tr>
<td>1960</td>
<td>1</td>
</tr>
<tr>
<td>1961</td>
<td>1</td>
</tr>
<tr>
<td>1962</td>
<td>1</td>
</tr>
<tr>
<td>1963</td>
<td>5</td>
</tr>
<tr>
<td>1964</td>
<td>6</td>
</tr>
<tr>
<td>1965</td>
<td>4</td>
</tr>
<tr>
<td>1966</td>
<td>6</td>
</tr>
<tr>
<td>1967</td>
<td>14</td>
</tr>
<tr>
<td>1968</td>
<td>8</td>
</tr>
<tr>
<td>1969</td>
<td>13</td>
</tr>
<tr>
<td>1970</td>
<td>21</td>
</tr>
<tr>
<td>1971</td>
<td>28</td>
</tr>
<tr>
<td>1972</td>
<td>35</td>
</tr>
<tr>
<td>1973</td>
<td>37</td>
</tr>
<tr>
<td>1974</td>
<td>90</td>
</tr>
<tr>
<td>1975</td>
<td>80</td>
</tr>
<tr>
<td>1976</td>
<td>35 (through July, 1976)</td>
</tr>
</tbody>
</table>
The publication peaks are shown to occur fortuitously in 1974 and 1975. This is characteristic of most bibliographies. It indicates merely the time lag before relevant publications appear in the computerized data banks of secondary references to the world literature.* We are making provisions to shorten this inadvertent delay when our on-line data banks become operational, as part of the Integrated Information System. 8

Detailed Description

The main body of the report consists of two parts: The Concordance and Main Listing.

The Concordance, Part-1

The concordance is an alphabetic listing of the following information elements:

* Essential expressions from titles
* Authors from single and multiple author lists
* Organizations and corporate authors
* Keywords and Keyphrases

Non-essential expressions derived by computer from titles were removed. Under each alphabetic listing of terms from the above information elements are five columns, describing each relevant citation from the left:

* Chronological date of publication
* Title
* Author(s)
* Category number, as defined by us below
* Citation number which links the Concordance with the main listing.

* Refer, for example to the "MULTIPHOTON BIBLIOGRAPHY 1970-1976", UCRL-13728

-vi-
The Main Bibliographic Listing, Part-2

We found it useful to establish six subject categories for the main bibliographic listing. Within each category, citations are shown in chronologically ascending order of their date of publication. Citation numbers which provide the link between the concordance and the main listing provide the main entry to the bibliographic listing and are in ascending order, encompassing all six categories:

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>SUBJECT</th>
<th>Citation Number</th>
<th>Number of Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Properties of Flywheels</td>
<td>1-59</td>
<td>59</td>
</tr>
<tr>
<td>II</td>
<td>Flywheels in Vehicles</td>
<td>60-137</td>
<td>78</td>
</tr>
<tr>
<td>III</td>
<td>Flywheels in Utilities</td>
<td>138-209</td>
<td>72</td>
</tr>
<tr>
<td>IV</td>
<td>Flywheels in Aircraft & Spacecraft</td>
<td>210-240</td>
<td>31</td>
</tr>
<tr>
<td>V</td>
<td>Overview of Energy Resources</td>
<td>241-253</td>
<td>13</td>
</tr>
<tr>
<td>VI</td>
<td>Fiber Composite Properties</td>
<td>254-382</td>
<td>129</td>
</tr>
</tbody>
</table>

Each bibliographic citation in the main listing is appropriately categorized by its main subject heading at the top of each page. The citation number at the left is set apart for rapid scanning. Individual descriptive fields in each citation vary from case to case, depending upon the origin of each citation. Only fields containing information are shown. However, more information and data is contained in the computer data bank than that shown in this publication.

Some Aspects of Computerization

Citations for this Flywheel Bibliography have been derived from a search of the world literature, employing machine and manual scanning of sources shown in Table-I.

All citations and additional intelligence were keyboarded at LLL from the original documents, mostly government reports. The preliminary
version of the bibliography, as shown here, extends in time only through June, 1976. The more recent publications through December, 1977, will be added for the next addition to be published in April, 1978. Several aspects are noteworthy:

First, the printing of the bibliography represents a snapshot in time generated directly by machine in camera-ready form on a high-resolution camera of the FR-80 devices available at LLL. Standard commands for text manipulation of the MASTER CONTROL Data Base Management System were used to create this bibliography.5-7 Although we find that interactive lookup by computer provides an immediate and up-to-date insight into the state of a particular data base, we value the printed book that can be perused quickly and at liberty, even by those that do not have access to the computer system.

Second, a computer-based data bank lends itself readily to the identification of statistics. Some of these are shown in the tables below. Here we are very mindful that statistics on the number of publications by personal and corporate authors do not necessarily indicate relevance or the quality of the contributions, especially when the statistics are small - as is the case here. However, the interactive information systems, e.g. ERDA/RECON and others, do provide statistics as a byproduct of each search. In this sense we believe it appropriate to share with you some of the observations available to us on this bibliography:

FLYWHEEL PUBLICATIONS BY AUTHOR

<table>
<thead>
<tr>
<th>Author</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.W. Rabenhorst</td>
<td>16</td>
</tr>
<tr>
<td>L.J. Lawson</td>
<td>12</td>
</tr>
<tr>
<td>T.R. Schneider</td>
<td>5</td>
</tr>
<tr>
<td>A. Cormack</td>
<td>4</td>
</tr>
<tr>
<td>D.E. Lapedes</td>
<td>4</td>
</tr>
<tr>
<td>J. Meltzer</td>
<td>4</td>
</tr>
<tr>
<td>J.E. Notti</td>
<td>4</td>
</tr>
<tr>
<td>T.T. Chiao</td>
<td>3</td>
</tr>
<tr>
<td>G.L. Dugger</td>
<td>3</td>
</tr>
<tr>
<td>R.R. Gilbert</td>
<td>3</td>
</tr>
<tr>
<td>S.F. Post</td>
<td>3</td>
</tr>
<tr>
<td>H. Schreck</td>
<td>3</td>
</tr>
<tr>
<td>etc.</td>
<td></td>
</tr>
</tbody>
</table>
Third, we wish to emphasize the human aspects of a properly designed bibliography where the professional contribution of skilled reviewers is invaluable. By adding qualifying information in descriptive and numerical form to each citation of a computer-based data bank, we open a new domain for decision making.

Acknowledgement

The following have worked on this Flywheel Bibliography:

Viktor E. Hampel, Principal Investigator for the project; Terrence M. Quick, Materials scientist and Project Leader; Eugene E. Henry, Physicist; Frederick E. McMurphy, chemist; Keith W. Johnson, physicist; Barbara J. Mallon, chemist; Donna M. Chato, computer programmer; and Doris H. Ryan, computer technician. The MASTER CONTROL program has readied for this production by Robert W. Kuhn and Barbara Flusche, computer scientists.
The assistance of William E. Madden of the LLL Technical Information Department, and the keyboarding by Adele K. Larson and her staff are gratefully acknowledged.

Additions, corrections and comments that would affect our future publications by making them useful and by disseminating them to those who need this information should be directed to:

Terrence M. Quick
Project Leader
ERDA/STOR Data Base Project
Data Management Research Group
Lawrence Livermore Laboratory
P.O.Box 808, Mail Stop L-316
Livermore, California, 94550
Tel.: (415) 447-1100 Ext. 4995
FTS: 457-4995
Table-I: CURRENT AWARENESS SERVICES SEARCHED FOR THIS BIBLIOGRAPHY

1. **Engineering Index (Compendex)**
 Covers the world's significant technical literature and conferences encompassing all engineering disciplines. Covered are 2299 professional and industrial journals, proceedings, special publications, monographs, reports, etc.

2. **Nuclear Science Abstracts**
 Covers the international nuclear science literature. The journals regularly scanned are contained in "Serial Titles Cited in Nuclear Science Abstracts."

3. **Chemical Abstract Condensates (Chemcon)**
 CA Condensates provide a computer readable service which corresponds to Chemical Abstracts. Some 13,000 journals as well as patents from 26 countries, conference proceedings, and government research reports are covered.

4. **National Technical Information Service (NTIS)**
 This data base covers government sponsored research and development reports since 1970.

5. **Congressional Information Service Index (CIS Index)**
 CIS Index covers publications of the United States Congress since 1970.

6. **ERDA Energy Data Base (EDB)**
 EDB contains over 98,000 entries, encompassing all areas of energy-related information.

7. **Energy Data Base**
 Over 5,000 entries in this data base cover the use, generation, distribution, environmental effects, and sources of all forms of energy.

8. **ERDA Research Abstracts (ERA)**
 ERA provides abstracting and indexing service for all scientific and technical reports, journal articles, conference papers and proceedings, etc., originated by ERDA, its Laboratories, energy centers, and contractors.

9. **Applied Science and Technology Index**
 Over 200 English Language periodicals in the field of aeronautics, space science, and related areas are covered in this cumulative subject index.

10. **Readers Guide to Periodical Literature**
 A cumulative author-subject index is provided to approximately 160 periodicals of general interest in the United States.

11. **International Aerospace Abstracts**
 This service provides coverage of the world literature in aeronautics and space science.
12. Scientific and Technical Aerospace Abstracts
Aeronautics, space science, and supporting disciplines are covered. Included are NASA and NASA contractor reports, reports by U.S. government agencies, translations that appear as reports, NASA-owned patents and patent applications, dissertations and theses.

13. Information Services for Mechanical Engineering (ISMEC) Bulletin
The ISMEC Bulletin includes nearly 300 primary publications worldwide, covering all aspects of mechanical engineering, production engineering, and engineering management.

14. Energy Abstracts for Policy Analysis
This service provides abstracting services and indexing of selected non-technological literature, contributing to energy-related analysis and evaluation in areas such as policy, conservation, research and development, economics and sociology, etc. The material is taken from Congressional Committee prints, Federal agency reports, regional and state government reports and documents, news reports, books and conference proceedings.

15. Energy Review
This service reviews selected works on the general subject of energy.

Note: Of the above abstracting and current awareness services the first seven are in use as computer-readable data bases.
References

3. Terrence M. Quick, "Research Leading to the Production and Early Use of Numeric Data Banks of Material Properties and System Analyses." Quarterly Progress Reports, UCRL-50038-76-1/4, etc. Data Management Research Group, Lawrence Livermore Laboratory, P.O.Box 808, Livermore California, 94550.

4. Terrence M. Quick, "Technological Data Bases in Energy Storage," UCRL-78786, Rev. 1, Summary, Lawrence Livermore Laboratory, Livermore, California, 94550.

Part - 1

CONCORDANCE OF SUBJECTS AND AUTHORS
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-MEGAJOULE/500-MEGAWATT SUPERFLYWHEEL</td>
<td>RABENHORST, D. W. / TAYLOR, R. J.</td>
<td>1</td>
</tr>
<tr>
<td>1000 NMS FLYWHEEL</td>
<td>STANDING, J. M.</td>
<td>1</td>
</tr>
<tr>
<td>125 MVA POWER</td>
<td>MIYAHARA, A. / BANNAI, E. / KITAKO, Y</td>
<td>3</td>
</tr>
<tr>
<td>150 NMS FLYWHEEL</td>
<td>STANDING, J. M.</td>
<td>1</td>
</tr>
<tr>
<td>1975 FLYWHEEL TECHNOLOGY</td>
<td>ENERGY RESEARCH AND DEVELOPMENT</td>
<td>1</td>
</tr>
<tr>
<td>1975 FLYWHEEL TECHNOLOGY SYMPOSIUM</td>
<td>ADMINISTRATION, AND LAWRENCE</td>
<td>1</td>
</tr>
<tr>
<td>200 MJ FLYWHEEL</td>
<td>NARDI, V.</td>
<td>3</td>
</tr>
<tr>
<td>25000 RPM</td>
<td>MACHY (LOND)</td>
<td>1</td>
</tr>
<tr>
<td>2XIII</td>
<td>CHIAO, T. T. / WALKUP, C. W. / NEWEY, H. A</td>
<td>3</td>
</tr>
<tr>
<td>AALAND, K.</td>
<td>AALAND, K. / LANK, J. E.</td>
<td>2</td>
</tr>
<tr>
<td>1976 FERRO-RESONANT CIRCUIT FOR A NEW FLYWHEEL MOTOR GENERATOR</td>
<td>AALAND, K.</td>
<td>1</td>
</tr>
<tr>
<td>ABSTRACTS</td>
<td>LEHMANN, E. J.</td>
<td>1</td>
</tr>
<tr>
<td>1975 DESIGN AND APPLICATIONS OF FLYWHEELS (A BIBLIOGRAPHY WITH</td>
<td>LEHMANN, E. J.</td>
<td>2</td>
</tr>
<tr>
<td>ABSTRACTS</td>
<td>HABERCOM, G. E.</td>
<td>1</td>
</tr>
<tr>
<td>1975 AUTOMOBILE AIR POLLUTION, PART 4. NEW AUTOMOTIVE ENGINES (A</td>
<td>HABERCOM, G. E.</td>
<td>1</td>
</tr>
<tr>
<td>BIBLIOGRAPHY WITH ABSTRACTS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 DESIGN AND APPLICATIONS OF FLYWHEELS (A BIBLIOGRAPHY WITH</td>
<td>FINLAYSON, P. T. / WASHBURN, D. C.</td>
<td>3</td>
</tr>
<tr>
<td>ABSTRACTS</td>
<td>WOOD, P. / PEELY, B. R.</td>
<td>3</td>
</tr>
<tr>
<td>AC POWER SYSTEMS</td>
<td>AC-DC POWER CONVERSION</td>
<td>3</td>
</tr>
<tr>
<td>AC/DC POWER CONDITIONING AND CONTROL EQUIPMENT FOR ADVANCED</td>
<td>WOOD, P. / PEELY, B. R.</td>
<td>3</td>
</tr>
<tr>
<td>AC/DC POWER CONDITIONING AND CONTROL EQUIPMENT FOR ADVANCED</td>
<td>WOOD, P. / PEELY, B. R.</td>
<td>3</td>
</tr>
<tr>
<td>CONVERSION AND STORAGE TECHNOLOGY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCELERATION TEST</td>
<td>1976</td>
<td>AN ACCELERATED TEST FOR PREDICTING THE LIFETIME OF ORGANIC FIBER COMPOSITES</td>
</tr>
<tr>
<td>ACCELERATION</td>
<td>1971</td>
<td>DESIGN AND TESTING OF HIGH ENERGY DENSITY FLYWHEELS FOR APPLICATION TO FLYWHEEL HEAT ENGINE HYBRID VEHICLE DRIVES</td>
</tr>
<tr>
<td></td>
<td>1972</td>
<td>HYBRID PROPULSION SYSTEM TRANSMISSION EVALUATION, PHASE I. FINAL REPORT</td>
</tr>
<tr>
<td>ACHIEVEMENTS AND PROSPECTS</td>
<td>1970</td>
<td>ACHIEVEMENTS AND PROSPECTS IN THE UTILIZATION OF KINETIC ENERGY</td>
</tr>
<tr>
<td>ACHIEVING HIGH ENERGY</td>
<td>1973</td>
<td>ACHIEVING HIGH ENERGY EFFICIENCY</td>
</tr>
<tr>
<td>ACoustics</td>
<td>1972</td>
<td>ACOUSTIC EMISSION FROM FILAMENT-WOUND PRESSURE BOTTLES</td>
</tr>
<tr>
<td></td>
<td>1972</td>
<td>ACOUSTIC EMISSION FROM FILAMENT-WOUND PRESSURE BOTTLES</td>
</tr>
<tr>
<td></td>
<td>1973</td>
<td>ACOUSTIC EMISSION PRODUCED DURING BURST TESTS OF FILAMENT-WOUND BOTTLES</td>
</tr>
<tr>
<td></td>
<td>1974</td>
<td>A PHYSICAL MECHANISM FOR THE EARLY ACOUSTIC EMISSION IN AN ORGANIC FIBER/EPOXY PRESSURE VESSEL</td>
</tr>
<tr>
<td></td>
<td>1974</td>
<td>ACOUSTIC EMISSION FROM STRESS-RUPTURE AND FATIGUE OF AN ORGANIC FIBER COMPOSITE</td>
</tr>
<tr>
<td></td>
<td>1974</td>
<td>ACOUSTIC EMISSION USES IN RESEARCH AND DEVELOPMENT OF COMPOSITE MATERIALS</td>
</tr>
<tr>
<td>Acoustics</td>
<td>1974</td>
<td>ACOUSTIC EMISSION FROM STRESS-RUPTURE AND FATIGUE OF AN ORGANIC FIBER COMPOSITE</td>
</tr>
<tr>
<td></td>
<td>1974</td>
<td>TENILLE PROPERTIES OF AN ULTRA-HIGH-STRENGTH GRAPHITE FIBER AN EPOXY MATRIX</td>
</tr>
<tr>
<td>ACT-I CARS</td>
<td>1976</td>
<td>FLYWHEELS: ENERGY-SAVING WAY TO GO</td>
</tr>
<tr>
<td>ACTIVE STABILIZATION</td>
<td>1975</td>
<td>ACTIVE STABILIZATION OF THE ROTARY MOTION OF A SOLID BODY</td>
</tr>
<tr>
<td>ACTIVATION FUNCTIONS</td>
<td>1986</td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
</tr>
<tr>
<td></td>
<td>1987</td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
</tr>
<tr>
<td></td>
<td>1987</td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
</tr>
<tr>
<td></td>
<td>1987</td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
</tr>
<tr>
<td></td>
<td>1987</td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Title</td>
<td>Year</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Adams, L. R.</td>
<td>Application of Isotensoid Flywheels to Spacecraft Energy and Angular Momentum Storage</td>
<td>1972</td>
</tr>
<tr>
<td>Advanced Composite</td>
<td>A Moderate-Temperature-Curable Epoxy for Advanced Composite</td>
<td>1974</td>
</tr>
<tr>
<td>Advanced Conversion</td>
<td>AC/DC Power Conditioning and Control Equipment for Advanced Conversion and Storage Technology</td>
<td>1975</td>
</tr>
<tr>
<td>Advanced Fiber Composite</td>
<td>Experimental Investigation of Fracture in an Advanced Fiber Composite</td>
<td>1972</td>
</tr>
<tr>
<td>Advanced Fiber Composites</td>
<td>A Room Temperature-Curable Epoxy for Advanced Fiber Composites</td>
<td>1974</td>
</tr>
<tr>
<td>Advanced Systems Division</td>
<td>FOSSIL FUEL AND ADVANCED SYSTEMS DIVISION RESEARCH PROGRESS REPORT FF-3</td>
<td>1975</td>
</tr>
<tr>
<td>Advanced Technologies</td>
<td>ENERGY STORAGE (11): DEVELOPING ADVANCED TECHNOLOGIES</td>
<td>1974</td>
</tr>
<tr>
<td>Aerospace Applications</td>
<td>MAGNETIC BEARINGS FOR AEROSPACE APPLICATIONS</td>
<td>1963</td>
</tr>
<tr>
<td>Aerospace Corp.</td>
<td>CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS</td>
<td>1974</td>
</tr>
<tr>
<td>Aerospace Vehicles</td>
<td>MAGNETIC BEARINGS FOR AEROSPACE APPLICATIONS</td>
<td>1963</td>
</tr>
<tr>
<td>Aerospatiale, France</td>
<td>MOMENTUM WHEELS</td>
<td>1975</td>
</tr>
<tr>
<td>Air Bearings</td>
<td>APPLICATION OF AIR BEARINGS TO HIGH SPEED TURBOMACHINERY</td>
<td>1970</td>
</tr>
<tr>
<td>Air Conditioning</td>
<td>INDEPENDENT ENERGY SYSTEMS FOR BETTER EFFICIENCY</td>
<td>1974</td>
</tr>
<tr>
<td>Category</td>
<td>Title</td>
<td>Author(s)</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>AIR FILTERS</td>
<td>STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES</td>
<td>Battelle Columbus Labs.</td>
</tr>
<tr>
<td>AIR POLLUTION</td>
<td>SURVEY OF PROPULSION SYSTEMS FOR LOW EMISSION URBAN VEHICLES, FINAL REPORT.</td>
<td>Fraize, W. E. / Lay, R. K.</td>
</tr>
<tr>
<td></td>
<td>PROCEEDINGS SECOND INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM</td>
<td>Whitlaw, R. L.</td>
</tr>
<tr>
<td></td>
<td>TWO NEW WEAPONS AGAINST AUTOMOTIVE AIR POLLUTION: THE HYDROSTATIC DRIVE AND THE FLYWHEEL—ELECTRIC LDV.</td>
<td>Sternlicht, B. / Thur, G. W.</td>
</tr>
<tr>
<td></td>
<td>ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES</td>
<td>Lawson, L. J.</td>
</tr>
<tr>
<td></td>
<td>KINETIC ENERGY STORAGE FOR MASS TRANSPORTATION</td>
<td>Lehmann, E. J.</td>
</tr>
<tr>
<td></td>
<td>DIGEST OF CURRENT RESEARCH IN THE ELECTRIC UTILITY INDUSTRY</td>
<td>SEGEBAB,</td>
</tr>
<tr>
<td>AIRCRAFT</td>
<td>ENERGY STORAGE AND ITS ROLE IN ELECTRIC POWER SYSTEMS</td>
<td>Haydock, J. L.</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>North American Aviation Inc. Los Angeles Div.</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>North American Aviation Inc. Los Angeles Div.</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>North American Aviation Inc. Los Angeles Div.</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>North American Aviation Inc. Los Angeles Div.</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>North American Aviation Inc. Los Angeles Div.</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>North American Aviation Inc. Los Angeles Div.</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>North American Aviation Inc. Los Angeles Div.</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>North American Aviation Inc. Los Angeles Div.</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>North American Aviation Inc. Los Angeles Div.</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>North American Aviation Inc. Los Angeles Div.</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>North American Aviation Inc. Los Angeles Div.</td>
</tr>
<tr>
<td></td>
<td>WEIGHT IS SAVED WHEN FLYWHEEL ENERGY STORAGE UNIT SUPPLEMENTS AIRCRAFT SECONDARY POWER SYSTEMS.</td>
<td>Helsley, C. W.</td>
</tr>
<tr>
<td></td>
<td>POTENTIAL APPLICATIONS FOR THE SUPERFLYWHEEL</td>
<td>Ramenhorst, D. W.</td>
</tr>
<tr>
<td></td>
<td>ENERGY TECHNOLOGY II (NAVY APPLICATIONS)</td>
<td>Peterick, P. A.</td>
</tr>
<tr>
<td>AIRCRAFT ACTUATION FUNCTIONS</td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>North American Aviation Inc. Los Angeles Div.</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>North American Aviation Inc. Los Angeles Div.</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>North American Aviation Inc. Los Angeles Div.</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>North American Aviation Inc. Los Angeles Div.</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>North American Aviation Inc. Los Angeles Div.</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>North American Aviation Inc. Los Angeles Div.</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>North American Aviation Inc. Los Angeles Div.</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>North American Aviation Inc. Los Angeles Div.</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>North American Aviation Inc. Los Angeles Div.</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>North American Aviation Inc. Los Angeles Div.</td>
</tr>
<tr>
<td>AIRCRAFT SECONDARY POWER</td>
<td>WEIGHT IS SAVED WHEN FLYWHEEL ENERGY STORAGE UNIT SUPPLEMENTS AIRCRAFT SECONDARY POWER SYSTEMS.</td>
<td>Helsley, C. W.</td>
</tr>
<tr>
<td>AIRCRAFT-STORE SEPARATION PROBLEM</td>
<td>ANGULAR MOMENTUM AND THE AIRCRAFT-STORE SEPARATION PROBLEM</td>
<td>Daniels, P. / Clare, T. A.</td>
</tr>
<tr>
<td>ALASKAN RESERVES</td>
<td>ENERGY, VOLUME 1: DEMANDS, RESOURCES, IMPACT, TECHNOLOGY, AND POLICY</td>
<td>Penner, S. S. / Icerman, L.</td>
</tr>
<tr>
<td>ALKALI EARTH SALTS</td>
<td>1974</td>
<td>HEAT STORAGE USING ALKALI METAL SALTS, ALKALI EARTH SALTS, IRON CHLORIDE, ZINC CHLORIDE, BORON OXIDE, AND EUTECTIC FLUORIDE MIXTURES</td>
</tr>
<tr>
<td>--------------------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>ALKALI METAL SALTS</td>
<td>1974</td>
<td>HEAT STORAGE USING ALKALI METAL SALTS, ALKALI EARTH SALTS, IRON CHLORIDE, ZINC CHLORIDE, BORON OXIDE, AND EUTECTIC FLUORIDE MIXTURES</td>
</tr>
<tr>
<td>ALKALINE BATTERIES</td>
<td>1974</td>
<td>ELECTRICAL PROPULSION SYSTEMS FOR ROAD VEHICLES. STATE OF THE ART AND PRESENT-DAY PROBLEMS</td>
</tr>
<tr>
<td>ALLSUP, J.R.</td>
<td>1974</td>
<td>EMISSION CHARACTERISTICS OF A PRIME MOVER FOR HYBRID VEHICLE USE</td>
</tr>
<tr>
<td>ALTERNATING CURRENT</td>
<td>1970</td>
<td>FLYWHHEEL GENERATORS FOR INSTANT POWER</td>
</tr>
<tr>
<td>ALTERNATING CURRENT</td>
<td>1974</td>
<td>CYCLOCONVERTER-CONTROLLED SYNCHRONOUS MACHINES FOR LOAD COMPENSATION ON AC POWER SYSTEMS</td>
</tr>
<tr>
<td>ALTERNATIVE AUTOMOTIVE POWER</td>
<td>1974</td>
<td>CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS</td>
</tr>
<tr>
<td>ALTERNATIVE ENERGY SOURCES</td>
<td>1975</td>
<td>MATERIALS REQUIREMENTS FOR ENERGY GENERATION, CONVERSION, AND STORAGE</td>
</tr>
<tr>
<td>ALTERNATIVE PRIME MOTORS</td>
<td>1974</td>
<td>ALTERNATIVE PRIME MOTORS FOR FUTURE AUTOMOBILES</td>
</tr>
<tr>
<td>ALTHOUSE, L. P.</td>
<td>1972</td>
<td>CHARACTERIZATION OF AN EPOXY SYSTEM FOR FILAMENT WINDING</td>
</tr>
<tr>
<td>ALUMINUM ALLOY</td>
<td>1973</td>
<td>FLYWHEELS</td>
</tr>
<tr>
<td>AMER. TRANSIT ASSN.</td>
<td>1974</td>
<td>ATA RAIL TRANSIT CONFERENCE, CAR EQUIPMENT SESSIONS</td>
</tr>
<tr>
<td>AMERICAN NUCLEAR SOCIETY, HINSDALE, ILL.</td>
<td>1976</td>
<td>ENERGY STORAGE</td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

AMMONIA (CONT'D.)

1974 ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES

STERNLICHT, B./THURGUM, W. M.

ANALYSES

1976 RESEARCH LEADING TO THE PRODUCTION AND EARLY USE OF NUMERIC DATA BANKS OF MATERIAL PROPERTIES AND SYSTEM ANALYSES

HENRY, E. A.

ANALYSIS

1984 GENERAL THEORETICAL ANALYSIS AND EVALUATION OF AN EXPERIMENTAL MODEL OF A CONSTANT-SPEED FLYWHEEL POWER SOURCE

MATTHEWS, L. E./EVERETT, W. D./BINDER, R.

1987 COMPOSITE FLYWHEEL STRESS ANALYSIS AND MATERIALS STUDY

MORGANTHALER, G. F./BONK, S. P.

1971 FEASIBILITY ANALYSIS OF THE TRANSMISSION FOR A FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEM

MECHANICAL TECHNOLOGY, INC.

1972 ANALYSIS OF STRESS-RUPTURE DATA FROM S-GLASS COMPOSITES

ROBINSON, E. Y./CHIAO, T. T.

1972 DESIGN AND ANALYSIS OF THE ATS GRAPHITE EPOXY SATELLITE TRUSS

BURNS, J. W./TOLAND, R. H.

1973 FAILURE CRITERIA AND FAILURE ANALYSIS OF COMPOSITE STRUCTURES

TOLAND, R. H./VICARIO, A. A./WU, E. W.

1974 FAILURE CRITERIA TO FRACTURE MODE ANALYSIS OF COMPOSITE MATERIALS

LARDER, R. A.

1974 THE APPLICATION OF THREE DIMENSIONAL FINITE ELEMENT ANALYSIS TO THE MICRO-MECHANICS OF FIBROUS COMPOSITE MATERIALS

GILBERT, J. S./KERN, E. A.

1975 ANALYSIS OF HOMOPOLAR GENERATORS AND SUPERCONDUCTING INDUCTIVE ENERGY STORAGE SYSTEMS AS POWER SUPPLIES FOR HIGH-ENERGY, SPACE-BASED LASERS

ANALYSIS AND EVALUATION

1984 GENERAL THEORETICAL ANALYSIS AND EVALUATION OF AN EXPERIMENTAL MODEL OF A CONSTANT-SPEED FLYWHEEL POWER SOURCE

MATTHEWS, L. E./EVERETT, W. D./BINDER, R.

ANALYSIS AND MATERIALS

1987 COMPOSITE FLYWHEEL STRESS ANALYSIS AND MATERIALS STUDY

MORGANTHALER, G. F./BONK, S. P.

ANALYSIS OF COMPOSITE

1973 FAILURE CRITERIA AND FAILURE ANALYSIS OF COMPOSITE STRUCTURES

TOLAND, R. H./VICARIO, A. A.

1974 FAILURE CRITERIA TO FRACTURE MODE ANALYSIS OF COMPOSITE MATERIALS

WU, E. W.

ANALYSIS OF HOMOPOLAR

1975 ANALYSIS OF HOMOPOLAR GENERATORS AND SUPERCONDUCTING INDUCTIVE ENERGY STORAGE SYSTEMS AS POWER SUPPLIES FOR HIGH-ENERGY, SPACE-BASED LASERS

GILBERT, J. S./KERN, E. A.

ANALYSIS OF STRESS-RUPTURE

1972 ANALYSIS OF STRESS-RUPTURE DATA FROM S-GLASS COMPOSITES

ROBINSON, E. Y./CHIAO, T. T.

ANGLE WOUND PIPE

1967 THE TEMPERATURE EFFECT OF INTERNAL AND EXTERNAL PRESSURE OF TWO ANGLE WOUND PIPE

CHIAO, T. T.

ANGULAR MOMENTUM

1973 APPLICATION OF ISOTHESSID FLYWHEELS TO SPACECRAFT ENERGY AND ANGULAR MOMENTUM STORAGE

ADAMS, L. R.

.1973 ANGULAR MOMENTUM AND THE AIRCRAFT-STORE SEPARATION PROBLEM

DANIELS, F./CLARE, T. A.

ANGULAR MOMENTUM STORAGE

1972 APPLICATION OF ISOTHESSID FLYWHEELS TO SPACECRAFT ENERGY AND ANGULAR MOMENTUM STORAGE

ADAMS, L. R.
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANGULAR VELOCITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 GYROSOPIC EFFECT OF FLYWHEELS IN MACHINES</td>
<td>GULIA, N. V. ET AL</td>
<td>2 106</td>
</tr>
<tr>
<td>ANISOTROPIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1967 APPLICATION OF FRACTURE MECHANICS TO ANISOTROPIC PLATES</td>
<td>WU, E. M.</td>
<td>6 262</td>
</tr>
<tr>
<td>1969 FRACTURE MECHANICS OF ANISOTROPIC PLATES</td>
<td>WU, E. M.</td>
<td>6 266</td>
</tr>
<tr>
<td>1969 CHARACTERIZATION OF ANISOTROPIC COMPOSITES</td>
<td>HALPIN, J. C. / PAGANO / WHITNEY</td>
<td>6 271</td>
</tr>
<tr>
<td>1971 A GENERAL THEORY OF STRENGTH FOR ANISOTROPIC MATERIALS</td>
<td>TSAI, S. W. / WU, E. M.</td>
<td>6 279</td>
</tr>
<tr>
<td>1972 OPTIMAL EXPERIMENTAL MEASUREMENT OF ANISOTROPIC FAILURE TENSORS</td>
<td>WU, E. M.</td>
<td>6 287</td>
</tr>
<tr>
<td>1973 DATA AVERAGING OF ANISOTROPIC MATERIAL CONSTANTS</td>
<td>WU, E. M. / JERINA, K. L./</td>
<td>6 311</td>
</tr>
<tr>
<td>1974 PHENOMENOLOGICAL ANISOTROPIC FAILURE CRITERION</td>
<td>LAVENGOOD, R. E.</td>
<td></td>
</tr>
<tr>
<td>1975 ON OPTIMAL SHAPES FOR ANISOTROPIC ROTATING DISKS</td>
<td>GERSKLE, F. P. / BIGGS, F.</td>
<td>1 47</td>
</tr>
<tr>
<td>ANISOTROPIC COMPOSITES</td>
<td>HALPIN, J. C. / PAGANO / WHITNEY</td>
<td>6 271</td>
</tr>
<tr>
<td>ANISOTROPIC FAILURE</td>
<td>WU, E. M.</td>
<td>6 267</td>
</tr>
<tr>
<td>1972 OPTIMAL EXPERIMENTAL MEASUREMENT OF ANISOTROPIC FAILURE TENSORS</td>
<td>WU, E. M.</td>
<td>6 326</td>
</tr>
<tr>
<td>1974 PHENOMENOLOGICAL ANISOTROPIC FAILURE CRITERION</td>
<td>WU, E. M.</td>
<td>6 297</td>
</tr>
<tr>
<td>1978 PHENOMENOLOGICAL ANISOTROPIC FAILURE CRITERION</td>
<td>WU, E. M.</td>
<td>6 326</td>
</tr>
<tr>
<td>ANISOTROPIC MATERIAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973 DATA AVERAGING OF ANISOTROPIC MATERIAL CONSTANTS</td>
<td>WU, E. M. / JERINA, K. L./</td>
<td>6 311</td>
</tr>
<tr>
<td>1974 DATA AVERAGING OF ANISOTROPIC MATERIAL CONSTANTS</td>
<td>LAVENGOOD, R. E.</td>
<td></td>
</tr>
<tr>
<td>ANISOTROPIC MATERIAL CONSTANTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973 DATA AVERAGING OF ANISOTROPIC MATERIAL CONSTANTS</td>
<td>WU, E. M. / JERINA, K. L./</td>
<td>6 311</td>
</tr>
<tr>
<td>1974 DATA AVERAGING OF ANISOTROPIC MATERIAL CONSTANTS</td>
<td>LAVENGOOD, R. E.</td>
<td></td>
</tr>
<tr>
<td>ANISOTROPIC PLATES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1967 APPLICATION OF FRACTURE MECHANICS TO ANISOTROPIC PLATES</td>
<td>WU, E. M.</td>
<td>6 262</td>
</tr>
<tr>
<td>1968 FRACTURE MECHANICS OF ANISOTROPIC PLATES</td>
<td>WU, E. M.</td>
<td>6 266</td>
</tr>
<tr>
<td>ANISOTROPIC ROTATING DISKS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 ON OPTIMAL SHAPES FOR ANISOTROPIC ROTATING DISKS</td>
<td>GERSKLE, F. P. / BIGGS, F.</td>
<td>1 47</td>
</tr>
<tr>
<td>ANISOTROPY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 METALS AND COMPOSITES IN SUPERFLYWHEEL ENERGY STORAGE SYSTEMS</td>
<td>RABENHORST, D. W.</td>
<td>1 43</td>
</tr>
<tr>
<td>ANTI-SKID DEVICE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1967 FLYWHEEL INERTIA ACTUATES AUTOMATIC ANTI-SKID DEVICE</td>
<td>PRODUCT ENG.</td>
<td>2 67</td>
</tr>
<tr>
<td>APPARATUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972 INERTIAL ENERGY STORAGE APPARATUS AND SYSTEM FOR UTILIZING THE SAME</td>
<td>POST, S. F. / POST, S. F.</td>
<td>2 88</td>
</tr>
<tr>
<td>1973 INERTIAL ENERGY STORAGE APPARATUS</td>
<td>POST, S. F.</td>
<td>2 95</td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

APPLICATION
1959 COMPARISON OF ELECTRICALLY RUN UP FLYWHEEL (DC MOTOR) WITH TURBINE, HOT GAS MOTOR AND OTHER SYSTEMS FOR MINUTEMAN APPLICATION.
FRUXTOW, N. N.

1960 AN ELECTRO-MECHANICAL ENERGY STORAGE SYSTEM FOR SPACE APPLICATION.
ROES, J. B.

1961 APPLICATION OF FRACTURE MECHANICS TO ANISOTROPIC PLATES APPLICATION.
WU, E. W.
CHRISTENSEN, R. M.

1962 APPLICATION OF THE METHOD OF TIME-DEPENDENT BOUNDARY CONDITIONS IN LINEAR VISCOELASTICITY.
BARNETT, W. A. / SILVER, A.

1970 DESIGN AND TESTING OF HIGH SPEED TURBOMACHINERY APPLICATIONS.
LAWSON, L. J.

1971 DESIGN OF FLYWHEEL HEAT ENGINE HYBRID VEHICLE DRIVES APPLICATION.
ADAMS, L. R.

1972 APPLICATION OF ISOTHERMALIZED FLYWHEELS TO SPACECRAFT ENERGY AND ANGULAR MOMENTUM STORAGE.
RABENHORST, D. W.
LAWSON, L. J.
CHRISTENSEN, R. M.

1973 A SPECIAL THEORY OF VISCOELASTIC FLUIDS FOR APPLICATION TO SUSPENSION.
REIMERS, E.
NA TIONAL ACADEMY OF SCIENCES 2 105

1974 APPLICATION OF TWO-PHASE DC CHOPPER MOTOR DRIVE SAFETY REVIEW OF THE KINETIC ENERGY WHEEL (KEW) SYSTEM FOR BUS APPLICATION.
FERNANDES, R. A. / GILDERSELEEVE, O. D. / SCHNEIDER, T. R.
LARDELL, R. A.

1975 THE APPLICATION OF THREE DIMENSIONAL FINITE ELEMENT ANALYSIS TO THE MICRO-MECHANICS OF FIBROUS COMPOSITE MATERIALS.
PUGET SOUND POWER AND LIGHT CO.

1976 SKAGIT NUCLEAR POWER PROJECT, UNITS 1 AND 2. LICENSE APPLICATION SPIRAL-GROOVE BEARINGS ON SPACECRAFT.
VANDERVAL, U.

1977 THREE MILE ISLAND NUCLEAR STATION, UNIT 2. LICENSE APPLICATION, 4 XR AMENDMENT 27.
METROPOLITAN EDISON CO.

1978 DESIGN AND TEST OF A FLYWHEEL ENERGY STORAGE UNIT FOR SPACECRAFT APPLICATION.
CORNACK, A. / NOTTI, J. E. / RUIZ, M. L.

1979 BATTERY-FLYWHEEL HYBRID ELECTRIC POWER SYSTEM FOR NEAR-TERM APPLICATION, VOLUME 1, SYSTEM DESCRIPTION.
DAVIS, D. D.

1980 BATTERY-FLYWHEEL HYBRID ELECTRIC POWER SYSTEM FOR NEAR-TERM APPLICATION, VOLUME 2, SYSTEM DESIGN.
DAVIS, D. D.

APPLICATION SPIRAL-GROOVE BEARINGS ON SPACECRAFT

1975 APPLICATION SPIRAL-GROOVE BEARINGS ON SPACECRAFT.
VANDERVAL, U.

APPLICATION TO FLYWHEEL

1971 DESIGN AND TESTING OF HIGH ENERGY DENSITY FLYWHEELS FOR APPLICATION TO FLYWHEEL HEAT ENGINE HYBRID VEHICLE DRIVES APPLICATION.
LAWSON, L. J.

APPLICATION TO SUSPENSION

1973 A SPECIAL THEORY OF VISCOELASTIC FLUIDS FOR APPLICATION TO SUSPENSION.
CHRISTENSEN, R. M.

APPLICATIONS

1963 MAGNETIC BEARINGS FOR AEROSPACE APPLICATIONS.
EDGAR, R. F. / ET AL.

1970 EVALUATION OF HYBRID HEAT ENGINE/ELECTRIC SYSTEMS FOR LOW EXHAUST EMISSION POTENTIAL IN AUTOMOTIVE APPLICATIONS.
LAPIDES, D. E. / WULTS, J.

1971 POTENTIAL APPLICATIONS FOR THE SUPERFLYWHEEL.
RABENHORST, D. W.

1972 SUMMARY OF GAS BEARING APPLICATIONS IN THE FIELD OF SPACE ELECTRIC POWER SYSTEMS.
DUNN, J. H. / REAM, L. W.

1975 ENERGY TECHNOLOGY II (NAVY APPLICATIONS)
PETERICK, F. A.

1975 DESIGN AND APPLICATIONS OF FLYWHEELS (A BIBLIOGRAPHY WITH ABSTRACTS)
LEHMANN, E. J.

1975 SCREENING OF EPOXY SYSTEMS FOR HIGH-PERFORMANCE FILAMENT WINDING APPLICATIONS.
CHIAO, T. T. / JESSOP, E. S. / PENN, L. S.

1975 DESIGN AND APPLICATIONS OF FLYWHEELS (A BIBLIOGRAPHY WITH ABSTRACTS)
RINDE, J. A.

1975 EPOXY RESINS FOR FLYWHEEL APPLICATIONS.
<table>
<thead>
<tr>
<th>APPLICATIONS (CONT'D.)</th>
<th>1975 FIBER EVALUATION FOR FLYWHEEL APPLICATIONS</th>
<th>PENN, L. S. / CHIAO, T. T.</th>
<th>1 52</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975 FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS</td>
<td>STONE, R. G.</td>
<td>1 57</td>
<td></td>
</tr>
<tr>
<td>APPLICATIONS OF FLYWHEELS</td>
<td>1975 DESIGN AND APPLICATIONS OF FLYWHEELS (A BIBLIOGRAPHY WITH ABSTRACTS)</td>
<td>LEHMANN, E. J.</td>
<td>1 42</td>
</tr>
<tr>
<td>1975 DESIGN AND APPLICATIONS OF FLYWHEELS (A BIBLIOGRAPHY WITH ABSTRACTS)</td>
<td>HABERCOM, G. E.</td>
<td>1 46</td>
<td></td>
</tr>
<tr>
<td>APPLIED PERTURBATIONS</td>
<td>1968 FLYWHEEL STABILIZATION OF A RIGID BODY SUBJECTED TO CONSTANTLY APPLIED PERTURBATIONS</td>
<td>DERGACHEVA, E. I.</td>
<td>3 140</td>
</tr>
<tr>
<td>APPLIED PHYSICS LAB., JOHN HOPKINS UNIV.</td>
<td>1969 PRIMARY ENERGY STORAGE AND THE SUPER FLYWHEEL</td>
<td>RABENSTORF, D. W.</td>
<td>2 68</td>
</tr>
<tr>
<td>1973 SUPERFLYWHEEL ENERGY STORAGE SYSTEM</td>
<td>RABENSTORF, D. W.</td>
<td>3 157</td>
<td></td>
</tr>
<tr>
<td>1974 TECHNICAL PROGRAM PLAN FOR SUPERFLYWHEEL DEVELOPMENT</td>
<td>RABENSTORF, D. W.</td>
<td>1 27</td>
<td></td>
</tr>
<tr>
<td>AQUACULTURE</td>
<td>1975 DIGEST OF CURRENT RESEARCH IN THE ELECTRIC UTILITY INDUSTRY</td>
<td>EPRI</td>
<td>3 187</td>
</tr>
<tr>
<td>ARGONNE NATIONAL LAB.</td>
<td>1975 REPETITIVE PLASMA FOCUS POWERED BY A APPROX. 200 MJ FLYWHEEL GENERATOR</td>
<td>NARDI, V.</td>
<td>3 194</td>
</tr>
<tr>
<td>ARIGA, H.</td>
<td>1975 POWER PLANT</td>
<td>ARIGA, H.</td>
<td>3 197</td>
</tr>
<tr>
<td>ARMAGNAC, A. P.</td>
<td>1970 SUPER FLYWHEEL TO POWER ZERO-EMISSION CAR</td>
<td>ARMAGNAC, A. P.</td>
<td>2 73</td>
</tr>
<tr>
<td>1974 FLYWHEEL BRAKES STORE NEW TRAIN'S ENERGY FOR ELECTRICITY-SAVING STARTS; NEW YORK'S LATEST SUBWAY CARS</td>
<td>ARMAGNAC, A. P.</td>
<td>2 108</td>
<td></td>
</tr>
<tr>
<td>AROMATIC POLYAMIDE FIBER/</td>
<td>1975 HIGH PERFORMANCE VESSELS FROM AN AROMATIC POLYAMIDE FIBER/ EPOXY COMPOSITE</td>
<td>CHIAO, T. T. / HAMSTAD, M. A.</td>
<td>6 351</td>
</tr>
<tr>
<td>ASHMOLE, P. H.</td>
<td>1970 FLYWHEEL GENERATORS FOR INSTANT POWER</td>
<td>ASHMOLE, P. H.</td>
<td>3 145</td>
</tr>
<tr>
<td>1975 TECHNICAL ASSESSMENT OF ENERGY STORAGE TECHNOLOGIES</td>
<td>SCHNEIDER, T. R.</td>
<td>3 191</td>
<td></td>
</tr>
<tr>
<td>ASSESSMENT OF ENERGY</td>
<td>1975 TECHNICAL ASSESSMENT OF ENERGY STORAGE TECHNOLOGIES</td>
<td>SCHNEIDER, T. R.</td>
<td>3 191</td>
</tr>
<tr>
<td>ASTRO RESEARCH CORP.</td>
<td>1964 THE UNIFORM-STRESS SPINNING FILAMENTARY DISK</td>
<td>KYKER, A. C.</td>
<td>1 3</td>
</tr>
<tr>
<td>1972 APPLICATION OF ISOTENSID FLYWHEELS TO SPACECRAFT ENERGY AND ANGULAR MOMENTUM STORAGE</td>
<td>ADAMS, L. R.</td>
<td>4 224</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Author(s)</td>
<td>Volume</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>ATA RAIL TRANSIT</td>
<td>LAWSON, L. J. / ET AL.</td>
<td>2</td>
<td>116</td>
</tr>
<tr>
<td>ATOMIC ENERGY OF CANADA LTD., WHITESHELL NUCLEAR RESEARCH ESTABLISHMENT</td>
<td>SIMPSON, L. A. / OLDAKER, I. E. / STEINMEYER, J.</td>
<td>3</td>
<td>198</td>
</tr>
<tr>
<td>ATS GRAPHITE EPOXY</td>
<td>BURKS, J. W. / TOLAND, R. H.</td>
<td>6</td>
<td>304</td>
</tr>
<tr>
<td>ATTENUATION OF HARMONIC</td>
<td>CHRISTENSEN, R. W.</td>
<td>6</td>
<td>314</td>
</tr>
<tr>
<td>ATTITUDE</td>
<td>BOERSMA, G. / SONNENSCHEIN, F. J.</td>
<td>4</td>
<td>207</td>
</tr>
<tr>
<td>ATTITUDE AND ORBIT</td>
<td>BOERSMA, G. / SONNENSCHEIN, F. J.</td>
<td>4</td>
<td>207</td>
</tr>
<tr>
<td>ATTITUDE CONTROL</td>
<td>BOERSMA, G. / SONNENSCHEIN, F. J.</td>
<td>4</td>
<td>207</td>
</tr>
<tr>
<td>ATZORI, B.</td>
<td>ATZORI, B. / CURTI, C.</td>
<td>1</td>
<td>31</td>
</tr>
<tr>
<td>AUBER, WERNER</td>
<td>AUBER, WERNER</td>
<td>4</td>
<td>233</td>
</tr>
<tr>
<td>AUTO</td>
<td>MCCAULL, J.</td>
<td>2</td>
<td>85</td>
</tr>
<tr>
<td>AUTOMATIC ANTI-SKID DEVICE</td>
<td>PRODUCT ENG.</td>
<td>2</td>
<td>67</td>
</tr>
<tr>
<td>AUTOMATIC RECHARGE</td>
<td>STROHLEIN, J. N.</td>
<td>2</td>
<td>126</td>
</tr>
<tr>
<td>AUTOMOBILE</td>
<td>POST, R.F.</td>
<td>2</td>
<td>101</td>
</tr>
</tbody>
</table>
AUTOMOBILE ENERGY USAGE

1978 AN EVALUATION OF THE FUTURE ROLE OF STORAGE TECHNIQUES IN ELECTRIC POWER TECHNOLOGY

PEZDIRTZ, G. F. 3 109

AUTOMOBILES

1979 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES

HOESS, J. A./CHEANEY, E. D./CRESWICK, F. 2 69

1979 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES

PHARE, W. K./LAY, R. K. 2 75

1979 SURVEY OF PROPULSION SYSTEMS FOR LOW EMISSION URBAN VEHICLES, FINAL REPORT.

LAWSON, L. J. 2 70

1979 DESIGN AND TESTING OF HIGH ENERGY DENSITY FLYWHEELS FOR APPLICATION TO FLYWHEEL HEAT ENGINE HYBRID VEHICLE DRIVES

DUGGER, C. L./BRANDT, A./GEORGE, J. P./PERINI, I. L. 2 80
MECHANICAL TECHNOLOGY, INC.

1979 FEASIBILITY ANALYSIS OF THE TRANSMISSION FOR A FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEM

CORDNER, W. A./GRIEM, D. H. 2 86

1979 PROCEEDINGS SECOND INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM

1979 HYBRID PROPULSION SYSTEM TRANSMISSION EVALUATION, PHASE I, FINAL REPORT

ALLSUP, J. R./FLEMING, R. D. 2 102

1979 EMISSION CHARACTERISTICS OF A PRIME MOVER FOR HYBRID VEHICLE USE

GULIA, M. V./YUPOVSKII, I. D. 2 100

1979 SYNTHESIS OF THE BELT OF A DISCRETE BELT VARIATOR

GULIA, M. V. ET AL 2 106

1979 CYCLODIC ORIENT OF FLYWHEELS IN MACHINES

DEANE, C. T. 2 103

1979 BATTERY POWERED VEHICLE DRIVE

1979 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.

1979 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.

1979 ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES

1979 HYBRID AUTOMOTIVE ENGINE WITH KINETIC ENERGY STORAGE

1979 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES

1979 KINETIC ENERGY STORAGE FOR MASS TRANSPORTATION

LAWSON, L. J. 2 150

1979 INCREASED FUEL ECONOMY IN TRANSPORTATION SYSTEMS BY USE OF ENERGY MANAGEMENT

LEHMANN, E. J. 2 124

1979 HYBRID POWER SYSTEM

BEACHLEY, R. H./FRANK, A. A. 2 128

1979 IDEAS AND EXPERIMENTS IN MAGNETIC INTERFACING

SUGIYAMA, H./HIBOTA, T./KAKI, J. /KARASAWA, Y. 2 129

1979 HYBRID DRIVE WITH KINETIC ENERGY STORE AS VEHICLE DRIVE

AALE, R. K./LAM, J. E. 2 152

SCHRECK, H./TOWERS, F. 2 133

1979 EVALUATION OF HYBRID HEAT ENGINE/ELECTRIC SYSTEMS FOR LOW EXHAUST EMISSION POTENTIAL IN AUTOMOTIVE APPLICATIONS

LAPERES, E. E./MELTZER, J. 2 78

1979 TWO NEW WEAPONS AGAINST AUTOMOTIVE AIR POLLUTION: THE HYDROSTATIC DRIVE AND THE FLYWHEEL-ELECTRIC LDV.

WHITLAW, R. L. 2 70

1979 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS

1979 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.

1979 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.

1979 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.

1979 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.

1979 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.

1979 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.

1979 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.

1979 EVALUATION OF HYBRID HEAT ENGINE/ELECTRIC SYSTEMS FOR LOW EXHAUST EMISSION POTENTIAL IN AUTOMOTIVE APPLICATIONS

LAPERES, E. E./MELTZER, J. 2 78

1979 TWO NEW WEAPONS AGAINST AUTOMOTIVE AIR POLLUTION: THE HYDROSTATIC DRIVE AND THE FLYWHEEL-ELECTRIC LDV.

WHITLAW, R. L. 2 70

1979 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS

AEROSPACE CORP.

SCHRECK, H./TOWERS, F. 2 116

LEHMANN, E. J. 2 154
AUTOMOTIVE AIR POLLUTION
1972 TWO NEW WEAPONS AGAINST AUTOMOTIVE AIR POLLUTION: THE HYDROSTATIC DRIVE AND THE FLYWHEEL-ELECTRIC LOV.
WHITLAW, R. L. 2 90

AUTOMOTIVE APPLICATIONS
1971 EVALUATION OF HYBRID HEAT ENGINE/ELECTRIC SYSTEMS FOR LOW EXHAUST EMISSION POTENTIAL IN AUTOMOTIVE APPLICATIONS
LAPIDES, D.E./MELTZER, J. 2 78

AUTOMOTIVE ENG.
1973 FLYWHEEL-ELECTRIC SYSTEM FOR LOCAL-DUTY VEHICLES
AUTOMOTIVE ENG. 2 93

AUTOMOTIVE ENGINE
1974 HYBRID AUTOMOTIVE ENGINE WITH KINETIC ENERGY STORAGE
SCHRECK, H./TOHRES, F. 2 117

AUTOMOTIVE ENGINES
LEHMANN, E. J. 2 124

AUTOMOTIVE FUELS
1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES

1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES
1970 SURVEY OF PROPULSION SYSTEMS FOR LOW EMISSION URBAN VEHICLES, FINAL REPORT.

1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.

1974 ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES
LAPIDES, D.E./HINTON, M.G./MELTZER, J. /URA.T. /STERNBACH, B./THUR, G.W. 2 115

AUTOMOTIVE POWER SYSTEMS
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.

1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.

1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.

AVERAGING OF ANISOTROPIC
1973 DATA AVERAGING OF ANISOTROPIC MATERIAL CONSTANTS
WU, E. M. / JERINA, K. L./LAVENGOOD, R. K. 2 311

AXISYMMETRIC FILAMENTARY STRUCTURES
1970 AXISYMMETRIC FILAMENTARY STRUCTURES
FRASER, A. F. / FREISEN, P. R. / BENTON, W. D. / BURG-GRAPF, O. B. 6 278

BADER, C. 1974 ELECTRICAL PROPULSION SYSTEMS FOR ROAD VEHICLES. STATE OF THE ART AND PRESENT-DAY PROBLEMS
BADER, C./PLUST, H. G. 2 111

BALL BEARING UNIT
1974 DESIGN AND LUBRICATION OF BALL BEARING UNIT FOR FLYWHEELS
AUER, WERNER 4 233

BALL-BEARING FLYWHEEL
1974 QUALIFICATION AND LIFE TESTING OF A BALL-BEARING FLYWHEEL
TELDOX LUFTFAHRT-AUSRUFTUNG G.m.B. 4 235
BANK USES CONSTANT-POWER
1970 FIRST NATIONAL CITY BANK USES CONSTANT-POWER SYSTEM FOR COMPUTERS ORTIZ, J. V. 3 144

BANKS
1976 RESEARCH LEADING TO THE PRODUCTION AND EARLY USE OF NUMERIC DATA BANKS OF MATERIAL PROPERTIES AND SYSTEM ANALYSES HENRY, E. A. 1 58

BANNAI, K.
1974 COMPUTER CONTROLLED 125 MVA POWER SUPPLY FACILITY FOR NUCLEAR FUSION RESEARCH MIYAHARA, A. / BANNAI, K. / KITANO, Y. 3 158

BARBER, R. J.
1974 INDEPENDENT ENERGY SYSTEMS FOR BETTER EFFICIENCY MARSHALL, G. W. / MORASH, B. T. / BARBER, R. J. 3 159

BARNETT, M. A.
1970 APPLICATION OF AIR BEARINGS TO HIGH SPEED TURBOMACHINERY BARNETT, M. A. / SILVER, A. 1 15

BARNELL, L. D. G.

BASHAM, S. J.

BATTELLE COLUMBUS LABS.

BATTELLE LABS.
1967 FLYWHEEL ENERGY STORAGE SYSTEM FOR TRANSIT BUSES WILCOX, J. P. 2 66

BATTELLE RESEARCH CENTRE
1974 ENERGY CRISIS BECCU, E. D. 3 164

BATTERIES
1971 ELECTRIC ROAD VEHICLE CALVERT, W. L. 2 84
1973 SUPERFLYWHEEL ENERGY STORAGE SYSTEM RABENHORST, D. W. 3 157
1974 STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS. FIFTEEN PAPERS-- SURVEY OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE SYSTEMS VDI 3 160
1974 NO-BREAK SETS MOODY, R. L. 3 167
1974 ATA RAIL TRANSIT CONFERENCE. CAR EQUIPMENT SESSIONS. LAWSON, L. J. / ET AL. 2 116
1974 ENERGY STORAGE AND ITS ROLE IN ELECTRIC POWER SYSTEMS HAYDOCK, J. L. 3 172
1974 ENERGY STORAGE: INCENTIVES AND PROSPECTS FOR ITS DEVELOPMENT KALHAMMER, F. 3 174
1974 POTENTIAL FOR LARGE-SCALE ENERGY STORAGE IN ELECTRIC UTILITY SYSTEMS KALHAMMER, F. / ZYGIELBAUM, P. S. 3 177
1974 ENERGY-STORAGE SYSTEMS PUNNER, S. S. / ICERMAN, L. 6 248
1976 ENERGY STORAGE KALHAMMER, F. R. / COOPER, V. R. 3 181
1976 UTILITIES EYE LARGE-SCALE ENERGY STORAGE RICCI, L. J. 3 184
1976 ENERGY STORAGE FOR WIND ENERGY CONVERSION SYSTEMS ZLOTNICK, M. 3 190
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

BATTERIES (CONT'D.)
1976 TECHNICAL ASSESSMENT OF ENERGY STORAGE TECHNOLOGIES
1976 MATERIALS REQUIREMENTS FOR ENERGY GENERATION, CONVERSION, AND
STORAGE
1976 AC/DC POWER CONDITIONING AND CONTROL EQUIPMENT FOR ADVANCED
CONVERSION AND STORAGE TECHNOLOGY.
1976 AN EVALUATION OF THE FUTURE ROLE OF STORAGE TECHNIQUES IN
ELECTRIC POWER TECHNOLOGY
1976 WHAT DO ELECTRIC STORAGE DEVICES MAKE ECONOMIC SENSE?
1976 ENERGY STORAGE
1976 ENERGY STORAGE

BATTERY
1974 BATTERY POWERED VEHICLE DRIVE
1974 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE
FLYWHEEL VEHICLES
1974 SUPERFLYWHEEL: THE BATTERY THAT SPINS

BATTERY AND HEAT
1974 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE
FLYWHEEL VEHICLES

BATTERY POWERED VEHICLE
1974 BATTERY POWERED VEHICLE DRIVE

BATTERY THAT SPINS
1974 SUPERFLYWHEEL: THE BATTERY THAT SPINS

BATTERY-FLYWHEEL HYBRID ELECTRIC
1976 BATTERY-FLYWHEEL HYBRID ELECTRIC POWER SYSTEM FOR NEAR-TERM
APPLICATION, VOL. 1, SYSTEM DESCRIPTION.
1976 BATTERY-FLYWHEEL HYBRID ELECTRIC POWER SYSTEM FOR NEAR-TERM
APPLICATION, VOL. 2, SYSTEM DESIGN.

BATTERY-STORED ENERGY SYSTEMS
1974 MECHANICAL AND BATTERY-STORED ENERGY SYSTEMS FOR MEETING
UNINTERRUPTIBLE AND BUFFERED ELECTRIC POWER NEEDS

BAXTER, J. W.
1974 KINETIC ENERGY SYSTEMS FOR MOVING PEOPLE

BE-WIRE
1974 STRESS-RUPTURE OF EPOXY-COATED BE-WIRE

BEACHLEY, N. H.
1975 INCREASED FUEL ECONOMY IN TRANSPORTATION SYSTEMS BY USE OF
ENERGY MANAGEMENT

BEADLE, C. W.
1975 STRENGTH DISTRIBUTION OF SINGLE FILAMENTS

BEAMS, J. W.
1984 MAGNETIC BEARINGS

SCHNEIDER, T. R.
JAFFE, R. I.
WOOD, P. / PELLY, B. R.
PEEDIRTZ, G. F.
BRAUN, C. / CHERNIAVSKY, E. A. /
SALZANO, P. J.
KALHOFER, F. R. / SCHNEIDER, T. R.
AMERICAN NUCLEAR SOCIETY, HINSDALE,
ILL.

DEANE, C. T.
LAPEDES, D. / MELTZER, J.
LAMPE, D.

DEANE, C. T.
LAMPE, D.

DAVIS, D. D.
DAVIS, D. D.

COMEAU, G. E.

BAXTER, J. W. / LAWSON, L. J.

CHIAO, T. T. / HAMSTAD, M. A. / JESSOP, E. S.

BEACHLEY, N. H. / FRANK, A. A.

LARDER, R. A. / BEADLE, C. W.

BEAMS, J. W.
BEARING APPLICATIONS	1972 SUMMARY OF GAS BEARING APPLICATIONS IN THE FIELD OF SPACE ELECTRIC POWER SYSTEMS	DUNN, J. H. / BEAM, L. W.	4 228
BEARING MOMENTUM WHEEL	1974 FURTHER TESTING AND DESIGN IMPROVEMENT OF GREASE LUBRICATED SPIRAL GROOVE BEARING MOMENTUM WHEEL	BOLLEN, J. A. C.	4 230
BEARING SUPPORT FLYWHEEL	1969 BEARING SUPPORT FLYWHEEL	ENGINEER	1 10
BEARING SYSTEM	1970 A GREASE-LUBRICATED HYDRODYNAMIC BEARING SYSTEM FOR A SATELLITE FLYWHEEL	REINHOUDT, J. P.	4 218
BEARING UNIT	1974 DESIGN AND LUBRICATION OF BALL BEARING UNIT FOR FLYWHEELS	AUER, WERNER	4 223
BEARINGS	1961 AN ELECTRO-MECHANICAL ENERGY STORAGE SYSTEM FOR SPACE APPLICATION	ROES, J. B.	4 210
1963 MAGNETIC BEARINGS FOR AEROSPACE APPLICATIONS	EDGAR, R. F. / ET AL.	4 211	
1964 MAGNETIC BEARINGS	BEAM, J. W.	1 4	
1970 APPLICATION OF AIR BEARINGS TO HIGH SPEED TURBOMACHINERY	BARNETT, M. A. / SILVER, A.	1 13	
1972 LOW TEMPERATURES AND HYDRODYNAMIC BEARINGS - KEY TO LONG LIFE ORGANIC BAKING CYCLE SYSTEMS	BOZETZ, J. E.	3 159	
1972 QUALIFICATION TESTS ON REACTION FLYWHEELS SUPPORTED ON GREASE-LUBRICATED BEARINGS	BOS, J. G. G.	4 225	
1974 THE LUBRICATION OF BEARINGS AND SLIP RINGS IN VACUUM	ODONNELL, P. J. / HARRIS, L. C. / WARWICK, M. G.	1 38	
1975 APPLICATION SPIRAL-GROOVE BEARINGS ON SPACECRAFT	VANDERWAL, U.	4 236	
BEARINGS AND SLIP	1974 THE LUBRICATION OF BEARINGS AND SLIP RINGS IN VACUUM	ODONNELL, P. J. / HARRIS, L. C. / WARWICK, M. G.	1 38
BEARINGS FOR AEROSPACE	1963 MAGNETIC BEARINGS FOR AEROSPACE APPLICATIONS	EDGAR, R. F. / ET AL.	4 211
BEARINGS ON SPACECRAFT	1976 APPLICATION SPIRAL-GROOVE BEARINGS ON SPACECRAFT	VANDERWAL, U.	4 236
BECCU, K. D.	1974 ENERGY CRISIS	BECCU, K. D.	3 184
BECHTEL, INC.	1975 DYNAMIC BRAKING	KALRA, P.	2 125
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

BEHAVIOR OF STRANDS
1973 STRESS-RUPTURE BEHAVIOR OF STRANDS OF AN ORGANIC FIBER/EPOXY MATRIX

CHIAO, T. T. / WELLS, J. E. / MOORE, R. L. / HAMSTAD, M. A.

BELT VARIATOR
1974 SYNTHESIS OF THE BELT OF A DISCRETE BELT VARIATOR

GULIA, N. V. / YUDOVSKII, I. D.

BENCH-SCALE EXPERIMENTS
1975 IDEAS AND EXPERIMENTS IN MAGNETIC INTERFACING

AALAND, K. / LANE, J. E.

BENTON, M. D.
1970 AXI-SYMMETRIC FILAMENTARY STRUCTURES

FRASER, A. F. / FREISWERK, P. R. / BENTON, W. D. / BURG-GRAF, C. E.

BERYLLIUM OXIDE/GLASS
1969 EVALUATION OF HIGH-STRENGTH, HIGH-MODULUS BERYLLIUM OXIDE/GLASS FIBER

CHIAO, T. T. / LEWIS, A. / KIMPLE, R. F.

BETTER EFFICIENCY
1974 INDEPENDENT ENERGY SYSTEMS FOR BETTER EFFICIENCY

MARSHALL, O. W. / MORASH, R. T. / BARBER, R. J.

BI-AXIAL LOADING
1972 FIBER STRENGTH OF S-GLASS/EPOXY COMPOSITES UNDER BI-AXIAL LOADING

CHIAO, T. T. / COMINS, A. D.

BIBLIOGRAPHIES

LEHMANN, E. J.

1974 FLYWHEELS AS AN ENERGY STORAGE DEVICE, A SELECTED BIBLIOGRAPHY

LLL

1975 DESIGN AND APPLICATIONS OF FLYWHEELS (A BIBLIOGRAPHY WITH ABSTRACTS)

LEHMANN, E. J.

LEHMANN, E. J.

1976 DESIGN AND APPLICATIONS OF FLYWHEELS (A BIBLIOGRAPHY WITH ABSTRACTS)

HABERCOM, G. E.

1976 FLYWHEELS, A REPORT BIBLIOGRAPHY

DEFENSE DOCUMENTATION CENTER

1976 FLYWHEELS, A SELECTED BIBLIOGRAPHY

MADDEN, W. E.

BIBLIOGRAPHY WITH ABSTRACTS
1975 DESIGN AND APPLICATIONS OF FLYWHEELS (A BIBLIOGRAPHY WITH ABSTRACTS)

LEHMANN, E. J.

LEHMANN, E. J.

1975 DESIGN AND APPLICATIONS OF FLYWHEELS (A BIBLIOGRAPHY WITH ABSTRACTS)

HABERCOM, G. E.

BIGGS, F.
1974 FLYWHEEL ENERGY SYSTEMS
1975 ON OPTIMAL SHAPES FOR ANISOTROPIC ROTATING DISKS.

BIGGS, F. / GERSTLE, F. P. / BIGGS, F.

BINDER, R.
1984 GENERAL THEORETICAL ANALYSIS AND EVALUATION OF AN EXPERIMENTAL MODEL OF A CONSTANT-SPEED FLYWHEEL POWER SOURCE

MATTHEWS, L. E. / EVERETT, W. D. / BINDER, R.

16
<table>
<thead>
<tr>
<th>Name</th>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BINDIN, P. J.</td>
<td>1975</td>
<td>FINITE ELEMENT STUDY OF A CAST IRON FLYWHEEL WITH PARTICULAR...</td>
<td>BINDIN, P. J.</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>BLAKE, A.</td>
<td>1975</td>
<td>MECHANICAL DESIGN OF A COMPOSITE CENTERLESS FLYWHEEL</td>
<td>BLAKE, A.</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>BODY</td>
<td>1968</td>
<td>FLYWHEEL STABILIZATION OF A RIGID BODY SUBJECTED TO...</td>
<td>DEROGACHEVA, E. I.</td>
<td>3</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>1975</td>
<td>ACTIVE STABILIZATION OF THE ROTARY MOTION OF A SOLID BODY</td>
<td>SAAKIAN, L. S.</td>
<td>1</td>
<td>41</td>
</tr>
<tr>
<td>BOERSMA, G.</td>
<td>1975</td>
<td>STUDY OF DOUBLE GIMBALED MOMENTUM WHEELS IN THE ATTITUDE...</td>
<td>BOERSMA, G. / SONNENSCHEIN, F. J.</td>
<td>4</td>
<td>237</td>
</tr>
<tr>
<td>BOLLEN, J. A. C.</td>
<td>1974</td>
<td>FURTHER TESTING AND DESIGN IMPROVEMENT OF GREASE LUBRICATED...</td>
<td>BOLLEN, J. A. C.</td>
<td>4</td>
<td>230</td>
</tr>
<tr>
<td>BONK, S. P.</td>
<td>1987</td>
<td>COMPOSITE FLYWHEEL STRESS ANALYSIS AND MATERIALS STUDY</td>
<td>MORANTHALER, G. F. / BONK, S. P.</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>BONNET-THIRION, C. J.</td>
<td>1972</td>
<td>DISPOSITIF DE PROTECTION CONTRE LES CONSEQUENCES DE LA RUPTURE D'UN VOLANT D'INERTIE. (A PROTECTIVE DEVICE TO PREVENT THE CONSEQUENCES OF A FLYWHEEL RUPTURE)</td>
<td>BONNET-THIRION, C.J./KOBIIDA, L. /FOLDIS, G.</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>BOOTSTRAPS TO POWER</td>
<td>1968</td>
<td>EMERGENCY PUMP SYSTEMS ARE BOOTSTRAPS TO POWER</td>
<td>PRODUCT ENG.</td>
<td>3</td>
<td>141</td>
</tr>
<tr>
<td>BORETZ, J. E.</td>
<td>1972</td>
<td>LOW PEAK TEMPERATURES AND HYDRODYNAMIC BEARINGS - KEY TO LONG LIFE ORGANIC RANKINE CYCLE SYSTEMS</td>
<td>BORETZ, J. E.</td>
<td>3</td>
<td>150</td>
</tr>
<tr>
<td>BORON</td>
<td>1974</td>
<td>HEAT STORAGE USING ALKALI METAL SALTS, ALKALI EARTH SALTS, IRON CHLORIDE, ZINC CHLORIDE, BORON OXIDE, AND EUTECTIC FLUORIDE MIXTURES</td>
<td>SCHROEDER, J.</td>
<td>5</td>
<td>242</td>
</tr>
<tr>
<td>BORON OXIDE</td>
<td>1974</td>
<td>HEAT STORAGE USING ALKALI METAL SALTS, ALKALI EARTH SALTS, IRON CHLORIDE, ZINC CHLORIDE, BORON OXIDE, AND EUTECTIC FLUORIDE MIXTURES</td>
<td>SCHROEDER, J.</td>
<td>5</td>
<td>242</td>
</tr>
<tr>
<td>BOS, J. G. G.</td>
<td>1972</td>
<td>QUALIFICATION TESTS ON REACTION FLYWHEELS SUPPORTED ON GREASE-LUBRICATED BEARINGS</td>
<td>BOS, J. G. G.</td>
<td>4</td>
<td>225</td>
</tr>
<tr>
<td>BOTTLES</td>
<td>1972</td>
<td>ACOUSTIC EMISSION FROM FILAMENT-WOUND PRESSURE BOTTLES</td>
<td>HAMSTAD, M. A.</td>
<td>6</td>
<td>806</td>
</tr>
<tr>
<td></td>
<td>1972</td>
<td>ACOUSTIC EMISSION FROM FILAMENT-WOUND PRESSURE BOTTLES</td>
<td>HAMSTAD, M. A.</td>
<td>6</td>
<td>307</td>
</tr>
<tr>
<td></td>
<td>1973</td>
<td>ACOUSTIC EMISSION PRODUCED DURING BURST TESTS OF FILAMENT-WOUND BOTTLES</td>
<td>HAMSTAD, M. A./CHIAO, T. T.</td>
<td>6</td>
<td>320</td>
</tr>
</tbody>
</table>

17
BOUNDARY CONDITIONS
1967 APPLICATION OF THE METHOD OF TIME-DEPENDENT BOUNDARY CONDITIONS IN LINEAR VISCOELASTICITY.
CHRISTENSEN, R. M. 6 263

BRAKES
1974 FLYWHEEL BRAKES STORE NEW TRAIN'S ENERGY FOR ELECTRICITY-SAVING STARTS; NEW YORK'S LATEST SUBWAY CARS
ARMAGNAC, A. P. 2 108
1975 INCREASED FUEL ECONOMY IN TRANSPORTATION SYSTEMS BY USE OF ENERGY MANAGEMENT
BEECHLEY, M. H./FRANK, A. A. 2 128

BRAKES STORE
1976 FLYWHEEL BRAKES STORE NEW TRAIN'S ENERGY FOR ELECTRICITY-SAVING STARTS; NEW YORK'S LATEST SUBWAY CARS
ARMAGNAC, A. P. 2 108

BRAKING
1974 IMPROVED REGENERATIVE BRAKING SYSTEM
HYNE, A./ZUCKER, O. 2 121
1975 DYNAMIC BRAKING
KALRA, P. 2 125

BRANDT, A.
1971 FLYWHEEL AND FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEMS FOR LOW-EMISSION VEHICLES
DUGGER, G. L./BRANDT, A./GEORGE, J. F./PERINI, L. L. 2 80
1972 HEAT-ENGINE MECHANICAL-ENERGY-STORAGE HYBRID PROPULSION SYSTEMS FOR VEHICLES: FINAL REPORT

BRAUN, C.
1976 WHEN DO ELECTRIC STORAGE DEVICES MAKE ECONOMIC SENSE?
BRAUN, C./CHERNIAVSKY, E. A./SALZANO, F. J. 3 205

BRIEF SUMMARY
1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY
LUCCHINI, A. P. 5 246

BRINCO LTD.
1974 MECHANICAL AND BATTERY-STORRED ENERGY SYSTEMS FOR MEETING UNINTERRUPTIBLE AND BUFFERED ELECTRIC POWER NEEDS
COMEAU, G. E. 3 182

BRISSEY, F. L.
1971 MEASUREMENT AND CONTROL OF DYNAMIC CRACKS IN COMPOSITES.
BRISSEY, F. L./WU, E. W. 6 200

BRITISH AIRCRAFT CORP.
1970 SATELLITE FLYWHEEL

BRITISH AIRCRAFT CORP., GUIDED WEAPONS DIV.
1970 SATELLITE FLYWHEEL
BARWELL, L. D. G./SWAIN, J. 4 221

BRODECK, W. M. ASSOC.
1975 DEVELOPMENT OF HIGH-DENSITY INERTIAL-ENERGY STORAGE
BRODECK, W. M. ASSOC. 1 44

BROKEN, G.
1975 PROPOSED FTTR ELECTRICAL SYSTEM
BROKEN, G./MURRAY, J. 3 200

BROOKHAVEN NATIONAL LABORATORY
1976 WHEN DO ELECTRIC STORAGE DEVICES MAKE ECONOMIC SENSE?
BRAUN, C./CHERNIAVSKY, E. A./SALZANO, F. J. 3 205
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Year</th>
<th>Institution</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruns, K.</td>
<td>New Momentum for Nuclear Fusion, in the Max-Planck-Institut in Munich, a New Phase of Plasma Research Has Begun</td>
<td>1974</td>
<td></td>
<td>161</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1975</td>
<td></td>
<td>247</td>
</tr>
<tr>
<td>Buffen</td>
<td>Flywheel Energy Buffer</td>
<td>1972</td>
<td>JAKUBOWSKI, M.</td>
<td>151</td>
</tr>
<tr>
<td>Bus Application</td>
<td>Safety Review of the Kinetic Energy Wheel (KEW) System for Bus Application</td>
<td>1974</td>
<td>NATIONAL ACADEMY OF SCIENCES</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Safety Review of the Kinetic Energy Wheel (KEW) System for Bus Application</td>
<td>1974</td>
<td>NATIONAL ACADEMY OF SCIENCES</td>
<td>103</td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

BUSSES
1974 ATA RAIL TRANSIT CONFERENCE. CAR EQUIPMENT SESSIONS.

C-4
1975 KEVLAR/EPOXY AND KEVLAR/GRAFITE/EPOXY COMPOSITES FOR THE C-4 (TRIDENT) CHAMBER PROGRAM

CALCULATING TORSIONAL VIBRATIONS
1974 METHOD OF CALCULATING TORSIONAL VIBRATIONS IN A POWER UNIT WITH A NON-LINEAR SILICONE DAMPER

CALCULATION OF STRESSES
1972 CALCULATION OF STRESSES AND STRENGTH RETENTION OF ROTATING DISKS AND FLYWHEELS

CALCULATIONS
1972 THE UNIFORM-STRESS SPINNING FILAMENTARY DISK
1972 CALCULATION OF STRESSES AND STRENGTH RETENTION OF ROTATING DISKS AND FLYWHEELS
1972 STRESS RUPTURE OF S-CLASS/EPOXY MULTIFILAMENT STRANDS: TIME-BREAK-DATA.
1972 STRESS-RUPTURE OF SIMPLE S-CLASS/EPOXY COMPOSITES
1973 DYNAMICS OF A SATELLITE WITH A FLYWHEEL AND FLEXIBLE SOLAR ARRAYS
1974 GYROSCOPIC EFFECT OF FLYWHEELS IN MACHINES
1974 A 150 NMS FLYWHEEL OPTIMISATION STUDY
1975 FINITE ELEMENT STUDY OF A CAST IRON FLYWHEEL WITH PARTICULAR EMPHASIS ON STRESS CONCENTRATIONS

CALIP. INST. OF TECHNOLOGY
1975 HYBRID VEHICLES

CALL, B. J.
1986 ENERGY STORING MASS AND METHOD FOR MAKING
1987 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS

CALVERT, W.L.
1971 ELECTRIC ROAD VEHICLE

CAMBRIDGE THERMIONIC CORP., MASS.
1970 MODIFICATION OF DC MOTOR WITH MAGNETICALLY SUSPENDED ROTOR

CAN FLYWHEELS REPLACE
1974 CAN FLYWHEELS REPLACE PUMPED STORAGE?

CANTILEVER PLATE
1983 VIBRATION OF A 45-DEG. RIGHT TRIANGLE CANTILEVER PLATE BY A GRIDWORK METHOD

CAPACITOR
1974 MECHANICAL CAPACITOR

CAPACITORS
1975 ENERGY-STORAGE SYSTEMS

LAWSON, L. J./ ET AL. 2 118
SHIRAEV, M. P./KHUDISHILOV, V. A. 1 29
KRITZER, R. 1 20
ETYER, A. C. 1 3
KRITZER, R. 1 20
CHIAO, T. T./MOORE, R. L. 6 300
GULIA, N. V. ET AL 2 105
STANDING, J. M. 1 35
BINDIN, P. I. 1 40
VIVIAN, H. C. 2 131
CALL, B. J. 3 138
HELSLEY, C. W./ CALL, B. J. 4 216
CALVERT, W.L. 2 64
CAMBRIDGE THERMIONIC CORP., MASS. 1 11
GINSBURG, T. 3 169
CHRISTENSEN, R. M. 6 255
KIRK, JAMES A./ STUDER, PHILIP A./ EVANS, HAROLD E. 3 208
FENNER, S. S./ ICERMAN, L. 5 248
<table>
<thead>
<tr>
<th>CAPACITY</th>
<th>1973 NEW UNINTERRUPTIBLE POWER SYSTEM ALTERNATIVES USING HIGH CAPACITY KINETIC ENERGY WHEELS</th>
<th>LAWSON, L. J.</th>
<th>3 155</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPTURED LOAD RESILIENCE</td>
<td>1968 CAPTURED LOAD RESILIENCE OF A HYDRAULIC VIBRATOR SAVES POWER</td>
<td>LANKESTER, J. A.</td>
<td>1 9</td>
</tr>
<tr>
<td>CAR</td>
<td>1970 WIND UP CAR</td>
<td>HOPENEMSER, K. / MCCAULL, J.</td>
<td>2 71</td>
</tr>
<tr>
<td>1970 SUPER FLYWHEEL TO POWER ZERO-EMISSION CAR</td>
<td>ARMAGNAC, A. P.</td>
<td>2 73</td>
<td></td>
</tr>
<tr>
<td>1973 HYBRID CAR: PART-TIME ENGINE + PART-TIME FLYWHEEL = FULL TIME TRANSPORTATION</td>
<td>LINDELEY, E. F.</td>
<td>2 97</td>
<td></td>
</tr>
<tr>
<td>1974 ATA RAIL TRANSIT CONFERENCE. CAR EQUIPMENT SESSIONS.</td>
<td>LAWSON, L. J. / ET AL.</td>
<td>2 116</td>
<td></td>
</tr>
<tr>
<td>CAR EQUIPMENT SESSIONS</td>
<td>1974 ATA RAIL TRANSIT CONFERENCE. CAR EQUIPMENT SESSIONS.</td>
<td>LAWSON, L. J. / ET AL.</td>
<td>2 116</td>
</tr>
<tr>
<td>CARBON</td>
<td>1973 INSTRUMENTED IMPACT TESTING OF CARBON FIBER COMPOSITE MATERIALS</td>
<td>TOLAND, R. H.</td>
<td>6 319</td>
</tr>
<tr>
<td>CARBON FIBER COMPosite</td>
<td>1973 INSTRUMENTED IMPACT TESTING OF CARBON FIBER COMPOSITE MATERIALS</td>
<td>TOLAND, R. H.</td>
<td>6 319</td>
</tr>
<tr>
<td>CARBON FIBERS</td>
<td>1974 TENSILE PROPERTIES OF AN ULTRA-HIGH-STRENGTH GRAPHITE FIBER AN EPOXY MATRIX</td>
<td>CHIAO, T. T. / HAMSTAD, M. A. / JESSOP, R. B.</td>
<td>6 337</td>
</tr>
<tr>
<td>CARBON MONOXIDE</td>
<td>1974 EMISSION CHARACTERISTICS OF A PRIME MOVER FOR HYBRID VEHICLES USE</td>
<td>ALLSUP, J. R. / FLEMING, W. D.</td>
<td>2 102</td>
</tr>
<tr>
<td>1974 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES</td>
<td>LAPEDES, D. E. / WELTZER, J.</td>
<td>2 118</td>
<td></td>
</tr>
<tr>
<td>1974 ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES</td>
<td>STERNLIGHT, B. / THUR, G. M.</td>
<td>2 119</td>
<td></td>
</tr>
<tr>
<td>CARS</td>
<td>1974 FLYWHEEL BRAKES STORE NEW TRAIN'S ENERGY FOR ELECTRICITY-SAVINGスタート; NEW YORK'S LATEST SUBWAY CARS</td>
<td>ARMAGNAC, A. P.</td>
<td>2 108</td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

CASAEZZA, J. A. (CONT'D)
1976 ENERGY ON CALL: A MORE EFFICIENT PEAKING SYSTEM WOULD EXPLOIT THE ADVANTAGES OF ENERGY STORAGE, WHILE CONSERVING CAPITAL AND RESOURCES
CASAEZZA, J. A. / SCHNEIDER, T. R. / SULZBERGER, V. T. / 3 209

CAST IRON FLYWHEEL
1975 FINITE ELEMENT STUDY OF A CAST IRON FLYWHEEL WITH PARTICULAR EMPHASIS ON STRESS CONCENTRATIONS
BINDIN, P. J. / 1 40

CAST IRON FLYWHEELS
1975 FINITE ELEMENT STUDY OF A CAST IRON FLYWHEEL WITH PARTICULAR EMPHASIS ON STRESS CONCENTRATIONS
BINDIN, P. J. / 1 40

CATALYTIC CONVERTERS
1974 EMISSION CHARACTERISTICS OF A PRIME MOVER FOR HYBRID VEHICLE USE
ALLSUP, J. R. / FLEMING, R. D. / 2 102

CATAPULT
1966 SPECIFICATIONS FOR SHIPBOARD STORED ENERGY CATAPULT FLYWHEEL PACKAGE
NAVAL ORDNANCE STATION, FOREST PARK, ILL.

1970 FINAL DESIGN REPORT, PROTOTYPE GEARBOX FLYWHEEL (FLYBOX) FOR STORED ENERGY ROTARY DRIVE SHIPBOARD CATAPULT
NELLIS, V. C. / 3 143

CATAPULT FLYWHEEL PACKAGE
1966 SPECIFICATIONS FOR SHIPBOARD STORED ENERGY CATAPULT FLYWHEEL PACKAGE
NAVAL ORDNANCE STATION, FOREST PARK, ILL.

CENTERLESS FLYWHEEL
1975 MECHANICAL DESIGN OF A COMPOSITE CENTERLESS FLYWHEEL
BLAKE, A. / 1 53

CENTRAL ELECTRICITY RESEARCH LABS
1975 STORING ELECTRICAL ENERGY ON A LARGE SCALE
GARDNER, G. C. / HART, A. B. / MOFFITT, R. D. / WRIGHT, J. / 3 186

CHARACTERIZATION
1969 CHARACTERIZATION OF ANISOTROPIC COMPOSITES
HALPIN, J. C. / PAGANO / WHITNEY / WU, E. M. / WU, E. M. / 6 271

1969 SOME UNIQUE CRACK PROPAGATION PHENOMENA IN UNIDIRECTIONAL COMPOSITES AND THEIR MATHEMATICAL CHARACTERIZATION
WU, E. M. / CHIAO, T. T. / ALTHOUSE, L. P. / 6 272

1972 CHARACTERIZATION OF AN EPOXY SYSTEM FOR FIBER FABRIC FABRIC WINDING
WU, E. M. / SCHUBLEIN, J. K. / 6 320

1974 LAMINATE STRENGTH - A DIRECT CHARACTERIZATION PROCEDURE
CHAO, T. T. / 6 326

1975 CHEMICAL CHARACTERIZATION OF A HIGH-PERFORMANCE ORGANIC FIBER
PENN, L. S. / PENN, L. S. / PENN, L. S. / NEWAY, H. / 6 352

1975 CHARACTERIZATION PROCEDURE FOR THERMOSETTING RESINS
PENN, L. S. / 6 366

1975 CHARACTERIZATION OF A POLYAMIDE MATRIX FOR FIBER COMPOSITES
PENN, L. S. / MONES, E. T. / CHIAO, T. T. / 6 372

CHARACTERIZATION PROCEDURE
1974 LAMINATE STRENGTH - A DIRECT CHARACTERIZATION PROCEDURE
SU, E. M. / SCHUBLEIN, J. K. / 6 330

1975 CHARACTERIZATION PROCEDURE FOR THERMOSETTING RESINS
PENN, L. S. / NEWAY, H. / 6 366

CHEANEY, E. S.
1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

CHEM. ENG.
1970 POWER-SYSTEMS RESEARCH SHIFTS TO WEST SOCIAL GOALS

CHEMICAL CHARACTERIZATION
1975 CHEMICAL CHARACTERIZATION OF A HIGH-PERFORMANCE ORGANIC FIBER

CHEMICAL ENERGY STORAGE
1974 ENERGY STORAGE: INCENTIVES AND PROSPECTS FOR ITS DEVELOPMENT
1974 POTENTIAL FOR LARGE-SCALE ENERGY STORAGE IN ELECTRIC UTILITY SYSTEMS

CHEMICAL REACTIONS
1974 ENERGY STORAGE. (1): USING ELECTRICITY MORE EFFICIENTLY

CHEMISTRY AND TECHNOLOGY
1976 CHEMISTRY AND TECHNOLOGY OF HIGH STRENGTH POLYAMIDE FIBERS

CHERNAVSKY, K. A.
1976 WHEN DO ELECTRIC STORAGE DEVICES MAKE ECONOMIC SENSE?

CHIAO, C. C.
1975 FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS. SECOND QUARTERLY PROGRESS REPORT.
1975 LONG-TERM PERFORMANCE OF FIBER COMPOSITES
1976 AN ACCELERATED TEST FOR PREDICTING THE LIFETIME OF ORGANIC FIBER COMPOSITES

CHIAO, T. T.
1968 DESIGN FOR COMMERCIAL FILAMENT WINDING
1967 THE TEMPERATURE EFFECT OF INTERNAL AND EXTERNAL PRESSURE OF TWO ANGLE WOUND PIPE
1966 EVALUATION OF HIGH-STRENGTH, HIGH-MODULUS BERYLLIUM OXIDE/GLASS FIBER
1970 A TENSILE TEST METHOD FOR FIBERS
1971 STRESS-RUPTURE OF S-Glass/EPOXY MULTIFILAMENT STRANDS
1971 STRAIN RATE EFFECT ON THE ULTIMATE TENSILE STRESS OF FIBER/EPOXY STRANDS
1971 STUDY OF EPOXY RESINS FOR FIBER COMPOSITES
1972 STRENGTH RETENTION OF S-Glass/EPOXY COMPOSITES
1972 FABRICATION AND TESTING OF EPOXY TENSILE SPECIMENS
1972 ANALYSIS OF STRESS-RUPTURE DATA FROM S-Glass COMPOSITES
1972 STRENGTH OF S-Glass FIBER
1972 STRESS RUPTURE OF S-Glass/EPOXY MULTIFILAMENT STRANDS: TIME BREAK-DATA.
1972 STRESS-RUPTURE OF SIMPLE S-Glass/EPOXY COMPOSITES
1972 TENSILE PROPERTIES OF PHR-45 FIBER IN EPOXY MATRIX
1972 FIBER STRENGTH OF S-Glass/EPOXY COMPOSITES UNDER BI-AXIAL LOADING
1972 CHARACTERIZATION OF AN EPOXY SYSTEM FOR FILAMENT WINDING
1973 ORGANIC FIBER/EPOXY COMPOSITES
1975 STRESS-RUPTURE BEHAVIOR OF STRANDS OF AN ORGANIC FIBER/EPOXY MATRIX
1973 ACOUSTIC EMISSION PRODUCED DURING BURST TESTS OF FILAMENT-WOUND BOTTLES
1973 GRAPHITE FIBER/EPOXY COMPOSITES

CHEM. ENG.
1970 POWER-SYSTEMS RESEARCH SHIFTS TO WEST SOCIAL GOALS

CHEM. ENG.
1970 POWER-SYSTEMS RESEARCH SHIFTS TO WEST SOCIAL GOALS

CHEM. ENG.
1970 POWER-SYSTEMS RESEARCH SHIFTS TO WEST SOCIAL GOALS

CHEMICAL CHARACTERIZATION
1975 CHEMICAL CHARACTERIZATION OF A HIGH-PERFORMANCE ORGANIC FIBER

CHEMICAL ENERGY STORAGE
1974 ENERGY STORAGE: INCENTIVES AND PROSPECTS FOR ITS DEVELOPMENT
1974 POTENTIAL FOR LARGE-SCALE ENERGY STORAGE IN ELECTRIC UTILITY SYSTEMS

CHEMICAL REACTIONS
1974 ENERGY STORAGE. (1): USING ELECTRICITY MORE EFFICIENTLY

CHEMISTRY AND TECHNOLOGY
1976 CHEMISTRY AND TECHNOLOGY OF HIGH STRENGTH POLYAMIDE FIBERS

CHERNAVSKY, K. A.
1976 WHEN DO ELECTRIC STORAGE DEVICES MAKE ECONOMIC SENSE?

CHIAO, C. C.
1975 FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS. SECOND QUARTERLY PROGRESS REPORT.
1975 LONG-TERM PERFORMANCE OF FIBER COMPOSITES
1976 AN ACCELERATED TEST FOR PREDICTING THE LIFETIME OF ORGANIC FIBER COMPOSITES

CHIAO, T. T.
1968 DESIGN FOR COMMERCIAL FILAMENT WINDING
1967 THE TEMPERATURE EFFECT OF INTERNAL AND EXTERNAL PRESSURE OF TWO ANGLE WOUND PIPE
1966 EVALUATION OF HIGH-STRENGTH, HIGH-MODULUS BERYLLIUM OXIDE/GLASS FIBER
1970 A TENSILE TEST METHOD FOR FIBERS
1971 STRESS-RUPTURE OF S-Glass/EPOXY MULTIFILAMENT STRANDS
1971 STRAIN RATE EFFECT ON THE ULTIMATE TENSILE STRESS OF FIBER/EPOXY STRANDS
1971 STUDY OF EPOXY RESINS FOR FIBER COMPOSITES
1972 STRENGTH RETENTION OF S-Glass/EPOXY COMPOSITES
1972 FABRICATION AND TESTING OF EPOXY TENSILE SPECIMENS
1972 ANALYSIS OF STRESS-RUPTURE DATA FROM S-Glass COMPOSITES
1972 STRENGTH OF S-Glass FIBER
1972 STRESS RUPTURE OF S-Glass/EPOXY MULTIFILAMENT STRANDS: TIME BREAK-DATA.
1972 STRESS-RUPTURE OF SIMPLE S-Glass/EPOXY COMPOSITES
1972 TENSILE PROPERTIES OF PHR-45 FIBER IN EPOXY MATRIX
1972 FIBER STRENGTH OF S-Glass/EPOXY COMPOSITES UNDER BI-AXIAL LOADING
1972 CHARACTERIZATION OF AN EPOXY SYSTEM FOR FILAMENT WINDING
1973 ORGANIC FIBER/EPOXY COMPOSITES
1975 STRESS-RUPTURE BEHAVIOR OF STRANDS OF AN ORGANIC FIBER/EPOXY MATRIX
1973 ACOUSTIC EMISSION PRODUCED DURING BURST TESTS OF FILAMENT-WOUND BOTTLES
1973 GRAPHITE FIBER/EPOXY COMPOSITES

PENN, LYNN/NEWRY, H. A./CHIAO, T. T.

KALHAMMER, F.
KALHAMMER, F./ZYGIELBAUM, P. S.

ROBINSON, A.L.

LARSEN, F. N.

BRAUN, C./CHERNAVSKY, K. A./DIAZ, P. J.

STONE, R. G./CHIAO, T. T./RINDE, J. A./PENN, L. S./CLAYTON, L.

CHIAO, C. C.

CHIAO, C. C.

CHIAO, T. T.

CHIAO, T. T.

CHIAO, T. T./LEWIS, A./KILPHE, R. F.

CHIAO, T. T./MOORE, R. L.

CHIAO, T. T./MOORE, R. L.

CHIAO, T. T./CHIAO, T. T./MOORE, R. L.

CHIAO, T. T./CHIAO, T. T./MOORE, R. L.

RICHARDSON, J./MOORE, R. L./CHIAO, T. T.

CHIAO, T. T./MOORE, R. L.

CHIAO, T. T./CUMMING, A. D./MOORE, R. L.

ROBINSON, E. Y./CHIAO, T. T.

CHIAO, T. T./MOORE, R. L.

CHIAO, T. T./MOORE, R. L.

CHIAO, T. T./LEPPER, J. K./HETHERINGTON, N. W./MOORE, R. L.

CHIAO, T. T./MOORE, R. L.

CHIAO, T. T./CHIAO, T. T./COMINS, A.D.

CHIAO, T. T./KILPHE, L. P.

CHIAO, T. T./MOORE, R. L.

CHIAO, T. T./KILPHE, L. P.

CHIAO, T. T./WELLS, J. R./MOORE, R. L./HAMSTAD, M. A.

CHIAO, T. T./MOORE, R. L./WALKUP, C. M.

3 147
3 352
3 174
3 177
3 185
6 377
3 205
6 266
6 266
6 266
6 266
6 266
6 266
6 266
6 266
6 266
6 266
6 266
6 266
6 266
6 266
6 266
6 266
6 266
6 266
6 266
6 266
6 266
6 266
6 321
CHIAO, T. T. (CONT.)

1973 MATERIALS EVALUATION FOR 2XIIB MAGNET
CHIAO, T. T./ WALKUP, C. W./NEWY, M. A.

1974 FILAMENT-WOUND VESSELS FROM AN ORGANIC FIBER/EPoxy RESIN SYSTEM
CHIAO, T. T./ HAMSTAD, M. A./MARCON., W. A./HANFEE, JR.
MOORE, R. L./ CHIAO, T. T./HAMSTAD, M. A.

1974 STRESS-RUPTURE BEHAVIOR OF GRAPHITE FIBER/EPoxy STRANDS
HAMSTAD, M. A./CHIAO, T. T.

1974 A PHYSICAL MECHANISM FOR THE EARLY ACOUSTIC EMISSION IN AN ORGANIC FIBER/EPoxy PRESSURE VESSEL
HAMSTAD, M. A./CHIAO, T. T.

1974 ACOUSTIC EMISSION FROM STRESS-RUPTURE AND FATIGUE OF AN ORGANIC FIBER COMPOSITES
HAMSTAD, M. A./CHIAO, T. T.

1974 A ROOM TEMPERATURE-CURABLE EPOXY FOR ADVANCED FIBER COMPOSITES
CHIAO, T. T./MOORE, R. L.

1974 ORGANIC FIBER/EPoxy PRESSURE VESSELS
CHIAO, T. T./ HAMSTAD, M. A./MARCON, W. A.

1974 TENSILE PROPERTIES OF AN ULTRA-HIGH-STRENGTH GRAPHITE FIBER AN EPOXY MATRIX
CHIAO, T. T./ HAMSTAD, M. A./JESSOP, E. S.

1974 POLYMER-LINED FILAMENT-WOUND PRESSURE VESSELS FOR NITROGEN CONTAINMENT
HAMSTAD, M. A./CHIAO, T. T./JESSOP, E. S.

1974 FATIGUE PERFORMANCE OF METAL-LINED GRAPHITE/EPoxy VESSELS
HAMSTAD, M. A./CHIAO, T. T./PATTERSON, R.

1974 AN EPOXY SYSTEM FOR FILAMENT WINDING
CHIAO, T. T./ JESSOP, E. S./NEWY, R. A.

1974 STRESS-RUPTURE OF EPOXY-COATED BE-WIRE
CHIAO, T. T./ HAMSTAD, M. A./JESSOP, E. S.

1974 TENSILE PROPERTIES OF AN ULTRA-HIGH-STRENGTH GRAPHITE FIBER AN EPOXY MATRIX
CHIAO, T. T./ HAMSTAD, M. A./JESSOP, E. S.

1974 A MODERATE-TEMPERATURE-CURABLE EPOXY FOR ADVANCED COMPOSITE TESTING OF FIBER COMPOSITE MATERIALS
CHIAO, T. T./ HAMSTAD, M. A./JESSOP, E. S.

1974 EVALUATION OF INTERLAMINAR SHEAR TEST FOR FIBER COMPOSITES
CHIAO, T. T./ JESSOP, E. S./NEWY, H. A.

1974 HIGH PERFORMANCE VESSELS FROM AN AROMATIC POLYAMIDE FIBER/EPoxy COMPOSITE
CHIAO, T. T./ HAMSTAD, M. A.

1974 CHEMICAL CHARACTERIZATION OF A HIGH-PERFORMANCE ORGANIC FIBER
CHIAO, T. T./ HAMSTAD, M. A./JESSOP, E. S.

PENN, LYNN/ NEWY, R. A./CHIAO, T. T.

1975 SCREENING OF EPOXY SYSTEMS FOR HIGH-PERFORMANCE FILAMENT WINDING APPLICATIONS
CLEMENTS, L. L./ MOORE, R. L.

1975 FIBER COMPOSITES HIGHLIGHTS
CHIAO, T. T./ JESSOP, E. S./PENN, L. S.

1975 SCREENING OF EPOXY SYSTEMS FOR HIGH-PERFORMANCE FILAMENT WINDING APPLICATIONS
CHIAO, T. T./HAMSTAD, M. A./JESSOP, E. S./PENN, L. S.

1975 A LONG POT LIFE EPOXY SYSTEM FOR FILAMENT WINDING
CHIAO, T. T./JESSOP, E. S./HAMSTAD, M. A.

1975 PERFORMANCE OF FILAMENT-WOUND VESSELS FROM AN ORGANIC FIBER IN SEVERAL EPOXY MATRICES
CHIAO, T. T./JESSOP, E. S./CHIAO, T. T.

1975 ELONGATED-RING SPECIMEN FOR TENSILE PROPERTIES OF FILAMENT-WOUND COMPOSITES
PENN, L. S./CHIAO, T. T.

1975 STRENGTH RETENTION AND LIFE OF FIBER COMPOSITE MATERIALS
CHIAO, T. T./BRENNER, R. J.

1975 FIBER COMPOSITES FOR ENERGY STORAGE FLYWHEELS
CHIAO, T. T./BRENNER, R. J.

1975 FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS. SECOND QUARTERLY PROGRESS REPORT.
CHIAO, T. T./BRENNER, R. J.

1975 FIBER COMPOSITES HIGHLIGHTS
CHIAO, T. T./BRENNER, R. J.

1975 FIBER EVALUATION FOR FLYWHEEL APPLICATIONS
CHIAO, T. T./BRENNER, R. J.

1975 LLL PROGRAM FOR COMPOSITE FLYWHEEL
CHIAO, T. T./BRENNER, R. J.

1975 FIBER COMPOSITES HIGHLIGHTS
CHIAO, T. T./BRENNER, R. J.

1975 COMPOSITE MATERIALS FOR ENERGY STORAGE FLYWHEELS
CHIAO, T. T./BRENNER, R. J.

1975 CHARACTERIZATION OF A POLYAMIDE MATRIX FOR FIBER COMPOSITES
CHIAO, T. T./BRENNER, R. J.

CHIRONIS, N. P.

1971 SUPER FLYWHEEL CONFIGURATIONS FORM HEART OF MECHANICAL-POWERED DRIVES
CHIRONIS, N. P.

24
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

CHOPPER MOTOR DRIVE
1973 APPLICATION OF TWO-PHASE DC CHOPPER MOTOR DRIVE

REINERS, E. 2 28

CHOPPERS
1975 NEW YORK SUBWAY TRIES OUT FLYWHEEL ENERGY STORAGE

RAILWAY GAZETTE INTERNATIONAL 2 123

CHRISTENSEN, R. M.
1983 SOME INTERESTING ASPECTS OF GENERAL LINEAR VISCOELASTIC DEFORMATION

CHRISTENSEN, R. M. / GOTTENBERG, W. 6 254

1983 VIBRATION OF A 45-DEG. RIGHT TRIANGLE CANTILEVER PLATE BY A GRIDWORK METHOD.

CHRISTENSEN, R. M. 6 255

1984 AN EXPERIMENT FOR DETERMINATION OF THE MECHANICAL PROPERTY IN SHEAR FOR A LINEAR ISOTROPIC VISCOELASTIC SOLID.

CHRISTENSEN, R. M. / GOTTENBERG, W. 6 256

1984 THE DYNAMIC RESPONSE OF A SOLID, VISCOELASTIC SPHERE TO TRANSLATION AND ROTATIONAL EXCITATION.

CHRISTENSEN, R. M. / GOTTENBERG, W. 6 257

1985 RESPONSE TO PRESSURIZATION OF A VISCOELASTIC CYLINDER WITH AN ERODING INTERNAL BOUNDARY.

CHRISTENSEN, R. M. / SCHREINER, R. N. 1 6

1986 DEFORMATION OF AN ELASTIC SPHERICAL WEDGE.

CHRISTENSEN, R. M. 6 280

1986 PREDICTION OF THE TRANSIENT RESPONSE OF A LINEAR VISCOELASTIC SOLID.

CHRISTENSEN, R. M. / GOTTENBERG, W. 6 286

1987 LARGE ELASTIC DEFORMATION OF A SPHERICAL WEDGE

CHRISTENSEN, R. M. 1 7

1987 APPLICATION OF THE METHOD OF TIME-DEPENDENT BOUNDARY CONDITIONS IN LINEAR VISCOSOLASTICITY.

CHRISTENSEN, R. M. 6 286

1987 LINEAR NON-ISOTHERMAL VISCOELASTIC SOLIDS

CHRISTENSEN, R. M. / NAGHDI, P. M. 6 286

1988 ON OBTAINING SOLUTIONS IN NONLINEAR VISCOELASTICITY.

CHRISTENSEN, R. M. 6 286

1988 VARIATIONAL AND MINIMUM THEOREMS FOR THE LINEAR THEORY OF VISCOELASTICITY

CHRISTENSEN, R. M. 6 286

1989 VISCOELASTIC PROPERTIES OF HETEROGENEOUS MEDIA

CHRISTENSEN, R. M. 6 274

1971 THEORY OF VISCOELASTICITY: AN INTRODUCTION

CHRISTENSEN, R. M. 6 282

1972 EFFECTIVE STIFFNESS OF RANDOMLY ORIENTED FIBRE COMPOSITES

CHRISTENSEN, R. M. / WAALS, F. W. 6 292

1972 RESTRICTIONS UPON VISCOELASTIC RELAXATION FUNCTIONS AND COMPLEX MODULI.

CHRISTENSEN, R. M. 6 293

1973 A CRITICAL TEST FOR A CLASS OF NONLINEAR CONSTITUTIVE EQUATIONS

CHRISTENSEN, R. M. / VAN ES, H. E. 6 312

1973 A SPECIAL THEORY OF VISCOELASTIC FLUIDS FOR APPLICATION TO SUSPENSION.

CHRISTENSEN, R. M. 6 313

1973 ATTENUATION OF HARMONIC WAVES IN LAYERED MEDIA

CHRISTENSEN, R. M. 6 314

1974 WAVE PROPAGATION IN ELASTIC MEDIA WITH A PERIODIC ARRAY OF DISCRETE INCLUSIONS

CHRISTENSEN, R. M. 6 318

1975 A THERMODYNAMIC CRITERION FOR THE GLASS-TRANSITION TEMPERATURE.

CHRISTENSEN, R. M. 6 368

1976 THE EFFECTIVE MODULI OF COMPOSITES CONTAINING RANDOMLY ORIENTED FIBERS.

CHRISTENSEN, R. M. 6 369

1976 WAVE PROPAGATION IN LAYERED ELASTIC MEDIA

CHRISTENSEN, R. M. 6 370

CIRCUIT
1973 CIRCUIT DESIGN REPORT FOR A MOMENTUM WHEEL MOTOR CURRENT CONTROL UNIT

HAINES, J. E. 4 228

1975 PERNO-RESONANT CIRCUIT FOR A NEW FLYWHEEL MOTOR GENERATOR

AALAND, K. 1 54

CIRCUIT DESIGN REPORT
1973 CIRCUIT DESIGN REPORT FOR A MOMENTUM WHEEL MOTOR CURRENT CONTROL UNIT

HAINES, J. E. 4 228

CITY COLLEGE OF NEW YORK, DEPT. OF MECHANICAL ENGINEERING
1974 FLYWHEEL ENERGY PROPULSION AND THE ELECTRIC VEHICLE

WEBER, R. / MENKES, S. 2 100

CLARE, T. A.
1973 ANGULAR MOMENTUM AND THE AIRCRAFT-STORE SEPARATION PROBLEM

DANIELS, P. / CLARE, T. A. 1 24

CLEMENTS, L. L.
1975 ENGINEERING DESIGN DATA FOR COMPOSITE MATERIALS

CLEMENTS, L. L. 6 247

1975 KEVLAR/EPOXY AND KEVLAR/GRAFITE/EPOXY COMPOSITES FOR THE C-4 (TRIDENT) CHAMBER PROGRAM

25
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Year</th>
<th>Institution</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clements, L. L.</td>
<td>Elongated-Ring Specimen for Tensile Properties of Filament-Wound Composites</td>
<td>1975</td>
<td></td>
<td>6 358</td>
</tr>
<tr>
<td></td>
<td>Coal Liquifaction, Fossil Fuel and Advanced Systems Division Research Progress Report FF-3</td>
<td>1975</td>
<td>Electric Power Research Inst.</td>
<td>3 192</td>
</tr>
<tr>
<td></td>
<td>Coal Mining, Fossil Fuel and Advanced Systems Division Research Progress Report FF-3</td>
<td>1975</td>
<td>Electric Power Research Inst.</td>
<td>3 192</td>
</tr>
<tr>
<td>Tatry, B.</td>
<td>Collection, Energy Storage - Feasibility Study of an Experiment Involving Solar Energy Collection, Its Storage by a Super Flywheel, and Electric Power Generation</td>
<td>1976</td>
<td></td>
<td>3 204</td>
</tr>
<tr>
<td></td>
<td>Combustion Chambers, Study of Unconventional Thermal, Mechanical, and Nuclear Low-Pollution-Potential Power Sources for Urban Vehicles</td>
<td>1969</td>
<td>Battelle Columbus Labs.</td>
<td>2 70</td>
</tr>
<tr>
<td></td>
<td>Commercial Filament Winding</td>
<td>1968</td>
<td>Design for Commercial Filament Winding</td>
<td>Chiao, T. T.</td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

COMPARATIVE EVALUATIONS
1969 COMPARISON OF ELECTRICALLY RUN UP FLYWHEEL (DC MOTOR) WITH TURBINE, HOT GAS MOTOR AND OTHER SYSTEMS FOR MINUTEMAN APPLICATION.
FRUKTOW, N. N. 2 60

1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES
BATTLE MONTGOMERY, 2 70

1972 HYBRID PROPULSION SYSTEM TRANSmission EVALUATION, PHASE I, FINAL REPORT
CORDNER, W. A. / GRIMM, D. H. 2 86

1974 MECHANICAL AND BATTERY-STORED ENERGY SYSTEMS FOR MEETING UNINTERRUPTIBLE AND BUFFERED ELECTRIC POWER NEEDS
COMEAO, G. E. 3 162

1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.
LAPIDES, D. E. / HIRTON, W. C. / MELTZER, J. / IURAT
FERNANDES, R. A. / GILDERSEEL, O. D. / SCHNEIDER, T. R. 3 178

COMPARISON
1969 COMPARISON OF ELECTRICALLY RUN UP FLYWHEEL (DC MOTOR) WITH TURBINE, HOT GAS MOTOR AND OTHER SYSTEMS FOR MINUTEMAN APPLICATION.
FRUKTOW, N. N. 2 60

COMPARISONS
1974 HEAT STORAGE USING ALKALI METAL SALTS, ALKALI EARTH SALTS, IRON CHLORIDE, ZINC CHLORIDE, BORON OXIDE, AND EUTECTIC FLUORIDE MIXTURES, NO-BREAK SETS
SCHROEDER, J. 5 242

COOLING MODULI
1972 RESTRICTIONS UPON VISCOSITY RELAXATION FUNCTIONS AND COMPLEX MODULI
CHRISTENSEN, R. M. 6 283

COMPONENT
1974 HYBRID DRIVE WITH FLYWHEEL COMPONENT FOR ECONOMIC AND DYNAMIC OPERATION
HELLING, J. / SCHRECK, H. / GIERS, B. 2 110

COMPOSITE
1987 COMPOSITE FLYWHEEL STRESS ANALYSIS AND MATERIALS STUDY
MORGANTHALER, C. F. / BONK, S. P. 1 9

1988 OFF-AXIS TEST OF A COMPOSITE
WU, E. M. / THOMAS, M. L. 6 270

1972 EXPERIMENTAL INVESTIGATION OF FRACTURE IN AN ADVANCED FIBER COMPOSITE
KONISH, N. J. / SWEDLOW, J. L. / CRUDE, T. A.

1972 FAILURE MODES IN IMPACT LOADED COMPOSITE MATERIALS
TOLAND, R. H. 6 301

1973 FAILURE CRITERIA AND FAILURE ANALYSIS OF COMPOSITE MATERIALS
TOLAND, R. H. / VICARIO, A. A. 6 310

1973 INSTRUMENTED IMPACT TESTING OF CARBON FIBER COMPOSITE MATERIALS
TOLAND, R. H. 6 319

1973 FLYWHEELS
POST, R. F. / POST, S. P. 1 25

1974 THERMAL STRESSES IN COMPOSITE FLYWHEELS
HEUTHER, R. C. Jr. 1 18

1974 FAILURE CRITERIA TO FRACTURE MODE ANALYSIS OF COMPOSITE MATERIALS
WU, E. M. 6 292

1974 PROBABILISTIC DESIGN OF COMPOSITE STRUCTURES
MAXWELL, R. / TOLAND, R. H. / JOHNSON, C. W. 6 329

1974 ACOUSTIC EMISSION FROM STRESS-RUPTURE AND FATIGUE OF AN ORGANIC FIBER COMPOSITE
LARDER, R. A. 6 343

1974 THE APPLICATION OF THREE DIMENSIONAL FINITE ELEMENT ANALYSIS TO THE MICRO-MECHANICS OF FIBROUS COMPOSITE MATERIALS
HAMBURG, M. A. 6 344

1974 A MODERATE-TEMPERATURE-CURABLE EPOXY FOR ADVANCED COMPOSITES
LARDER, R. A. 6 345

1974 ACOUSTIC EMISSION USES IN RESEARCH AND DEVELOPMENT OF COMPOSITE MATERIALS
CHAO, T. T. / JESSOP, E. S. / NEWTON, H. A. 6 346

1975 ENGINEERING DESIGN DATA FOR COMPOSITE MATERIALS
CHAO, T. T. / HAMMBURG, M. A. 6 347

1975 TESTING OF FIBER COMPOSITE MATERIALS
LARDER, R. A. 6 348

1975 STOCHASTIC FINE ELEMENT SIMULATION OF THE NONLINEAR STRUCTURAL RESPONSE OF FIBROUS COMPOSITE MATERIALS.
LARDER, R. A. 6 349

27
COMPOSITE (CONT'D.)
1975 HIGH PERFORMANCE VESSELS FROM AN AROMATIC POLYAMIDE FIBER/EPoxy composite
1975 HOLOGRAPHIC EXAMINATION OF A COMPOSITE PRESSURE VESSEL
1975 STRENGTH RETENTION AND LIFE OF FIBER COMPOSITE MATERIALS
1975 FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS. SECOND QUARTERLY PROGRESS REPORT.
1975 LLL PROGRAM FOR COMPOSITE FLYWHEEL
1975 MECHANICAL DESIGN OF A COMPOSITE CENTERLESS FLYWHEEL
1976 COMPOSITE MATERIALS FOR ENERGY STORAGE FLYWHEELS
1978 FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS
1978 COMPOSITE FIBER FLYWHEEL FOR ENERGY STORAGE

COMPOSITE CENTERLESS FLYWHEEL
1975 MECHANICAL DESIGN OF A COMPOSITE CENTERLESS FLYWHEEL

COMPOSITE FIBER FLYWHEEL
1976 COMPOSITE FIBER FLYWHEEL FOR ENERGY STORAGE

COMPOSITE FIBERS
1970 NEW CONCEPTS IN MECHANICAL ENERGY STORAGE

COMPOSITE FLYWHEEL
1987 COMPOSITE FLYWHEEL STRESS ANALYSIS AND MATERIALS STUDY
1975 LLL PROGRAM FOR COMPOSITE FLYWHEEL

COMPOSITE FLYWHEEL STRESS
1987 COMPOSITE FLYWHEEL STRESS ANALYSIS AND MATERIALS STUDY

COMPOSITE FLYWHEELS
1974 THERMAL STRESSES IN COMPOSITE FLYWHEELS

COMPOSITE MATERIALS
1984 THE UNIFORM-STRESS SPINNING FILAMENTARY DISK
1987 COMPOSITE FLYWHEEL STRESS ANALYSIS AND MATERIALS STUDY
1989 FEASIBILITY OF FLYWHEEL HIGH-ENERGY STORAGE
1972 FAILURE MODES IN IMPACT LOADED COMPOSITE MATERIALS
1973 INSTRUMENTED IMPACT TESTING OF CARBON FIBER COMPOSITE MATERIALS
1974 FAILURE CRITERIA TO FRACTURE MODE ANALYSIS OF COMPOSITE MATERIALS
1974 THERMAL STRESSES IN COMPOSITE FLYWHEELS
1974 ACOUSTIC EMISSION FROM STRESS-RESISTANCE AND FATIGUE OF AN ORGANIC FIBER COMPOSITE
1974 METALS AND COMPOSITES IN SUPERFLYWHEEL ENERGY STORAGE SYSTEMS
1974 TENSILE PROPERTIES OF AN ULTRA-HIGH-STRENGTH GRAPHITE FIBER AN EPOXY MATRIX
1974 THE APPLICATION OF THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS TO THE MICRO-MECHANICS OF FIBROUS COMPOSITE MATERIALS
1974 ACOUSTIC EMISSION USES IN RESEARCH AND DEVELOPMENT OF COMPOSITE MATERIALS
1975 ENGINEERING DESIGN DATA FOR COMPOSITE MATERIALS
1975 METALS AND COMPOSITES IN SUPERFLYWHEEL ENERGY STORAGE SYSTEMS
1975 TESTING OF FIBER COMPOSITE MATERIALS
1975 STOCHASTIC FINITE ELEMENT SIMULATION OF THE NONLINEAR STRUCTURAL RESPONSE OF FIBROUS COMPOSITE MATERIALS
1975 KINETIC ENERGY STORAGE OF OFF-Peak ELECTRICITY
1975 STRENGTH RETENTION AND LIFE OF FIBER COMPOSITE MATERIALS
1975 FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS. SECOND QUARTERLY PROGRESS REPORT.

CHIAO, T. T./HAMSTAD, M. A.
MAYERS, M.D./KATAYANAGI, T. K.
CHIAO, T. T./SHERRY, R. J.
STONE, R. S./CHIAO, T. T./RINDE, J. A./PENN, L. S./CLEMENTS, L. L./CHIAO, C. C.
CHIAO, T. T./STONE, R. G.
BLAKE, A.
CHIAO, T. T.
STONE, R. G.
RINDE, J. A.
RABENHORST, D. W.
MORGANTHALER, G. F./BONK, S. P.
CHIAO, T. T./STONE, R. G.
MORGANTHALER, G. F./BONK, S. P.
REUTER, R. C., JR.
KYSER, A. C.
MORGANTHALER, G. F./BONK, S. P.
SVENSSON, A./WETHERBE, A. E.
TOLAND, R. H.
TOLAND, R. H.
WU, E. W.
REUTER, R. C., JR.
HAMSTAD, M. A./CHIAO, T. T.
RABENHORST, D. W.
CHIAO, T. T./HAMSTAD, M. A./JESSOP, E. S.
LARDEZ, R. A.
HAMSTAD, M. A.
CLEMENTS, L. L.
RABENHORST, D. W.
CHIAO, T. T./HAMSTAD, M. A.
LARDEZ, R. A.
SIMPSON, L. A./OLDAKER, I. E./STERNSCHE, H.
CHIAO, T. T./SHERRY, R. J.

28
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Author(s)</th>
<th>Location</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>LONG-TERM PERFORMANCE OF FIBER COMPOSITES</td>
<td>CHIAO, C. C.</td>
<td>6</td>
<td>366</td>
</tr>
<tr>
<td>1975</td>
<td>IDEAS AND EXPERIMENTS IN MAGNETIC INTERFACING</td>
<td>AALAND, R. / LANE, J. E.</td>
<td>2</td>
<td>182</td>
</tr>
<tr>
<td>1975</td>
<td>LLL PROGRAM FOR COMPOSITE FLYWHEEL</td>
<td>CHIAO, T. T. / STONE, R. G.</td>
<td>3</td>
<td>203</td>
</tr>
<tr>
<td>1975</td>
<td>MECHANICAL DESIGN OF A COMPOSITE CENTERLESS FLYWHEEL</td>
<td>BLAKE, A.</td>
<td>1</td>
<td>53</td>
</tr>
<tr>
<td>1975</td>
<td>COMPOSITE MATERIALS FOR ENERGY STORAGE FLYWHEELS</td>
<td>CHIAO, T. T.</td>
<td>6</td>
<td>371</td>
</tr>
<tr>
<td>1976</td>
<td>ENERGY STORAGE — FEASIBILITY STUDY OF AN EXPERIMENT INVOLVING SOLAR ENERGY COLLECTION, ITS STORAGE BY A SUPER FLYWHEEL, AND ELECTRIC POWER GENERATION.</td>
<td>TATRY, B.</td>
<td>3</td>
<td>254</td>
</tr>
</tbody>
</table>

COMPOSITE PRESSURE VESSEL

<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Author(s)</th>
<th>Location</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>HOLOGRAPHIC EXAMINATION OF A COMPOSITE PRESSURE VESSEL</td>
<td>MEYER, M.D. / KATAYANAGI, T. E.</td>
<td>6</td>
<td>300</td>
</tr>
</tbody>
</table>

COMPOSITE PROGRAM

<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Author(s)</th>
<th>Location</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976</td>
<td>FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS</td>
<td>STONE, R. G.</td>
<td>1</td>
<td>57</td>
</tr>
</tbody>
</table>

COMPOSITE STRUCTURES

<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Author(s)</th>
<th>Location</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973</td>
<td>FAILURE CRITERIA AND FAILURE ANALYSIS OF COMPOSITE STRUCTURES</td>
<td>TOLAND, R. H. / VICARIO, A. A.</td>
<td>6</td>
<td>310</td>
</tr>
<tr>
<td>1974</td>
<td>PROBABILISTIC DESIGN OF COMPOSITE STRUCTURES</td>
<td>MAXWELL, R. / TOLAND, R. H. / JOHNSON, C. W.</td>
<td>6</td>
<td>329</td>
</tr>
</tbody>
</table>

COMPOSITES

<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Author(s)</th>
<th>Location</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973</td>
<td>THE EFFECT OF STRESS ON DIFFUSION IN COMPOSITES - EXPERIMENTAL OBSERVATIONS.</td>
<td>RUMMANN, D. C. / WU, E. W.</td>
<td>6</td>
<td>315</td>
</tr>
<tr>
<td>1974</td>
<td>STRESS RUPTURE OF GLASS/EPOXY COMPOSITES - ENVIRONMENT AND STRESS EFFECTS.</td>
<td>WU, E. M. / RUMMANN, D. C.</td>
<td>6</td>
<td>332</td>
</tr>
</tbody>
</table>

COMPOSITES - ENVIRONMENT

<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Author(s)</th>
<th>Location</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>STRESS RUPTURE OF GLASS/EPOXY COMPOSITES - ENVIRONMENT AND STRESS EFFECTS.</td>
<td>WU, E. M. / RUMMANN, D. C.</td>
<td>6</td>
<td>332</td>
</tr>
</tbody>
</table>

COMPOSITES - EXPERIMENTAL

<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Author(s)</th>
<th>Location</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973</td>
<td>THE EFFECT OF STRESS ON DIFFUSION IN COMPOSITES - EXPERIMENTAL OBSERVATIONS.</td>
<td>RUMMANN, D. C. / WU, E. W.</td>
<td>6</td>
<td>315</td>
</tr>
</tbody>
</table>

COMPOSITES FOR ENERGY

<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Author(s)</th>
<th>Location</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>FIBER COMPOSITES FOR ENERGY STORAGE FLYWHEELS.</td>
<td>PENN, L. S. / CHIAO, T. T.</td>
<td>6</td>
<td>352</td>
</tr>
</tbody>
</table>

COMPOSITES IN SUPERFLYWHEEL

<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Author(s)</th>
<th>Location</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>METALS AND COMPOSITES IN SUPERFLYWHEEL ENERGY STORAGE SYSTEMS</td>
<td>RABENHORST, D. W.</td>
<td>2</td>
<td>112</td>
</tr>
<tr>
<td>1975</td>
<td>METALS AND COMPOSITES IN SUPERFLYWHEEL ENERGY STORAGE SYSTEMS</td>
<td>RABENHORST, D. W.</td>
<td>1</td>
<td>45</td>
</tr>
</tbody>
</table>

COMPRSSED AIR

<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Author(s)</th>
<th>Location</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>ENERGY STORAGE. (I): USING ELECTRICITY MORE EFFICIENTLY</td>
<td>ROBINSON, A. L.</td>
<td>3</td>
<td>185</td>
</tr>
<tr>
<td>1974</td>
<td>ENERGY STORAGE TECHNOLOGY</td>
<td>VANDERBUN, J.</td>
<td>3</td>
<td>171</td>
</tr>
<tr>
<td>1975</td>
<td>ENERGY TECHNOLOGY (I) (NAVY APPLICATIONS)</td>
<td>PETZERICK, P. A.</td>
<td>5</td>
<td>247</td>
</tr>
<tr>
<td>1975</td>
<td>ENERGY STORAGE SYSTEMS</td>
<td>PENNER, S. S. / KERMAN, L.</td>
<td>5</td>
<td>246</td>
</tr>
<tr>
<td>1975</td>
<td>ENERGY STORAGE</td>
<td>KALHAMMER, F. R. / COOPER, V. R.</td>
<td>3</td>
<td>181</td>
</tr>
<tr>
<td>1975</td>
<td>ENERGY STORAGE FOR WIND ENERGY CONVERSION SYSTEMS</td>
<td>ZLOTNICK, M.</td>
<td>3</td>
<td>190</td>
</tr>
<tr>
<td>1975</td>
<td>AN EVALUATION OF THE FUTURE ROLE OF STORAGE TECHNIQUES IN ELECTRIC POWER TECHNOLOGY</td>
<td>PEEDERTZ, G. F.</td>
<td>3</td>
<td>199</td>
</tr>
<tr>
<td>1976</td>
<td>ENERGY STORAGE</td>
<td>REED, J. J.</td>
<td>3</td>
<td>207</td>
</tr>
</tbody>
</table>

29
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

COMPRESSED AIR (CONTD.)
COMPRESSED AIR FLYWHEEL
1975 ENERGY STORAGE

AMERICAN NUCLEAR SOCIETY, HINSDALE, ILL.

COMPRESSED AIR STORAGE
1974 ENERGY STORAGE: INCENTIVES AND PROSPECTS FOR ITS DEVELOPMENT
1974 POTENTIAL FOR LARGE-SCALE ENERGY STORAGE IN ELECTRIC UTILITY SYSTEMS

KALHAMMER, F.
KALHAMMER, F. / ZYGELBAUER, P. S.

3 174
3 177

COMPRESSED AIR TURBINE
1975 TECHNICAL ASSESSMENT OF ENERGY STORAGE TECHNOLOGIES

SCHNEIDER, T. R.

3 191

COMPRESSION
1965 A FRACTURE CRITERION FOR ORTHOTROPIC PLATES UNDER THE INFLUENCE OF COMPRESSION AND SHEAR
1971 FRACTURE CRITERIA FOR ORTHOTROPIC PLATE UNDER COMPRESSION AND SHEAR
1974 ENERGY STORAGE. (I): USING ELECTRICITY MORE EFFICIENTLY
1975 STORING ELECTRICAL ENERGY ON A LARGE SCALE

WU, E. W.
WU, E. W.
ROBINSON, A. L.

6 258
6 281
3 165
3 188

COMPRESSION AND SHEAR
1965 A FRACTURE CRITERION FOR ORTHOTROPIC PLATES UNDER THE INFLUENCE OF COMPRESSION AND SHEAR
1971 FRACTURE CRITERIA FOR ORTHOTROPIC PLATE UNDER COMPRESSION AND SHEAR

WU, E. W.
WU, E. W.

6 258
6 281

COMPRESSIVE STRENGTH
1973 MATERIALS EVALUATION FOR ZK11B MAGNET

CHIANG, T. T. / WALKUP, C. M. / NEWBY, H. A.

6 322

COMPUTER
1971 COMPUTER AIDED MECHANICAL TESTING OF COMPOSITES
1974 COMPUTER CONTROLLED 125 MVA POWER SUPPLY FACILITY FOR NUCLEAR FUSION RESEARCH

WU, E. W. / JERINA, K. I.
MIYAHARA, A. / BANNAI, E. / KITANO, Y.

6 288
3 158

COMPUTER CALCULATIONS
1971 FEASIBILITY ANALYSIS OF THE TRANSMISSION FOR A FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEM
1972 HYBRID PROPULSION SYSTEM TRANSMISSION EVALUATION, PHASE I. FINAL REPORT
1974 COMPUTER CONTROLLED 125 MVA POWER SUPPLY FACILITY FOR NUCLEAR FUSION RESEARCH
1974 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES
1975 INCREASED FUEL ECONOMY IN TRANSPORTATION SYSTEMS BY USE OF ENERGY MANAGEMENT

MECHANICAL TECHNOLOGY, INC.
CORDNER, W. A. / GRIMM, D. H.
MIYAHARA, A. / BANNAI, E. / KITANO, Y.
LAPEDES, D. E. / WELTZER, J.
BEACHLEY, R. H. / FRANK, A. A.

2 82
2 56
3 158
2 118
2 128

COMPUTER CONTROLLED
1974 COMPUTER CONTROLLED 125 MVA POWER SUPPLY FACILITY FOR NUCLEAR FUSION RESEARCH

MIYAHARA, A. / BANNAI, E. / KITANO, Y.

3 158

COMPUTERS
1970 FIRST NATIONAL CITY BANK USES CONSTANT-POWER SYSTEM FOR COMPUTERS

ORTIZ, J. Y.

3 144

CONCENTRATIONS
1975 FINITE ELEMENT STUDY OF A CAST IRON FLYWHEEL WITH PARTICULAR EMPHASIS ON STRESS CONCENTRATIONS

BINDIK, F. I.

1 40
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONCEPTS IN ENERGY</td>
<td>FERNANDES, R. A. / GILDEBSLEEVE, O. D. / SCHNEIDER, T. R.</td>
<td>3 175</td>
</tr>
<tr>
<td>CONCEPTS IN MECHANICAL</td>
<td>Rabenhorst, D. W.</td>
<td>1 12</td>
</tr>
<tr>
<td>CONCEPTUAL DESIGNS</td>
<td>NOTTI, J. E. / CORMACK, A. / SCHMILL, W. C.</td>
<td>4 232</td>
</tr>
<tr>
<td>CONDITIONING AND CONTROL</td>
<td>WOOD, P. / PELLY, B. R.</td>
<td>3 195</td>
</tr>
<tr>
<td>CONFERENCES</td>
<td>LAWSON, L. J. / ST AL.</td>
<td>2 116</td>
</tr>
<tr>
<td></td>
<td>LUCCHINI, A. P.</td>
<td>5 246</td>
</tr>
<tr>
<td>CONFIGURATION</td>
<td>CORDNER, W.A. / CRUMM, D. H.</td>
<td>2 86</td>
</tr>
<tr>
<td></td>
<td>RABENHORST, D. W.</td>
<td>1 33</td>
</tr>
<tr>
<td></td>
<td>BLAKE, A.</td>
<td>1 50</td>
</tr>
<tr>
<td>CONSEQUENCES</td>
<td>RONNET-THRION, C.J./ROBIDA, L. //FOLDUS, G.</td>
<td>1 21</td>
</tr>
<tr>
<td>CONSERVATION FACTORS</td>
<td>POST, R.F.</td>
<td>2 101</td>
</tr>
<tr>
<td>CONSERVING CAPITAL</td>
<td>CASARZA, J. A. / SCHNEIDER, T. R. / SULZBERGER, V. T.</td>
<td>3 209</td>
</tr>
<tr>
<td>CONSTANT POWER SYSTEM</td>
<td>ORTIZ, J. V.</td>
<td>2 144</td>
</tr>
<tr>
<td>CONSTANT-POWER SYSTEM</td>
<td>ORTIZ, J. V.</td>
<td>3 144</td>
</tr>
<tr>
<td>CONSTANT-SPEED FLYWHEEL POWER</td>
<td>MATTHEWS, L. E. / EVERETT, W. D. / BINDER, R.</td>
<td>2 82</td>
</tr>
</tbody>
</table>
CONSTANTLY APPLIED PERTURBATIONS
1968 FLYWHEEL STABILIZATION OF A RIGID BODY SUBJECTED TO CONSTANTLY APPLIED PERTURBATIONS
DERGACHEVA, R. I. 3 140

CONSTANTS
1973 DATA AVERAGING OF ANISOTROPIC MATERIAL CONSTANTS
WU, E. M. / JERINA, K. L. / LAVENGROD, R. E. 6 311

CONSTITUTIVE EQUATIONS
1973 A CRITICAL TEST FOR A CLASS OF NONLINEAR CONSTITUTIVE EQUATIONS
CHRISTENSEN, R. M. / VAN ES, H. E. 6 312

CONTAINMENT
1974 POLYMER-LINED FILAMENT-WOUND PRESSURE VESSELS FOR NITROGEN CONTAINMENT
HAMSTAD, M. A. / CHIAO, T. T. /JESSOP, E. S. 6 338
1975 SEDIGI NUCLEAR POWER PROJECT, UNITS 1 AND 2. LICENSE APPLICATION
PUGET SOUND POWER AND LIGHT CO. 3 180

CONTAINMENT SPRAY SYSTEMS
1975 THREE MILE ISLAND NUCLEAR STATION, UNIT 2. RG INSPECTION REPORT NO. 75-01 AND CORRESPONDENCE
METROPOLITAN EDISON CO. 3 182

CONTROL
1971 MEASUREMENT AND CONTROL OF DYNAMIC CRACKS IN COMPOSITES.
1971 FEASIBILITY ANALYSIS OF THE TRANSMISSION FOR A FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEM
1973 CIRCUIT DESIGN REPORT FOR A MOMENTUM WHEEL MOTOR CURRENT CONTROL UNIT
1974 INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS) STUDY. VOLUME 1: FEASIBILITY STUDIES
1974 INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS) STUDY. VOLUME 2: CONCEPTUAL DESIGNS
1975 ESTIMATING THE VELOCITIES OF THE CONTROL FLYWHEELS OF A FREE GYROSTAT
1975 STUDY OF DOUBLE GIMBALED MOMENTUM WHEELS IN THE ATTITUDE AND ORBIT CONTROL SYSTEM OF A GEOSTATIONARY COMMUNICATION SATELLITE.
1975 FOSSIL FUEL AND ADVANCED SYSTEMS DIVISION. RESEARCH PROGRESS REPORT FF-3
1975 AC/DC POWER CONDITIONING AND CONTROL EQUIPMENT FOR ADVANCED CONVERSION AND STORAGE TECHNOLOGY
1975 ANGULAR DESIGN AND TESTING OF AN ENERGY FLYWHEEL FOR AN INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS)
1976 AC/DC POWER CONDITIONING AND CONTROL EQUIPMENT FOR ADVANCED CONVERSION AND STORAGE TECHNOLOGY.
1976 ESTIMATING THE VELOCITIES OF THE CONTROL FLYWHEELS OF A FREE GYROSTAT
1976 CONTROL MOMENT GYROS
1972 APPLICATION OF ISOVELOD FLYWHEELS TO SPACECRAFT ENERGY AND ANGULAR MOMENTUM STORAGE
ADAMS, L. B. 4 224

CONTROL OF DYNAMIC
1971 MEASUREMENT AND CONTROL OF DYNAMIC CRACKS IN COMPOSITES.
BRISSEY, F. L. / WU, E. W. 6 280
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

CONTROL SYSTEM
- 1974 INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS) STUDY. VOLUME 1: FEASIBILITY STUDIES
- 1974 INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS) STUDY. VOLUME 2: CONCEPTUAL DESIGNS
- 1975 STUDY OF DOUBLE GIMBALED MOMENTUM WHEELS IN THE ATTITUDE AND ORBIT CONTROL SYSTEM OF A GEOSTATIONARY COMMUNICATION SATELLITE.
- 1975 DESIGN AND TESTING OF AN ENERGY FLYWHEEL FOR AN INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS)

CONTROL SYSTEMS
- 1984 ON-BOARD ENERGY STORAGE IN RAIL RAPID TRANSIT
- 1972 HYBRID PROPULSION SYSTEM TRANSMISSION EVALUATION, PHASE I. FINAL REPORT
- 1974 COMPUTER CONTROLLED 120 MVA POWER SUPPLY FACILITY FOR NUCLEAR FUSION RESEARCH
- 1974 BATTERY POWERED VEHICLE DRIVE
- 1974 CYCLOCONVERTER-CONTROLLED SYNCHRONOUS MACHINES FOR LOAD COMPENSATION ON AC POWER SYSTEMS
- 1975 HYBRID POWER SYSTEM
- 1975 IDEAS AND EXPERIMENTS IN MAGNETIC INTERFACING

CONTROL UNIT
- 1973 CIRCUIT DESIGN REPORT FOR A MOMENTUM WHEEL MOTOR CURRENT CONTROL UNIT

CONTROLLED
- 1973 INVESTIGATION OF THE HOMOPOLAR MOTOR-GENERATOR AS A POWER SUPPLY FOR CONTROLLED FUSION EXPERIMENTS
- 1974 COMPUTER CONTROLLED 120 MVA POWER SUPPLY FACILITY FOR NUCLEAR FUSION RESEARCH

CONTROLLED FUSION EXPERIMENTS
- 1973 INVESTIGATION OF THE HOMOPOLAR MOTOR-GENERATOR AS A POWER SUPPLY FOR CONTROLLED FUSION EXPERIMENTS

CONVERSION
- 1974 WIND POWER CONVERSION SYSTEM
- 1976 ENERGY STORAGE FOR WIND ENERGY CONVERSION SYSTEMS
- 1976 MATERIALS REQUIREMENTS FOR ENERGY GENERATION, CONVERSION, AND STORAGE
- 1976 AC/DC POWER CONDITIONING AND CONTROL EQUIPMENT FOR ADVANCED CONVERSION AND STORAGE TECHNOLOGY

CONVERSION AND STORAGE
- 1976 AC/DC POWER CONDITIONING AND CONTROL EQUIPMENT FOR ADVANCED CONVERSION AND STORAGE TECHNOLOGY

CONVERSION SYSTEM
- 1974 WIND POWER CONVERSION SYSTEM

CONVERSION SYSTEMS
- 1975 ENERGY STORAGE FOR WIND ENERGY CONVERSION SYSTEMS

COOLANT
- 1975 REACTOR COOLANT PUMP FLYWHEEL INTEGRITY

AUTHORS
- 2 232
- 2 233
- 2 234
- 4 240

<table>
<thead>
<tr>
<th>COOLANT CLEANUP SYSTEMS</th>
<th>FUGET SOUND POWER AND LIGHT CO.</th>
<th>3 180</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976 SKAGIT NUCLEAR POWER PROJECT, UNITS 1 AND 2 LICENSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPLICATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COOLANT PUMP FLYWHEEL</td>
<td>NUCLEAR REGULATORY COMM.</td>
<td>3 196</td>
</tr>
<tr>
<td>1976 REACTOR COOLANT PUMP FLYWHEEL INTEGRITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COOLING SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972 DISPOSITIF DE PROTECTION CONTRE LES CONSEQUENCES DE LA</td>
<td>BONNET-THIRION, C.J./ROBIDA, L.</td>
<td>1 21</td>
</tr>
<tr>
<td>RUPTURE D'UN VOLANT D'INERTIE. (A PROTECTIVE DEVICE TO</td>
<td>/FOLDES, G.</td>
<td></td>
</tr>
<tr>
<td>PREVENT THE CONSEQUENCES OF A FLYWHEEL RUPTURE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COOPER, V.R.</td>
<td>KALHAMER, F.R. / COOPER, V.R.</td>
<td>3 181</td>
</tr>
<tr>
<td>1975 ENERGY STORAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORBNER, M.A.</td>
<td>CORBNER, M.A./GRIMM, D.H.</td>
<td>2 86</td>
</tr>
<tr>
<td>1972 HYBRID PROPULSION SYSTEM TRANSMISSION EVALUATION, PHASE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 FINAL REPORT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORBNER, M.A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS) STUDY.</td>
<td>NOTTI, J.E./ CORBNER, M.A. /</td>
<td>4 231</td>
</tr>
<tr>
<td>VOLUME 1: FEASIBILITY STUDIES</td>
<td>SCHMILL, W.C.</td>
<td></td>
</tr>
<tr>
<td>1974 INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS) STUDY.</td>
<td>NOTTI, J.E./ CORBNER, M.A. /</td>
<td>4 232</td>
</tr>
<tr>
<td>VOLUME 2: CONCEPTUAL DESIGNS</td>
<td>SCHMILL, W.C.</td>
<td></td>
</tr>
<tr>
<td>1975 DESIGN AND TEST OF A FLYWHEEL ENERGY STORAGE UNIT FOR</td>
<td>CORBNER, A./ NOTTI, J.E./ RUIZ,</td>
<td>4 239</td>
</tr>
<tr>
<td>SPACERFIGHT APPLICATION</td>
<td>W.L.</td>
<td></td>
</tr>
<tr>
<td>1975 DESIGN AND TESTING OF AN ENERGY FLYWHEEL FOR AN</td>
<td>NOTTI, J.E./ CORBNER, M.A.</td>
<td>4 240</td>
</tr>
<tr>
<td>INTEGRATED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWER/ATTITUDE CONTROL SYSTEM (IPACS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORROSION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 FOSSIL FUEL AND ADVANCED SYSTEMS DIVISION, RESEARCH</td>
<td>ELECTRIC POWER RESEARCH INST.</td>
<td>3 182</td>
</tr>
<tr>
<td>PROGRESS REPORT FF-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND</td>
<td>BATTELL COLUMBUS LABS.</td>
<td>2 70</td>
</tr>
<tr>
<td>NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEHICLES</td>
<td>RABENHORST, D.W.</td>
<td>2 81</td>
</tr>
<tr>
<td>1971 POTENTIAL APPLICATIONS FOR THE SUPERFLYWHEEL</td>
<td>MECHANICAL TECHNOLOGY, INC.</td>
<td>2 82</td>
</tr>
<tr>
<td>HEAT ENGINE HYBRID PROPULSION SYSTEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972 HYBRID PROPULSION SYSTEM TRANSMISSION EVALUATION, PHASE</td>
<td>POST, R.F./ POST, S.P.</td>
<td>1 25</td>
</tr>
<tr>
<td>1 FINAL REPORT</td>
<td>RABENHORST, D.W. / TAYLOR, R.J.</td>
<td>1 26</td>
</tr>
<tr>
<td>1973 FLYWHEELS</td>
<td>BADER, C./ PLUHRT, H.G.</td>
<td>2 111</td>
</tr>
<tr>
<td>1973 DESIGN CONSIDERATIONS FOR A 100-MEGAWATT/50-MEGAWATT</td>
<td>RABENHORST, D.W.</td>
<td>1 33</td>
</tr>
<tr>
<td>SUPERFLYWHEEL</td>
<td>LAPEDES, D.E./WELTZER, J.</td>
<td>2 118</td>
</tr>
<tr>
<td>1974 ELECTRICAL PROPULSION SYSTEMS FOR ROAD VEHICLES, STATE</td>
<td>STEINLICHT, B./ THUR, G.W.</td>
<td>2 119</td>
</tr>
<tr>
<td>1974 MULTIR/M SUPERFLYWHEEL, TECHNICAL MEMO</td>
<td>SIMPSON, L.A./ OLDAKER, I.E./</td>
<td>3 196</td>
</tr>
<tr>
<td>1974 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT</td>
<td>STEINSCHEC, J.</td>
<td></td>
</tr>
<tr>
<td>ENGINE FLYWHEEL VEHICLES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 ALTERNATIVE PRIME MOVES FOR FUTURE AUTOMOBILES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 STORING ELECTRICAL ENERGY ON A LARGE SCALE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 KINETIC ENERGY STORAGE OF OFF-PeAK ELECTRICITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COST EFFECTIVENESS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS) STUDY.</td>
<td>NOTTI, J.E./ CORBNER, M.A. /</td>
<td>4 231</td>
</tr>
<tr>
<td>VOLUME 1: FEASIBILITY STUDIES</td>
<td>SCHMILL, W.C.</td>
<td></td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

COSTS
1970 CUT SUBWAY POWER COSTS

COUPLED STANDBY POWER
1971 HYDRAULIC TRANSMISSION COUPLED STANDBY POWER UNIT

CRACK
1965 CRACK EXTENSION IN FIBERGLASS-REINFORCED PLASTICS
1968 DISCONTINUOUS MODE OF CRACK EXTENSION IN UNIDIRECTIONAL COMPOSITES
1969 SOME UNIQUE CRACK PROPAGATION PHENOMENA IN UNIDIRECTIONAL COMPOSITES AND THEIR MATHEMATICAL CHARACTERIZATION

CRACK PROPAGATION PHENOMENA
1969 SOME UNIQUE CRACK PROPAGATION PHENOMENA IN UNIDIRECTIONAL COMPOSITES AND THEIR MATHEMATICAL CHARACTERIZATION

CRACKS IN COMPOSITES
1971 MEASUREMENT AND CONTROL OF DYNAMIC CRACKS IN COMPOSITES

CREEP RUPTURE TESTS
1974 ACOUSTIC EMISSION FROM STRESS-RUPTURE AND FATIGUE OF AN ORGANIC FIBER COMPOSITE

CRESWICK, F. A.
1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES

CRUSE, T. A.
1972 EXPERIMENTAL INVESTIGATION OF FRACTURE IN AN ADVANCED FIBER COMPOSITE

CRYOGENIC APPLICATIONS
1971 STUDY OF EPOXY RESINS FOR FIBER COMPOSITES

CRYOGENICS
1975 ENERGY TECHNOLOGY II (NAVY APPLICATIONS)

CUMMINS, A. D.
1972 FABRICATION AND TESTING OF EPOXY TENSILE SPECIMENS

CURE OF EPOXIES
1972 CHARACTERIZATION OF AN EPOXY SYSTEM FOR FILAMENT WINDING

CURRENT
1973 CIRCUIT DESIGN REPORT FOR A MOMENTUM WHEEL MOTOR CURRENT CONTROL UNIT
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS
<p>| CURRENT (CONTD.) | 1975 DIGEST OF CURRENT RESEARCH IN THE ELECTRIC UTILITY INDUSTRY | EPRI | 3 167 |
| CURTI, G. | 1974 ITERATIVE PROCEDURES FOR CALCULATING THE FIRST TORSIONAL EIGENFREQUENCY OF A SHAFT WITH SEVERAL FLYWHEELS | ATZORI, B. / CURTI, G. | 1 31 |
| CYCLE SYSTEMS | 1972 LOW PEAK TEMPERATURES AND HYDRODYNAMIC BEARINGS - KEY TO LONG LIFE ORGANIC RANKINE CYCLE SYSTEMS | BORETT, J. E. | 3 150 |
| CYCLOCONVERTER-CONTROLLED SYNCHRONOUS MACHINES | 1974 CYCLOCONVERTER-CONTROLLED SYNCHRONOUS MACHINES FOR LOAD COMPENSATION ON AC POWER SYSTEMS | FINLAYSON, P. T. / WASHBURN, D. C. | 3 178 |
| CYLINDER | 1985 RESPONSE TO PRESSURIZATION OF A VISCOELASTIC CYLINDER WITH AN ERODING INTERNAL BOUNDARY. | CHRISTENSEN, R. M. / SCHREINER, R. N. | 1 5 |
| D.C. MOTORS | 1974 ATA RAIL TRANSIT CONFERENCE. CAR EQUIPMENT SESSIONS. | LAWSON, L. J. / ET AL. | 2 116 |
| DALE ELECTRIC OF GREAT BRITAIN, LTD | 1974 NO-BREAK SETS | MOODY, R. L. | 3 187 |
| DAMPER | 1974 METHOD OF CALCULATING TORSIONAL VIBRATIONS IN A POWER UNIT WITH A NON-LINEAR SILICONE DAMPER | SHIRAEV, M. P. / KHUDOZHILOV, V. A. | 1 28 |
| DAMPING | 1974 METHOD OF CALCULATING TORSIONAL VIBRATIONS IN A POWER UNIT WITH A NON-LINEAR SILICONE DAMPER | SHIRAEV, M. P. / KHUDOZHILOV, V. A. | 1 28 |
| DANN, R. T. | 1973 REVOLUTION IN FLYWHEELS | DANN, R. T. | 1 23 |
| DATA | 1972 ANALYSIS OF STRESS-RUPTURE DATA FROM S-Glass COMPOSITES | ROBINSON, E. Y. / CHIADO, T. T. | 6 298 |
| 1975 ENGINEERING DESIGN DATA FOR COMPOSITE MATERIALS | 6 247 |
| 1976 RESEARCH LEADING TO THE PRODUCTION AND EARLY USE OF NUMERIC DATA BANKS OF MATERIAL PROPERTIES AND SYSTEM ANALYSES | HENRY, E. A. | 1 58 |
| DATA BANKS | 1976 RESEARCH LEADING TO THE PRODUCTION AND EARLY USE OF NUMERIC DATA BANKS OF MATERIAL PROPERTIES AND SYSTEM ANALYSES | HENRY, E. A. | 1 58 |</p>
<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Author(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976</td>
<td>ENGINEERING DESIGN DATA FOR COMPOSITE MATERIALS</td>
<td>CLEMENTS, L. L.</td>
<td>6 247</td>
</tr>
<tr>
<td>1972</td>
<td>ANALYSIS OF STRESS-BURST DATA FROM S-Glass Composites</td>
<td>ROBINSON, E. Y./CHIAO, T. T.</td>
<td>6 298</td>
</tr>
<tr>
<td>1978</td>
<td>BATTERY-FLYWHEEL HYBRID ELECTRIC POWER SYSTEM FOR NEAR-TERM APPLICATION, VOL. 1, SYSTEM DESCRIPTION.</td>
<td>DAVIS, D. D.</td>
<td>2 134</td>
</tr>
<tr>
<td>1978</td>
<td>BATTERY-FLYWHEEL HYBRID ELECTRIC POWER SYSTEM FOR NEAR-TERM APPLICATION, VOL. 2, SYSTEM DESIGN.</td>
<td>DAVIS, D. D.</td>
<td>2 135</td>
</tr>
<tr>
<td>1959</td>
<td>COMPARISON OF ELECTRICALLY RUN UP FLYWHEEL (DC MOTOR) WITH TURBINE, HOT GAS MOTOR AND OTHER SYSTEMS FOR MINUTEMAN APPLICATION</td>
<td>FRUKTOW, N. N.</td>
<td>2 60</td>
</tr>
<tr>
<td>1970</td>
<td>MODIFICATION OF DC MOTOR WITH MAGNETICALLY SUSPENDED ROTOR</td>
<td>CAMBRIDGE THERMIOLUMINOUS CORP., MASS.</td>
<td>1 11</td>
</tr>
<tr>
<td>1973</td>
<td>APPLICATION OF TWO-PHASE DC CHOPPER MOTOR DRIVE</td>
<td>REIMERS, E.</td>
<td>2 95</td>
</tr>
<tr>
<td>1974</td>
<td>BATTERY POWERED VEHICLE DRIVE</td>
<td>DEANE, C. T.</td>
<td>2 106</td>
</tr>
<tr>
<td>1978</td>
<td>FLYWHEELS, A REPORT BIBLIOGRAPHY</td>
<td>DEFENSE DOCUMENTATION CENTER</td>
<td>1 55</td>
</tr>
<tr>
<td>1983</td>
<td>SOME INTERESTING ASPECTS OF GENERAL LINEAR VISCOELASTIC DEFORMATION</td>
<td>CHRISTENSEN, R. W./COTTENBERG, W.</td>
<td>6 254</td>
</tr>
<tr>
<td>1983</td>
<td>DEFORMATION OF AN ELASTIC SPHERICAL WEDGE</td>
<td>CHRISTENSEN, R. M.</td>
<td>1 6</td>
</tr>
<tr>
<td>1987</td>
<td>LARGE ELASTIC DEFORMATION OF A SPHERICAL WEDGE</td>
<td>CHRISTENSEN, R. M.</td>
<td>1 7</td>
</tr>
<tr>
<td>1973</td>
<td>FLYWHEELS</td>
<td>POST, R. F./POST, S. F.</td>
<td>1 25</td>
</tr>
<tr>
<td>1975</td>
<td>ENERGY TECHNOLOGY II (NAVY APPLICATIONS)</td>
<td>PITZBACH, P. A.</td>
<td>5 247</td>
</tr>
<tr>
<td>1974</td>
<td>STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS, FIFTEEN PAPERS--SURVEY OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE SYSTEMS</td>
<td>VDI</td>
<td>5 160</td>
</tr>
<tr>
<td>1974</td>
<td>ENERGY, VOLUME I.DEMANDS, RESOURCES, IMPACT, TECHNOLOGY, AND POLICY</td>
<td>PENNER, S. S./ICERMAN, L.</td>
<td>5 243</td>
</tr>
<tr>
<td>1986</td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>NORTH AMERICAN AVIATION INC., LOS ANGELES DIV.</td>
<td>2 65</td>
</tr>
<tr>
<td>1987</td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>NORTH AMERICAN AVIATION INC., LOS ANGELES DIV.</td>
<td>4 212</td>
</tr>
<tr>
<td>1987</td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>NORTH AMERICAN AVIATION INC., LOS ANGELES DIV.</td>
<td>4 213</td>
</tr>
<tr>
<td>1987</td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>NORTH AMERICAN AVIATION INC., LOS ANGELES DIV.</td>
<td>4 214</td>
</tr>
<tr>
<td>1987</td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>NORTH AMERICAN AVIATION INC., LOS ANGELES DIV.</td>
<td>4 215</td>
</tr>
<tr>
<td>1987</td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>HELSLEY, C. W./CALL, B. J.</td>
<td>4 216</td>
</tr>
<tr>
<td>1971</td>
<td>FLYWHEEL FEASIBILITY STUDY AND DEMONSTRATION.FINAL REPORT</td>
<td>GILBERT, R. R./MARTIN, L. J.</td>
<td>2 77</td>
</tr>
</tbody>
</table>

37
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Year</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabnis, A. V. / Dendy, J. B.</td>
<td>Magnetically Suspended Large Momentum Wheel</td>
<td>1976</td>
<td>238</td>
</tr>
<tr>
<td>Schmitt, F. W.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beachley, N. H. / Frank, A. A.</td>
<td>Increased Fuel Economy in Transportation Systems by Use of Energy Management</td>
<td>1975</td>
<td>126</td>
</tr>
<tr>
<td>Marlowe, E. W.</td>
<td>On-Board Energy Storage in Rail Rapid Transit</td>
<td>1986</td>
<td>61</td>
</tr>
<tr>
<td>Chiao, T. T.</td>
<td>Design for Commercial Filament Winding</td>
<td>1986</td>
<td>281</td>
</tr>
<tr>
<td>Battelle Columbus Labs.</td>
<td>Study of Unconventional Thermal, Mechanical, and Nuclear Low-Pollution-Potential Power Sources for Urban Vehicles</td>
<td>1986</td>
<td>70</td>
</tr>
<tr>
<td>Nellis, V. C.</td>
<td>Final Design Report, Prototype Gearbox Flywheel (Flybox) for Stored Energy Rotary Drive Shipboard Cataract</td>
<td>1980</td>
<td>143</td>
</tr>
<tr>
<td>Mechanical Technology, Inc.</td>
<td>Feasibility Analysis of the Transmission for a Flywheel Heat Engine Hybrid Propulsion System</td>
<td>1987</td>
<td>82</td>
</tr>
<tr>
<td>Burns, J. W. / Toland, R. H.</td>
<td>Design and Analysis of the ATE Graphite Epoxy Satellite Truss Control Unit</td>
<td>1972</td>
<td>304</td>
</tr>
<tr>
<td>Haines, J. E.</td>
<td>Design Considerations for a 100-Megajoule/500-Megawatt Superflywheel</td>
<td>1973</td>
<td>228</td>
</tr>
<tr>
<td>Rabinhorst, D. W. / Taylor, R. J.</td>
<td>Flywheels</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>Boller, J. A. C.</td>
<td>Probabilistic Design of Composite Structures</td>
<td></td>
<td>230</td>
</tr>
<tr>
<td>Maxwell, R. / Toland, R. H. / Johnson, C. W.</td>
<td>Synthesis of the Belt of a Discrete Belt Variator</td>
<td>1974</td>
<td>329</td>
</tr>
<tr>
<td>Gullia, N. V. / Yudovskii, I. D.</td>
<td>Battery Powered Vehicle Drive</td>
<td></td>
<td>104</td>
</tr>
<tr>
<td>Deane, C. T.</td>
<td>Metals and Composites in Superflywheel Energy Storage Systems</td>
<td></td>
<td>106</td>
</tr>
<tr>
<td>Rabinhorst, D. W.</td>
<td>Ultrahigh Temperature</td>
<td></td>
<td>112</td>
</tr>
<tr>
<td>Aufer, Werner</td>
<td>Current Status of Alternative Automotive Power Systems and Fuels</td>
<td></td>
<td>233</td>
</tr>
<tr>
<td>Clements, L. L.</td>
<td>SKAGIT Nuclear Power Project. Units 1 and 2. License Application</td>
<td></td>
<td>347</td>
</tr>
<tr>
<td>Fuguet Sound Power and Light Co.</td>
<td></td>
<td></td>
<td>180</td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

<table>
<thead>
<tr>
<th>Design (Contd.)</th>
<th>Title</th>
<th>Authors</th>
<th>Organization</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976</td>
<td>ENERGY-STORAGE SYSTEMS</td>
<td>PENNER, S. S. / ICERMAN, L.</td>
<td></td>
<td>6 248</td>
</tr>
<tr>
<td>1976</td>
<td>DESIGN AND APPLICATIONS OF FLYWHEELS (A BIBLIOGRAPHY WITH ABSTRACTS)</td>
<td>LEHMANN, E. J.</td>
<td></td>
<td>1 42</td>
</tr>
<tr>
<td>1975</td>
<td>AUTOMOBILE AIR POLLUTION, PART 4. NEW AUTOMOTIVE ENGINES (A</td>
<td>RABENHORST, D. W. / DUGGER, G. L.</td>
<td></td>
<td>2 124</td>
</tr>
<tr>
<td>1975</td>
<td>SUPERFLYWHEEL FOR STORING ENERGY FROM OTEC PLANTS</td>
<td>/KABASAWA, Y.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>HYBRID POWER SYSTEM</td>
<td>EDA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>DESIGN AND DEVELOPMENT OF A MOMENTUM WHEEL WITH A MAINLY PASSIVE</td>
<td>CORNACK, A. / NOTTI, J. E. / HUIZ, M. L.</td>
<td></td>
<td>4 239</td>
</tr>
<tr>
<td></td>
<td>MAGNETIC BEARING FINAL REPORT</td>
<td>NOTTI, J. E. / CORNACK, A.</td>
<td></td>
<td>4 240</td>
</tr>
<tr>
<td></td>
<td>POWER/ATTITUDE CONTROL SYSTEM (IPACS)</td>
<td>HABERCOM, G. E.</td>
<td></td>
<td>1 46</td>
</tr>
<tr>
<td>1975</td>
<td>KINETIC ENERGY STORAGE OF OFF-PeAK ELECTRICITY</td>
<td>BLAKE, A.</td>
<td></td>
<td>1 53</td>
</tr>
<tr>
<td>1975</td>
<td>DESIGN AND APPLICATIONS OF FLYWHEELS (A BIBLIOGRAPHY WITH</td>
<td>DAVIS, D. D.</td>
<td></td>
<td>2 135</td>
</tr>
<tr>
<td></td>
<td>ABSTRACTS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>MECHANICAL DESIGN OF A COMPOSITE CENTERLESS FLYWHEEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>BATTERY–FLYWHEEL HYBRID ELECTRIC POWER SYSTEM FOR NEAR-TERM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>APPLICATION, VOL. 2, SYSTEM DESIGN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>DESIGN AND ANALYSIS OF THE ATS GRAPHITE EPOXY SATELLITE TRUSS</td>
<td>BURNS, J. W. / TOLAND, R. H.</td>
<td></td>
<td>6 304</td>
</tr>
<tr>
<td>1975</td>
<td>DESIGN AND APPLICATIONS OF FLYWHEELS (A BIBLIOGRAPHY WITH</td>
<td>LEHMANN, E. J.</td>
<td></td>
<td>1 42</td>
</tr>
<tr>
<td></td>
<td>ABSTRACTS)</td>
<td>HABERCOM, G. E.</td>
<td></td>
<td>1 46</td>
</tr>
<tr>
<td>1975</td>
<td>DESIGN AND DEVELOPMENT OF A MOMENTUM WHEEL WITH A MAINLY PASSIVE</td>
<td>EDA</td>
<td></td>
<td>1 45</td>
</tr>
<tr>
<td></td>
<td>MAGNETIC BEARING FINAL REPORT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>DESIGN AND LUBRICATION OF BALL BEARING UNIT FOR FLYWHEELS</td>
<td>AUE, WERNER</td>
<td></td>
<td>4 233</td>
</tr>
<tr>
<td>1974</td>
<td>FURTHER TESTING AND DESIGN IMPROVEMENT OF GREASE LUBRICATED</td>
<td>BOLLEN, J. A. C.</td>
<td></td>
<td>4 230</td>
</tr>
<tr>
<td></td>
<td>SPIRAL GROOVE BEARING MOMENTUM WHEEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>DESIGN AND TEST OF A FLYWHEEL ENERGY STORAGE UNIT FOR</td>
<td>CORNACK, A. / NOTTI, J. E. / HUIZ, M. L.</td>
<td></td>
<td>4 239</td>
</tr>
<tr>
<td></td>
<td>SPACECRAFT APPLICATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>DESIGN AND TESTING OF HIGH ENERGY DENSITY FLYWHEELS FOR</td>
<td>LAWSON, L. J.</td>
<td></td>
<td>2 70</td>
</tr>
<tr>
<td></td>
<td>FLYWHEEL HEAT ENGINE HYBRID VEHICLE DRIVES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>DESIGN AND TESTING OF AN ENERGY FLYWHEEL FOR AN INTEGRATED</td>
<td>NOTTI, J. E. / CORNACK, A.</td>
<td></td>
<td>4 240</td>
</tr>
<tr>
<td></td>
<td>POWER/ATTITUDE CONTROL SYSTEM (IPACS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>DESIGN CONSIDERATIONS FOR A 100-MEGAWATT/500-MEGAWATT</td>
<td>RABENHORST, D. W. / TAYLOR, R. J.</td>
<td></td>
<td>1 28</td>
</tr>
<tr>
<td></td>
<td>SUPERFLYWHEEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>ENGINEERING DESIGN DATA FOR COMPOSITE MATERIALS</td>
<td>CLEMENTS, L. L.</td>
<td></td>
<td>6 347</td>
</tr>
</tbody>
</table>

39
<table>
<thead>
<tr>
<th>DESIGN FOR COMMERCIAL</th>
<th>1986</th>
<th>DESIGN FOR COMMERCIAL FILAMENT WINDING</th>
<th>CHIAO, T. T.</th>
<th>6 281</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESIGN IMPROVEMENT</td>
<td>1974</td>
<td>FURTHER TESTING AND DESIGN IMPROVEMENT OF GREASE LUBRICATED SPIRAL GROOVE BEARING MOMENTUM WHEEL</td>
<td>BOLLEN, J. A. C.</td>
<td>4 230</td>
</tr>
<tr>
<td>DESIGN OF COMPOSITE</td>
<td>1974</td>
<td>PROBABILISTIC DESIGN OF COMPOSITE STRUCTURES</td>
<td>MAYWELL, R./TOLAND, R. H./JOHNSON, C. W.</td>
<td>6 320</td>
</tr>
<tr>
<td>DESIGN OF FLYWHEEL</td>
<td>1974</td>
<td>A 150 MW FLYWHEEL OPTIMIZATION STUDY</td>
<td>STANDING, J. W.</td>
<td>1 35</td>
</tr>
<tr>
<td>DESIGN REPORT</td>
<td>1970</td>
<td>FINAL DESIGN REPORT, PROTOTYPE GEARBOX FLYWHEEL (FLYBOX) FOR STORED ENERG Y ROTARY DRIVE SHIPBOARD CATAPULT</td>
<td>NELLIS, V. C.</td>
<td>3 145</td>
</tr>
<tr>
<td></td>
<td>1973</td>
<td>CIRCUIT DESIGN REPORT FOR A MOMENTUM WHEEL MOTOR CURRENT CONTROL UNIT</td>
<td>HAINES, J. E.</td>
<td>4 228</td>
</tr>
<tr>
<td>DESIGNS</td>
<td>1974</td>
<td>INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS) STUDY, VOLUME 2: CONCEPTUAL DESIGNS</td>
<td>NOTTI, J. E./CORMACK, A./SCHMIDT, W. C.</td>
<td>4 239</td>
</tr>
<tr>
<td>DESULFURIZATION</td>
<td>1975</td>
<td>FOSSIL FUEL AND ADVANCED SYSTEMS DIVISION RESEARCH PROGRESS REPORT FF-3</td>
<td>ELECTRIC POWER RESEARCH INST.</td>
<td>3 192</td>
</tr>
<tr>
<td>DETERMINING INERTIA</td>
<td>1973</td>
<td>DETERMINING INERTIA AND TIME REQUIREMENTS FOR FLYWHEEL MACHINES</td>
<td>SPOTTS, W. F.</td>
<td>1 1</td>
</tr>
<tr>
<td>DEUTERIUM</td>
<td>1975</td>
<td>REPETITIVE PLASMA FOCUS POWERED BY A APPROX. 200 MW FLYWHEEL GENERATOR</td>
<td>NARDI, V.</td>
<td>3 194</td>
</tr>
<tr>
<td>DEUTSCHE AUTOMOBILGES DEUTSCHE AUTOMOBILGESELLSCHAFT MBH</td>
<td>1974</td>
<td>ELECTRICAL PROPULSION SYSTEMS FOR ROAD VEHICLES. STATE OF THE ART AND PRESENT-DAY PROBLEMS</td>
<td>BADER, C./PLUST, H. G.</td>
<td>2 111</td>
</tr>
<tr>
<td>DEVELOPING ADVANCED TECHNOLOGIES</td>
<td>1974</td>
<td>ENERGY STORAGE (11): DEVELOPING ADVANCED TECHNOLOGIES</td>
<td>ROBINSON, A. L.</td>
<td>3 165</td>
</tr>
<tr>
<td></td>
<td>1974</td>
<td>TECHNICAL PROGRAM PLAN FOR SUPERFLYWHEEL DEVELOPMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1974</td>
<td>ENERGY STORAGE: INCENTIVES AND PROSPECTS FOR ITS DEVELOPMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1974</td>
<td>ACOUSTIC EMISSION USES IN RESEARCH AND DEVELOPMENT OF COMPOSITE MATERIALS</td>
<td>KALILMANN, F.</td>
<td>3 174</td>
</tr>
<tr>
<td></td>
<td>1975</td>
<td>DEVELOPMENT OF HIGH-DEPARTMENTAL ENERGY STORAGE</td>
<td>HAGEN, M. A.</td>
<td>6 346</td>
</tr>
<tr>
<td></td>
<td>1975</td>
<td>DESIGN AND DEVELOPMENT OF A MOMENTUM WHEEL WITH A MAINLY PASSIVE MAGNETIC BEARING FINAL REPORT</td>
<td>BREDIECK, W. W./ASSOC.</td>
<td>1 44</td>
</tr>
<tr>
<td></td>
<td>1975</td>
<td>DEVELOPMENT OF HIGH-DEPARTMENTAL ENERGY STORAGE FINAL REPORT</td>
<td>ESA</td>
<td>1 45</td>
</tr>
<tr>
<td></td>
<td>1975</td>
<td>DEVELOPMENT OF HIGH-DEPARTMENTAL ENERGY STORAGE FINAL REPORT</td>
<td>GORDON, H. S.</td>
<td>3 193</td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

DEVICE
1967 FLYWHEEL INERTIA ACTUATES AUTOMATIC ANTI-SKID DEVICE
 PRODUCT ENG. 2 87
67 BONNET-THIRION, C.J./ROBIDA, L. 1 21
 /FORDER, S.

1972 DISPOSITIF DE PROTECTION CONTRE LES CONSEQUENCES DE LA
 RUPTURE D'UN VOLANT D'INERTIE. (A PROTECTIVE DEVICE TO
 PREVENT THE CONSEQUENCES OF A FLYWHEEL RUPTURE)
 LLL 1 50

1974 FLYWHEELS AS AN ENERGY STORAGE DEVICE. A SELECTED
 BIBLIOGRAPHY
 TIN, W.C. 3 189

1978 ENERGY STORAGE DEVICE

DEVICES
1978 WHEN DO ELECTRIC STORAGE DEVICES MAKE ECONOMIC SENSE?
 BRAUN, C. / CHERNIAVSKY, E. A. / SALZANO, F. J. 3 205

1978 WHEN DO ELECTRIC STORAGE DEVICES MAKE ECONOMIC SENSE?
 BRAUN, C. / CHERNIAVSKY, E. A. / SALZANO, F. J. 3 205

DIESEL ELECTRIC SETS
1970 FIRST NATIONAL CITY BANK USES CONSTANT-POWER SYSTEM FOR
 COMPUTERS
 ORTIZ, J. V. 3 144

1970 FIRST NATIONAL CITY BANK USES CONSTANT-POWER SYSTEM FOR
 COMPUTERS

1971 FLYWHEEL AND FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEMS
 FOR LOW-EMISSION VEHICLES

1974 INDEPENDENT ENERGY SYSTEMS FOR BETTER EFFICIENCY

1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND
 FUELS.

1974 ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES

DIFFUSION IN COMPOSITES
1973 THE EFFECT OF STRESS ON DIFFUSION IN COMPOSITES -
 EXPERIMENTAL OBSERVATIONS.
 BURMANN, D. C. / WU, E. W. 6 515

1975 DIGEST OF CURRENT RESEARCH IN THE ELECTRIC UTILITY INDUSTRY
 EPRI 3 167

DIMENSIONAL FINITE ELEMENT
1974 THE APPLICATION OF THREE DIMENSIONAL FINITE ELEMENT ANALYSIS
 TO THE MICRO-MECHANICS OF FIBROUS COMPOSITE MATERIALS
 LANDER, R. A. 6 343

DIRECT CHARACTERIZATION PROCEDURE
1974 LAMINATE STRENGTH - A DIRECT CHARACTERIZATION PROCEDURE
 WU, E. W. / SCHUEBLEIN, J. K. 6 330

DIRECT ENERGY CONVERTERS
1980 STUDY OF UNCONVENTIONAL THERMAL,MECHANICAL,AND NUCLEAR LOW-
 POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES
 HOESS, J.A./CHERNEY,R.S./CRESWICK,P.
 A./TREYTER,D.A./FISCHER,R.D.
 /TIBERLAKE,A.B./BASMASH,M.J.
 /HEREDICK,J.T./WILCOX,J.P.

DISCONTINUOUS MODE
1968 DISCONTINUOUS MODE OF CRACK EXTENSION IN UNIDIRECTIONAL
 COMPOSITES
 WU, E. W. 6 267

DISCRETE
1974 SYNTHESIS OF THE BELT OF A DISCRETE BELT VARIATOR
 GULIA, N. V. / YUDOVSKII, I. I. 2 104

1974 WAVE PROPAGATION IN ELASTIC MEDIA WITH A PERIODIC ARRAY OF
 DISCRETE INCLUSIONS
 CHRISTENSEN, R. W. 6 351
ERDA Bibliography for Flywheel Energy Storage Systems

Concorde on Title, Author, Organization and Keywords

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Document Title</th>
<th>Year</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kyser, A. C.</td>
<td>The Uniform-Stress Spinning Filamentary Disk</td>
<td>1964</td>
<td>3</td>
</tr>
<tr>
<td>Kyser, A. C.</td>
<td>Product Engineering</td>
<td>1964</td>
<td>99</td>
</tr>
<tr>
<td>Kritzer, R.</td>
<td>Calculation of Stresses and Strength Retention of Rotating Disks and Flywheels</td>
<td>1972</td>
<td>2</td>
</tr>
<tr>
<td>Gerstle, F. P. / Biggs, F.</td>
<td>On Optimal Shapes for Anisotropic Rotating Disks</td>
<td>1972</td>
<td>47</td>
</tr>
<tr>
<td>Larder, R. A. / Beadle, C. W.</td>
<td>Strength Distribution of Single Filaments</td>
<td>1975</td>
<td>6 359</td>
</tr>
<tr>
<td>Lepper, J. K.</td>
<td>Organic Materials Division Quarterly Report</td>
<td>1976</td>
<td>375</td>
</tr>
<tr>
<td>Lepper, J. K.</td>
<td>Organic Materials Division Quarterly Report</td>
<td>1976</td>
<td>381</td>
</tr>
<tr>
<td>Todd, M. J. / Wilson, N. G.</td>
<td>Double-Gyrogyral Momentum Wheel Thermal Vacuum Qualification Tests on a Tellex Double-Gyrogyrally Momentum Wheel</td>
<td>1974</td>
<td>234</td>
</tr>
<tr>
<td>Weide, Heinz</td>
<td>The Drallrad: A Flywheel for the Stabilization of Synchronous Satellites</td>
<td>1971</td>
<td>222</td>
</tr>
<tr>
<td>Schulz, Hans Holger</td>
<td>Environmental Tests on Drallrad Dr 20-6-2X</td>
<td>1973</td>
<td>229</td>
</tr>
<tr>
<td>Nellis, V. C.</td>
<td>Final Design Report, Prototype Gearbox Flywheel (Flybox) for Stored Energy Rotary Drive Shipboard Catapult</td>
<td>1970</td>
<td>143</td>
</tr>
<tr>
<td>Whitlaw, R. L.</td>
<td>Application of Two-Phase DC Chopper Motor Drive</td>
<td>1972</td>
<td>90</td>
</tr>
<tr>
<td>Reimers, K.</td>
<td>Battery Powered Vehicle Drive</td>
<td>1974</td>
<td>95</td>
</tr>
<tr>
<td>Deane, C. T.</td>
<td>Hybrid Drive with Flywheel Component for Economic and Dynamic Operation</td>
<td>1974</td>
<td>105</td>
</tr>
<tr>
<td>Helling, J. / Schreck, H. / Giera, H. / Schreck, H. / Torres, P.</td>
<td>Hybrid Drive with Kinetic Energy Store as Vehicle Drive</td>
<td>1974</td>
<td>133</td>
</tr>
<tr>
<td>Chirinos, R. P.</td>
<td>Super Flywheel Configurations Form Heart of Mechanical-Powered Drives</td>
<td>1971</td>
<td>78</td>
</tr>
</tbody>
</table>

42
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

DUGGER, G. L.
1971 FLYWHEEL AND FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEMS FOR LOW-EMISSION VEHICLES
1972 HEAT-ENGINE MECHANICAL-ENERGY-ENERGY STORAGE HYBRID PROPULSION SYSTEMS FOR VEHICLES. FINAL REPORT
1975 SUPERFLYWHEEL FOR STORING ENERGY FROM OTEC PLANTS

DUNN, J. H.
1972 SUMMARY OF GAS BEARING APPLICATIONS IN THE FIELD OF SPACE ELECTRIC POWER SYSTEMS

DYKEMA, O.
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.

DYNAMIC
1964 THE DYNAMIC RESPONSE OF A SOLID, VISCOELASTIC SPHERE TO TRANSLATIONAL AND ROTATIONAL EXCITATION
1971 MEASUREMENT AND CONTROL OF DYNAMIC CRACKS IN COMPOSITES
1974 HYBRID DRIVE WITH FLYWHEEL COMPONENT FOR ECONOMIC AND DYNAMIC OPERATION
1975 DYNAMIC BRAKING

DYNAMICS
1973 DYNAMICS OF A SATELLITE WITH A FLYWHEEL AND FLEXIBLE SOLAR ARRAYS

DYNAMICS CORP.
1971 HYDRAULIC TRANSMISSION COUPLED STANDBY POWER UNIT

DYNAMOMETERS
1974 EMISSION CHARACTERISTICS OF A PRIME MOVER FOR HYBRID VEHICLE USE
1974 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES
1974 ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES

EARTH SALTS
1974 HEAT STORAGE USING ALKALI METAL SALTS, ALKALI EARTH SALTS, IRON CHLORIDE, ZINC CHLORIDE, BORON OXIDE, AND EUTECTIC FLUORIDE MIXTURES

EASY HANDLING EPOXY
1974 A ROOM TEMPERATURE-CURABLE EPOXY FOR ADVANCED FIBER COMPOSITES

ECONOMIC
1974 HYBRID DRIVE WITH FLYWHEEL COMPONENT FOR ECONOMIC AND DYNAMIC OPERATION
1974 CAN FLYWHEELS REPLACE PUMPED STORAGE?
1975 ECONOMIC AND TECHNICAL FeASIBILITY STUDY FOR ENERGY STORAGE FLYWHEELS
1978 WHEN DO ELECTRIC STORAGE DEVICES MAKE ECONOMIC SENSE?

ECONOMIC SENSE
1978 WHEN DO ELECTRIC STORAGE DEVICES MAKE ECONOMIC SENSE?

DUGGER, G. L./BRANDT, A./GEORGE, J. F. 2 80 /PERINI, L. L.
DUNN, J. H./BEAM, L. W. 4 223
CHRISTENSEN, R. W./GOTTENBERG, W. 6 257
CHRISTENSEN, R. W./GOTTENBERG, W. 6 257
BRISBY, F. L./WU, E. W. 6 280
HELLING, J./SCHRECK, H./GIERA, B. 2 110
HELLING, J./SCHRECK, H./GIERA, B. 2 110
KALRA, P. 2 125
KALRA, P. 2 125
PFEIFFER, F./FOHL,A. 4 227
PFEIFFER, F./FOHL,A. 4 227
DYNAMICS CORP. 3 149
DYNAMICS CORP. 3 149
ALLSUP, J. R./FLEMING, R. D. 2 102
ALLSUP, J. R./FLEMING, R. D. 2 102
LAPEDES, D. E./MELTZER, J. 2 118
LAPEDES, D. E./MELTZER, J. 2 118
STERNLICH, B./THUR, C. M. 2 119
STERNLICH, B./THUR, C. M. 2 119
SCHROEDER, J. 6 242
SCHROEDER, J. 6 242
CHIAO, T. T./MOORE, R. L. 6 335
CHIAO, T. T./MOORE, R. L. 6 335
HELLING, J./SCHRECK, H./GIERA, B.
HELLING, J./SCHRECK, H./GIERA, B.
HEGEMEYER, T.
HEGEMEYER, T.
ROCKWELL INTERNATIONAL, SPACE DIV.
ROCKWELL INTERNATIONAL, SPACE DIV.
BRAUN, C./CHERNIAVSKY, E. A./SALZANO, F. J.

43
ECONOMICS
1972 FLYWHEEL ENERGY STORAGE SYSTEMS FOR TRANSIT BUSES
1972 THE APPLICATION OF WOOD TECHNOLOGY TO KINETIC ENERGY STORAGE
1972 FLYWHEEL ENERGY BUFFER
1973 HYBRID ELECTRIC PROPULSION UTILIZING RECONNECTIBLE MOTOR
1973 FLYWHEELS
1974 INDEPENDENT ENERGY SYSTEMS FOR BETTER EFFICIENCY
1974 ENERGY, VOLUME I: DEMANDS, RESOURCES, IMPACT, TECHNOLOGY, AND
POLICY
1974 ENERGY STORAGE, (I): USING ELECTRICITY MORE EFFICIENTLY
1974 ENERGY STORAGE FOR THE ELECTRIC POWER INDUSTRY
1974 ASSESSMENT OF ADVANCED CONCEPTS IN ENERGY STORAGE AND THEIR
APPLICATION ON ELECTRIC UTILITY SYSTEMS
1975 ENERGY-STORAGE SYSTEMS
1975 ENERGY STORAGE
1975 ENERGY Storage BY FLYWHEELS
1975 STORING ELECTRICAL ENERGY ON A LARGE SCALE
1975 HYBRID VEHICLES
1975 AC/DC POWER CONDITIONING AND CONTROL EQUIPMENT FOR ADVANCED
CONVERSION AND STORAGE TECHNOLOGY.
1976 ENERGY STORAGE
1976 ENERGY STORAGE
1976 ENERGY ON CALL: A MORE EFFICIENT PEAKING SYSTEM WOULD
EXPLOIT THE ADVANTAGES OF ENERGY STORAGE, WHILE CONSERVING
CAPITAL AND RESOURCES

ECONOMICS Technology
1975 TECHNICAL ASSESSMENT OF ENERGY STORAGE TECHNOLOGIES

ECONOMY IN TRANSPORTATION
1975 INCREASED FUEL ECONOMY IN TRANSPORTATION SYSTEMS BY USE OF
ENERGY MANAGEMENT

EDGAR, R. F.
1963 MAGNETIC BEARINGS FOR AEROSPACE APPLICATIONS

EFFECT
1957 THE TEMPERATURE EFFECT OF INTERNAL AND EXTERNAL PRESSURES OF
TWO ANGLE WOUND PIPE
1971 THE EFFECT OF SOLVENTS AND STRESS ON THE STRESS RUPTURE LIFE
OF EPOXY-GLASS COMPOSITES
1971 STRAIN RATE EFFECT ON THE ULTIMATE TENSILE STRESS OF FIBER/
EPoxy STRANDS
1973 THE EFFECT OF STRESS ON DIFFUSION IN COMPOSITES -
EXPERIMENTAL OBSERVATIONS.
1974 CYROSCOPIC EFFECT OF FLYWHEELS IN MACHINES

EFFECTIVE MODULI
1976 THE EFFECTIVE MODULI OF COMPOSITES CONTAINING RANDOMLY
ORIENTED FIBERS.

EFFECTIVE STIFFNESS
1972 EFFECTIVE STIFFNESS OF RANDOMLY ORIENTED FIBER COMPOSITES

EFFECTS
1974 STRESS RUPTURE OF GLASS/EPOXY COMPOSITES - ENVIRONMENT AND
STRESS EFFECTS.
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

EFFICIENCY
1973 ACHIEVING HIGH ENERGY EFFICIENCY
1973 ENERGY STORAGE VIA FLYWHEELS
1973 INVESTIGATION OF THE HOMOPOLAR MOTOR-GENERATOR AS A POWER SUPPLY FOR CONTROLLED FUSION EXPERIMENTS
1974 INDEPENDENT ENERGY SYSTEMS FOR BETTER EFFICIENCY
1974 ENERGY STORAGE. (1): USING ELECTRICITY MORE EFFICIENTLY
1974 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES
1974 KINETIC ENERGY STORAGE FOR MASS TRANSPORTATION
1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY

INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE
GILLMAN, J. J./ HUCKE, E. E.
RYLANDER, H. G./ ROWBERG, R. E./ TOLK, K. M.
MELDON, W. F./ WOODSON, H. H.
MARRIALL, O. W./ MORASH, R. T./ BARBER, R.
J.
ROBINSON, A. L.
LAPIDES, D. E./ MELTZER, J.
LAWSON, L. J.
LUCHINI, A. P.

EFFICIENT PEAKING SYSTEM
1976 ENERGY ON CALL: A MORE EFFICIENT PEAKING SYSTEM WOULD EXPLOIT THE ADVANTAGES OF ENERGY STORAGE, WHILE CONSERVING CAPITAL AND RESOURCES

CASAZZA, J. A./ SCHNEIDER, T. R./ SULZBERGER, V. T.

EFFICIENTLY
1974 ENERGY STORAGE. (1): USING ELECTRICITY MORE EFFICIENTLY

ROBINSON, A. L.

EHV SYSTEMS
1974 ELECTRIC POWER SYSTEMS

ERDA

EIGENFREQUENCY
1974 ITERATIVE PROCEDURES FOR CALCULATING THE FIRST TORSIONAL EIGENFREQUENCY OF A SHAFT WITH SEVERAL FLYWHEELS

ATZORI, B./ CURTI, G.

EIGENFREQUENCY CALCULATIONS
1974 ITERATIVE PROCEDURES FOR CALCULATING THE FIRST TORSIONAL EIGENFREQUENCY OF A SHAFT WITH SEVERAL FLYWHEELS

ATZORI, B./ CURTI, G.

ELASTIC DEFORMATION
1967 LARGE ELASTIC DEFORMATION OF A SPHERICAL WEDGE

CHRISTENSEN, R. M.

ELASTIC MEDIA
1974 WAVE PROPAGATION IN ELASTIC MEDIA WITH A PERIODIC ARRAY OF DISCRETE INCLUSIONS
1978 WAVE PROPAGATION IN LAYERED ELASTIC MEDIA

CHRISTENSEN, R. M.

ELASTIC SPHERICAL WEDGE
1966 DEFORMATION OF AN ELASTIC SPHERICAL WEDGE.

CHRISTENSEN, R. M.

ELECTRIC
1971 PROCEEDINGS SECOND INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM
1971 ELECTRIC ROAD VEHICLE
1972 SUMMARY OF GAS BEARING APPLICATIONS IN THE FIELD OF SPACE ELECTRIC POWER SYSTEMS
1973 HYBRID ELECTRIC PROPULSION UTILIZING RECONNECTIBLE MOTOR WINDING IN WHEELS
1974 ELECTRIC VEHICLE HYBRID POWER TRAIN
1974 FLYWHEEL ENERGY PROPULSION AND THE ELECTRIC VEHICLE
1974 MECHANICAL AND BATTERY-STORED ENERGY SYSTEMS FOR MEETING UNINTERRUPTIBLE AND BUFFERED ELECTRIC POWER NEEDS
1974 ENERGY STORAGE FOR THE ELECTRIC POWER INDUSTRY
1974 ENERGY STORAGE AND ITS ROLE IN ELECTRIC POWER SYSTEMS
1974 ASSESSMENT OF ADVANCED CONCEPTS IN ENERGY STORAGE AND THEIR APPLICATION ON ELECTRIC UTILITY SYSTEMS
1974 POTENTIAL FOR LARGE-SCALE ENERGY STORAGE IN ELECTRIC UTILITY SYSTEMS

CALVERT, W. L.
DUNN, J. H./ REAM, L. W.
KUEMSER, E.
KUGLER, G. C.
WEBER, R. / MENKES, S.
COMEAU, G. E.
KELLER, W. E.
HAYDOCK, J. L.
FERNERDIES, R. A./ GILDERBLEEVE, G.
KALHAMMER, F. / ZYGIELBAUM, P. S.
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>ELECTRIC POWER SYSTEMS</td>
<td>ERDA</td>
<td>3 178</td>
</tr>
<tr>
<td>1975</td>
<td>DIGEST OF CURRENT RESEARCH IN THE ELECTRIC UTILITY INDUSTRY</td>
<td>EPRI</td>
<td>3 187</td>
</tr>
<tr>
<td>1975</td>
<td>AN EVALUATION OF THE FUTURE ROLE OF STORAGE TECHNIQUES IN ELECTRIC</td>
<td>PEDDIE, G. F.</td>
<td>3 199</td>
</tr>
<tr>
<td>1976</td>
<td>ENERGY STORAGE - FEASIBILITY STUDY OF AN EXPERIMENT INVOLVING</td>
<td>TATRY, B.</td>
<td>3 204</td>
</tr>
<tr>
<td></td>
<td>SOLAR ENERGY COLLECTION, ITS STORAGE BY A SUPER FLYWHEEL, AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELECTRIC POWER GENERATION.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>BATTERY-FLYWHEEL HYBRID ELECTRIC POWER SYSTEM FOR NEAR-TERM</td>
<td>DAVIS, D. D.</td>
<td>2 134</td>
</tr>
<tr>
<td></td>
<td>APPLICATION, VOL. 1, SYSTEM DESCRIPTION.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>BATTERY-FLYWHEEL HYBRID ELECTRIC POWER SYSTEM FOR NEAR-TERM</td>
<td>DAVIS, D. D.</td>
<td>2 135</td>
</tr>
<tr>
<td></td>
<td>APPLICATION, VOL. 2, SYSTEM DESIGN.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>PROCEEDINGS SECOND INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM</td>
<td>VDI</td>
<td>2 83</td>
</tr>
<tr>
<td>1974</td>
<td>STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS: FIFTEEN PAPERS--</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SURVEY OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>BATTERY POWERED VEHICLE DRIVE</td>
<td>DEANE, C. T.</td>
<td>2 106</td>
</tr>
<tr>
<td>1974</td>
<td>ELECTRICAL PROPULSION SYSTEMS FOR ROAD VEHICLES. STATE OF THE ART</td>
<td>BADER, C. / PLOST, H. G.</td>
<td>2 111</td>
</tr>
<tr>
<td></td>
<td>AND PRESENT-DAY PROBLEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>MECHANICAL AND BATTERY-STORED ENERGY SYSTEMS FOR METING</td>
<td>COXEAU, G. E.</td>
<td>3 162</td>
</tr>
<tr>
<td></td>
<td>UNINTERRUPTIBLE AND BUFFERED ELECTRIC POWER NEEDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>ENERGY STORAGE. (I): USING ELECTRICITY MORE EFFICIENTLY</td>
<td>ROBINSON, A. L.</td>
<td>3 165</td>
</tr>
<tr>
<td>1974</td>
<td>ENERGY STORAGE. (II): DEVELOPING ADVANCED TECHNOLOGIES</td>
<td>ROBINSON, A. L.</td>
<td>3 166</td>
</tr>
<tr>
<td></td>
<td>GOVERNMENT-WIDE REPORT TO OFFICE ON MANAGEMENT AND BUDGET ON</td>
<td>ERDA / DAT</td>
<td>5 244</td>
</tr>
<tr>
<td></td>
<td>ENERGY STORAGE R AND D PROGRAM STRATEGIES AND IMPLEMENTATION PLANS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FORREST, L. / HAGEN, K. / KELLER, J. / LABRANSCH, H. / SMALLEY, W. /</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LAPEDES, D. E. / WELTZER, J.</td>
<td>2 118</td>
</tr>
<tr>
<td>1974</td>
<td>ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES</td>
<td>STERNLICHT, B. / THUR, G. W.</td>
<td>2 119</td>
</tr>
<tr>
<td>1974</td>
<td>STORAGE OF HIGH-GRADE ENERGY</td>
<td>MCALLAN, J. V.</td>
<td>5 245</td>
</tr>
<tr>
<td></td>
<td>APPLICATION ON ELECTRIC UTILITY SYSTEMS</td>
<td>D. / REED</td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>ELECTRIC POWER SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>ENERGY-STORE SYSTEMS</td>
<td>PENNER, S. S. / IZERMAN, L.</td>
<td>5 248</td>
</tr>
<tr>
<td>1975</td>
<td>DIGEST OF CURRENT RESEARCH IN THE ELECTRIC UTILITY INDUSTRY</td>
<td>EPRI</td>
<td>3 187</td>
</tr>
<tr>
<td>1975</td>
<td>FOCUS FUEL AND ADVANCED SYSTEMS DIVISION.RESEARCH PROGRESS</td>
<td>ELECTRIC POWER RESEARCH INST.</td>
<td>3 192</td>
</tr>
<tr>
<td></td>
<td>REPORT FF-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>MATERIALS REQUIREMENTS FOR ENERGY GENERATION, CONVERSION, AND</td>
<td>JAFFEE, R. I.</td>
<td>5 250</td>
</tr>
<tr>
<td></td>
<td>ELECTRICITY INTO UTILITY POWER GRIDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>FLYWHEEL GENERATORS FOR INSTANT POWER</td>
<td>ASHMORE, P. H.</td>
<td>3 145</td>
</tr>
<tr>
<td>1971</td>
<td>ELECTRIC ROAD VEHICLE</td>
<td>CALVERT, W. L.</td>
<td>2 84</td>
</tr>
<tr>
<td></td>
<td>SUPPLY FOR CONTROLLED FUSION EXPERIMENTS</td>
<td>WELDON, W. F. / WOODSON, H. N.</td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>INDEPENDENT ENERGY SYSTEMS FOR BETTER EFFICIENCY</td>
<td>MARSHALL, G. W. / MORASCH, R. T. / BARBER, R. J. /</td>
<td>3 159</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RYLANDER, H. G. / WOODSON, H. N. / BECKER, E. /</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LAWSON, L. J.</td>
<td>3 183</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KNOBLOCH, A. / KOTTWAIR, W. / SCHLUETER, W. / VAUG. /</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GILBERT, J. S. / KERN, E. A.</td>
<td>3 183</td>
</tr>
</tbody>
</table>

48
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

ELECTRIC GENERATORS (CONTD.)

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976</td>
<td>IDEAS AND EXPERIMENTS IN MAGNETIC INTERFACING</td>
<td>AALAND, K. / LANE, J. E.</td>
<td>2 132</td>
</tr>
<tr>
<td></td>
<td>ELECTRICITY INTO UTILITY POWER GRIDS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELECTRIC MOTORS

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973</td>
<td>ELECTRIC VEHICLE HYBRID POWER TRAIN</td>
<td>KUGLER, G. C.</td>
<td>2 92</td>
</tr>
<tr>
<td>1974</td>
<td>BATTERY POWERED VEHICLE DRIVE</td>
<td>DEANE, C. T.</td>
<td>2 106</td>
</tr>
<tr>
<td></td>
<td>ULTRAHIGH TEMPERATURE</td>
<td>RTLANDER, R.G./WOODSON, H.H./BECKER, E.</td>
<td>3 183</td>
</tr>
<tr>
<td></td>
<td>B./ROWBERG, R.</td>
<td>AALAND, K. / LANE, J. E.</td>
<td>2 132</td>
</tr>
</tbody>
</table>

ELECTRIC POWER

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972</td>
<td>SUMMARY OF GAS BEARING APPLICATIONS IN THE FIELD OF SPACE</td>
<td>DUNN, J. N. / REAM, L. W.</td>
<td>4 223</td>
</tr>
<tr>
<td></td>
<td>ELECTRIC POWER SYSTEMS</td>
<td>MARESCH, O.W./WORASH, H.E./BARBERI, R.</td>
<td>3 159</td>
</tr>
<tr>
<td></td>
<td>AND ITS ROLE IN ELECTRIC POWER SYSTEMS</td>
<td>COEURAUX, G. E.</td>
<td>3 162</td>
</tr>
<tr>
<td></td>
<td>MECHANICAL AND BATTERY-STORED ENERGY SYSTEMS FOR MEETING</td>
<td>ERDA/DAT</td>
<td>5 244</td>
</tr>
<tr>
<td></td>
<td>UNINTERRUPTIBLE AND BUFFERED ELECTRIC POWER NEEDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GOVERNMENT-WIDE REPORT TO OFFICE ON MANAGEMENT AND BUDGET ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENERGY STORAGE A AND D PROGRAM STRATEGIES AND IMPLEMENTATION PLANS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>ENERGY STORAGE FOR THE ELECTRIC POWER INDUSTRY</td>
<td>KELLER, W. E.</td>
<td>3 168</td>
</tr>
<tr>
<td>1974</td>
<td>ENERGY STORAGE AND ITS ROLE IN ELECTRIC POWER SYSTEMS</td>
<td>MURDOCK, J. L.</td>
<td>3 172</td>
</tr>
<tr>
<td>1974</td>
<td>CYCLOCONTROLLER-CONTROLLED SYNCHRONOUS MACHINES FOR LOAD</td>
<td>FINLAYSON, F. T. / WASHBURN, D. C.</td>
<td>3 178</td>
</tr>
<tr>
<td></td>
<td>COMPENSATION ON AC POWER SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>ELECTRIC POWER SYSTEMS</td>
<td>ERDA</td>
<td>3 179</td>
</tr>
<tr>
<td>1975</td>
<td>STORING ELECTRICAL ENERGY ON A LARGE SCALE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>DIGEST OF CURRENT RESEARCH IN THE ELECTRIC UTILITY INDUSTRY</td>
<td>EPRI</td>
<td>3 187</td>
</tr>
<tr>
<td>1975</td>
<td>KINETIC ENERGY STORAGE OF OFF-PEAK ELECTRICITY</td>
<td>STEINBECK, J.</td>
<td>3 188</td>
</tr>
<tr>
<td>1975</td>
<td>AN EVALUATION OF THE FUTURE ROLES OF STORAGE TECHNIQUES IN</td>
<td>PEZDIERTZ, G. F.</td>
<td>3 199</td>
</tr>
<tr>
<td></td>
<td>ELECTRIC POWER TECHNOLOGY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>ENERGY STORAGE - FEASIBILITY STUDY OF AN EXPERIMENT INVOLVING</td>
<td>TATBY, B.</td>
<td>3 204</td>
</tr>
<tr>
<td></td>
<td>SOLAR ENERGY COLLECTION, ITS STORAGE BY A SUPER FLYWHEEL,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AND ELECTRIC POWER GENERATION.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>BATTERY-FLYWHEEL HYBRID ELECTRIC POWER SYSTEM FOR NEAR-TERM</td>
<td>DAVIS, D. B.</td>
<td>2 134</td>
</tr>
<tr>
<td></td>
<td>APPLICATION, VOL. 1. SYSTEM DESCRIPTION</td>
<td>DAVIS, D. D.</td>
<td>2 135</td>
</tr>
<tr>
<td>1978</td>
<td>BATTERY-FLYWHEEL HYBRID ELECTRIC POWER SYSTEM FOR NEAR-TERM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>APPLICATION, VOL. 2, SYSTEM DESIGN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELECTRIC POWER GENERATION

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976</td>
<td>ENERGY STORAGE - FEASIBILITY STUDY OF AN EXPERIMENT INVOLVING</td>
<td>TATBY, B.</td>
<td>3 204</td>
</tr>
<tr>
<td></td>
<td>SOLAR ENERGY COLLECTION, ITS STORAGE BY A SUPER FLYWHEEL,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AND ELECTRIC POWER GENERATION.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELECTRIC POWER INDUSTRY

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>ENERGY STORAGE FOR THE ELECTRIC POWER INDUSTRY</td>
<td>KELLER, W. E.</td>
<td>3 168</td>
</tr>
</tbody>
</table>

ELECTRIC POWER NEEDS

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>MECHANICAL AND BATTERY-STORED ENERGY SYSTEMS FOR MEETING</td>
<td>COEURAUX, G. E.</td>
<td>3 162</td>
</tr>
<tr>
<td></td>
<td>UNINTERRUPTIBLE AND BUFFERED ELECTRIC POWER NEEDS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELECTRIC POWER RESEARCH INST.

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>ENERGY STORAGE</td>
<td>KALHAMMER, F. R. / COOPER, V. R.</td>
<td>3 181</td>
</tr>
<tr>
<td>1975</td>
<td>DIGEST OF CURRENT RESEARCH IN THE ELECTRIC UTILITY INDUSTRY</td>
<td>EPRI</td>
<td>3 187</td>
</tr>
<tr>
<td>1975</td>
<td>Fossil Fuel and Advanced Systems Division Research Progress Report PP-3</td>
<td>ELECTRIC POWER RESEARCH INST.</td>
<td>3 192</td>
</tr>
<tr>
<td>1975</td>
<td>MATERIALS REQUIREMENTS FOR ENERGY GENERATION, CONVERSION, AND STORAGE</td>
<td>JAFFEE, R. I.</td>
<td>5 250</td>
</tr>
</tbody>
</table>

47
<table>
<thead>
<tr>
<th>Topic</th>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Power Systems</td>
<td>1972</td>
<td>Summary of Gas Braking Applications in the Field of Space</td>
<td>Dunn, J. H. / Ream, L. W.</td>
<td>4 223</td>
</tr>
<tr>
<td>Electric POWER SYSTEM</td>
<td>1974</td>
<td>Electric Power Systems</td>
<td>Erda</td>
<td>3 179</td>
</tr>
<tr>
<td>Electric Propulsion</td>
<td>1973</td>
<td>Hybrid Electric Propulsion Utilizing Reconnectible Motor Windings in Wheels</td>
<td>Reimers, E.</td>
<td>2 91</td>
</tr>
<tr>
<td>Electric Road Vehicle</td>
<td>1971</td>
<td>Electric Road Vehicle</td>
<td>Calvert, W. L.</td>
<td>2 84</td>
</tr>
<tr>
<td>Electric-Drive</td>
<td>1974</td>
<td>Energy Conservation Factors for a High-Efficiency Electric-Drive Automobile</td>
<td>Post, R. F.</td>
<td>2 101</td>
</tr>
<tr>
<td>Electric-Drive Automobile</td>
<td>1974</td>
<td>Energy Conservation Factors for a High-Efficiency Electric-Drive Automobile</td>
<td>Post, R. F.</td>
<td>2 101</td>
</tr>
<tr>
<td>Topic</td>
<td>Title</td>
<td>Author(s)</td>
<td>Year</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Electric-Fl ywheel Vehicles</td>
<td>1975 Hybrid Vehicles</td>
<td>Vivian, H. C.</td>
<td>2</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>1974 Safety Review of the Kinetic Energy Wheel (KEW) System for Bus Application</td>
<td>National Academy of Sciences</td>
<td>2</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>1974 Battery Powered Vehicle Drive</td>
<td>Deane, C. T.</td>
<td>2</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>1974 Alternative Prime Movers for Future Automobiles</td>
<td>Sternlicht, B. / Thur, G. W.</td>
<td>2</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>1975 Digest of Current Research in the Electric Utility Industry</td>
<td>FPI</td>
<td>3</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>1975 Proposed TPTR Electrical System</td>
<td>Bronner, G. / Murray, J.</td>
<td>3</td>
<td>209</td>
</tr>
<tr>
<td>Electrical Equipment</td>
<td>1975 Skagit Nuclear Power Project, Units 1 and 2. License Application</td>
<td>Puget Sound Power and Light Co.</td>
<td>3</td>
<td>180</td>
</tr>
<tr>
<td>Electrical System</td>
<td>1975 Proposed TPTR Electrical System</td>
<td>Bronner, G. / Murray, J.</td>
<td>3</td>
<td>209</td>
</tr>
<tr>
<td>Electrically Run</td>
<td>1959 Comparison of Electrically Run Up Flywheel (EC Motor) with Turbine, Hot Gas Motor and Other Systems for Minute-War Application.</td>
<td>Frutkow, N. N.</td>
<td>2</td>
<td>60</td>
</tr>
<tr>
<td>Electricity</td>
<td>1970 High-Speed Energy Wheel Offers Trolleys Portable Electricity</td>
<td>Product Engineering</td>
<td>2</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>1978 Assessment of the State-Of-The-Art of Feeding Wind-Generated Electricity Into Utility Power Grids</td>
<td>Reed, J. J.</td>
<td>3</td>
<td>207</td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

ELECTRODES
1975 REPETITIVE PLASMA FOCUS POWERED BY A APPROX. 200 MJ FLYWHEEL GENERATOR
NARDI, V.
3 194

ELECTROMAGNETS
1961 AN ELECTRO-MECHANICAL ENERGY STORAGE SYSTEM FOR SPACE APPLICATION
ROE, J. B.
4 210
1974 ENERGY STORAGE(11). DEVELOPING ADVANCED TECHNOLOGIES
ROBINSON, A. L.
3 186

ELEMENT
1974 THE APPLICATION OF THREE DIMENSIONAL FINITE ELEMENT ANALYSIS TO THE MICRO-MECHANICS OF FIBROUS COMPOSITE MATERIALS
LARDER, R. A.
6 343
1975 FINITE ELEMENT STUDY OF A CAST IRON FLYWHEEL WITH PARTICULAR EMPHASIS ON STRESS CONCENTRATIONS
BINDIN, P. J.
1 40
1975 STOCHASTIC FINITE ELEMENT SIMULATION OF THE NONLINEAR STRUCTURAL RESPONSE OF FIBROUS COMPOSITE MATERIALS
LARDER, R. A.
6 349

ELONGATED-RING SPECIMEN
1975 ELONGATED-RING SPECIMEN FOR TENSILE PROPERTIES OF FILAMENT-WOUND COMPOSITES
CLEMENTS, L. L.; MOORE, R. L.; CHIAO, T. T.
6 358

EMERGENCY PUMP SYSTEMS
1988 EMERGENCY PUMP SYSTEMS ARE BOOSSTRAPS TO POWER
PRODUCT ENG.
3 141

EMISSION
1970 SURVEY OF PROPULSION SYSTEMS FOR LOW EMISSION URBAN VEHICLES, FINAL REPORT
GRAZIE, W. E.; LAY, R. K.
2 75
1971 EVALUATION OF HYBRID HEAT ENGINE/ELECTRIC SYSTEMS FOR LOW EXHAUST EMISSION POTENTIAL IN AUTOMOTIVE APPLICATIONS
LAPIDES, D. B.; WETZER, J.
2 76
1972 ACOUSTIC EMISSION FROM FILAMENT-WOUND PRESSURE BOTTLES
HAMSTAD, W. A.
6 306
1972 ACOUSTIC EMISSION FROM FILAMENT-WOUND PRESSURE BOTTLES
HAMSTAD, W. A.
6 307
1973 ACOUSTIC EMISSION PRODUCED DURING BURST TESTS OF FILAMENT-WOUND BOTTLES
HAMSTAD, W. A.; CHIAO, T. T.
6 320
1974 EMISSION CHARACTERISTICS OF A PRIME MOVER FOR HYBRID VEHICLE USE
ALLSUP, J. R.; FLEMING, R. F.
2 102
1974 A PHYSICAL MECHANISM FOR THE EARLY ACOUSTIC EMISSION IN AN ORGANIC FIBER/EPOXY PRESSURE VESSEL
HAMSTAD, W. A.; CHIAO, T. T.
6 333
1974 ACOUSTIC EMISSION FROM STRESS-RUPTURE AND FATIGUE OF AN ORGANIC FIBER COMPOSITE
HAMSTAD, W. A.; CHIAO, T. T.
6 334
1974 TENSILE PROPERTIES OF AN ULTRA-HIGH-STRENGTH GRAPHITE FIBER AN EPOXY MATRIX
CHIAO, T. T.; HAMSTAD, W. A.; JESSOP, E. B.
6 337
1974 ACOUSTIC EMISSION USES IN RESEARCH AND DEVELOPMENT OF COMPOSITE MATERIALS
HAMSTAD, W. A.
6 346

ENERGY
1981 AN ELECTRO-MECHANICAL ENERGY STORAGE SYSTEM FOR SPACE APPLICATION
ROE, J. B.
4 210
1984 ON-BOARD ENERGY STORAGE IN RAIL RAPID TRANSIT
MARLOWE, E. W.
2 81
1984 SPECIFICATIONS FOR SHIPBOARD STORED ENERGY CATAPULT FLYWHEEL PACKAGES
NAVAL ORDNANCE STATION, FOREST PARK, ILL.
2 84
1984 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
CALL, B. J.
3 198
1985 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
NORTH AMERICAN AVIATION INC., LOS ANGELES DIV.
4 212
1986 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
NORTH AMERICAN AVIATION INC., LOS ANGELES DIV.
4 213
1987 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
NORTH AMERICAN AVIATION INC., LOS ANGELES DIV.
4 214
1987 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
WILCOX, J. P.
2 66
1987 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
NORTH AMERICAN AVIATION INC., LOS ANGELES DIV.
4 215
1987 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
HELSET, C. W.; CALL, B. J.
4 216
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

ENERGY (CONT'D.)

1969 WEIGHT IS SAVED WHEN FLYWHEEL ENERGY STORAGE UNIT SUPPLEMENTS AIRCRAFT SECONDARY POWER SYSTEMS.
 HELSLEY, C. W. 4 217

1969 DESIGN REPORT, PROTOTYPE GEARBOX FLYWHEEL (FLYBOX) FOR STORRED ENERGY ROTARY DRIVE SHIPBOARD CATAPULT
 RABENHORST, D. W. 2 68

1970 PRIMARY ENERGY STORAGE AND THE SUPER FLYWHEEL
 NELLIS, V. C. 3 143

1970 FINAL DESIGN REPORT, PROTOTYPE GEARBOX FLYWHEEL (FLYBOX) FOR STORRED ENERGY ROTARY DRIVE SHIPBOARD CATAPULT
 PRODUCT ENGINEERING 2 72

1970 HIGH-SPEED ENERGY WHEEL OFFERS TROLLEYS PORTABLE ELECTRICITY
 RABENHORST, D. W. 1 12

1970 NEW CONCEPTS IN MECHANICAL ENERGY STORAGE
 RABENHORST, D. W. 1 14

1970 PRIMARY ENERGY STORAGE AND THE SUPER FLYWHEEL
 GROSU, S. I. 3 146

1970 ACHIEVEMENTS AND PROSPECTS IN THE UTILIZATION OF KINETIC ENERGY
 LAWSON, L. J. 2 79

1971 DESIGN AND TESTING OF HIGH ENERGY DENSITY FLYWHEELS FOR APPLICATION TO FLYWHEEL HEAT ENGINE HYBRID VEHICLE DRIVES
 ADAMS, L. R. 4 224

1972 APPLICATION OF ISOTHERMID FLYWHEELS TO SPACECRAFT ENERGY AND ANGULAR MOMENTUM STORAGE
 RABENHORST, D. W. 1 19

1972 INERTIAL ENERGY STORAGE APPARATUS AND SYSTEM FOR UTILIZING THE SAME
 POST, R. P. / POST, S. F. 2 88

1972 APPLICATION OF KINETIC ENERGY PROPULSION TO MASS TRANSPORTATION
 LAWSON, L. J. 2 99

1972 FLYWHEEL ENERGY BUFFER
 JAKUBOWSKI,M. 3 151

1973 ACHIEVING HIGH ENERGY EFFICIENCY
 INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE 3 152

1973 INERTIAL ENERGY STORAGE APPARATUS
 POST, S. F. 2 98

1973 ENERGY STORAGE VIA FLYWHEELS
 GILMAN, J. J. / HUCKE, K. E. 3 154

1973 KINETIC ENERGY STORAGE: A "NEW" PROPULSION ALTERNATIVE FOR MARSS TRANSPORTATION
 LAWSON, L. J. 2 98

1973 STORED ENERGY IN A SPINNING DISK COULD ALLEVIATE THE ENERGY CRISIS
 LAWSON, L. J. 3 155

1973 NEW UNINTERRUPTIBLE POWER SYSTEMS ALTERNATIVES USING HIGH CAPACITY KINETIC ENERGY WHEELS
 RABENHORST, D. W. 3 157

1973 SUPERFLYWHEEL ENERGY STORAGE SYSTEM
 WEBER, R. / MENNES, S. 2 100

1974 FLYWHEEL ENERGY PROPULSION AND THE ELECTRIC VEHICLE
 WEBER, R. / MENNES, S. 2 101

1974 ENERGY CONSERVATION FACTORS FOR A HIGH-EFFICIENCY ELECTRIC-DRIVE AUTOMOBILE
 POST, R.P. 2 98

1974 SAFETY REVIEW OF THE KINETIC ENERGY WHEEL (KEW) SYSTEM FOR BUS APPLICATION
 NATIONAL ACADEMY OF SCIENCES 2 103

1974 INDEPENDENT ENERGY SYSTEMS FOR BETTER EFFICIENCY
 MARSHALL, R. W. / MORGAN, R. T. / HANSEN, R. J. 3 159

1974 STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS. FIFTEEN PAPERS--SURVEY OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE SYSTEMS
 VDI 3 180

1974 ENERGY, VOLUME I: DEMANDS, RESOURCES, IMPACT, TECHNOLOGY, AND POLICY
 PENNER, S. S. / ICKHAN, L. 5 243

1974 KINETIC ENERGY SYSTEMS FOR MOVING PEOPLE
 BAXTER, J. W. / LAWSON, L. J. 2 107

1974 FLYWHEEL BRAKES: STORE NEW TRAIN'S ENERGY FOR ELECTRICITY-SAVING STARTS; NEW YORK'S LATEST SUBWAY CARS
 ARMACAGNACAR, A. P. 2 108

1974 MECHANICAL AND COMPOSITIONS IN SUPERFLYWHEEL ENERGY STORAGE SYSTEMS
 RABENHORST, D. W. 2 112

1974 FLYWHEELS AS AN ENERGY STORAGE DEVICE, A SELECTED BIBLIOGRAPHY
 LLL 1 50

1974 MECHANICAL AND BATTERY-STORRED ENERGY SYSTEMS FOR MEETING INTERRUPTIBLE AND BUFFERED ELECTRIC POWER NEEDS
 COMEAU, G. E. 3 162

1974 ENERGY CRISIS
 BECCU, K. D. 3 164

1974 ENERGY STORAGE. (11): USING ELECTRICITY MORE EFFICIENTLY
 ROBINSON, A. L. 3 165

1974 ENERGY STORAGE. (11): DEVELOPING ADVANCED TECHNOLOGIES
 ROBINSON, A. L. 3 166

1974 GOVERNMENT-WIDE REPORT TO OFFICE OF MANAGEMENT AND BUDGET ON ENERGY STORAGE R AND D PROGRAM STRATEGIES AND IMPLEMENTATION PLANS
 ERDA/DAT 5 244

1974 ENERGY STORAGE FOR THE ELECTRIC POWER INDUSTRY
 KELLER, W.E. 3 168

1974 ENERGY STORAGE TECHNOLOGY
 VANDERWEE, J. 3 171

1974 HYBRID AUTOMOTIVE ENGINE WITH KINETIC ENERGY STORAGE
 SCHIECK, H. / TORRES, P. 2 117

1974 KINETIC ENERGY STORAGE FOR MASS TRANSPORTATION
 LAWSON, L. J. 2 120

1974 ENERGY STORAGE AND ITS ROLE IN ELECTRIC POWER SYSTEMS
 HAYDOCK, J. L. 3 172

1974 STORAGE OF HIGH-GRADE ENERGY
 MCALLAN, J. V. 5 245

1974 ENERGY STORAGE: INCENTIVES AND PROSPECTS FOR ITS DEVELOPMENT
 KALHAXER, F. 3 174

1974 USE OF FLYWHEELS FOR ENERGY STORAGE
 RABENHORST, D. W. 3 176

1974 ASSESSMENT OF ADVANCED CONCEPTS IN ENERGY STORAGE AND THEIR APPLICATION ON ELECTRIC UTILITY SYSTEMS
 D. / SCHNEIDER, T. R. 3 176

1974 FLYWHEEL ENERGY SYSTEMS
 BIGGS, F. 1 37

1974 POTENTIAL FOR LARGE-SCALE ENERGY STORAGE IN ELECTRIC UTILITY SYSTEMS
 KALHAXER, F. / ZIELERBAUM, P. S. 3 177
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>THE KINETIC ENERGY WHEEL</td>
<td>LUCCHINI, A. P.</td>
<td>5</td>
<td>248</td>
</tr>
<tr>
<td>1975</td>
<td>ENERGY TECHNOLOGY II (NAVY APPLICATIONS)</td>
<td>LAWSON, L. J.</td>
<td>2</td>
<td>122</td>
</tr>
<tr>
<td>1976</td>
<td>METALS AND COMPOSITES IN SUPERFLYWHEEL ENERGY STORAGE SYSTEMS</td>
<td>PETERICK, P. A.</td>
<td>6</td>
<td>247</td>
</tr>
<tr>
<td>1975</td>
<td>NEW YORK SUBWAY TRIES OUT FLIGHTEN ENERGY STORAGE</td>
<td>RABENHORST, D. W.</td>
<td>1</td>
<td>43</td>
</tr>
<tr>
<td>1976</td>
<td>ENERGY STORAGE</td>
<td>RAILWAY GAZETTE INTERNATIONAL</td>
<td>2</td>
<td>123</td>
</tr>
<tr>
<td>1976</td>
<td>ANALYSIS OF HOMOPOLAR GENERATORS AND SUPERCONDUCTING</td>
<td>KALHAMMER, F. R. / COOPER, V. R.</td>
<td>3</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>INDUCTION ENERGY STORAGE SYSTEMS AS POWER SUPPLIES FOR HIGH-</td>
<td>GILBERT, J. B. / KERN, E. A.</td>
<td>3</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>ENERGY, SPACE-BASED LENSES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>UTILITIES EYE LARGE-SCALE ENERGY STORAGE</td>
<td>RICCI, L. J.</td>
<td>3</td>
<td>184</td>
</tr>
<tr>
<td>1975</td>
<td>ENERGY STORAGE BY FLIGHTEN</td>
<td>FULLMAN, R. L.</td>
<td>3</td>
<td>185</td>
</tr>
<tr>
<td>1975</td>
<td>STORING ELECTRICAL ENERGY ON A LARGE SCALE</td>
<td>GARDNER, G. C. / HART, A. R. /</td>
<td>3</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>WOOLFITT, R. D. / WRIGHT, J.</td>
<td>RABENHORST, D. W. / DUGGER, G. L.</td>
<td>3</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>ENERGY STORAGE DEVICE</td>
<td>TIN, W. C.</td>
<td>3</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>INCREASED FUEL ECONOMY IN TRANSPORTATION SYSTEMS BY USE OF</td>
<td>BEACHLEY, K. H. / FRANK, A. A.</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>ENERGY MANAGEMENT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>ENERGY STORAGE FOR WIND ENERGY CONVERSION SYSTEMS</td>
<td>ZLOTNIK, W.</td>
<td>3</td>
<td>190</td>
</tr>
<tr>
<td>1976</td>
<td>TECHNICAL ASSESSMENT OF ENERGY STORAGE TECHNOLOGIES</td>
<td>SCHNEIDER, T. R.</td>
<td>3</td>
<td>191</td>
</tr>
<tr>
<td>1976</td>
<td>MATERIALS REQUIREMENTS FOR ENERGY GENERATION, CONVERSION, AND</td>
<td>JAFFE, R. I.</td>
<td>5</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>STORAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>DESIGN AND TEST OF A FLIGHTEN ENERGY STORAGE UNIT FOR</td>
<td>CORMACK, A. / NOTT, J. E. / RUIZ,</td>
<td>4</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>SPACECRAFT APPLICATION</td>
<td>M. L.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DESIGN AND TESTING OF AN ENERGY FLIGHTEN FOR AN INTEGRATED</td>
<td>NOTT, J. E. / CORMACK, A.</td>
<td>4</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>POWER/STORAGE CONTROL SYSTEM (IPACE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>KINETIC ENERGY STORAGE OF OFF-PEAK ELECTRICITY</td>
<td>SIMPSON, L. A. / OLDBERGER, I. E.</td>
<td>3</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>FIBER COMPOSITES FOR ENERGY STORAGE FLIGHTEN</td>
<td>STEELENHOEF, J.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>ECONOMIC AND TECHNICAL FEASIBILITY STUDY FOR ENERGY STORAGE</td>
<td>PENK, L. E. / CHAI, T. T.</td>
<td>6</td>
<td>362</td>
</tr>
<tr>
<td></td>
<td>FLIGHTEN</td>
<td>ROCKWELL INTERNATIONAL, SPACE DIV.</td>
<td>3</td>
<td>201</td>
</tr>
<tr>
<td>1975</td>
<td>ENERGY STORAGE - FEASIBILITY STUDY OF AN EXPERIMENT INVOLVING</td>
<td>TATRY, B.</td>
<td>3</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>SOLAR ENERGY COLLECTION, ITS STORAGE BY A SUPER FLIGHTEN, AND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELECTRIC POWER GENERATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>ENERGY STORAGE</td>
<td>KALHAMMER, F. R. / SCHNEIDER, T. R.</td>
<td>5</td>
<td>251</td>
</tr>
<tr>
<td>1976</td>
<td>COMPOSITE MATERIALS FOR ENERGY STORAGE FLIGHTEN</td>
<td>CHAI, T. T.</td>
<td>6</td>
<td>371</td>
</tr>
<tr>
<td>1976</td>
<td>HYBRID DRIVE WITH KINETIC ENERGY STORE AS VEHICLE DRIVE</td>
<td>SCHROCK, H. / TORRES, F.</td>
<td>2</td>
<td>133</td>
</tr>
<tr>
<td>1976</td>
<td>ENERGY STORAGE</td>
<td>AMERICAN NUCLEAR SOCIETY, HINSDALE,</td>
<td>5</td>
<td>252</td>
</tr>
<tr>
<td>1976</td>
<td>ENERGY STORAGE</td>
<td>ILL.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>ENERGY ON CALL: A MORE EFFICIENT PEAKING SYSTEM WOULD</td>
<td>CASAZZA, J. A. / SCHNEIDER, T. R.</td>
<td>3</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>EXPLOIT THE ADVANTAGES OF ENERGY STORAGE, WHILE CONSERVING</td>
<td>SULZBERGER, V. T.</td>
<td>3</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>CAPITAL AND RESOURCES</td>
<td>CASAZZA, J. A. / SCHNEIDER, T. R.</td>
<td>3</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>ENERGY AND TECHNOLOGY REVIEW (MONTHLY PROGRESS REPORT 6/76)</td>
<td>SULZBERGER, V. T.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>COMPOSITE FIBER FLIGHTEN FOR ENERGY STORAGE</td>
<td>SELDEN, R. W.</td>
<td>5</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RINDE, J. A.</td>
<td>1</td>
<td>199</td>
</tr>
</tbody>
</table>

ENERGY AND ANGULAR

1972 APPLICATION OF ISOSEXTALD FLYWHEELS TO SPACECRAFT ENERGY AND ANGULAR MOMENTUM STORAGE: ADAMS, L. R. 4 224

ENERGY AND TECHNOLOGY

1975 ENERGY AND TECHNOLOGY REVIEW (MONTHLY PROGRESS REPORT 6/76): SELDEN, R. W. 5 253

ENERGY BUFFER

1972 FLYWHEEL ENERGY BUFFER: JAKUBOWSKI, W. 3 151

ENERGY CATAPULT FLYWHEEL

1968 SPECIFICATIONS FOR SHIPBOARD STORED ENERGY CATAPULT FLYWHEEL PACKAGE: NAVAL ORDNANCE STATION, FOREST PARK, ILL. 2 64

ENERGY COLLECTION

1978 ENERGY STORAGE - FEASIBILITY STUDY OF AN EXPERIMENT INVOLVING SOLAR ENERGY COLLECTION, ITS STORAGE BY A SUPER FLYWHEEL, AND ELECTRIC POWER GENERATION: TATRY, B. 3 204
<table>
<thead>
<tr>
<th>ISBN</th>
<th>Record</th>
<th>Title</th>
<th>Authors</th>
<th>Category</th>
<th>Location</th>
<th>Date</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-239247</td>
<td>ENERGY CONFERENCE</td>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>Lucchini, A. P.</td>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Description</td>
<td>Author(s)</td>
<td>Publication Year</td>
<td>Page</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>-----------</td>
<td>------------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENERGY MANAGEMENT</td>
<td>INCREASED FUEL ECONOMY IN TRANSPORTATION SYSTEMS BY USE OF ENERGY MANAGEMENT</td>
<td>BEACHLEY, N. H. / FRANK, A. A.</td>
<td>1976</td>
<td>2 128</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENERGY PEAKING DEMANDS</td>
<td>STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS. FIFTEEN PAPERS--SURVEY OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE SYSTEMS</td>
<td>YDI</td>
<td>1974</td>
<td>3 180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENERGY POLICY</td>
<td>ENERGY TECHNOLOGY II (NAVY APPLICATIONS)</td>
<td>PETRICK, P.A.</td>
<td>1975</td>
<td>5 247</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENERGY PROPULSION</td>
<td>APPLICATION OF KINETIC ENERGY PROPULSION TO MASS TRANSPORTATION</td>
<td>LAWSON, L. J.</td>
<td>1972</td>
<td>2 209</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLYWHEEL ENERGY PROPULSION AND THE ELECTRIC VEHICLE</td>
<td>WEBER, R. / MUNKES, S.</td>
<td>1974</td>
<td>2 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION, AND LAWRENCE LIVERMORE LABORATORY</td>
<td>1975 1975 FLYWHEEL TECHNOLOGY SYMPOSIUM</td>
<td>ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION, AND LAWRENCE LIVERMORE LABORATORY</td>
<td>1975</td>
<td>1 50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENERGY ROTARY DRIVE</td>
<td>FINAL DESIGN REPORT, PROTOTYPE GEARBOX FLYWHEEL (FLYBOX) FOR STORED ENERGY ROTARY DRIVE SHIPBOARD CATAPULT</td>
<td>NELLYS, V. C.</td>
<td>1970</td>
<td>3 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENERGY SHORTAGES</td>
<td>KINETIC ENERGY STORAGE FOR MASS TRANSPORTATION</td>
<td>LAWSON, L. J.</td>
<td>1974</td>
<td>2 120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATERIALS REQUIREMENTS FOR ENERGY GENERATION, CONVERSION, AND STORAGE</td>
<td>JAFFEE, R. I.</td>
<td>1975</td>
<td>5 250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENERGY SOURCES</td>
<td>KINETIC ENERGY STORAGE FOR MASS TRANSPORTATION</td>
<td>LAWSON, L. J.</td>
<td>1974</td>
<td>2 120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NINTH WORLD ENERGY CONFERENCE, BRIEF SUMARY</td>
<td>LUCCHINI, A. P.</td>
<td>1974</td>
<td>5 245</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENERGY TECHNOLOGY II (NAVY APPLICATIONS)</td>
<td>PETRICK, P.A.</td>
<td>1975</td>
<td>5 247</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATERIALS REQUIREMENTS FOR ENERGY GENERATION, CONVERSION, AND STORAGE</td>
<td>JAFFEE, R. I.</td>
<td>1975</td>
<td>5 250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENERGY STORAGE</td>
<td>AN ELECTRO-MECHANICAL ENERGY STORAGE SYSTEM FOR SPACE APPLICATION</td>
<td>ROES, J. B.</td>
<td>1981</td>
<td>4 210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON-BOARD ENERGY STORAGE IN RAIL RAPID TRANSIT</td>
<td>MARLOWE, R. W.</td>
<td>1984</td>
<td>2 81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>NORTH AMERICAN AVIATION INC. LOS ANGELES DIV.</td>
<td>1986</td>
<td>4 212</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>NORTH AMERICAN AVIATION INC. LOS ANGELES DIV.</td>
<td>1987</td>
<td>4 212</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>NORTH AMERICAN AVIATION INC. LOS ANGELES DIV.</td>
<td>1987</td>
<td>4 213</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>NORTH AMERICAN AVIATION INC. LOS ANGELES DIV.</td>
<td>1987</td>
<td>4 214</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLYWHEEL ENERGY STORAGE SYSTEMS FOR TRANSIT BUSES</td>
<td>WILCOX, J. P.</td>
<td>1987</td>
<td>4 215</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>NORTH AMERICAN AVIATION INC. LOS ANGELES DIV.</td>
<td>1987</td>
<td>4 215</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>HELSLY, C. W. / CALL, B. J.</td>
<td>1987</td>
<td>4 216</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WEIGHT IS SAVED WHEN FLYWHEEL ENERGY STORAGE UNIT SUPPLEMENTS AIRCRAFT SECONDARY POWER SYSTEMS</td>
<td>HELSLY, C. W.</td>
<td>1989</td>
<td>4 217</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

ENERGY STORAGE (CONT'D.)

1969 PRIMARY ENERGY STORAGE AND THE SUPER FLYWHEEL
RABENHORST, D. W. 2 88

1969 STUDY OF UNCONVENTIONAL, MECHANICAL AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES
BATTLE COLUMBUS LABS. 2 70

1970 FINAL DESIGN REPORT, PROTOTYPE GEARBOX FLYWHEEL (FLYBOX) FOR STORED ENERGY ROTARY DRIVE SHIPBOARD CATAPULT
NELLS, V. C. 3 143

1970 FIRST NATIONAL CITY BANK USES CONSTANT-POWER SYSTEM FOR COMPUTERS
ORTIZ, J. V. 3 144

1970 FLYWHEEL GENERATORS FOR INSTANT POWER
ASHMORE, P. H. 3 145

1970 MODIFICATION OF DC MOTOR WITH MAGNETICALLY SUSPENDED ROTOR
CAMBRIDGE THERMIOMIC CORP., MASS. 1 11

1970 NEW CONCEPTS IN MECHANICAL ENERGY STORAGE
RABENHORST, D. W. 1 12

1970 PRIMARY ENERGY STORAGE AND THE SUPER FLYWHEEL
RABENHORST, D. W. 1 14

1971 RESEARCH AND DEVELOPMENT PROGRAMS. QUARTERLY PROGRESS REPORT, 1 JAN.-31 MAR. 1971
NOYES, C. F. / WALKER, R. E. / PIRELE, J.C. / FRASER, R. / GILBRINE, H.
E. LAWSON, L. J. 2 77

1971 FLYWHEEL FEASIBILITY STUDY AND DEMONSTRATION. FINAL REPORT
LAWSON, L. J. 2 79

1971 DESIGN AND TESTING OF HIGH ENERGY DENSITY FLYWHEELS FOR APPLICATION TO FLYWHEEL HEAT ENGINE HYBRID VEHICLE DRIVES
DUGGER, G. L./BRANDT, A./GEORGE, J.P. /PERINI,L.L.
RABENHORST, D. W. 2 81

1971 FLYWHEEL AND FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEMS FOR LOW-EMISSION VEHICLES
CALVERT, W. L. 2 84

1971 POTENTIAL APPLICATIONS FOR THE SUPERFLYWHEEL
DYNAMICS CORP. 3 149

1971 ELECTRIC ROADWAY
RABENHORST, D. W. 1 19

1971 HYDRAULIC TRANSMISSION COUPLED STANDBY POWER UNIT
GILMAN, J.J./HUCKE,E.E. 3 164

1972 THE APPLICATION OF WOOD TECHNOLOGY TO KINETIC ENERGY STORAGE
POST, R. F. / POST, S. F. 2 88

1972 INERTIAL ENERGY STORAGE APPARATUS AND SYSTEM FOR UTILIZING THE SAME
JAKUBOWSKI, W. 3 101

1972 FLYWHEEL ENERGY BUFFER
REIMERS, E. 2 91

1973 HYBRID ELECTRIC PROPULSION UTILIZING RECONNECTIBLE MOTOR WINDINGS IN WHEELS
RABENHORST, D. W. 2 82

1973 ELECTRIC VEHICLE HYBRID POWER TRAIN
KUGER, G. C. 2 92

1973 IS THERE A FLYWHEEL IN YOUR FUTURE
LAWSON, L. J. 2 94

1973 INERTIAL ENERGY STORAGE APPARATUS
POST, S. F. 2 96

1973 ENERGY STORAGE VIA FLYWHEELS
LINDSLEY, E. F. 2 97

1973 HYBRID CAR: PART-TIME ENGINE + PART-TIME FLYWHEEL = FULL TIME TRANSPORTATION
LAWSON, L. J. 2 98

1973 KINETIC ENERGY STORAGE: A 'NEW' PROPULSION ALTERNATIVE FOR MASS TRANSPORTATION
LAWSON, L. J. 3 155

1973 NEW UNINTERRUPTIBLE POWER SYSTEM ALTERNATIVES USING HIGH CAPACITY KINETIC ENERGY WHEELS
LAWSON, L. J. 3 155

1973 INVESTIGATION OF THE HOMOPOLAR MOTOR-GENERATOR AS A POWER SUPPLY FOR CONTROLLED FUSION EXPERIMENTS
RYLENDER, H.G./WOODSON.K.E./TOLK.K.E.
WELKICH,W.F./WOODSON,K.E.
RABENHORST, D. W. 2 157

1973 SUPERFLYWHEEL ENERGY STORAGE SYSTEM POST, R. F./POST, S. F. 1 25

1973 FLYWHEELS RABENHORST, D. W./TAYLOR, R. J. 1 26

1974 DESIGN CONSIDERATIONS FOR A 100-MEGAWATT/500-MEGAWATT SUPERFLYWHEEL

1974 STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS. FIFTEEN PAPERS--SURVEY OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE SYSTEMS
VDI 3 180

1974 THERMAL STRESSES IN COMPOSITE FLYWHEELS
REUTER, R. C. JR. 1 28

1974 METHOD OF CALCULATING TORSIONAL VIBRATIONS IN A POWER UNIT WITH A NON-LINEAR SILICONE DAMPER
SHIBAY, M. P. / KHODOZHILOV, V. A. 1 29

1974 ENERGY CONSERVATION FACTORS FOR A HIGH-EFFICIENCY ELECTRIC-DRIVE AUTOMOBILE
POST, R. P. 2 101

1974 SYNTHESIS OF THE BELT OF A DISCRETE BELT VARIATOR
GULIA, N. V. / YUDOVSKII, I. D. 2 104

1974 GYROSCOPIC EFFECT OF FLYWHEELS IN MACHINES
GULIA, N. V. / YUDOVSKII, I. D. 2 105

1974 INDEPENDENT ENERGY SYSTEMS FOR BETTER EFFICIENCY
MARSHALL, W.R./MAKOSZ,R./BARBER,R.
BOLLEN, J. A. C. 4 230

1974 FURTHER TESTING AND DESIGN IMPROVEMENT OF GREASE LUBRICATED SPURIAL GROOVE BEARING MOMENTUM WHEEL
SCHROEDER, J. 5 242

1974 HEAT STORAGE USING ALKALI METAL SALTS, ALKALI EARTH SALTS, IRON CHLORIDE, ZINC CHLORIDE, BORON OXIDE, AND EUTECTIC FLUORIDE MIXTURES
BRUNS,K. 3 181

1974 NEW MOMENTUM FOR NUCLEAR FUSION IN THE MAR-PLANCK-INSTITUT IN MUNICH, A NEW PHASE OF PLASMA RESEARCH HAS BEGUN
HELLING, J. / SCHRECK, H. / GIERA, B. 2 110

55
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

1974 ELECTRICAL PROPULSION SYSTEMS FOR ROAD VEHICLES. STATE OF THE ART AND PRESENT-DAY PROBLEMS
1974 METALS AND COMPOSITES IN SUPERFLYWHEEL ENERGY STORAGE SYSTEMS
1974 FLYWHEELS AS AN ENERGY STORAGE DEVICE, A SELECTED BIBLIOGRAPHY
1974 MECHANICAL AND BATTERY-STORED ENERGY SYSTEMS FOR MEETING UNINTERRUPTIBLE AND BUFFERED ELECTRIC POWER NEEDS
1974 ULTRARICH TEMPERATURE
1974 INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS) STUDY. VOLUME 1: FEASIBILITY STUDIES
1974 ENERGY CRISIS
1974 ENERGY STORAGE. (I): USING ELECTRICITY MORE EFFICIENTLY
1974 ENERGY STORAGE. (II): DEVELOPING ADVANCED TECHNOLOGIES
1974 NO-BREAK SUTS
1974 GOVERNMENT-WIDE REPORT TO OFFICE ON MANAGEMENT AND BUDGET ON ENERGY STORAGE AND PROGRAM STRATEGIES AND IMPLEMENTATION PLANS
1974 ENERGY STORAGE FOR THE ELECTRIC POWER INDUSTRY
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.
1974 CAN FLYWHEELS REPLACE PUMPED STORAGE?
1974 MULTIRIM SUPERFLYWHEEL-TECHNICAL MEMO
1974 WIND POWER CONVERSION SYSTEM
1974 ENERGY STORAGE TECHNOLOGY
1974 HYBRID AUTOMOTIVE ENGINE WITH KINETIC ENERGY STORAGE
1974 KINETIC ENERGY STORAGE FOR MASS TRANSPORTATION
1974 ENERGY STORAGE AND ITS ROLE IN ELECTRIC POWER SYSTEMS
1974 ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES
1974 LARGE FLYWHEEL POWER SUPPLY FOR FUSION EXPERIMENTS IN THE MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK, GARCHING, GERMANY
1974 ENERGY STORAGE: INCENTIVES AND PROSPECTS FOR ITS DEVELOPMENT
1974 USE OF FLYWHEELS FOR ENERGY STORAGE
1974 ASSESSMENT OF ADVANCED CONCEPTS IN ENERGY STORAGE AND THEIR APPLICATION ON ELECTRIC UTILITY SYSTEMS
1974 POTENTIAL FOR LARGE-SCALE ENERGY STORAGE IN ELECTRIC UTILITY SYSTEMS
1974 SUPERFLYWHEEL: THE BATTERY THAT SPINS
1974 FLYWHEEL ENERGY SYSTEMS
1974 CYCLOCONVERTER-CONTROLLED SYNCHRONOUS MACHINES FOR LOAD COMPENSATION ON AC POWER SYSTEMS
1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY
1974 ELECTRIC POWER SYSTEMS
1975 THE KINETIC ENERGY WHEEL
1975 ENERGY TECHNOLOGY II (NAVY APPLICATIONS)
1975 ENERGY STORAGE SYSTEMS
1975 METALS AND COMPOSITES IN SUPERFLYWHEEL ENERGY STORAGE SYSTEMS
1975 NEW YORK SUBWAY TRIES OUT FLYWHEEL ENERGY STORAGE
1975 ENERGY STORAGE
1975 ANALYSIS OF HOMOPOLAR GENERATORS AND SUPERCONDUCTING INDUCTIVE ENERGY STORAGE SYSTEMS AS POWER SUPPLIES FOR HIGH-ENERGY SPACE-BASED LASERS
1975 UTILITIES EYE LARGE-SCALE ENERGY STORAGE
1975 ENERGY STORAGE BY FLYWHEELS
1975 DYNAMIC BRAKING
1975 SUPERFLYWHEEL FOR STORING ENERGY FROM OTEC PLANTS
1975 ENERGY STORAGE DEVICE
1975 WIND POWER
1975 ENERGY STORAGE FOR WIND ENERGY CONVERSION SYSTEMS
1975 TECHNICAL ASSESSMENT OF ENERGY STORAGE TECHNOLOGIES
1975 FOSSIL FUEL AND ADVANCED SYSTEMS DIVISION, RESEARCH PROGRESS REPORT FY-5
1975 MATERIALS REQUIREMENTS FOR ENERGY GENERATION, CONVERSION, AND STORAGE
1975 HYBRID VEHICLES
1975 AC/DC POWER CONDITIONING AND CONTROL EQUIPMENT FOR ADVANCED CONVERSION AND STORAGE TECHNOLOGY
1975 DESIGN AND TEST OF A FLYWHEEL ENERGY STORAGE UNIT FOR SPACECRAFT APPLICATION.

RADER, C. / PLUSTN. H. G. 2 111
RABENHORST, D. W. 2 112
LLL 1 30
COMEAL, G. R. 3 162
LYLANDER, H. N. / WOODSON, H. H. / BECKER, E. 3 163
NOTTI, J. E. / CORNACK, A. / SCHMIDT, W. C. 4 231
BECCO, K. D. 3 164
ROBINSON, K. A. L. 3 165
WOOD, R. L. 3 167
KELLER, W. E. 3 166
LAPLANTE, R. E. / HINTON, W. G. / WELTZER, J. / LEBLON, P. A. / GINSBURG, T. 3 169
RABENHORST, D. W. 1 23
TROLL, J. H. 3 170
VANDEHY, J. 3 171
SCHMECK, H. / FORNES, P. 2 177
LAWSON, L. J. 2 178
HAYDOCK, J. L. 3 172
STERN, D. B. / THIR, G. W. 3 180
KNOBLOCH, A. / NORMAN, W. / SCHLUTER, W. / VAUQ. 3 173
KALHAWER, F. 3 174
RABENHORST, D. W. 3 175
FRENSHAG, R. A. / GILDERSE L, O. D. / SCHEIDER, T. R. 3 176
KALHAWER, F. / ZYGGELBAU, R. S. 3 177
LAMPI, D. 1 26
BIGGS, F. 1 37
FINLAYSON, R. T. / WASHBURN, D. C. 3 178
LUCCHINI, A. P. 5 246
ERDA 3 179
LAWS, L. J. 3 180
PETRICK, P. A. 5 247
PENNER, J. S. / JORDAN, J. L. 5 248
RABENHORST, D. W. 1 249
RAILWAY GAZETTE INTERNATIONAL 3 182
KALHAWER, F. R. / COOPER, V. R. 3 183
GILBERT, J. S. / KENN, S. A. 3 184
RICH, L. J. 3 185
FULLER, R. L. 3 186
KALBA, P. 2 125
RABENHORST, D. W. / BUGGER, G. L. 3 188
TIN, W. C. 3 189
HERNEMIX, W. E. 5 249
ZLITNIK, W. 3 190
SCHNEIDER, T. R. 3 191
ELECTRIC POWER RESEARCH INST. 3 192
JAFFE, R. I. 5 250
WIGGAM, H. C. 2 131
WOOD, P. / PELLY, B. R. 3 196
CORHACK, A. / NOTTI, J. E. / RUIZ, M. L. 4 233
56
1976 KINETIC ENERGY STORAGE OF OFF-PEAK ELECTRICITY
SIMPSON, L. A. / ODLAKER, I. E. /
STERNSCHEIG, J. 3 198

1976 FIBER COMPOSITES FOR ENERGY STORAGE FLYWEELS.
PENN, L. S./CHIAO, T. T. 6 362

1976 ON OPTIMAL SHAPES FOR ANISOTROPIC ROTATING DISKS.
GERSTLE, F. P. / BIOGS, F. 1 47

1976 FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS. SECOND
QUARTERLY PROGRESS REPORT.
PEIDIRN, G. F. 3 190

1975 AN EVALUATION OF THE FUTURE ROLE OF STORAGE TECHNIQUES IN
ELECTRIC POWER TECHNOLOGY
WEYLER, GEORGE W. JR. PATENT APPLICATION 14 NOV 1975 1 51

1975 PROPOSED TFR ELECTRICAL SYSTEM
BRONNER, G. / MURRAY, J. 3 200

1975 ECONOMIC AND TECHNICAL FEASIBILITY STUDY FOR ENERGY STORAGE
FLYWHEELS
ROCKWELL INTERNATIONAL, SPACE DIV. 3 201

1975 IDEAS AND EXPERIMENTS IN MAGNETIC INTERFACING
AALAND, K. / LANE, J. K. 2 132

1975 LLL PROGRAM FOR COMPOSITE FLYWHEEL
CHIAO, T. T. / STONE, R. G. 3 203

1975 MECHANICAL DESIGN OF A COMPOSITE CENTERLESS FLYWHEEL
BLAKE, A. 1 53

1978 ENERGY STORAGE - FEASIBILITY STUDY OF AN EXPERIMENT INVOLVING
SOLAR ENERGY COLLECTION, ITS STORAGE BY A SUPER FLYWHEEL,
AND ELECTRIC POWER GENERATION.
TATNT, B. 3 204

1978 ENERGY STORAGE
KALHAMMER, F. R. / SCHNEIDER, T. R. 5 201

1978 COMPOSITE MATERIALS FOR ENERGY STORAGE FLYWHEELS
CHIAO, T. T. 6 371

1978 ENERGY STORAGE
AMERICAN NUCLEAR SOCIETY, KINEDEAL. 5 252

1970 MECHANICAL CAPACITOR
KIRK, JAMES A. / STUDER, PHILIP A. 3 308
EVANS, HAROLD E. / REED, J. J. 3 307

ELECTRICITY INTO UTILITY POWER GRIDS
CARAZZA, J. A. / SCHNEIDER, T. R. / SULZBERGER, V. T. 3 208

1978 ENERGY STORAGE
CARAZZA, J. A. / SCHNEIDER, T. R. 3 209
SULZBERGER, V. T. 3 209

1976 ENERGY ON CALL: A MORE EFFICIENT PEAKING SYSTEM WOULD
EXPLOIT THE ADVANTAGES OF ENERGY STORAGE, WHILE CONSERVING
CAPITAL AND RESOURCES
RINDE, J. A. 1 59

ENERGY STORAGE APPARATUS
1972 INERTIAL ENERGY STORAGE APPARATUS AND SYSTEM FOR UTILIZING
THE SAME
POST, R. F. / POST, S. F. 2 88

1973 INERTIAL ENERGY STORAGE APPARATUS
POST, S. F. 2 98

ENERGY STORAGE COMPARISON
1975 TECHNICAL ASSESSMENT OF ENERGY STORAGE TECHNOLOGIES
SCHNEIDER, T. R. 3 191

ENERGY STORAGE DEVICE
1974 FLYWHEELS AS AN ENERGY STORAGE DEVICE, A SELECTED
BIBLIOGRAPHY
LLL 1 30

1975 ENERGY STORAGE DEVICE
TIN, W.C. 3 189

ENERGY STORAGE FLYWHEELS
1975 ENERGY STORAGE
KALHAMMER, F. R. / COOPER, V. R. 3 181
PENN, L. S./CHIAO, T. T. 6 382
ROCKWELL INTERNATIONAL, SPACE DIV. 3 201

1975 FIBER COMPOSITES FOR ENERGY STORAGE FLYWHEELS.
CHIAO, T. T. 6 371

1975 ECONOMIC AND TECHNICAL FEASIBILITY STUDY FOR ENERGY STORAGE
FLYWHEELS
CHIAO, T. T. 6 371

ENERGY STORAGE R & D
1975 ENERGY STORAGE
KALHAMMER, F. R. / COOPER, V. R. 3 181

ENERGY STORAGE SUBSTATIONS
1986 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR
AIRCRAFT ACTUATION FUNCTIONS
NORTH AMERICAN AVIATION INC. LOS ANGELES DIV. 2 85

1987 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR
AIRCRAFT ACTUATION FUNCTIONS
NORTH AMERICAN AVIATION INC. LOS ANGELES DIV. 4 213

1987 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR
AIRCRAFT ACTUATION FUNCTIONS
NORTH AMERICAN AVIATION INC. LOS ANGELES DIV. 4 213

57
ENERGY STORAGE SUBSTATIONS (CONTD.)
1967 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
1967 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
1967 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS

ENERGY STORAGE SYSTEMS
1967 FLYWHEEL ENERGY STORAGE SYSTEMS FOR TRANSIT BUSES
1974 STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS. FIFTEEN PAPERS--SURVEY OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE SYSTEMS
1974 METALS AND COMPOSITES IN SUPERFLYWHEEL ENERGY STORAGE SYSTEMS
1975 METALS AND COMPOSITES IN SUPERFLYWHEEL ENERGY STORAGE SYSTEMS
1975 ANALYSIS OF HOMOPOLAR GENERATORS AND SUPERCONDUCTING INDUCTIVE ENERGY STORAGE SYSTEMS AS POWER SUPPLIES FOR HIGH-ENERGY SPACE-BASED LASERS

ENERGY STORAGE SYSTEM
1961 AN ELECTRO-MECHANICAL ENERGY STORAGE SYSTEM FOR SPACE APPLICATION
1973 SUPERFLYWHEEL ENERGY STORAGE SYSTEM

ENERGY STORAGE TECHNOLOGY
1974 ENERGY STORAGE TECHNOLOGY

ENERGY STORAGE TECHNOLOGIES
1975 TECHNICAL ASSESSMENT OF ENERGY STORAGE TECHNOLOGIES

ENERGY STORAGE UNIT
1969 WEIGHT IS SAVED WHEN FLYWHEEL ENERGY STORAGE UNIT SUPPLEMENTS AIRCRAFT SECONDARY POWER SYSTEMS.
1975 DESIGN AND TEST OF A FLYWHEEL ENERGY STORAGE UNIT FOR SPACECRAFT APPLICATION.

ENERGY STORE
1975 HYBRID DRIVE WITH KINETIC ENERGY STORE AS VEHICLE DRIVE

ENERGY STORING MASS
1968 ENERGY STORING MASS AND METHOD FOR MAKING

ENERGY SUPPLIES
1974 INDEPENDENT ENERGY SYSTEMS FOR BETTER EFFICIENCY

ENERGY SYSTEMS
1974 INDEPENDENT ENERGY SYSTEMS FOR BETTER EFFICIENCY
1974 KINETIC ENERGY SYSTEMS FOR MOVING PEOPLE
1974 MECHANICAL AND BATTERY-STORRED ENERGY SYSTEMS FOR MEETING UNINTERRUPTIBLE AND BUFFERED ELECTRIC POWER NEEDS
1974 FLYWHEEL ENERGY SYSTEMS

ENERGY TECHNOLOGY
1975 ENERGY TECHNOLOGY II (NAVY APPLICATIONS)

NORTH AMERICAN AVIATION INC. LOS ANGELES DIV.
WILCOX, J. P.
RABENHORST, D. W.
GILBERT, J. S./KERN, R. A.
ROESS, J. B.
RABENHORST, D. W.
VANDERSYN, J.
SCHNEIDER, T. R.
HELSELEY, C. W.
CORMACK, A./NOTTI, J. E./HUIZ, M. L.
SCHRECK, H./TORRES, F.
CALL, B. J.
MARSHALL, O. W./MORASH, R. T./BARBER, R. J.
MARSHALL, O. W./MORASH, R. T./BARBER, R. J.
BAXTER, J. W./LAWSON, L. J.
COMSAU, G. E.
BIGGS, F.
PETZERICK, P. A.

4 214
4 215
4 216
2 68
3 160
2 112
1 43
3 183
4 210
3 107
3 171
3 191
4 217
4 229
2 133
3 138
3 159
3 159
2 107
3 182
1 37
5 247

58
<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
<th>Author(s)</th>
<th>Publication</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGY WHEEL</td>
<td>HIGH-SPEED ENERGY WHEEL OFFERS TROLLEYS PORTABLE ELECTRICITY</td>
<td>PRODUCT ENGINEERING</td>
<td>NATIONAL ACADEMY OF SCIENCES</td>
<td>1970</td>
</tr>
<tr>
<td>ENERGY WHEELS</td>
<td>SAFETY REVIEW OF THE KINETIC ENERGY WHEEL (Kew) SYSTEM FOR BUS APPLICATION</td>
<td>LAWSON, L. J.</td>
<td>1974</td>
<td></td>
</tr>
<tr>
<td>ENERGY WHEELS</td>
<td>THE KINETIC ENERGY WHEEL</td>
<td>LAWSON, L. J.</td>
<td>1975</td>
<td></td>
</tr>
<tr>
<td>ENERGY WHEELS</td>
<td>NEW UNINTERMITTIBLE POWER SYSTEM ALTERNATIVES USING HIGH CAPACITY KINETIC ENERGY WHEELS</td>
<td>PEIDIRTZ, C. F.</td>
<td>1973</td>
<td></td>
</tr>
<tr>
<td>ENERGY, 20TH CENTURY</td>
<td>AN EVALUATION OF THE FUTURE ROLE OF STORAGE TECHNIQUES IN ELECTRIC POWER TECHNOLOGY</td>
<td>ENVIRONMENTAL SCIENCE AND TECHNOLOGY</td>
<td>1975</td>
<td></td>
</tr>
<tr>
<td>ENERGY-SAVING</td>
<td>FLYWHEELS: ENERGY-SAVING WAY TO GO</td>
<td>PENNER, S. S. / ICERMAN, L.</td>
<td>1978</td>
<td></td>
</tr>
<tr>
<td>ENERGY STORAGE SYSTEMS</td>
<td>ENERGY STORAGE SYSTEMS</td>
<td>PENNER, S. S. / ICERMAN, L.</td>
<td>1975</td>
<td></td>
</tr>
<tr>
<td>ENGINE</td>
<td>DESIGN AND TESTING OF HIGH ENERGY DENSITY FLYWHEELS FOR APPLICATION TO FLYWHEEL HEAT ENGINE HYBRID VEHICLE DRIVES</td>
<td>LAWSON, L. J.</td>
<td>1971</td>
<td></td>
</tr>
<tr>
<td>ENGINE</td>
<td>FLYWHEEL AND FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEMS FOR LOW-EMISSION VEHICLES</td>
<td>DUGGER, C. L. / BRANDT, A. / GEORGE, J. F. / PERKINS, I. L.</td>
<td>1971</td>
<td></td>
</tr>
<tr>
<td>ENGINE</td>
<td>FEASIBILITY ANALYSIS OF THE TRANSMISSION FOR A FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEM</td>
<td>MECHANICAL TECHNOLOGY, INC.</td>
<td>1971</td>
<td></td>
</tr>
<tr>
<td>ENGINE</td>
<td>HYBRID CAR: PART-TIME ENGINE + PART-TIME FLYWHEEL = FULL TIME TRANSPORTATION</td>
<td>LINSELEY, E. F.</td>
<td>1973</td>
<td></td>
</tr>
<tr>
<td>ENGINE</td>
<td>HYBRID AUTOMOTIVE ENGINE WITH KINETIC ENERGY STORAGE</td>
<td>SHERK, H. / TORRES, F.</td>
<td>1974</td>
<td></td>
</tr>
<tr>
<td>ENGINE</td>
<td>HYBRID AUTOMOTIVE ENGINE WITH KINETIC ENERGY STORAGE</td>
<td>LAPRES, D. E. / WELTZE, J.</td>
<td>1974</td>
<td></td>
</tr>
<tr>
<td>ENGINE</td>
<td>FLYWHEELS - PRACTICAL FLYWHEEL ENGINE: WILL FIBER GLASS BE THE ANSWER?</td>
<td>IL BUS W</td>
<td>1975</td>
<td></td>
</tr>
<tr>
<td>ENGINE-FLYWHEEL HYBRIDS</td>
<td>LIFT FOR THE AUTO: ENGINE-FLYWHEEL HYBRIDS</td>
<td>MCCALLAN, J.</td>
<td>1971</td>
<td></td>
</tr>
<tr>
<td>ENGINE DESIGN</td>
<td>BEARING SUPPORT FLYWHEEL</td>
<td>ENGINEER</td>
<td>1969</td>
<td></td>
</tr>
<tr>
<td>ENGINEERED SAFETY SYSTEMS</td>
<td>SKAGIT NUCLEAR POWER PROJECT, UNITS 1 AND 2, LICENSE APPLICATION</td>
<td>PUGET SOUND POWER AND LIGHT CO.</td>
<td>1975</td>
<td></td>
</tr>
<tr>
<td>ENGINEERING</td>
<td>CYCLOCONVERTER-CONTROLLED SYNCHRONOUS MACHINES FOR LOAD COMPENSATION ON AC POWER SYSTEMS</td>
<td>FINLAYSON, P. T. / WASHBURN, D. C.</td>
<td>1974</td>
<td></td>
</tr>
<tr>
<td>ENGINEERING</td>
<td>ENGINEERING DESIGN DATA FOR COMPOSITE MATERIALS</td>
<td>CLEMENTS, L. L.</td>
<td>1975</td>
<td></td>
</tr>
<tr>
<td>ENGINES</td>
<td>ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES</td>
<td>LAPPERS, B. E. / HINTON, M. G. / WELTZE, J. / LUBA, T. / STERNLEITEN, B. / THUR, G. W.</td>
<td>1974</td>
<td></td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

ENGINES (CONT'D.)
LEHMANN, E. J. 2 124

ENV IMPACT ASSESSMENT
1976 ENERGY STORAGE
AMERICAN NUCLEAR SOCIETY, HINSDALE, ILL.

ENVIRONMENT
1972 APPLICATION OF KINETIC ENERGY PROPULSION TO MASS TRANSPORTATION
1974 STRESS RUPTURE OF GLASS/EPoxy COMPOSITES - ENVIRONMENT AND STRESS EFFECTS.
1975 MATERIALS REQUIREMENTS FOR ENERGY GENERATION, CONVERSION, AND STORAGE
1976 ENERGY STORAGE
LAWSON, L. J. 2 29
WU, E. W. / RUHMANN, D. C. 6 332
JAFFE, R. I. 5 250
AMERICAN NUCLEAR SOCIETY, HINSDALE, ILL.

ENVIRONMENT VEHICLES
1975 THE KINETIC ENERGY WHEEL
LAWSON, L. J. 2 122

ENVIRONMENTAL EFFECTS
1974 ENERGY STORAGE. (1) USING ELECTRICITY MORE EFFICIENTLY
1974 KINETIC ENERGY STORAGE FOR MASS TRANSPORTATION
1974 ASSESSMENT OF ADVANCED CONCEPTS IN ENERGY STORAGE AND THEIR APPLICATION ON ELECTRIC UTILITY SYSTEMS
1975 THE KINETIC ENERGY WHEEL
1975 DIGEST OF CURRENT RESEARCH IN THE ELECTRIC UTILITY INDUSTRY
ROBINSON, A. L. 3 185
LAWSON, L. J. 2 122
FERNANDES, K. A. / GILDERSELEEVE, O. 3 176
D. / SCHNEIDER, T. R.
LAWSON, L. J. 2 122
EPRI 5 167

ENVIRONMENTAL SCIENCE AND TECHNOLOGY
1976 FLYWHEELS: ENERGY-SAVING WAY TO GO
ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2 137

ENVIRONMENTAL TESTS
1975 ENVIRONMENTAL TESTS ON DRADEAD DR 20-6-2KM
SCHULZ, HANS HOLGER 4 239

EPOXIDES
1975 LONG-TERM PERFORMANCE OF FIBER COMPOSITES
CHIAO, C. C. 5 366

EPOXY
1971 STRAIN RATE EFFECT ON THE ULTIMATE TENSILE STRESS OF FIBER/EPoxy STRANDS
1971 STUDY OF EPOXY RESIN FIBER COMPOSITES
1972 FABRICATION AND TESTING OF EPOXY TENSILE SPECIMENS
1972 DESIGN AND ANALYSIS OF THE ATS GRAPHITE EPOXY SATELLITE TRUSS
1972 TENSILE PROPERTIES OF PSE-49 FIBER IN EPOXY MATRIX
1972 CHARACTERIZATION OF AN EPOXY SYSTEM FOR FILAMENT WINDING
1974 A ROOM TEMPERATURE-CURABLE EPOXY FOR ADVANCED FIBER COMPOSITES
1974 TENSILE PROPERTIES OF AN ULTRA-HIGH-STRENGTH GRAPHITE FIBER AN EPOXY MATRIX
1974 AN EPOXY SYSTEM FOR FILAMENT WINDING
1974 TENSILE PROPERTIES OF AN ULTRA-HIGH-STRENGTH GRAPHITE FIBER AN EPOXY MATRIX
1974 A MODERATE-TEMPERATURE-CURABLE EPOXY FOR ADVANCED COMPOSITE
1975 HIGH PERFORMANCE VESSELS FROM AN AROMATIC POLYAMIDE FIBER/EPoxy COMPOSITE
1975 SCREENING OF EPOXY SYSTEMS FOR HIGH-PERFORMANCE FILAMENT WINDING APPLICATIONS
CHIAO, T. T./MOORE, R. L. 6 265
RICHARDSON, J. / MOORE, R. L./CHIAO, T. T.
CHIAO, T. T./CUMINS, A. D./MOORE, R. L.
BURNS, J. W./TOLAND, R. H.
CHIAO, T. T./MOORE, R. L. 6 305
CHIAO, T. T./ALTHOUSE, L. P. 6 309
CHIAO, T. T./MOORE, R. L. 6 335
CHIAO, T. T./HAMSTAD, M. A./JESSOP, K. S.
CHIAO, T. T./JESSOP, E. S./NEWBY, R. A.
CHIAO, T. T./HAMSTAD, M. A./JESSOP, K. S.
CHIAO, T. T./JESSOP, E. S./NEWBY, R. A.
CHIAO, T. T./HAMSTAD, M. A. 6 351
CHIAO, T. T./JESSOP, E. S./FENN, L. S. 6 355

60
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

EPOXY (CONTD.)	1976	A LONG POT LIFE EPOXY SYSTEM FOR FILAMENT WINDING	PENN, L. S./CHIAO, T. T.	6 358
	1978	PERFORMANCE OF FILAMENT-WOUND VESSELS FROM AN ORGANIC FIBER IN EPOXY RESINS	CHIAO, T. T./JESSOP, E. S./HAMSTAD, M. A.	6 367
	1975	EPOXY RESINS FOR FLYWHEEL APPLICATIONS.	RINDE, J. A.	1 48
EPOXY COMPOSITE	1976	HIGH PERFORMANCE VESSELS FROM AN AROMATIC POLYAMIDE FIBER/EPOXY COMPOSITE	CHIAO, T. T./HAMSTAD, M. A.	6 361
EPOXY MATRICES	1975	PERFORMANCE OF FILAMENT-WOUND VESSELS FROM AN ORGANIC FIBER IN SEVERAL EPOXY MATRICES	CHIAO, T. T./JESSOP, E. S./HAMSTAD, M. A.	6 357
	1975	TENSILE PROPERTIES OF PBO-49 FIBER IN EPOXY MATRIX	CHIAO, T. T./MOORE, R. L.	6 305
	1974	TENSILE PROPERTIES OF AN ULTRA-HIGH-STRENGTH GRAPHITE FIBER AN EPOXY MATRIX	CHIAO, T. T./HAMSTAD, M. A./JESSOP, E. S.	6 337
	1974	TENSILE PROPERTIES OF AN ULTRAHIGH-STRENGTH GRAPHITE FIBER AN EPOXY MATRIX	CHIAO, T. T./HAMSTAD, M. A./JESSOP, E. S.	6 344
EPOXY RESINS	1971	STUDY OF EPOXY RESINS FOR FIBER COMPOSITES	RICHARDSON, J. / MOORE, R. L./CHIAO, T. T.	6 288
	1974	STRAIN MEASUREMENT TECHNIQUES FOR FIBER MODULUS DETERMINATION AN EPOXY MATRIX	MOORE, R. L./LEPPERT, J. K.	6 325
	1974	TENSILE PROPERTIES OF AN ULTRA-HIGH-STRENGTH GRAPHITE FIBER AN EPOXY MATRIX	CHIAO, T. T./HAMSTAD, M. A./JESSOP, E. S.	6 337
	1975	EPOXY RESINS FOR FLYWHEEL APPLICATIONS.	RINDE, J. A.	1 48
EPOXY SATELLITE TRUSS	1972	DESIGN AND ANALYSIS OF THE ATS GRAPHITE EPOXY SATELLITE TRUSS	BURNS, J. M./TOLAND, R. H.	6 304
EPOXY STRANDS	1971	STRAIN RATE EFFECT ON THE ULTIMATE TENSILE STRESS OF FIBER/EPOXY STRANDS	CHIAO, T. T./MOORE, R. L.	6 255
EPOXY SYSTEM	1972	CHARACTERIZATION OF AN EPOXY SYSTEM FOR FILAMENT WINDING	CHIAO, T. T./ALTHOUSE, L. P.	6 309
	1974	AN EPOXY SYSTEM FOR FILAMENT WINDING	CHIAO, T. T./JESSOP, E. S./NEWBY, H. A.	6 340
	1975	A LONG POT LIFE EPOXY SYSTEM FOR FILAMENT WINDING	PENN, L. S./CHIAO, T. T.	6 356
EPOXY SYSTEMS	1975	SCREENING OF EPOXY SYSTEMS FOR HIGH-PERFORMANCE FILAMENT WINDING APPLICATIONS	CHIAO, T. T./JESSOP, E. S./PENN, L. S.	6 355
EPOXY-COATED BE-WIRE	1974	STRESS-RUPTURE OF EPOXY-COATED BE-WIRE	CHIAO, T. T./HAMSTAD, M. A./JESSOP, E. S.	6 342
EPOXY-GLASS COMPOSITES	1971	THE EFFECT OF SOLVENTS AND STRESS ON THE STRESS RUPTURE LIFE OF EPOXY-GLASS COMPOSITES	RUHMAN, D. C./WU, K. M.	6 283

61
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

EPRI
1975 ENERGY STORAGE
1975 DIGEST OF CURRENT RESEARCH IN THE ELECTRIC UTILITY INDUSTRY

EQUATIONS
1973 A CRITICAL TEST FOR A CLASS OF NONLINEAR CONSTITUTIVE EQUATIONS

EQUIPMENT
1974 ATA RAIL TRANSIT CONFERENCE, CAR EQUIPMENT SESSIONS
1975 AC/DC POWER CONDITIONING AND CONTROL EQUIPMENT FOR ADVANCED CONVERSION AND STORAGE TECHNOLOGY

ERDA
1974 GOVERNMENT-WIDE REPORT TO OFFICE ON MANAGEMENT AND BUDGET ON ENERGY STORAGE R AND D PROGRAM STRATEGIES AND IMPLEMENTATION PLANS
1974 ELECTRIC POWER SYSTEMS
1975 ENERGY STORAGE FOR WIND ENERGY CONVERSION SYSTEMS

ERDA, DIV. OF CONSERVATION RESEARCH AND TECHNOLOGY.
1975 AN EVALUATION OF THE FUTURE ROLE OF STORAGE TECHNIQUES IN ELECTRIC POWER TECHNOLOGY

ERODING INTERNAL BOUNDARY
1965 RESPONSE TO PRESSURIZATION OF A VISCOELASTIC CYLINDER WITH AN ERODING INTERNAL BOUNDARY

EROSION
1975 FOSSIL FUEL AND ADVANCED SYSTEMS DIVISION, RESEARCH PROGRESS REPORT FP-3

ESA
1975 DESIGN AND DEVELOPMENT OF A MOMENTUM WHEEL WITH A MAINLY PASSIVE MAGNETIC BEARING FINAL REPORT

ESB, INC.
1973 ELECTRIC VEHICLE HYBRID POWER TRAIN

ESTIMATED DEMAND
1974 ENERGY, VOLUME I, DEMANDS, RESOURCES, IMPACT, TECHNOLOGY, AND POLICY

ESTIMATING THE VELOCITIES
1975 ESTIMATING THE VELOCITIES OF THE CONTROL FLYWHEELS OF A FREE GYROSTAT

ETHANOL
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.
1974 ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES

EUTECTIC FLUORIDE MIXTURES
1974 HEAT STORAGE USING ALKALI METAL SALTS, ALKALI EARTH SALTS, IRON CHLORIDE, ZINC CHLORIDE, BORON OXIDE, AND EUTECTIC FLUORIDE MIXTURES

KALHAMER, F. R. / COOPER, V. R.
EPRI
3 181
3 187

CHRISTENSEN, R. M. / VAN ES, H. E.
6 312

LAWSON, L. J. / ET AL.
WOOD, P. / PELLY, B. R.
2 118
3 195

ERDA / BAT
3 179
3 190

PEZDIRTZ, G. F.
3 199

CHRISTENSEN, R. M. / SCHREINER, R. N.
1 5

ELECTRIC POWER RESEARCH INST.
3 192

ESA
1 45

KUGLER, G. C.
2 92

FENNER, S. S. / ICHERMAN, L.
5 243

LITVIN-SEGOI, M. T.
1 39

LAPEDES, D. E. / HINTON, M. C. / WELTSER, J.
STEINLICH, B. / THURM, G. W.
2 115
2 119

SCHROEDER, J.
5 242

62
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

EVALUATION
1964 GENERAL THEORETICAL ANALYSIS AND EVALUATION OF AN EXPERIMENTAL MODEL OF A CONSTANT-SPEED FLYWHEEL POWER SOURCE
MATTHEWS, L. E. / EVERETT, W. D. / 2 82

1969 EVALUATION OF HIGH-STRENGTH, HIGH-MODULUS BERYLLIUM OXIDE/GLASS FIBER
BINDER, R.

1971 EVALUATION OF HYBRID HEAT ENGINE/ELECTRIC SYSTEMS FOR LOW EXHAUST EMISSION POTENTIAL IN AUTOMOTIVE APPLICATIONS
CHIAO, T. T./LEWIS, A./KIMPLE, R. F.

1972 HYBRID PROPULSION SYSTEM TRANSMISSION EVALUATION, PHASE I, FINAL REPORT
LAPIDES, D.E./MELTZER, J.

1973 MATERIALS EVALUATION FOR X31B MAGNET
CORNER, W.A./GRIMM, D.H.

1975 EVALUATION OF INTERLAMINAR SHEAR TEST FOR FIBER COMPOSITES
CHIAO, T. T./WALKUP, C. W./NEWAY, R. A.

1975 AN EVALUATION OF THE FUTURE ROLE OF STORAGE TECHNIQUES IN ELECTRIC POWER TECHNOLOGY
PEZDIERTZ, C. F.

1975 FIBER EVALUATION FOR FLYWHEEL APPLICATIONS
PENN, L. S./CHIAO, T. T.

EVANS, HAROLD E.
1978 MECHANICAL CAPACITOR
KIRK, JAMES A./STUDER, PHILIP A./EVANS, HAROLD E.

EVERETT, W. D.
1964 GENERAL THEORETICAL ANALYSIS AND EVALUATION OF AN EXPERIMENTAL MODEL OF A CONSTANT-SPEED FLYWHEEL POWER SOURCE
MATTHEWS, L. E./EVERETT, W. D./BINDER, R.

EXAMINATION
1975 HOLOGRAPHIC EXAMINATION OF A COMPOSITE PRESSURE VESSEL
MEYER, W.D./KATAYANAGI, T. E.

EXCAVATORS
1971 OPERATING LARGE EXCAVATORS ON SMALL POWER SYSTEMS
KILGORE, L. A./WASHBURN, D. C.

EXCHANGE ACQUISITION SYSTEM
1987 MOMENTUM EXCHANGE ACQUISITION SYSTEM, FINAL REPORT
FISCHER, W. M.

EXCITATION
1984 THE DYNAMIC RESPONSE OF A SOLID, VISCOELASTIC SPHERE TO TRANSLATIONAL AND ROTATIONAL EXCITATION.
CHRISTENSEN, R. M./GOTTFENBERG, W. G.

EXHAUST EMISSION POTENTIAL
1971 EVALUATION OF HYBRID HEAT ENGINE/ELECTRIC SYSTEMS FOR LOW EXHAUST EMISSION POTENTIAL IN AUTOMOTIVE APPLICATIONS
LAPIDES, D.E./MELTZER, J.

EXHAUST GASES
1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES
BATTÉLLE COLUMBUS LABS.

1970 SURVEY OF PROPULSION SYSTEMS FOR LOW EMISSION URBAN VEHICLES, FINAL REPORT.
FRAIZE, W. E./LAY, R. K.

1971 DESIGN AND TESTING OF HIGH ENERGY DENSITY FLYWHEELS FOR APPLICATION TO FLYWHEEL HEAT ENGINE HYBRID VEHICLE DRIVES
LAWSON, L. J.

1971 FLYWHEEL AND FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEMS FOR LOW-EMISSION VEHICLES
DUODER, G. L./BRANDT, A./GEORGE, J.P.

1972 FLYWHEEL DRIVE SYSTEMS STUDY, FINAL REPORT

1974 EMISSION CHARACTERISTICS OF A PRIME MOVER FOR HYBRID VEHICLE USE
ALLSUP, J. R./FLEINING, N. D.

1974 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES
LAPIDES, D.E./MELTZER, J.

1974 ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES
STERNLICHT, B./THUR, G.M.

LEHMANN, E. J.

1975 INCREASED FUEL ECONOMY IN TRANSPORTATION SYSTEMS BY USE OF ENERGY MANAGEMENT
BEACLEY, N. H./FRANK, A. A.
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

EXPERIMENT
1984 AN EXPERIMENT FOR DETERMINATION OF THE MECHANICAL PROPERTY IN SHEAR FOR A LINEAR ISOTROPIC VISCOELASTIC SOLID
1972 STRENGTH TENSORS AND THEIR INVARIANTS – THEORY AND EXPERIMENT
1970 ENERGY STORAGE – FEASIBILITY STUDY OF AN EXPERIMENT INVOLVING SOLAR ENERGY COLLECTION, ITS STORAGE BY A SUPER FLYWHEEL, AND ELECTRIC POWER GENERATION.

EXPERIMENTAL
1984 GENERAL THEORETICAL ANALYSIS AND EVALUATION OF AN EXPERIMENTAL MODEL OF A CONSTANT-SPEED FLYWHEEL POWER SOURCE
1986 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
1987 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
1987 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
1987 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
1987 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
1972 EXPERIMENTAL INVESTIGATION OF FRACTURE IN AN ADVANCED FIBER COMPOSITE
1972 OPTIMAL EXPERIMENTAL MEASUREMENT OF ANISOTROPIC FAILURE TENSORS
1973 THE EFFECT OF STRESS ON DIFFUSION IN COMPOSITES – EXPERIMENTAL OBSERVATIONS.

EXPERIMENTS
1972 INVESTIGATION OF THE HOMOPOLAR MOTOR-GENERATOR AS A POWER SUPPLY FOR CONTROLLED FUSION EXPERIMENTS
1974 LARGE FLYWHEEL POWER SUPPLY FOR FUSION EXPERIMENTS IN THE MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK, GARCHING, GERMANY
1975 IDEAS AND EXPERIMENTS IN MAGNETIC INTERFACING

EXTERNAL PRESSURE
1987 THE TEMPERATURE EFFECT OF INTERNAL AND EXTERNAL PRESSURE OF TWO ANGLE WOUND PIPE

FABRICATION AND TESTING
1972 FABRICATION AND TESTING OF EPOXY TENSILE SPECIMENS

FACILITY FOR NUCLEAR
1974 COMPUTER CONTROLLED 185 KVA POWER SUPPLY FACILITY FOR NUCLEAR FUSION RESEARCH

FACTORS
1974 ENERGY CONSERVATION FACTORS FOR A HIGH-EFFICIENCY ELECTRIC-DRIVE AUTOMOBILE

FAILURE ANALYSIS
1973 FAILURE CRITERIA AND FAILURE ANALYSIS OF COMPOSITE STRUCTURES

FAILURE CRITERIA
1973 FAILURE CRITERIA AND FAILURE ANALYSIS OF COMPOSITE STRUCTURES
1974 FAILURE CRITERIA TO FRACTURE MODE ANALYSIS OF COMPOSITE MATERIALS
<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>TITLE</th>
<th>AUTHOR(S)</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAILURE CRITERION</td>
<td>1974 PHENOMENOLOGICAL ANISOTROPIC FAILURE CRITERION</td>
<td>WU, E. M.</td>
<td>6 328</td>
</tr>
<tr>
<td>FAILURE DETECTION</td>
<td>1974 A PHYSICAL MECHANISM FOR THE EARLY ACOUSTIC EMISSION IN AN ORGANIC FIBER/EPoxy PRESSURE VESSEL</td>
<td>HAMSTAD, M. A./CHIAO, T. T.</td>
<td>6 333</td>
</tr>
<tr>
<td>FAILURE MODES</td>
<td>1972 FAILURE MODES IN IMPACT LOADED COMPOSITE MATERIALS</td>
<td>TOLAND, R. H.</td>
<td>6 301</td>
</tr>
<tr>
<td>FAILURE PROCESSES</td>
<td>1972 KINETIC FAILURE PROCESSES OF POLYMERS</td>
<td>WU, E. M./HALPIN, J. C.</td>
<td>6 290</td>
</tr>
<tr>
<td>FAILURE TENSORS</td>
<td>1972 OPTIMAL EXPERIMENTAL MEASUREMENT OF ANISOTROPIC FAILURE TENSORS</td>
<td>WU, E. M.</td>
<td>6 297</td>
</tr>
<tr>
<td>FAILURES</td>
<td>1975 REACTOR COOLANT PUMP FLYWHEEL INTEGRITY</td>
<td>NUCLEAR REGULATORY COMM.</td>
<td>3 198</td>
</tr>
<tr>
<td>FATIGUE</td>
<td>1974 ACOUSTIC EMISSION FROM STRESS-RUPTURE AND FATIGUE OF AN ORGANIC FIBER COMPOSITE</td>
<td>HAMSTAD, M. A./CHIAO, T. T.</td>
<td>6 334</td>
</tr>
<tr>
<td>FATIGUE RESISTANCE</td>
<td>1974 POLYMER-LINED FILAMENT-WOUND PRESSURE VESSELS FOR NITROGEN CONTAINMENT</td>
<td>HAMSTAD, M. A./CHIAO, T. T./JESSOP, E. S.</td>
<td>6 335</td>
</tr>
<tr>
<td>FATIGUE TEST</td>
<td>1974 ACOUSTIC EMISSION FROM STRESS-RUPTURE AND FATIGUE OF AN ORGANIC FIBER COMPOSITE</td>
<td>HAMSTAD, M. A./CHIAO, T. T.</td>
<td>6 334</td>
</tr>
<tr>
<td>FEASIBILITY</td>
<td>1969 FEASIBILITY OF FLYWHEEL HIGH-ENERGY STORAGE</td>
<td>SVENSSON, A. / WETHRINEE, A. E.</td>
<td>3 143</td>
</tr>
<tr>
<td></td>
<td>1971 FLYWHEEL FEASIBILITY STUDY AND DEMONSTRATION.FINAL REPORT</td>
<td>GILBERT, R. R./HARVEY, J. R./HEUER,G. E./LAWSON, L. J.</td>
<td>2 77</td>
</tr>
<tr>
<td></td>
<td>1971 FEASIBILITY ANALYSIS OF THE TRANSMISSION FOR A FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEM</td>
<td>MECHANICAL TECHNOLOGY, INC.</td>
<td>2 82</td>
</tr>
<tr>
<td></td>
<td>1974 INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS) STUDY. VOLUME I: FEASIBILITY STUDIES</td>
<td>NOTTI, J. E./CORMACK, A. /SCHMILL, W. C.</td>
<td>4 231</td>
</tr>
<tr>
<td></td>
<td>1975 ECONOMIC AND TECHNICAL FEASIBILITY STUDY FOR ENERGY STORAGE FLYWHEELS</td>
<td>ROCKWELL INTERNATIONAL, SPACE DIV.</td>
<td>3 201</td>
</tr>
<tr>
<td></td>
<td>1978 ENERGY STORAGE - FEASIBILITY STUDY OF AN EXPERIMENT INVOLVING SOLAR ENERGY COLLECTION, ITS STORAGE BY A SUPER FLYWHEEL, AND ELECTRIC POWER GENERATION.</td>
<td>TATRY, B.</td>
<td>3 204</td>
</tr>
<tr>
<td>FEASIBILITY STUDIES</td>
<td>1967 FLYWHEEL ENERGY STORAGE SYSTEMS FOR TRANSIT BUSES</td>
<td>WILCOX, J. P.</td>
<td>2 66</td>
</tr>
<tr>
<td></td>
<td>1969 STUDY OF UNCONVENTIONAL THERMAL,MECHANICAL,AND NUCLEAR LOW- POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES</td>
<td>BATTELLE COLUMBUS LABS</td>
<td>2 70</td>
</tr>
<tr>
<td></td>
<td>1971 FLYWHEEL FEASIBILITY STUDY AND DEMONSTRATION.FINAL REPORT</td>
<td>GILBERT, R. R./HARVEY, J. R./HEUER,G. E./LAWSON, L. J.</td>
<td>2 77</td>
</tr>
<tr>
<td>FEASIBILITY STUDIES (CONT'D.)</td>
<td>1971</td>
<td>FEASIBILITY ANALYSIS OF THE TRANSMISSION FOR A FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEM</td>
<td>MECHANICAL TECHNOLOGY, INC.</td>
</tr>
<tr>
<td></td>
<td>1972</td>
<td>HYBRID PROPULSION SYSTEM TRANSMISSION EVALUATION, PHASE I. FINAL REPORT</td>
<td>CORENER, W. A./GRIFFIN, D. H.</td>
</tr>
<tr>
<td></td>
<td>1973</td>
<td>ENERGY STORAGE VIA FLYWHEELS</td>
<td>GILMAN, J. J./HUCKE, E. E.</td>
</tr>
<tr>
<td></td>
<td>1974</td>
<td>INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS) STUDY. VOLUME I: FEASIBILITY STUDIES</td>
<td>NOTTI, J. E./CORNECK, A./SCHMILL, W. C.</td>
</tr>
<tr>
<td></td>
<td>1974</td>
<td>STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES</td>
<td>LAPIDES, O. E./MELTZER, J.</td>
</tr>
<tr>
<td></td>
<td>1975</td>
<td>SUPERFLYWHEEL FOR STORING ENERGY FROM OCEAN PLANTS</td>
<td>RABENHORST, D. W./DUGGER, C. L.</td>
</tr>
<tr>
<td>FEASIBILITY STUDY</td>
<td>1971</td>
<td>FLYWHEEL FEASIBILITY STUDY AND DEMONSTRATION. FINAL REPORT</td>
<td>GILBERT, R. R./HEUER, C. E./LAWSON, L. J.</td>
</tr>
<tr>
<td></td>
<td>1975</td>
<td>ECONOMIC AND TECHNICAL FEASIBILITY STUDY FOR ENERGY STORAGE FLYWHEELS</td>
<td>ROCKWELL INTERNATIONAL, SPACE DIV.</td>
</tr>
<tr>
<td></td>
<td>1976</td>
<td>ENERGY STORAGE - FEASIBILITY STUDY OF AN EXPERIMENT INVOLVING SOLAR ENERGY COLLECTION, ITS STORAGE BY A SUPERFLYWHEEL AND ELECTRIC POWER GENERATION</td>
<td>TATTY, B.</td>
</tr>
<tr>
<td>FEDERAL DRIVING CYCLE</td>
<td>1972</td>
<td>HYBRID PROPULSION SYSTEM TRANSMISSION EVALUATION, PHASE I. FINAL REPORT</td>
<td>CORDNER, W. A./GRIFFIN, D. H.</td>
</tr>
<tr>
<td></td>
<td>1974</td>
<td>ALTERNATIVE PRIME Movers FOR FUTURE AUTOMOBILES</td>
<td>STEINBRUCH, B./THUR, G. M.</td>
</tr>
<tr>
<td>FEEDWATER</td>
<td>1975</td>
<td>SKAGIT NUCLEAR POWER PROJECT. UNITS 1 AND 2. LICENSE APPLICATION</td>
<td>PUGET SOUND POWER AND LIGHT CO.</td>
</tr>
<tr>
<td>FEEDBACK RESONANT CIRCUIT</td>
<td>1976</td>
<td>FEEDBACK-RESONANT CIRCUIT FOR A NEW FLYWHEEL MOTOR GENERATOR</td>
<td>AALAND, K.</td>
</tr>
<tr>
<td>FIBER COMPOSITE</td>
<td>1972</td>
<td>EXPERIMENTAL INVESTIGATION OF FRACTURE IN AN ADVANCED FIBER COMPOSITE</td>
<td>KONISH, H. J./SWEOL, J. L./CRUSE, T. A./TOLAND, R. H.</td>
</tr>
<tr>
<td></td>
<td>1973</td>
<td>FLYWHEELS</td>
<td>HAMSTAD, W. A./CHIAO, T. T.</td>
</tr>
<tr>
<td></td>
<td>1974</td>
<td>ACOUSTIC EMISSION FROM STRESS-ruptURE AND FATIGUE OF AN ORGANIC FIBER COMPOSITE</td>
<td>CHIAO, T. T./HAMSTAD, W. A.</td>
</tr>
</tbody>
</table>
FIBER COMPOSITE (CONT'D.)
1975 STRENGTH RETENTION AND LIFE OF FIBER COMPOSITE MATERIALS CHIAO, T. T. / SHERRY, R. J. 6 361
1976 FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS STONE, R. G. 1 57

FIBER COMPOSITES
1966 DESIGN FOR COMMERCIAL FILAMENT WINDING CHIAO, T. T. 6 261
1967 THE TEMPERATURE EFFECT OF INTERNAL AND EXTERNAL PRESSURE OF TWIN ANGLE WOUND PIPE CHIAO, T. T. 6 265
1970 A TENSILE TEST METHOD FOR FIBERS CHIAO, T. T. / MOORE, R. L. 6 277
1971 STUDY OF EPOXY RESINS FOR FIBER COMPOSITES RICHARDSON, J. / MOORE, R. L. / CHIAO, T. T. 6 288
1972 ANALYSIS OF STRESS-RUPTURE DATA FROM S-GLASS COMPOSITES ROBINSON, E. Y. / CHIAO, T. T. 6 298
1972 STRENGTH OF S-GLASS FIBER CHIAO, T. T. / MOORE, R. L. 6 299
1972 TENSILE PROPERTIES OF PRO-49 FIBER IN EPOXY MATRIX CHIAO, T. T. / MOORE, R. L. 6 305
1972 CHARACTERIZATION OF AN EPOXY SYSTEM FOR FILAMENT WINDING CHIAO, T. T. / ALTHOUSE, L. P. 6 309
1972 ACoustic EMISSION PRODUCED DURING BURST TESTS OF FILAMENT-WOUND BOTTLES HAMSTAD, M. A. / CHIAO, T. T. 6 320
1972 MATERIALS EVALUATION FOR 2X11E MAGNET CHIAO, T. T. / WALKUP, C. M. / NEWEY, H. A. 6 322
1974 TECHNICAL PROGRAM PLAN FOR SUPERFLYWHEEL DEVELOPMENT BAHNHORST, D. W. 1 27
1974 A PHYSICAL MECHANISM FOR THE EARLY ACOUSTIC EMISSION IN AN ORGANIC FIBER/EPoxy PRESSURE VESSEL HAMSTAD, M. A. / CHIAO, T. T. 6 333
1974 ACOUSTIC EMISSION FROM STRESS-RUPTURE AND FATIGUE OF AN ORGANIC FIBER COMPOSITE HAMSTAD, M. A. / CHIAO, T. T. 6 334
1974 A ROOM TEMPERATURE-CURABLE EPOXY FOR ADVANCED FIBER COMPOSITES CHIAO, T. T. / MOORE, R. L. 6 335
1974 POLYMER-LINED FILAMENT-WOUND PRESSURE VESSELS FOR NITROGEN CONTAINMENT HAMSTAD, M. A. / CHIAO, T. T. / JESSOP, E. S. 6 339
1974 AN EPOXY SYSTEM FOR FILAMENT WINDING LORENZEN, L. E. 6 341
1974 POLYIMIDES FOR FIBER COMPOSITES CHIAO, T. T. / HAMSTAD, W. A. / JESSOP, E. S. 6 348
1974 A MODERATE-TEMPERATURE-CURABLE EPOXY FOR ADVANCED COMPOSITE APPLICATIONS CHIAO, T. T. / JESSOP, E. S. / NEWEY, R. A. 6 346
1975 EVALUATION OF INTERLAMINAR SHEAR TEST FOR FIBER COMPOSITES CHIAO, T. T. / MOORE, R. L. 6 350
1975 DEVELOPMENT OF HIGH-DENSITY INERTIAL-ENERGY STORAGE FINAL REPORT GORDON, R. S. 5 193
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>FIBER COMPOSITES FOR ENERGY STORAGE FLYWHEELS</td>
<td>PENN, L. S., CHIAO, T. T.</td>
<td>6 382</td>
</tr>
<tr>
<td>1975</td>
<td>FIBER COMPOSITES HIGHLIGHTS</td>
<td>CHIAO, T. T.</td>
<td>6 385</td>
</tr>
<tr>
<td>1975</td>
<td>AN IMPROVED ROTATABLE MASS FOR A FLYWHEEL</td>
<td>WEYLHER, GEORGE W. JR., PATENT</td>
<td>1 51</td>
</tr>
<tr>
<td>1975</td>
<td>APPLICATION 14 NOV 1975</td>
<td>CHIAO, C. C.</td>
<td>6 386</td>
</tr>
<tr>
<td>1975</td>
<td>FIBER COMPOSITES HIGHLIGHTS</td>
<td>CHIAO, T. T.</td>
<td>6 387</td>
</tr>
<tr>
<td>1975</td>
<td>CHARACTERIZATION OF A POLYAMIDE MATRIX FOR FIBER COMPOSITES</td>
<td>PENN, L. S., / WEN, K. T.</td>
<td>6 372</td>
</tr>
<tr>
<td>1975</td>
<td>FIBER COMPOSITES HIGHLIGHTS</td>
<td>CHIAO, T. T.</td>
<td>6 373</td>
</tr>
<tr>
<td>1975</td>
<td>FIBER COMPOSITES HIGHLIGHTS</td>
<td>CHIAO, T. T.</td>
<td>6 374</td>
</tr>
<tr>
<td>1975</td>
<td>AN ACCELERATED TEST FOR PREDICTING THE LIFETIME OF ORGANIC FIBER COMPOSITES</td>
<td>CHIAO, C. C.</td>
<td>6 376</td>
</tr>
<tr>
<td>1975</td>
<td>FIBER COMPOSITES HIGHLIGHTS</td>
<td>CHIAO, T. T.</td>
<td>6 378</td>
</tr>
<tr>
<td>1975</td>
<td>FIBER COMPOSITES HIGHLIGHTS</td>
<td>CHIAO, T. T.</td>
<td>6 379</td>
</tr>
<tr>
<td>1975</td>
<td>FIBER COMPOSITES HIGHLIGHTS</td>
<td>CHIAO, T. T.</td>
<td>6 380</td>
</tr>
<tr>
<td>1975</td>
<td>FIBER COMPOSITES HIGHLIGHTS</td>
<td>CHIAO, T. T.</td>
<td>6 382</td>
</tr>
</tbody>
</table>

FIBER EVALUATION

1975 FIBER EVALUATION FOR FLYWHEEL APPLICATIONS

PENN, L. S., / CHIAO, T. T. | 1 52

FIBER FLYWHEEL

1975 COMPOSITE FIBER FLYWHEEL FOR ENERGY STORAGE

RINDE, J. A. | 1 59

FIBER GLASS

1976 FLYWHEELS - PRACTICAL FLYWHEEL ENGINE: WILL FIBER GLASS BE THE ANSWER?

IL BUS W | 2 138

FIBER MODULUS DETERMINATION

1974 STRAIN MEASUREMENT TECHNIQUES FOR FIBER MODULUS DETERMINATION

MOORE, R. L., / LEPPER, J. K. | 6 325

FIBER PROPERTIES

1972 FIBER STRENGTH OF S-Glass/EPOXY COMPOSITES UNDER BI-AXIAL LOADING

CHIAO, T. T., / COMINS, A. D. | 6 328

1973 FILAMENT-WOUND VESSELS FROM AN ORGANIC FIBER/EPOXY RESIN SYSTEM

CHIAO, T. T., / HAMSTAD, M. A., / MARCEN, M. A., / HANAFEE, J. R. | 6 323

FIBER STRENGTH

1972 EVALUATION OF HIGH-STRENGTH, HIGH-MODULUS BERYLLIUM OXIDE GLASS FIBER

CHIAO, T. T., / LEWIS, A. / KIMPLE, R. F. | 6 278

1972 FIBER STRENGTH OF S-Glass/EPOXY COMPOSITES UNDER BI-AXIAL LOADING

CHIAO, T. T., / COMINS, A. D. | 6 328

FIBER/EPOXY COMPOSITE

1975 HIGH PERFORMANCE VESSELS FROM AN AROMATIC POLYAMIDE FIBER/EPOXY COMPOSITE

CHIAO, T. T., / HAMSTAD, M. A. | 6 351

FIBER/EPOXY STRANDS

1971 STRAIN RATE EFFECT ON THE ULTIMATE TENSILE STRESS OF FIBER/EPOXY STRANDS

CHIAO, T. T., / MOORE, R. L. | 6 285

FIBER/EPOXIDE COMPOSITES

1973 ORGANIC FIBER/EPOXIDE COMPOSITES

CHIAO, T. T., / MOORE, R. L. | 6 316

FIBER/EPOXY COMPOSITES

1973 GRAPHITE FIBER/EPOXY COMPOSITES

CHIAO, T. T., / MOORE, R. L., / WALKUP, C. W. | 6 321
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Year</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIBER/EPoxy PRESSURE VESSELS</td>
<td>Hamstad, W. A./Chiao, T. T./Patterson, R. G.</td>
<td>1975</td>
<td>6 354</td>
</tr>
<tr>
<td>FIBERGLASS-REINFORCED PLASTICS</td>
<td>Wu, E. M./Reuter, R. C.</td>
<td>1985</td>
<td>6 259</td>
</tr>
<tr>
<td>FIBERS</td>
<td>Chiao, T. T./Moore, R. L.</td>
<td>1970</td>
<td>6 277</td>
</tr>
<tr>
<td>1974 TENSILE TEST METHOD FOR FIBERS</td>
<td>Moore, R. L./Lepper, J. K.</td>
<td>1974</td>
<td>6 325</td>
</tr>
<tr>
<td>GRAPHITE FIBER EPOXY</td>
<td>Lorensen, L. E./Lepper, J. K.</td>
<td>1974</td>
<td>6 341</td>
</tr>
<tr>
<td>FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS.</td>
<td>Aaland, R. /Lane, J. E./Christensen, R. W.</td>
<td>1975</td>
<td>2 132</td>
</tr>
<tr>
<td>SECOND QUARTERLY PROGRESS REPORT.</td>
<td>Larsen, F. N.</td>
<td>1978</td>
<td>6 377</td>
</tr>
<tr>
<td>FIBER COMPOSITES</td>
<td>Christensen, R. W./Waal, F. M.</td>
<td>1972</td>
<td>6 292</td>
</tr>
<tr>
<td>FIBER COMPOSITE MATERIALS</td>
<td>Larder, R. A.</td>
<td>1974</td>
<td>6 343</td>
</tr>
<tr>
<td>FIBER COMPOSITE MATERIALS</td>
<td>Larder, R. A.</td>
<td>1975</td>
<td>6 349</td>
</tr>
<tr>
<td>FIFTEEN PAPERS--SURVEY</td>
<td>VDI</td>
<td>1974</td>
<td>3 160</td>
</tr>
<tr>
<td>STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS. FIFTEEN PAPERS--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SURVEY OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE SYSTEMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FILAMENT WINDING</td>
<td>Chiao, T. T.</td>
<td>1984</td>
<td>6 261</td>
</tr>
<tr>
<td>DESIGN FOR COMMERCIAL FILAMENT WINDING</td>
<td>Chiao, T. T.</td>
<td>1987</td>
<td>6 265</td>
</tr>
<tr>
<td>Title</td>
<td>Author(s)</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>FILAMENT WINDING (CONT.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972 STRENGTH OF S-Glass FIBER</td>
<td>CHIAO, T. T./MOORE, R. L.</td>
<td>6 399</td>
<td></td>
</tr>
<tr>
<td>1972 TENSILE PROPERTIES OF PRE-46 FIBER IN EPOXY MATRIX</td>
<td>CHIAO, T. T./MOORE, R. L.</td>
<td>6 308</td>
<td></td>
</tr>
<tr>
<td>1972 CHARACTERIZATION OF AN EPOXY SYSTEM FOR FILAMENT WINDING</td>
<td>CHIAO, T. T./MOORE, R. L./PENN, L. S.</td>
<td>6 355</td>
<td></td>
</tr>
<tr>
<td>1975 SCREENING OF EPOXY SYSTEMS FOR HIGH-PERFORMANCE FILAMENT</td>
<td>CHIAO, T. T./JESSOP, E. S./PENN, L. S.</td>
<td>6 355</td>
<td></td>
</tr>
<tr>
<td>WINDING APPLICATIONS</td>
<td>PENN, L. S./CHIAO, T. T.</td>
<td>6 356</td>
<td></td>
</tr>
<tr>
<td>1975 A LONG POT LIFE EPOXY SYSTEM FOR FILAMENT WINDING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FILLAMENT- WOUND BOTTLES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 ACOUSTIC EMISSION PRODUCED DURING BURST TESTS OF FILAMENT-</td>
<td>HAMSTAD, M. A./CHIAO, T. T.</td>
<td>6 320</td>
<td></td>
</tr>
<tr>
<td>WOUND BOTTLES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FILLAMENT- WOUND COMPOSITES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 ELONGATED-RING SPECIMEN FOR TENSILE PROPERTIES OF FILAMENT-</td>
<td>CLEMENTS, L. L./MOORE, R. L./CHIAO, T. T.</td>
<td>6 358</td>
<td></td>
</tr>
<tr>
<td>WOUND COMPOSITES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FILLAMENT-WOUND PRESSURE BOTTLES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972 ACOUSTIC EMISSION FROM FILAMENT-WOUND PRESSURE BOTTLES</td>
<td>HAMSTAD, M. A.</td>
<td>6 306</td>
<td></td>
</tr>
<tr>
<td>1972 ACOUSTIC EMISSION FROM FILAMENT-WOUND PRESSURE BOTTLES</td>
<td>HAMSTAD, M. A.</td>
<td>6 307</td>
<td></td>
</tr>
<tr>
<td>FILLAMENT-WOUND PRESSURE VESSELS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 POLYMER-LINED FILAMENT-WOUND PRESSURE VESSELS FOR NITROGEN</td>
<td>HAMSTAD, M. A./CHIAO, T. T./JESSOP, E. S.</td>
<td>6 328</td>
<td></td>
</tr>
<tr>
<td>CONTAINMENT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FILLAMENT-WOUND VESSEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973 FILAMENT-WOUND VESSEL FROM AN ORGANIC FIBER/EPOXY SYSTEM</td>
<td>CHIAO, T. T./MARCON, M. A.</td>
<td>6 317</td>
<td></td>
</tr>
<tr>
<td>FILLAMENT-WOUND VESSELS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973 FILAMENT-WOUND VESSELS FROM AN ORGANIC FIBER/EPOXY RESIN</td>
<td>CHIAO, T. T./HAMSTAD, M. A./MARCON, M. A./</td>
<td>6 323</td>
<td></td>
</tr>
<tr>
<td>SYSTEM</td>
<td>JESSOP, E. S./HAMSTAD, M. A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 PERFORMANCE OF FILAMENT-WOUND VESSELS FROM AN ORGANIC FIBER</td>
<td>CHIAO, T. T./JESSOP, E. S./HAMSTAD, M. A.</td>
<td>6 357</td>
<td></td>
</tr>
<tr>
<td>IN SEVERAL EPOXY MATRICES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FILAMENTARY DISK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1964 THE UNIFORM-STRESS SPINNING FILAMENTARY DISK</td>
<td>KYSER, A. C.</td>
<td>1 3</td>
<td></td>
</tr>
<tr>
<td>FILAMENTARY STRUCTURES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FILAMENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 STRENGTH DISTRIBUTION OF SINGLE FILAMENTS</td>
<td>LARDER, R. A./BEADLE, C. W.</td>
<td>6 359</td>
<td></td>
</tr>
<tr>
<td>1975 LONG-TERM PERFORMANCE OF FIBER COMPOSITES</td>
<td>CHIAO, C. C.</td>
<td>6 366</td>
<td></td>
</tr>
<tr>
<td>1975 MECHANICAL DESIGN OF A COMPOSITE CENTERLESS FLYWHEEL</td>
<td>BLAINE, A.</td>
<td>1 53</td>
<td></td>
</tr>
<tr>
<td>FINITE ELEMENT ANALYSIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 THE APPLICATION OF THREE DIMENSIONAL FINITE ELEMENT ANALYSIS</td>
<td>LARDER, R. A.</td>
<td>6 343</td>
<td></td>
</tr>
<tr>
<td>TO THE MICRO-MECHANICS OF FIBEROUS COMPOSITE MATERIALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINITE ELEMENT METHOD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 FINITE ELEMENT STUDY OF A CAST IRON FLYWHEEL WITH PARTICULAR</td>
<td>BINDER, F. J.</td>
<td>1 40</td>
<td></td>
</tr>
<tr>
<td>EMPHASIS ON STRESS CONCENTRATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINITE ELEMENT SIMULATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 STOCHASTIC FINITE ELEMENT SIMULATION OF THE NONLINEAR</td>
<td>LARDER, R. A.</td>
<td>6 349</td>
<td></td>
</tr>
<tr>
<td>STRUCTURAL RESPONSE OF FIBEROUS COMPOSITE MATERIALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Author(s)</td>
<td>Volume</td>
<td>Pages</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>FINITE ELEMENT STUDY</td>
<td>BINDIN, P.J.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1975 FINITE ELEMENT STUDY OF A CAST IRON FLYWHEEL WITH PARTICULAR</td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>EMPHASIS ON STRESS CONCENTRATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINLAYSON, P. T.</td>
<td>FINLAYSON, P. T. / WASHBURN,</td>
<td></td>
<td>178</td>
</tr>
<tr>
<td>1974 CYCLOCOVERTER-CONTROLLED SYNCHRONOUS MACHINES FOR LOAD</td>
<td>D. C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPENSATION ON AC POWER SYSTEMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIRST TORSIONAL EIGENFREQUENCY</td>
<td>ATZEBEI, B. / CURTI, G.</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>1974 ITERATIVE PROCEDURES FOR CALCULATING THE FIRST TORSIONAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EIGENFREQUENCY OF A SHAFT WITH SEVERAL FLYWHEELS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIRST-PASSAGE PROBABILITY</td>
<td>TOLAND, R. H. / YANG, C. Y.</td>
<td></td>
<td>289</td>
</tr>
<tr>
<td>1971 A RANDOM WALK MODEL FOR FIRST-PASSAGE PROBABILITY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FISCHER, WM. A.</td>
<td>FISCHER, WM. A.</td>
<td></td>
<td>139</td>
</tr>
<tr>
<td>1967 MOMENTUM EXCHANGE ACQUISITION SYSTEM, FINAL REPORT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FISCHER, R.D.</td>
<td>HOSS, J.A. / CHEANEY, E.S. /</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>1968 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR</td>
<td>CHEKWICK, F. A. / BRAYSER,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES</td>
<td>WM. R. / TIMBERLAKE, A. B. /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/BASHAM, E J. / SPERRY, J. / WILCOX, J. P.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FISSION</td>
<td>PENNER, S. S. / ICKES, L.</td>
<td></td>
<td>243</td>
</tr>
<tr>
<td>1974 ENERGY, VOLUME I, DEMANDS, RESOURCES, IMPACT, TECHNOLOGY, AND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLICY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLEMING, R. D.</td>
<td>ALLSUP, J. R. / FLEMING, R. D.</td>
<td></td>
<td>102</td>
</tr>
<tr>
<td>1974 EMISSION CHARACTERISTICS OF A PRIME MOVER FOR HYBRID VEHICLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLEXIBLE SOLAR ARRAYS</td>
<td>PFEIFFER, F. / POHL, A.</td>
<td></td>
<td>227</td>
</tr>
<tr>
<td>1975 DYNAMICS OF A SATELLITE WITH A FLYWHEEL AND FLEXIBLE SOLAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARRAYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLOODS</td>
<td>PUGET SOUND POWER AND LIGHT CO.</td>
<td></td>
<td>160</td>
</tr>
<tr>
<td>1975 SKAGIT NUCLEAR POWER PROJECT, UNITS 1 AND 2, LICENSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPLICATION</td>
<td>PUGET SOUND POWER AND LIGHT CO.</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>FLOW REGULATORS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 SKAGIT NUCLEAR POWER PROJECT, UNITS 1 AND 2, LICENSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPLICATION</td>
<td>PUGET SOUND POWER AND LIGHT CO.</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>FLUE GAS</td>
<td>ELECTRIC POWER RESEARCH INST.</td>
<td></td>
<td>192</td>
</tr>
<tr>
<td>1975 FOSSIL FUEL AND ADVANCED SYSTEMS DIVISION, RESEARCH PROGRESS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REPORT FF-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLUIDIZED-BED COMBUSTION</td>
<td>ELECTRIC POWER RESEARCH INST.</td>
<td></td>
<td>192</td>
</tr>
<tr>
<td>1975 FOSSIL FUEL AND ADVANCED SYSTEMS DIVISION, RESEARCH PROGRESS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REPORT FF-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLUIDS</td>
<td>CHRISTENSEN, R. W.</td>
<td></td>
<td>313</td>
</tr>
<tr>
<td>1973 A SPECIAL THEORY OF VISCOELASTIC FLUIDS FOR APPLICATION TO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUSPENSION</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

71
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

FLUORIDE MIXTURES
1974 HEAT STORAGE USING ALKALI METAL SALTS, ALKALI EARTH SALTS, IRON CHLORIDE, ZINC CHLORIDE, BORON OXIDE, AND EUTECTIC FLUORIDE MIXTURES SCHROEDER, J. 5 242

FLYBOX
1970 FINAL DESIGN REPORT, PROTOTYPE GEARBOX FLYWHEEL (FLYBOX) FOR STORED ENERGY ROTARY DRIVE SHIPBOARD CATAPULT NELLIUS, V. C. 3 143

FLYWHEEL
1959 COMPARISON OF ELECTRICALLY RUN UP FLYWHEEL (DC MOTOR) WITH TURBINE, HOT GAS MOTOR AND OTHER SYSTEMS FOR MINUTEMAN APPLICATION. FRUKTOW, N. N. 2 60
1963 DETERMINING INERTIA AND TIME REQUIREMENTS FOR FLYWHEEL SPOTTS, W. F. 1 1
1964 GENERAL THEORETICAL ANALYSIS AND EVALUATION OF AN EXPERIMENTAL MODEL OF A CONSTANT-SPEED FLYWHEEL POWER SOURCE FOR NOVA GENERATION STATION, TRENTON, N. J. MATTHEWS, L. E. / EVERETT, W. D. / BINDER, R. 2 82
1965 SPECIFICATIONS FOR SHIPBOARD STORED ENERGY CATAPULT FLYWHEEL PACKAGE. NATAL ORDNANCE STATION, FOREST PARK, ILL. SPOTTS, W. F. / BINDER, R. / HAVRANEK, J. 2 65
1967 COMPOSITE FLYWHEEL STRESS ANALYSIS AND MATERIALS STUDY MORGANTHALER, C. F. / BONK, S. P. / WILCOX, J. P. 1 1
1967 FLYWHEEL INERTIA ACTUATES AUTOMATIC ANTI-SKID DEVICE PRODUCT ENG. DERGACHEVA, E. I. 2 67
1968 FLYWHEEL STABILIZATION OF A RIGID BODY SUBJECTED TO CONSTANTLY APPLIED PERTURBATIONS DORFMAN, J. A. 3 140
1969 WEIGHT IS SAVED WHEN FLYWHEEL ENERGY STORAGE UNIT SUPPLMENTS AIRCRAFT SECONDARY POWER SYSTEMS. HELELEY, C. W. 4 217
1980 BEARING SUPPORT FLYWHEEL ENGINEER 1 10
1980 FEASIBILITY OF FLYWHEEL HIGH-ENERGY STORAGE SYSTEMS SVENSSON, A. / WETHERBEK, A. E. 2 63
1980 PRIMARY ENERGY STORAGE AND THE SUPER FLYWHEEL NELLIUS, V. C. 3 145
1980 FLYWHEEL GENERATORS FOR INSTANT POWER POUHEAD, P. 4 220
1980 A GREASE-LUBRICATED HYDRODYNAMIC BEARING SYSTEM FOR A SATELLITE FLYWHEEL BARWELL, L. D. G. / SWAIN, J. 4 221
1980 SATELLITE FLYWHEEL MAHIG, J. 1 15
1980 A NEW TECHNICAL IDEA ON FLYWHEELS (NOUVELLE CONCEPTION TECHNIQUE DES VOLANTS D'INERTIE) CHIRONIS, N. P. 2 76
1980 SUPER FLYWHEEL TO POWER ZERO-EMISSION CAR ARMAGNAC, A. P. 2 73
1980 PRIMARY ENERGY STORAGE AND THE SUPER FLYWHEEL BABENHORST, D. V. 1 14
1980 SUPER FLYWHEEL MECH. ENG. 1 15
1980 SATELITE FLYWHEEL BARWELL, L. D. G. / SWAIN, J. 4 221
1980 MINIMIZATION OF MECHANISM OSCILLATIONS THROUGH FLYWHEEL TUNING MAHIG, J. 1 15
1981 SUPER FLYWHEEL CONFIGURATIONS FORM HEART OF MECHANICAL-Powered DRIVES CHIRONIS, N. P. 2 76
1981 DESIGN AND TESTING OF HIGH ENERGY DENSITY FLYWHEELS FOR APPLICATION TO FLYWHEEL HEAT ENGINE HYBRID VEHICLE DRIVES LAWSON, L. J. 2 78
1981 THE LARGEFRADE: A FLYWHEEL FOR THE STABILIZATION OF SYNCHRONOUS SATELLITES WEDEDE, HEINZ 4 222
1981 FEASIBILITY ANALYSIS OF THE TRANSMISSION FOR A FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEM MECHANICAL TECHNOLOGY, INC. 2 82
1972 FLYWHEEL ENERGY BUFFER JAKUBOWSki, W. 3 151
1972 DISPOSITIF DE PROTECTION CONTRE LES CONSEQUENCES DE LA RUPTURE D'UN VOLANT D'INERTIE. (A PROTECTIVE DEVICE TO PREVENT THE CONSEQUENCES OF A FLYWHEEL RUPTURE) BONNET-THIRION, C. J. / BOBIDA, L. / FOLDIES, G. 1 21
1973 DYNAMICS OF A SATELLITE WITH A FLYWHEEL AND FLEXIBLE SOLAR ARRAYS PFEIFFER, F. / POJL A. 4 227
1973 CIRCUIT DESIGN REPORT FOR A MOMENTUM WHIRL MOTOR CURRENT CONTROL UNIT MAINE, J. E. 4 228

72
FLYWHEEL (CONTD.)

1973 SUPER FLYWHEEL: A SECOND LOOK BRUNELLE, E. J. 1 22
1973 IS THERE A FLYWHEEL IN YOUR FUTURE LAWSON, L. J. 2 84
1973 HYBRID CAR: PART-TIME ENGINE - PART-TIME FLYWHEEL = FULL LINDSLEY, K. F. 2 97
 TIME TRANSPORTATION
1974 FLYWHEEL ENERGYPULPILSION AND THE ELECTRIC VEHICLE WEBER, B. / MINKES, S. 2 100
1974 FLYWHEEL BRAKES STORE NEW TRAIN'S ENERGY FOR ELECTRICITY- ARMAGNAC, A. P. 2 108
 SAVING STARTS; NEW YORK'S LATEST SUBWAY CARS
1974 A FLYWHEEL IN YOUR FUTURE NEWSWEEK 2 109
1974 HYBRID DRIVE WITH FLYWHEEL COMPONENT FOR ECONOMIC AND HELLE, J. / SCHNECK, H. / GIERA, R. 2 110
 DYNAMIC OPERATION
1974 NO-BREAK SETS MOODY, R. L. 3 167
1974 THERMAL VACUUM QUALIFICATION TESTS ON A TELIX DOUBLE- TODD, M. J. / WILSON, K. G. 4 234
 GASBALLED MOMENTUM WHEEL
1974 A 1000 WHZ FLYWHEEL OPTIMISATION STUDY STANDING, J. W. 1 24
1974 A 1500 WHZ FLYWHEEL OPTIMISATION STUDY STANDING, J. W. 1 35
1974 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE LAPEDES, D.E./MELTZER, J. 2 118
 FLYWHEEL VEHICLES
1974 LARGE FLYWHEEL POWER SUPPLY FOR FUSION EXPERIMENTS IN THE NOEBLOCH,A./KOTTMAIR,W./SCHLUETER,W. 3 173
 MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK, GARCHING, GERMANY /VAU.G
1974 FLYWHEEL ENERGY SYSTEMS BIGGS, F. 1 37
1974 QUALIFICATION AND LIFE TESTING OF A BALL-BEARING FLYWHEEL TELIX LUFTHAFH-AUSRIESTUNGS G.M.B. 4 235
 H.
1975 FINE ELEMENT STUDY OF A CAST IRON FLYWHEEL WITH PARTICULAR BINDIN, P.J. 1 40
 EMPHASIS ON STRESS CONCENTRATIONS
1975 ENERGY TECHNOLOGY II: (NAVO APPLICATIONS) PETZBURG, P.A. 6 427
1975 NEW YORK SUBWAY TRIES OUT FLYWHEEL ENERGY STORAGE RAILWAY GAZETTE INTERNATIONAL 2 123
1975 VEHICLE POWER SYSTEM FOR LIMITED VEHICLE MOVEMENT WITHOUT STROHLEIN,J.N. 2 126
 USE OF FUEL
1975 WIND POWER HERONENBURG, W.E. 5 249
1975 TECHNICAL ASSESSMENT OF ENERGY STORAGE TECHNOLOGIES SCHREIDER, T. R. 3 191
1975 DEVELOPMENT OF HIGH-DENSITY INERTIAL-ENERGY STORAGE FINAL GORDON, H. S. 3 193
 REPORT
1975 MAGNETICALLY SUSPENDED LARGE MOMENTUM WHEEL SABNESE, A. Y. / DENDY, J. B. / 4 238
 SCHMITT, F. W.
1975 REPEETITIVE PLASMA FOCUS POWERED BY A APPROX. 200 WZ FLYWHEEL NARDI, V. 3 194
 GENERATOR.
1975 FLYWHEELS - FLYWHEEL IN AUTO TO REPLACE GASOLINE MACHINE DESIGN 2 130
1975 REACTOR COOLANT PUMP FLYWHEEL INTEGRITY NUCLEAR REGULATORY COMM. 3 196
1975 POWER PLANT HARIGA,H. 3 197
1975 DESIGN AND TEST OF A FLYWHEEL ENERGY STORAGE UNIT FOR CORMACK, A. / NOTTI, J. E. / RUES, M. L. 4 239
 SPACECRAFT APPLICATION.
1975 DESIGN AND TESTING OF AN ENERGY FLYWHEEL FOR AN INTEGRATED NOTTI, J. E. / CORMACK, A. 4 240
 POWER/ATTITUDE CONTROL SYSTEM (IPASS)
1975 EPICYCLES RESIDES FOR FLYWHEEL APPLICATIONS. RINDE, J. A. 1 48
 QUARTERLY PROGRESS REPORT.
1975 AN EVALUATION OF THE FUTURE ROLE OF STORAGE TECHNIQUES IN PEIDRINTS, G. F. 3 199
 ELECTRIC POWER TECHNOLOGY
1975 1975 FLYWHEEL TECHNOLOGY SYMPOSIUM ENERGY RESEARCH AND DEVELOPMENT 1 50
 ADMINISTRATION, AND LAWRENCE WEYLER, GEORGE W. JR. PATENT 1 51
 LIVERMORE LABORATORY
1975 AN IMPROVED ROTATABLE MASS FOR A FLYWHEEL APPLICATION 14 NOV 1975
1975 FIBER EVALUATION FOR FLYWHEEL APPLICATIONS PENN, L. S. / CHIAO, T. T. 1 52
1975 LIL PROGRAM FOR COMPOSITE FLYWHEEL CHIAO, T. T. / STONE, R. G. 3 203
1975 MECHANICAL DESIGN OF A COMPOSITE CENTERLESS FLYWHEEL BLAKE, A. 1 59
1975 FIBER-RESONANT CIRCUIT FOR A NEW FLYWHEEL MOTOR GENERATOR AHLAND, K. 1 54
1975 ENERGY STORAGE - FEASIBILITY STUDY OF AN EXPERIMENT INVOLVING TATRY, B. 3 204
 SOLAR ENERGY COLLECTION, ITS STORAGE BY A SUPER FLYWHEEL, AND ELECTRIC POWER GENERATION.
1975 FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS STONE, R. G. 1 57
1975 FLYWHEELS - PRACTICAL FLYWHEEL ENGINE; WILL FIBER GLASS BE IL BUS W 2 136
 THE ANSWER?
1975 COMPOSITE FIBER FLYWHEEL FOR ENERGY STORAGE RINDE, J. A. 1 59

73
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
<th>Volume</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>FLywheeL APPlicATions</td>
<td>RINDE, J. A.</td>
<td>1</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>1976 FibeR Composite ProgRam for Flywheel Applications, Second</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quarterly Progress Report</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>FLywheeL APPlicATions</td>
<td>NOTTI, J. E. / CORMACK, A. / SCHMILL, W. C.</td>
<td>4</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>1974 inteGRated Power/Attitude Control System (IPACS) Study, Volume</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: Feasibility Studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STartS: New York's Latest Subway Cars</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>FLywheeL burstinG SpeeD</td>
<td>Bindin, P. J.</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>1975 FInite Element Study of a Cast Iron Flywheel with Particular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emphasis on Stress Concentrations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>FLywheeL component</td>
<td>HELLING, J. / SCHRECK, H. / GIera, S.</td>
<td>2</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>1974 HYbrid Drive with Flywheel Component for Economic and Dynamic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>FLywheeL ConfiguratIons</td>
<td>CHRONIS, N. P.</td>
<td>2</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>1972 High Performance Helicopter Hoist Program</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>FLywheeL ConsideRation</td>
<td>Barwell, L. D. G. / Swain, J.</td>
<td>4</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>1970 SateLLite Flywheel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>FLywheeL design</td>
<td>KYser, A. C.</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1969 Primary Energy Storage and the Super Flywheel</td>
<td>RabENHORST, D. W.</td>
<td>2</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>1970 Final Design Report, Prototype Gearbox Flywheel (FLybox) for</td>
<td>NEllis, T. C.</td>
<td>3</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>Stored Energy Rotary Drive Shipboard catapult</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>SatelIitte Flywheel</td>
<td>Barwell, L. D. G. / Swain, J.</td>
<td>4</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>1971 the DraIlMad: A Flywheel for the Stabilization of SynchronOUS</td>
<td>WEHoE, HEINz</td>
<td>4</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>Satellites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>FLywheeL ConfiguratIons</td>
<td>ADAMS, L. R.</td>
<td>4</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>1972 Application of Helixoid Flywheels to spacecraft energy and</td>
<td>POST, R. P. / POST, S. F.</td>
<td>2</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Angular Momentum Storage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1972 Inertial energy storage apparatus and system for utilizing</td>
<td>Mais, J. E.</td>
<td>4</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td>the same</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1973 circuit design report for a momentum wheel motor current</td>
<td>POST, S. F.</td>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Control unit</td>
<td>NEWSwige, T.</td>
<td>2</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>1973 Inertial energy storage apparatus</td>
<td>STANDING, J. W.</td>
<td>3</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>1974 A flywheel in your future</td>
<td>KALHAMMER, F.</td>
<td>1</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>1974 can flywheels replace pumped storage?</td>
<td>KALHAMMER, F. / ZYgelBAUW, P. S.</td>
<td>3</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>1974 A 1000 kWh Flywheel Optimisation Study</td>
<td>FullMAN, R. L.</td>
<td>3</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>1974 Energy Storage: Incentives and prospects for its development</td>
<td>ESA</td>
<td>1</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>1975 Potential for large-scale energy storage in electric utility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>Energy storage by flywheels</td>
<td>WeyLER, GEORGE M., JR. / PATent</td>
<td>1</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>1975 DESIGN AND DEVELOPMENT OF A MOMENTUM WHEEL WITH A MAINLY</td>
<td>KIRK, JAMES A. / STUDER, PHILIP A. / EVANS, HARoLD E.</td>
<td>3</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>Passive Magnetic Bearing Final Report</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>An Improved Rotatable Wars for a Flywheel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>meChanical capacitor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Year</td>
<td>Title</td>
<td>Authors/Editors</td>
<td>Volume</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>--</td>
<td>-------------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Flywheel Designs</td>
<td>1974</td>
<td>Flywheel Energy Systems</td>
<td>Biggs, F.</td>
<td>1</td>
</tr>
<tr>
<td>Flywheel Energy Buffer</td>
<td>1972</td>
<td>Flywheel Energy Buffer</td>
<td>Jakubowski, M.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1975</td>
<td>New York Subway Trains Out Flywheel Energy Storage</td>
<td>Railway Gazette International</td>
<td>2</td>
</tr>
<tr>
<td>Flywheel Energy Systems</td>
<td>1974</td>
<td>Flywheel Energy Systems</td>
<td>Biggs, F.</td>
<td>1</td>
</tr>
<tr>
<td>Flywheel Engine</td>
<td>1976</td>
<td>Flywheels - Practical Flywheel Engine: Will Fiber Glass Be The Answer</td>
<td>Il Bus W</td>
<td>2</td>
</tr>
<tr>
<td>Flywheel Evaluation</td>
<td>1972</td>
<td>Application of Isotensoid Flywheels to Spacecraft Energy and Angular Momentum Storage</td>
<td>Adams, L. R.</td>
<td>4</td>
</tr>
<tr>
<td>Flywheel for Energy</td>
<td>1976</td>
<td>Composite Fiber Flywheel for Energy Storage</td>
<td>Hinne, J. A.</td>
<td>1</td>
</tr>
<tr>
<td>Flywheel Generator</td>
<td>1975</td>
<td>Repetitive Plasma Focus Powered by a Approx. 200 W Flywheel Generator.</td>
<td>Nardi, V.</td>
<td>3</td>
</tr>
<tr>
<td>Flywheel Generators</td>
<td>1970</td>
<td>Flywheel Generators for Instant Power</td>
<td>Ashmore, P. H.</td>
<td>3</td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

FLYWHEEL HIGH-ENERGY STORAGE
1969 FEASIBILITY OF FLYWHEEL HIGH-ENERGY STORAGE

FLYWHEEL IN AUTO
1975 FLYWHEELS - FLYWHEEL IN AUTO TO REPLACE GASOLINE

FLYWHEEL INERTIA
1967 FLYWHEEL INERTIA ACTUATES AUTOMATIC ANTI-SKID DEVICE

FLYWHEEL INTEGRITY
1975 REACTOR COOLANT PUMP FLYWHEEL INTEGRITY

FLYWHEEL MACHINES
1983 DETERMINING INERTIA AND TIME REQUIREMENTS FOR FLYWHEEL MACHINES

FLYWHEEL MATERIALS
1972 HEAT-ENGINE MECHANICAL-ENERGY-STORAGE HYBRID PROPULSION SYSTEMS FOR VEHICLES.FINAL REPORT
1972 HIGH PERFORMANCE HELICOPTER HOIST PROGRAM
1974 CAN FLYWHEELS REPLACE PUMPED STORAGE?
1974 FLYWHEEL ENERGY SYSTEMS
1975 FIBER COMPOSITES FOR ENERGY STORAGE FLYWHEELS.

FLYWHEEL MOTOR GENERATOR
1976 FERRO-RESONANT CIRCUIT FOR A NEW FLYWHEEL MOTOR GENERATOR

FLYWHEEL OPTIMISATION STUDY
1974 A 1000 NMS FLYWHEEL OPTIMISATION STUDY
1974 A 150 NMS FLYWHEEL OPTIMISATION STUDY

FLYWHEEL OPTIMISATION
1974 THE UNIFORM-STRESS SPINNING FILAMENTARY DISK
1971 THE DRAWMAD: A FLYWHEEL FOR THE STABILIZATION OF SYNCHRONOUS SATELLITES

FLYWHEEL PACKAGE
1966 SPECIFICATIONS FOR SHIPBOARD STORED ENERGY CATAPULT FLYWHEEL PACKAGE

FLYWHEEL POWER SOURCE
1964 GENERAL THEORETICAL ANALYSIS AND EVALUATION OF AN EXPERIMENTAL MODEL OF A CONSTANT-SPEED FLYWHEEL POWER SOURCE

FLYWHEEL POWER SUPPLY
1974 LARGE FLYWHEEL POWER SUPPLY FOR FUSION EXPERIMENTS IN THE MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK,GARCHING, GERMANY

FLYWHEEL POWERED VEHICLES
1972 HEAT-ENGINE MECHANICAL-ENERGY-STORAGE HYBRID PROPULSION SYSTEMS FOR VEHICLES.FINAL REPORT

SVERSSON, A. / WETHERBEE, A. E. 3 142
MACHINE DESIGN 2 130
PRODUCT ENG. 2 67
NUCLEAR REGULATORY COMM. 3 196
SPARKS, M. F. 1 1
DUGGER, G. L./BRANDT,A./GEORGE,J.F. 1 18
/LERNER,L.J./ABERNETHY, D. W.
/SMALL,T.R./WEISS,R.O.
/BLAIR,J.J./DUDDY, J. H.
/CALIBERT, R. R. / HELVET, M. R.
/JACOBSEN, E. H. / RUTH, R. / WADA, W. T.
/GINSBURG, T.
/BIGGS, F.
/PENN, L. S./CHIAO, T. T.

76
<table>
<thead>
<tr>
<th>Topic</th>
<th>Year</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLYWHEEL BAG</td>
<td>1974</td>
<td>BIGGS, F.</td>
<td>1</td>
</tr>
<tr>
<td>FLYWHEEL RELIABILITY</td>
<td>1973</td>
<td>HAINES, J. E.</td>
<td>4</td>
</tr>
<tr>
<td>FLYWHEEL RUPTURE</td>
<td>1972</td>
<td>BOIS, G.</td>
<td>1</td>
</tr>
<tr>
<td>FLYWHEEL STABILIZATION</td>
<td>1988</td>
<td>DEROUBEY, E. I.</td>
<td>3</td>
</tr>
<tr>
<td>FLYWHEEL STABILIZED</td>
<td>1974</td>
<td>TROLL, J. H.</td>
<td>3</td>
</tr>
<tr>
<td>FLYWHEEL STRESS ANALYSIS</td>
<td>1957</td>
<td>MORGANTHALER, G. F. / DONK, S. P.</td>
<td>1</td>
</tr>
<tr>
<td>FLYWHEEL SYSTEMS DESIGN</td>
<td>1970</td>
<td>POUBEAU, P.</td>
<td>4</td>
</tr>
<tr>
<td>FLYWHEEL TECHNOLOGY SYMPOSIUM</td>
<td>1975</td>
<td>ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION, AND LAWRENCE LIVERMORE LABORATORY</td>
<td>1</td>
</tr>
<tr>
<td>FLYWHEEL TESTING</td>
<td>1973</td>
<td>SCHULZ, HANS HOLGER</td>
<td>4</td>
</tr>
<tr>
<td>FLYWHEEL THERMAL PROPERTIES</td>
<td>1974</td>
<td>STANDING, J. M.</td>
<td>1</td>
</tr>
<tr>
<td>FLYWHEEL THERMAL PROPERTIES</td>
<td>1974</td>
<td>ING, J.</td>
<td>1</td>
</tr>
<tr>
<td>FLYWHEEL TRANSAXLE</td>
<td>1973</td>
<td>LINDSLEY, E. F.</td>
<td>2</td>
</tr>
<tr>
<td>FLYWHEEL TUNING</td>
<td>1971</td>
<td>MAMIG, J.</td>
<td>1</td>
</tr>
<tr>
<td>FLYWHEEL VEHICLES</td>
<td>1974</td>
<td>LAPEDES, D. E. / WELTZER, J.</td>
<td>2</td>
</tr>
<tr>
<td>ISBN</td>
<td>Title</td>
<td>Author(s)</td>
<td>Year</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-------------------------</td>
<td>------</td>
</tr>
<tr>
<td>290</td>
<td>TWO NEW WEAPONS AGAINST AUTOMOTIVE AIR POLLUTION: THE</td>
<td>Whitlaw, R. L.</td>
<td>1972</td>
</tr>
<tr>
<td></td>
<td>HYDROSTATIC DRIVE AND THE FLYWHEEL-ELECTRIC LDV.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>FLYWHEEL-ELECTRIC SYSTEM FOR LOCAL-DUTY VEHICLES</td>
<td>Automotive Eng.</td>
<td>1973</td>
</tr>
<tr>
<td>27</td>
<td>FLYWHEEL-HIGH PERFORMANCE</td>
<td>Rabenhorst, D. W.</td>
<td>1974</td>
</tr>
<tr>
<td>82</td>
<td>TECHNICAL PROGRAM PLAN FOR SUPERFLYWHEEL DEVELOPMENT</td>
<td>Matthews, L. E. /</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Everett, W. D. /</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Binder, R.</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>GENERAL THEORETICAL ANALYSIS AND EVALUATION OF AN</td>
<td>Fruytow, N. K.</td>
<td>1984</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL MODEL OF A CONSTANT-SPEED FLYWHEEL POWER SOURCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>COMPARISON OF ELECTRICALLY RUN UP FLYWHEEL (DC MOTOR) WITH</td>
<td>Roese, J. B.</td>
<td>1959</td>
</tr>
<tr>
<td></td>
<td>TURBINE, HOT GAS MOTOR AND OTHER SYSTEMS FOR MINUTEWAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AN ELECTRO-MECHANICAL ENERGY STORAGE SYSTEM FOR SPACE</td>
<td>Machy (Lond)</td>
<td>1981</td>
</tr>
<tr>
<td>3</td>
<td>APPLICATION</td>
<td>Kyzer, A. C.</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>TESTING MAGNETO FLYWHEELS AT SPEEDS UP TO 25000 RPM.</td>
<td>Marlows, E. V.</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>THE UNIFORM-STRIP SPINNING FILAMENTSAL DISK</td>
<td>Matthews, L. E. /</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTAL MODEL OF A CONSTANT-SPEED FLYWHEEL POWER SOURCE</td>
<td>Everett, W. D. /</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMPOSITE FLYWHEEL STRESS ANALYSIS AND MATERIALS STUDY</td>
<td>Binder, R.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>FLYWHEEL ENERGY STORAGE SYSTEMS FOR TRANSIT BUSES</td>
<td>Wilcox, J. P.</td>
<td>1976</td>
</tr>
<tr>
<td>216</td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR</td>
<td>Helsley, C. W. /</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AIRCRAFT ACTUATION FUNCTIONS</td>
<td>Call, B. J.</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>FEASIBILITY OF FLYWHEEL HIGH-ENERGY STORAG</td>
<td>Syverson, A. /</td>
<td>1969</td>
</tr>
<tr>
<td></td>
<td>STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-</td>
<td>Wetherbee, A. E.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES</td>
<td>Hoess, J.A. /</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>FINAL DESIGN REPORT, PROTOTYPE GEARBOX FLYWHEEL (FLYBOX) FOR</td>
<td>Nellig, V. C.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STORED ENERGY ROTARY DRIVE SHIPBOARD CATAPULT</td>
<td>Ortiz, J. V.</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>FIRST NATIONAL CITY BANK USES CONSTANT-POWER SYSTEM FOR</td>
<td>Shinmo, P. H.</td>
<td>1969</td>
</tr>
<tr>
<td></td>
<td>COMPUTERS</td>
<td>Reinhoudt, J. P.</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>FLYWHEEL GENERATORS FOR INSTANT POWER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>A GREASE-LUBRICATED HYDRODYNAMIC BEARING SYSTEM FOR A SATELLITE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>FLYWHEEL SATELLITE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>A NEW TECHNICAL IDEA ON FLYWHEELS (NOUVELLE CONCEPTION</td>
<td>Barwell, L. D. G. /</td>
<td>1970</td>
</tr>
<tr>
<td></td>
<td>TECHNIQUE DES VOLANTS D'INERTIE)</td>
<td>Goward, C. D. /</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>MODIFICATION OF DC MOTOR WITH MAGNETICALLY SUSPENDED ROTOR</td>
<td>King, A. H. /</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEW CONCEPTS IN MECHANICAL ENERGY STORAGE</td>
<td>Mondon, D. F. /</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>SURVEY OF PROPULSION SYSTEMS FOR LOW EMISSION URBAN VEHICLES</td>
<td>Poulbeau, P.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>FINAL REPORT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>NOYES, C. F. / WALKER, R. E. /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>PIRIKLE, J.C. / FRAZER, R. /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>HURSTEINBE, N.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>LANTZ, L. J.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>DUGGER, G. L. / BRANDT, A. / GEORGE, J. P.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>WENDY, Heinz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>MECHANICAL TECHNOLOGY, INC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>PROCEEDINGS SECOND INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>ELECTRIC ROAD VEHICLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>HYDRAULIC TRANSMISSION COUPLED STANDBY POWER UNIT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FLYWHEELS (CONT'D.)

1972 APPLICATION OF ISOTENSID FLYWHEELS TO SPACECRAFT ENERGY AND ANGULAR MOMENTUM STORAGE
ADAMS, L. R. 4 224
CORDNER, W. A./GRIMM, D. H. 2 88

1972 HYBRID PROPULSION SYSTEM TRANSMISSION EVALUATION, PHASE I. FINAL REPORT
KRITTER, R. 1 10
1 20

1972 CALCULATION OF STRESSES AND STRENGTH RETENTION OF ROTATING DISKS AND FLYWHEELS
RAEBENHORST, D. W. 1 10

1972 THE APPLICATION OF WOOD TECHNOLOGY TO KINETIC ENERGY STORAGE
BOS, J. C. G. 4 225

1972 QUALIFICATION TESTS ON REACTION FLYWHEELS SUPPORTED ON GEARED-FABRICATED BEARINGS
POST, R. F./POST, S. F. 2 88

1972 HIGH PERFORMANCE HELICOPTER HOIST PROGRAM
LAWSON, L. J. 2 59

1972 INERTIAL ENERGY STORAGE APPARATUS AND SYSTEM FOR UTILIZING THE SAME
JAKUBOWSKI, J. M.
BONNET-HIRION, C. J./HOBIDA, L.
FOLDES, G.
REIMERS, E. 1 21
2 91
3 153
2 227

1973 HYBRID ELECTRIC PROPULSION UTILIZING RECONNETICABLE MOTOR WINDINGS IN WHEELS
RAEBENHORST, D. W.
PFEIFFER, F./POHL, A. 3 153
4 227

1973 SUPERFLYWHEEL
KUHLER, G. C.
SCHULZ, HANS HOLGER 2 92
4 229

1973 DYNAMICS OF A SATELLITE WITH A FLYWHEEL AND FLEXIBLE SOLAR ARRAYS
REIMERS, E.
DANN, R. T.
POST, S. F.
GILMAN, J. J./HUCKE, E. E.
LINDSEY, E. F. 2 95
1 23
2 96
3 154
2 97

1973 ELECTRIC VEHICLE HYBRID POWER TRAIN
LAWSON, L. J. 2 94

1973 ENVIRONMENTAL TESTS ON DALLARAD D-20-0-5KW
REIMERS, E.
DANN, R. T.
POST, S. F.
GILMAN, J. J./HUCKE, E. E.
LINDSEY, E. F. 2 95
1 23
2 96
3 154
2 97

1973 APPLICATION OF TWO-PHASE DC CHOPPER MOTOR DRIVE
LAWSON, L. J. 2 94

1973 REINVENT IN FLYWHEELS
LAWSON, L. J. 2 94

1973 INERTIAL ENERGY-STORAGE APPARATUS
LAWSON, L. J. 2 94

1973 ENERGY STORAGE VIA FLYWHEELS
LAWSON, L. J. 2 94

1973 HYBRID CAR: PART-TIME ENGINE + PART-TIME FLYWHEEL = FULL TIME TRANSPORTATION
LAWSON, L. J. 2 94

1973 STORED ENERGY IN A SPINNING DISK COULD ALLEVIATE THE ENERGY CRISIS
LAWSON, L. J. 2 94

1973 NEW UNINTERRUPTIBLE POWER SYSTEM ALTERNATIVES USING HIGH CAPACITY KINETIC ENERGY WHEELS
LAWSON, L. J. 2 94

1973 INVESTIGATION OF THE HOMOPOLAR MOTOR-GENERATOR AS A POWER SUPPLY FOR CONTROLLED FUSION EXPERIMENTS
LAWSON, L. J. 2 94

1973 FLYWHEELS
LAWSON, L. J. 2 94

1973 DESIGN CONSIDERATIONS FOR A 100-MEGAWATT/500-MEGAWATT SUPERFLYWHEEL
LAWSON, L. J. 2 94

1973 SUPERFLYWHEEL ENERGY STORAGE SYSTEM
LAWSON, L. J. 2 94

1974 THERMAL STRESSES IN COMPOSITE FLYWHEELS
REUTER, R. C. Jr.
GULIA, M. Y./ET AL.
RAEBENHORST, D. W.
SHIRASAV, M. P./KHUDZHLIVOGLOV, V. A.
WEBER, R./WENKEK, S.
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>FURTHER TESTING AND DESIGN IMPROVEMENT OF GREASE LUBRICATED</td>
<td>Bollen, J. A. C.</td>
<td>4</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>SPIRAL GROOVE BEARING MOMENTUM WHEEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>NEW MOTOR TEST FOR NUCLEAR FUSION IN THE MAX-PLANCK-INSTITUT</td>
<td>Bruns, K.</td>
<td>3</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>IN MUNCHEN, A NEW PHASE OF PLASMA RESEARCH HAS BEGUN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>BATTERY POWERED VEHICLE DRIVE</td>
<td>Deane, C. T.</td>
<td>2</td>
<td>108</td>
</tr>
<tr>
<td>1974</td>
<td>KINETIC ENERGY SYSTEMS FOR MOVING PEOPLE</td>
<td>Baxter, J. W. /Lawson, L.</td>
<td>2</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>FLYWHEEL 'MAKES STORE NEW TRAIN'S ENERGY FOR ELECTRICITY-SAVING STARTS</td>
<td>Armagnac, A. P.</td>
<td>2</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>NEW SUBWAY CARS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>A FLYWHEEL IN YOUR FUTURE</td>
<td>Newsweek</td>
<td>2</td>
<td>109</td>
</tr>
<tr>
<td>1974</td>
<td>HYBRID DRIVE WITH FLYWHEEL COMPONENT FOR ECONOMIC AND DYNAMIC</td>
<td>Helling, J. /Schreck, R. /</td>
<td>2</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>OPERATION</td>
<td>Giera, B.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bader, C. /Plust, H. G.</td>
<td>2</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>ELECTRICAL PROPULSION SYSTEMS FOR ROAD VEHICLES. STATE OF THE ART AND</td>
<td>Rabenhorst, D. W.</td>
<td>2</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>PRESENT-DAY PROBLEMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lrl</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>1974</td>
<td>METALS AND COMPOSITES IN SUPERFLYWHEEL ENERGY STORAGE SYSTEMS</td>
<td>Comeau, C. E.</td>
<td>3</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>FLYWHEELS AS AN ENERGY STORAGE DEVICE, A SELECTED BIBLIOGRAPHY</td>
<td>Rylander, H. /Woodson, H. /</td>
<td>3</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Becker, E. /Kernberg, B.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Notti, J. E. /Cormack, A. /</td>
<td>4</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schwill, W. C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Auer, Werner</td>
<td>4</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Atzori, B. /Curti, G.</td>
<td>1</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Whitfield</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Robinson, A. L.</td>
<td>3</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Robinson, A.L.</td>
<td>5</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Erda/Dat</td>
<td>5</td>
<td>244</td>
</tr>
<tr>
<td>1974</td>
<td>ULTRAHIGH TEMPERATURE</td>
<td>Keller, W. E.</td>
<td>5</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aerospace Corp.</td>
<td>2</td>
<td>113</td>
</tr>
<tr>
<td>1974</td>
<td>DESIGN AND LUBRICATION OF BALL BEARING UNIT FOR FLYWHEELS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>ITERATIVE PROCEDURES FOR CALCULATING THE FIRST TORSIONAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EIGENFREQUENCY OF A SHAFT WITH SEVERAL FLYWHEELS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>FLYWHEELS TAKE ON LIGHT AND POWERFUL NEW LEASE ON LIFE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>ENERGY STORAGE. (1): USING ELECTRICITY MORE EFFICIENTLY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>ENERGY STORAGE. (11): DEVELOPING ADVANCED TECHNOLOGIES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>GOVERNMENT-WIDE REPORT TO OFFICE ON MANAGEMENT AND BUDGET ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>ENERGY STORAGE IN THE ELECTRIC POWER INDUSTRY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>CAN FLYWHEELS REPLACE PUMPED STORAGE?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>MULTIRAMP SUPERFLYWHEEL, TECHNICAL MEMO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>ATA RAIL TRANSIT CONFERENCE, CAR EQUIPMENT SESSIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>WIND POWER CONVERSION SYSTEM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>ENERGY STORAGE TECHNOLOGY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>HYBRID AUTOMOBILE ENGINE WITH KINETIC ENERGY STORAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>FLYWHEEL VEHICLES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>KINETIC ENERGY STORAGE FOR MASS TRANSPORTATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>ENERGY STORAGE AND ITS ROLE IN ELECTRIC POWER SYSTEMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>LARGE FLYWHEEL POWER SUPPLY FOR EXPERIMENTAL IN THE MAX-PLANCK-INSTITUT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>STORAGE OF HIGH-GRADE ENERGY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>USE OF FLYWHEELS FOR ENERGY STORAG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>ENERGY STORAGE: INCENTIVES AND PROSPECTS FOR ITS DEVELOPMENT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>ASSESSMENT OF ADVANCED CONCEPTS IN ENERGY STORAGE AND THEIR APPLICATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>ELECTRIC UTILITY SYSTEMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>SUPERFLYWHEEL: THE BATTERY THAT SPINS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>FLYWHEEL ENERGY SYSTEMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>THE LUBRICATION OF BEARINGS AND SLIP RINGS IN VACUUM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>POTENTIAL FOR LARGE-SCALE ENERGY STORAGE IN ELECTRIC UTILITY SYSTEMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>CYCLOCONVERTER-CONTROLLED SYNCHRONOUS MACHINES FOR LOAD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>COMPENSATION ON AC POWER SYSTEMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>ELECTRIC POWER SYSTEMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>QUALIFICATION AND LIFE TESTING OF A BALL-BEARING FLYWHEEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>ESTIMATING THE VELOCITIES OF THE CONTROL FLYWHEELS OF A FREE CYGROSTAT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1975 FINITE ELEMENT STUDY OF A CAST IRON FLYWHEEL WITH PARTICULAR EMPHASIS ON STRESS CONCENTRATIONS

1975 THE KINETIC ENERGY WHEEL

1975 SEGIT NUCLEAR POWER PROJECT, UNITS 1 AND 2. LICENSE APPLICATION

1975 ENERGY TECHNOLOGY II (NAVY APPLICATIONS)

1975 ENERGY-STORAGE SYSTEMS

1975 DESIGN AND APPLICATIONS OF FLYWHEELS (A BIBLIOGRAPHY WITH ABSTRACTS)

1975 METALS AND COMPOSITES IN SUPERFLYWHEEL ENERGY STORAGE SYSTEMS

1975 NEW YORK SUBWAY TRIES OUT FLYWHEEL ENERGY STORAGE

1975 ENERGY STORAGE

1975 THREE MILE ISLAND NUCLEAR STATION, UNIT 2. RO INSPECTION REPORT NO.75-01 AND CORRESPONDENCE

1975 ANALYSIS OF HOMOPOLAR GENERATORS AND SUPERCONDUCTING INDUCTIVE ENERGY STORAGE SYSTEMS AS POWER SUPPLIES FOR HIGH-ENERGY, SPACE-BASED LASERS

1975 UTILITIES EYE LARGE-SCALE ENERGY STORAGE

1975 ENERGY STORAGE BY FLYWHEELS

1975 APPLICATION SPIRAL-DROVE BEARINGS ON SPACECRAFT

1975 STUDY OF DOUBLE CUBICALLED MOMENTUM WHEELS IN THE ATTITUDE AND ORBIT CONTROL SYSTEM OF A GEOSTATIONARY COMMUNICATION SATELLITE.

1975 STORING ELECTRICAL ENERGY ON A LARGE SCALE

1975 DIGEST OF CURRENT RESEARCH IN THE ELECTRIC UTILITY INDUSTRY

1975 DYNAMIC BRAKING

1975 SUPERFLYWHEEL FOR STORING ENERGY FROM OTEC PLANTS

1975 THREE MILE ISLAND NUCLEAR STATION, UNIT 2 LICENSE APPLICATION, PSAR, AMENDMENT 27

1975 ENERGY STORAGE DEVICE

1975 INCREASED FUEL ECONOMY IN TRANSPORTATION SYSTEMS BY USE OF ENERGY MANAGEMENT

1975 HYBRID POWER SYSTEM

1975 ENERGY STORAGE FOR WIND ENERGY CONVERSION SYSTEMS

1975 DESIGN AND DEVELOPMENT OF A MOMENTUM WHEEL WITH A MAINLY PASSIVE MAGNETIC BEARING FINAL REPORT

1975 FOSSIL FUEL AND ADVANCED SYSTEMS DIVISION, RESEARCH PROGRESS REPORT 79-3

1975 MATERIALS REQUIREMENTS FOR ENERGY GENERATION, CONVERSION, AND STORAGE

1975 REPEITIVE PLASMA FOCUS POWERED BY A APPROX. 200 MW FLYWHEEL GENERATOR.

1975 FLYWHEELS - FLYWHEEL IN AUTO TO REPLACE GASOLINE

1975 REACTOR COOLANT PUMP FLYWHEEL INTEGRITY

1975 KINETIC ENERGY STORAGE OF OFF-PeAK ELECTRICITY

1975 DESIGN AND APPLICATIONS OF FLYWHEELS (A BIBLIOGRAPHY WITH ABSTRACTS)

1975 FIBER COMPOSITES FOR ENERGY STORAGE FLYWHEELS.

1975 ON OPTIMAL SHAPES FOR ANISOTROPIC ROTATING DISKES.

1975 FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS. SECOND QUARTERLY PROGRESS REPORT.

1975 AN EVALUATION OF THE FUTURE ROLE OF STORAGE TECHNIQUES IN ELECTRIC POWER TECHNOLOGY

1975 AN IMPROVED ROTATABLE MASS FOR A FLYWHEEL

1975 PROPOSED TPT ELECTRICAL SYSTEM

1975 ECONOMIC AND TECHNICAL FEASIBILITY STUDY FOR ENERGY STORAGE FLYWHEELS

1975 FLYWHEELS - POWER ON THE FLY

1975 LONG-TERM PERFORMANCE OF FIBER COMPOSITES

1975 IDEAS AND EXPERIMENTS IN MAGNETIC INTERFACING

1975 LLL PROGRAM FOR COMPOSITE FLYWHEEL

1975 MECHANICAL DESIGN OF A COMPOSITE CENTERLESS FLYWHEEL

1976 COMPOSITE MATERIALS FOR ENERGY STORAGE FLYWHEELS
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

1976 WHEN DO ELECTRIC STORAGE DEVICES MAKE ECONOMIC SENSE?
BRAUN, C. / CHERNIAYFSKY, E. A. / SAUNDERS, F. J.
SCHAEFFER, H. / TORRES, F.
DEFENSE DOCUMENTATION CENTER 1 325
AMERICAN NUCLEAR SOCIETY, HINSDALE, ILL.
KIRK, JAMES A. / STUDER, PHILIP A. / EVANS, HAROLD E.
REED, J. J.
MADSEN, W. E.
CASASIA, J. A. / SCHNEIDER, T. R. / SULZBERGER, V. T.
ILLUS W
ENVIROMENTAL SCIENCE AND TECHNOLOGY 2 137

1976 HYBRID DRIVE WITH KINETIC ENERGY STORE AS VEHICLE DRIVE
1976 FLYWHEELS, A REPORT BIBLIOGRAPHY
1976 ENERGY STORAGE
1976 MECHANICAL CAPACITOR
1976 FLYWHEELS, A SELECTED BIBLIOGRAPHY
1976 ENERGY STORAGE
1976 FLYWHEELS - PRACTICAL FLYWHEEL ENGINE: WILL FIBER GLASS BE THE ANSWER?
1976 FLYWHEELS: ENERGY-SAVING WAY TO GO

FLYWHEELS FOR ENERGY
1974 USE OF FLYWHEELS FOR ENERGY STORAGE
RABENHORST, D. W.
3 175

FLYWHEELS IN MACHINES
1974 CYROSCOPIC EFFECT OF FLYWHEELS IN MACHINES
GULIA, N. V. ET AL
2 105

FLYWHEELS SUPPORTED
1972 QUALIFICATION TESTS ON REACTION FLYWHEELS SUPPORTED ON GREASE-LUBRICATED BEARINGS
BOS, J. G. G.
4 225

FLYWHEELS TEMPERATURE DEPENDENCE
1972 QUALIFICATION TESTS ON REACTION FLYWHEELS SUPPORTED ON GREASE-LUBRICATED BEARINGS
BOS, J. G. G.
4 225

FLYWHEELS TO SPACECRAFT
1972 APPLICATION OF ISOTENSIDIO FLYWHEELS TO SPACECRAFT ENERGY AND ANGULAR MOMENTUM STORAGE
ADAMS, L. B.
4 224

FLYWHEELS - VIBRATION
1972 QUALIFICATION TESTS ON REACTION FLYWHEELS SUPPORTED ON GREASE-LUBRICATED BEARINGS
BOS, J. G. G.
4 225

FLYWHEELS - HIGH ENERGY
1969 FEASIBILITY OF FLYWHEEL HIGH-ENERGY STORAGE
EVERSSON, A. / WITHEREE, A. E.
3 142

FLYWHEELS - SHOCK
1972 QUALIFICATION TESTS ON REACTION FLYWHEELS SUPPORTED ON GREASE-LUBRICATED BEARINGS
BOS, J. G. G.
4 225

FLYWHEELS - WOOD
1972 THE APPLICATION OF WOOD TECHNOLOGY TO KINETIC ENERGY STORAGE
RABENHORST, D. W.
1 19

FOLDES, G.
1972 DISPOSITIF DE PROTECTION CONTRE LES CONSEQUENCES DE LA RUPTURE D'UN VOLANT D'INERTIE. (A PROTECTIVE DEVICE TO PREVENT THE CONSEQUENCES OF A FLYWHEEL RUPTURE)
BONNET-THIRION, C. J. / BOSSERT, L. / FOLDES, G.
1 21

FORECASTING
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.
2 114

82
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Year</th>
<th>Conference/Report</th>
<th>Location</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forrest, L.</td>
<td>CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.</td>
<td>1974</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaPeDeS, D.E.; Hinton, W.G.; Weltzer, J.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOSSIL FUEL</td>
<td>1975 FOSSIL FUEL AND ADVANCED SYSTEMS DIVISION. RESEARCH PROGRESS REPORT FF-3</td>
<td>1975</td>
<td>Electric Power Research Inst.</td>
<td></td>
<td>102</td>
</tr>
<tr>
<td>FOSSIL FUELS</td>
<td>SURVEY OF PROPULSION SYSTEMS FOR LOW EMISSION URBAN VEHICLES. FINAL REPORT.</td>
<td>1970</td>
<td>Electric Power Research Inst.</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>DIGEST OF CURRENT RESEARCH IN THE ELECTRIC UTILITY INDUSTRY</td>
<td>1975</td>
<td>Electric Power Research Inst.</td>
<td></td>
<td>187</td>
</tr>
<tr>
<td>FOUNDATIONS</td>
<td>SKAGIT NUCLEAR POWER PROJECT, UNITS 1 AND 2. LICENSE APPLICATION</td>
<td>1975</td>
<td>Puget Sound Power and Light Co.</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>FOUR-WHEEL DRIVE</td>
<td>HYBRID ELECTRIC PROPULSION UTILIZING RECONNECTIBLE MOTOR WINDINGS IN WHEELS</td>
<td>1973</td>
<td>Electric Power Research Inst.</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>FRACTURE</td>
<td>1965 A FRACTURE CRITERION FOR ORTHOTROPIC PLATES UNDER THE INFLUENCE OF COMPRESSION AND SHEAR</td>
<td>1967</td>
<td>Electric Power Research Inst.</td>
<td></td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>1967 APPLICATION OF FRACTURE MECHANICS TO ANISOTROPIC PLATES</td>
<td>1968</td>
<td>Electric Power Research Inst.</td>
<td></td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>1968 FRACTURE MECHANICS OF ANISOTROPIC PLATES</td>
<td>1969</td>
<td>Electric Power Research Inst.</td>
<td></td>
<td>268</td>
</tr>
<tr>
<td></td>
<td>1971 FRACTURE CRITERIA FOR ORTHOTROPIC PLATE UNDER COMPRESSION AND SHEAR</td>
<td>1971</td>
<td>Electric Power Research Inst.</td>
<td></td>
<td>281</td>
</tr>
<tr>
<td></td>
<td>1971 FRACTURE TOUGHNESS IN UNIDIRECTIONAL GLASS-REINFORCED PLASTICS</td>
<td>1972</td>
<td>Electric Power Research Inst.</td>
<td></td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>1972 EXPERIMENTAL INVESTIGATION OF FRACTURE IN AN ADVANCED FIBER COMPOSITE</td>
<td>1972</td>
<td>Electric Power Research Inst.</td>
<td></td>
<td>294</td>
</tr>
<tr>
<td></td>
<td>1974 FAILURE CRITERIA TO FRACTURE MODE ANALYSIS OF COMPOSITE MATERIALS</td>
<td>1974</td>
<td>Electric Power Research Inst.</td>
<td></td>
<td>328</td>
</tr>
<tr>
<td>FRACTURE CRITERIA</td>
<td>1971 FRACTURE CRITERIA FOR ORTHOTROPIC PLATE UNDER COMPRESSION AND SHEAR</td>
<td>1971</td>
<td>Electric Power Research Inst.</td>
<td></td>
<td>258</td>
</tr>
<tr>
<td>FRACTURE CRITERION</td>
<td>1965 A FRACTURE CRITERION FOR ORTHOTROPIC PLATES UNDER THE INFLUENCE OF COMPRESSION AND SHEAR</td>
<td>1967</td>
<td>Electric Power Research Inst.</td>
<td></td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>1967 APPLICATION OF FRACTURE MECHANICS TO ANISOTROPIC PLATES</td>
<td>1968</td>
<td>Electric Power Research Inst.</td>
<td></td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>1968 FRACTURE MECHANICS OF ANISOTROPIC PLATES</td>
<td>1969</td>
<td>Electric Power Research Inst.</td>
<td></td>
<td>268</td>
</tr>
<tr>
<td>FRACTURE MECHANICS</td>
<td>1974 FAILURE CRITERIA TO FRACTURE MODE ANALYSIS OF COMPOSITE MATERIALS</td>
<td>1974</td>
<td>Electric Power Research Inst.</td>
<td></td>
<td>328</td>
</tr>
<tr>
<td>FRACTURE MODE</td>
<td>1974 FAILURE CRITERIA TO FRACTURE MODE ANALYSIS OF COMPOSITE MATERIALS</td>
<td>1974</td>
<td>Electric Power Research Inst.</td>
<td></td>
<td>328</td>
</tr>
<tr>
<td>ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRACTURE OF COMPOSITES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 STRENGTH AND FRACTURE OF COMPOSITES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WU, E. W.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 327</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRACTURE PHENOMENA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969 INTERFACIAL FRACTURE PHENOMENA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WU, E. W. / THOMAS, R. L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 273</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRACTURE TOUGHNESS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971 FRACTURE TOUGHNESS IN UNIDIRECTIONAL GLASS-REINFORCED PLASTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SANFORD, R. J. / STONESIFER, F. R.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 287</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRAIZE, W. E.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970 SURVEY OF PROPULSION SYSTEMS FOR LOW EMISSION URBAN VEHICLES, FINAL REPORT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRAIZE, W. E. / LAY, R. K.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRANK, A. A.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 INCREASED FUEL ECONOMY IN TRANSPORTATION SYSTEMS BY USE OF ENERGY MANAGEMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEACHLEY, N. H. / FRANK, A. A.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRASER, A. F.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970 AXISYMMETRIC FILAMENTARY STRUCTURES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRASER, A. F. / PREISERK, F. R. / BENTON, M. D. / BURG-GRAF, O. R.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 278</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRAZER, R.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971 RESEARCH AND DEVELOPMENT PROGRAMS, QUARTERLY PROGRESS REPORT, 1 JAN. 31 MAR. 1971</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOYES, C. F. / WALKER, R. E. / PINKLE, J. C. / FRAZER, R. / RUBINSTEIN, M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 241</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FREE GYROSTAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 ESTIMATING THE VELOCITIES OF THE CONTROL FLYWHEELS OF A FREE GYROSTAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LITVIN-SEDOJ, M. Z.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRICTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 METHOD OF CALCULATING TORSIONAL VIBRATIONS IN A POWER UNIT WITH A NON-LINEAR SILICONE DAMPER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHIRADEV, W. P. / KHUDOZHILOV, V. A.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRICTIONLESS SUPPORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1963 MAGNETIC BEARINGS FOR AEROSPACE APPLICATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDGAR, R. F. / ET AL.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 211</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRUKTOW, N. N.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1959 COMPARISON OF ELECTRICALLY RUN UP FLYWHEEL (DC MOTOR) WITH TURBINE, HOT GAS MOTOR AND OTHER SYSTEMS FOR MINUTEMAN APPLICATION.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRUKTOW, N. N.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUEL CELLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970 SURVEY OF PROPULSION SYSTEMS FOR LOW EMISSION URBAN VEHICLES, FINAL REPORT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRAIZE, W. E. / LAY, R. K.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 ELECTRICAL PROPULSION SYSTEMS FOR ROAD VEHICLES. STATE OF THE ART AND PRESENT-DAY PROBLEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BADER, C. / PLUST, H. C.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUCCHINI, A. P.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 246</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 DIGEST OF CURRENT RESEARCH IN THE ELECTRIC UTILITY INDUSTRY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPRI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 167</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 AN EVALUATION OF THE FUTURE ROLE OF STORAGE TECHNIQUES IN ELECTRIC POWER TECHNOLOGY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEZDIRTE, G. P.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 169</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REED, J. J.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 207</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUEL CONSUMPTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BATTELLE COLUMBUS LABS.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FUEL CONSUMPTION (CONT'D.)</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971 FLYWHEEL AND FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEMS FOR LOW-EMISSION VEHICLES</td>
<td>DUGGER, G. L./BRANDT, A./GEORGE, J. F.</td>
<td>2 80</td>
</tr>
<tr>
<td>1973 HYBRID PROPULSION SYSTEM TRANSMISSION EVALUATION, PHASE I. FINAL REPORT</td>
<td>CORNER, W. A./GRIMM, D. H.</td>
<td>2 88</td>
</tr>
<tr>
<td>1974 GOVERNMENT-WIDE REPORT TO OFFICE ON MANAGEMENT AND BUDGET ON ENERGY STORAGE R AND D PROGRAM STRATEGIES AND IMPLEMENTATION PLANS</td>
<td>ERDA/DAT</td>
<td>6 244</td>
</tr>
<tr>
<td>1974 HYBRID AUTOMOTIVE ENGINE WITH KINETIC ENERGY STORAGE</td>
<td>SCHRECK, H./TORRES, F.</td>
<td>2 117</td>
</tr>
<tr>
<td>1974 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES</td>
<td>LAPEDES, D. E./MELTZER, J.</td>
<td>2 118</td>
</tr>
<tr>
<td>1974 ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES</td>
<td>STERNLICHT, R./THUR, G. W.</td>
<td>2 119</td>
</tr>
<tr>
<td>1975 INCREASED FUEL ECONOMY IN TRANSPORTATION SYSTEMS BY USE OF ENERGY MANAGEMENT</td>
<td>BEACHLEY, N. R./FRANK, A. A.</td>
<td>2 128</td>
</tr>
<tr>
<td>1976 HYBRID DRIVE WITH KINETIC ENERGY STORE AS VEHICLE DRIVE</td>
<td>SCHRECK, H./TORRES, F.</td>
<td>2 133</td>
</tr>
</tbody>
</table>

FUEL ECONOMY

| 1975 INCREASED FUEL ECONOMY IN TRANSPORTATION SYSTEMS BY USE OF ENERGY MANAGEMENT | BEACHLEY, N. R./FRANK, A. A. | 2 128 |

FUEL SYSTEMS

| 1974 EMISSION CHARACTERISTICS OF A PRIME MOVER FOR HYBRID VEHICLE USE | ALLSUP, J. R./FLEMING, R. D. | 2 102 |

FUELS

1974 GOVERNMENT-WIDE REPORT TO OFFICE ON MANAGEMENT AND BUDGET ON ENERGY STORAGE R AND D PROGRAM STRATEGIES AND IMPLEMENTATION PLANS	ERDA/DAT	5 244
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS	AEROSPACE CORP.	2 113
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS	LAPEDES, D. E./HINTON, M. G./MELTZER, J.	2 114
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS	URA, T./SCHRECK, H./WILSON, F.	2 115

FULL TIME TRANSPORTATION

| 1973 HYBRID CAR: PART-TIME ENGINE + PART-TIME FLYWHEEL = FULL TIME TRANSPORTATION | LINDSLEY, R. F. | 2 07 |

FULLMAN, H. L.

| 1975 ENERGY STORAGE BY FLYWHEELS | FULLMAN, H. L. | 3 185 |

FUNCTIONAL MODELS

| 1974 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES | LAPEDES, D. E./MELTZER, J. | 2 118 |
| 1976 HYBRID DRIVE WITH KINETIC ENERGY STORE AS VEHICLE DRIVE | SCHRECK, H./TORRES, F. | 2 133 |

FUNCTIONS

1966 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS	NORTH AMERICAN AVIATION INC., LOS ANGELES DIV.	2 65
1967 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS	NORTH AMERICAN AVIATION INC., LOS ANGELES DIV.	4 212
1967 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS	NORTH AMERICAN AVIATION INC., LOS ANGELES DIV.	4 213
1967 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS	NORTH AMERICAN AVIATION INC., LOS ANGELES DIV.	4 214
1967 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS	NORTH AMERICAN AVIATION INC., LOS ANGELES DIV.	4 215
1967 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS	HELSLEY, C. W./CALL, R. J.	4 216
1975 RESTRICTIONS UPON VISCOELASTIC RELAXATION FUNCTIONS AND COMPLEX MODULI	CHRISTENSEN, H. M.	6 203
FUNDING
1976 FLYWHEELS: ENERGY-SAVING WAY TO GO
ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2 137

BOLLEN, J. A. C.
4 230

FURTHER TESTING
1974 FURTHER TESTING AND DESIGN IMPROVEMENT OF GREASE LUBRICATED SPIRAL GROOVE BEARING MOMENTUM WHEEL

FUSION
1973 INVESTIGATION OF THE HOMOPOLAR MOTOR-GENERATOR AS A POWER SUPPLY FOR CONTROLLED FUSION EXPERIMENTS
RYLANDER, H.C./BOWBERG, R.E./TOLK, K.W.
/WELDON, W.F./WOODSON, H.H.
3 156

Miyahara, A. / BANNAI, K. / KITANO, Y.
5 243

BRENNER, K.
3 161

1974 COMPUTER CONTROLLED 125 MVA POWER SUPPLY FACILITY FOR NUCLEAR FUSION RESEARCH
KNOBLOCH, A./KOTTMAIR, W./SCHLUETER, W.
/VAU, G.
3 173

1974 ENERGY STORAGE (II): DEVELOPING ADVANCED TECHNOLOGIES
ROBINSON, A. L.
3 185

1974 LARGE FLYWHEEL POWER SUPPLY FOR FUSION EXPERIMENTS IN THE MAX-PLANCK-INSTITUT FUER PLASMAFYSIK, GARCHING, GERMANY

1973 INVESTIGATION OF THE HOMOPOLAR MOTOR-GENERATOR AS A POWER SUPPLY FOR CONTROLLED FUSION EXPERIMENTS
RYLANDER, H.G./BOWBERG, R.E./TOLK, K.W.
/WELDON, W.F./WOODSON, H.H.
3 158

KNOBLOCH, A./KOTTMAIR, W./SCHLUETER, W.
/VAU, G.
3 173

FUSION RESEARCH
1974 COMPUTER CONTROLLED 125 MVA POWER SUPPLY FACILITY FOR NUCLEAR FUSION RESEARCH
MIYAHARA, A. / BANNAI, K. / KITANO, Y.
3 158

FUTURE
1973 IS THERE A FLYWHEEL IN YOUR FUTURE
LAWSON, L. J.
2 94

1974 A FLYWHEEL IN YOUR FUTURE
NEWSWEEK
2 109

1974 ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES
Sternlicht, B./THUR, G.M.
2 119

FEEDIRITS, G. F.
3 188

1975 AN EVALUATION OF THE FUTURE ROLE OF STORAGE TECHNIQUES IN ELECTRIC POWER TECHNOLOGY

FUTURE AUTOMOBILES
1974 ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES
Sternlicht, B./THUR, G.M.
2 119

GARDNER, G.C.
1975 STORING ELECTRICAL ENERGY ON A LARGE SCALE
GARDNER, G.C./HART, A.B./MOFFITT, R.D./WRIGHT, J
3 186

GAS BEARING APPLICATIONS
1972 SUMMARY OF GAS BEARING APPLICATIONS IN THE FIELD OF SPACE ELECTRIC POWER SYSTEMS
DUNN, J. H. / REAM, L. W.
4 223

GAS BEARINGS
1970 SATELLITE FLYWHEEL
4 219

GAS MOTOR
1959 COMPARISON OF ELECTRICALLY RUN UP FLYWHEEL (DC MOTOR) WITH TURBINE, HOT GAS MOTOR AND OTHER SYSTEMS FOR MINUTEMAN APPLICATION
FRIKTON, N. N.
2 89
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Keywords</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1969</td>
<td>STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-</td>
<td>POTENTIAL ENERGY SOURCES FOR URBAN VEHICLES</td>
<td>GIBBS, A. A.; CHERNIS, E. D.; CRESWICK, F.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>POLLUTION-POTENTIAL ENERGY SOURCES FOR URBAN VEHICLES</td>
<td></td>
<td>A. / TRAYNER, D. A.; FISCHER, R. D. / TIMBERLAKE, A. B.; BASHAM, B. J.</td>
<td>2 70</td>
</tr>
<tr>
<td>1970</td>
<td>FLYWHEEL GENERATORS FOR INSTANT POWER</td>
<td></td>
<td>ASHWORTH, P. R.</td>
<td>3 145</td>
</tr>
<tr>
<td>1971</td>
<td>FLYWHEEL AND FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEMS FOR</td>
<td></td>
<td>DUGGER, G. L.; BRANDT, A.; GEORGE, J. P.</td>
<td>2 80</td>
</tr>
<tr>
<td></td>
<td>LOW-EMISSION VEHICLES</td>
<td></td>
<td>PERINI, L. L.</td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS. FIFTEEN PAPERS--SURVEY</td>
<td></td>
<td>VO1</td>
<td>3 180</td>
</tr>
<tr>
<td></td>
<td>OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE SYSTEMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>ENERGY STORAGE. (1.) USING ELECTRICITY MORE EFFICIENTLY</td>
<td></td>
<td>ROBINSON, A. L.</td>
<td>3 185</td>
</tr>
<tr>
<td>1974</td>
<td>STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE</td>
<td></td>
<td>LAFEDDES, D. E.; MELTZER, J.</td>
<td>2 118</td>
</tr>
<tr>
<td></td>
<td>FLYWHEEL VEHICLES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>AUTOMOBILE AIR POLLUTION, PART 4. NEW AUTOMOTIVE ENGINES (A</td>
<td></td>
<td>LEHMANN, E. J.</td>
<td>2 124</td>
</tr>
<tr>
<td>1975</td>
<td>FOSSIL FUEL AND ADVANCED SYSTEMS DIVISION RESEARCH PROGRESS REPORT</td>
<td></td>
<td>ELECTRIC POWER RESEARCH INST.</td>
<td>3 192</td>
</tr>
<tr>
<td></td>
<td>FT-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>MATERIALS REQUIREMENTS FOR ENERGY GENERATION, CONVERSION, AND STORAGE</td>
<td></td>
<td>JAFFE, R. I.</td>
<td>5 250</td>
</tr>
</tbody>
</table>

GASEOUS STORAGE

1976 ENERGY STORAGE

AMERICAN NUCLEAR SOCIETY, CHICAGO, ILLINIOS

GASOLINE

1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.

1975 FLYWHEELS - FLYWHEEL IN AUTO TO REPLACE GASOLINE

GEARBOX FLYWHEEL

1970 FINAL DESIGN REPORT, PROTOTYPE GEARBOX FLYWHEEL (FLYBOX) FOR STORED ENERGY ROTARY DRIVE SHIPBOARD CATAULPT

GENERAL DYNAMICS CORP.

1981 AN ELECTRO-MECHANICAL ENERGY STORAGE SYSTEM FOR SPACE APPLICATION

GENERAL ELECTRIC CO.

1970 FINAL DESIGN REPORT, PROTOTYPE GEARBOX FLYWHEEL (FLYBOX) FOR STORED ENERGY ROTARY DRIVE SHIPBOARD CATAULPT

1975 ENERGY STORAGE BY FLYWHEELS

GENERAL THEORETICAL ANALYSIS

1984 GENERAL THEORETICAL ANALYSIS AND EVALUATION OF AN EXPERIMENTAL MODEL OF A CONSTANT-SPEED FLYWHEEL POWER SOURCE

GENERAL THEORY

1971 GENERAL THEORY OF STRENGTH FOR ANISOTROPIC MATERIALS

GENERATION

1975 MATERIALS REQUIREMENTS FOR ENERGY GENERATION, CONVERSION, AND STORAGE

1976 ENERGY STORAGE - FEASIBILITY STUDY OF AN EXPERIMENT INVOLVING SOLAR ENERGY COLLECTION, ITS STORAGE BY A SUPER FLYWHEEL, AND ELECTRIC POWER GENERATION.
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERATOR</td>
<td>NARDI, V.</td>
<td>3 194</td>
</tr>
<tr>
<td>1976 REPETITIVE PLASMA FOCUS POWERED BY A APPROX. 200 MJ FLYWHEEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENERATOR</td>
<td>AALAND, K.</td>
<td>1 54</td>
</tr>
<tr>
<td>1976 FERRO-RESONANT CIRCUIT FOR A NEW FLYWHEEL MOTOR GENERATOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENERATORS</td>
<td>ABHMOLE, P. H.</td>
<td>3 145</td>
</tr>
<tr>
<td>1970 FLYWHEEL GENERATORS FOR INSTANT POWER</td>
<td>POST, R. F./POST, S. F.</td>
<td>1 25</td>
</tr>
<tr>
<td>1973 FLYWHEELS</td>
<td>GILBERT,J.S./KERN,B.A.</td>
<td>3 183</td>
</tr>
<tr>
<td>1975 ANALYSIS OF HOMOPOLAR GENERATORS AND SUPERCONDUCTING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDUCTIVE ENERGY STORAGE SYSTEMS AS POWER SUPPLIES FOR HIGH-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENERGY,SPACE-BASED LASERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOMETRY</td>
<td>LAWSON, L. J.</td>
<td>2 79</td>
</tr>
<tr>
<td>1971 DESIGN AND TESTING OF HIGH ENERGY DENSITY FLYWHEELS FOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPLICATION TO FLYWHEEL HEAT ENGINE HYBRID VEHICLE DRIVES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEORGE J.F.</td>
<td>DUGGER, G. L./BRANDT,A./GEORGE,</td>
<td>2 80</td>
</tr>
<tr>
<td>1971 FLYWHEEL AND FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEMS</td>
<td>J.F./PERKINS,L.L.</td>
<td></td>
</tr>
<tr>
<td>FOR LOW-EMISSION VEHICLES</td>
<td>DUGGER, G. L./BRANDT,A./GEORGE,</td>
<td>1 18</td>
</tr>
<tr>
<td>1972 HEAT-ENGINE MECHANICAL-ENERGY-STORAGE HYBRID PROPULSION</td>
<td>J.F./PERKINS,L.L./RAEHNSTETT, D.</td>
<td></td>
</tr>
<tr>
<td>SYSTEMS FOR VEHICLES.FINAL REPORT</td>
<td>W./SMALL,T.R./WEISS,H.O.</td>
<td></td>
</tr>
<tr>
<td>GEOSTATIONARY COMMUNICATION SATELLITE</td>
<td>BOERSMA, G./SONNENSCHEIN, P. J.</td>
<td>4 237</td>
</tr>
<tr>
<td>1975 STUDY OF DOUBLE CEILALLED MOMENTUM WHEELS IN THE ATTITUDE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AND ORBIT CONTROL SYSTEM OF A GEOSTATIONARY COMMUNICATION SATELLITE.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOTHERMAL</td>
<td>PENNER, S. S./ICERMAN, L.</td>
<td>5 243</td>
</tr>
<tr>
<td>1974 ENERGY.VOLUME 1.DE MandS,RESOURCES,IMPACT,TECHNOLOGY,AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLICY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOTHERMAL ENERGY</td>
<td>ELECTRIC POWER RESEARCH INST.</td>
<td>3 192</td>
</tr>
<tr>
<td>1975 FOSSIL FUEL AND ADVANCED SYSTEMS DIVISION.RESEARCH PROGRESS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REPORT PP-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOTHERMAL ENERGY CONVERSION</td>
<td>LUCCHI, A. P.</td>
<td>5 246</td>
</tr>
<tr>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOTHERMAL POWER PLANTS</td>
<td>EPRI</td>
<td>3 187</td>
</tr>
<tr>
<td>1975 DIGEST OF CURRENT RESEARCH IN THE ELECTRIC UTILITY INDUSTRY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOTHERMAL WELLS</td>
<td>JAFFEE,B.R.</td>
<td>5 250</td>
</tr>
<tr>
<td>1975 MATERIALS REQUIREMENTS FOR ENERGY GENERATION,CONVERSION,AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STORAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GERMANY</td>
<td>KNOBLOCH,A./KOTTMANN,W./SCHLUETER, W./VAU°G.</td>
<td>3 173</td>
</tr>
<tr>
<td>1974 LARGE FLYWHEEL POWER SUPPLY FOR FUSION EXPERIMENTS IN THE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX-PLANCK-INSTITUT Fuer PLASMA PHYSIK,GARCHING, GERMANY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GESTLE, F. P.</td>
<td>GESTLE, F. P. / BIGGS, F.</td>
<td>1 47</td>
</tr>
<tr>
<td>1975 ON OPTIMAL SHAPES FOR ANISOTROPIC ROTATING DISKS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GIERA, B.</td>
<td>HELLING, J. / SCHHECK, N. / GIERA, B.</td>
<td>2 110</td>
</tr>
<tr>
<td>1974 HYBRID DRIVE WITH FLYWHEEL COMPONENT FOR ECONOMIC AND Dynamic Operation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

GILBERT, R. R.
1971 FLYWHEEL FEASIBILITY STUDY AND DEMONSTRATION, FINAL REPORT
GILBERT, R. R./HARVEY, J. R./HEUER, G.
E./LAWSON, L. J.
LAWSON, L. J./ DUDY, J. M./
GILBERT, R. R./ HELVEY, W. R./
JACOBSEN, E. H./ RUTH, R./ WADA, W. T.

GILBERT, J. S.
1975 ANALYSIS OF HOMOPOLAR GENERATORS AND SUPERCONDUCTING
INDUCTIVE ENERGY STORAGE SYSTEMS AS POWER SUPPLIES FOR HIGH-ENERGY, SPACE-BASED LASERS
GILBERT, J. S./KERN, E. A.

GILDERSLIEVE, O. D.
1974 ASSESSMENT OF ADVANCED CONCEPTS IN ENERGY STORAGE AND THEIR APPLICATION ON ELECTRIC UTILITY SYSTEMS
FERNANDES, R. A./ GILDERSLIEVE, O. D./ SCHNEIDER, T. R.

GILMAN, J. J.
1973 ENERGY STORAGE VIA FLYWHEELS
GILMAN, J. J./ HUCKE, E. E.

GIMBALLED MOMENTUM WHEELS
1975 STUDY OF DOUBLE GIMBALLED MOMENTUM WHEELS IN THE ATTITUDE AND ORBIT CONTROL SYSTEM OF A GEOSTATIONARY COMMUNICATION SATELLITE.
BOERSMA, G. / SONNENDEICH, F. J.

GINSBURG, T.
1974 CAN FLYWHEELS REPLACE PUMPED STORAGE?
GINSBURG, T.

GLASS
1976 EVALUATION OF HIGH-STRENGTH, HIGH-MODULUS BERYLLIUM OXIDE/Glass Fiber
CHIAO, T. T. / LEWIS, A. / KIMBLE, R. F.

1976 FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS. SECOND QUARTERLY PROGRESS REPORT.

1976 LONG-TERM PERFORMANCE OF FIBER COMPOSITES
CHIAO, T. T. / LEWIS, A. / KIMBLE, R. F.

1976 FLYWHEELS - PRACTICAL FLYWHEEL ENGINE: WILL FIBER GLASS BE THE ANSWER?

GLASS FIBER
1976 EVALUATION OF HIGH-STRENGTH, HIGH-MODULUS BERYLLIUM OXIDE/Glass Fiber
CHIAO, T. T. / LEWIS, A. / KIMBLE, R. F.

GLASS-REINFORCED PLASTICS
1971 FRACTURE TOUGHNESS IN UNIDIRECTIONAL GLASS-REINFORCED PLASTICS
SANFORD, R. I. / STONEWATER, F. R.

GLASS-TRANSITION TEMPERATURE
1978 A THERMODYNAMIC CRITERION FOR THE GLASS-TRANSITION TEMPERATURE
CHRISTENSEN, R. M.

GLASS/EPOXY COMPOSITES -
1974 STRESS RUPTURE OF GLASS/EPOXY COMPOSITES - ENVIRONMENT AND STRESS EFFECTS.
WU, E. M. / HURMANN, D. C.
<table>
<thead>
<tr>
<th>GOALS</th>
<th>1970 POWER-SYSTEMS RESEARCH SHIFTS TO MEET SOCIAL GOALS</th>
<th>CHEW, ENG.</th>
<th>3 147</th>
</tr>
</thead>
<tbody>
<tr>
<td>GORDON, H. S.</td>
<td>1975 DEVELOPMENT OF HIGH-DENSITY INERTIA ENERGY STORAGE FINAL REPORT</td>
<td>GORDON, H. S.</td>
<td>3 193</td>
</tr>
<tr>
<td></td>
<td>1984 AN EXPERIMENT FOR DETERMINATION OF THE MECHANICAL PROPERTY IN SHEAR FOR A LINEAR ISOTROPIC VISCOELASTIC SOLID</td>
<td>CHRISTENSEN, R. W. / GOTTENBERG, W. G.</td>
<td>6 255</td>
</tr>
<tr>
<td></td>
<td>1984 THE DYNAMIC RESPONSE OF A SOLID. VISCOELASTIC SPHERE TO TRANSLATIONAL AND ROTATIONAL EXCITATION.</td>
<td>CHRISTENSEN, R. W. / GOTTENBERG, W. G.</td>
<td>6 257</td>
</tr>
<tr>
<td></td>
<td>1986 PREDICTION OF THE TRANSIENT RESPONSE OF A LINEAR VISCOELASTIC SOLID.</td>
<td>CHRISTENSEN, R. W. / GOTTENBERG, W. G.</td>
<td>6 280</td>
</tr>
<tr>
<td>GOVERNMENT INSTITUTES, INC.</td>
<td>1975 ENERGY TECHNOLOGY II: (NAVY APPLICATIONS)</td>
<td>PETRICK, P.A.</td>
<td>5 247</td>
</tr>
<tr>
<td>GOVERNMENT POLICIES</td>
<td>1974 GOVERNMENT-WIDE REPORT TO OFFICE ON MANAGEMENT AND BUDGET ON ENERGY STORAGE R AND D PROGRAM STRATEGIES AND IMPLEMENTATION PLANS</td>
<td>ERDA/DAT</td>
<td>5 244</td>
</tr>
<tr>
<td>GOVERNMENT-WIDE REPORT</td>
<td>1974 GOVERNMENT-WIDE REPORT TO OFFICE ON MANAGEMENT AND BUDGET ON ENERGY STORAGE R AND D PROGRAM STRATEGIES AND IMPLEMENTATION PLANS</td>
<td>ERDA/DAT</td>
<td>5 244</td>
</tr>
<tr>
<td>GRAPHITE</td>
<td>1972 DESIGN AND ANALYSIS OF THE ATS GRAPHITE EPOXY SATELLITE TRUSS</td>
<td>BURNS, J. W. / TOLAND, R. H.</td>
<td>6 304</td>
</tr>
<tr>
<td></td>
<td>1974 STRESS-ruptURE BEHAVIOR OF GRAPHITE FIBER/EPOXY STRANDS</td>
<td>MOORE, R. L. / CHIAO, T. T. / HAMSTAD, M. A.</td>
<td>6 324</td>
</tr>
<tr>
<td></td>
<td>1974 TENSILE PROPERTIES OF AN ULTRA-HIGH-STRENGTH GRAPHITE FIBER AN EPOXY MATRIX</td>
<td>CHIAO, T. T. / HAMSTAD, M. A. / JESSOP, E. S.</td>
<td>6 337</td>
</tr>
<tr>
<td></td>
<td>1974 TENSILE PROPERTIES OF AN ULTRAHIGH-STRENGTH GRAPHITE FIBER AN EPOXY MATRIX</td>
<td>CHIAO, T. T. / HAMSTAD, M. A. / JESSOP, E. S.</td>
<td>6 344</td>
</tr>
<tr>
<td>GRAPHITE EPOXY</td>
<td>1972 DESIGN AND ANALYSIS OF THE ATS GRAPHITE EPOXY SATELLITE TRUSS</td>
<td>BURNS, J. W. / TOLAND, R. H.</td>
<td>6 304</td>
</tr>
<tr>
<td>GRAPHITE FIBER</td>
<td>1974 TENSILE PROPERTIES OF AN ULTRA-HIGH-STRENGTH GRAPHITE FIBER AN EPOXY MATRIX</td>
<td>CHIAO, T. T. / HAMSTAD, M. A. / JESSOP, E. S.</td>
<td>6 337</td>
</tr>
<tr>
<td></td>
<td>1974 TENSILE PROPERTIES OF AN ULTRAHIGH-STRENGTH GRAPHITE FIBER AN EPOXY MATRIX</td>
<td>CHIAO, T. T. / HAMSTAD, M. A. / JESSOP, E. S.</td>
<td>6 344</td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

GRAPHITE FIBER/EPoxy STRANDS
1974 STRESS-RUPTURE BEHAVIOR OF GRAPHITE FIBER/EPoxy STRANDS
MOORE, R. L./CHAO, T. T./HAMSTAD, W. A. 6 334

GRAPHITE/Epoxy Vessels
1974 FATIGUE PERFORMANCE OF METAL-LINED GRAPHITE/Epoxy Vessels
HAMSTAD, W. A./CHAO, T. T./PATTERSON, R. 6 339

Grease Bearing Flywheel
1974 FURTHER TESTING AND DESIGN IMPROVEMENT OF GREASE LUBRICATED SPIRAL GROOVE BEARING MOMENTUM WHEEL
BOLLEN, J. A. C. 4 230

Grease Lubricated
1974 FURTHER TESTING AND DESIGN IMPROVEMENT OF GREASE LUBRICATED SPIRAL GROOVE BEARING MOMENTUM WHEEL
BOLLEN, J. A. C. 4 230

Grease-Lubricated Bearings
1972 QUALIFICATION TESTS ON REACTION FLYWHEELS SUPPORTED ON GREASE-LUBRICATED BEARINGS
BOS, J. G. G. 4 225

Grease-Lubricated Hydrodynamic Bearing
1970 A GREASE-LUBRICATED HYDRODYNAMIC BEARING SYSTEM FOR A SATELLITE FLYWHEEL
REINHOUPT, J. P. 4 218

Greasebear
1975 APPLICATION SPIRAL-GROOVE BEARINGS ON SPACECRAFT
VANDERWAL, U. 4 236

GRIDS
REED, J. J. 3 207

GRIDWORK Method
1963 VIBRATION OF A 45-DEG. RIGHT TRIANGLE CANTILEVER PLATE BY A GRIDWORK METHOD
CHRISTENSEN, R. W. 6 255

GRIMM, D. H.
1972 HYBRID PROPULSION SYSTEM TRANSMISSION EVALUATION, PHASE I. FINAL REPORT
CORDNER, W. A./GRIMM, D. H. 2 56

Groove Bearing
1974 FURTHER TESTING AND DESIGN IMPROVEMENT OF GREASE LUBRICATED SPIRAL GROOVE BEARING MOMENTUM WHEEL
BOLLEN, J. A. C. 4 230

GROSU, S. I.
1970 ACHIEVEMENTS AND PROSPECTS IN THE UTILIZATION OF KINETIC ENERGY
GROSU, S. I. 3 146

Gulia, N. V.
1974 SYNTHESIS OF THE BELT OF A DISCRETE BELT VARIATOR
GULIA, N. V./YUDOVSKII, I. D. 2 104

GyrosCOPES
1975 ESTIMATING THE VELOCITIES OF THE CONTROL FLYWHEELS OF A F'RER GYROSTAT
LITVIN-SEDO, W. Z. 1 39
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Year</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GYROSCOPIC EFFECT</td>
<td>GULIA, N. V. ET AL</td>
<td>1974</td>
<td>2 105</td>
</tr>
<tr>
<td>GYROSCOPIC EFFECT OF FLYWHEELS IN MACHINES</td>
<td>HABERCOM, G. E.</td>
<td>1975</td>
<td>1 46</td>
</tr>
<tr>
<td>DESIGN AND APPLICATIONS OF FLYWHEELS (A BIBLIOGRAPHY WITH ABSTRACT)</td>
<td>HABERCOM, G. E.</td>
<td>1975</td>
<td>1 46</td>
</tr>
<tr>
<td>CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.</td>
<td>LAPEDES, D., HINTON, M., G., KELTNER, J., WEBER, J.</td>
<td>1974</td>
<td>2 114</td>
</tr>
<tr>
<td>CIRCUIT DESIGN REPORT FOR A MOMENTUM WHEEL MOTOR CURRENT CONTROL UNIT</td>
<td>HAINES, J. E.</td>
<td>1973</td>
<td>4 228</td>
</tr>
<tr>
<td>CHARACTERIZATION OF ANISOTROPIC COMPOSITES</td>
<td>HALPIN, J. C. / PAGANO / WHITNEY</td>
<td>1949</td>
<td>6 271</td>
</tr>
<tr>
<td>KINETIC FAILURE PROCESSES OF POLYMERS</td>
<td>HALPIN, J. C. / WHITNEY</td>
<td>1972</td>
<td>6 290</td>
</tr>
<tr>
<td>A PHYSICAL MECHANISM FOR THE EARLY ACOUSTIC EMISSION IN AN ORGANIC FIBER/EPoxy PRESSURE VESSEL</td>
<td>HALPIN, J. C. / PAGANO / WHITNEY</td>
<td>1972</td>
<td>6 290</td>
</tr>
<tr>
<td>ACOUSTIC EMISSION FROM STRESS-rupture AND FATIGUE OF AN ORGANIC FIBER/EPoxy PRESSURE VESSEL</td>
<td>HALPIN, J. C. / PAGANO / WHITNEY</td>
<td>1972</td>
<td>6 290</td>
</tr>
<tr>
<td>TENSILE PROPERTIES OF AN ULTRA-HIGH-STRENGTH GRAPHITE FIBER AN EPoxy MATRIX</td>
<td>HAINES, J. E.</td>
<td>1973</td>
<td>4 228</td>
</tr>
<tr>
<td>POLYMER-LINED FILAMENT-WOUND PRESSURE VESSELS FOR NITROGEN CONTAINMENT</td>
<td>HAINES, J. E.</td>
<td>1973</td>
<td>4 228</td>
</tr>
<tr>
<td>FATIGUE PERFORMANCE OF METAL-LINED GRAPHITE/EPoxy VESSELS</td>
<td>HAINES, J. E.</td>
<td>1973</td>
<td>4 228</td>
</tr>
<tr>
<td>STRESS-rupture OF Epoxy-COATED BE-WIRE</td>
<td>HAINES, J. E.</td>
<td>1973</td>
<td>4 228</td>
</tr>
<tr>
<td>TENSILE PROPERTIES OF AN ULTRA-HIGH-STRENGTH GRAPHITE FIBER AN EPoxy MATRIX</td>
<td>HAINES, J. E.</td>
<td>1973</td>
<td>4 228</td>
</tr>
<tr>
<td>ACOUSTIC EMISSION USK IN RESEARCH AND DEVELOPMENT OF COMPOSITE MATERIALS</td>
<td>HAINES, J. E.</td>
<td>1973</td>
<td>4 228</td>
</tr>
<tr>
<td>TESTING OF FIBER COMPOSITE MATERIALS</td>
<td>HAINES, J. E.</td>
<td>1973</td>
<td>4 228</td>
</tr>
<tr>
<td>HIGH PERFORMANCE VESSELS FROM AN AROMATIC POLYAMIDE FIBER/EPoxy COMPOSITE</td>
<td>HAINES, J. E.</td>
<td>1973</td>
<td>4 228</td>
</tr>
<tr>
<td>FATIGUE LIFE OF ORGANIC FIBER/EPoxy PRESSURE VESSELS</td>
<td>HAINES, J. E.</td>
<td>1973</td>
<td>4 228</td>
</tr>
<tr>
<td>PERFORMANCE OF FILAMENT-WOUND VESSELS FROM AN ORGANIC FIBER IN SEVERAL EPoxy MATRICES</td>
<td>HAINES, J. E.</td>
<td>1973</td>
<td>4 228</td>
</tr>
</tbody>
</table>
HARMONIC WAVES
1973 ATTENUATION OF HARMONIC WAVES IN LAYERED MEDIA
CHRISTENSEN, R. W.
6 314

HARRIS, L. C.
1974 THE LUBRICATION OF BEARINGS AND SLIP RINGS IN VACUUM
ODONNEILL, P. J. / HARRIS, L. C. / WARWICK, M. G.
1 38

HART, A. B.
1975 STORING ELECTRICAL ENERGY ON A LARGE SCALE
GARDNER, G. C. / HART, A. B. / MOWFFITT, R. D. / WRIGHT, J.
3 188

HARVEY, J. R.
1971 FLYWHEEL FEASIBILITY STUDY AND DEMONSTRATION. FINAL REPORT
GILBERT, R. R. / HARVEY, J. R. / HEUER, G. E. / LAWSON, L. J.
2 77

HAWKER SIDDELEY DYNAMICS, LTD.
1973 CIRCUIT DESIGN REPORT FOR A MOMENTUM WHEEL MOTOR CURRENT CONTROL UNIT
HAINE, J. E.
4 228
1974 A 1000 KWS FLYWHEEL OPTIMISATION STUDY
STANDING, J. W.
1 34
1974 A 150 KWS FLYWHEEL OPTIMISATION STUDY
STANDING, J. W.
1 36

HAYDOCK, J. L.
1974 ENERGY STORAGE AND ITS ROLE IN ELECTRIC POWER SYSTEMS
HAYDOCK, J. L.
3 172

HAZARDS
1974 SAFETY REVIEW OF THE KINETIC ENERGY WHEEL (KEW) SYSTEM FOR BUS APPLICATION
NATIONAL ACADEMY OF SCIENCES
2 103

HEAT AND ENERGY
1974 STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS. FIFTEEN PAPERS--SURVEY OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE SYSTEMS
VDI
3 180

HEAT ENGINE
1971 DESIGN AND TESTING OF HIGH ENERGY DENSITY FLYWHEELS FOR APPLICATION TO FLYWHEEL HEAT ENGINE HYBRID VEHICLE DRIVES
LAWSON, L. J.
2 79
1971 FLYWHEEL AND FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEMS FOR LOW-EMISSION VEHICLES
DUGGER, C. L. / BRANDT, A. / GEORGE, J. F. / PERINI, L. L. / MECHANICAL TECHNOLOGY, INC.
2 82
1971 IS THERE A FLYWHEEL IN YOUR FUTURE
LAWSON, L. J.
2 94
1974 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES
LAPEDES, D. E. / MELTZER, J.
2 118

HEAT ENGINE BATTERY
1974 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES
LAPEDES, D. E. / MELTZER, J.
2 118

HEAT ENGINE HYBRID
1971 DESIGN AND TESTING OF HIGH ENERGY DENSITY FLYWHEELS FOR APPLICATION TO FLYWHEEL HEAT ENGINE HYBRID VEHICLE DRIVES
LAWSON, L. J.
2 79
1971 FLYWHEEL AND FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEMS FOR LOW-EMISSION VEHICLES
DUGGER, C. L. / BRANDT, A. / GEORGE, J. F. / PERINI, L. L. / MECHANICAL TECHNOLOGY, INC.
2 82
1971 FEASIBILITY STUDY OF THE TRANSmission FOR A FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEM
LAPEDES, D. E. / MELTZER, J.
2 78

HEAT ENGINE/ELECTRIC SYSTEMS
1971 EVALUATION OF HYBRID HEAT ENGINE/ELECTRIC SYSTEMS FOR LOW EXHAUST EMISSION POTENTIAL IN AUTOMOTIVE APPLICATIONS
LAPEDES, D. E. / MELTZER, J.
2 78
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

HEAT ENGINES
1980 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-
POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES
BATTELLE COLUMBUS LABS. 2 70
1970 SURVEY OF PROPULSION SYSTEMS FOR LOW EMISSION URBAN VEHICLES,
FINAL REPORT.
FRAIZE, W. E. / LAY, R. K. 2 75
1971 DESIGN AND TESTING OF HIGH ENERGY DENSITY FLYWHEELS FOR
APPLICATION TO FLYWHEEL HEAT ENGINE HYBRID VEHICLE DRIVES
LAWSON, L. J. 2 79
1971 FLYWHEEL AND HEAT ENGINE HYBRID PROPULSION SYSTEMS
FOR LOW-EMISSION VEHICLES
DUGGER, G. L./BRANDT, A./GEORGE, J. P.
/PERINI, L. L. MECHANICAL TECHNOLOGY, INC. 2 82
1971 FEASIBILITY ANALYSIS OF THE TRANSMISSION FOR A FLYWHEEL HEAT
ENGINE HYBRID PROPULSION SYSTEM
CORDEN, W. A./GRIMM, D. H. 2 86
1972 HYBRID PROPULSION SYSTEM TRANSMISSION EVALUATION, PHASE I.
FINAL REPORT
LAPEDES, D. E./HINTON, W. G./WELTZER, J.
/IURA, T./DYKEMA, G./FORREST, L./HAHEN,
K./KETTLER, J./LAPOINTE, R./SMALLEY, W. LAWSON, L. J. 2 114
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND
FUELS.
LAWSON, L. J. 2 120
1974 KINETIC ENERGY STORAGE FOR MASS TRANSPORTATION

HEAT STORAGE
1974 HEAT STORAGE USING ALKALI METAL SALTS, ALKALI EARTH SALTS, IRON
CHLORIDE, ZINC CHLORIDE, BORON OXIDE, AND EUTECTIC
FLUORIDE MIXTURES
VANDERHON, J. SCHROEDER, J. 3 242
1974 STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS. FIFTEEN PAPERS--
SURVEY OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE SYSTEMS
HATDOCK, J. L. 3 171
1974 ENERGY STORAGE TECHNOLOGY
MCALLAN, J. V. 3 172
1974 ENERGY STORAGE AND ITS ROLE IN ELECTRIC POWER SYSTEMS
/SHANKS, W. J. / SNYDER, J. / SNEIDER, T. R.
/SCHNEIDER, T. R. PENNER, S. S. / ICMAN, L. 5 248
1974 STORAGE OF HIGH-GRADE ENERGY
1974 ASSESSMENT OF ADVANCED CONCEPTS IN ENERGY STORAGE AND THEIR
APPLICATION IN ELECTRIC UTILITY SYSTEMS

HEAT-ENGINE
1972 HEAT-ENGINE MECHANICAL-ENERGY-STORAGE HYBRID PROPULSION
SYSTEMS FOR VEHICLES. FINAL REPORT
/SMALLEY, W. J. MARSHALL, G. W./MORASH, R. T./BARKER, R. J.
/SHANKS, W. J. ROBINSON, A. L. 3 159
3 165
1974 INDEPENDENT ENERGY SYSTEMS FOR BETTER EFFICIENCY
1974 ENERGY STORAGE. (1): USING ELECTRICITY MORE EFFICIENTLY
HEATING
1974 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR
AIRCRAFT ACTUATION FUNCTIONS
HIELSLEY, C. W. / CALL, B. J. 4 218
1974 WEIGHT IS SAVED WHEN FLYWHEEL ENERGY STORAGE UNIT
SUPPLEMENTS AIRCRAFT SECONDARY POWER SYSTEMS.
HIELSLEY, C. W. 4 217
1972 HIGH PERFORMANCE HELICOPTER HOIST PROGRAM
HELVEY, M. R. 1972 HIGH PERFORMANCE HELICOPTER HOIST PROGRAM
HELSLEY, C. W. / CALL, B. J. 4 218
1972 HIGH PERFORMANCE HELICOPTER HOIST PROGRAM
HELVING, J. / GORSH, R. / GORTHA, B.
HELVING, J. / SCHRECK, R. / GORSH, B.
HELVING, J. / SCHRECK, R. / GORSH, B.
HENRY, E. A.
1976 RESEARCH LEADING TO THE PRODUCTION AND EARLY USE OF NUMERIC DATA BANKS OF MATERIAL PROPERTIES AND SYSTEM ANALYSES
HENRY, E. A. 1 58

HERONEMUS, W. E.
1975 WIND POWER
HERONEMUS, W. E. 5 249

HERRIDGE, J. T.
1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES

HETEROGENEOUS MEDIA
1969 VISCOELASTIC PROPERTIES OF HETEROGENEOUS MEDIA
CHRISTENSEN, R. M. 6 274

HETHERINGTON, N. W.
1972 STRESS RUPTURE OF SIMPLE S-CLASS/EPoxy COMPOSITES
CHIAO, T. T./LEPPER, J. K./HETHERINGTON, N. W./MOORE, R. L.

HEUER, G. E.
1971 FLYWHEEL FEASIBILITY STUDY AND DEMONSTRATION.FINAL REPORT
1972 FLYWHEEL DRIVE SYSTEMS STUDY.FINAL REPORT
GILBERT, R. R./HARVEY, J. R./HEUER, G. E./LAWSON, L. J.

HIGH CAPACITY KINETIC
1973 HOW UNINTERRUPTIBLE POWER SYSTEM ALTERNATIVES USING HIGH CAPACITY KINETIC ENERGY WHEELS
LAWSON, L. J. 3 155

HIGH ENERGY DENSITY
1971 DESIGN AND TESTING OF HIGH ENERGY DENSITY FLYWHEELS FOR APPLICATION TO FLYWHEEL HEAT ENGINE HYBRID VEHICLE DRIVES
LAWSON, L. J. 2 79

HIGH ENERGY EFFICIENCY
1973 ACHIEVING HIGH ENERGY EFFICIENCY
INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE 3 152

HIGH PERFORMANCE
1972 HIGH PERFORMANCE HELICOPTER HOIST PROGRAM
CHIAO, T. T./HAMSTAD, M. A.

1975 HIGH PERFORMANCE VESSELS FROM AN AROMATIC POLYAMIDE FIBER/EPoxy COMPOSITE
CHIAO, T. T./HAMSTAD, M. A. 6 351

HIGH PERFORMANCE VESSELS
1975 HIGH PERFORMANCE VESSELS FROM AN AROMATIC POLYAMIDE FIBER/EPoxy COMPOSITE
CHIAO, T. T./HAMSTAD, M. A. 6 351

HIGH SPEED TURBOMACHINERY
1970 APPLICATION OF AIR BEARINGS TO HIGH SPEED TURBOMACHINERY
HARRETT, M. A./SILVER, A. 1 13

HIGH STRENGTH FIBERS
1974 FATIGUE PERFORMANCE OF METAL-LINED GRAPHITE/EPoxy VESSELS
HAMSTAD, M. A./CHIAO, T. T./PATTERSON, R.

95
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH STRENGTH POLYAMIDE</td>
<td>LARSEN, F. N.</td>
<td>6</td>
</tr>
<tr>
<td>CHEMISTRY AND TECHNOLOGY OF HIGH STRENGTH POLYAMIDE FIBERS</td>
<td></td>
<td>377</td>
</tr>
<tr>
<td>HIGH TEMPERATURE</td>
<td>CHIAO, T. T.</td>
<td>6</td>
</tr>
<tr>
<td>THE TEMPERATURE EFFECT OF INTERNAL AND EXTERNAL PRESSURE OF</td>
<td></td>
<td>265</td>
</tr>
<tr>
<td>TUBULAR WOUND PIPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEAT STORAGE USING ALKALI METAL SALTS, ALKALI EARTH SALTS,</td>
<td>SCHROEDER, J.</td>
<td>5</td>
</tr>
<tr>
<td>IRON CHLORIDE, ZINC CHLORIDE, BORON OXIDE, AND EUTECTIC</td>
<td></td>
<td>242</td>
</tr>
<tr>
<td>FLUORIDE MIXTURES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTRICAL PROPULSION SYSTEMS FOR ROAD VEHICLES. STATE OF THE ART</td>
<td>BADER, C. / PLUST, H. G.</td>
<td>2</td>
</tr>
<tr>
<td>AND PRESENT-DAY PROBLEMS</td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>ENERGY STORAGE. (1): USING ELECTRICITY MORE EFFICIENTLY</td>
<td>ROBINSON, A. L.</td>
<td>3</td>
</tr>
<tr>
<td>ENERGY STORAGE: INCENTIVES AND PROSPECTS FOR ITS DEVELOPMENT</td>
<td>KALHAMMER, F.</td>
<td>3</td>
</tr>
<tr>
<td>POTENTIAL FOR LARGE-SCALE ENERGY STORAGE IN ELECTRIC UTILITY SYSTEMS</td>
<td>KALHAMMER, F. / ZYGIELBAUM, P. S.</td>
<td>3 177</td>
</tr>
<tr>
<td>HIGH-DENSITY INERTIAL-ENERGY STORAGE</td>
<td>BROECK, W. M. ASSOC.</td>
<td>1</td>
</tr>
<tr>
<td>DEVELOPMENT OF HIGH-DENSITY INERTIAL-ENERGY STORAGE FINAL REPORT</td>
<td>GORDON, H. S.</td>
<td>2</td>
</tr>
<tr>
<td>HIGH-EFFICIENCY ELECTRIC-DRIVE</td>
<td>POST, R. F.</td>
<td>101</td>
</tr>
<tr>
<td>ENERGY CONSERVATION FACTORS FOR A HIGH-EFFICIENCY ELECTRIC-DRIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTOMOBILE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIGH-EFFICIENCY ELECTRIC-DRIVE AUTOMOBILE</td>
<td>POST, R. F.</td>
<td>101</td>
</tr>
<tr>
<td>ENERGY CONSERVATION FACTORS FOR A HIGH-EFFICIENCY ELECTRIC-DRIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTOMOBILE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIGH-ENERGY</td>
<td>SVENSSON, A. / WETHERBEE, A. E.</td>
<td>3 142</td>
</tr>
<tr>
<td>FEASIBILITY OF FLYWHEEL HIGH-ENERGY STORAGE</td>
<td>GILBERT, J. S. / KERN, E. A.</td>
<td>183</td>
</tr>
<tr>
<td>ANALYSIS OF HOMOPOLAR GENERATORS AND SUPERCONDUCTING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDUCTIVE ENERGY STORAGE SYSTEMS AS POWER SUPPLIES FOR HIGH-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENERGY, SPACE-BASED LASERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIGH-ENERGY STORAGE</td>
<td>SVENSSON, A. / WETHERBEE, A. E.</td>
<td>3 142</td>
</tr>
<tr>
<td>FEASIBILITY OF FLYWHEEL HIGH-ENERGY STORAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIGH-NODES ENERGY</td>
<td>MCALLAN, J. V.</td>
<td>5</td>
</tr>
<tr>
<td>STORAGE OF HIGH-NODES ENERGY</td>
<td></td>
<td>245</td>
</tr>
<tr>
<td>HIGH-MODULUS BERYLLIUM OXIDE/</td>
<td>CHIAO, T. T. / LEWIS, A. / KIMPLE, R. F.</td>
<td>6 276</td>
</tr>
<tr>
<td>EVALUATION OF HIGH-STRENGTH, HIGH-MODULUS BERYLLIUM OXIDE/ GLASS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIBER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIGH-PERFORMANCE FILAMENT WINDING</td>
<td>CHIAO, T. T. / JESOP, E. S. / PENN, L.</td>
<td>6 355</td>
</tr>
<tr>
<td>SCREENING OF EPOXY SYSTEMS FOR HIGH-PERFORMANCE FILAMENT WINDING</td>
<td></td>
<td>S.</td>
</tr>
<tr>
<td>APPLICATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIGH-PERFORMANCE ORGANIC FIBER</td>
<td>PENN, LYNN / NEWEY, H. A. / CHIAO, T.</td>
<td>6 352</td>
</tr>
<tr>
<td>CHEMICAL CHARACTERIZATION OF A HIGH-PERFORMANCE ORGANIC FIBER</td>
<td></td>
<td>T.</td>
</tr>
<tr>
<td>HIGH-SPEED ENERGY WHEEL</td>
<td>PRODUCT ENGINEERING</td>
<td>2</td>
</tr>
<tr>
<td>OFFERS TROLLEYS PORTABLE ELECTRICITY</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>Title</td>
<td>Author(s)</td>
<td>Volume</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>HIGH-STRENGTH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HINTON, M.G.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LURA, T., DYKEMA, G., FORREST, L., HAGEN, K., KETTLER, J., LAFRANCE, R., SNELLAN, W.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LURA, T.</td>
<td></td>
</tr>
<tr>
<td>HIROTA, T.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 HYBRID POWER SYSTEM</td>
<td>SUGIYAMA, M., HIROTA, T., KAKEI, J.</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>KABA SAWA, Y.</td>
<td></td>
</tr>
<tr>
<td>HOESS, J. A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES</td>
<td>HOESS, J. A., CHEANEY, E. S., CRESWICK, F.</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>TRAYNER, D. A., FISCHER, R. D.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TIMBERLAKE, A. B., BASHAM, S. J.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HERIDGE, J. T., WILCOX, J. P.</td>
<td></td>
</tr>
<tr>
<td>HOHENEMSER, K.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970 WIND UP CAR</td>
<td>HOHENEMSER, K., MCCAULL, J.</td>
<td>71</td>
</tr>
<tr>
<td>HOIST PROGRAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972 HIGH PERFORMANCE HELICOPTER HOIST PROGRAM</td>
<td>LAWSON, L. J., BUDDY, J. H.</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>GILBERT, R. R., HELVEY, M. R.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JACOBSEN, E. H., HUTH, R. WADA, W.</td>
<td></td>
</tr>
<tr>
<td>HOLLANDSE SINAALAPPARATEN B. V.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 FURTHER TESTING AND DESIGN IMPROVEMENT OF GREASE LUBRICATED SPIRAL GROOVE BEARING MOMENTUM WHEEL</td>
<td>BOLLEN, J. A. C.</td>
<td>230</td>
</tr>
<tr>
<td>1975 APPLICATION SPIRAL-GROOVE BEARINGS ON SPACECRAFT</td>
<td>VANDERWAL, U.</td>
<td>236</td>
</tr>
<tr>
<td>HOLOGRAPHIC EXAMINATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 HOLOGRAPHIC EXAMINATION OF A COMPOSITE PRESSURE VESSEL</td>
<td>MEYER, M. D., KATAYANAGI, T. E.</td>
<td>360</td>
</tr>
<tr>
<td>HOMOPOLAR GENERATORS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 ANALYSIS OF HOMOPOLAR GENERATORS AND SUPERCONDUCTING INDUCTIVE ENERGY STORAGE SYSTEMS AS POWER SUPPLIES FOR HIGH-ENERGY, SPACE-BASED LASERS</td>
<td>GILBERT, J. S., KERN, K. A.</td>
<td>183</td>
</tr>
<tr>
<td>HOMOPOLAR MACHINE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WELDON, W. F., WOODSON, H. H.</td>
<td></td>
</tr>
<tr>
<td>HOMOPOLAR MOTOR-GENERATOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WELDON, W. F., WOODSON, H. H.</td>
<td></td>
</tr>
<tr>
<td>HOT GAS MOTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1959 COMPARISON OF ELECTRICALLY RUN UP FLYWHEEL (DC MOTOR) WITH TURBINE, HOT GAS MOTOR AND OTHER SYSTEMS FOR MINUTEMAN APPLICATION</td>
<td>FRUKTOW, N. H.</td>
<td>80</td>
</tr>
</tbody>
</table>

97
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

HOUNS
1974 INDEPENDENT ENERGY SYSTEMS FOR BETTER EFFICIENCY

MARSHALL, O.W./MORASH, R.T./BARBER, R.J.
3 159

HSU, C.S.
1972 NON-STATIONARY RANDOM VIBRATION OF NONLINEAR STRUCTURES

TOLAND, R.H./YANG, C.Y./HSU, C.S.
6 303

HUBBETT'S 1980 ESTIMATE
1974 ENERGY, VOLUME I: DEMANDS, RESOURCES, IMPACT, TECHNOLOGY, AND POLICY

PENNER, S.S./ICEMAN, L.
5 243

HUCKE, E.K.
1973 ENERGY STORAGE VIA FLYWHEELS

GILMAN, J.J./HUCKE, E.K.
3 154

HVDC SYSTEMS
1974 ELECTRIC POWER SYSTEMS

ERDA
3 179

HYBRID AUTOMOTIVE ENGINE
1974 HYBRID AUTOMOTIVE ENGINE WITH KINETIC ENERGY STORAGE

SCHRECK, H./TORRES, F.
2 117

HYBRID CAR
1973 HYBRID CAR: PART-TIME ENGINE + PART-TIME FLYWHEEL = FULL TIME TRANSPORTATION

LINDSLEY, E.F.
2 97

HYBRID DRIVE
1973 APPLICATION OF TWO-PHASE DC CHOPPER MOTOR DRIVE
1974 HYBRID DRIVE WITH FLYWHEEL COMPONENT FOR ECONOMIC AND DYNAMIC OPERATION
1976 HYBRID DRIVE WITH KINETIC ENERGY STORE AS VEHICLE DRIVE

REIMERS, E.
REILING, J./SCHRECK, H./GIERA, B.
SCHRECK, H./TORRES, F.
2 95 2 110 2 133

HYBRID ELECTRIC POWER
1976 BATTERY-FLYWHEEL HYBRID ELECTRIC POWER SYSTEM FOR NEAR-TERM APPLICATION, VOL. 1, SYSTEM DESCRIPTION.
1976 BATTERY-FLYWHEEL HYBRID ELECTRIC POWER SYSTEM FOR NEAR-TERM APPLICATION, VOL. 2, SYSTEM DESIGN.

DAVIS, D.D.
DAVIS, D.D.
2 134 2 135

HYBRID ELECTRIC PROPULSION
1973 HYBRID ELECTRIC PROPULSION UTILIZING RECONNECTIBLE MOTOR WINDINGS IN WHEELS

REIMERS, E.
2 91

HYBRID ELECTRIC-POWERED VEHICLES
1971 PROCEEDINGS SECOND INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM
1974 EMISSION CHARACTERISTICS OF A PRIME MOVER FOR HYBRID VEHICLE USE
1974 ELECTRICAL PROPULSION SYSTEMS FOR ROAD VEHICLES: STATE OF THE ART AND PRESENT-DAY PROBLEMS
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.
1974 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES

ALLEP, J.E./FLEMING, R.D.
ALLSUP, J.E./FLEINING, R.D.
BADER, C./PLUST, H.G.
LAPEDES, D.E./HINTON, W.G./WELTZER, J.
LAPEDES, D.E./HINTON, W.G./WELTZER, J.
LAPEDES, D.E./HINTON, W.G./WELTZER, J.
LEHMANN, E.J.
2 63 2 102 2 111 2 114 1 115 1 118 2 124
ERDA Bibliography for Flywheel Energy Storage Systems

Concordance on Title, Author, Organization and Keywords

<table>
<thead>
<tr>
<th>Publication Details</th>
<th>Authors</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid Heat Engine</td>
<td>Lapedes, D. E. / Meltzer, J.</td>
<td>1974</td>
</tr>
<tr>
<td>Hybrid Heat Engine/Electric</td>
<td>Lapedes, D. E. / Meltzer, J.</td>
<td>1971</td>
</tr>
<tr>
<td>Hybrid Power System</td>
<td>Sugiya, H. / Kihara, Y.</td>
<td>1975</td>
</tr>
<tr>
<td>Hybrid Power Train</td>
<td>Kugler, G. C.</td>
<td>1973</td>
</tr>
<tr>
<td>Hybrid Propulsion Systems</td>
<td>Dugger, G. L. / Brandt, A. / George, J. F.</td>
<td>1971</td>
</tr>
<tr>
<td>Hybrid Propulsion System</td>
<td>Mechanical Technology, Inc.</td>
<td>1971</td>
</tr>
<tr>
<td>Hybrid Systems</td>
<td>Hoess, J. A. / Cheaney, E. S. / Creswick, F.</td>
<td>1969</td>
</tr>
<tr>
<td>Hybrid Propulsion System</td>
<td>Corner, W. A. / Grimm, D. H.</td>
<td>1972</td>
</tr>
<tr>
<td>Hybrid Propulsion System</td>
<td>Lawson, L. J.</td>
<td>1971</td>
</tr>
<tr>
<td>Hybrid Propulsion System</td>
<td>Dugger, G. L. / Brandt, A. / George, J. F.</td>
<td>1971</td>
</tr>
<tr>
<td>Hybrid Propulsion System</td>
<td>Mechanical Technology, Inc.</td>
<td>1971</td>
</tr>
<tr>
<td>Hybrid Propulsion System</td>
<td>Allsup, J. R. / Fleming, R. D.</td>
<td>1974</td>
</tr>
<tr>
<td>Battery Powered Vehicle Drive</td>
<td>Deane, C. T.</td>
<td>1974</td>
</tr>
<tr>
<td>Hybrid Automotive Engine with Kinetic Energy Storage</td>
<td>Lapedes, D. E. / Meltzer, J.</td>
<td>1975</td>
</tr>
<tr>
<td>Hybrid Drive with Kinetic Energy Store As Vehicle Drive</td>
<td>Schmidt, H. / Torres, F.</td>
<td>1976</td>
</tr>
<tr>
<td>Hybrid Vehicle Drives</td>
<td>Lawson, L. J.</td>
<td>1971</td>
</tr>
</tbody>
</table>
HYBRID VEHICLE USE
1974 EMISSION CHARACTERISTICS OF A PRIME MOVER FOR HYBRID VEHICLE USE

HYBRID VEHICLES
1974 FLYWHEEL ENERGY PROPULSION AND THE ELECTRIC VEHICLE
1974 ENERGY CONSERVATION FACTORS FOR A HIGH-EFFICIENCY ELECTRIC-DRIVE AUTOMOBILE
1975 HYBRID VEHICLES

HYBRIDS
1971 LIFT FOR THE AUTO: ENGINE-FLYWHEEL HYBRIDS
1972 HEAT-ENGINE MECHANICAL-ENERGY-STORAGE HYBRID PROPULSION SYSTEMS FOR VEHICLES:FINAL REPORT

1974 ELECTRICAL PROPULSION SYSTEMS FOR ROAD VEHICLES: STATE OF THE ART AND PRESENT-DAY PROBLEMS
1976 FLYWELEGS: ENERGY-SAVING WAY TO GO

HYDRAULIC POWER
1971 HYDRAULIC TRANSMISSION COUPLED STANDBY POWER UNIT

HYDRAULIC TRANSMISSION
1971 HYDRAULIC TRANSMISSION COUPLED STANDBY POWER UNIT

HYDRAULIC TRANSMISSION COUPLED
1971 HYDRAULIC TRANSMISSION COUPLED STANDBY POWER UNIT

HYDRAULIC VIBRATOR
1959 CAPTURED LOAD RESILIENCE OF A HYDRAULIC VIBRATOR SAVES POWER

HYDRAULICS
1975 SHAEP NUCLEAR POWER PROJECT, UNITS 1 AND 2 LICENSE APPLICATION

HYDRAZINE
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.
1974 ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES

HYDRO THERMAL
1974 ENERGY, VOLUME 1: DEMANDS, RESOURCES, IMPACT, TECHNOLOGY, AND POLICY

HYDROCARBONS
1974 EMISSION CHARACTERISTICS OF A PRIME MOVER FOR HYBRID VEHICLE USE
1974 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES
1974 ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES

HYDRODYNAMIC BEARINGS
1972 LOW PEAK TEMPERATURES AND HYDRODYNAMIC BEARINGS - KEY TO LONG LIFE ORGANIC RANKINE CYCLE SYSTEMS

HYDRODYNAMIC BEARING SYSTEM
1970 A GREASE-LUBRICATED HYDRODYNAMIC BEARING SYSTEM FOR A SATELLITE FLYWHEEL
HYDRODYNAMIC GAS BEARINGS
1970 BATTERY FLYWHEEL
BARWELL, L. D. G. / SWAIN, J. 4 221

HYDRODYNAMICS
1989 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES
BATTHEL SEOLUMBS LABS. 2 70

HYDROELECTRIC
1976 ENERGY STORAGE
KALHAMMER, F. R. / SCHNEIDER, T. R. 5 251

HYDROELECTRIC POWER PLANTS
1974 ENERGY STORAGE. (1): USING ELECTRICITY MORE EFFICIENTLY
ROBINSON, A. L. 3 166

HYDROELECTRIC POWER
1974 GOVERNMENT-WIDE REPORT TO OFFICE ON MANAGEMENT AND BUDGET ON ENERGY STORAGE R AND D PROGRAM STRATEGIES AND IMPLEMENTATION PLANS
ERDA/DAT 5 244
1974 ENERGY STORAGE FOR THE ELECTRIC POWER INDUSTRY
KELLER, W. E. 3 168
1975 DIGEST OF CURRENT RESEARCH IN THE ELECTRIC UTILITY INDUSTRY
EPRI 3 187

HYDROGEN
1974 ENERGY STORAGE. (11): DEVELOPING ADVANCED TECHNOLOGIES
ROBINSON, A. L. 3 168
1974 GOVERNMENT-WIDE REPORT TO OFFICE ON MANAGEMENT AND BUDGET ON ENERGY STORAGE R AND D PROGRAM STRATEGIES AND IMPLEMENTATION PLANS
ERDA/DAT 5 244
1974 STORAGE OF HIGH-GRATDE ENERGY
MCALLAN, J. V. 5 245
1974 ENERGY STORAGE: INCENTIVES AND PROSPECTS FOR ITS DEVELOPMENT
KALHAMMER, F. 3 174
1974 ASSESSMENT OF ADVANCED CONCEPTS IN ENERGY STORAGE AND THEIR APPLICATION TO ELECTRIC UTILITY SYSTEMS
FERNANDES, R. A. / GILDEHSEPHEEVE, O. 3 176
D. / SCHNEIDER, T. R.
KALHAMMER, F. / ZYCEIELBAU, P. S. 3 177
1974 POTENTIAL FOR LARGE-SCALE ENERGY STORAGE IN ELECTRIC UTILITY SYSTEMS
KALHAMMER, F. / ZYCEIELBAU, P. S. 3 177
1976 ELECTRIC POWER SYSTEMS
ERDA 3 179
1976 WHEN DO ELECTRIC STORAGE DEVICES MAKE ECONOMIC SENSE?
BRAUN, C. / CHESTNVASKY, E. A. / SALVADOR, F. J. 3 205
KALHAMMER, F. R. / SCHNEIDER, T. R. 5 251
AMERICAN NUCLEAR SOCIETY, HINSDALE, ILL. 5 252
1976 ENERGY STORAGE
KALHAMMER, F. R. / SCHNEIDER, T. R. 5 251
AMERICAN NUCLEAR SOCIETY, HINSDALE, ILL. 5 252
REED, J. J. 3 207

HYDROGEN FUELS
1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS
STERNLICHT, B. / THUR, G. M. 3 355

HYDROGEN GENERATORS
1975 UTILITIES EYE LARGE-SCALE ENERGY STORAGE
RICCI, L. J. 3 184

HYDROGEN PEROXIDE TURBINE
1975 POWER PLANT
ARICA, H. 3 197

HYDROGEN POWERED
1974 ELECTRICAL PROPULSION SYSTEMS FOR ROAD VEHICLES. STATE OF THE ART AND PRESENT-DAY PROBLEMS
BADEN, C. / PLUST, H. G. 2 111
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Year</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDROSTATIC DRIVE</td>
<td>Whitlaw, R. L.</td>
<td>1972</td>
<td>2 90</td>
</tr>
<tr>
<td>TWO NEW WEAPONS AGAINST AUTOMOTIVE AIR POLLUTION: THE HYDROSTATIC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRIVE AND THE FLYWHEEL-ELECTRIC LDV.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYNE, A.</td>
<td></td>
<td>1974</td>
<td>2 121</td>
</tr>
<tr>
<td>IMPROVED REGENERATIVE BRAKING SYSTEM</td>
<td>HYNE, A. / Zucker, O.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAKUBOWSKI, M.</td>
<td></td>
<td>1972</td>
<td>3 151</td>
</tr>
<tr>
<td>IBM SYSTEMS DEVELOPMENT DIVISION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972 FLYWHEEL ENERGY BUFFER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IECHEMANN, L.</td>
<td></td>
<td>1974</td>
<td>5 243</td>
</tr>
<tr>
<td>ENERGY, VOLUME I: DEMANDS, RESOURCES, IMPACT, TECHNOLOGY, AND</td>
<td>PENNER, S. S. / IECHEMANN, L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLICY</td>
<td></td>
<td>1975</td>
<td>5 248</td>
</tr>
<tr>
<td>ENERGY-STORAGE SYSTEMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDEA ON FLYWHEELS</td>
<td></td>
<td>1970</td>
<td>4 220</td>
</tr>
<tr>
<td>A NEW TECHNICAL IDEA ON FLYWHEELS (NOUVELLE CONCEPTION</td>
<td>POUBEAU, P.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TECHNIQUE DES TOLANTS D'INERTIE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDEAS AND EXPERIMENTS</td>
<td></td>
<td>1976</td>
<td>2 132</td>
</tr>
<tr>
<td>IDEAS AND EXPERIMENTS IN MAGNETIC INTERFACING</td>
<td>Aaland, K. / Lake, J. E.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPACT</td>
<td></td>
<td>1972</td>
<td>6 301</td>
</tr>
<tr>
<td>FAILURE MODES IN IMPACT LOADED COMPOSITE MATERIALS</td>
<td>TOLAND, R. H.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973 INSTRUMENTED IMPACT TESTING OF CARBON FIBER COMPOSITE MATERIALS</td>
<td>TOLAND, R. H.</td>
<td></td>
<td>6 319</td>
</tr>
<tr>
<td>1974 ENERGY, VOLUME I: DEMANDS, RESOURCES, IMPACT, TECHNOLOGY, AND</td>
<td>PENNER, S. S. / IECHEMANN, L.</td>
<td></td>
<td>5 243</td>
</tr>
<tr>
<td>POLICY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPACT LOADED COMPOSITE</td>
<td></td>
<td>1972</td>
<td>6 301</td>
</tr>
<tr>
<td>FAILURE MODES IN IMPACT LOADED COMPOSITE MATERIALS</td>
<td>TOLAND, R. H.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPACT TESTING</td>
<td></td>
<td>1973</td>
<td>6 319</td>
</tr>
<tr>
<td>INSTRUMENTED IMPACT TESTING OF CARBON FIBER COMPOSITE MATERIALS</td>
<td>TOLAND, R. H.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPLEMENTATION PLANS</td>
<td></td>
<td>1974</td>
<td>5 244</td>
</tr>
<tr>
<td>GOVERNMENT-WIDE REPORT TO OFFICE ON MANAGEMENT AND BUDGET ON</td>
<td>ERDA/DAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENERGY STORAGE R AND D PROGRAM STRATEGIES AND IMPLEMENTATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLANS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPROVED REGENERATIVE BRAKING</td>
<td></td>
<td>1974</td>
<td>2 121</td>
</tr>
<tr>
<td>IMPROVED REGENERATIVE BRAKING SYSTEM</td>
<td>HYNE, A. / Zucker, O.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPROVED ROTATABLE MASS</td>
<td></td>
<td>1975</td>
<td>1 51</td>
</tr>
<tr>
<td>AN IMPROVED ROTATABLE MASS FOR A FLYWHEEL</td>
<td>Weyler, George W. Jr. Patent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPLICATION 14 NOV 1975</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPROVEMENT OF GREASE</td>
<td></td>
<td>1974</td>
<td>4 230</td>
</tr>
<tr>
<td>FURTHER TESTING AND DESIGN IMPROVEMENT OF GREASE LUBRICATED SPIRAL</td>
<td>Boll, J. A. C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROOVE BEARING MOMENTUM WHEEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN VACUUM</td>
<td></td>
<td>1974</td>
<td>1 38</td>
</tr>
<tr>
<td>THE LUBRICATION OF BEARINGS AND SLIP RINGS IN VACUUM</td>
<td>O'Donnell, P. J. / Harris, L. C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warwick, M. G.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

102
<table>
<thead>
<tr>
<th>Publication Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCENTIVES AND PROSPECTS</td>
<td>KALHAMMER, F.</td>
<td>3 174</td>
</tr>
<tr>
<td>1974 ENERGY STORAGE: INCENTIVES AND PROSPECTS FOR ITS DEVELOPMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INCLUSIONS</td>
<td>CHRISTENSEN, R. W.</td>
<td>6 331</td>
</tr>
<tr>
<td>1974 WAVE PROPAGATION IN ELASTIC MEDIA WITH A PERIODIC ARRAY OF DISCRETE INCLUSIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INCREASED FUEL ECONOMY</td>
<td>BEACHLEY, N. H. / FRANK, A. A.</td>
<td>2 128</td>
</tr>
<tr>
<td>1976 INCREASED FUEL ECONOMY IN TRANSPORTATION SYSTEMS BY USE OF ENERGY MANAGEMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDEPENDENT ENERGY SYSTEMS</td>
<td>MARSHALL, O. W. / MORASH, R. T. / BARBER, R. J.</td>
<td>3 159</td>
</tr>
<tr>
<td>1974 INDEPENDENT ENERGY SYSTEMS FOR BETTER EFFICIENCY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDUCTIVE ENERGY STORAGE</td>
<td>GILBERT, J. S. / KERN, R. A.</td>
<td>3 183</td>
</tr>
<tr>
<td>1975 ANALYSIS OF HOMOPOLAR GENERATORS AND SUPERCONDUCTING INDUCTIVE ENERGY STORAGE SYSTEMS AS POWER SUPPLIES FOR HIGH-ENERGY SPACE-BASED LASERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDUSTRY</td>
<td>KELLER, W. E.</td>
<td>3 186</td>
</tr>
<tr>
<td>1974 ENERGY STORAGE FOR THE ELECTRIC POWER INDUSTRY</td>
<td>EPRI</td>
<td></td>
</tr>
<tr>
<td>1975 DIGEST OF CURRENT RESEARCH IN THE ELECTRIC UTILITY INDUSTRY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INERTIA AND TIME</td>
<td>SPOTTIS, W. F.</td>
<td>1 1</td>
</tr>
<tr>
<td>1963 DETERMINING INERTIA AND TIME REQUIREMENTS FOR FLYWHEEL MACHINES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INERTIA STORAGE</td>
<td>GULIA, N. V. ET AL</td>
<td>2 105</td>
</tr>
<tr>
<td>1974 CYTOSCOPIC EFFECT OF FLYWHEELS IN MACHINES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INERTIAL ENERGY STORAGE</td>
<td>POST, R. F. / POST, S. F.</td>
<td>2 88</td>
</tr>
<tr>
<td>1972 INERTIAL ENERGY STORAGE APPARATUS AND SYSTEM FOR UTILIZING THE SAME</td>
<td>POST, S. F.</td>
<td>2 96</td>
</tr>
<tr>
<td>1973 INERTIAL ENERGY STORAGE APPARATUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INERTIAL-ENERGY STORAGE</td>
<td>BROECK, W. M. ASSOC</td>
<td>1 44</td>
</tr>
<tr>
<td>1975 DEVELOPMENT OF HIGH-DENSITY INERTIAL-ENERGY STORAGE</td>
<td>GORDON, H. S.</td>
<td>3 193</td>
</tr>
<tr>
<td>1975 DEVELOPMENT OF HIGH-DENSITY INERTIAL-ENERGY STORAGE FINAL REPORT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFLUENCE OF COMPRESSION</td>
<td>WU, E. W.</td>
<td>6 258</td>
</tr>
<tr>
<td>1965 A FRACTURE CRITERION FOR ORTHOTROPIC PLATES UNDER THE INFLUENCE OF COMPRESSION AND SHEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFORMATION</td>
<td>EPRI</td>
<td>3 167</td>
</tr>
<tr>
<td>1975 DIGEST OF CURRENT RESEARCH IN THE ELECTRIC UTILITY INDUSTRY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSPECTION</td>
<td>NATIONAL ACADEMY OF SCIENCES</td>
<td>2 103</td>
</tr>
<tr>
<td>1974 SAFETY REVIEW OF THE KINETIC ENERGY WHEEL (KEW) SYSTEM FOR BUS APPLICATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 SKAGIT NUCLEAR POWER PROJECT, UNITS 1 AND 2. LICENSE APPLICATION</td>
<td>PGUCET SOUND POWER AND LIGHT CO.</td>
<td>3 160</td>
</tr>
<tr>
<td>1975 THREE MILE ISLAND NUCLEAR STATION, UNIT 2. NO INSPECTION REPORT NO. 75-01 AND CORRESPONDENCE</td>
<td>METROPOLITAN EDISON CO.</td>
<td>3 162</td>
</tr>
<tr>
<td>Title</td>
<td>Author</td>
<td>Year</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Inspection Report 1976 Three Mile Island Nuclear Station, Unit 2.00 Inspection Report No. 75-01 and Correspondence</td>
<td>Metropolitan Edison Co.</td>
<td>1976</td>
</tr>
<tr>
<td>Institute of Environmental Sciences</td>
<td>Lawson, L. J.</td>
<td>1975</td>
</tr>
<tr>
<td>Integrated Power/Attitude Control</td>
<td>Notti, J. E. / Cornack, A. / Schwill, W. C.</td>
<td>1974</td>
</tr>
<tr>
<td>Design and Testing of an Energy Flywheel for an Integrated Power/Attitude Control System (IPACS)</td>
<td>Notti, J. E. / Cornack, A.</td>
<td>1975</td>
</tr>
<tr>
<td>Integrity 1975 Reactor Coolant Pump Flywheel Integrity</td>
<td>Nuclear Regulatory Comm.</td>
<td>1975</td>
</tr>
<tr>
<td>Interfacial Fracture Phenomena</td>
<td>Wu, E. M. / Thomas, R. L.</td>
<td>1969</td>
</tr>
<tr>
<td>Interlaminar Shear Test 1975 Evaluation of Interlaminar Shear Test for Fiber Composites</td>
<td>Chiao, T. T./Moore, R. L.</td>
<td>1975</td>
</tr>
<tr>
<td>Internal and External 1967 The Temperature Effect of Internal and External Pressure of Two Angle Wound Pipe</td>
<td>Chiao, T. T.</td>
<td>1967</td>
</tr>
<tr>
<td>Internal Boundary 1965 Response to Pressurization of a Viscoelastic Cylinder with an Exodig Internal Boundary</td>
<td>Christensen, R. M. / Schreiner, R. N.</td>
<td>1965</td>
</tr>
<tr>
<td>Internal Combustion Engine 1978 Hybrid Drive with Kinetic Energy Store as Vehicle Drive</td>
<td>Schreck, H. / Torres, F.</td>
<td>1978</td>
</tr>
<tr>
<td>Title</td>
<td>Author(s)</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------</td>
<td>------</td>
</tr>
<tr>
<td>INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE 1973 ACHIEVING HIGH ENERGY EFFICIENCY</td>
<td></td>
<td>3 152</td>
</tr>
<tr>
<td>INVARIANTS - THEORY 1972 STRENGTH TENSORS AND THEIR INVARIANTS - THEORY AND EXPERIMENT WU, E. W.</td>
<td></td>
<td>6 291</td>
</tr>
<tr>
<td>INVERSION 1975 AC/DC POWER CONDITIONING AND CONTROL EQUIPMENT FOR ADVANCED CONVERSION AND STORAGE TECHNOLOGY. WOOD, P. / PELLY, B. R.</td>
<td></td>
<td>3 195</td>
</tr>
<tr>
<td>INVENTERS 1981 AN ELECTRO-MECHANICAL ENERGY STORAGE SYSTEM FOR SPACE APPLICATION ROES, J. B.</td>
<td></td>
<td>4 210</td>
</tr>
<tr>
<td>INVESTIGATION 1972 EXPERIMENTAL INVESTIGATION OF FRACTURE IN AN ADVANCED FIBER COMPOSITE KOKISH, H. J. / SWEDLOW, J. L. / CRUSE, T. A.</td>
<td></td>
<td>6 294</td>
</tr>
<tr>
<td>INVESTIGATION OF FRACTURE 1972 EXPERIMENTAL INVESTIGATION OF FRACTURE IN AN ADVANCED FIBER COMPOSITE KOKISH, H. J. / SWEDLOW, J. L. / CRUSE, T. A.</td>
<td></td>
<td>6 294</td>
</tr>
<tr>
<td>IPACS 1974 INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS) STUDY. VOLUME 1: FEASIBILITY STUDIES NOTTI, J. E. / CORMACK, A. / SCHMILL, W. C.</td>
<td></td>
<td>4 231</td>
</tr>
<tr>
<td>1975 DESIGN AND TESTING OF AN ENERGY FLYWHEEL FOR AN INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS) NOTTI, J. E. / CORMACK, A.</td>
<td></td>
<td>4 240</td>
</tr>
<tr>
<td>IRON CHLORIDE 1974 HEAT STORAGE USING ALKALI METAL SALTS, ALKALI EARTH SALTS, IRON CHLORIDE, ZINC CHLORIDE, BORON OXIDE, AND EUTECTIC FLUORIDE MIXTURES SCHROEDER, J.</td>
<td></td>
<td>5 242</td>
</tr>
<tr>
<td>IRON FLYWHEEL 1973 FINITE ELEMENT STUDY OF A CAST IRON FLYWHEEL WITH PARTICULAR EMPHASIS ON STRESS CONCENTRATIONS bindin, P. J.</td>
<td></td>
<td>1 40</td>
</tr>
<tr>
<td>ISOLATION 1975 SKAGIT NUCLEAR POWER PROJECT. UNITS 1 AND 2. LICENSE APPLICATION PUGET SOUND POWER AND LIGHT CO.</td>
<td></td>
<td>3 180</td>
</tr>
<tr>
<td>ISOTENSOID 1972 APPLICATION OF ISOTENSOID FLYWHEELS TO SPACECRAFT ENERGY AND ANGULAR MOMENTUM STORAGE ADAMS, L. R.</td>
<td></td>
<td>4 224</td>
</tr>
<tr>
<td>ISOTENSOID DESIGN 1964 THE UNIFORM-STRESS SPINNING FILAMENTARY DISK KYBER, A. C.</td>
<td></td>
<td>1 3</td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

ISOTENSOID FLYWHEEL
1972 APPLICATION OF ISOTENSOID FLYWHEELS TO SPACECRAFT ENERGY AND
ANGULAR MOMENTUM STORAGE

ADAMS, L. R.

4 224

ISOTENSOID FLYWHEELS
1972 APPLICATION OF ISOTENSOID FLYWHEELS TO SPACECRAFT ENERGY AND
ANGULAR MOMENTUM STORAGE

ADAMS, L. R.

4 224

ISOTROPIC VISCOELASTIC SOLID
1964 AN EXPERIMENT FOR DETERMINATION OF THE MECHANICAL PROPERTY
IN SHEAR FOR A LINEAR ISOTROPIC VISCOELASTIC SOLID.

CHRISTENSEN, R. W. / GOTTENBERG, W.

6 256

ITERATIVE PROCEDURES
1974 ITERATIVE PROCEDURES FOR CALCULATING THE FIRST TORSIONAL
EIGENFREQUENCY OF A SHAFT WITH SEVERAL FLYWHEELS

ATZORI, B. / CURTI, G.

1 31

IURA,T.
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND
FUELS.

LAPIDES,L.E./HINTON,W.G./MELTZER,J.
/IURA,T./DYKEMA,G./FORREST,L./HAGEN,
E./RETTLER,J./LAFRANCE,R./SMALLEY,W.

2 114

1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND
FUELS.

LAPIDES,L.E./HINTON,W.G./MELTZER,J.
/IURA,T.

2 115

JACOBSEN, E. H.
1972 FLYWHEEL DRIVE SYSTEMS STUDY.FINAL REPORT

GILBERT, R. R./HEUER,G.E./JACOBSEN,
E. R./KUNSS,E.R./LAWSON, L. I./WADA,
W. T.

2 87

1972 HIGH PERFORMANCE HELICOPTER HOIST PROGRAM

4 225

JAFEE,R.I.
1976 MATERIALS REQUIREMENTS FOR ENERGY GENERATION,CONVERSION, AND
STORAGE

JAFEE,R.I.

5 250

JAKUBOWSKI,M.
1972 FLYWHEEL ENERGY BUFFER

JAKUBOWSKI,M.

3 151

JERINA, K. J.
1971 COMPUTER AIDED MECHANICAL TESTING OF COMPOSITES

WU, E. W. / JERINA, K. J.

6 288

JERINA, K. L.
1973 DATA AVERAGING OF ANISOTROPIC MATERIAL CONSTANTS

WU, E. W. / JERINA, K. L. / LAVENGROSS, R. E.

6 311

JESSOP, E. S.
1974 TENSILE PROPERTIES OF AN ULTRA-HIGH-STRENGTH GRAPHITE FIBER
AN EPOXY MATRIX

CHIAO, T. T. / HAMSTAD, W. A. / JESSOP, E. S.

8 337

1974 POLYMER-LIKED FILAMENT-WOUND PRESSURE VESSELS FOR NITROGEN
CONTAINMENT

HAMSTAD, W. A. / CHIAO, T. T. / JESSOP, E. S.

8 338

1974 AN EPOXY SYSTEM FOR FILAMENT WINDING

CHIAO, T. T. / JESSOP, E. S./NEWEY, H. A.

8 340

1974 STRESS-RUPTURE OF EPOXY-COATED BK-WIRE

CHIAO, T. T. / HAMSTAD, W. A. / JESSOP, E. S.

8 342

1974 TENSILE PROPERTIES OF AN ULTRAHIGH-STRENGTH GRAPHITE FIBER
AN EPOXY MATRIX

CHIAO, T. T. / HAMSTAD, W. A. / JESSOP, E. S.

8 344

1974 A MODERATE-TEMPERATURE-CURABLE EPOXY FOR ADVANCED COMPOSITE
WINDBED APPLICATIONS

CHIAO, T. T. / JESSOP, E. S./NEWEY, H. A.

8 345

1975 SCREENING OF EPOXY SYSTEMS FOR HIGH-PERFORMANCE FILAMENT
WINDBED APPLICATIONS

CHIAO, T. T. / JESSOP, E. S./PENN, L. S.

8 355
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

JESSOP, K. S. (CONTD.)
1976 PERFORMANCE OF FILAMENT-WOUND VESSELS FROM AN ORGANIC FIBER IN SEVERAL EPOXY MATRICES
CHASE, T. H., JESSOP, E. S., HAMSTAD, M. A.

JOHNS HOPKINS UNIV.
1971 FLYWHEEL AND FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEMS FOR LOW-EMISSION VEHICLES
DUGGER, C. L., BRANDT, A., GEORGE, J. F.
1971 POTENTIAL APPLICATIONS FOR THE SUPERFLYWHEEL
RABENHORST, D. W.
1971 MATERIAL REQUIREMENTS FOR THE SUPERFLYWHEEL
RABENHORST, D. W.
1974 METALS AND COMPOSITIONS IN SUPERFLYWHEEL ENERGY STORAGE SYSTEMS
RABENHORST, D. W.
1975 SUPERFLYWHEEL FOR STORING ENERGY FROM OTEC PLANTS
RABENHORST, D. W., DUGGER, C. L.

JOHNS HOPKINS UNIV., APPLIED PHYSICS LAB.
1971 RESEARCH AND DEVELOPMENT PROGRAMS. QUARTERLY PROGRESS REPORT, 1 JAN.-31 MAR. 1971
NOYES, C. F., WALKER, R. E., PIRKLE, J. C., FRAZER, R.
1972 HEAT-ENGINE MECHANICAL-ENERGY-STORAGE HYBRID PROPULSION SYSTEMS FOR VEHICLES: FINAL REPORT
1973 DESIGN CONSIDERATIONS FOR A 100-MEGAJOULE/500-MEGAWATT SUPERFLYWHEEL
RABENHORST, D. W., TAYLOR, R. J.

JOHNS HOPKINS UNIV., APPLIED PHYSICS LAB. OFFICE OF NAVAL RESEARCH
1974 MULTIRPM SUPERFLYWHEEL. TECHNICAL MEMO
RABENHORST, D. W.

JOHNSON, C. W.
1974 PROBABILISTIC DESIGN OF COMPOSITE STRUCTURES
MAXWELL, R. T., TOLAND, R. H., JOHNSON, C. W.

KABASAWA, Y.
1975 HYBRID POWER SYSTEM
SUGIYAMA, H., HIROTA, T., KAKEI, J.

KAKEI, J.
1975 HYBRID POWER SYSTEM
SUGIYAMA, H., HIROTA, T., KAKEI, J.

KALHAMMER, F.
1974 ENERGY STORAGE: INCENTIVES AND PROSPECTS FOR ITS DEVELOPMENT
KALHAMMER, F.
1974 POTENTIAL FOR LARGE-SCALE ENERGY STORAGE IN ELECTRIC UTILITY SYSTEMS
KALHAMMER, F. / ZYCEILBAUM, P. S.

KALHAMMER, F. R.
1975 ENERGY STORAGE
KALHAMMER, F. R., COOPER, V. R.
1976 ENERGY STORAGE
KALHAMMER, F. R., SCHNEIDER, T. R.

KALRA, P.
1973 DYNAMIC BRAKING
KALRA, P.

KATAYANAGI, T. E.
1975 HOLOGRAPHIC EXAMINATION OF A COMPOSITE PRESSURE VESSEL
MEYER, M. D., KATAYANAGI, T. E.

KELLER, W. E.
1974 ENERGY STORAGE FOR THE ELECTRIC POWER INDUSTRY
KELLER, W. E.

KERN, E. A.
1976 ANALYSIS OF HOMOPOLAR GENERATORS AND SUPERCONDUCTING INDUCTIVE ENERGY STORAGE SYSTEMS AS POWER SUPPLIES FOR HIGH-ENERGY, SPACE-BASED LASERS
GILBERT, J. S., KERN, E. A.
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

KERN, E. A. (CONTD.)

KETTLER, J.
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.

KEVLAR/EPOXY AND KEVLAR/GRAPHITE/EPOXY
1975 KEVLAR/EPOXY AND KEVLAR/GRAPHITE/EPOXY COMPOSITES FOR THE C-4 (TRIDENT) CHAMBER PROGRAM

KEW
1974 SAFETY REVIEW OF THE KINETIC ENERGY WHEEL (KEW) SYSTEM FOR BUS APPLICATION

KHUDOSHILOV, V. A.
1974 METHOD OF CALCULATING TORSIONAL VIBRATIONS IN A POWER UNIT WITH A NON-LINEAR SILICONE DAMPER

KILGORE, L. A.
1971 OPERATING LARGE EXCAVATORS ON SMALL POWER SYSTEMS

KIMPLE, R. F.
1979 EVALUATION OF HIGH-STRENGTH, HIGH-MODULUS ERYLLIUM OXIDE/GLASS FIBER

KINETIC ENERGY
1970 ACHIEVEMENTS AND PROSPECTS IN THE UTILIZATION OF KINETIC ENERGY
1972 THE APPLICATION OF WOOD TECHNOLOGY TO KINETIC ENERGY STORAGE
1972 APPLICATION OF KINETIC ENERGY PROPULSION TO MASS TRANSPORTATION
1973 ENERGY STORAGE VIA FLYWHEELS
1973 KINETIC ENERGY STORAGE: A "NEW" PROPULSION ALTERNATIVE FOR MASS TRANSPORTATION
1973 NEW UNINTERRUPTIBLE POWER SYSTEM ALTERNATIVES USING HIGH CAPACITY KINETIC ENERGY WHEELS
1974 SAFETY REVIEW OF THE KINETIC ENERGY WHEEL (KEW) SYSTEM FOR BUS APPLICATION
1974 KINETIC ENERGY SYSTEMS FOR MOVING PEOPLE
1974 HYBRID AUTOMOTIVE ENGINE WITH KINETIC ENERGY STORAGE
1974 KINETIC ENERGY STORAGE FOR MASS TRANSPORTATION
1975 THE KINETIC ENERGY WHEEL
1975 KINETIC ENERGY STORAGE OF OFF-PEAK ELECTRICITY
1976 HYBRID DRIVE WITH KINETIC ENERGY STORE AS VEHICLE DRIVE

KINETIC ENERGY PROPULSION
1972 APPLICATION OF KINETIC ENERGY PROPULSION TO MASS TRANSPORTATION

KINETIC ENERGY STORAGE
1972 THE APPLICATION OF WOOD TECHNOLOGY TO KINETIC ENERGY STORAGE
1973 KINETIC ENERGY STORAGE: A "NEW" PROPULSION ALTERNATIVE FOR MASS TRANSPORTATION
1974 HYBRID AUTOMOTIVE ENGINE WITH KINETIC ENERGY STORAGE
1974 KINETIC ENERGY STORAGE FOR MASS TRANSPORTATION
1975 KINETIC ENERGY STORAGE OF OFF-PEAK ELECTRICITY
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYBRID DRIVE WITH KINETIC ENERGY STORE AS VEHICLE DRIVE</td>
<td>Schreck, H. / Torres, P.</td>
<td>2</td>
<td>133</td>
</tr>
<tr>
<td>KINETIC ENERGY SYSTEMS FOR MOVING PEOPLE</td>
<td>Baxter, J. W. / Lawson, L. J.</td>
<td>2</td>
<td>107</td>
</tr>
<tr>
<td>SAFETY REVIEW OF THE KINETIC ENERGY WHEEL (KEW) SYSTEM FOR BUS APPLICATION</td>
<td>National Academy of Sciences</td>
<td>2</td>
<td>109</td>
</tr>
<tr>
<td>THE KINETIC ENERGY WHEEL</td>
<td>Lawson, L. J.</td>
<td>2</td>
<td>122</td>
</tr>
<tr>
<td>NEW UNINTERRUPTIBLE POWER SYSTEM ALTERNATIVES USING HIGH CAPACITY KINETIC ENERGY WHEELS</td>
<td>Lawson, L. J.</td>
<td>3</td>
<td>155</td>
</tr>
<tr>
<td>KINETIC FAILURE PROCESSES OF POLYMERS</td>
<td>Wu, E. M. / Halpin, J. C.</td>
<td>6</td>
<td>280</td>
</tr>
<tr>
<td>MECHANICAL CAPACITOR</td>
<td>Kirk, James A. / Studer, Philip A. / Evans, Harold E.</td>
<td>3</td>
<td>208</td>
</tr>
<tr>
<td>COMPUTER CONTROLLED 120 MVA POWER SUPPLY FACILITY FOR NUCLEAR FUSION RESEARCH</td>
<td>Miyanbara, A. / Bannai, E. / Kitano, Y.</td>
<td>3</td>
<td>158</td>
</tr>
<tr>
<td>LARGE FLYWHEEL POWER SUPPLY FOR FUSION EXPERIMENTS IN THE MAX-PLANCK-INSTITUT FUER PLASMAFYSIK, GARCHING, GERMANY</td>
<td>Knobloch, A. / Kottmair, W. / Schlueter, W. / Vau, G.</td>
<td>3</td>
<td>173</td>
</tr>
<tr>
<td>EXPERIMENTAL INVESTIGATION OF FRACTURE IN AN ADVANCED FIBER COMPOSITE</td>
<td>Konishi, H. J. / Swedlow, J. L. / Cruze, T. A.</td>
<td>6</td>
<td>294</td>
</tr>
<tr>
<td>LARGE FLYWHEEL POWER SUPPLY FOR FUSION EXPERIMENTS IN THE MAX-PLANCK-INSTITUT FUER PLASMAFYSIK, GARCHING, GERMANY</td>
<td>Knobloch, A. / Kottmair, W. / Schlueter, W. / Vau, G.</td>
<td>3</td>
<td>173</td>
</tr>
<tr>
<td>CALCULATION OF STRESSES AND STRENGTH RETENTION OF ROTATING DISKS AND FLYWHEELS</td>
<td>Krizter, R.</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>ELECTRIC VEHICLE HYBRID POWER TRAIN</td>
<td>Kugler, G. C.</td>
<td>2</td>
<td>92</td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

KURSK POLYTECH. INST., USSR
1974 SYNTHESIS OF THE BELT OF A DISCRETE BELT VARIATOR
KULIA, N. V. / TUDYOSKII, I. D.

KYGER, A. C.
1984 THE UNIFORM-STRESS SPINNING FILAMENTARY DISK

LAFAUNCE, R.
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.

LAMINATE STRENGTH
1974 LAMINATE STRENGTH - A DIRECT CHARACTERIZATION PROCEDURE
WU, E. W. / SCHUERLEIN, J. K.

LAMPE, D.
1974 SUPERFLYWHEEL: THE BATTERY THAT SPINS
LAMPE, D.

LANE, J. E.
1975 IDEAS AND EXPERIMENTS IN MAGNETIC INTERFACING
LAALAND, K. / LANE, J. E.

LANE, J. A.
1986 CAPTURED LOAD RESILIENCE OF A HYDRAULIC VIBRATOR SAVES POWER
LANE, J. A.

LAPEDERES, D. E.
1971 EVALUATION OF HYBRID HEAT ENGINE/ELECTRIC SYSTEMS FOR LOW EXHAUST EMISSION POTENTIAL IN AUTOMOTIVE APPLICATIONS

1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.

1974 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES
LAPEDERES, D. E. / WELTZER, J.

LARDER, R. A.
1974 THE APPLICATION OF THREE DIMENSIONAL FINE ELEMENT ANALYSIS TO THE MICRO-MECHANICS OF FIBROUS COMPOSITE MATERIALS
LARDER, R. A.

1975 STOCHASTIC FINE ELEMENT SIMULATION OF THE NONLINEAR STRUCTURAL RESPONSE OF FIBROUS COMPOSITE MATERIALS.
LARDER, R. A. / BEADLE, C. W.

1975 STRENGTH DISTRIBUTION OF SINGLE FILAMENTS
LARDER, R. A.

LARGE ELASTIC DEFORMATION
1987 LARGE ELASTIC DEFORMATION OF A SPHERICAL WEDGE
CHRISTENSEN, R. M.

LARGE EXCAVATORS
1971 OPERATING LARGE EXCAVATORS ON SMALL POWER SYSTEMS
KILGORE, L. A. / WASHBURN, D. C.

LARGE FLYWHEEL
1974 LARGE FLYWHEEL POWER SUPPLY FOR FUSION EXPERIMENTS IN THE MAX-PPLANCK-INSTITUT FUR PLASMAPHYSIK, GARCHING, GERMANY
KNOBLACH, A. / KOTTMANN, W. / SCHLUETER, W. / YAU, G.

LARGE MOMENTUM WHEEL
1975 MAGNETICALLY SUSPENDED LARGE MOMENTUM WHEEL
SABNIS, A. V. / DENNY, J. B. / SCHMITT, F. W.
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

LARGE-SCALE ENERGY STORAGE
- **1974** Potential for large-scale energy storage in electric utility systems
 - KALHAMMER, F. / ZYSKEYBAUM, P. S.
 - 3 177
- **1975** Utilities eye large-scale energy storage
 - RICCI, L. J.
 - 3 184

LARSEN, F. N.
- **1978** Chemistry and technology of high strength polyamide fibers
 - LARSEN, F. N.
 - 6 377

LATENT HEAT
- **1974** Storage systems for energy peaking demands. Fifteen papers—survey of present and prospective heat and energy storage systems
 - VDI
 - 3 160
- **1974** Heat storage using alkali metal salts, alkali earth salts, iron chloride, zinc chloride, boron oxide, and eutectic fluoride mixtures
 - SCHROEDER, J.
 - 5 242

LATEST SUBWAY CARS
- **1974** Flywheel brakes store new train's energy for electricity-saving starts; New York's latest subway cars
 - ARMAGNAC, A. P.
 - 2 108

LAVENGROOD, R. E.
- **1973** Data averaging of anisotropic material constants
 - WU, E. W. / ISHRA, K. L.
 - 6 311

LAWRENCE LIVERMORE LABORATORY
- **1963** Some interesting aspects of general linear viscoelastic deformation
 - CHRISTENSEN, R. M. / GOTTENBERG, W.
 - G.
 - 6 254
- **1963** Vibration of a 45-deg. right triangle cantilever plate by a gridwork method
 - CHRISTENSEN, R. M.
 - 6 266
- **1964** An experiment for determination of the mechanical property in shear for a linear isotropic viscoelastic solid
 - CHRISTENSEN, R. M. / GOTTENBERG, W.
 - G.
 - 6 266
- **1964** The dynamic response of a solid, viscoelastic sphere to translational and rotational excitation
 - CHRISTENSEN, R. M. / GOTTENBERG, W.
 - G.
 - 6 267
- **1965** Response to pressurization of a viscoelastic cylinder with an eroding internal boundary
 - CHRISTENSEN, R. M. / SCHRINER, R.
 - N.
 - 1 5
- **1985** A fracture criterion for orthotropic plates under the influence of compression and shear
 - WU, E. W.
 - 6 287
- **1985** Crack extension in fiber-glass-reinforced plastics
 - WU, E. W. / REUTER, R. C.
 - CHRISTENSEN, R. M.
 - 1 6
- **1985** Prediction of the transient response of a linear viscoelastic solid
 - CHRISTENSEN, R. M. / GOTTENBERG, W.
 - G.
 - 6 266
- **1985** Design for commercial filament winding
 - CHIAO, T. T.
 - 6 261
- **1986** Large elastic deformation of a spherical wedge
 - CHRISTENSEN, R. M.
 - 7
- **1986** Application of fracture mechanics to anisotropic plates
 - WU, E. W.
 - 6 267
- **1987** Application of the method of time-dependent boundary conditions in linear viscoelasticity
 - CHRISTENSEN, R. M.
 - 6 267
- **1987** Linear non-isothermal viscoelastic solids
 - CHRISTENSEN, R. M. / NAGHDI, P. M.
 - 6 264
- **1987** The temperature effect of internal and external pressure of two angle wound pipe
 - CHIAO, T. T.
 - 6 265
- **1988** Fracture mechanics of anisotropic plates
 - WU, E. W.
 - 6 266
- **1988** Discontinuous mode of crack extension in unidirectional composites
 - WU, E. W.
 - 6 267
- **1988** On obtaining solutions in nonlinear viscoelasticity
 - CHRISTENSEN, R. M.
 - 6 268
- **1988** Variational and minimum theorems for the linear theory of viscoelasticity
 - CHRISTENSEN, R. M.
 - 6 269
- **1988** Off-axis test of a composite
 - WU, E. W. / THOMAS, R. L.
 - HALPIN, J. C. / PAGANO / WHITNEY / WU, E. W.
 - 6 270
- **1989** Characterization of anisotropic composites
 - WU, E. W. / THOMAS, R. L.
 - 6 272
- **1989** Some unique crack propagation phenomena in unidirectional composites and their mathematical characterization
 - WU, E. W.
 - 6 272
- **1989** Interfacial fracture phenomena
 - WU, E. W. / THOMAS, R. L.
 - 6 273
- **1989** Viscoelastic properties of heterogeneous media
 - CHRISTENSEN, R. M.
 - 6 274
- **1989** A random walk model in random vibration
 - TOLAND, R. H. / YANG, C. Y.
 - 6 275
- **1989** Evaluation of high-strength, high-modulus beryllium oxide/glass fiber
 - CHIAO, T. T. / LEWIS, A. / KIMPLE, R.
 - 6 276

111
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

LAWRENCE LIVERMORE LABORATORY (CONT.)
1970 A TENSILE TEST METHOD FOR FIBERS
1971 A GENERAL THEORY OF STRENGTH FOR ANISOTROPIC MATERIALS
1971 MEASUREMENT AND CONTROL OF DYNAMIC CRACKS IN COMPOSITES.
1971 FRACTURE CRITERIA FOR ORTHOTROPIC PLATE UNDER COMPRESSION
AND SHEAR
1971 THEORY OF VISCOELASTICITY: AN INTRODUCTION
1971 THE EFFECT OF SOLVENTS AND STRESS ON THE STRESS RUPTURE LIFE
OF EPOXY-GLASS COMPOSITES
1971 STRESS-RUPTURE OF S-Glass/EPOXY MULTIFILAMENT STRANDS
1971 STRAIN RATE EFFECT ON THE ULTIMATE TENSILE STRESS OF FIBER/
EPOXY STRANDS
1971 COMPUTER AIDED MECHANICAL TESTING OF COMPOSITES
1971 STUDY OF EPOXY RESINS FOR FIBER COMPOSITES
1971 A RANDOM WALK MODEL FOR FIRST-PASSAGE PROBABILITY
1972 KINETIC FAILURE PROCESSES OF POLYMERS
1972 STRENGTH TENSORS AND THEIR INVARIANTS - THEORY AND EXPERIMENT
1972 EFFECTIVE STIFFNESS OF RANDOMLY ORIENTED FIBRE COMPOSITES
1972 RESTRICTIONS UPON VISCOELASTIC RELAXATION FUNCTIONS AND
COMPLEX MODULI.
1973 FLYWHEELS
1974 FLYWHEELS AS AN ENERGY STORAGE DEVICE, A SELECTED
BIBLIOGRAPHY
1975 SCREENING OF EPOXY SYSTEMS FOR HIGH-PERFORMANCE FILAMENT
WINDING APPLICATIONS
1975 A LONG LIFELIFE EPOXY SYSTEM FOR FILAMENT WINDING
1975 PERFORMANCE OF FILAMENT-WOUND VESSELS FROM AN ORGANIC FIBER
IN SEVERAL EPOXY MATRICES
1975 ELONGATED-RING SPECIMEN FOR TENSILE PROPERTIES OF FILAMENT-
WOUND COMPOSITES
1975 STRENGTH DISTRIBUTION OF SINGLE FILAMENT
1975 HOLOGRAPHIC EXAMINATION OF A COMPOSITE PRESSURE VESSEL
1975 STRENGTH RETENTION AND LIFE OF FIBER COMPOSITE MATERIALS
1975 FIBER COMPOSITES FOR ENERGY STORAGE FLYWHEELS.
1975 CHARACTERIZATION PROCEDURE FOR THERMOSETTING RESINS
1975 EPOXY RESINS FOR FLYWHEEL APPLICATIONS.
1975 FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS. SECOND
QUARTERLY PROGRESS REPORT.
1975 FIBER COMPOSITES HIGHLIGHTS
1975 LONG-TERM PERFORMANCE OF FIBER COMPOSITES
1975 IDEAS AND EXPERIMENTS IN MAGNETIC INTERFACING
1975 FIBER EVALUATION FOR FLYWHEEL APPLICATIONS
1975 LLL PROGRAM FOR COMPOSITE FLYWHEEL
1975 FIBER COMPOSITES HIGHLIGHTS
1975 MECHANICAL DESIGN OF A COMPOSITE CENTERLESS FLYWHEEL
1975 FERRO-RESONANT CIRCUIT FOR A NEW FLYWHEEL MOTOR GENERATOR
1975 A THERMOYNTHIC CRITERION FOR THE GLASS-TRANSITION
TEMPERATURE.
1975 THE EFFECTIVE MODULII OF COMPOSITES CONTAINING RANDOMLY
ORIENTED FIBERS.
1975 WAVE PROPAGATION IN LAYERED ELASTIC MEDIA
1976 COMPOSITE MATERIALS FOR ENERGY STORAGE FLYWHEELS
1976 CHARACTERIZATION OF A POLYAMIDE MATRIX FOR FIBER COMPOSITES
1976 FIBER COMPOSITES HIGHLIGHTS
1976 FIBER COMPOSITES HIGHLIGHTS
1976 ORGANIC MATERIALS DIVISION QUARTERLY REPORT
1976 AN ACCELERATED TEST FOR PREDICTING THE LIFETIME OF ORGANIC
FIBER COMPOSITES
1976 CHEMISTRY AND TECHNOLOGY OF HIGH STRENGTH POLYAMIDE FIBERS
1976 FIBER COMPOSITES HIGHLIGHTS
1976 FLYWHEELS, A SELECTED BIBLIOGRAPHY
1976 BATTERY-FLYWHEEL HYBRID ELECTRIC POWER SYSTEM FOR NEAR-TERM
APPLICATION, VOL. 1. SYSTEM DESCRIPTION
1976 BATTERY-FLYWHEEL HYBRID ELECTRIC POWER SYSTEM FOR NEAR-TERM
APPLICATION, VOL. 2. SYSTEM DESIGN
1976 FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS
1976 FIBER COMPOSITES HIGHLIGHTS

CHIAO, T. T. / MOORE, R. L. 6 277
TBAI, S. W. / WU, E. W. 6 279
BRIBSET, F. L. / WU, E. W. 6 280
WU, E. W. 6 281
CHRISTENSEN, R. M. 6 282
HUMPHREYS, D. C. / WU, E. W. 6 283
CHIAO, T. T. / WU, R. L. 6 284
CHIAO, T. T. / WU, R. L. 6 285
WU, E. W. / JERINA, K. J. 6 286
RICHARDS, J. / CHIAO, T. T. 6 287
TOLAND, R. H. / YANG, C. Y. 6 289
WU, E. W. / HALPIN, J. C. 6 290
WU, E. W. 6 291
CHRISTENSEN, R. M. / WAALS, F. M. 6 292
CHRISTENSEN, R. M. 6 293
POST, R. F. / POST, S. F. 1 28
LLL 1 30
CHIAO, T. T. / JESSOP, E. S. / PENN, L. S. 6 355
PENN, L. S. / CHIAO, T. T. 6 356
CHIAO, T. T. / JESSOP, E. S. / HANSTAD, W. A. 6 357
CLEMENS, L. L. / MOORE, R. L. / CHIAO, T. T. 6 358
LARDNER, R. A. / BEADLE, C. W. 6 359
MEYER, M. D. / KATAYANGI, T. E. 6 360
CHIAO, T. T. / SHERBY, R. J. 6 361
PENN, L. S. / CHIAO, T. T. 6 362
PENN, L. S. / NEWER, H. 6 363
RINDE, J. A. 1 48
CHIAO, T. T. 6 365
CHIAO, C. C. 6 366
AALAND, K. / LANE, J. E. 2 132
PENN, L. S. / CHIAO, T. T. 1 52
CHIAO, T. T. / STONE, R. G. 3 203
CHIAO, T. T. 5 367
BLAKE, A. 1 55
AALAND, K. 1 54
CHRISTENSEN, R. M. 6 368
CHRISTENSEN, R. M. 6 369
CHRISTENSEN, R. M. 6 370
CHIAO, T. T. 6 371
PENN, L. S. / MONES, E. T. / CHIAO, T. T. 6 372
CHIAO, T. T. 6 373
CHIAO, T. T. 6 374
LEPPER, J. K. 6 375
CHIAO, C. C. 6 376
LARSEN, F. H. 6 377
CHIAO, T. T. 6 378
MADDEN, W. E. 1 56
DAVIS, D. D. 2 134
DAVIS, D. D. 2 135
STONE, R. C. 1 57
CHIAO, T. T. 6 379

112
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976</td>
<td>RESEARCH LEADING TO THE PRODUCTION AND EARLY USE OF NUMERIC DATA BANKS OF MATERIAL PROPERTIES AND SYSTEM ANALYSES</td>
<td>HENRY, E. A.</td>
<td>58</td>
</tr>
<tr>
<td>1976</td>
<td>FIBER COMPOSITES HIGHLIGHTS</td>
<td>CHIAO, T. T.</td>
<td>388</td>
</tr>
<tr>
<td>1976</td>
<td>ORGANIC MATERIALS DIVISION QUARTERLY REPORT</td>
<td>LEPPER, J. K.</td>
<td>381</td>
</tr>
<tr>
<td>1976</td>
<td>ENERGY AND TECHNOLOGY REVIEW (MONTHLY PROGRESS REPORT 6/76)</td>
<td>SELDEN, R. W.</td>
<td>253</td>
</tr>
<tr>
<td>1976</td>
<td>FIBER COMPOSITES HIGHLIGHTS</td>
<td>CHIAO, T. T.</td>
<td>382</td>
</tr>
<tr>
<td>1976</td>
<td>COMPOSITE FIBER FLYWHEEL FOR ENERGY STORAGE</td>
<td>RINDE, J. A.</td>
<td>59</td>
</tr>
<tr>
<td>1971</td>
<td>FLYWHEEL FEASIBILITY STUDY AND DEMONSTRATION.FINAL REPORT</td>
<td>LAWSON, K. J.</td>
<td>77</td>
</tr>
<tr>
<td>1971</td>
<td>DESIGN AND TESTING OF HIGH ENERGY DENSITY FLYWHEELS FOR APPLICATION TO FLYWHEEL HEAT ENGINE HYBRID VEHICLE DRIVES</td>
<td>GILBERT, R. R./HARVEY,J.R./HEUER,G.</td>
<td>79</td>
</tr>
<tr>
<td>1972</td>
<td>FLYWHEEL DRIVE SYSTEMS STUDY.FINAL REPORT</td>
<td>LAWSON, L. J.</td>
<td>87</td>
</tr>
<tr>
<td>1972</td>
<td>APPLICATION OF KINETIC ENERGY PROPULSION TO MASS TRANSPORTATION</td>
<td>LAWSON, L. J.</td>
<td>89</td>
</tr>
<tr>
<td>1973</td>
<td>IS THERE A FLYWHEEL IN YOUR FUTURE</td>
<td>LAWSON, L. J.</td>
<td>94</td>
</tr>
<tr>
<td>1973</td>
<td>KINETIC ENERGY STORAGE: A 'NEW' PROPULSION ALTERNATIVE FOR MASS TRANSPORTATION</td>
<td>LAWSON, L. J.</td>
<td>98</td>
</tr>
<tr>
<td>1973</td>
<td>NEW UNINTERMITTIBLE POWER SYSTEM ALTERNATIVES USING HIGH CAPACITY KINETIC ENERGY WHEELS</td>
<td>LAWSON, L. J.</td>
<td>155</td>
</tr>
<tr>
<td>1974</td>
<td>KINETIC ENERGY SYSTEMS FOR MOVING PEOPLE</td>
<td>LAWSON, L. J.</td>
<td>107</td>
</tr>
<tr>
<td>1974</td>
<td>ATA RAIL TRANSPORT CONFERENCE. CAR EQUIPMENT SESSIONS.</td>
<td>LAWSON, L. J.</td>
<td>116</td>
</tr>
<tr>
<td>1974</td>
<td>KINETIC ENERGY STORAGE FOR MASS TRANSPORTATION</td>
<td>LAWSON, L. J.</td>
<td>120</td>
</tr>
<tr>
<td>1975</td>
<td>THE KINETIC ENERGY WHEEL</td>
<td>LAWSON, L. J.</td>
<td>122</td>
</tr>
<tr>
<td>1970</td>
<td>SURVEY OF PROPULSION SYSTEMS FOR LOW SMOKE URBAN VEHICLES, FINAL REPORT</td>
<td>FRAIZE, W. E./LAY, R. K.</td>
<td>75</td>
</tr>
<tr>
<td>1976</td>
<td>WAVE PROPAGATION IN LAYERED ELASTIC MEDIA</td>
<td>CHRISTENSEN, R. M.</td>
<td>370</td>
</tr>
<tr>
<td>1973</td>
<td>ATTENUATION OF HARMONIC WAVES IN LAYERED MEDIA</td>
<td>CHRISTENSEN, R. M.</td>
<td>314</td>
</tr>
<tr>
<td>1972</td>
<td>TWO NEW WEAPONS AGAINST AUTOMATIC AIR POLLUTION: THE HYDROSTATIC DRIVE AND THE FLYWHEEL-ELECTRIC LDV.</td>
<td>WHITELAW, R. L.</td>
<td>90</td>
</tr>
<tr>
<td>1974</td>
<td>ELECTRICAL PROPULSION SYSTEMS FOR ROAD VEHICLES. STATE OF THE ART AND PRESENT-DAY PROBLEMS</td>
<td>BADER, C. /PLAST, H. G.</td>
<td>111</td>
</tr>
<tr>
<td>1974</td>
<td>STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES</td>
<td>LAPEDES,D.E./MELTZER,J.</td>
<td>118</td>
</tr>
<tr>
<td>1973</td>
<td>FLYWHEELS</td>
<td>POST, R. F./POST, S. F.</td>
<td>25</td>
</tr>
<tr>
<td>1975</td>
<td>LEAD TESTING: SHADIT NUCLEAR POWER PROJECT, UNITS 1 AND 2, LICENSE APPLICATION</td>
<td>FUGUET SOUND POWER AND LIGHT CO.</td>
<td>180</td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

LEHMANN, E. J.
1975 DESIGN AND APPLICATIONS OF FLYWHEELS (A BIBLIOGRAPHY WITH ABSTRACTS)
LEHMANN, E. J.
LEHMANN, E. J.

LEPPER, J. K.
1972 STRESS-RUPTURE OF SIMPLE 2-Glass/EPOXY COMPOSITES
LEPPER, J. K.
1974 STRAIN MEASUREMENT TECHNIQUES FOR FIBER MODULUS DETERMINATION
CHIAO, T. T./ LEPPER, J. K./ MOORE, R. L. /LEPPER, J. K.
1976 ORGANIC MATERIALS DIVISION QUARTERLY REPORT
LEPPER, J. K.
LEPPER, J. K.

LEVITATION
1961 AN ELECTRO-MECHANICAL ENERGY STORAGE SYSTEM FOR SPACE APPLICATION
ROES, J. B.
1975 IDEAS AND EXPERIMENTS IN MAGNETIC INTERFACING
AALAND, R. / LANE, J. E.

LEWIS, A.
1959 EVALUATION OF HIGH-STRENGTH, HIGH-MODULUS BERYLLIUM OXIDE/GLASS FIBER
CHIAO, T. T./ LEWIS, A./KIPLE, R. F.

LICENSE APPLICATION
1975 SHAKETT NUCLEAR POWER PROJECT, UNITS 1 AND 2, LICENSE APPLICATION
FUGET SOUND POWER AND LIGHT CO.
1975 THREE MILE ISLAND NUCLEAR STATION, UNIT 3, LICENSE APPLICATION, FSAR, AMENDMENT 27
METROPOLITAN EDISON CO.

LIFE OF EPOXY-Glass
1971 THE EFFECT OF SOLVENTS AND STRESS ON THE STRESS RUPTURE LIFE OF EPOXY-Glass COMPOSITES
RUHMANN, D. C. / WU, E. W.

LIFE OF FIBER
1975 STRENGTH RETENTION AND LIFE OF FIBER COMPOSITE MATERIALS
CHIAO, T. T./ SHERBY, R. J.

LIFE OF ORGANIC
1975 FATIGUE LIFE OF ORGANIC FIBER/EPOXY PRESSURE VESSELS
HAMSTAD, M. A./ CHIAO, T. T./ PATTERSON, R. C.

LIFETIME OF ORGANIC
1976 AN ACCELERATED TEST FOR PREDICTING THE LIFETIME OF ORGANIC FIBER COMPOSITES
CHIAO, C. C.

LIFT
1971 LIFT FOR THE AUTO: ENGINE-FLYWHEEL HYBRIDS
MCCAULL, J.

LIMITED VEHICLE MOVEMENT
1975 VEHICLE POWER SYSTEM FOR LIMITED VEHICLE MOVEMENT WITHOUT USE OF FUEL
STROHLEIN, J. N.

LINDSLEY, E. F.
1973 HYBRID CAR: PART-TIME ENGINE * PART-TIME FLYWHEEL = FULL TIME TRANSPORTATION
LINDSLEY, E. F.

LINEAR ISOTROPIC VISCOELASTIC
1984 AN EXPERIMENT FOR DETERMINATION OF THE MECHANICAL PROPERTY IN SHEAR FOR A LINEAR ISOTROPIC VISCOELASTIC SOLID.
CHRISTENSEN, R. M. / GOTTFENBERG, W. G.
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINEAR NON-ISOTHERMAL VISCOELASTIC 1967 LINEAR NON-ISOTHERMAL VISCOELASTIC SOLIDS</td>
<td>CHRISTENSEN, R. M. / NAGHDI, P. M.</td>
<td>6 264</td>
</tr>
<tr>
<td>LINEAR THEORY 1968 VARIATIONAL AND MINIMUM THEOREMS FOR THE LINEAR THEORY OF VISCOELASTICITY</td>
<td>CHRISTENSEN, R. M.</td>
<td>6 269</td>
</tr>
<tr>
<td>LINEAR VISCOELASTIC DEFORMATION 1983 SOME INTERESTING ASPECTS OF GENERAL LINEAR VISCOELASTIC DEFORMATION</td>
<td>CHRISTENSEN, R. M. / GOTTFERGBERG, W.</td>
<td>6 254</td>
</tr>
<tr>
<td>LINEAR VISCOELASTIC SOLID 1988 PREDICTION OF THE TRANSIENT RESPONSE OF A LINEAR VISCOELASTIC SOLID.</td>
<td>CHRISTENSEN, R. M. / GOTTFERGBERG, W.</td>
<td>6 280</td>
</tr>
<tr>
<td>LINEAR VISCOELASTICITY 1987 APPLICATION OF THE METHOD OF TIME-DEPENDENT BOUNDARY CONDITIONS IN LINEAR VISCOELASTICITY</td>
<td>CHRISTENSEN, R. M.</td>
<td>6 283</td>
</tr>
<tr>
<td>LIQUEFIED NATURAL GAS 1974 STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS, FIFTEEN PAPERS-- SURVEY OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE SYSTEMS</td>
<td>VDI</td>
<td>3 180</td>
</tr>
<tr>
<td>1975 ENERGY-STORAGE SYSTEMS</td>
<td>PENNER, S. S. / ICERMAN, L.</td>
<td>5 248</td>
</tr>
<tr>
<td>LIQUID PETROLEUM 1975 ENERGY-STORAGE SYSTEMS</td>
<td>PENNER, S. S. / ICERMAN, L.</td>
<td>5 248</td>
</tr>
<tr>
<td>LLL 1974 FLYWHEELS AS AN ENERGY STORAGE DEVICE, A SELECTED BIBLIOGRAPHY</td>
<td>LLL</td>
<td>1 30</td>
</tr>
<tr>
<td>LLL 1975 LLL PROGRAM FOR COMPOSITE FLYWHEEL</td>
<td>CHIAO, T. T. / STONE, R. G.</td>
<td>3 203</td>
</tr>
<tr>
<td>LOAD COMPENSATION 1974 CYCLOCONVERTER-CONTROLLED SYNCHRONOUS MACHINES FOR LOAD COMPENSATION ON AC POWER SYSTEMS</td>
<td>FINLAYSON, P. T. / WASHBURN, D. C.</td>
<td>3 178</td>
</tr>
<tr>
<td>LOAD RESILIENCE 1968 CAPTURED LOAD RESILIENCE OF A HYDRAULIC VIBRATOR SAVES POWER</td>
<td>LANKESTER, J. A.</td>
<td>1 9</td>
</tr>
<tr>
<td>LOADED COMPOSITE MATERIALS 1972 FAILURE MODES IN IMPACT LOADED COMPOSITE MATERIALS</td>
<td>TOLAND, R. H.</td>
<td>6 301</td>
</tr>
</tbody>
</table>
LOCAL-DUTY VEHICLES
1973 FLYWHEEL-ELECTRIC SYSTEM FOR LOCAL-DUTY VEHICLES

AUTOMOTIVE ENG. 2 93

LOCKHEED MISSILES AND SPACE CO.
1971 FLYWHEEL FEASIBILITY STUDY AND DEMONSTRATION.FINAL REPORT
1972 APPLICATION OF KINETIC ENERGY PROPULSION TO MASS TRANSPORTATION
1973 IS THERE A FLYWHEEL IN YOUR FUTURE
1973 NEW UNINTERRUPTIBLE POWER SYSTEM ALTERNATIVES USING HIGH CAPACITY KINETIC ENERGY WHEELS
1974 KINETIC ENERGY STORAGE FOR MASS TRANSPORTATION

GILBERT, R. R./LAWSON, L. J.
GILBERT, R. R./LAWSON, L. J.
GILBERT, R. R./LAWSON, L. J.

LOCKHEED MISSILES AND SPACE CO., SUNNYVALE, CALIF. (USA)
1972 FLYWHEEL DRIVE SYSTEMS STUDY.FINAL REPORT

E. H./KUEHNS, E. B./LAWSON, L. J./WADA, W. T.

LOCKHEED MISSILES AND SPACE CO., GROUND VEHICLE SYSTEMS
1972 HIGH PERFORMANCE HELICOPTER HOIST PROGRAM

LONG LIFE ORGANIC
1972 LOW PRESSURE TEMPERATURES AND HYDRO_DYNAMIC BEARINGS - KEY TO LONG LIFE ORGANIC RANKINE CYCLE SYSTEMS

BORETT, J. E.

LONG POT LIFE
1975 A LONG POT LIFE EPOXY SYSTEM FOR FILAMENT WINDING

PENN, L. S./CHAO, T. T.

LONG TERM PERFORMANCE
1974 STRESS-ROPE BEHAVIOR OF GRAPHITE FIBER/EPoxy STRANDS

MOORE, R. L./CHAO, T. T./HAMSTAD, M. A.

LONG-TERM FAILURE
1974 NO-BREAK SETS

MOODY, R. L.

LONG-TERM PERFORMANCE
1975 LONG-TERM PERFORMANCE OF FIBER COMPOSITES

CHAO, C. C.

LORENS, L. E.
1974 POLYIMIDES FOR FIBER COMPOSITES

LORENS, L. E.

LOS ALAMOS SCIENTIFIC LAB.
1974 ENERGY STORAGE FOR THE ELECTRIC POWER INDUSTRY
1975 ANALYSIS OF MONOPOLAR GENERATORS AND SUPERCONDUCTING INDUCTIVE ENERGY STORAGE SYSTEMS AS POWER SUPPLIES FOR HIGH-ENERGY, SPACE-BASED LASERS

KELLER, W. E.
GILBERT, J. S./KERN, E. A.

LOW EMISSION URBAN
1970 SURVEY OF PROPULSION SYSTEMS FOR LOW EMISSION URBAN VEHICLES. FINAL REPORT.

FRAIZE, W. E./LAY, R. K.

LOW EMISSIONS
1971 FLYWHEEL AND FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEMS FOR LOW-EMISSION VEHICLES

DUGGER, G. L./BRANDT, A./GEORGE, J. F./PERINI, L. L.

116
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW EXHAUST EMISSION</td>
<td>Lapides, D. E./Weitzser, J.</td>
<td>2 78</td>
</tr>
<tr>
<td>1971 EVALUATION OF HYBRID HEAT ENGINE/ELECTRIC SYSTEMS FOR LOW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXHAUST EMISSION POTENTIAL IN AUTOMOTIVE APPLICATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOW PEAK TEMPERATURES</td>
<td>Borett, J. E.</td>
<td>3 150</td>
</tr>
<tr>
<td>1972 LOW PEAK TEMPERATURES AND HYDRODYNAMIC BEARINGS - KEY TO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LONG LIFE ORGANIC RANKINE CYCLE SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOW POLLUTION</td>
<td>Lawson, L. J.</td>
<td>2 94</td>
</tr>
<tr>
<td>1973 IS THERE A FLYWHEEL IN YOUR FUTURE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOW TEMPERATURE</td>
<td>Hamstad, W. A./Chiao, T. T./Jesop, E. S.</td>
<td>6 338</td>
</tr>
<tr>
<td>1974 POLYMER-LINED FILAMENT-WOUND PRESSURE VESSELS FOR NITROGEN</td>
<td>Petzrick, P. A.</td>
<td>5 247</td>
</tr>
<tr>
<td>CONTAINMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOW TEMPERATURE THERMAL</td>
<td>Petzrick, P. A.</td>
<td>5 247</td>
</tr>
<tr>
<td>1976 ENERGY TECHNOLOGY II (NAVY APPLICATIONS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOW TEMPERATURES</td>
<td>Chiao, T. T./Hamstad, M. A./Marcon, W. A.</td>
<td>6 338</td>
</tr>
<tr>
<td>1974 ORGANIC FIBER/EPoxy PRESSURE VESSELS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOW-EMISSION VEHICLES</td>
<td>Dugger, G. L./Brandt, A./George, J. F. /Perini, L. L.</td>
<td>2 80</td>
</tr>
<tr>
<td>1971 FLYWHEEL AND FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEMS FOR LOW-EMISSION VEHICLES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW</td>
<td>Batelle Columbus Labs.</td>
<td>2 70</td>
</tr>
<tr>
<td>POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUBRICANT SYSTEMS</td>
<td>Teldix Luftfahrt-Ausruestungs G. M. B. H.</td>
<td>4 236</td>
</tr>
<tr>
<td>1974 QUALIFICATION AND LIFE TESTING OF A BALL-BEARING FLYWHEEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUBRICATED SPIRAL GROOVE</td>
<td>Bollen, J. A. C.</td>
<td>4 230</td>
</tr>
<tr>
<td>1974 FURTHER TESTING AND DESIGN IMPROVEMENT OF GREASE LUBRICATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPIRAL GROOVE BEARING MOMENTUM WHEEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUBRICATION OF BALL</td>
<td>Auer, Werner</td>
<td>4 233</td>
</tr>
<tr>
<td>1974 DESIGN AND LUBRICATION OF BALL BEARING UNIT FOR FLYWHEELS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUBRICATION OF BEARINGS</td>
<td>Odonnell, P. J./Harris, L. C./</td>
<td>1 38</td>
</tr>
<tr>
<td>1974 THE LUBRICATION OF BEARINGS AND SLIP RINGS IN VACUUM</td>
<td>Warwick, W. G.</td>
<td></td>
</tr>
<tr>
<td>LUCCHINI, A. P.</td>
<td>Lucchini, A. P.</td>
<td>5 246</td>
</tr>
<tr>
<td>1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MACHINE DESIGN</td>
<td>Machine Design</td>
<td>2 130</td>
</tr>
<tr>
<td>1975 FLYWHEELS - FLYWHEEL IN AUTO TO REPLACE GASOLINE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MACHINE PARTS
1974 SYNTHESIS OF THE BELT OF A DISCRETE BELT VARIATOR GULIA, N. V. / YUDOVSKII, I. D. 2 104

MACHINES
1963 DETERMINING INERTIA AND TIME REQUIREMENTS FOR FLYWHEEL MACHINES SPOTTIS, W. F. 1 1
1974 CYCLOCONVERTER-CONTROLLED SYNCHRONOUS MACHINES FOR LOAD COMPENSATION ON AC POWER SYSTEMS GULIA, N. V. ET AL. FINLAYSON, P. T. / WASHBURN, D. C. 2 105 3 178

MACHY (LOND)
1983 TESTING MAGNETO FLYWHEELS AT SPEEDS UP TO 20000 RPM. MACHY (LOND) 1 2

MADDEN, W. E.
1976 FLYWHEELS. A SELECTED BIBLIOGRAPHY MADDEN, W. E. 1 56

MAGNET
1973 MATERIALS EVALUATION FOR EX113 MAGNET CHIAO, T. T. / WALKUP, C. W./NEWY, H. A. 6 322

MAGNET COILS
1974 ELECTRIC POWER SYSTEMS ERDA 3 178

MAGNETIC BEARING
1975 DESIGN AND DEVELOPMENT OF A MOMENTUM WHEEL WITH A MAINLY PASSIVE MAGNETIC BEARING FINAL REPORT ESA 1 45

MAGNETIC BEARINGS
1944 MAGNETIC BEARINGS FOR AEROSPACE APPLICATIONS EDGAR, R. F. / ET AL. 4 211
1964 MAGNETIC BEARINGS HAMS, J. W. 1 4
1974 FLYWHEEL ENERGY PROPULSION AND THE ELECTRIC VEHICLE WEBER, R. / MINEKES, S. 2 100
1975 DESIGN AND DEVELOPMENT OF A MOMENTUM WHEEL WITH A MAINLY PASSIVE MAGNETIC BEARING FINAL REPORT ESA 1 45
1975 IDEAS AND EXPERIMENTS IN MAGNETIC INTERFACING AALAND, K. / LANE, J. E. 2 132

MAGNETIC FIELDS
1974 ENERGY STORAGE.(11)1.DEVELOPING ADVANCED TECHNOLOGIES ROBINSON, A.L. 3 188

MAGNETIC INTERFACING
1975 IDEAS AND EXPERIMENTS IN MAGNETIC INTERFACING AALAND, K. / LANE, J. E. 2 132

MAGNETICALLY SUSPENDED
1970 MODIFICATION OF DC MOTOR WITH MAGNETICALLY SUSPENDED ROTOR CAMBRIDGE THERMIONIC CORP., MASS. 1 11
1975 MAGNETICALLY SUSPENDED LARGE MOMENTUM WHEEL SABNIS, A. V. / DENDY, J. B. / SCHMITT, F. W. 4 239

MAGNETICALLY SUSPENDED FLYWHEELS
1981 AN ELECTRO-MECHanical ENERGY STORAGE SYSTEM FOR SPACE APPLICATION ROES, J. B. 4 210

MAGNETICALLY SUSPENDED FLYWHEEL
1975 MAGNETICALLY SUSPENDED LARGE MOMENTUM WHEEL SABNIS, A. V. / DENDY, J. B. / SCHMITT, F. W. 4 238

MAGNETISM

118
ERDA Bibliography for Flywheel Energy Storage Systems

Concordance on Title, Author, Organization and Keywords

Magneto Flywheels

1963 Test Magneto Flywheels at Speeds up to 25000 RPM.

Machy (Lond)

Magnetohydrodynamics

1963 Magnetic Bearings for Aerospace Applications

Edgar, R. F. / Et Al.

1976 Digest of Current Research in the Electric Utility Industry

EPRI

1975 Materials Requirements for Energy Generation, Conversion, and Storage

Jaffee, R. I.

Mahig, J.

1971 Minimization of Mechanism Oscillations Through Flywheel Tuning

Mahig, J.

Management

ERDA/DAT

1974 Electric Power Systems

ERDA

1975 Increased Fuel Economy in Transportation Systems by Use of Energy Management

Beachley, N. H. / Frank, A. A.

1975 Materials Requirements for Energy Generation, Conversion, and Storage

Jaffee, R. I.

Management and Budget

ERDA/DAT

Marcou, M. A.

1973 Filament-Wound Vessel from an Organic Fiber/Epoxy System

Chiao, T. T. / Marcou, M. A.

1973 Filament-Wound Vessels from an Organic Fiber/Epoxy Resin System

Chiao, T. T. / Hamstad, M. A. / Marcou, M. A. / Hanafee, Jr. / Chiao, T. T. / Hamstad, M. A. / Marcou, M. A.

1974 Organic Fiber/Epoxy Pressure Vessels

Marconi Space and Defense Systems Ltd.

1974 The Lubrication of Bearings and Slip Rings in Vacuum

O'Donnell, P. J. / Harris, L. C. / Warwick, W. C.

Marlowe, E. W.

1964 On-Board Energy Storage in Rail Rapid Transit

Marlowe, E. W.

Marshall, O. W.

1974 Independent Energy Systems for Better Efficiency

Marshall, O. W. / Morash, R. T. / Barber, R. J.

Maryland Univ., College Park (USA). Dept. of Mechanical Engineering

1973 Superflywheel

Rabenhorst, D. W.

Mass

1966 Energy Storing Mass and Method for Making

Call, R. I.

1972 Application of Kinetic Energy Propulsion to Mass Transportation

Lawson, L. J.

Lawson, L. J.

1974 Ultrahigh Temperature

1974 Kinetic Energy Storage for Mass Transportation

Weyler, George M. Jr. / Patent Application 14 Nov 1975

1975 An Improved Rotatable Mass for a Flywheel

Weyler, George M. Jr.
ERDA Bibliography for Flywheel Energy Storage Systems

Concordance on Title, Author, Organization and Keywords

Mass Transit
- **1974** Kinetic Energy Systems for Moving People
 - Baxter, J. W. / Lawson, L. J.

Mass Transportation
- **1972** Application of Kinetic Energy Propulsion to Mass Transportation
 - Lawson, L. J.
 - Lawson, L. J.
 - Armagnac, A. P.
- **1974** Kinetic Energy Storage for Mass Transportation
 - Lawson, L. J.
- **1975** New York Subway Tries Out Flywheel Energy Storage
 - Railway Gazette International

Material Constants
- **1973** Data Averaging of Anisotropic Material Constants
 - Wu, E. M. / Jerina, K. L. / Lavengood, R. E.

Material Properties
- **1976** Research Leading to the Production and Early Use of Numeric Data Banks of Material Properties and System Analyses
 - Henry, E. A.

Material Requirements
- **1971** Material Requirements for the Superflywheel
 - Rabenhorst, D. W.

Materials
- **1967** Composite Flywheel Stress Analyses and Materials Study
 - Morganthaler, G. F. / Bock, S. P.
- **1971** A General Theory of Strength for Anisotropic Materials
 - Tsai, S. W. / Wu, E. M.
- **1971** Design and Testing of High Energy Density Flywheels for Application to Flywheel Heat Engine Hybrid Vehicle Drives
 - Lawson, L. J.
- **1971** Flywheel and Flywheel Heat Engine Hybrid Propulsion Systems for Low-Emission Vehicles
 - Decker, G. L. / Brandt, A. / George, J. P. / Perini, L. L.
- **1972** Failure Modes in Impact Loaded Composite Materials
 - Toland, R. H.
- **1973** Instrumented Impact Testing of Carbon Fiber Composite Materials
 - Toland, R. H.
- **1973** Materials Evaluation for 2X18 Magnet
 - Chiao, T. T. / Walkup, C. M. / Newey, H. A.
 - Wu, E. M.
- **1974** Failure Criteria to Fracture Mode Analysis of Composite Materials
 - National Academy of Sciences
 - Rabenhorst, D. W.
 - Lippes, D. E. / Meltzer, J.
- **1974** Metals and Composites in Superflywheel Energy Storage Systems
 - Lippes, D. E. / Meltzer, J.
- **1974** Status Review of Hybrid Heat Engine Battery and Heat Engine Flywheel Vehicles
 - Sternlicht, B. / Thur, G. W.
- **1974** The Application of Three Dimensional Finite Element Analysis to the Micro-Mechanics of Fibrous Composite Materials
 - Larder, R. A.
- **1974** Acoustic Emission Uses in Research and Development of Composite Materials
 - Hamstad, M. A.
- **1975** Engineering Design Data for Composite Materials
 - Clements, L. L.
- **1975** Testing of Fiber Composite Materials
 - Chiao, T. T. / Hamstad, M. A.
- **1975** Stochastic Finite Element Simulation of the Nonlinear Structural Response of Fibrous Composite Materials
 - Larder, R. A.
- **1976** Materials Requirements for Energy Generation, Conversion, and Storage
 - Jaffee, R. I.
- **1976** Strength Retention and Life of Fiber Composite Materials
 - Chiao, T. T. / Sherry, R. J.
- **1976** Long-Term Performance of Fiber Composites
 - Chiao, C. C.
- **1976** LlL Program for Composite Materials
 - Chiao, T. T. / Stone, R. G.
- **1976** Composite Materials for Energy Storage Flywheels
 - Chiao, T. T.
- **1976** Organic Materials Division Quarterly Report
 - Lepper, J. K.
- **1976** Organic Materials Division Quarterly Report
 - Lepper, J. K.

Materials Division Quarterly
- **1976** Organic Materials Division Quarterly Report
 - Lepper, J. K.
- **1976** Organic Materials Division Quarterly Report
 - Lepper, J. K.
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Year</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIALS EVALUATION 1973 MATERIALS EVALUATION FOR ZK10 MAGNET</td>
<td>CHIAO, T. T./ WALKUP, C. M./NEWNEY, H. A.</td>
<td>6</td>
<td>322</td>
</tr>
<tr>
<td>MATERIALS FOR ENERGY 1978 COMPOSITE MATERIALS FOR ENERGY STORAGE FLYWHEELS</td>
<td>CHIAO, T. T.</td>
<td>6</td>
<td>371</td>
</tr>
<tr>
<td>MATERIALS REQUIREMENTS 1975 MATERIALS REQUIREMENTS FOR ENERGY GENERATION, CONVERSION, AND STORAGE</td>
<td>JAFFEE, R. I.</td>
<td>5</td>
<td>260</td>
</tr>
<tr>
<td>MATERIALS STUDY 1987 COMPOSITE FLYWHEEL STRESS ANALYSIS AND MATERIALS STUDY</td>
<td>MORGANTHALER, G. F./ BONK, S. P.</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>MATERIALS TESTING 1975 METALS AND COMPOSITES IN SUPERFLYWHEEL ENERGY STORAGE SYSTEMS</td>
<td>RABEHNORST, D. W.</td>
<td>6</td>
<td>43</td>
</tr>
<tr>
<td>MATHEMATICAL CHARACTERIZATION 1989 SOME UNIQUE CRACK PROPAGATION PHENOMENA IN UNIDIRECTIONAL COMPOSITES AND THEIR MATHEMATICAL CHARACTERIZATION</td>
<td>WU, E. W.</td>
<td>6</td>
<td>272</td>
</tr>
<tr>
<td>MATHEMATICAL MODELS 1975 INCREASED FUEL ECONOMY IN TRANSPORTATION SYSTEMS BY USE OF ENERGY MANAGEMENT</td>
<td>BEACHLEY, R. H./ FRANK, A. A.</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>MATHEMATICAL TECHNIQUES 1975 FINITE ELEMENT STUDY OF A CAST IRON FLYWHEEL WITH PARTICULAR EMPHASIS ON STRESS CONCENTRATIONS</td>
<td>BINDIN, P. J.</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>MATRICES 1975 PERFORMANCE OF FILAMENT-WOUND VESSELS FROM AN ORGANIC FIBER IN SEVERAL EPOXY MATRICES</td>
<td>CHIAO, T. T./ JESSOP, E. S./HAMSTAD, M. A.</td>
<td>6</td>
<td>357</td>
</tr>
<tr>
<td>MATRIX 1972 TENSILE PROPERTIES OF PRD-40 FIBER IN EPOXY MATRIX</td>
<td>CHIAO, T. T./ MOORE, R. L.</td>
<td>6</td>
<td>305</td>
</tr>
<tr>
<td>1974 TENSILE PROPERTIES OF AN ULTRA-HIGH-STRENGTH GRAPHITE FIBER IN EPOXY MATRIX</td>
<td>CHIAO, T. T./ JESSOP, E. S./HAMSTAD, M. A./ JESSOP, E. S.</td>
<td>6</td>
<td>337</td>
</tr>
<tr>
<td>1974 TENSILE PROPERTIES OF AN ULTRAHIGH-STRENGTH GRAPHITE FIBER IN EPOXY MATRIX</td>
<td>CHIAO, T. T./ JESSOP, E. S./HAMSTAD, M. A./ JESSOP, E. S.</td>
<td>6</td>
<td>344</td>
</tr>
<tr>
<td>MATTHEWS, L. E. 1964 GENERAL THEORETICAL ANALYSIS AND EVALUATION OF AN EXPERIMENTAL MODEL OF A CONSTANT-SPEED FLYWHEEL POWER SOURCE</td>
<td>MATTHEWS, L. E./ EVERETT, W. D./ BINDER, R.</td>
<td>2</td>
<td>82</td>
</tr>
<tr>
<td>MAX-PLANCK-INSTITUT 1974 NEW MOMENTUM FOR NUCLEAR FUSION IN THE MAX-PLANCK-INSTITUT IN MUNCHEN, A NEW PHASE OF PLASMA RESEARCH HAS BEGUN</td>
<td>BRUNS, K.</td>
<td>3</td>
<td>161</td>
</tr>
</tbody>
</table>
MAXWELL, R.
1974 PROBABILISTIC DESIGN OF COMPOSITE STRUCTURES

MCALLAN, J.V.
1974 STORAGE OF HIGH-GRADE ENERGY

MCAULU, J.
1970 WIND UP CAR
1971 LIFT FOR THE AUTO: ENGINE-FLYWHEEL HYBRIDS

MEASUREMENT AND CONTROL
1971 MEASUREMENT AND CONTROL OF DYNAMIC CRACKS IN COMPOSITES.

MEASUREMENT OF ANISOTROPIC
1972 OPTIMAL EXPERIMENTAL MEASUREMENT OF ANISOTROPIC FAILURE TENSORS

MEASUREMENT TECHNIQUES
1974 STRAIN MEASUREMENT TECHNIQUES FOR FIBER MODULUS DETERMINATION

MECH. ENG.
1970 SUPER FLYWHEEL

MECHANICAL AND BATTERY-STORRED
1974 MECHANICAL AND BATTERY-STORRED ENERGY SYSTEMS FOR MEETING UNINTERMITTIBLE AND BUFFERED ELECTRIC POWER NEEDS

MECHANICAL CAPACITOR
1970 MECHANICAL CAPACITOR

MECHANICAL DESIGN
1975 MECHANICAL DESIGN OF A COMPOSITE CENTERLESS FLYWHEEL

MECHANICAL ENERGY STORAGE
1970 NEW CONCEPTS IN MECHANICAL ENERGY STORAGE
1975 ENERGY-STORAGE SYSTEMS

MECHANICAL PROPERTIES
1973 FLYWHEELS
1974 METALS AND COMPOSITES IN SUPERFLYWHEEL ENERGY STORAGE SYSTEMS
1975 FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS. SECOND QUARTERLY PROGRESS REPORT.

MECHANICAL PROPERTY
1956 AN EXPERIMENT FOR DETERMINATION OF THE MECHANICAL PROPERTY IN SHEAR FOR A LINEAR ISOTROPIC VISCOELASTIC SOLID.

MECHANICAL STRUCTURES
1975 SKAGIT NUCLEAR POWER PROJECT, UNITS 1 AND 2. LICENSE APPLICATION
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

MECHANICAL TECH., INC.
1974 ALTERNATIVE PRIME MOWERS FOR FUTURE AUTOMOBILES

Sternlicht, B./Thur, G.M. 2 119

MECHANICAL TECHNOLOGY, INC.
1971 FEASIBILITY ANALYSIS OF THE TRANSMISSION FOR A FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEM

Mechanical Technology, Inc. 2 82

MECHANICAL TESTING
1971 COMPUTER AIDED MECHANICAL TESTING OF COMPOSITES

Wu, E. W./Jерина, K. J. 6 286

MECHANICAL TRANSMISSIONS
1989 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES

Marlowe, E. W. 2 61

1990 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES

Hooe, J. A./Cheaney, E. S./Creswick, F. 2 69

/Thayser, D. A./Pische, B. D.

/Timberlake, A. B./Basham, S. J.

/Herridge, J. T./Wilcox, J. P.

Batelle Columbus Lab. 2 70

1971 FEASIBILITY ANALYSIS OF THE TRANSMISSION FOR A FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEM

Mechanical Technology, Inc. 2 82

1972 HYBRID PROPULSION SYSTEM TRANSMISSION EVALUATION. PHASE I. FINAL REPORT

Cordner, W. A./Crimm, D. H. 2 86

1972 FLYWHEEL DRIVE SYSTEMS STUDY. FINAL REPORT

Lapedes, D. E./Meltzer, J. 2 118

1974 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES

Beachley, N. H./Frank, A. A. 2 128

1975 INCREASED FUEL ECONOMY IN TRANSPORTATION SYSTEMS BY USE OF ENERGY MANAGEMENT

Sugiyama, H./Hirota, T./Kakei, J.

Kabasawa, Y. 2 129

1974 HYBRID POWER SYSTEM

MECHANICAL TRANSMISSIONS VEHICLES
1974 BATTERY POWERED VEHICLE DRIVE

Deane, C. T. 2 108

MECHANICAL VIBRATIONS
1974 METHOD OF CALCULATING TORSIONAL VIBRATIONS IN A POWER UNIT WITH A NON-LINEAR SILICONE DAMPER

Shiraev, M. P./Khudozhilov, V. A. 1 29

MECHANICAL-POWERED DRIVES
1971 SUPER FLYWHEEL CONFIGURATIONS FORM HEART OF MECHANICAL-POWERED DRIVES

Chironis, N. P. 2 78

MECHANICAL-ENERGY-STORAGE
1972 HEAT-ENGINE MECHANICAL-ENERGY-STORAGE HYBRID PROPULSION SYSTEMS FOR VEHICLES. FINAL REPORT

Dugger, C. L./Brandt, A./George, J. P.

/Fierni, L. L./Rahenhorst, D. W.

/Small, T. R./Weiss, R. O. 1 18

MECHANICAL-ENERGY-STORAGE HYBRID PROPULSION
1972 HEAT-ENGINE MECHANICAL-ENERGY-STORAGE HYBRID PROPULSION SYSTEMS FOR VEHICLES. FINAL REPORT

Dugger, C. L./Brandt, A./George, J. P.

/Fierni, L. L./Rahenhorst, D. W.

/Small, T. R./Weiss, R. O. 1 18

MECHANICS
1967 APPLICATION OF FRACTURE MECHANICS TO ANISOTROPIC PLATES

Wu, E. W. 6 282

1968 FRACTURE MECHANICS OF ANISOTROPIC PLATES

Wu, E. W. 6 286

1974 GYROSCOPIC EFFECT OF FLYWHEELS IN MACHINES

Guia, N. V. ET AL 2 105

1974 ENERGY STORAGE. (1): USING ELECTRICITY MORE EFFICIENTLY

Robinson, A. L. 3 185

123
<table>
<thead>
<tr>
<th>MECHANICS TO ANISOTROPIC</th>
<th>1967 APPLICATION OF FRACTURE MECHANICS TO ANISOTROPIC PLATES</th>
<th>WU, E. W.</th>
<th>6 262</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECHANISM</td>
<td>1971 MINIMIZATION OF MECHANISM OSCILLATIONS THROUGH FLYWHEEL TUNING</td>
<td>MAHIG, J.</td>
<td>1 16</td>
</tr>
<tr>
<td>1974 A PHYSICAL MECHANISM FOR THE EARLY ACOUSTIC EMISSION IN AN ORGANIC FIBER/EPOXY PRESSURE VESSEL</td>
<td>HAMSTAD, W. A./CHIAO, T. T.</td>
<td>6 333</td>
<td></td>
</tr>
<tr>
<td>MECHANISM OSCILLATIONS</td>
<td>1971 MINIMIZATION OF MECHANISM OSCILLATIONS THROUGH FLYWHEEL TUNING</td>
<td>MAHIG, J.</td>
<td>1 16</td>
</tr>
<tr>
<td>MEDIA</td>
<td>1969 VISCOELASTIC PROPERTIES OF HETEROGENEOUS MEDIA</td>
<td>CHRISTENSEN, R. M.</td>
<td>6 274</td>
</tr>
<tr>
<td>1973 ATTENUATION OF HARMONIC WAVES IN LAYERED MEDIA</td>
<td>CHRISTENSEN, R. M.</td>
<td>6 314</td>
<td></td>
</tr>
<tr>
<td>1974 WAVE PROPAGATION IN ELASTIC MEDIA WITH A PERIODIC ARRAY OF DISCRETE INCLUSIONS</td>
<td>CHRISTENSEN, R. M.</td>
<td>6 331</td>
<td></td>
</tr>
<tr>
<td>1976 WAVE PROPAGATION IN LAYERED ELASTIC MEDIA</td>
<td>CHRISTENSEN, R. M.</td>
<td>6 370</td>
<td></td>
</tr>
<tr>
<td>MEET SOCIAL GOALS</td>
<td>1970 POWER-SYSTEMS RESEARCH SHIFTS TO MEET SOCIAL GOALS</td>
<td>CHEW, ENG.</td>
<td>3 147</td>
</tr>
<tr>
<td>1975 FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS. SECOND QUARTERLY PROGRESS REPORT</td>
<td></td>
<td>6 364</td>
<td></td>
</tr>
<tr>
<td>MELTZER, J.</td>
<td>1971 EVALUATION OF HYBRID HEAT ENGINE/ELECTRIC SYSTEMS FOR LOW EXHAUST EMISSION POTENTIAL IN AUTOMOTIVE APPLICATIONS</td>
<td>Lapedes, D. S./MELTZER, J.</td>
<td>2 76</td>
</tr>
<tr>
<td>1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS</td>
<td>Lapedes, D. S./HINTON, W. G./MELTZER, J.</td>
<td>2 114</td>
<td></td>
</tr>
<tr>
<td>Lapedes, D. S./HINTON, W. G./MELTZER, J.</td>
<td></td>
<td>2 118</td>
<td></td>
</tr>
<tr>
<td>MESSERSCHMITT-BOlkow-BlOCH GMBH</td>
<td>1973 DYNAMICS OF A SATELLITE WITH A FLYWHEEL AND FLEXIBLE SOLAR ARRAYS</td>
<td>PFEIFFER, F./POHL, A.</td>
<td>4 227</td>
</tr>
<tr>
<td>METAL SALTS</td>
<td>1974 HEAT STORAGE USING ALKALI METAL SALTS, ALKALI EARTH SALTS, IRON CHLORIDE, ZINC CHLORIDE, BORON OXIDE, AND EUTECTIC FLUORIDE MIXTURES</td>
<td>SCHROEDER, J.</td>
<td>5 242</td>
</tr>
<tr>
<td>METAL-GAS BATTERIES</td>
<td>1974 ELECTRICAL PROPULSION SYSTEMS FOR ROAD VEHICLES. STATE OF THE ART AND PRESENT-DAY PROBLEMS</td>
<td>BADER, C./PLUST, H. G.</td>
<td>2 111</td>
</tr>
<tr>
<td>METALS</td>
<td>POST, R. F./POST, S. F.</td>
<td>1 26</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>METALS</td>
<td>RABENHORST, D. W.</td>
<td>2 112</td>
<td></td>
</tr>
<tr>
<td>METALS</td>
<td>RABENHORST, D. W.</td>
<td>1 43</td>
<td></td>
</tr>
<tr>
<td>METALS</td>
<td>ELECTRIC POWER RESEARCH INST.</td>
<td>3 182</td>
<td></td>
</tr>
<tr>
<td>METALS</td>
<td>JAFFE, R. I.</td>
<td>5 250</td>
<td></td>
</tr>
<tr>
<td>METALS AND COMPOSITES</td>
<td>RABENHORST, D. W.</td>
<td>2 112</td>
<td></td>
</tr>
<tr>
<td>METALS</td>
<td>RABENHORST, D. W.</td>
<td>1 43</td>
<td></td>
</tr>
<tr>
<td>METHANE</td>
<td>HOESS, J.A./CHEANEY, E.S./CRESWICK, F.</td>
<td>2 69</td>
<td></td>
</tr>
<tr>
<td>METHANE</td>
<td>A./TRAYSER, D.A./FISCHER, R.D.</td>
<td>2 115</td>
<td></td>
</tr>
<tr>
<td>METHANE</td>
<td>TIMBERLAKE, A.B./BISHAM, S.J.</td>
<td>2 115</td>
<td></td>
</tr>
<tr>
<td>METHANE</td>
<td>HERBIDGE, J.T./WILCOX, J. P.</td>
<td>2 115</td>
<td></td>
</tr>
<tr>
<td>METHANOL</td>
<td>LAPEDES, D.E./HINTON, M.C./WELTZER, J.</td>
<td>2 119</td>
<td></td>
</tr>
<tr>
<td>METHANOL</td>
<td>IURA, T.</td>
<td>2 119</td>
<td></td>
</tr>
<tr>
<td>METHANOL</td>
<td>STERNLICH, B./THUR, G.W.</td>
<td>2 119</td>
<td></td>
</tr>
<tr>
<td>METHOD FOR FIBERS</td>
<td>CHIAO, T. T./MOORE, R. L.</td>
<td>6 277</td>
<td></td>
</tr>
<tr>
<td>METHOD OF TIME-DEPENDENT</td>
<td>CHRISTENSEN, R. W.</td>
<td>6 283</td>
<td></td>
</tr>
<tr>
<td>METHOD OF TIME-DEPENDENT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>METHOD OF TIME-DEPENDENT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>METROPOLITAN EDISON CO.</td>
<td>METROPOLITAN EDISON CO.</td>
<td>3 182</td>
<td></td>
</tr>
<tr>
<td>METROPOLITAN EDISON CO.</td>
<td>METROPOLITAN EDISON CO.</td>
<td>2 127</td>
<td></td>
</tr>
<tr>
<td>METROPOLITAN EDISON CO.</td>
<td>METROPOLITAN EDISON CO.</td>
<td>2 127</td>
<td></td>
</tr>
<tr>
<td>METROPOLITAN EDISON CO.</td>
<td>METROPOLITAN EDISON CO.</td>
<td>2 127</td>
<td></td>
</tr>
<tr>
<td>METROPOLITAN EDISON CO.</td>
<td>METROPOLITAN EDISON CO.</td>
<td>2 127</td>
<td></td>
</tr>
<tr>
<td>METROPOLITAN EDISON CO.</td>
<td>METROPOLITAN EDISON CO.</td>
<td>2 127</td>
<td></td>
</tr>
<tr>
<td>MEYER, M.D.</td>
<td>MEYER, M.D./KATAYANAGI, T. E.</td>
<td>5 360</td>
<td></td>
</tr>
<tr>
<td>MID GENERATORS</td>
<td>HOESS, J.A./CHEANEY, E.S./CRESWICK, F.</td>
<td>2 69</td>
<td></td>
</tr>
<tr>
<td>MID GENERATORS</td>
<td>A./TRAYSER, D.A./FISCHER, R.D.</td>
<td>2 115</td>
<td></td>
</tr>
<tr>
<td>MID GENERATORS</td>
<td>TIMBERLAKE, A.B./BISHAM, S.J.</td>
<td>2 115</td>
<td></td>
</tr>
<tr>
<td>MID GENERATORS</td>
<td>HERBIDGE, J.T./WILCOX, J. P.</td>
<td>2 115</td>
<td></td>
</tr>
<tr>
<td>MID GENERATORS</td>
<td>BATTELLE COLUMBUS LABS.</td>
<td>2 70</td>
<td></td>
</tr>
<tr>
<td>MID GENERATORS</td>
<td>LUCCHI, A. P.</td>
<td>5 248</td>
<td></td>
</tr>
<tr>
<td>MID GENERATORS</td>
<td>ELECTRIC POWER RESEARCH INST.</td>
<td>3 182</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Author(s)</td>
<td>Year</td>
<td>Volume</td>
</tr>
<tr>
<td>--</td>
<td>--------------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>MICRO-MECHANICS OF FIBROUS</td>
<td>LARDEK, R. A.</td>
<td>1974</td>
<td>8</td>
</tr>
<tr>
<td>THE APPLICATION OF THREE DIMENSIONAL FINITE ELEMENT ANALYSIS TO THE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICRO-MECHANICS OF FIBROUS COMPOSITE MATERIALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICROELECTRONICS</td>
<td>NOYES, C. F. /</td>
<td>1971</td>
<td>5</td>
</tr>
<tr>
<td>RESEARCH AND DEVELOPMENT PROGRAMS, QUARTERLY PROGRESS REPORT,</td>
<td>WALKER, R. E. /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 JAN.--31 MAR. 1971</td>
<td>PIRELE, J. C. /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRAEDER, R. / RUBINSTEIN, N.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINERALS</td>
<td>JAFFER, R. I.</td>
<td>1975</td>
<td>5</td>
</tr>
<tr>
<td>MATERIALS REQUIREMENTS FOR ENERGY GENERATION, CONVERSION, AND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STORAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINIMIZATION</td>
<td>MAHIG, J.</td>
<td>1971</td>
<td>1</td>
</tr>
<tr>
<td>MINIMIZATION OF MECHANISM OSCILLATIONS THROUGH FLYWHEEL TUNING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINIMUM THEOREMS</td>
<td>CHRISTENSEN, R. M.</td>
<td>1988</td>
<td>6</td>
</tr>
<tr>
<td>VARIATIONAL AND MINIMUM THEOREMS FOR THE LINEAR THEORY OF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VISCOELASTICITY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINUTEMAN</td>
<td>FUKUTOW, N. N.</td>
<td>1969</td>
<td>2</td>
</tr>
<tr>
<td>COMPARISON OF ELECTRICALLY RUN UP FLYWHEEL (DC MOTOR) WITH TURBINE,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURBINE, HOT GAS MOTOR AND OTHER SYSTEMS FOR MINUTEMAN APPLICATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MISSILE PROTECTION</td>
<td>PUGET SOUND POWER AND LIGHT CO.</td>
<td>1976</td>
<td>3</td>
</tr>
<tr>
<td>SKAGIT NUCLEAR POWER PROJECT, UNITS 1 AND 2. LICENSE APPLICATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MISSILES</td>
<td>FUKUTOW, N. N.</td>
<td>1969</td>
<td>2</td>
</tr>
<tr>
<td>COMPARISON OF ELECTRICALLY RUN UP FLYWHEEL (DC MOTOR) WITH TURBINE,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURBINE, HOT GAS MOTOR AND OTHER SYSTEMS FOR MINUTEMAN APPLICATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MITRE CORP.</td>
<td>FRAIZE, W. E. / LAY, R. K.</td>
<td>1970</td>
<td>2</td>
</tr>
<tr>
<td>SURVEY OF PROPULSION SYSTEMS FOR LOW EMISSION URBAN VEHICLES,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINAL REPORT.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIXTURES</td>
<td>SCHROEGER, J.</td>
<td>1974</td>
<td>5</td>
</tr>
<tr>
<td>HEAT STORAGE USING ALKALI METAL SALTS, ALKALI EARTH SALTS, IRON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHLORIDE, ZINC CHLORIDE, BOBON OXIDE, AND EUTECTIC FLUORIDE MIXTURES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIYAHARA, A.</td>
<td>MIYAHARA, A. / HANNAI, E. / KITANO, Y.</td>
<td>1974</td>
<td>3</td>
</tr>
<tr>
<td>COMPUTER CONTROLLED 125 MVA POWER SUPPLY FACILITY FOR NUCLEAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUSION RESEARCH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJ FLYWHEEL GENERATOR</td>
<td>NARDI, V.</td>
<td>1975</td>
<td>3</td>
</tr>
<tr>
<td>REPEETITIVE PLASMA FOCUS POWERED BY APPROX. 200 MJ FLYWHEEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENERATOR</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

126
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

ML-1 REACTOR
1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES
HOESS, J. A./CHEANEY, E. S./CRESWICK, P. / 2 69
A./TRATSER, D. A./FINCHER, R. D.
/TIMBERLAKE, A. R./BASHAM, S. J.
/HERDIE, J. T./WILCOX, J. P.
BATTLE COLU MBUS LABS. 2 70

MOBILE REACTORS
1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES
HOESS, J. A./CHEANEY, E. S./CRESWICK, P. / 2 69
A./TRATSER, D. A./FINCHER, R. D.
/TIMBERLAKE, A. B./BASHAM, S. J.
/HERDIE, J. T./WILCOX, J. P.
BATTLE COLU MBUS LABS. 2 70

MODE ANALYSIS
1974 FAILURE CRITERIA TO FRACTURE MODE ANALYSIS OF COMPOSITE MATERIALS
WU, E. M. 6 328

MODE OF CRACK
1968 DISCONTINUOUS MODE OF CRACK EXTENSION IN UNIDIRECTIONAL COMPOSITES
WU, E. M. 6 287

MODEL
1964 GENERAL THEORETICAL ANALYSIS AND EVALUATION OF AN EXPERIMENTIAL MODEL OF A CONSTANT-SPEED FLYWHEEL POWER SOURCE
MATTHEWS, L. E./EVERETT, W. D./BINDER, R. 2 62

1969 A RANDOM WALK MODEL IN RANDOM VIBRATION
TOLAND, R. H./YANG, C. Y. 6 275

1971 A RANDOM WALK MODEL FOR FIRST-PASSAGE PROBABILITY
TOLAND, R. H./YANG, C. Y. 6 289

MODEL FOR FIRST-PASSAGE
1971 A RANDOM WALK MODEL FOR FIRST-PASSAGE PROBABILITY
TOLAND, R. H./YANG, C. Y. 6 289

MODERATE-TEMPERATURE-CURABLE EPOXY
1974 A MODERATE-TEMPERATURE-CURABLE EPOXY FOR ADVANCED COMPOSITE
CHIAO, T. T./JESSOP, E. S./NEWY, H. A. 8 345

MODES IN IMPACT
1972 FAILURE MODES IN IMPACT LOADED COMPOSITE MATERIALS
TOLAND, R. H. 6 301

MODIFICATION OF D.C. MOTOR
1970 MODIFICATION OF DC MOTOR WITH MAGNETICALLY SUSPENDED ROTOR
CAMBRIDGE THERMI ONIC CORP., MASS. 1 11

MODIFICATIONS
1975 THREE MILE ISLAND NUCLEAR STATION, UNIT 2, NO INSPECTION REPORT NO. 75-01 AND CORRESPONDENCE
METROPOLITAN EDISON CO. 3 162

MODULI
1972 RESTRICTIONS UPON VISCOElastic RELAXATION FUNCTIONS AND COMPLEX MODULI
CHRISTENSEN, R. M. 6 283

1976 THE EFFECTIVE MODULI OF COMPOSITES CONTAINING RANDOMLY ORIENTED FIBERS
CHRISTENSEN, R. M. 6 369

1976 THE EFFECTIVE MODULI OF COMPOSITES CONTAINING RANDOMLY ORIENTED FIBERS
CHRISTENSEN, R. M. 6 369
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Volume</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODULUS DETERMINATION</td>
<td>MOORE, R. L. / LEPPEL, J. K.</td>
<td>6</td>
<td>325</td>
</tr>
<tr>
<td>MODULUS OF ELASTICITY</td>
<td>MOORE, R. L. / LEPPEL, J. K.</td>
<td>6</td>
<td>326</td>
</tr>
<tr>
<td>MOLLEN SALTS</td>
<td>VDI</td>
<td>3</td>
<td>180</td>
</tr>
<tr>
<td>MOMENTUM EXCHANGE ACQUISITION</td>
<td>FISCHER, W. A.</td>
<td>3</td>
<td>139</td>
</tr>
<tr>
<td>MOMENTUM FOR NUCLEAR</td>
<td>BRUNS, K.</td>
<td>3</td>
<td>181</td>
</tr>
<tr>
<td>MOMENTUM STORAGE</td>
<td>ADAMS, L. R.</td>
<td>4</td>
<td>224</td>
</tr>
<tr>
<td>MOMENTUM WHEEL</td>
<td>HAINES, J. E.</td>
<td>4</td>
<td>228</td>
</tr>
<tr>
<td>1973 CIRCUIT DESIGN REPORT FOR A MOMENTUM WHEEL MOTOR CURRENT</td>
<td>HAINES, J. E.</td>
<td>4</td>
<td>230</td>
</tr>
<tr>
<td>1974 FURTHER TESTING AND DESIGN IMPROVEMENT OF GREASE LUBRICATED</td>
<td>BOLLEN, J. A. C.</td>
<td>4</td>
<td>233</td>
</tr>
<tr>
<td>SPHERAL GROOVE BEARING MOMENTUM WHEEL</td>
<td>TODD, W. J. / WILSON, N. C.</td>
<td>4</td>
<td>234</td>
</tr>
<tr>
<td>1974 THERMAL VACUUM QUALIFICATION TESTS ON A TELDIX DOUBLE-</td>
<td>TSA</td>
<td>4</td>
<td>235</td>
</tr>
<tr>
<td>CIMBALLED MOMENTUM WHEEL</td>
<td>SANSIS, A. V. / DENDY, J. B. /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 DESIGN AND DEVELOPMENT OF A MOMENTUM WHEEL WITH A MAINLY</td>
<td>SCHMITT, F. K.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PASSIVE MAGNETIC BEARING FINAL REPORT</td>
<td>SANSIS, A. V. / DENDY, J. B.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 MAGNETICALLY SUSPENDED LARGE MOMENTUM WHEEL</td>
<td>SCHMITT, F. K.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973 CIRCUIT DESIGN REPORT FOR A MOMENTUM WHEEL MOTOR CURRENT</td>
<td>HAINES, J. E.</td>
<td>4</td>
<td>228</td>
</tr>
<tr>
<td>1975 STUDY OF DOUBLE CIMBALLED MOMENTUM WHEELS IN THE ATTITUDE AND</td>
<td>BOERSMA, G. / SONDENSEN, F. J.</td>
<td>4</td>
<td>237</td>
</tr>
<tr>
<td>ORBIT CONTROL SYSTEM OF A GROSTATIONARY COMMUNICATION</td>
<td>TORSHEAN, R.</td>
<td>1</td>
<td>149</td>
</tr>
<tr>
<td>1975 MOMENTUM WHEELS</td>
<td>TORSHEAN, R.</td>
<td>1</td>
<td>49</td>
</tr>
<tr>
<td>MONEZ, E. T.</td>
<td>CLEMENTS, L. L. / MOORE, R. L.</td>
<td>6</td>
<td>353</td>
</tr>
<tr>
<td>1975 KEVLAR/EPOXY AND KEVLAR/GRAPHITE/EPOXY COMPOSITES FOR THE C-</td>
<td>MONEZ, E. T. / CHIAO, T. T.</td>
<td>6</td>
<td>372</td>
</tr>
<tr>
<td>4 (TRIDENT) CHAMBER PROGRAM</td>
<td>PENG, L. E. / MONEZ, E. T. / CHIAO, T. T.</td>
<td>6</td>
<td>372</td>
</tr>
<tr>
<td>1976 CHARACTERIZATION OF A POLYAMIDE MATRIX FOR FIBER COMPOSITES</td>
<td>MONEZ, E. T. / CHIAO, T. T.</td>
<td>6</td>
<td>372</td>
</tr>
<tr>
<td>MOODY, R. L.</td>
<td>MOODY, R. L.</td>
<td>3</td>
<td>187</td>
</tr>
<tr>
<td>1974 NO-BREAK SETS</td>
<td>MOODY, R. L.</td>
<td>3</td>
<td>187</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Title</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore, R. L.</td>
<td>A Tensile Test Method for Fibers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore, R. L.</td>
<td>Strength-Rupture of S-Clad/Epoxide Multifilament Strands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore, R. L.</td>
<td>Strain Rate Effect on the Ultimate Tensile Stress of Fiber/Epoxide Strands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore, R. L.</td>
<td>Study of Epoxide Resins for Fiber Composites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore, R. L.</td>
<td>Strength Retention of S-Clad/Epoxide Composites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore, R. L.</td>
<td>Fabrication and Testing of Epoxy Tensile Specimens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore, R. L.</td>
<td>Strength of S-Clad Fiber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore, R. L.</td>
<td>Strength-Rupture of S-Clad/Epoxide Multifilament Strands: Time-Break Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore, R. L.</td>
<td>Strength-Rupture of Simple S-Clad/Epoxide Composites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore, R. L.</td>
<td>Tensile Properties of PM-D-49 Fiber in Epoxy Matrix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore, R. L.</td>
<td>Organic Fiber/Epoxide Composites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore, R. L.</td>
<td>Strength-Rupture Behavior of Strands of an Organic Fiber/Epoxide Matrix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore, R. L.</td>
<td>Graphite Fiber/Epoxide Composites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore, R. L.</td>
<td>Strength-Rupture Behavior of Graphite Fiber/Epoxide Strands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore, R. L.</td>
<td>Strain Measurement Techniques for Fiber Modulus Determination for Advanced Fiber Composites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore, R. L.</td>
<td>Evaluation of Interlaminar Shear Test for Fiber Composites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore, R. L.</td>
<td>Kevlar/Epoxy and Kevlar/Graphite/Epoxy Composites for the C-4 (Trident) Chamber Program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore, R. L.</td>
<td>Elongated Ring Specimen for Tensile Properties of Filament-Wound Composites</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Morash, R. T.

1974 *Independent Energy Systems for Better Efficiency*

More Efficient Peaking

1976 *Energy of Call: A More Efficient Peaking System Would Exploit the Advantages of Energy Storage, While Conserving Capital and Resources*

Morgenthaler, G. F.

1967 *Composite Flywheel Stress Analysis and Materials Study*

Morton, D. F.

1970 *Satellite Flywheel*

Motion

1975 *Active Stabilization of the Rotary Motion of a Solid Body*

Motor

1958 *Comparison of Electrically Run-Up Flywheel (DC Motor) with Turbine, Hot Gas Motor and Other Systems for Minuteman Application*

1970 *Modification of DC Motor with Magnetically Suspended Motor (Magnetic Suspension)*

1973 *Hybrid Electric Propulsion Utilizing Reconnectible Motor Windings in Wheels*

1973 *Circuit Design Report for a Momentum Wheel Motor Current Control Unit*

1973 *Application of Two-Phase DC Chopper Motor Drive*

1976 *Perro-Resonant Circuit for a New Flywheel Motor Generator*
<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>Page</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOTOR CURRENT CONTROL 1973 CIRCUIT DESIGN REPORT FOR A MOMENTUM WHEEL MOTOR CURRENT CONTROL UNIT</td>
<td>HAINES, J. E.</td>
<td>4</td>
<td>228</td>
</tr>
<tr>
<td>MOTOR DRIVE 1973 APPLICATION OF TWO-PHASE DC CHOPPER MOTOR DRIVE</td>
<td>REIMERS, E.</td>
<td>2</td>
<td>95</td>
</tr>
<tr>
<td>MOTOR GENERATOR 1976 FERRO-RESONANT CIRCUIT FOR A NEW FLYWHEEL MOTOR GENERATOR</td>
<td>AALAND, K.</td>
<td>1</td>
<td>54</td>
</tr>
<tr>
<td>MOTOR WINDINGS 1973 HYBRID ELECTRIC PROPULSION UTILIZING RECONNECTIBLE MOTOR WINDINGS IN WHEELS</td>
<td>REIMERS, E.</td>
<td>2</td>
<td>91</td>
</tr>
<tr>
<td>MOTORS 1974 KINETIC ENERGY STORAGE FOR MASS TRANSPORTATION</td>
<td>LAWSON, L. J.</td>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>MOVING PEOPLE 1974 KINETIC ENERGY SYSTEMS FOR MOVING PEOPLE</td>
<td>BAXTER, J. W. / LAWSON, L. J.</td>
<td>2</td>
<td>107</td>
</tr>
<tr>
<td>MULTIFILAMENT STRANDS 1971 STRESS-RUPTURE OF S-CLASS/EPOXY MULTIFILAMENT STRANDS</td>
<td>CHIAD, T. Y./MOORE, R. L.</td>
<td>6</td>
<td>284</td>
</tr>
<tr>
<td>MULTIRIM SUPERFLYWHEEL 1974 MULTIRIM SUPERFLYWHEEL. TECHNICAL MEMO</td>
<td>RABENHORST, D. W.</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>MURRAY, J. 1975 PROPOSED TTFR ELECTRICAL SYSTEM</td>
<td>BRONNER, G. / MURRAY, J.</td>
<td>3</td>
<td>200</td>
</tr>
<tr>
<td>MVA POWER SUPPLY 1974 COMPUTER CONTROLLED 125 MVA POWER SUPPLY FACILITY FOR NUCLEAR FUSION RESEARCH</td>
<td>MIYAHARA, A. / BANNAI, E. / KITANO, Y.</td>
<td>3</td>
<td>158</td>
</tr>
<tr>
<td>NAGHDI, P. M. 1967 LINEAR NON-ISOTHERMAL VISCOELASTIC SOLIDS</td>
<td>CHRISTENSEN, R. W. / NAGHDI, P. M.</td>
<td>6</td>
<td>264</td>
</tr>
<tr>
<td>NARDI, V. 1975 REPETITIVE PLASMA FOCUS POWERED BY A APPROX. 200 MJ FLYWHEEL GENERATOR</td>
<td>NARDI, V.</td>
<td>3</td>
<td>194</td>
</tr>
<tr>
<td>NATIONAL ACADEMY OF SCIENCES 1974 SAFETY REVIEW OF THE KINETIC ENERGY WHEEL (KEW) SYSTEM FOR BUS APPLICATION</td>
<td>NATIONAL ACADEMY OF SCIENCES</td>
<td>2</td>
<td>103</td>
</tr>
<tr>
<td>NATIONAL CENTRE OF TRILOGY 1974 THERMAL VACUUM QUALIFICATION TESTS ON A TELDIIX DOUBLE-GIMBALLED MOMENTUM WHEEL</td>
<td>TODD, W. J. / WILSON, N. G.</td>
<td>4</td>
<td>234</td>
</tr>
<tr>
<td>Source</td>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--------------------------</td>
<td>------</td>
</tr>
<tr>
<td>National City Bank</td>
<td>First National City Bank Uses Constant-Power System for Computers</td>
<td>Ortiz, J. V.</td>
<td>1970</td>
</tr>
<tr>
<td>National Measurement Lab.</td>
<td>Storage of High-Grade Energy</td>
<td>McAllan, J. V.</td>
<td>1974</td>
</tr>
<tr>
<td></td>
<td>Energy-Storage Systems</td>
<td>Iuga, T.</td>
<td>1975</td>
</tr>
<tr>
<td>Naval Ordnance Station, Forest Park, Ill.</td>
<td>Specifications for Shipboard Stored Energy Catapult Flywheel Package</td>
<td>Naval Ordnance Station, Forest Park, Ill.</td>
<td>1968</td>
</tr>
<tr>
<td>Navy Applications</td>
<td>Energy Technology 11 (Navy Applications)</td>
<td>Peterick, P.A.</td>
<td>1975</td>
</tr>
<tr>
<td>Nellis, V. C.</td>
<td>Final Design Report, Prototype Gearbox Flywheel (Flybox) for Stored Energy Rotary Drive Shipboard Catapult</td>
<td>Nellis, V. C.</td>
<td>1970</td>
</tr>
<tr>
<td>Neutron Sources</td>
<td>Repetitive Plasma Focus Powered by A Approx. 200 Mi Flywheel Generator</td>
<td>Nardi, V.</td>
<td>1975</td>
</tr>
<tr>
<td>New Flywheel Motor</td>
<td>Ferro-Resonant Circuit for a New Flywheel Motor Generator</td>
<td>Aaland, K.</td>
<td>1976</td>
</tr>
</tbody>
</table>
NEW WEAPONS
1972 TWO NEW WEAPONS AGAINST AUTOMOTIVE AIR POLLUTION: THE HYDROSTATIC DRIVE AND THE FLYWHEEL-ELECTRIC LDV.
WHITLAW, R. L.
2 90

NEW YORK
1975 NEW YORK SUBWAY TRIES OUT FLYWHEEL ENERGY STORAGE
RAILWAY GAZETTE INTERNATIONAL
2 123

NEW YORK CITY METROPOLITAN TRANSPORTATION AUTHORITY
1970 CUT SUBWAY POWER COSTS
NEW YORK CITY METROPOLITAN TRANSPORTATION AUTHORITY
2 74

NEW YORK SUBWAY
1975 NEW YORK SUBWAY TRIES OUT FLYWHEEL ENERGY STORAGE
RAILWAY GAZETTE INTERNATIONAL
2 123

NEW YORK'S LATEST
1974 FLYWHEEL BRAKES STORE NEW TRAIN'S ENERGY FOR ELECTRICITY-SAVING STARTS; NEW YORK'S LATEST SUBWAY CARS
ARMAGNAC, A. P.
2 108

NEWHEY, H.
1976 CHARACTERIZATION PROCEDURE FOR THERMOSETTING RESINS
PENK, L. S./NEWEY, H.
6 383

NEWHEY, H. A.
1975 MATERIALS EVALUATION FOR ZXIIB MAGNET
CHIAO, T. T./WALKUP, C. M./NEWEY, H. A.
6 322
1974 AN EPOXY SYSTEM FOR FILAMENT WINDING
CHIAO, T. T./JESSOP, E. S./NEWEY, H. A.
6 340
1974 A MODERATE-TEMPERATURE-CURABLE EPOXY FOR ADVANCED COMPOSITE
CHIAO, T. T./JESSOP, E. S./NEWEY, H. A./PENK, LYNN/NEWEY, H. A./CHIAO, T. T.
6 352

NEWSWEEK
1974 A FLYWHEEL IN YOUR FUTURE
NEWSWEEK
2 100

NICKEL-HYDROGEN BATTERIES
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.
2 114

NICKEL-ZINC BATTERIES
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.
2 114
1974 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES
LAPIDES, D. E./MELTZER, J.
2 118

NINTH WORLD ENERGY
1974 NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY
LUCCHINI, A. P.
5 246

NITROGEN CONTAINMENT
1974 POLYMER-LINED FILAMENT-WOUND PRESSURE VESSELS FOR NITROGEN CONTAINMENT
HAMSTAD, M. A./CHIAO, T. T./JESSOP, E. S.
6 338

NITROGEN OXIDES
1974 EMISSION CHARACTERISTICS OF A PRIME MOVER FOR HYBRID VEHICLE USE
ALLSUP, J. R./FLEMMING, R. D.
2 102
1974 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES
LAPIDES, D. E./MELTZER, J.
2 118

132
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Year</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NITROGEN OXIDES (CONTD.)</td>
<td>Sternlicht, B./Thur, G.W.</td>
<td>1974</td>
<td>2 119</td>
</tr>
<tr>
<td>1975 FOSSIL FUEL AND ADVANCED SYSTEMS DIVISION. RESEARCH PROGRESS</td>
<td>Electric Power Research Inst.</td>
<td>1975</td>
<td>3 102</td>
</tr>
<tr>
<td>REPORT FF-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMS FLYWHEEL OPTIMISATION</td>
<td>STANDING, J. M.</td>
<td>1974</td>
<td>1 34</td>
</tr>
<tr>
<td>1974 A 1000 NMS FLYWHEEL OPTIMISATION STUDY</td>
<td>STANDING, J. M.</td>
<td>1974</td>
<td>1 35</td>
</tr>
<tr>
<td>1974 A 150 NMS FLYWHEEL OPTIMISATION STUDY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO-BREAK SET</td>
<td>LAWSON, L. J.</td>
<td>1973</td>
<td>3 155</td>
</tr>
<tr>
<td>1973 NEW UNINTERRUPTIBLE POWER SYSTEM ALTERNATIVES USING HIGH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPACITY KINETIC ENERGY WHEELS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO-BREAK SET</td>
<td>MOODY, R. L.</td>
<td>1974</td>
<td>3 187</td>
</tr>
<tr>
<td>1974 NO-BREAK SET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOISE</td>
<td>RABENHORST, D. W.</td>
<td>1971</td>
<td>2 81</td>
</tr>
<tr>
<td>1974 POTENTIAL APPLICATIONS FOR THE SUPERFLYWHEEL</td>
<td>LAWSON, L. J.</td>
<td>1974</td>
<td>2 120</td>
</tr>
<tr>
<td>1976 KINETIC ENERGY STORAGE FOR MASS TRANSPORTATION</td>
<td>AMERICAN NUCLEAR SOCIETY, HINSDALE,</td>
<td>1976</td>
<td>5 252</td>
</tr>
<tr>
<td>ILL.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOISE DURING RUPTURE</td>
<td>HAMSTAD, M. A./CHIANG, T. T.</td>
<td>1973</td>
<td>6 320</td>
</tr>
<tr>
<td>1973 ACOUSTIC EMISSION PRODUCED DURING BURST TESTS OF FILAMENT-WOUND</td>
<td></td>
<td>1974</td>
<td>6 333</td>
</tr>
<tr>
<td>BOTTLES</td>
<td>HAMSTAD, M. A./CHIANG, T. T.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 A PHYSICAL MECHANISM FOR THE EARLY ACOUSTIC EMISSION IN AN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORGANIC FIBER/EPoxy PRESSURE VESSEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NON-ISOTHERMAL VISCOELASTIC SOLIDS</td>
<td>CHRISTENSEN, R. W./NAGHDI, F. M.</td>
<td>1967</td>
<td>6 284</td>
</tr>
<tr>
<td>1968 LINEAR NON-ISOTHERMAL VISCOELASTIC SOLIDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NON-LINEAR SILICONE DAMPER</td>
<td>SHIRAЕV, W. F./KHUDOZHILOV, V. A.</td>
<td>1974</td>
<td>1 20</td>
</tr>
<tr>
<td>1974 METHOD OF CALCULATING TORSIONAL VIBRATIONS IN A POWER UNIT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WITH A NON-LINEAR SILICONE DAMPER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NON-STATIONARY RANDOM VIBRATION</td>
<td>TOLAND, R. H./YANG, C. Y./HSU, C.</td>
<td>1972</td>
<td>6 303</td>
</tr>
<tr>
<td>1972 NON-STATIONARY RANDOM VIBRATION OF NONLINEAR STRUCTURES</td>
<td></td>
<td></td>
<td>S.</td>
</tr>
<tr>
<td>NONDESTRUCTIVE TESTING</td>
<td>NATIONAL ACADEMY OF SCIENCES</td>
<td>1974</td>
<td>2 103</td>
</tr>
<tr>
<td>1974 SAFETY REVIEW OF THE KINETIC ENERGY WHEEL (KEW) SYSTEM FOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUS APPLICATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NONLINEAR CONSTITUTIVE EQUATIONS</td>
<td>CHRISTENSEN, R. W./VAN ES, H. E.</td>
<td>1973</td>
<td>6 318</td>
</tr>
<tr>
<td>1973 A CRITICAL TEST FOR A CLASS OF NONLINEAR CONSTITUTIVE EQUATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NONLINEAR PROBLEMS</td>
<td>SHIRAЕV, W. F./KHUDOZHILOV, V. A.</td>
<td>1974</td>
<td>1 29</td>
</tr>
<tr>
<td>1974 METHOD OF CALCULATING TORSIONAL VIBRATIONS IN A POWER UNIT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WITH A NON-LINEAR SILICONE DAMPER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NONLINEAR STRUCTURAL RESPONSE</td>
<td>LARDER, R. A.</td>
<td>1975</td>
<td>6 349</td>
</tr>
<tr>
<td>1975 STOCHASTIC FINITE ELEMENT SIMULATION OF THE NONLINEAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRUCTURAL RESPONSE OF FIBROUS COMPOSITE MATERIALS.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NUCLEAR POWER PLANTS
1974 STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS. FIFTEEN PAPERS---
SURVEY OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE
SYSTEMS
1974 ENERGY CRISIS
1975 STORING ELECTRICAL ENERGY ON A LARGE SCALE

NUCLEAR POWER PROJECT
1975 SNAGIT NUCLEAR POWER PROJECT. UNITS 1 AND 2. LICENSE
APPLICATION

NUCLEAR REGULATORY COMM.
1975 REACTOR COOLANT PUMP FLYWHEEL INTEGRITY

NUCLEAR REGULATORY COMMISSION, OFFICE OF STANDARDS DEVELOPMENT
1975 REACTOR COOLANT PUMP FLYWHEEL INTEGRITY

NUCLEAR STATION
1975 THREE MILE ISLAND NUCLEAR STATION, UNIT 2. RO INSPECTION
REPORT NO. 75-01 AND CORRESPONDENCE
1975 THREE MILE ISLAND NUCLEAR STATION, UNIT 2. LICENSE APPLICATION, FSAR AMENDMENT 27

NUMERIC DATA BANKS
1976 RESEARCH LEADING TO THE PRODUCTION AND EARLY USE OF NUMERIC
DATA BANKS OF MATERIAL PROPERTIES AND SYSTEM ANALYSES

OBSERVATIONS
1973 THE EFFECT OF STRESS ON DIFFUSION IN COMPOSITES -
EXPERIMENTAL OBSERVATIONS.

OBTAINING SOLUTIONS
1968 ON OBTAINING SOLUTIONS IN NONLINEAR VISCOELASTICITY.

OCEAN POWER.
1975 ENERGY TECHNOLOGY II (Navy Applications)

OCEAN THERMAL ENERGY CONVERSION
1975 SUPERFLYWHEEL FOR STORING ENERGY FROM OTEC PLANTS

ODDINNELL, P. J.
1974 THE LUBRICATION OF BEARINGS AND SLIP RINGS IN VACUUM

OFF-AXIS TEST
1968 OFF-AXIS TEST OF A COMPOSITE

OFF-PEAK ELECTRICITY
1975 KINETIC ENERGY STORAGE OF OFF-PEAK ELECTRICITY

OFF-PEAK ENERGY
1974 CAN FLYWHEELS REPLACE PUMPED STORAGE?
1975 ENERGY STORAGE

ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

VOL 3160
BECCU, K. D.
GARDNER, G. C. / HAST, A. B. / MOFFITT, R. D. / WRIGHT, J.

3180
PUGET SOUND POWER AND LIGHT CO.

3190
NUCLEAR REGULATORY COMM.

3195
NUCLEAR REGULATORY COMM.

3182
METROPOLITAN EDISON CO.

3127
METROPOLITAN EDISON CO.

HENRY, E. A.

RUMMANN, D. C. / WU, E. W.

CHRISTENSEN, R. W.

PETZICK, P. A.

RABENHORST, D. W. / DUGGER, C. L.

GOODWELL, P. J. / HARRIS, L. C. / WARWICK, M. C.

WU, E. W. / THOMAS, R. L.

SIMPSON, L. A. / OLDAKER, I. E. / STEINSCHEG, J.

GINSBURG, T.

KALHAMMER, F. R. / COOPER, V. R.

135
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF-PeAK ENERGY STORAGE</td>
<td></td>
</tr>
<tr>
<td>1974 STORAGe SYSTEMS FOR ENERGY PEAKING DEMANDS. FIFTEEN PAPERS—</td>
<td></td>
</tr>
<tr>
<td>SURVEY OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE SYSTEMS</td>
<td>3 160</td>
</tr>
<tr>
<td>1974 STORAGE OF HIGH-GRADe ENERGY</td>
<td></td>
</tr>
<tr>
<td>1974 ASSESSMENT OF ADVANCED CONCEPTS IN ENERGY STORAGE AND THEIR</td>
<td>5 245</td>
</tr>
<tr>
<td>APPLICATION ON ELECTRIC ULLITY SYSTEM</td>
<td></td>
</tr>
<tr>
<td>1975 STORING ELECTRICAL ENERGY ON A LARGE SCALE</td>
<td></td>
</tr>
<tr>
<td>1975 SUPERFLYWHHEEL FOR STORING ENERGY FROM OTEC PLANTS</td>
<td>3 170</td>
</tr>
<tr>
<td>1975 KINETIC ENERGY STORAGE OF OFF-PEAK ELECTRICITY</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OFF-PeAK POWER</td>
<td></td>
</tr>
<tr>
<td>1976 ENERGY STORAGE</td>
<td>5 251</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OFF-PeAK STORAGE</td>
<td></td>
</tr>
<tr>
<td>1975 UTILITIES FOR LARGE-SCALE ENERGY STORAGE</td>
<td></td>
</tr>
<tr>
<td>1976 ENERGY ON CALL: A MORE EFFICIENT PEAKING SYSTEM WOULD</td>
<td></td>
</tr>
<tr>
<td>EXPLOIT THE ADVANTAGES OF ENERGY STORAGE, WHILE CONSERVING CAPITAL</td>
<td>3 184</td>
</tr>
<tr>
<td>AND RESOURCES</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OFFICE ON MANAGEMENT</td>
<td></td>
</tr>
<tr>
<td>1974 GOVERNMENT-WIDE REPORT TO OFFICE ON MANAGEMENT AND BUDGET ON</td>
<td>5 244</td>
</tr>
<tr>
<td>ENERGY STORAGE R AND D PROGRAM STRATEGIES AND IMPLEMENTATION PLANS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OIL CONSUMPTION</td>
<td></td>
</tr>
<tr>
<td>1974 ENERGY, VOLUME, DEMANDS, RESOURCES, IMPACT, TECHNOLOGY, AND</td>
<td></td>
</tr>
<tr>
<td>POLICY</td>
<td>5 243</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OIL SHALE</td>
<td></td>
</tr>
<tr>
<td>1975 MATERIALS REQUIREMENTS FOR ENERGY GENERATION, CONVERSION, AND</td>
<td></td>
</tr>
<tr>
<td>STORAGE</td>
<td>5 250</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OLDAXER, I. E.</td>
<td></td>
</tr>
<tr>
<td>1975 KINETIC ENERGY STORAGE OF OFF-PEAK ELECTRICITY</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CON-BOARD ENERGY STORAGE</td>
<td></td>
</tr>
<tr>
<td>1984 ON-BOARD ENERGY STORAGE IN RAIL RAPID TRANSIT</td>
<td>2 61</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OPERATING LARGE EXCAVATORS</td>
<td></td>
</tr>
<tr>
<td>1971 OPERATING LARGE EXCAVATORS ON SMALL POWER SYSTEMS</td>
<td>3 148</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OPERATION</td>
<td></td>
</tr>
<tr>
<td>1974 HYBRID DRIVE WITH FLYWHEEL COMPONENT FOR ECONOMIC AND DYNAMIC</td>
<td></td>
</tr>
<tr>
<td>OPERATION</td>
<td>2 110</td>
</tr>
<tr>
<td>1975 STORING ELECTRICAL ENERGY ON A LARGE SCALE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OPTIMAL EXPERIMENTAL MEASUREMENT</td>
<td></td>
</tr>
<tr>
<td>1972 OPTIMAL EXPERIMENTAL MEASUREMENT OF ANISOTROPIC FAILURE</td>
<td></td>
</tr>
<tr>
<td>TENSORS</td>
<td>5 297</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OPTIMAL SHAPES</td>
<td></td>
</tr>
<tr>
<td>1975 ON OPTIMAL SHAPES FOR ANISOTROPIC ROTATING DISKS.</td>
<td>1 47</td>
</tr>
</tbody>
</table>
OPTIMISATION STUDY
1974 A 1000 NMS FLFWHEEL OPTIMISATION STUDY
STANDING, J. W.
1 34
1974 A 150 NMS FLFWHEEL OPTIMISATION STUDY
STANDING, J. W.
1 35

OPTIMIZATION
1972 HYBRID PROPULSION SYSTEM TRANSMISSION EVALUATION, PHASE I.
FIND REPORT
CORDNER, W. A./GRIMM, D. H.
2 86

ORBIT CONTROL SYSTEM
1975 STUDY OF DOUBLE CUBICHEMOMOMENTUM WHEELS IN THE ATTITUDE
AND ORBIT CONTROL SYSTEM OF A GEOSTATIONARY COMMUNICATION
SATELLITE.
BOEREMA, G./SONNENSCHEIN, F. J.
4 237

ORGANIC FIBER
1974 ACOUSTIC EMISSION FROM STRESS-RUPTURE AND FATIGUE OF AN
STRESS-FIBER COMPOSITE
HAMSTAD, W. A./CHIAO, T. T.
6 334
1975 CHEMICAL CHARACTERIZATION OF A HIGH-PERFORMANCE ORGANIC FIBER
T.
PENN, LYNNE/NEWEY, H. A./CHIAO, T. T.
6 352
1975 PERFORMANCE OF FILAMENT-WOUND VESSELS FROM AN ORGANIC FIBER
IN SEVERAL EPOXY MATRICES
CHIAO, T. T./JESSOP, E. S./HAMSTAD, M. A.
6 357
1976 AN ACCELERATED TEST FOR PREDICTING THE LIFETIME OF ORGANIC
FIBER COMPOSITES
CHIAO, C. C.
6 376

ORGANIC FIBER COMPOSITE
1974 ACOUSTIC EMISSION FROM STRESS-RUPTURE AND FATIGUE OF AN
ORGANIC FIBER COMPOSITE
HAMSTAD, W. A./CHIAO, T. T.
6 334

ORGANIC FIBER COMPOSITES
1976 AN ACCELERATED TEST FOR PREDICTING THE LIFETIME OF ORGANIC
FIBER COMPOSITES
CHIAO, C. C.
8 376

ORGANIC FIBER/EPOXY COMPOSITES
1973 ORGANIC FIBER/EPOXY COMPOSITES
CHIAO, T. T./MOORE, R. L.
6 316

ORGANIC FIBER/EPOXY
1973 FILAMENT-WOUND VESSEL FROM AN ORGANIC FIBER/EPOXY SYSTEM
HAMSTAD, W. A./CHIAO, T. T./MARCON, M. A.
6 317
1973 STRESS-RUPTURE BEHAVIOR OF STRANDS OF AN ORGANIC FIBER/EPOXY
MATRIX
CHIAO, T. T./WELLS, J. E./MOORE, R. L./HAMSTAD, M. A.
6 318
1973 FILAMENT-WOUND VESSELS FROM AN ORGANIC FIBER/EPOXY RESIN
SYSTEM
CHIAO, T. T./HAMSTAD, M. A./MARCON, M. A./HANAFEE, JR.
6 323
1974 A PHYSICAL MECHANISM FOR THE EARLY ACOUSTIC EMISSION IN AN
ORGANIC FIBER/EPOXY PRESSURE VESSEL
CHIAO, T. T./HAMSTAD, W. A./CHIAO, T. T.
6 333
1974 ORGANIC FIBER/EPOXY PRESSURE VESSELS
HAMSTAD, W. A./CHIAO, T. T.
6 354
1975 FATIGUE LIFE OF ORGANIC FIBER/EPOXY PRESSURE VESSELS
HAMSTAD, W. A./CHIAO, T. T.
6 354

ORGANIC FIBER/EPOXY SYSTEM
1973 FILAMENT-WOUND VESSEL FROM AN ORGANIC FIBER/EPOXY SYSTEM
CHIAO, T. T./MARCON, M. A.
6 317

ORGANIC FIBER/EPOXY MATRIX
1973 STRESS-RUPTURE BEHAVIOR OF STRANDS OF AN ORGANIC FIBER/EPOXY
MATRIX
CHIAO, T. T./WELLS, J. E./MOORE, R. L./HAMSTAD, M. A.
6 318

ORGANIC FIBER/EPOXY RESIN
1973 FILAMENT-WOUND VESSELS FROM AN ORGANIC FIBER/EPOXY RESIN
SYSTEM
CHIAO, T. T./HAMSTAD, W. A./MARCON, M. A./HANAFEE, JR.
6 323
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

<table>
<thead>
<tr>
<th>ORGANIC MATERIALS DIVISION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976 ORGANIC MATERIALS DIVISION QUARTERLY REPORT</td>
</tr>
<tr>
<td>1976 ORGANIC MATERIALS DIVISION QUARTERLY REPORT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORGANIC RANKINE CYCLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972 LOW PEAK TEMPERATURES AND HYDRODYNAMIC BEARINGS - KEY TO LONG LIFE ORGANIC RANKINE CYCLE SYSTEMS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORIENTED FIBRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972 EFFECTIVE STIFFNESS OF RANDOMLY ORIENTED FIBRE COMPOSITES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORIENTED FIBRE COMPOSITES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972 EFFECTIVE STIFFNESS OF RANDOMLY ORIENTED FIBRE COMPOSITES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORTHOTROPIC PLATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971 FRACTURE CRITERIA FOR ORTHOTROPIC PLATE UNDER COMPRESSION AND SHEAR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORTHOTROPIC PLATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965 A FRACTURE CRITERION FOR ORTHOTROPIC PLATES UNDER THE INFLUENCE OF COMPRESSION AND SHEAR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORTIZ, J. V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970 FIRST NATIONAL CITY BANK USES CONSTANT-POWER SYSTEM FOR COMPUTERS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OSCILLATION MODES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974 METHOD OF CALCULATING TORSIONAL VIBRATIONS IN A POWER UNIT WITH A NON-LINEAR SILICONE DAMPER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OSCILLATIONS THROUGH FLYWHEEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971 MINIMIZATION OF MECHANISM OSCILLATIONS THROUGH FLYWHEEL TUNING</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OTEC PLANTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975 SUPERFLYWHEEL FOR STORING ENERGY FROM OTEC PLANTS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAGANO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1969 CHARACTERIZATION OF ANISOTROPIC COMPOSITES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAPERS—SURVEY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974 STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS, FIFTEEN PAPERS—SURVEY OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE SYSTEMS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART-TIME FLYWHEEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973 HYBRID CAR: PART-TIME ENGINE + PART-TIME FLYWHEEL = FULL TIME TRANSPORTATION</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PASSIVE MAGNETIC BEARING</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975 DESIGN AND DEVELOPMENT OF A MOMENTUM WHEEL WITH A MAINLY PASSIVE MAGNETIC BEARING FINAL REPORT</td>
</tr>
</tbody>
</table>

138
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Year</th>
<th>DOI</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEAK ENERGY DEMANDS</td>
<td>EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS</td>
<td>1967</td>
<td>HELSLEY, C. W./CALL, B. J.</td>
<td>4 216</td>
</tr>
<tr>
<td>PEAK LOAD MANAGEMENT</td>
<td>ENERGY STORAGE</td>
<td>1975</td>
<td>KALHAMMER, F. R./COOPER, V. R.</td>
<td>3 161</td>
</tr>
<tr>
<td>PEAK POWER SUPPLIES</td>
<td>ENERGY CRISIS</td>
<td>1974</td>
<td>BECCU, K. D.</td>
<td>3 164</td>
</tr>
<tr>
<td>PEAK TEMPERATURES</td>
<td>LOW PEAK TEMPERATURES AND HYDRODYNAMIC BEARINGS - KEY TO LONG LIFE ORGANIC ROLLING CYCLE SYSTEMS</td>
<td>1972</td>
<td>BORETZ, J. E.</td>
<td>3 150</td>
</tr>
<tr>
<td>PEAKING DEMANDS</td>
<td>STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS, FIFTEEN PAPERS-- SURVEY OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE SYSTEMS</td>
<td>1974</td>
<td>VDI</td>
<td>3 160</td>
</tr>
<tr>
<td>PELLY, B. R.</td>
<td>AC/DC POWER CONDITIONING AND CONTROL EQUIPMENT FOR ADVANCED CONVERSION AND STORAGE TECHNOLOGY.</td>
<td>1975</td>
<td>WOOD, F. /PELLY, B. R.</td>
<td>3 185</td>
</tr>
<tr>
<td>PENN, L. S.</td>
<td>SCREENING OF EPOXY SYSTEMS FOR HIGH-PERFORMANCE FILAMENT WINDING APPLICATIONS</td>
<td>1975</td>
<td>CHIAO, T. T./JESSOP, E. S./PENN, L. S.</td>
<td>6 355</td>
</tr>
<tr>
<td>PENN, L. S.</td>
<td>A LONG LIFE EPOXY SYSTEM FOR FILAMENT WINDING</td>
<td>1975</td>
<td>PENN, L. S./CHIAO, T. T.</td>
<td>6 358</td>
</tr>
<tr>
<td>PENN, L. S.</td>
<td>FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS. SECOND QUARTERLY PROGRESS REPORT.</td>
<td>1975</td>
<td>PENN, L. S./CHIAO, T. T.</td>
<td>6 372</td>
</tr>
<tr>
<td>PENNER, S. S.</td>
<td>ENERGY STORAGE SYSTEMS</td>
<td>1975</td>
<td>PENNER, S. S./ICERMAN, L.</td>
<td>5 248</td>
</tr>
<tr>
<td>PEOPLE</td>
<td>1974 KINETIC ENERGY SYSTEMS FOR MOVING PEOPLE</td>
<td>BAXTER, J. W. / LAWSON, L. J.</td>
<td>2 107</td>
<td></td>
</tr>
<tr>
<td>PERFORMANCE</td>
<td>1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES</td>
<td>BATTISTE COLUMBUS LABS.</td>
<td>2 70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1971 POTENTIAL APPLICATIONS FOR THE SUPERFLYHEEL</td>
<td>RABENHORST, D. W.</td>
<td>2 81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1971 FEASIBILITY ANALYSIS OF THE TRANSMISSION FOR A FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEM</td>
<td>MECHANICAL TECHNOLOGY, INC.</td>
<td>2 82</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1972 HYBRID PROPULSION SYSTEM TRANSMISSION EVALUATION, PHASE I. FINAL REPORT</td>
<td>CORDNER, W. A. / GRIFF, D. M.</td>
<td>2 86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1973 ENERGY STORAGE VIA FLYWHEELS</td>
<td>GILMAN, J. J. / HUCKE, E. E.</td>
<td>3 154</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1974 TENSILE PROPERTIES OF AN ULTRA-HIGH-STRENGTH GRAPHITE FIBER AN EPOXY MATRIX</td>
<td>CHIAO, T. T. / HAMSTAD, W. A. / JESSOP, E. S.</td>
<td>6 337</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1974 MULTIRUN SUPERFLYHEEL TECHNICAL Memo</td>
<td>RABENHORST, D. W.</td>
<td>1 33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1974 ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES</td>
<td>STEINLICHT, B. / THUR, G. M.</td>
<td>2 119</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1975 HIGH PERFORMANCE VESSELS FROM AN AROMATIC POLYAMIDE FIBER/EPOXY COMPOSITE</td>
<td>CHIAO, T. T. / HAMSTAD, W. A.</td>
<td>6 351</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1975 PERFORMANCE OF FILAMENT-WOUND VESSELS FROM AN ORGANIC FIBER IN SEVERAL EPOXY MATRICES</td>
<td>CHIAO, T. T. / JESSOP, E. S. / HAMSTAD, W. A. / NARDI, V.</td>
<td>3 194</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1975 REPEATED PLASMA FOCUS POWERED BY A APPROX. 200 MJ FLYWHEEL GENERATOR</td>
<td>CHIAO, C. C.</td>
<td>6 366</td>
<td></td>
</tr>
</tbody>
</table>

| PERFORMANCE OF FIBER | 1975 LONG-TERM PERFORMANCE OF FIBER COMPOSITES | CHIAO, C. C. | 6 366 |

| PERFORMANCE OF FILAMENT-WOUND | 1975 PERFORMANCE OF FILAMENT-WOUND VESSELS FROM AN ORGANIC FIBER IN SEVERAL EPOXY MATRICES | CHIAO, T. T. / JESSOP, E. S. / HAMSTAD, W. A. | 6 357 |

PERFORMANCE TESTING	1971 FLYWHEEL FEASIBILITY STUDY AND DEMONSTRATION. FINAL REPORT	GILBERT, R. R. / HARVEY, J. R. / HEUER, G. E. / LAWSON, L. J.	2 77
	1971 DESIGN AND TESTING OF HIGH ENERGY DENSITY FLYWHEELS FOR APPLICATION TO FLYWHEEL HEAT ENGINE HYBRID VEHICLE DRIVES	LAWSON, L. J.	2 79
	1974 HYBRID AUTOMOTIVE ENGINE WITH KINETIC ENERGY STORAGE	SCHRECK, R. / TORRES, F.	2 117
	1974 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES	LAFEDES, D. E. / WELTZER, J.	2 118
	1976 HYBRID DRIVE WITH KINETIC ENERGY STORE AS VEHICLE DRIVE	SCHRECK, R. / TORRES, F.	2 133

<p>| PERIODIC ARRAY | 1974 WAVE PROPAGATION IN ELASTIC MEDIA WITH A PERIODIC ARRAY OF DISCRETE INCLUSIONS | CHRISTENSEN, R. M. | 6 331 |
| PERKINS ENGINES LTD. | 1976 FINITE ELEMENT STUDY OF A CAST IRON FLYWHEEL WITH PARTICULAR EMPHASIS ON STRESS CONCENTRATIONS | BINDIN, P.J. | 1 40 |
| PERSONNEL | 1975 MATERIALS REQUIREMENTS FOR ENERGY GENERATION, CONVERSION, AND STORAGE | JAEFFER, R.I. | 5 250 |
| PERTURBATIONS | 1968 FLYWHEEL STABILIZATION OF A RIGID BODY SUBJECTED TO CONSTANTLY APPLIED PERTURBATIONS | DERGACHEVA, E. I. | 3 140 |
| PETROLEUM | 1974 GOVERNMENT-WIDE REPORT TO OFFICE ON MANAGEMENT AND BUDGET ON ENERGY STORAGE A AND D PROGRAM STRATEGIES AND IMPLEMENTATION PLANS | ERDA/DAT | 5 244 |
| | 1974 ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES | STERNLICH, B. / THURG, G.M. | 2 119 |
| | 1975 ENERGY-STORAGE SYSTEMS | PENNER, S. S. / ICERMAN, L. | 5 246 |
| PETZICK, P.A. | 1975 ENERGY TECHNOLOGY II (NAVY APPLICATIONS) | PETZICK, P.A. | 5 247 |
| PETZLITZ, G. F. | 1975 AN EVALUATION OF THE FUTURE ROLE OF STORAGE TECHNIQUES IN ELECTRIC POWER TECHNOLOGY | PETZLITZ, G. F. | 3 199 |
| PFEIFFER, F. | 1973 DYNAMICS OF A SATELLITE WITH A FLYWHEEL AND FLEXIBLE SOLAR ARRAYS | PFEIFFER, F. / POHL, A. | 4 227 |
| PHENOMENOLOGICAL ANISOTROPIC FAILURE | 1974 PHENOMENOLOGICAL ANISOTROPIC FAILURE CRITERION | WU, E. M. | 6 326 |
| PHILIPS GLOEILAMPENFABRIKEN N. V. | 1972 QUALIFICATION TESTS ON REACTION FLYWHEELS SUPPORTED ON GREASE-LUBRICATED BEARINGS | BOS, J. G. G. | 4 225 |
| PHYSICAL MECHANISM | 1974 A PHYSICAL MECHANISM FOR THE EARLY ACOUSTIC EMISSION IN AN ORGANIC FIBER/EPoxy PRESSURE VESSEL | HAMSTAD, M. A. / CHIAO, T. T. | 6 333 |
| PIPE | 1987 THE TEMPERATURE EFFECT OF INTERNAL AND EXTERNAL PRESSURE OF TWO ANGLE WOUND PIPE | CHIAO, T. T. | 6 285 |</p>
<table>
<thead>
<tr>
<th>PIPELINES</th>
<th>1975 GRADIT NUCLEAR POWER PROJECT, UNITS 1 AND 2, LICENSE APPLICATION</th>
<th>PUGET SOUND POWER AND LIGHT CO.</th>
<th>3 180</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAN FOR SUPERFLYWHEEL</td>
<td>1974 TECHNICAL PROGRAM PLAN FOR SUPERFLYWHEEL DEVELOPMENT</td>
<td>RABENHORST, D. W.</td>
<td>1 27</td>
</tr>
<tr>
<td>PLANNING</td>
<td>1974 INDEPENDENT ENERGY SYSTEMS FOR BETTER EFFICIENCY</td>
<td>MARSHALL, O. W. / MORGAN, R. T. / BARBER, R. J.</td>
<td>3 159</td>
</tr>
<tr>
<td>1974 ELECTRIC POWER SYSTEMS</td>
<td></td>
<td>ERDA</td>
<td>3 179</td>
</tr>
<tr>
<td>1975 STORAGE OF ELECTRICAL ENERGY ON A LARGE SCALE</td>
<td>GARDNER, G. C. / HART, A. B. / MOFFITT, R. D. / WRIGHT, J.</td>
<td>3 186</td>
<td></td>
</tr>
<tr>
<td>PLANS</td>
<td>1974 GOVERNMENT-WIDE REPORT TO OFFICE ON MANAGEMENT AND BUDGET ON ENERGY STORAGE R AND D PROGRAM STRATEGIES AND IMPLEMENTATION PLANS</td>
<td>ERDA /DAT</td>
<td>5 244</td>
</tr>
<tr>
<td>PLANT</td>
<td>1975 POWER PLANT</td>
<td>ARIGA, H.</td>
<td>3 197</td>
</tr>
<tr>
<td>PLANTS</td>
<td>1975 SUPERFLYWHEEL FOR STORING ENERGY FROM OTEC PLANTS</td>
<td>RABENHORST, D. W. / DUGGER, G. L.</td>
<td>3 188</td>
</tr>
<tr>
<td>PLASMA FOCUS DEVICES</td>
<td>1975 REACTIVE PLASMA FOCUS POWERED BY A APPROX. 200 MJ FLYWHEEL GENERATOR.</td>
<td>NARDI, V.</td>
<td>3 194</td>
</tr>
<tr>
<td>PLASMA RESEARCH</td>
<td>1974 NEW MOMENTUM FOR NUCLEAR FUSION IN THE MAX-PLANCK-INSTITUT IN MUNCHEN, A NEW PHASE OF PLASMA RESEARCH HAS BEGUN</td>
<td>BRUSS, K.</td>
<td>3 161</td>
</tr>
<tr>
<td>PLASTICS</td>
<td>1966 CRACK EXTENSION IN FIBERGLASS-REINFORCED PLASTICS</td>
<td>WU, E. W. / REUTER, R. C.</td>
<td>6 259</td>
</tr>
<tr>
<td>1971 FRACTURE TOUGHNESS IN UNIDIRECTIONAL GLASS-REINFORCED PLASTICS</td>
<td>SANFORD, R. J. / STONESIFER, F. R.</td>
<td>6 287</td>
<td></td>
</tr>
<tr>
<td>PLATE</td>
<td>1963 VIBRATION OF A 45-DEG. RIGHT TRIANGLE CANTILEVER PLATE BY A GRIDWORK METHOD.</td>
<td>CHRISTENSEN, R. M.</td>
<td>6 255</td>
</tr>
<tr>
<td>1971 FRACTURE CRITERIA FOR ORTHOTROPIC PLATE UNDER COMPRESSION AND SHEAR</td>
<td>WU, E. W.</td>
<td>6 281</td>
<td></td>
</tr>
<tr>
<td>PLATE UNDER COMPRESSION</td>
<td>1971 FRACTURE CRITERIA FOR ORTHOTROPIC PLATE UNDER COMPRESSION AND SHEAR</td>
<td>WU, E. W.</td>
<td>6 281</td>
</tr>
</tbody>
</table>

142
<table>
<thead>
<tr>
<th>PLATES</th>
<th>Author(s)</th>
<th>Page</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1966 A FRACTURE CRITERION FOR ORTHOTROPIC PLATES UNDER</td>
<td>WU, E. W.</td>
<td>6 288</td>
<td>1966</td>
</tr>
<tr>
<td>THE INFLUENCE OF COMPRESSION AND SHEAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1967 APPLICATION OF FRACTURE MECHANICS TO ANISOTROPIC</td>
<td>WU, E. W.</td>
<td>6 282</td>
<td>1967</td>
</tr>
<tr>
<td>PLATES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1968 FRACTURE MECHANICS OF ANISOTROPIC PLATES</td>
<td>WU, E. W.</td>
<td>6 286</td>
<td>1968</td>
</tr>
<tr>
<td>PLUST, H. G.</td>
<td>BADER, C. /PLUST, H. G.</td>
<td>2 111</td>
<td></td>
</tr>
<tr>
<td>1974 ELECTRICAL PROPULSION SYSTEMS FOR ROAD VEHICLES.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THE STATE OF THE ART AND PRESENT-DAY PROBLEMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POHL, A.</td>
<td>PFEIFFER, F. /POHL, A.</td>
<td>4 227</td>
<td></td>
</tr>
<tr>
<td>1973 DYNAMICS OF A SATELLITE WITH A FLYWHEEL AND FLEXIBLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOLAR ARRAYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLICY</td>
<td>PENNER, S. S. /ICERMAN, L.</td>
<td>5 243</td>
<td></td>
</tr>
<tr>
<td>1974 ENERGY, VOLUME 1, DEMANDS, RESOURCES, IMPACT,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TECHNOLOGY, AND POLICY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLLUTION</td>
<td>WHITLAW, R. L.</td>
<td>2 90</td>
<td></td>
</tr>
<tr>
<td>1972 TWO NEW WEAPONS AGAINST AUTOMOTIVE AIR POLLUTION:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THE HYDROSTATIC DRIVE AND THE FLYWHEEL-ELECTRIC LDV.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 AUTOMOBILE AIR POLLUTION, PART 4, NEW AUTOMOTIVE</td>
<td>LEHMANN, E. J.</td>
<td>2 124</td>
<td></td>
</tr>
<tr>
<td>ENGINES (A BIBLIOGRAPHY WITH ABSTRACTS). PERIOD COVERED:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLYAMIDE FIBER/ EPOXY</td>
<td>CHIAO, T. T. /HAMSTAD, W. A.</td>
<td>6 251</td>
<td></td>
</tr>
<tr>
<td>1976 HIGH PERFORMANCE VESSELS FROM AN AROMATIC POLYAMIDE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIBER/ EPOXY COMPOSITE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLYAMIDE FIBERS</td>
<td>LARSEN, F. N.</td>
<td>6 377</td>
<td></td>
</tr>
<tr>
<td>1976 CHEMISTRY AND TECHNOLOGY OF HIGH STRENGTH POLYAMIDE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIBERS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLYAMIDE MATRIX</td>
<td>PENN, L. S. /MONES, E. T. /CHIAO, T. T.</td>
<td>6 372</td>
<td></td>
</tr>
<tr>
<td>1976 CHARACTERIZATION OF A POLYAMIDE MATRIX FOR FIBER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPOSITES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLYIMIDES</td>
<td>LORENSEN, L. E.</td>
<td>6 341</td>
<td></td>
</tr>
<tr>
<td>1974 POLYIMIDES FOR FIBER COMPOSITES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLYMER-LINED FILAMENT-WOUND</td>
<td>HAMSTAD, W. A. / CHIAO, T. T. /JESSOP, E. S.</td>
<td>6 338</td>
<td></td>
</tr>
<tr>
<td>1974 POLYMER-LINED FILAMENT-WOUND PRESSURE VESSELS FOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NITROGEN CONTAINMENT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLYMERS</td>
<td>WU, E. W. /HALPIN, J. C.</td>
<td>6 290</td>
<td></td>
</tr>
<tr>
<td>1972 KINETIC FAILURE PROCESSES OF POLYMERS</td>
<td>CHIAO, C. C.</td>
<td>6 356</td>
<td></td>
</tr>
<tr>
<td>1975 LONG-TERM PERFORMANCE OF FIBER COMPOSITES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOLDS</td>
<td>VDI</td>
<td>3 180</td>
<td></td>
</tr>
<tr>
<td>1974 STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIFTEEN PAPERS-- SURVEY OF PRESENT AND PROSPECTIVE HEAT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AND ENERGY STORAGE SYSTEMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PORTABLE ELECTRICITY</td>
<td>PRODUCT ENGINEERING</td>
<td>2 72</td>
<td></td>
</tr>
<tr>
<td>1970 HIGH-SPEED ENERGY WHEEL OFFERS TROLLEYS PORTABLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTRICITY</td>
<td>POST, R. F. /POST, S. F.</td>
<td>2 88</td>
<td></td>
</tr>
<tr>
<td>1970 INERTIAL ENERGY STORAGE APPARATUS AND SYSTEM FOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTILIZING THE SAME</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

POST, R. F. (CONT'D.)
1973 FLYWHEELS
1974 ENERGY CONSERVATION FACTORS FOR A HIGH-EFFICIENCY ELECTRIC-DRIVE AUTOMOBILE

POST, S. F.
1972 INERTIAL ENERGY STORAGE APPARATUS AND SYSTEM FOR UTILIZING THE SAME
1973 INERTIAL ENERGY STORAGE APPARATUS
1973 FLYWHEELS

POT LIFE EPOXY
1975 A LONG POT LIFE EPOXY SYSTEM FOR FILAMENT WINDING

POTENTIAL APPLICATIONS
1971 POTENTIAL APPLICATIONS FOR THE SUPERFLYWHEEL

POTENTIAL FOR LARGE-SCALE
1974 POTENTIAL FOR LARGE-SCALE ENERGY STORAGE IN ELECTRIC UTILITY SYSTEMS

POTENTIAL IN AUTOMOTIVE
1971 EVALUATION OF HYBRID HEAT ENGINE/ELECTRIC SYSTEMS FOR LOW EXHAUST EMISSION POTENTIAL IN AUTOMOTIVE APPLICATIONS

POUBEAU, P.
1970 A NEW TECHNICAL IDEA ON FLYWHEELS (NOUVELLE CONCEPTION TECHNIQUE DES VOLANTS D'INERTIE)

POWER
1984 GENERAL THEORETICAL ANALYSIS AND EVALUATION OF AN EXPERIMENTAL MODEL OF A CONSTANT-SPEED FLYWHEEL POWER SOURCE
1986 CAPTURED LOAD RESILIENCE OF A HYDRAULIC VIBRATOR SAVES POWER
1990 EMERGENCY PUMP SYSTEMS AREBOOTSTRAPS TO POWER
1990 WEIGHT IS SAVED WHEN FLYWHEEL ENERGY STORAGE UNIT SUPPLMENTS AIRCRAFT SECONDARY POWER SYSTEMS
1990 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES
1990 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES
1970 FLYWHEEL GENERATORS FOR INSTANT POWER
1970 SUPER FLYWHEEL TO POWER ZERO-EMISSION CAR
1970 CUT SUBWAY POWER COSTS
1971 OPERATING LARGE EXCAVATORS ON SMALL POWER SYSTEMS
1971 DESIGN AND TESTING OF HIGH ENERGY DENSITY FLYWHEELS FOR APPLICATION TO FLYWHEEL HEAT ENGINE HYBRID VEHICLE DRIVES
1971 HYDRAULIC TRANSMISSION COUPLED STANDBY POWER UNIT
1972 SUMMARY OF GAS HEATING APPLICATIONS IN THE FIELD OF SPACE ELECTRIC POWER SYSTEMS
1973 ELECTRIC VEHICLE HYBRID POWER TRAIN
1973 NEW UNINTERRUPTIBLE POWER SYSTEM ALTERNATIVES USING HIGH CAPACITY KINETIC ENERGY WHEELS
1973 INVESTIGATION OF THE HOMOPOLAR MOTOR-GENERATOR AS A POWER SUPPLY FOR CONTROLLED FUSION EXPERIMENTS
1974 METHODS OF CALCULATING TORSIONAL VIBRATIONS IN A POWER UNIT WITH A NON-LINEAR SILICONE DAMPER
1974 COMPUTER CONTROLLED 125 KVA POWER SUPPLY FACILITY FOR NUCLEAR FUSION RESEARCH
1974 MECHANICAL AND BATTERY-STORED ENERGY SYSTEMS FOR WRESTING UNINTERRUPTIBLE AND BUFFERED ELECTRIC POWER NEEDS

POST, R. F./POST, S. F. 1 25
POST, R. F. 2 101
POST, R. F./POST, S. F. 2 88
POST, S. F. 2 96
POST, R. F./POST, S. F. 1 25
PENN, L. S./CHIAO, T. T. 6 356
RABENHORST, D. W. 2 81
KALBAMMER, F. / ZYGIELBAUM, P. S. 3 177
LAFEBER, D. E./WELTZER, J. 2 78
POUBEAU, P. 4 220
MATTHEWS, L. E./EVERETT, W. D. 2 92
BINDER, R. 1 9
LANCASTER, J. A. 3 141
PRODUCT ENG. 4 217
HELSLET, C. W. 2 89
ASHWORTH, R. H. 3 145
ARMACRAG, A. P. 2 73
NEW YORK CITY METROPOLITAN TRANSPORTATION AUTHORITY 2 74
KILDOON, L. A./WASHBURN, D. C. 3 148
LAWSON, L. J. 2 70
DYNAMICS CORP. 3 149
DUNN, J. H./NEAM, L. W. 4 223
KUGLER, G. C. 2 82
LAWSON, L. J. 3 155
RYLANDER, R. C./ROWBERG, R. E./TOLK, K. M. /WILDCAN, W. F./WOODSON, H. R. 3 156
SHIRAVI, A. W./KHODZHENILOV, V. A. 3 20
MIYABARA, A./BANNAI, E./KITANO, Y. 3 158
COMEAN, G. E. 3 182

144
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>ENERGY STORAGE FOR THE ELECTRIC POWER INDUSTRY</td>
<td>KELLER, W.E.</td>
<td>3 188</td>
</tr>
<tr>
<td>1974</td>
<td>CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.</td>
<td>AEROSPACE CORP.</td>
<td>2 113</td>
</tr>
<tr>
<td>1974</td>
<td>WIND POWER CONVERSION SYSTEM</td>
<td>TROLL, J. H.</td>
<td>3 170</td>
</tr>
<tr>
<td>1974</td>
<td>ENERGY STORAGE AND ITS ROLE IN ELECTRIC POWER SYSTEMS</td>
<td>HAYDOCK, J. L.</td>
<td>3 172</td>
</tr>
<tr>
<td>1974</td>
<td>CYCLOCONVERTER-CONTROLLED SYNCHRONOUS MACHINES FOR LOAD COMPENSATION ON AC POWER SYSTEMS</td>
<td>FINLAYSON, P. T. / WASHBURN, D. C.</td>
<td>3 178</td>
</tr>
<tr>
<td>1974</td>
<td>ELECTRIC POWER SYSTEMS</td>
<td>ERDA</td>
<td>3 179</td>
</tr>
<tr>
<td>1975</td>
<td>SKAGIT NUCLEAR POWER PROJECT, UNITS 1 AND 2. LICENSE APPLICATION</td>
<td>PUGET SOUND POWER AND LIGHT CO.</td>
<td>3 180</td>
</tr>
<tr>
<td>1975</td>
<td>ANALYSIS OF MONOPOLAR GENERATORS AND SUPERCONDUCTING INDUCTIVE ENERGY STORAGE SYSTEMS AS POWER SUPPLIES FOR HIGH-ENERGY SPACE-BASED LASERS</td>
<td>GILBERT, J. S. / KERN, E. A.</td>
<td>3 183</td>
</tr>
<tr>
<td>1975</td>
<td>VEHICLE POWER SYSTEM FOR LIMITED VEHICLE MOVEMENT WITHOUT USE OF FUEL</td>
<td>STROHLEIN, J. N.</td>
<td>2 128</td>
</tr>
<tr>
<td>1975</td>
<td>WIND POWER</td>
<td>HERONEMUS, W. E.</td>
<td>5 249</td>
</tr>
<tr>
<td>1975</td>
<td>HYBRID POWER SYSTEM</td>
<td>SUGIYAMA, H. / HIROTA, T. / KAKEI, J. / KASAHARA, Y.</td>
<td>2 129</td>
</tr>
<tr>
<td>1975</td>
<td>AC/DC POWER CONDITIONING AND CONTROL EQUIPMENT FOR ADVANCED CONVERSION AND STORAGE TECHNOLOGY.</td>
<td>WOOD, F. / PELLY, B. R.</td>
<td>3 195</td>
</tr>
<tr>
<td>1975</td>
<td>POWER PLANT</td>
<td>ARTIGA, R.</td>
<td>3 197</td>
</tr>
<tr>
<td>1975</td>
<td>EVALUATION OF THE FUTURE ROLE OF STORAGE TECHNIQUES IN ELECTRIC POWER TECHNOLOGY</td>
<td>FEEDTITS, G. F.</td>
<td>3 199</td>
</tr>
<tr>
<td>1975</td>
<td>FLYWHEELS - POWER ON THE FLY</td>
<td>MECH. ENG.</td>
<td>3 202</td>
</tr>
<tr>
<td>1975</td>
<td>ENERGY STORAGE - FEASIBILITY STUDY OF AN EXPERIMENT INVOLVING SOLAR ENERGY COLLECTION, ITS STORAGE BY A SUPER FLYWHEEL, AND ELECTRIC POWER GENERATION.</td>
<td>TARFY, B.</td>
<td>3 204</td>
</tr>
<tr>
<td>1975</td>
<td>BATTERY-FLYWHEEL HYBRID ELECTRIC POWER SYSTEM FOR NEAR-TERM APPLICATION, VOL. 1, SYSTEM DESCRIPTION.</td>
<td>DAVIS, D. D.</td>
<td>2 134</td>
</tr>
<tr>
<td>1975</td>
<td>BATTERY-FLYWHEEL HYBRID ELECTRIC POWER SYSTEM FOR NEAR-TERM APPLICATION, VOL. 2, SYSTEM DESIGN.</td>
<td>DAVIS, D. D.</td>
<td>2 135</td>
</tr>
</tbody>
</table>

POWER CONVERSION SYSTEM

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>WIND POWER CONVERSION SYSTEM</td>
<td>TROLL, J. H.</td>
<td>3 170</td>
</tr>
</tbody>
</table>

POWER COSTS

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>CUT SUBWAY POWER COSTS</td>
<td>NEW YORK CITY METROPOLITAN TRANSPORTATION AUTHORITY</td>
<td>2 74</td>
</tr>
</tbody>
</table>

POWER DEMAND

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>CYCLOCONVERTER-CONTROLLED SYNCHRONOUS MACHINES FOR LOAD COMPENSATION ON AC POWER SYSTEMS</td>
<td>FINLAYSON, P. T. / WASHBURN, D. C.</td>
<td>3 178</td>
</tr>
</tbody>
</table>

POWER DISTRIBUTION

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
</table>

POWER FAILURE

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>FIRST NATIONAL CITY BANK USES CONSTANT-POWER SYSTEM FOR COMPUTERS</td>
<td>ORTIZ, J. V.</td>
<td>3 144</td>
</tr>
</tbody>
</table>

POWER GENERATION

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>WIND POWER CONVERSION SYSTEM</td>
<td>TROLL, J. H.</td>
<td>3 170</td>
</tr>
<tr>
<td>1975</td>
<td>SKAGIT NUCLEAR POWER PROJECT, UNITS 1 AND 2. LICENSE APPLICATION</td>
<td>PUGET SOUND POWER AND LIGHT CO.</td>
<td>3 180</td>
</tr>
</tbody>
</table>

145
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

POWER GENERATION (CONT.)
1976 ENERGY STORAGE - FEASIBILITY STUDY OF AN EXPERIMENT INVOLVING SOLAR ENERGY COLLECTION, ITS STORAGE BY A SUPERFLYWHEEL, AND ELECTRIC POWER GENERATION
TATTBY, B. 3 264

POWER GRIDS
REESE, J. J. 3 207

POWER INDUSTRY
1976 ENERGY STORAGE FOR THE ELECTRIC POWER INDUSTRY
KELLER, W. E. 3 165

POWER NEEDS
1976 MECHANICAL AND BATTERY-STORED ENERGY SYSTEMS FOR MEETING UNINTERMITTENT AND BUFFERED ELECTRIC POWER NEEDS
COMEAU, G. E. 3 162

POWER PLANT
1975 POWER PLANT
ARICA, R. 3 187

POWER PLANTS
1974 INDEPENDENT ENERGY SYSTEMS FOR BETTER EFFICIENCY
MARSHALL, O. W. / MURASH, R. T. / BARBER, R. J. 3 159

1974 GOVERNMENT-WIDE REPORT TO OFFICE ON MANAGEMENT AND BUDGET ON ENERGY STORAGE B AND C PROGRAM STRATEGIES AND IMPLEMENTATION PLANS
ERDA/DAT 5 244

1974 ENERGY STORAGE FOR THE ELECTRIC POWER INDUSTRY
KELLER, W. E. 3 165

1974 ASSESSMENT OF ADVANCED CONCEPTS IN ENERGY STORAGE AND THEIR APPLICATION ON ELECTRIC UTILITY SYSTEMS
FERNANDES, R. A. / GILDEBSLEVE, O. D. / SCHNEIDER, T. R. 3 176

POWER PROJECT
1975 SKAGIT NUCLEAR POWER PROJECT, UNITS 1 AND 2, LICENSE APPLICATION
PUGET SOUND POWER AND LIGHT CO. 3 180

POWER REACTORS
1975 REACTOR COOLANT PUMP FLYWHEEL INTEGRITY
NUCLEAR REGULATORY COMM. 3 198

POWER SOURCE
1964 GENERAL THEORETICAL ANALYSIS AND EVALUATION OF AN EXPERIMENTAL MODEL OF A CONSTANT-SPEED FLYWHEEL POWER SOURCE
MATTHEWS, L. E. / EVERETT, W. D. / BINDER, R. 2 62

POWER SOURCES
1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES

1989 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES
BATTALLE COLUMBUS LABS. 2 70

POWER SUPPLIES
1970 FIRST NATIONAL CITY BANK USES CONSTANT-POWER SYSTEM FOR COMPUTERS
ORTIZ, J. V. 3 144

1971 POTENTIAL APPLICATIONS FOR THE SUPERFLYWHEEL

1974 COMPUTER CONTROLLED 125 WPA POWER SUPPLY FACILITY FOR NUCLEAR FUSION RESEARCH
MIYAHARA, A. / BANAI, E. / KITANG, Y. / GILBERT, J. S. / KERN, E. A. 3 158

1975 ANALYSIS OF HOMOPOLAR GENERATORS AND SUPERCONDUCTING INDUCTIVE ENERGY STORAGE SYSTEMS AS POWER SUPPLIES FOR HIGH-ENERGY SPACE-BASED LADDERS
BONNER, G. / MURRAY, J. 3 183

1975 PROPOSED TTPR ELECTRICAL SYSTEM
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
<th>Institution</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>A GREASE-LUBRICATED HYDRODYNAMIC BEARING SYSTEM FOR A SATELLITE FLYWHEEL</td>
<td>REINHOUDT, J. P.</td>
<td></td>
<td>4 218</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/WOODSON, H.H.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>COMPUTER CONTROLLED 120 MVA POWER SUPPLY FACILITY FOR NUCLEAR FUSION RESEARCH</td>
<td>MIYAMOTO, A. / BANNAI, E. / KITANO, Y.</td>
<td></td>
<td>3 156</td>
</tr>
<tr>
<td>1974</td>
<td>THERMAL VACUUM QUALIFICATION TESTS ON A TELDIX DOUBLE-GIMBALED MOMENTUM WHEEL</td>
<td>TODD, W. J. / WILSON, N. G.</td>
<td></td>
<td>4 234</td>
</tr>
<tr>
<td>1975</td>
<td>DESIGN AND TESTING OF AN ENERGY FLYWHEEL FOR AN INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS)</td>
<td>NOOTT, J. E. / CORMACK, A.</td>
<td></td>
<td>4 240</td>
</tr>
<tr>
<td>1971</td>
<td>HYDRAULIC TRANSMISSION COUPLED STANDBY POWER UNIT</td>
<td>DYNAMICS CORP.</td>
<td></td>
<td>3 149</td>
</tr>
<tr>
<td>1973</td>
<td>NEW UNINTERRUPTIBLE POWER SYSTEM ALTERNATIVES USING HIGH CAPACITY KINETIC ENERGY WHEELS</td>
<td>LAWSON, L. J.</td>
<td></td>
<td>3 155</td>
</tr>
<tr>
<td>1975</td>
<td>VEHICLE POWER SYSTEM FOR LIMITED VEHICLE MOVEMENT WITHOUT USE OF FUEL</td>
<td>STRONLEIN, J. W.</td>
<td></td>
<td>2 126</td>
</tr>
<tr>
<td>1975</td>
<td>HYBRID POWER SYSTEM</td>
<td>SUGIYAMA, H. / HIROTA, T. / KAKEI, J. / KABASAMA, Y.</td>
<td></td>
<td>2 129</td>
</tr>
<tr>
<td>1976</td>
<td>BATTERY-FLYWHEEL HYBRID ELECTRIC POWER SYSTEM FOR NEAR-TERM APPLICATION, VOL. 1, SYSTEM DESCRIPTION.</td>
<td>DAVIS, D. D.</td>
<td></td>
<td>2 134</td>
</tr>
<tr>
<td>1976</td>
<td>BATTERY-FLYWHEEL HYBRID ELECTRIC POWER SYSTEM FOR NEAR-TERM APPLICATION, VOL. 2, SYSTEM DESIGN.</td>
<td>DAVIS, D. D.</td>
<td></td>
<td>2 135</td>
</tr>
<tr>
<td>1973</td>
<td>NEW UNINTERRUPTIBLE POWER SYSTEM ALTERNATIVES USING HIGH CAPACITY KINETIC ENERGY WHEELS</td>
<td>LAWSON, L. J.</td>
<td></td>
<td>3 155</td>
</tr>
<tr>
<td>1969</td>
<td>WEIGHT IS SAVED WHEN FLYWHEEL ENERGY STORAGE UNIT SUPPLIES AIRCRAFT SECONDARY POWER SYSTEMS.</td>
<td>HELSLEY, C. W.</td>
<td></td>
<td>4 217</td>
</tr>
<tr>
<td>1971</td>
<td>OPERATING LARGE EXCAVATORS ON SMALL POWER SYSTEMS</td>
<td>KILDOORE, L. A. / WASHBURN, D. C.</td>
<td></td>
<td>3 148</td>
</tr>
<tr>
<td>1972</td>
<td>SUMMARY OF GAS BEARING APPLICATIONS IN THE FIELD OF SPACE ELECTRIC POWER SYSTEMS</td>
<td>DUNN, J. H. / BANL, L. W.</td>
<td></td>
<td>4 223</td>
</tr>
<tr>
<td>1974</td>
<td>CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS</td>
<td>AEROSPACE CORP.</td>
<td></td>
<td>2 113</td>
</tr>
<tr>
<td>1974</td>
<td>ENERGY STORAGE AND ITS ROLE IN ELECTRIC POWER SYSTEMS</td>
<td>HAYDOCK, J. L.</td>
<td></td>
<td>3 172</td>
</tr>
<tr>
<td>1974</td>
<td>CYCLOCONVERTER-CONTROLLED SYNCHRONOUS MACHINES FOR LOAD COMPENSATION ON AC POWER SYSTEMS</td>
<td>FINLAYSON, P. T. / WASHBURN, D. C.</td>
<td></td>
<td>3 178</td>
</tr>
<tr>
<td>1974</td>
<td>ELECTRIC POWER SYSTEMS</td>
<td>ERDA</td>
<td></td>
<td>3 179</td>
</tr>
<tr>
<td>1975</td>
<td>AN EVALUATION OF THE FUTURE ROLE OF STORAGE TECHNIQUES IN ELECTRIC POWER TECHNOLOGY</td>
<td>FEZDIKIRTS, G. F.</td>
<td></td>
<td>3 199</td>
</tr>
<tr>
<td>1973</td>
<td>ELECTRIC VEHICLE HYBRID POWER TRAIN</td>
<td>KUGLER, G. C.</td>
<td></td>
<td>2 92</td>
</tr>
<tr>
<td>1969</td>
<td>STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POWER SOURCES FOR URBAN VEHICLES</td>
<td>BATTLE AL COLUMBUS LABS.</td>
<td></td>
<td>2 70</td>
</tr>
<tr>
<td>1974</td>
<td>GOVERNMENT-WIDE REPORT TO OFFICE ON MANAGEMENT AND BUDGET ON ENERGY STORAGE R AND D PROGRAM STRATEGIES AND IMPLEMENTATION PLANS</td>
<td>ERDA/DAT</td>
<td></td>
<td>5 244</td>
</tr>
<tr>
<td>1974</td>
<td>ELECTRIC POWER SYSTEMS</td>
<td>ERDA</td>
<td></td>
<td>3 179</td>
</tr>
<tr>
<td>1974</td>
<td>DIGEST OF CURRENT RESEARCH IN THE ELECTRIC UTILITY INDUSTRY</td>
<td>ERP1</td>
<td></td>
<td>3 167</td>
</tr>
</tbody>
</table>

147
<table>
<thead>
<tr>
<th>Topic</th>
<th>Author(s)</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER TRANSMISSION (CONT'D.)</td>
<td>Bronner, G. / Murray, J.</td>
<td></td>
<td>3 200</td>
</tr>
<tr>
<td>POWER TRANSMISSION LINES</td>
<td>ERDA</td>
<td></td>
<td>3 179</td>
</tr>
<tr>
<td>POWER UNIT</td>
<td>Dynamics Corp.</td>
<td></td>
<td>3 149</td>
</tr>
<tr>
<td>1974 ELECTRIC POWER SYSTEM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971 HYDRAULIC TRANSMISSION COUPLED STANDBY POWER UNIT</td>
<td>Shiraev, M. P. / Khudzenilov, V. A.</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>1974 METHOD OF CALCULATING TORSIONAL VIBRATIONS IN A POWER UNIT WITH A NON-LINEAR SILICONE DAMPER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWER-SYSTEMS RESEARCH</td>
<td>Chem. Eng.</td>
<td></td>
<td>3 147</td>
</tr>
<tr>
<td>POWER/SYSTEMS RESEARCH SHIFTS TO MEET SOCIAL GOALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWER/ATTITUDE CONTROL SYSTEM</td>
<td>Notti, J. E. / Cornack, A. / Schwill, W. C.</td>
<td>4</td>
<td>231</td>
</tr>
<tr>
<td>1974 INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS) STUDY. VOLUME I: FEASIBILITY STUDIES</td>
<td></td>
<td></td>
<td>4 232</td>
</tr>
<tr>
<td>1974 INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS) STUDY. VOLUME II: CONCEPTUAL DESIGNS</td>
<td></td>
<td></td>
<td>4 240</td>
</tr>
<tr>
<td>1975 DESIGN AND TESTING OF AN ENERGY FLYWHEEL FOR AN INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWERED</td>
<td>Chironis, N. P.</td>
<td></td>
<td>2 76</td>
</tr>
<tr>
<td>1971 SUPER FLYWHEEL CONFIGURATIONS FORM HEART OF MECHANICAL-POWERED DRIVES</td>
<td>Deane, C. T. / Hardy, V.</td>
<td>2 106</td>
<td></td>
</tr>
<tr>
<td>1974 BATTERY POWERED VEHICLE DRIVE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 REPETITIVE PLASMA FOCUS POWERED BY A APPROX. 200 MJ FLYWHEEL GENERATOR.</td>
<td></td>
<td></td>
<td>3 194</td>
</tr>
<tr>
<td>POWERED VEHICLE DRIVE</td>
<td>Deane, C. T.</td>
<td></td>
<td>2 106</td>
</tr>
<tr>
<td>1974 BATTERY POWERED VEHICLE DRIVE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRACTICAL FLYWHEEL ENGINE</td>
<td>I. Busw</td>
<td></td>
<td>2 136</td>
</tr>
<tr>
<td>PRATT AND WHITNEY AIRCRAFT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969 FEASIBILITY OF FLYWHEEL HIGH-ENERGY STORAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRO-49 FIBER</td>
<td>Chiao, T. T. / Moore, R. L.</td>
<td></td>
<td>6 305</td>
</tr>
<tr>
<td>1972 TENSILE PROPERTIES OF PRO-49 FIBER IN EPOXY MATRIX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRO-49-111 EPOXY COMPOSITE</td>
<td>Chiao, T. T. / Wells, J. E. / Moore, R. L. / Hamstorp, W. A.</td>
<td>6</td>
<td>318</td>
</tr>
<tr>
<td>1973 STRESS-RUPTURE BEHAVIOR OF STRANDS OF AN ORGANIC FIBER/EPOXY MATRIX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PREDICTING THE LIFETIME</td>
<td>Chiao, C. C.</td>
<td></td>
<td>6 276</td>
</tr>
<tr>
<td>1978 AN ACCELERATED TEST FOR PREDICTING THE LIFETIME OF ORGANIC FIBER COMPOSITES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PREDICTION</td>
<td>Christensen, R. W. / Gottenberg, W. C.</td>
<td>6</td>
<td>250</td>
</tr>
<tr>
<td>1965 PREDICTION OF THE TRANSIENT RESPONSE OF A LINEAR VISCOELASTIC SOLID.</td>
<td>Fraser, A. F. / Preissweck, P. R. / Benton, M. D. / Burggraf, O. H.</td>
<td>6</td>
<td>278</td>
</tr>
<tr>
<td>PREISSWEK, P. R.</td>
<td></td>
<td></td>
<td>6 278</td>
</tr>
<tr>
<td>1970 AXISYMMETRIC FILAMENTARY STRUCTURES</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ERDA Bibliography for Flywheel Energy Storage Systems

Concordance on Title, Author, Organization and Keywords

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
<th>Keywords</th>
</tr>
</thead>
</table>

Pressure

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1967</td>
<td>The Temperature Effect of Internal and External Pressure of Two Angle Wound Pipe</td>
<td>Chiao, T. T.</td>
</tr>
<tr>
<td>1972</td>
<td>Acoustic Emission from Filament-Wound Pressure Bottles</td>
<td>Hamstad, W. A.</td>
</tr>
<tr>
<td>1972</td>
<td>Acoustic Emission from Filament-Wound Pressure Bottles</td>
<td>Hamstad, W. A.</td>
</tr>
<tr>
<td>1974</td>
<td>Polymer-Lined Filament-Wound Pressure Vessels for Nitrogen Containment</td>
<td>Chiao, T. T. / Hamstad, W. A. / Marcon, W. A.</td>
</tr>
<tr>
<td>1975</td>
<td>Fatigue Life of Organic Fiber/Epoxy Pressure Vessels</td>
<td>Hamstad, W. A. / Chiao, T. T. / Jessop, E. S.</td>
</tr>
<tr>
<td>1975</td>
<td>Holographic Examination of a Composite Pressure Vessel</td>
<td>Meyer, W. D. / Katayanagi, T. E.</td>
</tr>
</tbody>
</table>

Pressure Bottles

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972</td>
<td>Acoustic Emission from Filament-Wound Pressure Bottles</td>
<td>Hamstad, W. A.</td>
</tr>
<tr>
<td>1972</td>
<td>Acoustic Emission from Filament-Wound Pressure Bottles</td>
<td>Hamstad, W. A.</td>
</tr>
</tbody>
</table>

Pressure Vessel

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>Holographic Examination of a Composite Pressure Vessel</td>
<td>Meyer, W. D. / Katayanagi, T. E.</td>
</tr>
</tbody>
</table>

Pressure Vessels

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>Organic Fiber/Epoxy Pressure Vessels</td>
<td>Chiao, T. T. / Hamstad, W. A. / Marcon, W. A.</td>
</tr>
<tr>
<td>1975</td>
<td>SKAGIT Nuclear Power Project, Units 1 and 2: License Application</td>
<td>Puget Sound Power and Light Co.</td>
</tr>
<tr>
<td>1975</td>
<td>Fatigue Life of Organic Fiber/Epoxy Pressure Vessels</td>
<td>Hamstad, W. A. / Chiao, T. T. / Patterson, R. G.</td>
</tr>
</tbody>
</table>

Pressurization

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965</td>
<td>Response to Pressurization of a Viscoelastic Cylinder with an Eroding Internal Boundary</td>
<td>Christensen, R. W. / Schreiner, R. W.</td>
</tr>
</tbody>
</table>

Prevent

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972</td>
<td>Dispositif de Protection Contre les Consequences de La Rupture d'un Volant D'inertie. (A Protective Device to Prevent the Consequences of a Flywheel Rupture)</td>
<td>Bonnet-Thirion, C.J. / Hobida, L. / Foldes, G.</td>
</tr>
</tbody>
</table>

Pricing

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
</table>

Primary Coolant Circuits

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>Reactor Coolant Pump Flywheel Integrity</td>
<td>Nuclear Regulatory Comm.</td>
</tr>
</tbody>
</table>

Primary Energy Storage

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1969</td>
<td>Primary Energy Storage and the Super Flywheel</td>
<td>Rabenhorst, D. W.</td>
</tr>
<tr>
<td>1970</td>
<td>Primary Energy Storage and the Super Flywheel</td>
<td>Rabenhorst, D. W.</td>
</tr>
</tbody>
</table>

149
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

PRIME MOVERS
1974 EMISSION CHARACTERISTICS OF A PRIME MOVER FOR HYBRID VEHICLE USE
ALLSUP, J.R./FLEMING, R.D. 2 102

PRIME MOVERS
1974 ALTERNATIVE PRIME MOTORS FOR FUTURE AUTOMOBILES
STERNLICHT, R./THUR, G.M. 2 118

PRINCETON UNIV., PLASMA PHYSICS LAB., N.J.
1975 PROPOSED TFRF ELECTRICAL SYSTEM
BRONNER, G./ MURRAY, J. 3 200

PROBABILISTIC DESIGN
1974 PROBABILISTIC DESIGN OF COMPOSITE STRUCTURES
MAXWELL, R./ TOLAND, R.H./ JOHNSON, C.W. 6 320

PROBABILITY
1974 A RANDOM WALK MODEL FOR FIRST-PASSAGE PROBABILITY
TOLAND, R.H./ YANG, C.Y. 6 289

PROBLEM
1973 ANGULAR MOMENTUM AND THE AIRCRAFT-STOKE SEPARATION PROBLEM
DANIELS, P./ CLARE, T.A. 1 24

PROBLEMS
1974 ELECTRICAL PROPULSION SYSTEMS FOR ROAD VEHICLES. STATE OF THE ART AND PRESENT-DAY PROBLEMS
BADER, C./ PLUST, H.G. 2 111

PROCEDURE FOR THERMSETTING
1975 CHARACTERIZATION PROCEDURE FOR THERMSETTING RESINS
PENN, L.S./ NEWEY, H. 6 363

PROCEDURES
1974 ITERATIVE PROCEDURES FOR CALCULATING THE FIRST TORSIONAL EIGENFREQUENCY OF A SHAFT WITH SEVERAL FLYWHEELS
ATZORI, B./ CURTI, G. 1 31

PROCEDURES FOR CALCULATING
1974 ITERATIVE PROCEDURES FOR CALCULATING THE FIRST TORSIONAL EIGENFREQUENCY OF A SHAFT WITH SEVERAL FLYWHEELS
ATZORI, B./ CURTI, G. 1 31

PROCEEDINGS
1971 PROCEEDINGS SECOND INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM
2 53

PROCESSES OF POLYMERS
1972 KINETIC FAILURE PROCESSES OF POLYMERS
HU, E.M./ HALPIN, J.C. 6 260

PRODUCED DURING BURST
1973 ACOUSTIC EMISSION PRODUCED DURING BURST TESTS OF FILAMENT-WOUND BOTTLES
HAMSTAD, W.A./ CHIAO, T.T. 6 320

PRODUCT ENG.
1967 FLYWHEEL INERTIA ACTUATES AUTOMATIC ANTI-SKID DEVICE
PRODUCT ENG. 2 67

PRODUCT ENG.
1968 EMERGENCY PUMP SYSTEMS ARE BOOTSTRAPS TO POWER
PRODUCT ENG. 3 141

PRODUCT ENGINEERING
1970 HIGH-SPEED ENERGY WHEEL OFFERS TROLLEYS PORTABLE ELECTRICITY
PRODUCT ENGINEERING 2 72

PRODUCT ENGINEERING
1973 STORED ENERGY IN A SPINNING DISK COULD ALLEVIATE THE ENERGY CRISIS
PRODUCT ENGINEERING 2 99
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

PRODUCTION
1974 ELECTRIC POWER SYSTEMS
1975 RESEARCH LEADING TO THE PRODUCTION AND EARLY USE OF NUMERIC DATA BANKS OF MATERIAL PROPERTIES AND SYSTEM ANALYSES

PROGRAM FOR COMPOSITE
1975 LLL PROGRAM FOR COMPOSITE FLYWHEEL

PROGRAM FOR FLYWHEEL
1975 FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS. SECOND QUARTERLY PROGRESS REPORT.
1976 FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS

PROGRAM STRATEGIES
1974 GOVERNMENT-WIDE REPORT TO OFFICE ON MANAGEMENT AND BUDGET ON ENERGY STORAGE R AND D PROGRAM STRATEGIES AND IMPLEMENTATION PLANS

PROGRESS REPORT
1971 RESEARCH AND DEVELOPMENT PROGRAMS. QUARTERLY PROGRESS REPORT, 1 JAN.-31 MAR. 1971
1975 FOSSIL FUEL AND ADVANCED SYSTEMS DIVISION. RESEARCH PROGRESS REPORT FY-3
1976 FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS. SECOND QUARTERLY PROGRESS REPORT.
1978 ENERGY AND TECHNOLOGY REVIEW (MONTHLY PROGRESS REPORT 6/78)

PROJECT INDEPENDENCE
1974 ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES

PROPAGATION IN ELASTIC
1974 WAVE PROPAGATION IN ELASTIC MEDIA WITH A PERIODIC ARRAY OF DISCRETE INCLUSIONS
1976 WAVE PROPAGATION IN LAYERED ELASTIC MEDIA

PROPAGATION PHENOMENA
1969 SOME UNIQUE CRACK PROPAGATION PHENOMENA IN UNIDIRECTIONAL COMPOSITES AND THEIR MATHEMATICAL CHARACTERIZATION

PROPANE
1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS

PROPERTIES OF EPOXY
1974 A MODERATE-TEMPERATURE-CURABLE EPOXY FOR ADVANCED COMPOSITE

PROPERTIES OF FILAMENT
1975 ELONGATED-RING SPECIMEN FOR TENSILE PROPERTIES OF FILAMENT-WOUND COMPOSITES

ERDA
HENRY, E. A.

CHIAO, T. T. / STONE, R. G.

NOYES, C. F. / WALKER, R. E. / PIRKLE, J. C. / FRAZER, R. / RUBINSTEIN, H. / ELECTRIC POWER RESEARCH INST.

STERNLICHT, B. / THUR, G. W.

CHRISTENSEN, R. W.

CHRISTENSEN, R. W.

WU, K. W.

CHIAO, T. T. / JESSOP, E. S. / SHEEHY, N. A.

CLEMENTS, L. L. / MOORE, R. L. / CHIAO, T. T.
PROPERTIES OF HETEROGENEOUS MEDIA
1969 VISCOELASTIC PROPERTIES OF HETEROGENEOUS MEDIA

PROPERTIES OF FRP-49
1972 TENSILE PROPERTIES OF FRP-49 FIBER IN EPOXY MATRIX

PROPERTY EVALUATION
1973 ORGANIC FIBER/EPOXY COMPOSITES

PROPERTY IN SHEAR
1964 AN EXPERIMENT FOR DETERMINATION OF THE MECHANICAL PROPERTY IN SHEAR FOR A LINEAR ISOTROPIC VISCOELASTIC SOLID

PROPOSED TFTR ELECTRICAL SYSTEM
1975 PROPOSED TFTR ELECTRICAL SYSTEM

PROPELLER
1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES
1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES
1970 SURVEY OF PROPULSION SYSTEMS FOR LOW EMISSION URBAN VEHICLES, FINAL REPORT
1971 FLYWHEEL AND FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEMS FOR LOW-EMISSION VEHICLES
1971 FEASIBILITY ANALYSIS OF THE TRANSMISSION FOR A FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEM
1972 HYBRID PROPULSION SYSTEM TRANSMISSION EVALUATION, PHASE I, FINAL REPORT
1972 HEAT-ENGINE MECHANICAL/ENERGY-STORAGE HYBRID PROPULSION SYSTEMS FOR VEHICLES, Final Report
1972 FLYWHEEL DRIVE SYSTEM STUDY, final report

1972 APPLICATION OF KINETIC ENERGY PROPULSION TO MASS TRANSPORTATION
1973 HYBRID ELECTRIC PROPULSION UTILIZING RECONNECTIONAL MOTOR WINDINGS IN WHEELS
1973 KINETIC ENERGY STORAGE: A “NEW” PROPULSION ALTERNATIVE FOR MASS TRANSPORTATION
1974 FLYWHEEL ENERGY PROPULSION AND THE ELECTRIC VEHICLE
1974 ELECTRICAL PROPULSION SYSTEMS FOR ROAD VEHICLES, STATE OF THE ART AND PRESENT-DAY PROBLEMS
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS
1974 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES
1975 ENERGY-STORAGE SYSTEMS

PROPELLER ALTERNATIVE
1973 KINETIC ENERGY STORAGE: A “NEW” PROPULSION ALTERNATIVE FOR MASS TRANSPORTATION

PROPELLER SYSTEM TRANSMISSION
1972 HYBRID PROPULSION SYSTEM TRANSMISSION EVALUATION, PHASE I, FINAL REPORT
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

PROPULSION SYSTEMS
1970 SURVEY OF PROPULSION SYSTEMS FOR LOW EMISSION URBAN VEHICLES, FINAL REPORT
PRAIZE, W. E. / LAY, H. K. 2 76
1971 FLYWHEEL AND FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEMS FOR LOW-EMISSION VEHICLES
DUGGER, G. L./BRANDT, A./GEORGE, J. F. /PERINI, L. L. 2 80
1972 HEAT-ENGINE MECHANICAL-ENERGY-STORAGE HYBRID PROPULSION SYSTEMS FOR VEHICLES. FINAL REPORT
1974 ELECTRICAL PROPULSION SYSTEMS FOR ROAD VEHICLES. STATE OF THE ART AND PRESENT-DAY PROBLEMS
BADER, C. /PLAUT, H. G. 2 111

PROPULSION UTILIZING RECONNECTION
1973 HYBRID ELECTRIC PROPULSION UTILIZING RECONNECTION MOTOR WINDINGS IN WHEELS
REIMERS, E. 2 91

PROSPECTIVE HEAT
1974 STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS. FIFTEEN PAPERS—SURVEY OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE SYSTEMS
VBI 3 160

PROSPECTS
1970 ACHIEVEMENTS AND PROSPECTS IN THE UTILIZATION OF KINETIC ENERGY
GROSU, S. I. 3 146
1974 ENERGY STORAGE: INCENTIVES AND PROSPECTS FOR ITS DEVELOPMENT
KALHAWER, F. 3 174

PROTECTION
1972 DISPOSITIF DE PROTECTION CONTRE LES CONSEQUENCES DE LA RUPTURE D'UN VOLANT D'INERTIE. (A PROTECTIVE DEVICE TO PREVENT THE CONSEQUENCES OF A FLYWHEEL RUPTURE)
BONNET-THIRION, C. J./BOBIDA, L. /FOLDES, G. 1 21

PROTECTIVE DEVICE
1972 DISPOSITIF DE PROTECTION CONTRE LES CONSEQUENCES DE LA RUPTURE D'UN VOLANT D'INERTIE. (A PROTECTIVE DEVICE TO PREVENT THE CONSEQUENCES OF A FLYWHEEL RUPTURE)
BONNET-THIRION, C. J./BOBIDA, L. /FOLDES, G. 1 21

PROTECTIVE DEVICES
1972 DISPOSITIF DE PROTECTION CONTRE LES CONSEQUENCES DE LA RUPTURE D'UN VOLANT D'INERTIE. (A PROTECTIVE DEVICE TO PREVENT THE CONSEQUENCES OF A FLYWHEEL RUPTURE)
BONNET-THIRION, C. J./BOBIDA, L. /FOLDES, G. 1 21

Prototype Gearbox Flywheel
1970 FINAL DESIGN REPORT, PROTOTYPE GEARBOX FLYWHEEL (FLYBOX) FOR STORED ENERGY ROTARY DRIVE SHIPBOARD CATAPULT
HELLIS, V. C. 3 143

PUBLIC SERVICE ELECTRIC AND GAS CO.
1975 TECHNICAL ASSESSMENT OF ENERGY STORAGE TECHNOLOGIES
SCHNEIDER, T. R. 3 191
1976 ENERGY STORAGE
CASAZZA, J. A. / SCHNEIDER, T. R. /SULZBERGER, V. T. 3 208
1976 ENERGY ON CALL: A MORE EFFICIENT PEAKING SYSTEM WOULD EXPLOIT THE ADVANTAGES OF ENERGY STORAGE, WHILE CONSERVING CAPITAL AND RESOURCES
CASAZZA, J. A. / SCHNEIDER, T. R. /SULZBERGER, V. T. 3 208

PUBLIC UTILITIES
1974 GOVERNMENT-WIDE REPORT TO OFFICE ON MANAGEMENT AND BUDGET ON ENERGY STORAGE R AND D PROGRAM STRATEGIES AND IMPLEMENTATION PLANS
ERDA/DAT 5 244
1975 DIGEST OF CURRENT RESEARCH IN THE ELECTRIC UTILITY INDUSTRY
EPRI 3 187

153
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

	1974	CAN FLYWHEELS REPLACE PUMPED STORAGE?	GINSBURG, T.	3 189
	1974	ENERGY STORAGE TECHNOLOGY	VANDERBILT, I.	3 171
	1974	ENERGY STORAGE AND ITS ROLE IN ELECTRIC POWER SYSTEMS	HAYDOCK, J. L.	3 172
	1974	STORAGE OF HIGH-GRADE ENERGY	MCALLAN, I. V.	5 245
	1974	ENERGY STORAGE: INCENTIVES AND PROSPECTS FOR ITS DEVELOPMENT	KALHAMMER, F.	3 174
	1974	POTENTIAL FOR LARGE-SCALE ENERGY STORAGE IN ELECTRIC UTILITY SYSTEMS	KALHAMMER, F. / ZYGIELBAUM, P. S.	3 177
	1975	ENERGY-STORAGE SYSTEMS	PENNER, S. S. / ICERMAN, L.	5 248
	1975	ENERGY STORAGE	KALHAMMER, F. R. / COOPER, T. R.	3 181
	1975	ENERGY STORAGE FOR WIND ENERGY CONVERSION SYSTEMS	ZLOTNICK, W.	3 199
	1975	AN EVALUATION OF THE FUTURE ROLE OF STORAGE TECHNIQUES IN ELECTRIC POWER TECHNOLOGY	PEDDINTZ, G. F.	3 199
	1976	WHEN DO ELECTRIC STORAGE DEVICES MAKE ECONOMIC SENSE?	BRAUN, C. / CHERNIJAVSKY, E. A. / SALZANO, F. J.	3 205
	1976	ENERGY STORAGE	AMERICAN NUCLEAR SOCIETY, HINSDALE, ILL.	5 252

| PUMPED-HYDRAULIC | 1976 | ENERGY-STORAGE SYSTEMS | PENNER, S. S. / ICERMAN, L. | 5 248 |

PUMPS	1975	SKAGIT NUCLEAR POWER PROJECT, UNITS 1 AND 2, LICENSE APPLICATION	PUGET SOUND POWER AND LIGHT CO.	3 180
	1975	THREE MILE ISLAND NUCLEAR STATION, UNIT 2, NO INSPECTION REPORT NO. 76-01 AND CORRESPONDENCE	METROPOLITAN EDISON CO.	3 182
	1975	THREE MILE ISLAND NUCLEAR STATION, UNIT 2, LICENSE APPLICATION, FSAR, AMENDMENT 27	METROPOLITAN EDISON CO.	2 127
	1975	REACTOR COOLANT PUMP FLYWHEEL INTEGRITY	NUCLEAR REGULATORY COMM.	3 196

| QUALIFICATION TESTS | 1972 | QUALIFICATION TESTS ON REACTION FLYWHEELS SUPPORTED ON OIL-LOADED LEAF SPRINGS | BOS, J. G. G. | 4 225 |
| | 1974 | THERMAL VACUUM QUALIFICATION TESTS ON A TELIX DOUBLE-GIMBALED MOMENTUM WHEEL | TODD, M. J. / WILSON, N. C. | 4 234 |

| | 1975 | FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS. SECOND QUARTERLY PROGRESS REPORT | STONE, R. G. / CHIAO, T. T. / RINDK. | 6 364 |
| | | | J. A. / PENN, L. S. / CLEMENTS, L. L. / CHIAO, C. C. | |
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

QUARTERLY REPORT
1976 ORGANIC MATERIALS DIVISION QUARTERLY REPORT
1978 ORGANIC MATERIALS DIVISION QUARTERLY REPORT

LEPPER, J. K. 6 376
LEPPER, J. K. 6 381

R-32 CARS
1976 FLYWHEELS: ENERGY-SAVING WAY TO GO

ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2 137

RABENHORST, D. W.
1969 PRIMARY ENERGY STORAGE AND THE SUPER FLYWHEEL
1970 NEW CONCEPTS IN MECHANICAL ENERGY STORAGE
1970 PRIMARY ENERGY STORAGE AND THE SUPER FLYWHEEL
1971 POTENTIAL APPLICATIONS FOR THE SUPERFLYWHEEL
1971 MATERIAL REQUIREMENTS FOR THE SUPERFLYWHEEL
1975 HEAT-ENGINE MECHANICAL-ENERGY-STORAGE HYBRID PROPULSION SYSTEMS FOR VEHICLES: FINAL REPORT

RABENHORST, D. W. 2 80
RABENHORST, D. W. 1 12
RABENHORST, D. W. 1 14
RABENHORST, D. W. 2 81
RABENHORST, D. W. 1 17
DUGGER, G. L./BRANDT,A./GEORGE,J.F.
/FERINI,L.L./RABENHORST, D. W.
/SMALL,T.R./WEISE,R.O.

1972 THE APPLICATION OF WOOD TECHNOLOGY TO KINETIC ENERGY STORAGE
1973 SUPERFLYWHEEL
1973 DESIGN CONSIDERATIONS FOR A 100-MEGAJOULE/900-MEGAWATT SUPERFLYWHEEL
1974 SUPERFLYWHEEL ENERGY STORAGE SYSTEM
1974 TECHNICAL PROGRAM PLAN FOR SUPERFLYWHEEL DEVELOPMENT
1974 METALS AND COMPOSITES IN SUPERFLYWHEEL ENERGY STORAGE SYSTEMS
1974 MULTIRIWF SUPERFLYWHEEL: TECHNICAL MEMO
1974 USE OF FLYWHEELS FOR ENERGY STORAGE
1975 METALS AND COMPOSITES IN SUPERFLYWHEEL ENERGY STORAGE SYSTEMS
1975 SUPERFLYWHEEL FOR STORING ENERGY FROM OTEC PLANTS

RABENHORST, D. W. 2 18
RABENHORST, D. W. 1 18
RABENHORST, D. W. 2 112
RABENHORST, D. W. 1 33
RABENHORST, D. W. 3 175
RABENHORST, D. W. 1 43
RABENHORST, D. W. / DUGGER, G. L.

1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES
1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES

HÖSS,J.A./CHEANEY,K.S./CRESWICK,F.
/A./TRAYSER,D.A./FISCHER,R.B.
/TIMBERLAKE,A.B./BAHMAN,R.I.
/HERREDGE,J.T./WILCOX,J.P.

1972 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES
1972 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES

HÖSS,J.A./CHEANEY,K.S./CRESWICK,F.
/A./TRAYSER,D.A./FISCHER,R.B.
/TIMBERLAKE,A.B./BAHMAN,R.I.
/HERREDGE,J.T./WILCOX,J.P.

1974 ON-BOARD ENERGY STORAGE IN RAIL RAPID TRANSIT

MARLOWE, E. W. 2 61

RAIL TRANSIT CONFERENCE
1974 ATA RAIL TRANSIT CONFERENCE: CAR EQUIPMENT SESSIONS.

LAWSON, L. J. / ET AL. 2 116

RAILWAY GAZETTE INTERNATIONAL
1976 NEW YORK SUBWAY TRIES OUT FLYWHEEL ENERGY STORAGE

RAILWAY GAZETTE INTERNATIONAL 2 123

RANDOM VIBRATION
1969 A RANDOM WALK MODEL IN RANDOM VIBRATION
1972 NON-STATIONARY RANDOM VIBRATION OF NONLINEAR STRUCTURES

TOLAND, R. H. / YANG, C. Y. 6 275
TOLAND, R. H. / YANG, C. Y. / HSU, C.

RANDOM WALK MODEL
1969 A RANDOM WALK MODEL IN RANDOM VIBRATION
1971 A RANDOM WALK MODEL FOR FIRST-PASSAGE PROBABILITY

TOLAND, R. H. / YANG, C. Y. 6 275
TOLAND, R. H. / YANG, C. Y. 6 289

155
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Year</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomly Oriented Fibre</td>
<td>Christensen, R. W. / Waals, F. W.</td>
<td>1972</td>
<td>202</td>
</tr>
<tr>
<td>Randomly Oriented Fibers</td>
<td>Christensen, R. W.</td>
<td>1978</td>
<td>369</td>
</tr>
<tr>
<td>Rankine Cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low peak temperatures and hydrodynamic bearings - key to long life organic Rankine cycle systems</td>
<td>Boretz, J. E.</td>
<td>1972</td>
<td>150</td>
</tr>
<tr>
<td>Materials requirements for energy generation, conversion, and storage</td>
<td>Jaffee, R. I.</td>
<td>1975</td>
<td>250</td>
</tr>
<tr>
<td>Rankine Cycle Engines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study of unconventional thermal, mechanical, and nuclear low-pollution-potential power sources for urban vehicles</td>
<td></td>
<td>1969</td>
<td>70</td>
</tr>
<tr>
<td>Current status of alternative automotive power systems and fuels</td>
<td></td>
<td>1974</td>
<td>115</td>
</tr>
<tr>
<td>Alternative prime movers for future automobiles</td>
<td></td>
<td>1974</td>
<td>119</td>
</tr>
<tr>
<td>Rapid Transit Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-board energy storage in rail rapid transit</td>
<td>Marlowe, E. W.</td>
<td>1964</td>
<td>81</td>
</tr>
<tr>
<td>Flywheel energy storage systems for transit buses</td>
<td>Wilcox, J. P.</td>
<td>1967</td>
<td>86</td>
</tr>
<tr>
<td>Rate Effect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strain rate effect on the ultimate tensile stress of fiber/epoxy strands</td>
<td>Chiao, T. T. / Moore, R. L.</td>
<td>1971</td>
<td>255</td>
</tr>
<tr>
<td>Reaction Flywheels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualification tests on reaction flywheels supported on grease-lubricated bearings</td>
<td>Bos, J. G.</td>
<td>1972</td>
<td>225</td>
</tr>
<tr>
<td>Reactor Components</td>
<td>Puget Sound Power and Light Co.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skagit Nuclear Power Project, Units 1 and 2. License application</td>
<td></td>
<td>1975</td>
<td>180</td>
</tr>
<tr>
<td>Reactor Coolant Pump</td>
<td>Nuclear Regulatory Comm.</td>
<td>1975</td>
<td>196</td>
</tr>
<tr>
<td>Reactor Coolant Pump Flywheel Integrity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skagit Nuclear Power Project, Units 1 and 2. License application</td>
<td>Puget Sound Power and Light Co.</td>
<td>1975</td>
<td>180</td>
</tr>
<tr>
<td>Three mile island nuclear station, Unit 2. License application, F.S.A.R. amendment 27</td>
<td>Metropolitan Edison Co.</td>
<td>1975</td>
<td>127</td>
</tr>
<tr>
<td>Reactor Cores</td>
<td>Puget Sound Power and Light Co.</td>
<td>1975</td>
<td>180</td>
</tr>
</tbody>
</table>
Reactor Internals

1976 **Three Mile Island Nuclear Station, Unit 2 RO Inspection Report No.75-01 and Correspondence**

ERDA Bibliography for Flywheel Energy Storage Systems

Concordance on Title, Author, Organization and Keywords

Ream, L. W.

1975 **Summary of Gas Bearing Applications in the Field of Space Electric Power Systems**

Reimers, E.

1973 **Hybrid Electric Propulsion Utilizing Reconnectible Motor Windings in Wheels**

Rectifiers

1981 **An Electro-Mechanical Energy Storage System for Space Application**

Reinhardt, G. / Murray, J.

1975 **Proposed TPTT Electrical System**

Recycling Hazards

Repenner, S. S. / Iceman, L.

1974 **Assessment of the State-of-the-Art of Feeding Wind-Generated Electricity into Utility Power Grids**

Reed, J. J.

1975 **Materials Requirements for Energy Generation, Conversion, and Storage**

Refractories

1975 **Regenerative Braking**

1975 **Flywheel Energy Storage Systems for Transit Buses**

1975 **Electric Vehicle Hybrid Power Train**

1973 **Hybrid Car: Part-Time Engine + Part-Time Flywheel = Full Time Transportation**

1973 **Flywheel Brakes Store New Train's Energy for Electricity-Saving Starts; New York's Latest Subway Car**

1973 **A Flywheel in Your Future**

1974 **Improved Regenerative Braking System**

1975 **New York Subway Tries Out Flywheel Energy Storage**

1976 **Hybrid Drive With Kinetic Energy Store as Vehicle Drive**

Regulatory Guides

1975 **Reactor Coolant Pump Flywheel Integrity**

Relaxation Functions

1975 **Restrictions Upon Viscoelastic Relaxation Functions and Complex Moduli**

Nuclear Regulatory Comm.

Relmers, E.

1973 **Hybrid Electric Propulsion Utilizing Reconnectible Motor Windings in Wheels**

Reimers, E.

1973 **Application of Two-Phase DC Chopper Motor Drive**

Reinhoudt, J. P.

1975 **A Grease-Lubricated Hydrodynamic Bearing System for a Satellite Flywheel**

Christensen, R. W.

157
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

REPETITIVE PLASMA FOCUS
1975 REPETITIVE PLASMA FOCUS POWERED BY A APPROX. 200 MJ FLYWHEEL GENERATOR.
NARDI, V. 3 194

REPLACE GASOLINE
1975 FLYWHEELS IN AUTO TO REPLACE GASOLINE
MACHNE DESIGN 2 130

REPLACE PUMPED STORAGE
1974 CAN FLYWHEELS REPLACE PUMPED STORAGE?
GINSBURG, T. 3 169

REPORT
1967 MOMENTUM EXCHANGE ACQUISITION SYSTEM, FINAL REPORT
FISCHER, W. A. 3 139
1970 FINAL DESIGN REPORT, PROTOTYPE GEARBOX FLYWHEEL (FLYBOX) FOR STORED ENERGY ROTARY DRIVE SHIPBOARD CATAPULT
MEILLIS, V. C. 3 143
1970 SURVEY OF PROPULSION SYSTEMS FOR LOW EMISSION URBAN VEHICLES, FINAL REPORT.
FRAZÉ, W. E. / LAY, R. K. 3 75
1971 RESEARCH AND DEVELOPMENT PROGRAM, QUARTERLY PROGRESS REPORT, 1 JAN.-31 MAR. 1971
NOYES, C. F. / WALKER, R. E. / PIRKLE, J. C. / FRAZER, R. / KUBINSTEIN, N. 5 241
1971 FLYWHEEL FEASIBILITY STUDY AND DEMONSTRATION, FINAL REPORT
GILBERT, B. N. / HARVEY, J. R. / HEUER, C. E. / LAWSON, L. J. 2 77
1972 HYBRID PROPULSION SYSTEM TRANSMISSION EVALUATION, PHASE I, FINAL REPORT
CORDNER, M. A. / GRIMM, D. H. 2 86
1972 HEAT-ENGINE MECHANICAL-ENERGY-STORAGE HYBRID PROPULSION SYSTEMS FOR VEHICLES, FINAL REPORT
1972 FLYWHEEL DRIVE SYSTEMS STUDY, FINAL REPORT
1973 CIRCUIT DESIGN REPORT FOR A MOMENTUM WHEEL MOTOR CURRENT CONTROL UNIT
HAINES, J. E. 4 228
1974 GOVERNMENT-IDEA REPORT TO OFFICE ON MANAGEMENT AND BUDGET ON ENERGY STORAGE B AND D PROGRAM STRATEGIES AND IMPLEMENTATION PLANS
ERDA/DAT 5 244
1975 THREE MILE ISLAND NUCLEAR STATION, UNIT 2, NO INSPECTION REPORT NO. TS-01 AND CORRESPONDENCE
METROPOLITAN EDISON CO. 3 162
1975 DESIGN AND DEVELOPMENT OF A MOMENTUM WHEEL WITH A MAINLY PASSIVE MAGNETIC BEARING FINAL REPORT
ESSA 1 45
1975 FOSSIL FUEL AND ADVANCED SYSTEMS DIVISION, RESEARCH PROGRESS REPORT FF-3
ELECTRIC POWER RESEARCH INST. 3 193
1975 DEVELOPMENT OF HIGH-DENSITY INERTIAL-ENERGY STORAGE FINAL REPORT
GORDON, K. S. 3 193
1975 FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS, SECOND QUARTERLY PROGRESS REPORT.
1976 FLYWHEELS, A REPORT BIBLIOGRAPHY
DEFENSE DOCUMENTATION CENTER 6 55
1976 ORGANIC MATERIALS DIVISION QUARTERLY REPORT
LEPPER, J. K. 6 375
1976 ORGANIC MATERIALS DIVISION QUARTERLY REPORT
LEPPER, J. K. 6 381
1976 ENERGY AND TECHNOLOGY REVIEW (MONTHLY PROGRESS REPORT 6/76)
SELDEN, R. W. 5 253

REQUIREMENTS FOR ENERGY
1975 MATERIALS REQUIREMENTS FOR ENERGY GENERATION CONVERSION AND STORAGE
JAFFEE, R. I. 5 250

REQUIREMENTS FOR FLYWHEEL
1983 DETERMINING INERTIA AND TIME REQUIREMENTS FOR FLYWHEEL MACHINES
SPOTTS, M. F. 1 1

RESEARCH
1970 POWER-SYSTEMS RESEARCH SHIFTS TO MEET SOCIAL GOALS
CHEM. ENG. 3 147
1971 RESEARCH AND DEVELOPMENT PROGRAM, QUARTERLY PROGRESS REPORT, 1 JAN.-31 MAR. 1971
NOYES, C. F. / WALKER, R. E. / PIRKLE, J. C. / FRAZER, R. / KUBINSTEIN, N. 5 241
1974 COMPUTER CONTROLLED 125 MVA POWER SUPPLY FACILITY FOR NUCLEAR FUSION RESEARCH
MIYAMOTO, A. / HANNAK, E. / KITANO, Y. 3 158
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

<table>
<thead>
<tr>
<th>YEAR</th>
<th>TITLE</th>
<th>AUTHOR</th>
<th>ORGANIZATION</th>
<th>crc number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>NEW MOMENTUM FOR NUCLEAR FUSION. IN THE MAX-PLANCK-INSTITUT IN MUNCHEN, A NEW PHASE OF PLASMA RESEARCH HAS BEGUN</td>
<td>BRUNGS, K.</td>
<td>3 181</td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>ACOUSTIC EMISSION USES IN RESEARCH AND DEVELOPMENT OF COMPOSITE MATERIALS</td>
<td>HAMSTAD, W. A.</td>
<td>6 346</td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>DIGEST OF CURRENT RESEARCH IN THE ELECTRIC UTILITY INDUSTRY</td>
<td>EPRI</td>
<td>3 187</td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>FOSSIL FUEL AND ADVANCED SYSTEMS DIVISION. RESEARCH PROGRESS REPORT FF-3</td>
<td>ELECTRIC POWER RESEARCH INST.</td>
<td>3 192</td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>RESEARCH LEADING TO THE PRODUCTION AND EARLY USE OF NUMERIC DATA BANKS OF MATERIAL PROPERTIES AND SYSTEM ANALYSES</td>
<td>HENRY, E. A.</td>
<td>1 58</td>
<td></td>
</tr>
</tbody>
</table>

RESEARCH AND DEVELOPMENT

<table>
<thead>
<tr>
<th>YEAR</th>
<th>TITLE</th>
<th>AUTHOR</th>
<th>ORGANIZATION</th>
<th>crc number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>RESEARCH AND DEVELOPMENT PROGRAMS. QUARTERLY PROGRESS REPORT, 1 JAN. -- 31 MAR. 1971</td>
<td>NOYES, C. F. / WALKER, R. E.</td>
<td>5 241</td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>ACOUSTIC EMISSION USES IN RESEARCH AND DEVELOPMENT OF COMPOSITE MATERIALS</td>
<td>PIRKLE, J. C. / FRAZER, R. / HUBSTEIN, W.</td>
<td>6 346</td>
<td></td>
</tr>
</tbody>
</table>

RESEARCH PROGRAMS

<table>
<thead>
<tr>
<th>YEAR</th>
<th>TITLE</th>
<th>AUTHOR</th>
<th>ORGANIZATION</th>
<th>crc number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>RESEARCH AND DEVELOPMENT PROGRAMS. QUARTERLY PROGRESS REPORT, 1 JAN. -- 31 MAR. 1971</td>
<td>NOYES, C. F. / WALKER, R. E.</td>
<td>5 241</td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>PROCEEDINGS SECOND INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM</td>
<td>PIRKLE, J. C. / FRAZER, R. / HUBSTEIN, W.</td>
<td>2 83</td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>GOVERNMENT-WIDE REPORT TO OFFICE ON MANAGEMENT AND BUDGET ON ENERGY STORAGE R AND D PROGRAM STRATEGIES AND IMPLEMENTATION PLANS</td>
<td>ERDA/DAT</td>
<td>5 244</td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES</td>
<td>LAFEDES, D. E. / MELTZER, J.</td>
<td>2 118</td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>ELECTRIC POWER SYSTEMS</td>
<td>ERDA</td>
<td>3 179</td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>ENERGY TECHNOLOGY 11 (NAVY APPLICATIONS)</td>
<td>PETZICK, P. A.</td>
<td>5 247</td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>DIGEST OF CURRENT RESEARCH IN THE ELECTRIC UTILITY INDUSTRY</td>
<td>EPRI</td>
<td>3 187</td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>LLL PROGRAM FOR COMPOSITE FLYWHEEL</td>
<td>STONE, R. G. / CLEMENTS, L. L. / CHIAO, C. C. / STONE, R. G.</td>
<td>3 203</td>
<td></td>
</tr>
</tbody>
</table>

RESEARCH PROGRESS

<table>
<thead>
<tr>
<th>YEAR</th>
<th>TITLE</th>
<th>AUTHOR</th>
<th>ORGANIZATION</th>
<th>crc number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>FOSSIL FUEL AND ADVANCED SYSTEMS DIVISION. RESEARCH PROGRESS REPORT FF-3</td>
<td>ELECTRIC POWER RESEARCH INST.</td>
<td>3 192</td>
<td></td>
</tr>
</tbody>
</table>

RESEARCH PROGRESS REPORT

<table>
<thead>
<tr>
<th>YEAR</th>
<th>TITLE</th>
<th>AUTHOR</th>
<th>ORGANIZATION</th>
<th>crc number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>FOSSIL FUEL AND ADVANCED SYSTEMS DIVISION. RESEARCH PROGRESS REPORT FF-3</td>
<td>ELECTRIC POWER RESEARCH INST.</td>
<td>3 192</td>
<td></td>
</tr>
</tbody>
</table>

RESILIENCE

<table>
<thead>
<tr>
<th>YEAR</th>
<th>TITLE</th>
<th>AUTHOR</th>
<th>ORGANIZATION</th>
<th>crc number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>CAPTURED LOAD RESILIENCE OF A HYDRAULIC VIBRATOR SAVES POWER</td>
<td>LANEKER, J. A.</td>
<td>1 9</td>
<td></td>
</tr>
</tbody>
</table>

RESIN SYSTEM

<table>
<thead>
<tr>
<th>YEAR</th>
<th>TITLE</th>
<th>AUTHOR</th>
<th>ORGANIZATION</th>
<th>crc number</th>
</tr>
</thead>
</table>

RESINS

<table>
<thead>
<tr>
<th>YEAR</th>
<th>TITLE</th>
<th>AUTHOR</th>
<th>ORGANIZATION</th>
<th>crc number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>CHARACTERIZATION PROCEDURE FOR THERMOSETTING RESINS</td>
<td>PENN, L. S. / NEWHEY, R. / RINDE, J. A.</td>
<td>6 363</td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>EPOXY RESINS FOR FLYWHEEL APPLICATIONS</td>
<td>RINDE, J. A.</td>
<td>1 48</td>
<td></td>
</tr>
</tbody>
</table>

RESINS FOR FLYWHEEL

<table>
<thead>
<tr>
<th>YEAR</th>
<th>TITLE</th>
<th>AUTHOR</th>
<th>ORGANIZATION</th>
<th>crc number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>EPOXY RESINS FOR FLYWHEEL APPLICATIONS</td>
<td>RINDE, J. A.</td>
<td>1 48</td>
<td></td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

RESOURCES
1974 ENERGY, VOLUME I. DEMANDS, RESOURCES, IMPACT, TECHNOLOGY, AND POLICY
1976 ENERGY ON CALL: A MORE EFFICIENT PEAKING SYSTEM WOULD EXPLOIT THE ADVANTAGES OF ENERGY STORAGE, WHILE CONSERVING CAPITAL AND RESOURCES

RESPONSE
1984 THE DYNAMIC RESPONSE OF A SOLID, VISCOELASTIC SPHERE TO TRANSLATIONAL AND ROTATIONAL EXCITATION.
1985 RESPONSE TO PRESSURIZATION OF A VISCOELASTIC CYLINDER WITH AN ERODING INTERNAL BOUNDARY.
1986 PREDICTION OF THE TRANSIENT RESPONSE OF A LINEAR VISCOELASTIC SOLID.
1985 STOCHASTIC FINITE ELEMENT SIMULATION OF THE NONLINEAR STRUCTURAL RESPONSE OF FIBROUS COMPOSITE MATERIALS.

RESPONSE OF FIBROUS
1972 STOCHASTIC FINITE ELEMENT SIMULATION OF THE NONLINEAR STRUCTURAL RESPONSE OF FIBROUS COMPOSITE MATERIALS.

RESPONSE TO PRESSURIZATION
1985 RESPONSE TO PRESSURIZATION OF A VISCOELASTIC CYLINDER WITH AN ERODING INTERNAL BOUNDARY.

RERAINTS
1975 THREE MILE ISLAND NUCLEAR STATION, UNIT 2.80 INSPECTION REPORT NO.75-01 AND CORRESPONDENCE

RESTRICTIONS UPON VISCOELASTIC
1972 RESTRICTIONS UPON VISCOELASTIC RELAXATION FUNCTIONS AND COMPLEX MODULI

RETENTION OF SPHERES
1972 CALCULATION OF STRESSES AND STRENGTH RETENTION OF SPHERES AND FLYWHEELS

REUTER, R. C.
1985 CRACK EXTENSION IN FIBERGLASS-REINFORCED PLASTICS
1974 THERMAL STRESSES IN COMPOSITE FLYWHEELS

REVIEW
1974 SAFETY REVIEW OF THE KINETIC ENERGY WHEEL (KEW) SYSTEM FOR BUS APPLICATION
1974 ENERGY STORAGE TECHNOLOGY
1974 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES
1976 ENERGY AND TECHNOLOGY REVIEW (MONTHLY PROGRESS REPORT 6/76)
1976 FLYWHEELS: ENERGY-SAVING WAY TO GO

REVIEWS
1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES
1970 SURVEY OF PROPULSION SYSTEMS FOR LOW EMISSION URBAN VEHICLES, FINAL REPORT.
1974 STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS. FIFTEEN PAPERS--SURVEY OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE SYSTEMS

PENNER, S. S./ICERMAN, L.
DE 3209
SULBERGER, V. T.

CHRISTENSEN, R. W./GOTTENBERG, W.
1 5
CHRISTENSEN, R. W./SCHREINER, R.
1 5

CHRISTENSEN, R. W./GOTTENBERG, W.
1 5
LARDEO, R. A.

LARDEO, R. A.
1 5

METROPOLITAN EDISON CO.
3 182

CHRISTENSEN, R. W.
1 5

KUNITZ, R.
1 5

WU, H. M./REUTER, R. C.
1 5

REUTER, R. C. JR.
1 5

NATIONAL ACADEMY OF SCIENCES
2 103
VANDERBURN, J.
3 171
LAFEDERS, D.E./MELTZER, J.
1 118
SLEDEN, R. W.
5 253
ENVIRONMENTAL SCIENCE AND TECHNOLOGY
2 137

BATTENBULF COLUMBUS LABS.
2 70
FRAIZE, W. K./LAY, R. E.
2 70

VDI
3 160

160
<table>
<thead>
<tr>
<th>REVIEW</th>
<th>TITLE</th>
<th>AUTHOR(S)</th>
<th>VOLUME</th>
<th>PAGE</th>
</tr>
</thead>
</table>
| REVIEWS (CONTR.) | 1974 STORAGE OF HIGH-GRADE ENERGY
1975 ENERGY-STORAGE SYSTEMS | MCALLAN, J. Y. / PENNER, S. S. / ICERMAN, L. | 5 | 248 |
| REVIEWS BATTERIES | 1974 ELECTRICAL PROPULSION SYSTEMS FOR ROAD VEHICLES. STATE OF THE ART AND PRESENT-DAY PROBLEMS | BADER, C. / PLUST, H. G. | 2 | 111 |
| REVOLUTION | 1973 REVOLUTION IN FLYWHEELS | DANN, R. T. | 1 | 23 |
| REVOLUTION IN FLYWHEELS | 1973 REVOLUTION IN FLYWHEELS | DANN, R. T. | 1 | 23 |
| RICCI, L. J. | 1976 UTILITIES EYE LARGE-SCALE ENERGY STORAGE | RICCI, L. J. | 3 | 184 |
| RICHARDSON, J. | 1971 STUDY OF EPOXY RESINS FOR FIBER COMPOSITES | RICHARDSON, J. / MOORE, R. L. / CHIAO, T. T. | 0 | 288 |
| RIGHT TRIANGLE CANTILEVER | 1973 VIBRATION OF A 45-DEG. RIGHT TRIANGLE CANTILEVER PLATE BY A CRIMWORK METHOD. | CHRISTENSEN, R. M. | 6 | 255 |
| RIGID BODY | 1975 FLYWHEEL STABILIZATION OF A RIGID BODY SUBJECTED TO CONSTANTLY APPLIED PERTURBATIONS | DERSACHEVA, E. I. | 3 | 140 |
| RINDE, J. A. | 1975 EPOXY RESINS FOR FLYWHEEL APPLICATIONS.
1975 FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS. SECOND QUARTERLY PROGRESS REPORT.
| RINGS | 1974 THE LUBRICATION OF BEARINGS AND SLIP RINGS IN VACUUM
1975 MECHANICAL DESIGN OF A COMPOSITE CENTERLESS FLYWHEEL | O'DONNELL, P. J. / HARRIS, L. C. / WARWICK, M. G. / BLAKE, A. | 1 | 35 |
<p>| ROAD VEHICLE | 1971 ELECTRIC ROAD VEHICLE | CALVERT, W. L. | 2 | 84 |
| ROAD VEHICLES | 1974 ELECTRICAL PROPULSION SYSTEMS FOR ROAD VEHICLES. STATE OF THE ART AND PRESENT-DAY PROBLEMS | BADER, C. / PLUST, H. G. | 2 | 111 |
| ROBIDA, L. | 1972 DISPOSITIF DE PROTECTION CONTRE LES CONSEQUENCES DE LA RUPTURE D'UN VOLANT D'INERTIE. (A PROTECTIVE DEVICE TO PREVENT THE CONSEQUENCES OF A FLYWHEEL RUPTURE) | BONNET-THRION, C. J. / ROBIDA, L. / FOLDES, G. | 1 | 21 |</p>
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Volume</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis of Stress-Rupture Data from S-Glass Composites</td>
<td>Robinson, K. Y.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An Electro-Mechanical Energy Storage System for Space Application</td>
<td>Roess, J. B.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Storage and Its Role in Electric Power Systems</td>
<td>Haydock, J. L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An Evaluation of the Future Role of Storage Techniques in Electric Power Technology</td>
<td>Pesdirect, G. F.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room Temperature-Curable Epoxy for Advanced Fiber Composites</td>
<td>Chiao, T. T. / Moore, R. L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent Energy Systems for Better Efficiency</td>
<td>Marshall, O. W. / Morash, R. T. / Barber, R.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Design Report, Prototype Gearbox Flywheel (Flybox) for Stored Energy Rotary Drive Shipboard Catapult</td>
<td>Nellis, V. C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Stabilization of the Rotary Motion of a Solid Body</td>
<td>Saakian, L. S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculation of Stresses and Strength Retention of Rotating Disks and Flywheels</td>
<td>Krizler, R.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimal Shapes for Anisotropic Rotating Disks</td>
<td>Gesstle, F. P. / Biggs, F.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superflywheel</td>
<td>Rabenhorst, D. W.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gyroscopic Effect of Flywheels in Machines</td>
<td>Gulia, N. V. et al</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultrahigh Temperature</td>
<td>Rylander, H. G. / Woodson, H. N. / Becker, E. / Bowberg, R.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Author(s)</td>
<td>Page(s)</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------------------------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Rotational Excitation</td>
<td>Christensen, R. M. / Gottenberg, W.</td>
<td>6 287 G.</td>
<td></td>
</tr>
<tr>
<td>Modification of DC Motor with Magnetically Suspended Rotor</td>
<td>Cambridge Thermionic Corp., Mass.</td>
<td>1 11</td>
<td></td>
</tr>
<tr>
<td>Rowberg, R.</td>
<td>Rubinstein, N.</td>
<td>5 241</td>
<td></td>
</tr>
<tr>
<td>Research and Development Programs, Quarterly Progress Report,</td>
<td>Noyes, C. F. / Walker, R. E. /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Jan. - 31 Mar. 1971</td>
<td>Pinkle, J.C. / Fraser, R. /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubinstein, N.</td>
<td>Rubinstein, N.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substantially and Stress on the Stress Rupture Life of Epoxy-Glass</td>
<td>Ruhmann, D. C. / WU, E. M.</td>
<td>6 283</td>
<td></td>
</tr>
<tr>
<td>Composites</td>
<td>Ruhmann, D. C. / WU, E. M.</td>
<td>6 315</td>
<td></td>
</tr>
<tr>
<td>The Effect of Solvents and Stress on the Stress Rupture Life of</td>
<td>WU, E. M. / Ruhmann, D. C.</td>
<td>6 352</td>
<td></td>
</tr>
<tr>
<td>Epoxy-Glass Composites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Effect of Stress on Diffusion in Composites - Experimental</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress Rupture of Glass/Epoxy Composites - Environment and Stress</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub, M. L.</td>
<td>Cormack, A. / Notti, J. E. / Ruiz,</td>
<td>4 239</td>
<td></td>
</tr>
<tr>
<td>Design and Test of a Flywheel Energy Storage Unit for Spacecraft</td>
<td>M. L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run up Flywheel</td>
<td>Pruettow, N. N.</td>
<td>2 50</td>
<td></td>
</tr>
<tr>
<td>Comparison of Electrically Run up Flywheel (DC Motor) with</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbine, Hot Gas Motor and Other Systems for Minuteman Application.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spears</td>
<td>A.M. Mach.</td>
<td>2 63</td>
<td></td>
</tr>
<tr>
<td>Transfer Line for Short Runs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rupture</td>
<td>Ruhmann, D. C. / WU, E. M.</td>
<td>6 283</td>
<td></td>
</tr>
<tr>
<td>The Effect of Solvents and Stress on the Stress Rupture Life of</td>
<td>Chiao, T. T. / Moore, R. L.</td>
<td>6 300</td>
<td></td>
</tr>
<tr>
<td>Epoxy-Glass Composites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress Rupture of S-Class/Epoxy Multifilament Strands: Time - Break-DATA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispositif de Protection Contre Les Consequences de La Rupture d'un Volant d'Inertie (A Protective Device to Prevent the Consequences of a Flywheel Rupture)</td>
<td>Bonnet-Thirion, C.J. / Bobida, L. / Foldes, G.</td>
<td>1 21</td>
<td></td>
</tr>
<tr>
<td>Stress Rupture of Glass/Epoxy Composites - Environment and Stress</td>
<td>WU, E. M. / Ruhmann, D. C.</td>
<td>6 332</td>
<td></td>
</tr>
<tr>
<td>Effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rupture Life</td>
<td>Ruhmann, D. C. / WU, E. M.</td>
<td>6 283</td>
<td></td>
</tr>
<tr>
<td>The Effect of Solvents and Stress on the Stress Rupture Life of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epoxy-Glass Composites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rupture of Flywheels</td>
<td>Bonnet-Thirion, C.J. / Bobida, L. / Foldes, G.</td>
<td>1 21</td>
<td></td>
</tr>
<tr>
<td>Dispositif de Protection Contre Les Consequences de La Rupture d'un Volant d'Inertie (A Protective Device to Prevent the Consequences of a Flywheel Rupture)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

RUPTURE OF GLASS/EPOXY
1974 STRESS RUPTURE OF GLASS/EPOXY COMPOSITES - ENVIRONMENT AND STRESS EFFECTS.

RUPTURE OF S-Glass/EPOXY
1972 STRESS RUPTURE OF S-Glass/EPOXY MULTIFILAMENT STRANDS: TIME - BREAK-DATA.

RUPTURED
1972 DISPOSITIF DE PROTECTION CONTRE LES CONSEQUENCES DE LA RUPTURE D'UN VOLANT D'INERTIE. (A PROTECTIVE DEVICE TO PREVENT THE CONSEQUENCES OF A FLYWHEEL RUPTURE)

RUPTURES
1975 SKAGIT NUCLEAR POWER PROJECT, UNITS 1 AND 2. LICENSE APPLICATION
1975 LONG-TERM PERFORMANCE OF FIBER COMPOSITES

RUTH, R.
1972 HIGH PERFORMANCE HELICOPTER HOIST PROGRAM

RYLANDER, H.G.
1973 INVESTIGATION OF THE MONOPOLAR MOTOR-GENERATOR AS A POWER SUPPLY FOR CONTROLLED FUSION EXPERIMENTS
1974 ULTRASHORT TEMPERATURE

S-Glass Composites
1972 ANALYSIS OF STRESS- RUPTURE DATA FROM S-Glass COMPOSITES

S-Glass FIBER
1972 STRENGTH OF S-Glass FIBER

S-Glass/Epoxy Composites
1972 STRENGTH RETENTION OF S-Glass/Epoxy COMPOSITES
1972 STRESS- RUPTURE OF SIMPLE S-Glass/Epoxy COMPOSITES
1972 FIBER STRENGTH OF S-Glass/Epoxy COMPOSITES UNDER BI-AXIAL LOADING

S-Glass/Epoxy Multifilament Strands
1971 STRESS- RUPTURE OF S-Glass/EPOXY MULTIFILAMENT STRANDS
1972 STRESS RUPTURE OF S-Glass/EPOXY MULTIFILAMENT STRANDS: TIME - BREAK-DATA.

SAAKIAN, L. S.
1975 ACTIVE STABILIZATION OF THE ROTARY MOTION OF A SOLID BODY

SABNIS, A. V.
1976 MAGNETICALLY SUSPENDED LARGE MOMENTUM WHEEL

SAFETY
1971 FEASIBILITY ANALYSIS OF THE TRANSMISSION FOR A FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEM
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972</td>
<td>THE APPLICATION OF WOOD TECHNOLOGY TO KINETIC ENERGY STORAGE DISKS AND FLYWHEELS</td>
<td>Rabenhorst, D. W.</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>CALCULATION OF STRESSES AND STRAINED RETENTION OF ROTATING DISKS AND FLYWHEELS</td>
<td>Krizter, R.</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>DISPOSITIF DE PROTECTION CONTRE LES CONSEQUENCES DE LA RUPTURE D'UN VOLANT D'INERTIE. (A PROTECTIVE DEVICE TO PREVENT THE CONSEQUENCES OF A FLYWHEEL RUPTURE)</td>
<td>Bonnet-Thirion, C.J./Nobida, L. /Foldes, G.</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>1973</td>
<td>SUPERFLYWHEEL ENERGY STORAGE SYSTEM</td>
<td>Rabenhorst, D. W.</td>
<td>3</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>SAFETY REVIEW OF THE KINETIC ENERGY WHEEL (KEW) SYSTEM FOR BUS APPLICATION</td>
<td>National Academy of Sciences</td>
<td>2</td>
<td>103</td>
</tr>
<tr>
<td>1975</td>
<td>HYBRID VEHICLES</td>
<td>Vivian, H. C.</td>
<td>2</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>SAFETY REVIEW OF THE KINETIC ENERGY WHEEL (KEW) SYSTEM FOR BUS APPLICATION</td>
<td>National Academy of Sciences</td>
<td>2</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>HEAT STORAGE USING ALKALI METAL SALTS, ALKALI EARTH SALTS, IRON CHLORIDE, ZINC CHLORIDE, BORON OXIDES, AND EUTECTIC FLUORIDE MIXTURES</td>
<td>Schroeder,J.</td>
<td>5</td>
<td>242</td>
</tr>
<tr>
<td>1972</td>
<td>APPLICATION OF KINETIC ENERGY PROPULSION TO MASS TRANSPORTATION</td>
<td>Lawson, L. J.</td>
<td>2</td>
<td>89</td>
</tr>
<tr>
<td>1974</td>
<td>ATA RAIL TRANSIT CONFERENCE. CAR EQUIPMENT SESSIONS.</td>
<td>Lawson, L. J. / et al.</td>
<td>2</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>THERMAL STRESSES IN COMPOSITE FLYWHEELS</td>
<td>Reuter, R. C. Jr.</td>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>FLYWHEEL ENERGY SYSTEMS</td>
<td>Biggs, F.</td>
<td>1</td>
<td>37</td>
</tr>
<tr>
<td>1971</td>
<td>FRACTURE TOUGHNESS IN UNIDIRECTIONAL GLASS-REINFORCED PLASTICS</td>
<td>Sanford, R. J. / Stonesifer, F. R.</td>
<td>5</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>A GREASE-LUBRICATED HYDRODYNAMIC BEARING SYSTEM FOR A SATELLITE FLYWHEEL</td>
<td>Reinhoudt, J. P.</td>
<td>4</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>DESIGN AND ANALYSIS OF THE ATS GRAPHITE EPOXY SATELLITE TRUSS</td>
<td>Burns, J. W. / Toland, R. H.</td>
<td>6</td>
<td>304</td>
</tr>
<tr>
<td></td>
<td>DYNAMICS OF A SATELLITE WITH A FLYWHEEL AND FLEXIBLE SOLAR ARRAYS</td>
<td>Pfeiffer,F./Pohl,A.</td>
<td>4</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>THERMAL VACUUM QUALIFICATION TESTS ON A TELDIX DOUBLE-GIMBALED MOMENTUM WHEEL</td>
<td>Todd, M. J. / Wilson, N. G.</td>
<td>4</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>STUDY OF DOUBLE GIMBALED MOMENTUM WHEELS IN THE ATTITUDE AND ORBIT CONTROL SYSTEM OF A GEOSTATIONARY COMMUNICATION SATELLITE.</td>
<td>Boersma, G. / Sonnenschein, F. J.</td>
<td>4</td>
<td>237</td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

SATELLITE FLYWHEEL
1970 A GREASE-LUBRICATED HYDRODYNAMIC BEARING SYSTEM FOR A SATELLITE FLYWHEEL
1970 SATELLITE FLYWHEEL
1970 SATELLITE FLYWHEEL

REINHOUPT, J. P. 4 218
BARNEWELL, L. D. G./SWAIN, J. 4 221

SATELLITE TRUSS
1972 DESIGN AND ANALYSIS OF THE ATS GRAPHITE EPOXY SATELLITE TRUSS BURNS, J. M./TOLAND, R. H. 6 304

SATELLITES
1970 A NEW TECHNICAL IDEA ON FLYWHEELS (NOUVELLE CONCEPTION TECHNIQUE DES VOLANTS D'INERTIE)
1971 THE DRILLRAD: A FLYWHEEL FOR THE STABILIZATION OF SYNCHRONOUS SATELLITES
1973 DYNAMICS OF A SATELLITE WITH A FLYWHEEL AND FLEXIBLE SOLAR ARRAYS

POUREAU, F. 4 220
WEHRLE, HEINZ 4 222
PFIEFFER, F./POHL, A. 4 227

SAVES POWER
1968 CAPTURED LOAD RESILIENCE OF A HYDRAULIC VIBRATOR (SAVES POWER SCHLUETER, W.
1974 LARGE FLYWHEEL POWER SUPPLY FOR FUSION EXPERIMENTS IN THE MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK, GARCHING, GERMANY

KNOBLOCH, A./KOTTHAIS, W./SCHLUETER, W. 3 173

SCHMILL, W. C.
1974 INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS) STUDY. VOLUME I: FEASIBILITY STUDIES
1974 INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS) STUDY. VOLUME II: CONCEPTUAL DESIGNS

NOTTI, J. E./CORMACK, A./SCHMILL, W. C. 4 231
NOTTI, J. E./CORMACK, A. 4 232
SCHMILL, W. C. 4 232

SCHMITT, F. M.
1975 MAGNETICALLY SUSPENDED LARGE MOMENTUM WHEEL ZABNIS, A. V./DENDY, J. B./SCHMITT, F. M. 4 238

SCHNEIDER, T. R.
1974 ASSESSMENT OF ADVANCED CONCEPTS IN ENERGY STORAGE AND THEIR APPLICATION ON ELECTRIC UTILITY SYSTEMS
1975 TECHNICAL ASSESSMENT OF ENERGY STORAGE TECHNOLOGIES
1976 ENERGY STORAGE
1978 ENERGY STORAGE
1978 ENERGY ON CALL: A MORE EFFICIENT PEAKING SYSTEM WOULD EXPLOIT THE ADVANTAGES OF ENERGY STORAGE, WHILE CONSERVING CAPITAL AND RESOURCES

SCHNEIDER, T. R. 3 191
KALHAMMER, F. R./SCHNEIDER, T. R. 5 251
CASAZZA, J. A./SCHNEIDER, T. R. 3 208
SULZBERGER, V. T. 3 209
CASAZZA, J. A./SCHNEIDER, T. R. 3 209
SULZBERGER, V. T. 3 209

SCHRECK, H.
1974 HYBRID DRIVE WITH FLYWHEEL COMPONENT FOR ECONOMIC AND DYNAMIC OPERATION
1974 HYBRID AUTOMOTIVE ENGINE WITH KINETIC ENERGY STORAGE
1976 HYBRID DRIVE WITH KINETIC ENERGY STORE AS VEHICLE DRIVE

HELLING, J./SCHRECK, H./CIERA, B. 2 110
SCHRECK, H./TORRES, F. 2 117
SCHRECK, H./TORRES, F. 2 133

SCHREINER, R. N.
1965 RESPONSE TO PRESSURIZATION OF A VISCOELASTIC CYLINDER WITH AN ERODING INTERNAL BOUNDARY.

CHRISTENSEN, R. M./SCHREINER, R. N. 1 5

SCHROEDER, J.
1974 HEAT STORAGE USING ALKALI METAL SALTS, ALKALI EARTH SALTS, IRON CHLORIDE, ZINC CHLORIDE, BORON OXIDE, AND EUTECTIC FLUORIDE MIXTURES SCHROEDER, J. 5 242

166
<table>
<thead>
<tr>
<th>Author(s) and Title</th>
<th>Institution</th>
<th>Year</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schuelein, J. K.</td>
<td>WU, E. M. / SCHUELEIN, J. K.</td>
<td>1974</td>
<td>8 330</td>
</tr>
<tr>
<td>Schult, Hans Holger</td>
<td>SCHULZ, HANS HOLGER</td>
<td>1973</td>
<td>4 229</td>
</tr>
<tr>
<td>Screening of Epoxy</td>
<td>CHIAO, T. T. / JESSOP, E. S./PENN, L.</td>
<td>1975</td>
<td>6 355</td>
</tr>
<tr>
<td>Scrubbers</td>
<td>ELECTRIC POWER RESEARCH INST.</td>
<td>1975</td>
<td>3 192</td>
</tr>
<tr>
<td>SEAS</td>
<td>PETRICK, F.A.</td>
<td>1975</td>
<td>6 247</td>
</tr>
<tr>
<td>Secondary Power Systems</td>
<td>HELSLER, C. W.</td>
<td>1975</td>
<td>4 217</td>
</tr>
<tr>
<td>Seismic Effects</td>
<td>PUGET SOUND POWER AND LIGHT CO.</td>
<td>1975</td>
<td>3 180</td>
</tr>
<tr>
<td>Selden, R. W.</td>
<td>SELDEN, R. W.</td>
<td>1976</td>
<td>5 253</td>
</tr>
<tr>
<td>Selected Bibliography</td>
<td>LLL</td>
<td>1974</td>
<td>1 30</td>
</tr>
<tr>
<td>Selected Bibliography</td>
<td>MADDEN, W. E.</td>
<td>1976</td>
<td>1 56</td>
</tr>
<tr>
<td>Semiconductor Materials</td>
<td>SELDEN, R. W.</td>
<td>1971</td>
<td>2 83</td>
</tr>
<tr>
<td>Sense</td>
<td>BRAUN, C. / CHEBRIAVSKY, E. A. / SALZANO, F. J.</td>
<td>1976</td>
<td>3 205</td>
</tr>
<tr>
<td>Separation Problem</td>
<td>DANIELS, P. / CLARE, T. A.</td>
<td>1973</td>
<td>1 24</td>
</tr>
<tr>
<td>Sets</td>
<td>MOODY, R. L.</td>
<td>1974</td>
<td>3 187</td>
</tr>
<tr>
<td>Several Epoxy Matrices</td>
<td>CHIAO, T. T. / JESSOP, E. S./HAMSTAD, M. A.</td>
<td>1975</td>
<td>6 357</td>
</tr>
<tr>
<td>Title</td>
<td>Author(s)</td>
<td>Year</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>SEVERAL FLYWHEELS</td>
<td></td>
<td>1974</td>
<td>31</td>
</tr>
<tr>
<td>1974 ITERATIVE PROCEDURE FOR CALCULATING THE FIRST TORSIONAL EIGENFREQUENCY OF A SHAFT WITH SEVERAL FLYWHEELS</td>
<td>ATZORI, B. / CURTI, G.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHAFT</td>
<td></td>
<td>1974</td>
<td>31</td>
</tr>
<tr>
<td>1974 ITERATIVE PROCEDURE FOR CALCULATING THE FIRST TORSIONAL EIGENFREQUENCY OF A SHAFT WITH SEVERAL FLYWHEELS</td>
<td>ATZORI, B. / CURTI, G.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHALE OIL</td>
<td></td>
<td>1974</td>
<td>243</td>
</tr>
<tr>
<td>1974 ENERGY. VOLUME 1. DEMANDS, RESOURCES, IMPACT, TECHNOLOGY, AND POLICY</td>
<td>PENNER, S. S. / ICHERMAN, L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES</td>
<td>STEINLICHT, B. / THUR, G. W.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHAPES FOR ANISOTROPIC</td>
<td></td>
<td>1975</td>
<td>119</td>
</tr>
<tr>
<td>1975 ON OPTIMAL SHAPES FOR ANISOTROPIC ROTATING DISKS.</td>
<td>GERNSTED, F. P. / BIGGS, F.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHAPES OF FLYWHEELS</td>
<td></td>
<td>1975</td>
<td>47</td>
</tr>
<tr>
<td>1975 ON OPTIMAL SHAPES FOR ANISOTROPIC ROTATING DISKS.</td>
<td>GERNSTED, F. P. / BIGGS, F.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHEAR</td>
<td></td>
<td>1964</td>
<td>258</td>
</tr>
<tr>
<td>1964 AN EXPERIMENT FOR DETERMINATION OF THE MECHANICAL PROPERTY IN SHEAR FOR A LINEAR ISOTROPIC VISCOELASTIC SOLID.</td>
<td>CHRISTENSEN, R. W. / GOTTENBERG, W.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1965 A FRACTURE CRITERION FOR ORTHOTROPIC PLATES UNDER THE INFLUENCE OF COMPRESSION AND SHEAR</td>
<td>WU, E. W.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971 FRACTURE CRITERIA FOR ORTHOTROPIC PLATE UNDER COMPRESSION AND SHEAR</td>
<td>WU, E. W.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 EVALUATION OF INTERLAMINAR SHEAR TEST FOR FIBER COMPOSITES</td>
<td>CHIAO, T. T. / MOORE, R. L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHEAR LOADING</td>
<td></td>
<td>1973</td>
<td>317</td>
</tr>
<tr>
<td>1973 FILAMENT-WOUND VESSEL FROM AN ORGANIC FIBER/EPOXY SYSTEM</td>
<td>CHIAO, T. T. / MARCON, W. A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHEAR TEST</td>
<td></td>
<td>1975</td>
<td>350</td>
</tr>
<tr>
<td>1975 EVALUATION OF INTERLAMINAR SHEAR TEST FOR FIBER COMPOSITES</td>
<td>CHIAO, T. T. / MOORE, R. L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHEERY, R. J.</td>
<td></td>
<td>1975</td>
<td>361</td>
</tr>
<tr>
<td>1975 STRENGTH RETENTION AND LIFE OF FIBER COMPOSITE MATERIALS</td>
<td>CHIAO, T. T. / SHEERY, R. J.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHIPBOARD CATAPULT</td>
<td></td>
<td>1970</td>
<td>143</td>
</tr>
<tr>
<td>1970 FINAL DESIGN REPORT, PROTOTYPE GEARBOX FLYWHEEL (FLYBOX) FOR STORED ENERGY ROTARY DRIVE SHIPBOARD CATAPULT</td>
<td>NELLIS, V. C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHIPBOARD STORED ENERGY</td>
<td></td>
<td>1966</td>
<td>84</td>
</tr>
<tr>
<td>1966 SPECIFICATIONS FOR SHIPBOARD STORED ENERGY CATAPULT FLYWHEEL PACKAGE</td>
<td>NAVAL ORDNANCE STATION, FOREST PARK, ILL.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHIPS</td>
<td></td>
<td>1975</td>
<td>247</td>
</tr>
<tr>
<td>1975 ENERGY TECHNOLOGY II (NAVY APPLICATIONS)</td>
<td>PETZICK, P. A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHIBAEV, M. P.</td>
<td></td>
<td>1974</td>
<td>20</td>
</tr>
<tr>
<td>1974 METHOD OF CALCULATING TORSIONAL VIBRATIONS IN A POWER UNIT WITH A NON-LINEAR SILICONE DAMPER</td>
<td>SHIBAEV, M. P. / KHODZHILOV, V. A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHORT-TERM FAILURE</td>
<td></td>
<td>1974</td>
<td>167</td>
</tr>
<tr>
<td>1974 NO-SHOCK SETS</td>
<td>MOODY, R. L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Author(s)</td>
<td>Volume</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Method of calculating torsional vibrations in a power unit with a non-linear silicone damper</td>
<td>Shiraev, W. P. / Khudzhirov, V. A.</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>Application of air bearings to high speed turbomachinery</td>
<td>Barnett, W. A. / Silver, A.</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Stress--rupture of simple s-glass/epoxy composites</td>
<td>Chiao, T. T. / Lepper, J. K. / Hetherington, N. W. / Moore, R. L.</td>
<td>6</td>
<td>302</td>
</tr>
<tr>
<td>Kinetic energy storage of off-peak electricity</td>
<td>Simpson, L. A. / Oldaker, I. E. / Stermscheg, J.</td>
<td>3</td>
<td>198</td>
</tr>
<tr>
<td>Feasibility analysis of the transmission for a flywheel heat engine hybrid propulsion system final report</td>
<td>Mechanical Technology, Inc.</td>
<td>2</td>
<td>82</td>
</tr>
<tr>
<td>Hybrid propulsion system transmission evaluation, phase 1, final report</td>
<td>Cordoner, W. A. / Grimm, D. H.</td>
<td>2</td>
<td>86</td>
</tr>
<tr>
<td>Status review of hybrid heat engine battery and heat engine flywheel vehicles</td>
<td>Lapedes, D. E. / Weltzer, J.</td>
<td>2</td>
<td>116</td>
</tr>
<tr>
<td>Stochastic finite element simulation of the nonlinear structural response of fibrous composite materials increased fuel economy in transportation systems by use of energy management</td>
<td>Larder, R. A.</td>
<td>6</td>
<td>349</td>
</tr>
<tr>
<td>Ideas and experiments in magnetic interfacing</td>
<td>Beachley, N. H. / Frank, A. A.</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Strength distribution of single filaments</td>
<td>Larder, R. A. / Beadle, C. W.</td>
<td>6</td>
<td>359</td>
</tr>
<tr>
<td>Independent energy systems for better efficiency</td>
<td>Marshall, D. W. / Morash, R. T. / Barber, R.</td>
<td>3</td>
<td>158</td>
</tr>
<tr>
<td>Skagit nuclear power project, units 1 and 2, license application</td>
<td>Puget Sound Power and Light Co.</td>
<td>3</td>
<td>180</td>
</tr>
<tr>
<td>Skagit-1 reactor</td>
<td>Puget Sound Power and Light Co.</td>
<td>3</td>
<td>180</td>
</tr>
<tr>
<td>Skagit-2 reactor</td>
<td>Puget Sound Power and Light Co.</td>
<td>3</td>
<td>180</td>
</tr>
<tr>
<td>The lubrication of bearings and slip rings in vacuum</td>
<td>O'Donnell, F. J. / Harris, L. C. / Warwick, W. G.</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>Operating large excavators on small power systems</td>
<td>Kilgore, L. A. / Washburn, D. C.</td>
<td>3</td>
<td>148</td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

SMALLEY, W.
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.

SNAP 50 REACTOR
1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-
POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES

SNAP 8 REACTOR
1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-
POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES

SNAP REACTORS
1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-
POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES

SOCIAL GOALS
1970 POWER-SYSTEMS RESEARCH SHIFTS TO MEET SOCIAL GOALS

SOLAR ARRAYS
1973 DYNAMICS OF A SATELLITE WITH A FLYWHEEL AND FLEXIBLE SOLAR ARRAYS

SOLAR CELL ARRAYS
1973 DYNAMICS OF A SATELLITE WITH A FLYWHEEL AND FLEXIBLE SOLAR ARRAYS

SOLAR ENERGY
1973 SUPERFLYWHEEL ENERGY STORAGE SYSTEM
1974 INDEPENDENT ENERGY SYSTEMS FOR BETTER EFFICIENCY
1974 ENERGY STORAGE (I I): DEVELOPING ADVANCED TECHNOLOGIES
1974 ENERGY STORAGE TECHNOLOGY
1974 ENERGY STORAGE: INCENTIVES AND PROSPECTS FOR ITS DEVELOPMENT
1974 POTENTIAL FOR LARGE-SCALE ENERGY STORAGE IN ELECTRIC UTILITY SYSTEMS
1975 ENERGY TECHNOLOGY 11 (NAVY APPLICATIONS)
1975 WIND POWER
1975 FUEL AND ADVANCED SYSTEMS DIVISION, RESEARCH PROGRESS REPORT PP-3
1975 MATERIALS REQUIREMENTS FOR ENERGY GENERATION, CONVERSION, AND STORAGE
1975 AN EVALUATION OF THE FUTURE ROLE OF STORAGE TECHNIQUES IN ELECTRIC POWER TECHNOLOGY
1976 ENERGY STORAGE - FEASIBILITY STUDY OF AN EXPERIMENT INVOLVING SOLAR ENERGY COLLECTION, ITS STORAGE BY A SUPER FLYWHEEL, AND ELECTRIC POWER GENERATION.
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLAR ENERGY COLLECTION</td>
<td>TATRY, B.</td>
<td>3 204</td>
</tr>
<tr>
<td>SOLAR ENERGY CONVERSION</td>
<td>RABENHORST, D. W.</td>
<td>3 153</td>
</tr>
<tr>
<td>SOLAR ENERGY STORAGE</td>
<td>LUCCHINI, A. P.</td>
<td>5 246</td>
</tr>
<tr>
<td>SOLAR ENERGY STORAGE</td>
<td>PEZDIRTZ, G. F.</td>
<td>3 199</td>
</tr>
<tr>
<td>SOLAR POWER</td>
<td>KALHAMMER, F. R. / SCHNEIDER, T. R.</td>
<td>6 251</td>
</tr>
<tr>
<td>SOLAR POWER PLANTS</td>
<td>EPRI</td>
<td>3 187</td>
</tr>
<tr>
<td>SOLAR SEA POWER PLANTS</td>
<td>RABENHORST, D. W. / DUGGER, G. L.</td>
<td>3 188</td>
</tr>
<tr>
<td>SOLAR-ENERGY</td>
<td>PENNER, S. S. / ICEMAN, L.</td>
<td>5 243</td>
</tr>
<tr>
<td>SOLID</td>
<td>CHRISTENSEN, R. W. / GOTTFENBERG, W.</td>
<td>6 256</td>
</tr>
<tr>
<td>SOLID</td>
<td>CHRISTENSEN, R. W. / GOTTFENBERG, W.</td>
<td>6 257</td>
</tr>
<tr>
<td>SOLID</td>
<td>CHRISTENSEN, R. W. / GOTTFENBERG, W.</td>
<td>6 250</td>
</tr>
<tr>
<td>SOLID</td>
<td>SAAKI J.</td>
<td>41</td>
</tr>
<tr>
<td>SOLID BODY</td>
<td>SAAKI J.</td>
<td>41</td>
</tr>
<tr>
<td>SOLIDS</td>
<td>CHRISTENSEN, R. W. / MACHDI, P. M.</td>
<td>6 284</td>
</tr>
<tr>
<td>SOLUTIONS IN NONLINEAR</td>
<td>CHRISTENSEN, R. W.</td>
<td>6 268</td>
</tr>
<tr>
<td>SOLVENTS AND STRESS</td>
<td>BUMANN, D. C. / WU, E. W.</td>
<td>6 263</td>
</tr>
<tr>
<td>SONNENSCHEIN, F. J.</td>
<td>BOERSMA, G. / SONNENSCHEIN, F. J.</td>
<td>4 237</td>
</tr>
<tr>
<td>SOURCE</td>
<td>MATTHEWS, L. E. / EVERETT, W. D. /</td>
<td>2 82</td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

SOURCES FOR URBAN
1980 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES
HOESS, J.A./CHEANEY, E.S./CRESWICK, P. A./TAYLOR, D.A./FISCHER, R.D.
/TIMBERLAKE, A.B./BASHAM, S.J. /HERREIDGE, J.T./WILCOX, J. P.
BATTARIE COLUMBUS LABS. 2 69

1980 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES

SOVIET FLYWHEELS
1976 FLYWHEELS: ENERGY-SAVING WAY TO GO
ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2 137

SPACE APPLICATION
1981 AN ELECTRO-MECHANICAL ENERGY STORAGE SYSTEM FOR SPACE APPLICATION
ROSS, J. B. 4 210

SPACE CRAFT
1974 THERMAL VACUUM QUALIFICATION TESTS ON A TELIX DOUBLE-GIMBALED MOMENTUM WHEEL
TODD, M. J. / WILSON, N. G. 4 234
1975 DESIGN AND TESTING OF AN ENERGY FLYWHEEL FOR AN INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS)
NOTTI, J. E. / CORMAC, A. 4 240

SPACE ELECTRIC POWER
1972 SUMMARY OF GAS BEARING APPLICATIONS IN THE FIELD OF SPACE ELECTRIC POWER SYSTEMS
DUNN, J. R. / REAM, L. W. 4 223

SPACE HEATING
1976 ENERGY STORAGE
KALHAMMER, F. R. / SCHNEIDER, T. R. 5 251

SPACE VEHICLES
1971 POTENTIAL APPLICATIONS FOR THE SUPERFLYWHEEL
RABBENHORST, D. W. 2 81

SPACE-BASED LASERS
1975 ANALYSIS OF HOMOPOLAR GENERATORS AND SUPERCONDUCTING INDUCTIVE ENERGY STORAGE SYSTEMS AS POWER SUPPLIES FOR HIGH-ENERGY SPACE-BASED LASERS
GILBERT, J. S./KERN, E.A. 3 163

SPACECRAFT APPLICATION
1975 DESIGN AND TEST OF A FLYWHEEL ENERGY STORAGE UNIT FOR SPACECRAFT APPLICATION
CORMAC, A. / NOTTI, J. E. / BUIZ, M. L. 4 239

SPACECRAFT ENERGY
1972 APPLICATION OF ISOTENSOID FLYWHEELS TO SPACECRAFT ENERGY AND ANGULAR MOMENTUM STORAGE
ADAMS, L. R. 4 224

SPACECRAFT POWER SUPPLIES
1981 AN ELECTRO-MECHANICAL ENERGY STORAGE SYSTEM FOR SPACE APPLICATION
ROES, J. B. 4 210
1973 DYNAMICS OF A SATELLITE WITH A FLYWHEEL AND FLEXIBLE SOLAR ARRAYS
PFEIFFER, F./POHL, A. 4 227

SPACECRAFT POWER SUPPLY
1981 AN ELECTRO-MECHANICAL ENERGY STORAGE SYSTEM FOR SPACE APPLICATION
ROES, J. B. 4 210

SPARK IGNITION ENGINES
1971 FLYWHEEL AND FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEMS FOR LOW-EMISSION VEHICLES
DUGGER, G. L./BRANDT, A./GEORGE, J.F. 2 80
/PERINI, L.L.
1974 EMISSION CHARACTERISTICS OF A PRIME MOVER FOR HYBRID VEHICLE USE
ALLSUP, J.R./FLMING, R.D. 2 102

172
<table>
<thead>
<tr>
<th>Topic</th>
<th>Author(s)</th>
<th>Year</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spark Ignition Engines (Contd.)</td>
<td>Schreck, H.; Torres, F.</td>
<td>1974</td>
<td>117</td>
</tr>
<tr>
<td>Hybrid Automotive Engine with Kinetic Energy Storage</td>
<td>Lapedes, D. E.; Meltzer, J.</td>
<td>1974</td>
<td>118</td>
</tr>
<tr>
<td>Alternative Prime Movers for Future Automobiles</td>
<td>Christsen, R. M.</td>
<td>1973</td>
<td>313</td>
</tr>
<tr>
<td>Special Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Special Theory of Viscoelastic Fluids for Application to Suspension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifications for Shipboard Storied Energy Catapult Flywheel Package</td>
<td>Naval Ordnance Station, Forest Park, Ill.</td>
<td>1966</td>
<td>64</td>
</tr>
<tr>
<td>Wind Power Conversion System</td>
<td>Troll, J. H.</td>
<td>1974</td>
<td>170</td>
</tr>
<tr>
<td>Three Mile Island Nuclear Station, Unit 2, License Application, FSAR Amendment 47</td>
<td>Metropolitan Edison Co.</td>
<td>1975</td>
<td>127</td>
</tr>
<tr>
<td>Specifications for Shipboard Storied Energy Catapult Flywheel Package</td>
<td>Naval Ordnance Station, Forest Park, Ill.</td>
<td>1966</td>
<td>64</td>
</tr>
<tr>
<td>Specimen for Tensile</td>
<td>Clements, L. L.; Moore, R. L.; Chiao, T. T.</td>
<td>1975</td>
<td>350</td>
</tr>
<tr>
<td>Elongated-Ring Specimen for Tensile Properties of Filament-Wound Composites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specimens</td>
<td>Chiao, T. T.; Cummins, A. D.; Moore, R. L.</td>
<td>1972</td>
<td>290</td>
</tr>
<tr>
<td>Fabrication and Testing of Epoxy Tensile Specimens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spherical Wedge</td>
<td>Christensen, R. W.</td>
<td>1966</td>
<td>6</td>
</tr>
<tr>
<td>Deformation of an Elastic Spherical Wedge</td>
<td>Christensen, R. W.</td>
<td>1967</td>
<td>7</td>
</tr>
<tr>
<td>Large Elastic Deformation of a Spherical Wedge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spinning Disk</td>
<td>Product Engineering</td>
<td>1973</td>
<td>99</td>
</tr>
<tr>
<td>Stored Energy in a Spinning Disk Could Alleviate the Energy Crisis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spinning Filamentary Disk</td>
<td>Kyser, A. C.</td>
<td>1964</td>
<td>3</td>
</tr>
<tr>
<td>The Uniform-Stress Spinning Filamentary Disk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spins</td>
<td>Lampe, D.</td>
<td>1974</td>
<td>98</td>
</tr>
<tr>
<td>Superflywheel: The Battery That Spins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spiral Groove Bearing</td>
<td>Bolten, J. A. C.</td>
<td>1974</td>
<td>230</td>
</tr>
<tr>
<td>Further Testing and Design Improvement of Grease Lubricated Spiral Groove Bearing Momentum Wheel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spiral-Groove Bearings</td>
<td>Vanderwal, U.</td>
<td>1976</td>
<td>236</td>
</tr>
<tr>
<td>Application Spiral-Groove Bearings on Spacecraft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spiral-Groove Bearing</td>
<td>Vanderwal, U.</td>
<td>1976</td>
<td>236</td>
</tr>
<tr>
<td>Application Spiral-Groove Bearings on Spacecraft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SPOTTS, M. F.
1963 DETERMINING INERTIA AND TIME REQUIREMENTS FOR FLYWHEEL MACHINES

SPRING
1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES

STABILIZATION
1966 FLYWHEEL STABILIZATION OF A RIGID BODY SUBJECTED TO CONSTANTLY APPLIED PERTURBATIONS
1971 THE DRALLRAD: A FLYWHEEL FOR THE STABILIZATION OF SYNCHRONOUS SATELLITES
1975 ACTIVE STABILIZATION OF THE ROTARY MOTION OF A SOLID BODY

STANDBY POWER
1971 HYDRAULIC TRANSMISSION COUPLED STANDBY POWER UNIT

STANDBY POWER UNIT
1971 HYDRAULIC TRANSMISSION COUPLED STANDBY POWER UNIT

STANDING, J. M.
1974 A 1000 NMS FLYWHEEL OPTIMISATION STUDY
1974 A 150 NMS FLYWHEEL OPTIMISATION STUDY

STATE-OF-THE-ART
1976 ENERGY STORAGE TECHNOLOGY
1976 FLYWHEELS: ENERGY-SAVING WAY TO GO

STATION
1975 THREE MILE ISLAND NUCLEAR STATION, UNIT 2, NO INSPECTION REPORT NO.75-01 AND CORRESPONDENCE
1975 THREE MILE ISLAND NUCLEAR STATION, UNIT 2, LICENSE APPLICATION, FSAR, AMENDMENT 27

STATUS OF ALTERNATIVE
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS
1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS

STATUS REVIEW
1974 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES

STEAM
1974 STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS, FIFTEEN PAPERS--SURVEY OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE SYSTEMS

STEAM GENERATORS
1975 MATERIALS REQUIREMENTS FOR ENERGY GENERATION, CONVERSION, AND STORAGE

JAFFEE, R. I.
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STREAM LINES</td>
<td>PUGET SOUND POWER AND LIGHT CO.</td>
<td>3 180</td>
<td></td>
</tr>
<tr>
<td>1975 SKAGIT NUCLEAR POWER PROJECT, UNITS 1 AND 2, LICENSE</td>
<td>3 180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPLICATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEAM TURBINES</td>
<td>ROBINSON, A. L.</td>
<td>3 165</td>
<td></td>
</tr>
<tr>
<td>1974 ENERGY STORAGE, (I): USING ELECTRICITY MORE EFFICIENTLY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEEL</td>
<td>POST, R. F./POST, S. F.</td>
<td>1 25</td>
<td></td>
</tr>
<tr>
<td>1973 FLYWHEEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEEL FLYWHEEL</td>
<td>RABENHORST, D. W.</td>
<td>3 157</td>
<td></td>
</tr>
<tr>
<td>1973 SUPERFLYWHEEL ENERGY STORAGE SYSTEM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STERNSCHEG, J.</td>
<td>SIMPSON, L. A./OLDAKER, I. K./</td>
<td>3 198</td>
<td></td>
</tr>
<tr>
<td>1976 KINETIC ENERGY STORAGE OF OFF-PEAK ELECTRICITY</td>
<td>STERNSCHEG, J.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STERNLICHET, B.</td>
<td>STERNLICHET, B./THURSTON, G. M.</td>
<td>2 119</td>
<td></td>
</tr>
<tr>
<td>1976 ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STIFFNESS</td>
<td>CHRISTENSEN, R. M./WAALS, F. M.</td>
<td>6 292</td>
<td></td>
</tr>
<tr>
<td>1972 EFFECTIVE STIFFNESS OF RANDOMLY ORIENTED FIBRE COMPOSITES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-</td>
<td>BATTELLLE COLUMBUS LABS</td>
<td>2 70</td>
<td></td>
</tr>
<tr>
<td>POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUELS.</td>
<td>/IURA, T.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE</td>
<td>LAPEDES, D. E./MELTZER, J.</td>
<td>2 118</td>
<td></td>
</tr>
<tr>
<td>FLYWHEEL VEHICLES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STOCHASTIC FINITE ELEMENT</td>
<td>LARDER, R. A.</td>
<td>6 340</td>
<td></td>
</tr>
<tr>
<td>1972 STOCHASTIC FINITE ELEMENT SIMULATION OF THE NONLINEAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRUCTURAL RESPONSE OF FIBROUS COMPOSITE MATERIALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STONE, R. G.</td>
<td>STONE, R. G./CHIAO, T. T./RINGE.</td>
<td>6 354</td>
<td></td>
</tr>
<tr>
<td>1975 FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS, SECOND</td>
<td>I. A./PENN, L. S./CLEMENTS, L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUARTERLY PROGRESS REPORT</td>
<td>L./CHIAO, C. C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 ILL PROGRAME FOR COMPOSITE FLYWHEEL</td>
<td>CHIAO, T. T./STONE, R. G.</td>
<td>3 203</td>
<td></td>
</tr>
<tr>
<td>1976 FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS</td>
<td>STONE, R. G.</td>
<td>1 57</td>
<td></td>
</tr>
<tr>
<td>STONEISFER, F. R.</td>
<td>SANFORD, R. J./STONEISFER, F. R.</td>
<td>6 287</td>
<td></td>
</tr>
<tr>
<td>1971 FRACTURE TOUGHNESS IN UNIDIRECTIONAL GLASS-REINFORCED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLASTICS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STORAGE -</td>
<td>TATRY, B.</td>
<td>3 204</td>
<td></td>
</tr>
<tr>
<td>1976 ENERGY STORAGE - FEASIBILITY STUDY OF AN EXPERIMENT INVOLVING</td>
<td>TATRY, B.</td>
<td>3 204</td>
<td></td>
</tr>
<tr>
<td>SOLAR ENERGY COLLECTION, ITS STORAGE BY A SUPER FLYWHEEL, AND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTRIC POWER GENERATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STORAGE - FEASIBILITY</td>
<td>TATRY, B.</td>
<td>3 204</td>
<td></td>
</tr>
<tr>
<td>1976 ENERGY STORAGE - FEASIBILITY STUDY OF AN EXPERIMENT INVOLVING</td>
<td>TATRY, B.</td>
<td>3 204</td>
<td></td>
</tr>
<tr>
<td>SOLAR ENERGY COLLECTION, ITS STORAGE BY A SUPER FLYWHEEL, AND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTRIC POWER GENERATION</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

175
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

STORAGE - FEASIBILITY (CONT'D.)

STORAGE APPARATUS
1972 INERTIAL ENERGY STORAGE APPARATUS AND SYSTEM FOR UTILIZING THE SAME
POST, R. F. / POST, S. F. 2 86

1973 INERTIAL ENERGY STORAGE APPARATUS
POST, S. F. 2 96

STORAGE BY FLYWHEELS
1978 ENERGY STORAGE BY FLYWHEELS
FULLMAN, R. L. 3 186

STORAGE DEVICE
1974 FLYWHEELS AS AN ENERGY STORAGE DEVICE, A SELECTED BIBLIOGRAPHY
LLL 1 30

1976 ENERGY STORAGE DEVICE
TIN, W. C. 3 189

STORAGE DEVICES
1978 WHEN DO ELECTRIC STORAGE DEVICES MAKE ECONOMIC SENSE?
BRAUN, C. / CHERNIAWSKY, E. A. / SALZANO, F. J. 3 205

STORAGE FINAL REPORT
1975 DEVELOPMENT OF HIGH-DENSITY INERTIAL-ENERGY STORAGE FINAL REPORT
GORDON, H. S. 3 193

STORAGE FLYWHEELS
1976 FIBER COMPOSITES FOR ENERGY STORAGE FLYWHEELS
PENN, L. S. / CHIAO, T. T. 6 362

1976 ECONOMIC AND TECHNICAL FEASIBILITY STUDY FOR ENERGY STORAGE FLYWHEELS
ROCKWELL INTERNATIONAL, SPACE DIV. 3 201

1976 COMPOSITE MATERIALS FOR ENERGY STORAGE FLYWHEELS
CHIAO, T. T. 6 371

STORAGE FOR WIND
1975 ENERGY STORAGE FOR WIND ENERGY CONVERSION SYSTEMS
ZLOTNICK, W. 3 190

STORAGE IN ELECTRIC
1976 POTENTIAL FOR LARGE-SCALE ENERGY STORAGE IN ELECTRIC UTILITY SYSTEMS
KALHAMMER, F. / ZYGIELBAUM, F. S. 3 177

STORAGE IN RAIL
1964 ON-BOARD ENERGY STORAGE IN RAIL RAPID TRANSIT
MARLOWE, E. W. 2 51

STORAGE OF OFF-PEAK
1975 KINETIC ENERGY STORAGE OF OFF-PEAK ELECTRICITY
SIMPSON, L. A. / OLDAKER, I. E. / STERNSCHEG, J. 3 198

STORAGE SUBSTATIONS
1966 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
NORTH AMERICAN AVIATION INC. LOS ANGELES DIV. 2 55

1967 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
NORTH AMERICAN AVIATION INC. LOS ANGELES DIV. 4 212

1967 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
NORTH AMERICAN AVIATION INC. LOS ANGELES DIV. 4 213

1967 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
NORTH AMERICAN AVIATION INC. LOS ANGELES DIV. 4 214

1967 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
NORTH AMERICAN AVIATION INC. LOS ANGELES DIV. 4 215

1967 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
HELSELY, C. W. / CALL, B. J. 4 216

STORAGE SYSTEM
1961 AN ELECTRO-MECHANICAL ENERGY STORAGE SYSTEM FOR SPACE APPLICATION
ROES, J. B. 4 210

176
<table>
<thead>
<tr>
<th>STORAGE SYSTEM (CONT.)</th>
<th>1973 SUPERFLYWHEEL ENERGY STORAGE SYSTEM</th>
<th>RABENHORST, D. W.</th>
<th>3 157</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORAGE SYSTEMS</td>
<td>1987 FLYWHEEL ENERGY STORAGE SYSTEMS FOR TRANSIT BUSES</td>
<td>WILCOX, J. P.</td>
<td>2 68</td>
</tr>
<tr>
<td>1974 STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS. FIFTEEN PAPERS: SURVEY OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE SYSTEMS</td>
<td>VDI</td>
<td>3 160</td>
<td></td>
</tr>
<tr>
<td>1974 METALS AND COMPOSITES IN SUPERFLYWHEEL ENERGY STORAGE SYSTEMS</td>
<td>RABENHORST, D. W.</td>
<td>2 112</td>
<td></td>
</tr>
<tr>
<td>1975 METALS AND COMPOSITES IN SUPERFLYWHEEL ENERGY STORAGE SYSTEMS</td>
<td>RABENHORST, D. W.</td>
<td>1 43</td>
<td></td>
</tr>
<tr>
<td>1975 ANALYSIS OF HOMOPOLAR GENERATORS AND SUPERCONDUCTING INDUCTIVE ENERGY STORAGE SYSTEMS AS POWER SUPPLIES FOR HIGH-ENERGY, SPACE-BASED LASERS</td>
<td>GILBERT, J. E./KERN, E.A.</td>
<td>3 183</td>
<td></td>
</tr>
<tr>
<td>STORAGE TECHNIQUES</td>
<td>1975 AN EVALUATION OF THE FUTURE ROLE OF STORAGE TECHNIQUES IN ELECTRIC POWER TECHNOLOGY</td>
<td>PEZZIRI, C. F.</td>
<td>5 109</td>
</tr>
<tr>
<td>STORAGE TECHNOLOGIES</td>
<td>1975 TECHNICAL ASSESSMENT OF ENERGY STORAGE TECHNOLOGIES</td>
<td>SCHNEIDER, T. R.</td>
<td>3 191</td>
</tr>
<tr>
<td>STORAGE TECHNOLOGY</td>
<td>1974 ENERGY STORAGE TECHNOLOGY</td>
<td>VANDERBRYN, J.</td>
<td>3 171</td>
</tr>
<tr>
<td>1975 AC/DC POWER CONDITIONING AND CONTROL EQUIPMENT FOR ADVANCED CONVERSION AND STORAGE TECHNOLOGY.</td>
<td>WOOD, P. / PELLY, B. R.</td>
<td>3 195</td>
<td></td>
</tr>
<tr>
<td>STORAGE UNIT</td>
<td>1969 WEIGHT IS SAVED WHEN FLYWHEEL ENERGY STORAGE UNIT SUPPLEMENTS AIRCRAFT SECONDARY POWER SYSTEMS.</td>
<td>HELSLEY, C. W.</td>
<td>4 217</td>
</tr>
<tr>
<td>1975 DESIGN AND TEST OF A FLYWHEEL ENERGY STORAGE UNIT FOR SPACECRAFT APPLICATION.</td>
<td>CORNACK, A. / NOTTI, J. E. / RUIZ, M. L.</td>
<td>4 230</td>
<td></td>
</tr>
<tr>
<td>STORAGE USING ALKALI</td>
<td>1974 HEAT STORAGE USING ALKALI METAL SALTS, ALKALI EARTH SALTS, IRON CHLORIDE, ZINC CHLORIDE, BORON OXIDE, AND EUTECTIC FLUORIDE MIXTURES</td>
<td>SCHROEDER, J.</td>
<td>5 242</td>
</tr>
<tr>
<td>STORAGE VIA FLYWHEELS</td>
<td>1973 ENERGY STORAGE VIA FLYWHEELS</td>
<td>GILMAN, J. J./ HUCKE, E.E.</td>
<td>3 154</td>
</tr>
<tr>
<td>STORED</td>
<td>1968 SPECIFICATIONS FOR SHIPBOARD STORED ENERGY CATAPULT FLYWHEEL PACKAGE</td>
<td>NAVAL ORDNANCE STATION, FOREST PARK, ILL.</td>
<td>2 64</td>
</tr>
<tr>
<td>1970 FINAL DESIGN REPORT, PROTOTYPE GEARBOX FLYWHEEL (FLYBOX) FOR STORED ENERGY ROTARY DRIVE SHIPBOARD CATAPULT</td>
<td>NELLS, V. C.</td>
<td>3 143</td>
<td></td>
</tr>
<tr>
<td>1973 STORED ENERGY IN A SPINNING DISK COULD ALLEVIATE THE ENERGY CRISIS</td>
<td>PRODUCT ENGINEERING</td>
<td>2 99</td>
<td></td>
</tr>
<tr>
<td>STORED ENERGY</td>
<td>1968 SPECIFICATIONS FOR SHIPBOARD STORED ENERGY CATAPULT FLYWHEEL PACKAGE</td>
<td>NAVAL ORDNANCE STATION, FOREST PARK, ILL.</td>
<td>2 64</td>
</tr>
<tr>
<td>1970 FINAL DESIGN REPORT, PROTOTYPE GEARBOX FLYWHEEL (FLYBOX) FOR STORED ENERGY ROTARY DRIVE SHIPBOARD CATAPULT</td>
<td>NELLS, V. C.</td>
<td>3 143</td>
<td></td>
</tr>
<tr>
<td>1973 STORED ENERGY IN A SPINNING DISK COULD ALLEVIATE THE ENERGY CRISIS</td>
<td>PRODUCT ENGINEERING</td>
<td>2 99</td>
<td></td>
</tr>
<tr>
<td>1974 ENERGY STORAGE. (11): DEVELOPING ADVANCED TECHNOLOGIES</td>
<td>ROBINSON, A. L.</td>
<td>3 186</td>
<td></td>
</tr>
</tbody>
</table>

177
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Institution</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORED ENERGY CATAPULT</td>
<td>NAVAL ORDNANCE STATION, FOREST PARK, ILL.</td>
<td></td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>STORING ENERGY</td>
<td>RABENHORST, D. M. / DUGGER, G. L.</td>
<td></td>
<td>3</td>
<td>188</td>
</tr>
<tr>
<td>STRAIN MEASUREMENT TECHNIQUES</td>
<td>MOORE, R. L. / LEPPER, J. K.</td>
<td></td>
<td>6</td>
<td>325</td>
</tr>
<tr>
<td>STRAIN RATE EFFECT</td>
<td>CHIAO, T. T. / MOORE, R. L.</td>
<td></td>
<td>6</td>
<td>285</td>
</tr>
<tr>
<td>STRANDS</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1974 STRESS-RUPTURE BEHAVIOR OF GRAPHITE FIBER/EPoxy STRANDS</td>
<td></td>
<td></td>
<td>6</td>
<td>324</td>
</tr>
<tr>
<td>STRATEGIES AND IMPLEMENTATION</td>
<td>ERDA/DAT</td>
<td></td>
<td>5</td>
<td>244</td>
</tr>
<tr>
<td>STRATIFIED CHARGE ENGINES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTERNATIVE PRIME MOTORS FOR FUTURE AUTOMOBILES</td>
<td>STERKLIETH, B. / THUR, G. W.</td>
<td></td>
<td>2</td>
<td>119</td>
</tr>
<tr>
<td>STRENGTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971 A GENERAL THEORY OF STRENGTH FOR ANISOTROPIC MATERIALS</td>
<td>TSI, S. W. / WU, E. W.</td>
<td></td>
<td>6</td>
<td>279</td>
</tr>
<tr>
<td>1972 STRENGTH TENSORS AND THEIR INVARIANTS - THEORY AND EXPERIMENT</td>
<td>WU, E. W.</td>
<td></td>
<td>6</td>
<td>291</td>
</tr>
<tr>
<td>1972 STRENGTH OF S-GLASS FIBER</td>
<td>WU, E. W. / SCHUEBELIN, J. K.</td>
<td></td>
<td>6</td>
<td>327</td>
</tr>
<tr>
<td>1972 CALCULATION OF STRESSES AND STRENGTH RETENTION OF Rotating DISKS AND FLYWHEELS</td>
<td>CHIAO, T. T. / MOORE, R. L.</td>
<td></td>
<td>6</td>
<td>320</td>
</tr>
<tr>
<td>1972 STRENGTH AND FRACTURE OF COMPOSITES</td>
<td>LARBER, R. A. / READEL, C. W.</td>
<td></td>
<td>6</td>
<td>339</td>
</tr>
<tr>
<td>1972 LAMINATE STRENGTH - A DIRECT CHARACTERIZATION PROCEDURE</td>
<td>LARBER, R. A. / READEL, C. W.</td>
<td></td>
<td>6</td>
<td>339</td>
</tr>
<tr>
<td>1975 STRENGTH DISTRIBUTION OF SINGLE FILAMENTS</td>
<td>LARSEN, F. N.</td>
<td></td>
<td>6</td>
<td>377</td>
</tr>
<tr>
<td>1975 STRENGTH RETENTION AND LIFE OF FIBER COMPOSITE MATERIALS</td>
<td>LARSEN, F. N.</td>
<td></td>
<td>6</td>
<td>377</td>
</tr>
<tr>
<td>1976 CHEMISTRY AND TECHNOLOGY OF HIGH STRENGTH POLYAMIDE FIBERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRENGTH AND FRACTURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 STRENGTH AND FRACTURE OF COMPOSITES</td>
<td>WU, E. W.</td>
<td></td>
<td>6</td>
<td>327</td>
</tr>
<tr>
<td>Publication</td>
<td>Title and Authors</td>
<td>Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>STRENGTH DISTRIBUTION</td>
<td>LARDER, E. A./BEADLE, C. W.</td>
<td>6 359</td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>STRENGTH FOR ANISOTROPIC</td>
<td>TSAI, S. W./WU, E. W.</td>
<td>6 279</td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>STRENGTH OF FIBERS</td>
<td>CHIAO, T. T./HAMSTAD, M. A./MARCON, M. A./HANAPES, JR.</td>
<td>6 325</td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>STRENGTH OF S-GLASS/EPOXY</td>
<td>CHIAO, T. T./COMMINS, A.D.</td>
<td>6 308</td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>STRENGTH RETENTION</td>
<td>CHIAO, T. T./MOORE, R. L.</td>
<td>6 286</td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>STRENGTH RETENTION OF S-GLASS/EPOXY COMPOSITES</td>
<td>CHIAO, T. T./MOORE, R. L.</td>
<td>6 286</td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>STRENGTH RETENTION AND LIFE OF FIBER COMPOSITE MATERIALS</td>
<td>CHIAO, T. T./SHERRY, R. J.</td>
<td>6 361</td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>STRENGTH TENSORS</td>
<td>WU, E. W.</td>
<td>6 261</td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>STRENGTH TESTING</td>
<td>CHIAO, T. T./MOORE, R. L.</td>
<td>6 277</td>
<td></td>
</tr>
<tr>
<td>1967</td>
<td>STRESS</td>
<td>MORGANTHALER, G. F./BONK, S. P.</td>
<td>1 8</td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>STRESS CALCULATIONS</td>
<td>MORGANTHALER, G. F./BONK, S. P.</td>
<td>1 8</td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>STRESS ANALYSIS</td>
<td>MORGANTHALER, G. F./BONK, S. P.</td>
<td>1 8</td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>STRESS CONCENTRATION</td>
<td>MORGANTHALER, G. F./BONK, S. P.</td>
<td>1 8</td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>STRESS EFFECTS</td>
<td>WU, E. W./RUHMANN, D. C.</td>
<td>6 332</td>
<td></td>
</tr>
</tbody>
</table>

170
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

STRESS FRACTURE

1976 FINITE ELEMENT STUDY OF A CAST IRON FLYWHEEL WITH PARTICULAR EMPHASIS ON STRESS CONCENTRATIONS

HINDIN, P. J. 1 40

STRESS OF FIBER/

1971 STRAIN RATE EFFECT ON THE ULTIMATE TENSILE STRESS OF FIBER/EPoxy STRANDS

CHIAO, T. T./MOORE, R. L. 6 285

STRESS ON DIFFUSION

1973 THE EFFECT OF STRESS ON DIFFUSION IN COMPOSITES - EXPERIMENTAL OBSERVATIONS.

RUHMANN, D. C. / WU, E. W. 6 315

STRESS RUPTURE

1971 THE EFFECT OF SOLVENTS AND STRESS ON THE STRESS RUPTURE LIFE OF EPOXY-Glass COMPOSITES

RUHMANN, D. C / WU, E. W. 6 283

1971 STRESS-RUPTURE OF S-Glass/EPoxy MULTIFILAMENT STRANDS

CHIAO, T. T./MOORE, R. L. 6 284

1972 ANALYSIS OF STRESS-RUPTURE DATA FROM S-Glass COMPOSITES

ROBINSON, E. Y./CHIAO, T. T. 6 298

CHIAO, T. T./MOORE, R. L. 6 300

1972 STRESS-RUPTURE OF SIMPLE S-Glass/EPoxy COMPOSITES

CHIAO, T. T./LEPPER, J. K./ WETHERINGTON, N. W./MOORE, R. L. 6 302

1973 STRESS-RUPTURE BEHAVIOR OF STRANDS OF AN ORGANIC FIBER/EPoxy MATRIX

CHIAO, T. T./WELLS, J. E./MOORE, R. L./HAMSTAD, W. A. 6 318

1974 STRESS RUPTURE OF GLASS/EPoxy COMPOSITES - ENVIRONMENT AND STRESS EFFECTS.

CHIAO, T. T./HAMSTAD, W. A./JESSOP, E. S. 6 332

1974 STRESS-RUPTURE OF EPOXY-COATED BE-WIRE

1973 FLYWHEELS

POST, R. P./POST, S. F. 1 25

STRESS-RUPTURE AND FATIGUE

1974 ACOUSTIC EMISSION FROM STRESS-RUPTURE AND FATIGUE OF AN ORGANIC FIBER COMPOSITE

HAMSTAD, W. A./CHIAO, T. T. 6 334

STRESS-RUPTURE BEHAVIOR

1973 STRESS-RUPTURE BEHAVIOR OF STRANDS OF AN ORGANIC FIBER/EPoxy MATRIX

CHIAO, T. T./WELLS, J. E./MOORE, R. L./HAMSTAD, W. A. 6 318

1974 STRESS-RUPTURE BEHAVIOR OF GRAPHITE FIBER/EPoxy STRANDS

CHIAO, T. T./MOORE, R. L. 6 324

STRESS-RUPTURE DATA

1972 ANALYSIS OF STRESS-RUPTURE DATA FROM S-Glass COMPOSITES

ROBINSON, E. Y./CHIAO, T. T. 6 288

STRESS-RUPTURE OF EPOXY-COATED

1974 STRESS-RUPTURE OF EPOXY-COATED BE-WIRE

CHIAO, T. T./HAMSTAD, W. A./JESSOP, E. S. 6 342

STRESS-RUPTURE OF S-Glass/EPoxy

1971 STRESS-RUPTURE OF S-Glass/EPoxy MULTIFILAMENT STRANDS

CHIAO, T. T./MOORE, R. L. 6 284

STRESSES

1972 CALCULATION OF STRESSES AND STRENGTH RETENTION OF ROTATING DISKS AND FLYWHEELS

KRITZER, R. 1 20

1973 SUPERFLYWHEEL

1973 ENERGY STORAGE VIA FLYWHEELS

1974 THERMAL STRESSES IN COMPOSITE FLYWHEELS

1975 FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS. SECOND QUARTERLY PROGRESS REPORT.

KURTZ, R. 1 20

RABENHORST, D. W. 3 153

GILMAN, J. J./HUCKE, E. E. 6 164

REUER, R. C. Jr. 1 28

180
<table>
<thead>
<tr>
<th>STRING</th>
<th>TITLE</th>
<th>AUTHOR(S)</th>
<th>VOLUME</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRESSES (CONT'D.)</td>
<td>LONG-TERM PERFORMANCE OF FIBER COMPOSITES</td>
<td>CHIAG, C. C.</td>
<td>6</td>
<td>886</td>
</tr>
<tr>
<td></td>
<td>MECHANICAL DESIGN OF A COMPOSITE CENTERLESS FLYWHEEL</td>
<td>BLAKE, A.</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>STRESSES AND STRENGTH</td>
<td>CALCULATION OF STRESSES AND STRENGTH RETENTION OF ROTATING DISK AND FLYWHEELS</td>
<td>KRITZER, R.</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>STRESSES IN COMPOSITE</td>
<td>THERMAL STRESSES IN COMPOSITE FLYWHEELS</td>
<td>REUTER, R. C. JR.</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>STROHLEIN, J.N.</td>
<td>VEHICLE POWER SYSTEM FOR LIMITED VEHICLE MOVEMENT WITHOUT USE OF FUEL</td>
<td>STROHLEIN, J.N.</td>
<td>2</td>
<td>126</td>
</tr>
<tr>
<td>STRUCTURAL RESPONSE</td>
<td>STOCHASTIC FINITE ELEMENT SIMULATION OF THE NONLINEAR STRUCTURAL RESPONSE OF FIBER COMPOSITE MATERIALS</td>
<td>LARDER, R. A.</td>
<td>6</td>
<td>349</td>
</tr>
<tr>
<td>STRUCTURES</td>
<td>AXISYMMETRIC FILAMENTARY STRUCTURES</td>
<td>FRASER, A. F. / FREISEN, P. R. /</td>
<td>6</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>NON-STATIONARY RANDOM VIBRATION OF NONLINEAR STRUCTURES</td>
<td>BENTON, M. D. / BURGO-GRAP, O. R.</td>
<td>6</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>FAILURE CRITERIA AND FAILURE ANALYSIS OF COMPOSITE STRUCTURES</td>
<td>TOLAND, R. K. / YANG, C. Y. / HSU, C. C.</td>
<td>6</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>PROBABILISTIC DESIGN OF COMPOSITE STRUCTURES</td>
<td>TOLAND, R. H. / VICARIO, A. A.</td>
<td>6</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAXWELL, R. / TOLAND, R. H. / JOHNSON, C. W.</td>
<td>6</td>
<td>329</td>
</tr>
<tr>
<td>STUDER, PHILIP A.</td>
<td>MECHANICAL CAPACITOR</td>
<td>KIRK, JAMES A. / STUDER, PHILIP A. / EVANS, HAROLD E.</td>
<td>3</td>
<td>208</td>
</tr>
<tr>
<td>STUDIES</td>
<td>INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS) STUDY, VOLUME 1: FEASIBILITY STUDIES</td>
<td>NOTT, J. E. / CORMACK, A. / SCHMILL, W. C.</td>
<td>4</td>
<td>231</td>
</tr>
<tr>
<td>STUDY</td>
<td>COMPOSITE FLYWHEEL STRESS ANALYSIS AND MATERIALS STUDY</td>
<td>MORGANTHALER, G. F. / BORK, S. P.</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES</td>
<td>BATTLE COLUMBUS LABS</td>
<td>2</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>FLYWHEEL DRIVE SYSTEMS STUDY FINAL REPORT</td>
<td>NOTT, J. E. / CORMACK, A. / SCHMILL, W. C.</td>
<td>4</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>INTEGRATED POWER / ATTITUDE CONTROL SYSTEM (IPACS) STUDY VOLUME 1: FEASIBILITY STUDIES</td>
<td>NOTT, J. E. / CORMACK, A. / SCHMILL, W. C.</td>
<td>4</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>INTEGRATED POWER / ATTITUDE CONTROL SYSTEM (IPACS) STUDY VOLUME 2: CONCEPTUAL DESIGNS</td>
<td>STANDING, J. M.</td>
<td>1</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>A 1000 NW FLYWHEEL OPTIMIZATION STUDY</td>
<td>STANDING, J. M.</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>FLYWHEEL OPTIMIZATION STUDY</td>
<td>BINDEN, P. J.</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>FINITE ELEMENT STUDY OF A CAST IRON FLYWHEEL WITH PARTICULAR EMPHASIS ON STRESS CONCENTRATIONS</td>
<td>BOERSMA, G. / SONNENSHEIN, F. J.</td>
<td>4</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>STUDY OF DOUBLE GIMBALED MOMENTUM WHEELS IN THE ATTITUDE AND ORBIT CONTROL SYSTEM OF A GEOSTATIONARY COMMUNICATION SATELLITE</td>
<td>181</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

STUDY (CONT'D.)
1975 ECONOMIC AND TECHNICAL FEASIBILITY STUDY FOR ENERGY STORAGE FLYWHEELS
ROCKWELL INTERNATIONAL, SPACE DIV.
3 201

1976 ENERGY STORAGE - FEASIBILITY STUDY OF AN EXPERIMENT INVOLVING SOLAR ENERGY COLLECTION, ITS STORAGE BY A SUPER FLYWHEEL, AND ELECTRIC POWER GENERATION.
TATRY, B.
3 204

STUDY AND DEMONSTRATION
1971 FLYWHEEL FEASIBILITY STUDY AND DEMONSTRATION.FINAL REPORT
GILBERT, R. R./HARVEY, J.R./HEUER, C. E./LAWSON, L. J.
2 77

STUDY FOR ENERGY
1975 ECONOMIC AND TECHNICAL FEASIBILITY STUDY FOR ENERGY STORAGE FLYWHEELS
ROCKWELL INTERNATIONAL, SPACE DIV.
3 201

STUDY OF EPOXY
1971 STUDY OF EPOXY RESINS FOR FIBER COMPOSITES
RICHARDSON, J. / MOORE, R. L. / CHIAO, T. T.
6 288

SUBJECTED
1988 FLYWHEEL STABILIZATION OF A RIGID BODY SUBJECTED TO CONSTANTLY APPLIED PERTURBATIONS
DERGACHEVA, N. I.
3 140

SUBSTATIONS FOR AIRCRAFT
1966 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
NORTH AMERICAN AVIATION INC., LOS ANGELES DIV.
2 85

1967 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
NORTH AMERICAN AVIATION INC., LOS ANGELES DIV.
4 212

1967 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
NORTH AMERICAN AVIATION INC., LOS ANGELES DIV.
4 213

1967 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
NORTH AMERICAN AVIATION INC., LOS ANGELES DIV.
4 214

1967 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
NORTH AMERICAN AVIATION INC., LOS ANGELES DIV.
4 215

1967 EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
HELSEY, C. W. / CALL, B. J.
4 216

SUBWAY
1970 CUT SUBWAY POWER COSTS
NEW YORK CITY METROPOLITAN TRANSPORTATION AUTHORITY
2 74

1974 FLYWHEEL BRAKES STORE NEW TRAIN'S ENERGY FOR ELECTRICITY-SAVING STARTS; NEW YORK'S LATEST SUBWAY CARS
ARMAGNAC, A. P.
2 105

1975 NEW YORK SUBWAY TRIES OUT FLYWHEEL ENERGY STORAGE
RAILWAY GAZETTE INTERNATIONAL
2 123

SUBWAY CARS
1974 FLYWHEEL BRAKES STORE NEW TRAIN'S ENERGY FOR ELECTRICITY-SAVING STARTS; NEW YORK'S LATEST SUBWAY CARS
ARMAGNAC, A. P.
2 108

SUBWAY POWER COSTS
1970 CUT SUBWAY POWER COSTS
NEW YORK CITY METROPOLITAN TRANSPORTATION AUTHORITY
2 74

SUGIYAMA, H.
1975 HYBRID POWER SYSTEM
SUGIYAMA, H./HIROTA, T./IKEI, J./KABASA, Y.
2 129

SULFUR OXIDES
1975 FOSSIL FUEL AND ADVANCED SYSTEMS DIVISION.RESEARCH PROGRESS REPORT FF-3
ELECTRIC POWER RESEARCH INST.
3 192
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGY STORAGE</td>
<td>SULZBERGER, V. T.</td>
<td>3 208</td>
</tr>
<tr>
<td>ENERGY ON CALL: A MORE EFFICIENT PEAKING SYSTEM WOULD EXPLOIT THE ADVANTAGES OF ENERGY STORAGE, WHILE CONSERVING CAPITAL AND RESOURCES</td>
<td>CABAZZA, J. A. / SCHNEIDER, T. R.</td>
<td>3 200</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>CABAZZA, J. A. / SCHNEIDER, T. R.</td>
<td>3 200</td>
</tr>
<tr>
<td>SUMMARY OF GAS BEARING APPLICATIONS IN THE FIELD OF SPACE ELECTRIC POWER SYSTEMS</td>
<td>LUCCHINI, A. P.</td>
<td>5 246</td>
</tr>
<tr>
<td>NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>DUNN, J. H. / REAM, L. W.</td>
<td>4 223</td>
</tr>
<tr>
<td>SUNDSTRAND AVIATION</td>
<td>CORDNER, W. A. / GRAHAM, D. R.</td>
<td>2 86</td>
</tr>
<tr>
<td>HYBRID PROPULSION SYSTEM TRANSMISSION EVALUATION, PHASE I.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINAL REPORT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPER CONDUCTING MAGNETS</td>
<td>KALHAWER, F. R. / COOPER, V. R.</td>
<td>3 181</td>
</tr>
<tr>
<td>ENERGY STORAGE</td>
<td>RABENHORST, D. W.</td>
<td>2 68</td>
</tr>
<tr>
<td>PRIMARY ENERGY STORAGE AND THE SUPER FLYWHEEL</td>
<td>ARMAGNAC, A. P.</td>
<td>2 73</td>
</tr>
<tr>
<td>PRIMARY FLYWHEEL TO POWER ZERO-EMISSION CAR</td>
<td>RABENHORST, D. W.</td>
<td>1 14</td>
</tr>
<tr>
<td>PRIMARY ENERGY STORAGE AND THE SUPER FLYWHEEL</td>
<td>MECH. ENG.</td>
<td>1 15</td>
</tr>
<tr>
<td>SUPER FLYWHEEL</td>
<td>CHIRONIS, N. P.</td>
<td>2 76</td>
</tr>
<tr>
<td>SUPER FLYWHEEL CONFIGURATIONS FORM HEART OF MECHANICAL-POWERED DRIVES</td>
<td>RABENHORST, D. W.</td>
<td>2 81</td>
</tr>
<tr>
<td>POTENTIAL APPLICATIONS FOR THE SUPERFLYWHEEL</td>
<td>BRUNELLE, R. J.</td>
<td>1 22</td>
</tr>
<tr>
<td>SUPER FLYWHEEL; A SECOND LOOK</td>
<td>TAYLOR, B.</td>
<td>3 204</td>
</tr>
<tr>
<td>ENERGY STORAGE - FEASIBILITY STUDY OF AN EXPERIMENT INVOLVING SOLAR ENERGY COLLECTION, ITS STORAGE BY A SUPER FLYWHEEL, AND ELECTRIC POWER GENERATION.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPER FLYWHEEL CONFIGURATIONS FORM HEART OF MECHANICAL-POWERED DRIVES</td>
<td>CHIRONIS, N. P.</td>
<td>2 76</td>
</tr>
<tr>
<td>SUPER FLYWHEELS</td>
<td>RABENHORST, D. W.</td>
<td>3 157</td>
</tr>
<tr>
<td>SUPERFLYWHEEL ENERGY STORAGE SYSTEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPERCONDUCTING CABLES</td>
<td>ERDA</td>
<td>3 179</td>
</tr>
<tr>
<td>ELECTRIC POWER SYSTEMS</td>
<td>GILBERT, J. S. / KERN, E. A.</td>
<td>3 183</td>
</tr>
<tr>
<td>ANALYSIS OF HOMOPOLAR GENERATORS AND SUPERCONDUCTING INDUCTIVE ENERGY STORAGE SYSTEMS AS POWER SUPPLIES FOR HIGH-ENERGY, SPACE-BASED LASERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPERCONDUCTING MAGNETS ENERGY STORAGE</td>
<td>VDI</td>
<td>3 180</td>
</tr>
<tr>
<td>STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS, FIFTEEN PAPERS--SURVEY OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPERCONDUCTING MAGNETS</td>
<td>VDI</td>
<td>3 180</td>
</tr>
<tr>
<td>STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS, FIFTEEN PAPERS--SURVEY OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE SYSTEMS</td>
<td>KELLER, W. E.</td>
<td>3 188</td>
</tr>
<tr>
<td>ENERGY STORAGE FOR THE ELECTRIC POWER INDUSTRY</td>
<td>HATDOCK, J. L.</td>
<td>3 172</td>
</tr>
<tr>
<td>ENERGY STORAGE AND ITS ROLE IN ELECTRIC POWER SYSTEMS</td>
<td>FERNANDES, R. A. / GILDER'SLEEVE, O.</td>
<td>3 176</td>
</tr>
<tr>
<td>ASSESSMENT OF ADVANCED CONCEPTS IN ENERGY STORAGE AND THEIR APPLICATION ON ELECTRIC UTILITY SYSTEMS</td>
<td>D. / SCHNEIDER, T. R.</td>
<td></td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

SUPERCONDUCTING MAGNETS (CONT'D.)
1975 ENERGY STORAGE (Continued)
1976 ANALYSIS OF HOMOPOLAR GENERATORS AND SUPERCONDUCTING
INDUCTIVE ENERGY STORAGE SYSTEMS AS POWER SUPPLIES FOR HIGH-
ENERGY, SPACE-BASED LASERS
1975 UTILITIES EYE LARGE-SCALE ENERGY STORAGE
1975 STORING ELECTRICAL ENERGY ON A LARGE SCALE
1976 ENERGY STORAGE
1976 ENERGY STORAGE

KALHAWER, F. R. / COOPER, V. R. 3 181
GILBERT, J. S. / KERN, E. A. 3 183
RICCI, L. J. 3 184
GARDNER, G. C. / HART, A. B. / WOOFITT, R. D. 3 186
/ WRIGHT, J.
KALHAWER, F. R. / SCHNEIDER, T. R. 5 251
AMERICAN NUCLEAR SOCIETY, HINSDALE, ILL.

SUPERCONDUCTIVITY
1974 ENERGY STORAGE (111): DEVELOPING ADVANCED TECHNOLOGIES

ROBINSON, A. L. 3 186

SUPERCONDUCTORS
1974 ENERGY STORAGE (111): DEVELOPING ADVANCED TECHNOLOGIES

ROBINSON, A. L. 3 186

SUPERFLYWHEEL
1969 PRIMARY ENERGY STORAGE AND THE SUPER FLYWHEEL
1971 POTENTIAL APPLICATIONS FOR THE SUPERFLYWHEEL
1971 MATERIAL REQUIREMENTS FOR THE SUPERFLYWHEEL
1973 SUPERFLYWHEEL
1973 DESIGN CONSIDERATIONS FOR A 100-MEGAJOULE/450-MEGAWATT
SUPERFLYWHEEL
1973 SUPERFLYWHEEL ENERGY STORAGE SYSTEM
1974 TECHNICAL PROGRAM PLAN FOR SUPERFLYWHEEL DEVELOPMENT
1974 METALS AND COMPOUNDS IN SUPERFLYWHEEL ENERGY STORAGE SYSTEMS
1974 MULTICOM SUPERFLYWHEEL, TECHNICAL MEMO
1974 SUPERFLYWHEEL: THE BATTERY THAT SPINS
1975 METALS AND COMPOUNDS IN SUPERFLYWHEEL ENERGY STORAGE SYSTEMS
1975 SUPERFLYWHEEL FOR STORING ENERGY FROM OTFC PLANTS
1976 ENERGY STORAGE – FEASIBILITY STUDY OF AN EXPERIMENT INVOLVING
SOLAR ENERGY COLLECTION, ITS STORAGE BY A SUPERFLYWHEEL, AND ELECTRIC POWER GENERATION.

RABENHORST, D. W. 2 68
RABENHORST, D. W. 2 81
RABENHORST, D. W. 1 17
RABENHORST, D. W. 3 153
RABENHORST, D. W. / TAYLOR, R. J. 1 26
RABENHORST, D. W. 3 157
RABENHORST, D. W. 1 27
RABENHORST, D. W. 1 112
RABENHORST, D. W. 1 33
LAMPE, D. 1 36
RABENHORST, D. W. 1 43
RABENHORST, D. W. / DUGGER, G. L. 3 188
TATRY, B. 3 204

RABENHORST, D. W. 3 157
RABENHORST, D. W. 2 112
RABENHORST, D. W. 1 43
RABENHORST, D. W. / DUGGER, G. L. 3 188

SUPERFLYWHEELS
1974 SUPERFLYWHEEL: THE BATTERY THAT SPINS

LAMPE, D. 1 36

SUPPLIES FOR HIGH-ENERGY
1975 ANALYSIS OF HOMOPOLAR GENERATORS AND SUPERCONDUCTING
INDUCTIVE ENERGY STORAGE SYSTEMS AS POWER SUPPLIES FOR HIGH-
ENERGY, SPACE-BASED LASERS

GILBERT, J. S. / KERN, E. A. 3 183

SUPPLY FACILITY
1974 COMPUTER CONTROLLED 120 MVA POWER SUPPLY FACILITY FOR
NUCLEAR FUSION RESEARCH

MIYAHARA, A. / BANNAI, E. / KITANO, Y. 3 158

SUPPORTED ON GREASE-LUBRICATED
1972 QUALIFICATION TESTS ON REACTION FLYWHEELS SUPPORTED ON
GREASE-LUBRICATED BEARINGS

BOS, J. O. G. 4 225

184
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Source</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspended Large Momentum 1976 Magnetically Suspended Large Momentum Wheel</td>
<td>Sannis, A. V. / Dendy, J. B. / Schmitt, F. W.</td>
<td></td>
<td>4 238</td>
</tr>
<tr>
<td>Suspension 1973 A Special Theory of Viscoelastic Fluids for Application to Suspension</td>
<td>Christensen, R. M.</td>
<td></td>
<td>8 313</td>
</tr>
<tr>
<td>Synchronous Machines 1974 Cycloconverter-Controlled Synchronous Machines for Load Compensation on AC Power Systems</td>
<td>Finlayson, P. T. / Washburn, D. C.</td>
<td></td>
<td>3 178</td>
</tr>
<tr>
<td>Synchronous Satellites 1971 The Railroad: A Flywheel for the Stabilization of Synchronous Satellites</td>
<td>Wehde, Heinz</td>
<td></td>
<td>4 222</td>
</tr>
<tr>
<td>Synthesis 1974 Synthesis of the Belt of a Discrete Belt Variator</td>
<td>Giulia, N. V. / Yudovskyi, I. D.</td>
<td></td>
<td>2 104</td>
</tr>
<tr>
<td>Syska and Hennessy, Inc. Engineers 1970 First National City Bank Uses Constant-Power System for Computers</td>
<td>Ortiz, J. V.</td>
<td></td>
<td>3 144</td>
</tr>
<tr>
<td>SYSTEM ALTERNATIVES</td>
<td>LAWSON, L. J.</td>
<td>3 156</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>1973 NEW UNINTERRUPTIBLE POWER SYSTEM ALTERNATIVES USING HIGH CAPACITY KINETIC ENERGY WHEELS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYSTEM ANALYSES</th>
<th>HENRY, E. A.</th>
<th>1 58</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978 RESEARCH LEADING TO THE PRODUCTION AND EARLY USE OF NUMERIC DATA BANKS OF MATERIAL PROPERTIES AND SYSTEM ANALYSES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYSTEM DESCRIPTION</th>
<th>DAVIS, D. D.</th>
<th>2 134</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978 BATTERY-FLYWHEEL HYBRID ELECTRIC POWER SYSTEM FOR NEAR-TERM APPLICATION, VOL. 1, SYSTEM DESCRIPTION.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYSTEM DESIGN</th>
<th>DAVIS, D. D.</th>
<th>2 135</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978 BATTERY-FLYWHEEL HYBRID ELECTRIC POWER SYSTEM FOR NEAR-TERM APPLICATION, VOL. 2, SYSTEM DESIGN.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYSTEM FOR BUS</th>
<th>NATIONAL ACADEMY OF SCIENCES</th>
<th>2 103</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974 SAFETY REVIEW OF THE KINETIC ENERGY WHEEL (K EW) SYSTEM FOR BUS APPLICATION</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYSTEM FOR COMPUTERS</th>
<th>ORTIZ, J. V.</th>
<th>3 144</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970 FIRST NATIONAL CITY BANK USES CONSTANT-POWER SYSTEM FOR COMPUTERS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYSTEM FOR FILAMENT</th>
<th>CHIAO, T. T., ALTHOUSE, L. P.</th>
<th>6 309</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972 CHARACTERIZATION OF AN EPOXY SYSTEM FOR FILAMENT WINDING</td>
<td>CHIAO, T. T., JESSOP, E. S., NEWK, H. A., PENN, L. S., CHIAO, T. T.</td>
<td>6 340</td>
</tr>
<tr>
<td>1974 AN EPOXY SYSTEM FOR FILAMENT WINDING</td>
<td></td>
<td>6 356</td>
</tr>
<tr>
<td>1975 A LONG LIFE EPOXY SYSTEM FOR FILAMENT WINDING</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYSTEM FOR LOCAL-DUTY</th>
<th>AUTOMOTIVE ENG.</th>
<th>2 93</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973 FLYWHEEL-ELECTRIC SYSTEM FOR LOCAL-DUTY VEHICLES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYSTEM FOR SPACE</th>
<th>ROES, J. B.</th>
<th>4 210</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981 AN ELECTRO-MECHANICAL ENERGY STORAGE SYSTEM FOR SPACE APPLICATION</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYSTEM TRANSMISSION EVALUATION</th>
<th>COREN, W. A., GRIMM, D. H.</th>
<th>2 88</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972 HYBRID PROPULSION SYSTEM TRANSMISSION EVALUATION, PHASE I. FINAL REPORT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYSTEMS AND FUELS</th>
<th>AEROSPACE CORP.</th>
<th>2 113</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS</td>
<td></td>
<td>2 115</td>
</tr>
<tr>
<td>1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS</td>
<td>/IURA, T.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYSTEMS ARE BOOTSTRAPS</th>
<th>PRODUCT ENG.</th>
<th>3 141</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973 EMERGENCY PUMP SYSTEMS ARE BOOTSTRAPS TO POWER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYSTEMS AS POWER</th>
<th>GILBERT, J. S., KERN, E. A.</th>
<th>3 183</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975 ANALYSIS OF HOMOPOLAR GENERATORS AND SUPERCONDUCTING INDUCTIVE ENERGY STORAGE SYSTEMS AS POWER SUPPLIES FOR HIGH-ENERGY SPACE-BASED LASERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systems Division</td>
<td>Electric Power Research Inst.</td>
<td>3 192</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------</td>
<td>-------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Systems for Energy</th>
<th>VDI</th>
<th>3 100</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Systems for High-Performance</th>
<th>Chiao, T. T./Jessop, E. S./Penn, L. S.</th>
<th>6 355</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975 Screening of Epoxy Systems for High-Performance Filament Winding Applications</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Systems for Low-Emission</th>
<th>Dugger, G. L./Brandt, A./George, J. P./Perini, L. L.</th>
<th>2 80</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971 Flywheel and Flywheel Heat Engine Hybrid Propulsion Systems for Low-Emission Vehicles</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Systems for Minuteman</th>
<th>Fruytow, N. N.</th>
<th>2 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970 Comparison of Electrically Run Up Flywheel (DC Motor) with Turbine, Hot Gas Motor and Other Systems for Minuteman Application</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Systems for Moving</th>
<th>Baxter, J. W./Lawson, L. J.</th>
<th>2 107</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974 Kinetic Energy Systems for Moving People</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Systems for Road</th>
<th>Bader, C./Plust, H. G.</th>
<th>2 111</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Systems for Transit</th>
<th>Wilcox, J. P.</th>
<th>2 78</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972 Flywheel Energy Storage Systems for Transit Buses</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

|--|---|-------|

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1972 Flywheel Drive Systems Study.Final Report</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tatery, B.</th>
<th>Tatery, B.</th>
<th>3 100</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Taxing</th>
<th>Kalhammer, F. R./Schneider, T. R.</th>
<th>5 251</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976 Energy Storage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Taylor, R. J.</th>
<th>Rabenhorst, D. W./Taylor, R. J.</th>
<th>1 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973 Design Considerations for a 100-Megajoule/500-Megawatt Superflywheel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1974 Hybrid Drive with Flywheel Component for Economic and Dynamic Operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Author(s)</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td>------</td>
</tr>
<tr>
<td>Technical Assessment</td>
<td>Schneider, T. R.</td>
<td>3 191</td>
</tr>
<tr>
<td>Technical Feasibility Study</td>
<td>Rockwell International, Space Div.</td>
<td>3 201</td>
</tr>
<tr>
<td>Technical Idea</td>
<td>Poubeau, P.</td>
<td>4 220</td>
</tr>
<tr>
<td>Technical Memo</td>
<td>Rabenhorst, D. W.</td>
<td>1 53</td>
</tr>
<tr>
<td>Technical Program Plan</td>
<td>Rabenhorst, D. W.</td>
<td>1 27</td>
</tr>
<tr>
<td>Techniques for Fiber</td>
<td>Moore, R. L. / Lepper, J. K.</td>
<td>6 525</td>
</tr>
<tr>
<td>Techniques in Electric</td>
<td>Pezzirg, G. F.</td>
<td>3 199</td>
</tr>
<tr>
<td>Technische Berechnung der Motoren-Werke</td>
<td>Kritzer, R.</td>
<td>1 20</td>
</tr>
<tr>
<td>Technische Hochschule</td>
<td>Schreck, H. / Torres, F.</td>
<td>2 117</td>
</tr>
<tr>
<td>Technische Hochschule Aachen (F.R. Germany)</td>
<td>Schreck, H. / Torres, F.</td>
<td>2 133</td>
</tr>
<tr>
<td>Technologies</td>
<td>Robinson, A. L.</td>
<td>3 166</td>
</tr>
<tr>
<td>1975 Technical Assessment of Energy Storage Technologies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td>Rabenhorst, D. W.</td>
<td>1 19</td>
</tr>
<tr>
<td>Policy</td>
<td>VanKevy, J.</td>
<td>3 171</td>
</tr>
<tr>
<td>1975 Energy Storage Technology</td>
<td>Peterick, P. A.</td>
<td>5 247</td>
</tr>
<tr>
<td>1975 Energy Technology (II) (Navy Applications)</td>
<td>Wood, P. / Pelly, B. R.</td>
<td>3 195</td>
</tr>
<tr>
<td>1975 AC/DC Power Conditioning and Control Equipment for Advanced</td>
<td>Pezzirg, G. F.</td>
<td>3 199</td>
</tr>
<tr>
<td>Conversion and Storage Technology</td>
<td>Energy Research and Development Administration, and Lawrence Livermore Laboratory</td>
<td>1 50</td>
</tr>
<tr>
<td>1975 An Evaluation of the Future Role of Storage Techniques in</td>
<td>Larsen, F. K.</td>
<td>5 377</td>
</tr>
<tr>
<td>Electric Power Technology</td>
<td>Selden, R. W.</td>
<td>5 253</td>
</tr>
<tr>
<td>1975 Flywheel Technology Symposium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry and Technology of High Strength Polyamide Fibers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TECHNOLOGY SYMPOSIUM</td>
<td>ENERGY RESEARCH AND DEVELOPMENT</td>
<td>1</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>1975 1975 FLXWHEEL TECHNOLOGY SYMPOSIUM</td>
<td>ADMINISTRATION, AND LAWRENCE LIVERMORE LABORATORY</td>
<td></td>
</tr>
<tr>
<td>TELDIX DOUBLE-GIMBALED MOMENTUM</td>
<td>TODD, M. J. / WILSON, N. G.</td>
<td></td>
</tr>
<tr>
<td>1974 THERMAL VACUUM QUALIFICATION TESTS ON A TELDIX DOUBLE-GIMBALED MOMENTUM WHEEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TELDIX LUFTFAHRT-AUSBAUSTUNGS G.M.B.H.</td>
<td>WEHDE, HEINZ</td>
<td></td>
</tr>
<tr>
<td>1971 THE DRAILRAD: A FLXWHEEL FOR THE STABILIZATION OF SYNCHRONOUS SATELLITE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973 ENVIRONMENTAL TESTS ON DRAILRAD DR 20-8-XXM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 DESIGN AND LUBRICATION OF BALL BEARING UNIT FOR FLXWHEELS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 QUALIFICATION AND LIFE TESTING OF A BALL-BEARING FLXWHEEL</td>
<td>TELDIX LUFTFAHRT-AUSBAUSTUNGS G.M.B.H.</td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>TELDIX LUFTFAHRT-AUSBAUSTUNGS G.M.B.H.</td>
<td></td>
</tr>
<tr>
<td>1977 THE TEMPERATURE EFFECT OF INTERNAL AND EXTERNAL PRESSURE OF TWO ANGLe WOUND PIPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 ULTRAHIGH TEMPERATURE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976 A THERMODYNAMIC CRITERION FOR THE GLASS-TRANSITION TEMPERATURE</td>
<td>CHIAO, T. T.</td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE CHARACTERISTICS</td>
<td>RYLANDER, H.G. / WOODSON, H.H. / BECKER, E.</td>
<td></td>
</tr>
<tr>
<td>1975 APPLICATION SPIRAL-GROOVE BEARINGS ON SPACECRAFT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE EFFECTS</td>
<td>B. / BOWERS, R.</td>
<td></td>
</tr>
<tr>
<td>1975 APPLICATION SPIRAL-GROOVE BEARINGS ON SPACECRAFT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE GRADIENTS</td>
<td>CHRISTENSEN, R. M.</td>
<td></td>
</tr>
<tr>
<td>1974 THERMAL STRESSES IN COMPOSITE FLXWHEELS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE-CURABLE EPOXY</td>
<td>CHIAO, T. T.</td>
<td></td>
</tr>
<tr>
<td>1974 THERMAL STRESSES IN COMPOSITE FLXWHEELS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 A ROOM TEMPERATURE-CURABLE EPOXY FOR ADVANCED FIBER COMPOSITES</td>
<td>CHIAO, T. T. / MOORE, R. L.</td>
<td></td>
</tr>
<tr>
<td>TEMPERATURES AND HYDRODYNAMIC</td>
<td>BORETZ, J. E.</td>
<td></td>
</tr>
<tr>
<td>1972 LOW PEAK TEMPERATURES AND HYDRODYNAMIC BEARINGS - KEY TO LONG LIFE ORGANIC HAMMER CYCLE SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TENSILE PROPERTIES</td>
<td>CHIAO, T. T. / CUMMINS, A. D. / MOORE, R. L.</td>
<td></td>
</tr>
<tr>
<td>1972 FABRICATION AND TESTING OF EPOXY TENSILE SPECIMENS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972 TENSILE PROPERTIES OF PRED-49 FIBER IN EPOXY MATRIX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 STRAIN MEASUREMENT TECHNIQUES FOR FIBER MODULUS DETERMINATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 TENSILE PROPERTIES OF AN ULTRA-HIGH-STRENGTH GRAPHITE FIBER AN EPOXY MATRIX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 TENSILE PROPERTIES OF AN ULTRA-HIGH-STRENGTH GRAPHITE FIBER AN EPOXY MATRIX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 ELONGATED-RING SPECIMEN FOR TENSILE PROPERTIES OF FILAMENT-WOUND COMPOSITES</td>
<td>CHIAO, T. T. / HAMSTAD, W. A. / JESSOP, E. S.</td>
<td></td>
</tr>
<tr>
<td>1975 ELONGATED-RING SPECIMEN FOR TENSILE PROPERTIES OF FILAMENT-WOUND COMPOSITES</td>
<td>CHIAO, T. T. / HAMSTAD, W. A. / JESSOP, E. S.</td>
<td></td>
</tr>
<tr>
<td>1975 ELONGATED-RING SPECIMEN FOR TENSILE PROPERTIES OF FILAMENT-WOUND COMPOSITES</td>
<td>CHIAO, T. T. / HAMSTAD, W. A. / JESSOP, E. S.</td>
<td></td>
</tr>
<tr>
<td>1975 ELONGATED-RING SPECIMEN FOR TENSILE PROPERTIES OF FILAMENT-WOUND COMPOSITES</td>
<td>CHIAO, T. T. / HAMSTAD, W. A. / JESSOP, E. S.</td>
<td></td>
</tr>
<tr>
<td>1975 ELONGATED-RING SPECIMEN FOR TENSILE PROPERTIES OF FILAMENT-WOUND COMPOSITES</td>
<td>CHIAO, T. T. / HAMSTAD, W. A. / JESSOP, E. S.</td>
<td></td>
</tr>
<tr>
<td>1975 ELONGATED-RING SPECIMEN FOR TENSILE PROPERTIES OF FILAMENT-WOUND COMPOSITES</td>
<td>CHIAO, T. T. / HAMSTAD, W. A. / JESSOP, E. S.</td>
<td></td>
</tr>
</tbody>
</table>
Tensile Specimens

1972 Fabrication and testing of epoxy tensile specimens
Chiao, T. T./Cummins, A. D./Moore, R. L.

1972 Tensile Strength

1970 A tensile test method for fibers
Chiao, T. T./Moore, R. L.

1971 Study of epoxy resins for fiber composites
Richardson, J./Moore, R. L./Chiao, T. T.

1972 Tensile properties of Pb-49 fiber in epoxy matrix
Chiao, T. T./Moore, R. L.

1972 Characterization of an epoxy system for filament winding
Chiao, T. T./Althouse, L. P.

1973 Graphite fiber/epoxy composites
Chiao, T. T./Moore, R. L./Walkep, C. M.

1973 Materials evaluation for 9X11-B magnet
Chiao, T. T./Walkep, C. M./Newey, H. A.

Tensile Stress

1971 Strain rate effect on the ultimate tensile stress of fiber/epoxy strands
Chiao, T. T./Moore, R. L.

Tensile Test Method

1970 A tensile test method for fibers
Chiao, T. T./Moore, R. L.

Tensors

1972 Strength tensors and their invariants—theory and experiment
Wu, E. M.

1972 Optimal experimental measurement of anisotropic failure tensors
Wu, E. M.

Test

1968 Off-axis test of a composite
Wu, E. M./Thomas, R. L.

1970 A tensile test method for fibers
Chiao, T. T./Moore, R. L.

1973 A critical test for a class of nonlinear constitutive equations
Christensen, R. M./Van Es, H. E.

1975 Evaluation of interlaminar shear test for fiber composites
Chiao, T. T./Moore, R. L.

1975 Design and test of a flywheel energy storage unit for spacecraft application
Cormack, A./Mottl, J. E./Ruit, W. L.

1976 An accelerated test for predicting the lifetime of organic fiber composites
Chiao, C. C.

Test for Fiber

1975 Evaluation of interlaminar shear test for fiber composites
Chiao, T. T./Moore, R. L.

Test for Predicting

1976 An accelerated test for predicting the lifetime of organic fiber composites
Chiao, C. C.

Test Method

1970 A tensile test method for fibers
Chiao, T. T./Moore, R. L.

Testing

1963 Testing magneticflywheels at speeds up to 25000 rpm.
Machy (Lond)

1971 Design and testing of high energy density flywheels for application to flywheel heat engine hybrid vehicle driving systems for low-emission vehicles
Wu, E. M./Jenina, K. J./Lawson, L. J.

1971 Flywheel and flywheel heat engine hybrid propulsion systems for low-emission vehicles
Dugger, G. L./Brandt, A./George, J. F./Perini, L. L.

1972 Fabrication and testing of epoxy tensile specimens
Chiao, T. T./Cummins, A. D./Moore, R. L.

1973 Instrumented impact testing of carbon fiber composite materials
Toland, R. K.

1974 Further testing and design improvement of grease lubricated spiral groove bearing momentum wheel
Bollen, J. A. C.
<table>
<thead>
<tr>
<th>Year</th>
<th>Publication</th>
<th>Author(s)</th>
<th>Journal or Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>Alternative Prime Movers for Future Automobiles</td>
<td>Steenkamp, B. / Thurston, G.W.</td>
<td>2 119</td>
</tr>
<tr>
<td>1974</td>
<td>Qualification and Life Testing of a Ball-Bearing Flywheel</td>
<td>Teldix Luftfahrt-Ausbildungs GMBH</td>
<td>4 235 H.</td>
</tr>
<tr>
<td>1974</td>
<td>Further Testing and Design Improvement of Grease Lubricated Spiral Groove Bearing Momentum Wheel</td>
<td>Bollen, J.A.C.</td>
<td>4 230</td>
</tr>
<tr>
<td>1983</td>
<td>Testing Magneto Flywheels at Speeds up to 35000 RPM</td>
<td>Machy (Lond)</td>
<td>1 2</td>
</tr>
<tr>
<td>1973</td>
<td>Instrumented Impact Testing of Carbon Fiber Composite Materials</td>
<td>Toland, R.H.</td>
<td>6 319</td>
</tr>
<tr>
<td>1972</td>
<td>Qualification Tests on Reaction Flywheels Supported on Grease-Lubricated Bearings</td>
<td>Bos, J.G.G.</td>
<td>4 225</td>
</tr>
<tr>
<td>1973</td>
<td>Environmental Tests on DRALLRAD Dr 20-8-23K</td>
<td>Schulte, Hans Holger</td>
<td>4 229</td>
</tr>
<tr>
<td>1974</td>
<td>Thermal Vacuum Qualification Tests on a Teldix Double-Gimballed Momentum Wheel</td>
<td>Toddd, W.J. / Wilson, N.G.</td>
<td>4 234</td>
</tr>
<tr>
<td>1973</td>
<td>Environmental Tests on DRALLRAD Dr 20-8-23K</td>
<td>Schulte, Hans Holger</td>
<td>4 229</td>
</tr>
<tr>
<td>1972</td>
<td>Qualification Tests on Reaction Flywheels Supported on Grease-Lubricated Bearings</td>
<td>Bos, J.G.G.</td>
<td>4 225</td>
</tr>
<tr>
<td>Tetra Tech Inc.</td>
<td>Assessment of the State-of-the-Art of Feeding Wind-Generated Electricity into Utility Power Grids</td>
<td>Reed, J.I.</td>
<td>3 297</td>
</tr>
</tbody>
</table>

191
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFTR ELECTRICAL SYSTEM</td>
<td>Bronner, G. / Murray, J.</td>
<td>3 200</td>
</tr>
<tr>
<td>THEOREMS</td>
<td>Christensen, R. W.</td>
<td>6 269</td>
</tr>
<tr>
<td>1966 VARIATIONAL AND MINIMUM THEOREMS FOR THE LINEAR THEORY OF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VISCOELASTICITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORETICAL ANALYSIS</td>
<td>Matthews, L. E. / Everett, W. D. / Binder, R.</td>
<td>2 62</td>
</tr>
<tr>
<td>1964 GENERAL THEORETICAL ANALYSIS AND EVALUATION OF AN EXPERIMENTAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODEL OF A CONSTANT-SPEED FLYWHEEL POWER SOURCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY AND EXPERIMENT</td>
<td>Wu, E. M.</td>
<td>6 291</td>
</tr>
<tr>
<td>1972 STRENGTH TENSORS AND THEIR INVARIANTS – THEORY AND EXPERIMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY OF STRENGTH</td>
<td>Tsai, S. W. / Wu, E. M.</td>
<td>6 279</td>
</tr>
<tr>
<td>1971 A GENERAL THEORY OF STRENGTH FOR ANISOTROPIC MATERIALS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY OF VISCOELASTICITY</td>
<td>Christensen, R. W.</td>
<td>6 259</td>
</tr>
<tr>
<td>1969 VARIATIONAL AND MINIMUM THEOREMS FOR THE LINEAR THEORY OF</td>
<td>Christensen, R. W.</td>
<td>6 282</td>
</tr>
<tr>
<td>VISCOELASTICITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971 THEORY OF VISCOELASTICITY: AN INTRODUCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973 A SPECIAL THEORY OF VISCOELASTIC FLUIDS FOR APPLICATION TO</td>
<td>Christensen, R. W.</td>
<td>6 313</td>
</tr>
<tr>
<td>SUSPENSION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THERMAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR</td>
<td>Reuter, R. C. Jr. / Todd, W. J. / Wilcox, N. G.</td>
<td>4 234</td>
</tr>
<tr>
<td>POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES</td>
<td>Schneider, T. R.</td>
<td>3 161</td>
</tr>
<tr>
<td>1974 THERMAL VACUUM QUALIFICATION TESTS ON A TELEDIX DOUBLE-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GIMBALED MOMENTUM WHEEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 TECHNICAL ASSESSMENT OF ENERGY STORAGE TECHNOLOGIES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THERMAL EFFICIENCY</td>
<td>Jaffee, R. J.</td>
<td>5 250</td>
</tr>
<tr>
<td>1975 MATERIALS REQUIREMENTS FOR ENERGY GENERATION, CONVERSION, AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STORAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THERMAL ENERGY STORAGE</td>
<td>Penner, S. S. / Icerman, L.</td>
<td>5 248</td>
</tr>
<tr>
<td>1975 ENERGY-STOREAGE SYSTEM</td>
<td>Kalbamer, F. R. / Cooper, V. R.</td>
<td>3 161</td>
</tr>
<tr>
<td>1975 ENERGY STORAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THERMAL STORAGE</td>
<td>Pezibert, G. F.</td>
<td>3 199</td>
</tr>
<tr>
<td>1975 AN EVALUATION OF THE FUTURE ROLE OF STORAGE TECHNIQUES IN</td>
<td>American Nuclear Society, Hinsdale, ILL.</td>
<td>5 252</td>
</tr>
<tr>
<td>ELECTRIC POWER TECHNOLOGY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976 ENERGY STORAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THERMAL STRESSES</td>
<td>Reuter, R. C. Jr.</td>
<td>1 28</td>
</tr>
<tr>
<td>1974 THERMAL STRESSES IN COMPOSITE FLYWHEELS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THERMAL VACUUM QUALIFICATION</td>
<td>Todd, W. J. / Wilson, N. G.</td>
<td>4 234</td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS

CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

THERMIONIC CONVERTERS
1968 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES
2 69

1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES

THERMODYNAMIC CRITERION
1970 A THERMODYNAMIC CRITERION FOR THE CLASS-TRANSITION TEMPERATURE.
CHRISTENSEN, R. M.
638

THERMOELECTRIC GENERATORS
1968 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES
2 69

1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES

THERMONUCLEAR DEVICES
1974 LARGE FLYWHEEL POWER SUPPLY FOR FUSION EXPERIMENTS IN THE MAX-PLANCHE-INSTITUT FUR PLASMAPHYSIK, GARCHING, GERMANY

THERMONUCLEAR REACTORS
1972 INVESTIGATION OF THE MONOPOLAR MOTOR-GENERATOR AS A POWER SUPPLY FOR CONTROLLED FUSION EXPERIMENTS
3 156
1974 COMPUTER CONTROLLED 120 MVA POWER SUPPLY FACILITY FOR NUCLEAR FUSION RESEARCH
2 158
1975 FOSSIL FUEL AND ADVANCED SYSTEMS DIVISION: RESEARCH PROGRESS REPORT FF-3

THERMOSETTING RESINS
1975 CHARACTERIZATION PROCEDURE FOR THERMOSETTING RESINS
PENN, L. S. / NEWEY, H.
5 303

THOMAS, R. L.
1968 OFF-AXIS TEST OF A COMPOSITE
WU, E. W. / THOMAS, R. L.
6 270
1969 INTERFACIAL FRACTURE PHENOMENA
WU, E. W. / THOMAS, R. L.
6 273

THREE DIMENSIONAL FINITE
1974 THE APPLICATION OF THREE DIMENSIONAL FINITE ELEMENT ANALYSIS TO THE MICRO-MECHANICS OF FIBROUS COMPOSITE MATERIALS
LARDER, R. A.
6 343

THREE MILE ISLAND-2 REACTOR
1975 THREE MILE ISLAND NUCLEAR STATION, UNIT 2.90 INSPECTION REPORT NO. 75-81 AND CORRESPONDENCE
METROPOLITAN EDISON CO.
3 182
1975 THREE MILE ISLAND NUCLEAR STATION, UNIT 3 LICENSE APPLICATION, FSAR, AMENDMENT 27
METROPOLITAN EDISON CO.
2 127

THUR, G. M.
1974 ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES
STERNSCHULTZ, B. / THUR, G. M.
2 119

THYRISTOR INVERTER- RECOVERATIVE
1978 DYNAMIC BRAKING
KALRA, P.
2 125

TIDAL ENERGY
1974 ENERGY, VOLUME I: DEMANDS, RESOURCES, IMPACT, TECHNOLOGY, AND POLICY
PENNER, S. S. / IBERMAN, L.
5 243

193
TIDAL POWERS
1974 STORAGE OF HIGH-GRADE ENERGY
MCALLAN, J. V. 5 245

TIMBERLAKE, A. B.
1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES

TIME - BREAK-DATA
CHIAO, T. T. / MOORE, R. L. 6 300

TIME REQUIREMENTS
1963 DETERMINING INERTIA AND TIME REQUIREMENTS FOR FLYWHEEL MACHINES
SPOTTS, M. P. 1 1

TIME-DEPENDENT BOUNDARY CONDITIONS
1987 APPLICATION OF THE METHOD OF TIME-DEPENDENT BOUNDARY CONDITIONS IN LINEAR VISCOELASTICITY.
CHRISTENSEN, R. M. 6 283

TIN, W. C.
1975 ENERGY STORAGE DEVICE
TIN, W. C. 3 189

TODD, M. J.
1974 THERMAL VACUUM QUALIFICATION TESTS ON A TELDIX DOUBLE-GIMBALLED MOMENTUM WHEEL
TODD, M. J. / WILSON, N. G. 4 234

TOLAND, R. H.
1969 A RANDOM WALK MODEL IN RANDOM VIBRATION
TOLAND, R. H. / YANG, C. Y. 6 275
1971 A RANDOM WALK MODEL FOR FIRST-PASSAGE PROBABILITY
TOLAND, R. H. / YANG, C. Y. 6 269
1972 FAILURE MODES IN IMPACT LOADED COMPOSITE MATERIALS
TOLAND, R. H. 6 301
1972 NON-STATIONARY RANDOM VIBRATION OF NONLINEAR STRUCTURES
TOLAND, R. H. / YANG, C. Y. / HSU, C. S. 6 303
1972 DESIGN AND ANALYSIS OF THE ATS GRAPHITE EPoxy SATELLITE TRUSS
BURNS, J. M. / TOLAND, R. H. 6 304
1973 FAILURE CRITERIA AND FAILURE ANALYSIS OF COMPOSITE STRUCTURES
TOLAND, R. H. / VICARIO, A. A. 6 310
1973 INSTRUMENTED IMPACT TESTING OF CARBON FIBER COMPOSITE MATERIALS
TOLAND, R. H. 6 319
1974 PROBABILISTIC DESIGN OF COMPOSITE STRUCTURES
MAXWELL, R. / TOLAND, R. H. / JOHNSON, C. W. 6 329

TOLK, K. M.
1973 INVESTIGATION OF THE MONOPOLAR MOTOR-GENERATOR AS A POWER SUPPLY FOR CONTROLLED FUSION EXPERIMENTS

TOOLS
1971 POTENTIAL APPLICATIONS FOR THE SUPERFLYWHEEL
RABESTORST, D. W. 2 81

TORNADOES
1975 SHAGIT NUCLEAR POWER PROJECT, UNITS 1 AND 2, LICENSE APPLICATION
PUGET SOUND POWER AND LIGHT CO. 3 180

TORROSSIAN, R.
1976 MOMENTUM WHEELS
TORROSSIAN, R. 1 49

TORRES, F.
1974 HYBRID AUTOMOTIVE ENGINE WITH KINETIC ENERGY STORAGE
SCHRECK, H. / TORRES, F. 2 117
1976 HYBRID DRIVE WITH KINETIC ENERGY STORE AS VEHICLE DRIVE
SCHRECK, H. / TORRES, F. 2 133
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TORSIONAL EIGENFREQUENCY</td>
<td>ATZORI, B. / CURTI, G.</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>1974 ITERATIVE PROCEDURES FOR CALCULATING THE FIRST TORSIONAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EIGENFREQUENCY OF A SHAFT WITH SEVERAL FLYWHEELS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TORSIONAL VIBRATIONS</td>
<td>SHIRAEV, M. P. / KHUDOZHILOV, V. A.</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>1974 METHOD OF CALCULATING TORSIONAL VIBRATIONS IN A POWER UNIT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WITH A NON-LINEAR SILICONE DAMPER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL ENERGY SYSTEMS</td>
<td>MARSHALL, O. W. / MORASH, R. T. / BARBER, R.</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>1974 INDEPENDENT ENERGY SYSTEMS FOR BETTER EFFICIENCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOUGHNESS IN UNIDIRECTIONAL</td>
<td>SANFORD, R. J. / STONESIFER, F. M.</td>
<td></td>
<td>287</td>
</tr>
<tr>
<td>1971 FRACTURE TOUGHNESS IN UNIDIRECTIONAL GLASS-REINFORCED PLASTICS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAIN</td>
<td>KUGLER, G. C.</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>1973 ELECTRIC VEHICLE HYBRID POWER TRAIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAIN'S ENERGY</td>
<td>ARMAGNAC, A. P.</td>
<td></td>
<td>108</td>
</tr>
<tr>
<td>1974 FLYWHEEL BRAKES STORE NEW TRAIN'S ENERGY FOR ELECTRICITY-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAVING STARTS; NEW YORK'S LATEST SUBWAY CARS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAINS</td>
<td>MARLOWE, E. W.</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>1984 ON-BOARD ENERGY STORAGE IN RAIL RAPID TRANSIT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971 PROCEEDINGS SECOND INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM</td>
<td>LAWSON, L. J. / ET AL.</td>
<td></td>
<td>116</td>
</tr>
<tr>
<td>1974 ATA RAIL TRANSIT CONFERENCE, CAR EQUIPMENT SESSIONS.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSFER LINE</td>
<td>AM. MACH.</td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>1985 TRANSFER LINE FOR SHORT RUNS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSFERRENCE OF ENERGY</td>
<td>STROHLEIN, J. N.</td>
<td></td>
<td>126</td>
</tr>
<tr>
<td>1976 VEHICLE POWER SYSTEM FOR LIMITED VEHICLE MOVEMENT WITHOUT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USE OF FUEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSFORMERS ENERGY STORAGE</td>
<td>ROES, J. B.</td>
<td></td>
<td>210</td>
</tr>
<tr>
<td>1981 AN ELECTRO-MECHANICAL ENERGY STORAGE SYSTEM FOR SPACE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPLICATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSIENT RESPONSE</td>
<td>CHRISTENSEN, R. W. / GOTTENBERG, W. G.</td>
<td></td>
<td>260</td>
</tr>
<tr>
<td>1985 PREDICTION OF THE TRANSIENT RESPONSE OF A LINEAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VISCOELASTIC SOLID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSIENTS</td>
<td>WILCOX, J. P.</td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>1987 FLYWHEEL ENERGY STORAGE SYSTEMS FOR TRANSIT BUSES</td>
<td>ASHMOLE, P. E.</td>
<td></td>
<td>145</td>
</tr>
<tr>
<td>CYCLOCONVERTER-CONTROLLED SYNCHRONOUS MACHINES FOR LOAD</td>
<td>FINLAYSON, P. T. / WASHBURN, D. C.</td>
<td></td>
<td>178</td>
</tr>
<tr>
<td>COMPENSATION ON AC POWER SYSTEMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHAKIT NUCLEAR POWER PROJECT, UNITS 1 AND 2. LICENSE APPLICATION</td>
<td>PUGET SOUND POWER AND LIGHT CO.</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>TRANSIT</td>
<td>MARLOWE, E. W.</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>1984 ON-BOARD ENERGY STORAGE IN RAIL RAPID TRANSIT</td>
<td>WILCOX, J. P.</td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>1987 FLYWHEEL ENERGY STORAGE SYSTEMS FOR TRANSIT BUSES</td>
<td>LAWSON, L. J. / ET AL.</td>
<td></td>
<td>116</td>
</tr>
<tr>
<td>1974 ATA RAIL TRANSIT CONFERENCE, CAR EQUIPMENT SESSIONS.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Author(s)</td>
<td>Volume</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Transit Buses</td>
<td>Wilcox, J. P.</td>
<td>2</td>
<td>66</td>
</tr>
<tr>
<td>Transit Conference</td>
<td>Lawson, L. J. / et al.</td>
<td>2</td>
<td>116</td>
</tr>
<tr>
<td>Transition Temperature</td>
<td>Schroeder, J.</td>
<td>5</td>
<td>242</td>
</tr>
<tr>
<td>Translational and Rotational</td>
<td>Christensen, R. W. / Cottenberg, W. G.</td>
<td>6</td>
<td>257</td>
</tr>
<tr>
<td>Transmission</td>
<td>Mechanical Technology, Inc.</td>
<td>2</td>
<td>82</td>
</tr>
<tr>
<td>Transmission Coupled Standby</td>
<td>Dynamics Corp.</td>
<td>3</td>
<td>149</td>
</tr>
<tr>
<td>Transmission Evaluation</td>
<td>Cordner, W. A. / Grimm, D. H.</td>
<td>2</td>
<td>86</td>
</tr>
<tr>
<td>Transmission Lines</td>
<td>Reed, J. J.</td>
<td>3</td>
<td>207</td>
</tr>
<tr>
<td>Transport</td>
<td>Robinson, A. L.</td>
<td>3</td>
<td>168</td>
</tr>
<tr>
<td>Transportation</td>
<td>Lawson, L. J.</td>
<td>2</td>
<td>89</td>
</tr>
<tr>
<td>Application of Kinetic Energy Propulsion to Mass Transportation</td>
<td>Lindley, E. F.</td>
<td>2</td>
<td>97</td>
</tr>
<tr>
<td>Kinetic Energy Storage: A 'New' Propulsion Alternative for Mass Transportation</td>
<td>Lawson, L. J.</td>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>Kinetic Energy Storage for Mass Transportation</td>
<td>Lawson, L. J.</td>
<td>2</td>
<td>122</td>
</tr>
<tr>
<td>The Kinetic Energy Wheel</td>
<td>Beachley, N. H. / Frank, A. A.</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Increased Fuel Economy in Transportation Systems by Use of Energy Management</td>
<td>Beachley, N. H. / Frank, A. A.</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Transportation Systems</td>
<td>Rabenhorst, D. W.</td>
<td>2</td>
<td>81</td>
</tr>
<tr>
<td>Potential Applications for the Superflywheel</td>
<td>Lawson, L. J.</td>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>Kinetic Energy Storage for Mass Transportation</td>
<td>Beachley, N. H. / Frank, A. A.</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Increased Fuel Economy in Transportation Systems by Use of Energy Management</td>
<td>Beachley, N. H. / Frank, A. A.</td>
<td>2</td>
<td>128</td>
</tr>
</tbody>
</table>

 ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
 CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIANGLE CANTILEVER PLATE: VIBRATION OF A 45-DEG. RIGHT TRIANGLE CANTILEVER PLATE BY A GRIDWORK METHOD.</td>
<td>CHRISTENSEN, R. M.</td>
<td>8 258</td>
</tr>
<tr>
<td>TRIES OUT FLYWHEEL: NEW YORK SUBWAY TRIES OUT FLYWHEEL ENERGY STORAGE</td>
<td>RAILWAY GAZETTE INTERNATIONAL</td>
<td>2 123</td>
</tr>
<tr>
<td>TROLL, J. H.: WIND POWER CONVERSION SYSTEM</td>
<td>TROLL, J. H.</td>
<td>3 170</td>
</tr>
<tr>
<td>TROLLEY BUS: KINETIC ENERGY SYSTEMS FOR MOVING PEOPLE</td>
<td>BAXTER, J. W./LAWSON, L. J.</td>
<td>2 107</td>
</tr>
<tr>
<td>TROLLEYS PORTABLE ELECTRICITY: HIGH-SPEED ENERGY WHEEL OFFERS TROLLEYS PORTABLE ELECTRICITY</td>
<td>PRODUCT ENGINEERING</td>
<td>2 72</td>
</tr>
<tr>
<td>TIESS: DESIGN AND ANALYSIS OF THE ATS GRAPHITE EPOXY SATELLITE TRUSS</td>
<td>BURNS, J. M./TOLAND, R. H.</td>
<td>8 304</td>
</tr>
<tr>
<td>TRW SPACE TECHNOLOGY LABS: COMPARISON OF ELECTRICALLY RUN UP FLYWHEEL (DC MOTOR) WITH TURBINE, HOT GAS MOTOR AND OTHER SYSTEMS FOR MINUTE MAN APPLICATION.</td>
<td>FRUKTOW, N. N.</td>
<td>2 60</td>
</tr>
<tr>
<td>TSAI, S. W.: A GENERAL THEORY OF STRENGTH FOR ANISOTROPIC MATERIALS</td>
<td>TSAI, S. W./WU, E. M.</td>
<td>6 279</td>
</tr>
<tr>
<td>TUNING: MINIMIZATION OF MECHANISM OSCILLATIONS THROUGH FLYWHEEL TUNING</td>
<td>MAHIC, J.</td>
<td>1 16</td>
</tr>
<tr>
<td>TURBINE: COMPARISON OF ELECTRICALLY RUN UP FLYWHEEL (DC MOTOR) WITH TURBINE, HOT GAS MOTOR AND OTHER SYSTEMS FOR MINUTE MAN APPLICATION.</td>
<td>FRUKTOW, N. N.</td>
<td>2 80</td>
</tr>
<tr>
<td>TURBINES: STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS; FIFTEEN PAPERS---SURVEY OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE SYSTEMS</td>
<td>VDI</td>
<td>3 160</td>
</tr>
<tr>
<td>TURBOMACHINERY: APPLICATION OF AIR BEARINGS TO HIGH SPEED TURBOMACHINERY</td>
<td>BARNETT, M. A./SILVER, A.</td>
<td>1 13</td>
</tr>
<tr>
<td>TWO ANGLE WOUND: THE TEMPERATURE EFFECT OF INTERNAL AND EXTERNAL PRESSURE OF TWO ANGLE WOUND PIPE</td>
<td>CHIAO, T. T.</td>
<td>6 285</td>
</tr>
</tbody>
</table>

197
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

TWO-PHASE DC CHOPPER
1973 APPLICATION OF TWO-PHASE DC CHOPPER MOTOR DRIVE

U.S. NAVAL MISSILE CENTER
1964 GENERAL THEORETICAL ANALYSIS AND EVALUATION OF AN
EXPERIMENTAL MODEL OF A CONSTANT-SPEED FLYWHEEL POWER SOURCE

U.S. A.E.C., DIVISION OF APPLIED TECHNOLOGY
1974 ENERGY STORAGE TECHNOLOGY

ULTIMATE TENSILE STRESS
1971 STRAIN RATE EFFECT ON THE ULTIMATE TENSILE STRESS OF FIBER/
EPoxy STRANDS

ULTRA-HIGH-STRENGTH GRAPHITE FIBER
1974 TENSILE PROPERTIES OF AN ULTRA-HIGH-STRENGTH GRAPHITE FIBER
AN EPOXY MATRIX

ULTRA-HIGH TEMPERATURE
1974 ULTRAHIGH TEMPERATURE

ULTRA-HIGH-STRENGTH GRAPHITE FIBER
1974 TENSILE PROPERTIES OF AN ULTRAHIGH-STRENGTH GRAPHITE FIBER
AN EPOXY MATRIX

ULTRASONIC TESTING
1975 THREE MILE ISLAND NUCLEAR STATION, UNIT 2 RO INSPECTION
REPORT NO. 75-01 AND CORRESPONDENCE

UNCONVENTIONAL ENERGY RESOURCES
1976 ENERGY STORAGE

UNCONVENTIONAL THERMAL
1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-
POLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES

1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-
POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES

UNDER BI-AXIAL LOADING
1972 FIBER STRENGTH OF S-GLASS/EPoxy COMPOSITES UNDER BI-AXIAL
LOADING

UNDER COMPRESSION
1971 FRACTURE CRITERIA FOR ORTHOTROPIC PLATE UNDER COMPRESSION
AND SHEAR

UNDERGROUND POWER TRANSMISSION
1974 ELECTRIC POWER SYSTEMS

UNDERGROUND PUMPED STORAGE
1974 ENERGY STORAGE AND ITS ROLE IN ELECTRIC POWER SYSTEMS
UNIAXIAL TENSION	1972 FIBER STRENGTH OF S-GLASS/EPOXY COMPOSITES UNDER BI-AXIAL LOADING	CHIAO, T. T. / COMMINS, A. D.	6 306
UNIDIRECTIONAL COMPOSITES	1968 DISCONTINUOUS MODE OF CRACK EXTENSION IN UNIDIRECTIONAL COMPOSITES	WU, E. M.	6 207
	1971 SOME UNIQUE CRACK PROPAGATION PHENOMENA IN UNIDIRECTIONAL COMPOSITES AND THEIR MATHEMATICAL CHARACTERIZATION	WU, E. M.	6 272
	1971 STRAIN RATE EFFECT ON THE ULTIMATE TENSILE STRESS OF FIBER/ EPOXY STRANDS	CHIAO, T. T. / MOORE, R. L.	6 285
UNIDIRECTIONAL GLASS-REINFORCED PLASTICS	1971 FRACTURE TOUGHNESS IN UNIDIRECTIONAL GLASS-REINFORCED PLASTICS	SANFORD, R. J. / STONESIFER, F. R.	6 287
UNIFORM-STRESS SPINNING FILAMENTARY	1964 THE UNIFORM-STRESS SPINNING FILAMENTARY DISK	KYSER, A. C.	1 3
UNINTERRUPTIBLE AND BUFFERED	1974 MECHANICAL AND BATTERY-STORED ENERGY SYSTEMS FOR MEETING UNINTERRUPTIBLE AND BUFFERED ELECTRIC POWER NEEDS	ComEAU, G. E.	3 162
UNINTERRUPTIBLE POWER SYSTEM	1975 NEW UNINTERRUPTIBLE POWER SYSTEM ALTERNATIVES USING HIGH CAPACITY KINETIC ENERGY WHEELS	LAWSON, L. J.	3 155
UNIQUE CRACK PROPAGATION	1969 SOME UNIQUE CRACK PROPAGATION PHENOMENA IN UNIDIRECTIONAL COMPOSITES AND THEIR MATHEMATICAL CHARACTERIZATION	WU, E. M.	6 272
UNIT FOR SPACECRAFT	1975 DESIGN AND TEST OF A FLYWHEEL ENERGY STORAGE UNIT FOR SPACECRAFT APPLICATION.	CORRACK, A. / NOTTI, J. E. / RUIZ, W. L.	4 239
UNIT SUPPLEMENTS AIRCRAFT	1969 WEIGHT IS SAVED WHEN FLYWHEEL ENERGY STORAGE UNIT SUPPLEMENTS AIRCRAFT SECONDARY POWER SYSTEMS.	HELSLEY, C. W.	4 217
UNIV. OF FLORIDA, GAINESVILLE	1971 MINIMIZATION OF MECHANISM OSCILLATIONS THROUGH FLYWHEEL TUNING	MANIG, J.	1 18
UNIV. OF MASSACHUSETTS	1975 WIND POWER	HERONEMUS, W. E.	5 249
	1974 SURVEY OF PROPULSION SYSTEMS FOR LOW EMISSION URBAN VEHICLES, FINAL REPORT.	FRAIZE, W. E. / LAY, R. K.	2 75
	1974 KINETIC ENERGY STORAGE FOR MASS TRANSPORTATION	LAWSON, L. J.	2 120
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

URBAN TRANSPORT
1974 ATA RAIL TRANSIT CONFERENCE. CAR EQUIPMENT SESSIONS.

LAWSON, L. J. / ET AL. 2 116

URBAN TRANSPORTATION
1974 ENERGY, VOLUME 1. DEMANDS, RESOURCES, IMPACT, TECHNOLOGY, AND POLICY

PENNER, S. S./ICHERMAN, L. 5 243

URBAN VEHICLES
1969 STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-
POLLUTION-PETENTIAL POWER SOURCES FOR URBAN VEHICLES
HOESS, J. A./CHEANEY, E. S./CRESWICK, F. A./TRAVISER, D. A./FISCHER, R. D.
/TIMBERLAKE, A. B./BASHAM, S. I./HERBRIDGE, J. T./WILCOX, J. P.

BATTelle COLUMBUS LABS. 2 70

1970 SURVEY OF PROPULSION SYSTEMS FOR LOW EMISSION URBAN VEHICLES. FINAL REPORT.
FRAIZE, W. E. / LAY, R. K. 2 70

US ERDA
1975 ENERGY TECHNOLOGY II: (NAVY APPLICATIONS)

PETERICK, P. A. 5 247

USAREC
1974 ELECTRIC POWER SYSTEMS

ERDA 3 179

USAREC DIVISION OF APPLIED TECHNOLOGY
1974 GOVERNMENT-WIDE REPORT TO OFFICE ON MANAGEMENT AND BUDGET ON ENERGY STORAGE R AND D PROGRAM STRATEGIES AND IMPLEMENTATION PLANS

ERDA/DAT 5 244

USE OF ENERGY
1976 INCREASED FUEL ECONOMY IN TRANSPORTATION SYSTEMS BY USE OF ENERGY MANAGEMENT

BEACHLEY, N. H. / FRANK, A. A. 2 125

USE OF FLYWHEELS
1974 USE OF FLYWHEELS FOR ENERGY STORAGE

RABENHORST, D. W. 3 175

USE OF FUEL
1975 VEHICLE POWER SYSTEM FOR LIMITED VEHICLE MOVEMENT WITHOUT USE OF FUEL

STROHLEIN, J. N. 2 128

USE OF NUMERIC
1978 RESEARCH LEADING TO THE PRODUCTION AND EARLY USE OF NUMERIC DATA BANKS OF MATERIAL PROPERTIES AND SYSTEM ANALYSES

HENRY, E. A. 1 68

UTILITIES EYE LARGE-SCALE
1975 UTILITIES EYE LARGE-SCALE ENERGY STORAGE

RICCI, L. J. 3 184

UTILITY INDUSTRY
1975 DIGEST OF CURRENT RESEARCH IN THE ELECTRIC UTILITY INDUSTRY

EPRI 3 187

UTILITY POWER GRIDS

REED, J. J. 3 207

UTILITY SYSTEMS
1974 ASSESSMENT OF ADVANCED CONCEPTS IN ENERGY STORAGE AND THEIR APPLICATION ON ELECTRIC UTILITY SYSTEMS

FERNANDES, R. A. / GILDERSLEEVE, O. D. / SCHNEIDER, T. H.
KALHAMMER, P. / ZYGIELBAUM, P. S. 3 176

1974 POTENTIAL FOR LARGE-SCALE ENERGY STORAGE IN ELECTRIC UTILITY SYSTEMS

200
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Year</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achievements and prospects in the utilization of kinetic energy</td>
<td>GROSU, S. I.</td>
<td>1970</td>
<td>3 146</td>
</tr>
<tr>
<td>Inertial energy storage apparatus and system for utilizing the same</td>
<td>POST, R. F. / POST, S. F.</td>
<td>1972</td>
<td>2 88</td>
</tr>
<tr>
<td>Hybrid electric propulsion utilizing reconnectible motor windings in</td>
<td>REIMERS, E.</td>
<td>1972</td>
<td>2 91</td>
</tr>
<tr>
<td>Vacuum qualification tests on a Teldix double-gimbaled momentum wheel</td>
<td>TODD, W. J. / WILSON, N. G.</td>
<td>1974</td>
<td>4 234</td>
</tr>
<tr>
<td>The lubrication of bearings and slip rings in vacuum</td>
<td>ODONNELL, P. J. / HARRIS, L. C. /</td>
<td>1974</td>
<td>1 38</td>
</tr>
<tr>
<td>WARWICK, M. C.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuum qualification tests</td>
<td>TODD, W. J. / WILSON, N. G.</td>
<td>1974</td>
<td>4 234</td>
</tr>
<tr>
<td>A critical test for a class of nonlinear constitutive equations</td>
<td>CHRISTENSEN, R. M. / VAN ES, H. E.</td>
<td>1973</td>
<td>6 312</td>
</tr>
<tr>
<td>Energy storage technology</td>
<td>VANDERRYN, J.</td>
<td>1974</td>
<td>3 171</td>
</tr>
<tr>
<td>Application spiral-groove bearings on spacecraft</td>
<td>VANDERWAL, U.</td>
<td>1975</td>
<td>4 235</td>
</tr>
<tr>
<td>Variational and minimum</td>
<td>CHRISTENSEN, R. M.</td>
<td>1966</td>
<td>5 209</td>
</tr>
<tr>
<td>Variational and minimum theorems for the linear theory of viscoelasticity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycloconverter-controlled synchronous machines for load compensation</td>
<td>FINLAYSON, P. T. / WASHBURN, D. C.</td>
<td>1974</td>
<td>3 178</td>
</tr>
<tr>
<td>Synthesis of the belt of a discrete belt variator</td>
<td>GULIA, K. V. / YUDOVSKII, I. D.</td>
<td>1974</td>
<td>3 104</td>
</tr>
<tr>
<td>Large flywheel power supply for fusion experiments in the Max-Planck-Institut fuer Plasmaphysik, Garching, Germany</td>
<td>KNOBLACH, A. / KOTTMAIR, W. / SCHLUETER, W.</td>
<td>1974</td>
<td>3 178</td>
</tr>
<tr>
<td>Storage systems for energy peaking demands. Fifteen papers...</td>
<td>VDI</td>
<td>1974</td>
<td>3 180</td>
</tr>
</tbody>
</table>

201
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS. FIFTEEN PAPERS--</td>
<td>VDI</td>
<td>SURVEY OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE SYSTEMS</td>
</tr>
<tr>
<td></td>
<td>VEHICLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>DESIGN AND TESTING OF HIGH ENERGY DENSITY FLYWHEELS FOR</td>
<td>LAWSON, L. J.</td>
<td>APPLICATION TO FLYWHEEL HEAT ENGINE HYBRID VEHICLE DRIVES</td>
</tr>
<tr>
<td>1971</td>
<td>PROCEEDINGS SECOND INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>ELECTRIC ROAD VEHICLE</td>
<td>CALVERT, W.L.</td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>ELECTRIC VEHICLE HYBRID POWER TRAIN</td>
<td>KUGLER, G. C.</td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>FLYWHEEL ENERGY PROPULSION AND THE ELECTRIC VEHICLE</td>
<td>WEBER, R. / MENKES, S.</td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>EMISSION CHARACTERISTICS OF A PRIME MOVER FOR HYBRID VEHICLE</td>
<td>ALLSUP, J.R. / FLEMING, R.D.</td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>BATTERY POWERED VEHICLE DRIVE</td>
<td>DEANE, C. T.</td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>VEHICLE POWER SYSTEM FOR LIMITED VEHICLE MOVEMENT WITHOUT USE OF FUEL</td>
<td>STROHLEIN, J.N.</td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>HYBRID DRIVE WITH KINETIC ENERGY STORE AS VEHICLE DRIVE</td>
<td>SCHRECK, H. / TORRES, F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VEHICLE DRIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>BATTERY POWERED VEHICLE DRIVE</td>
<td>DEANE, C. T.</td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>HYBRID DRIVE WITH KINETIC ENERGY STORE AS VEHICLE DRIVE</td>
<td>SCHRECK, H. / TORRES, F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VEHICLE DRIVES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>DESIGN AND TESTING OF HIGH ENERGY DENSITY FLYWHEELS FOR</td>
<td>LAWSON, L. J.</td>
<td>APPLICATION TO FLYWHEEL HEAT ENGINE HYBRID VEHICLE DRIVES</td>
</tr>
<tr>
<td></td>
<td>VEHICLE HYBRID POWER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>ELECTRIC VEHICLE HYBRID POWER TRAIN</td>
<td>KUGLER, G. C.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VEHICLE MOVEMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>VEHICLE POWER SYSTEM FOR LIMITED VEHICLE MOVEMENT WITHOUT USE OF FUEL</td>
<td>STROHLEIN, J.N.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VEHICLE POWER SYSTEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>VEHICLE POWER SYSTEM FOR LIMITED VEHICLE MOVEMENT WITHOUT USE OF FUEL</td>
<td>STROHLEIN, J.N.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VEHICLE SYMPOSIUM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>PROCEEDINGS SECOND INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VEHICLE USE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>EMISSION CHARACTERISTICS OF A PRIME MOVER FOR HYBRID VEHICLE USE</td>
<td>ALLSUP, J.R. / FLEMING, R.D.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VEHICLES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1954</td>
<td>GENERAL THEORETICAL ANALYSIS AND EVALUATION OF AN EXPERIMENTAL MODEL</td>
<td>MATTHEWS, L. E. / EVERETT, W. D. /</td>
<td>OF A CONSTANT-SPEED FLYWHEEL POWER SOURCE</td>
</tr>
<tr>
<td>1959</td>
<td>OF A CONSTANT-SPEED FLYWHEEL POWER SOURCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969</td>
<td>STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-</td>
<td>BINDER, R.</td>
<td>POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES</td>
</tr>
<tr>
<td>1969</td>
<td>POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES</td>
<td>HODGES, J.A. / CHEANEY, E.S. / CHEWICK, P. /</td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>SURVEY OF PROPULSION SYSTEMS FOR LOW EMISSION URBAN VEHICLES,</td>
<td>HERRIDGE, J.T. / WILCox, J. P. /</td>
<td>FINAL REPORT.</td>
</tr>
<tr>
<td>1970</td>
<td>NEW CONCEPTS IN MECHANICAL ENERGY STORAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>FLYWHEEL AND FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEMS</td>
<td>RABENHORST, D. W.</td>
<td>FOR LOW-EMISSION VEHICLES</td>
</tr>
<tr>
<td>1971</td>
<td>FOR LOW-EMISSION VEHICLES</td>
<td>DUGGER, G. L. / BRANDT, A. / GEORGE, J.F. /</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DESIGN AND TESTING OF HIGH ENERGY DENSITY FLYWHEELS FOR</td>
<td>LAWSON, L. J.</td>
<td>APPLICATION TO FLYWHEEL HEAT ENGINE HYBRID VEHICLE DRIVES</td>
</tr>
<tr>
<td>VEHICLES (CONT'D.)</td>
<td>1971</td>
<td>POTENTIAL APPLICATIONS FOR THE SUPERFLYWHEEL</td>
<td>RABENHORST, D. W.</td>
</tr>
<tr>
<td></td>
<td>1971</td>
<td>ELECTRIC ROAD VEHICLE</td>
<td>CALIBER, W. L.</td>
</tr>
<tr>
<td></td>
<td>1972</td>
<td>INERTIAL ENERGY STORAGE APPARATUS AND SYSTEM FOR UTILIZING THE SAME</td>
<td>POST, R. F. / POST, S. F.</td>
</tr>
<tr>
<td></td>
<td>1972</td>
<td>APPLICATION OF KINETIC ENERGY PROPULSION TO MASS TRANSPORTATION</td>
<td>LAWSON, L. J.</td>
</tr>
<tr>
<td></td>
<td>1973</td>
<td>HYBRID ELECTRIC PROPULSION UTILIZING RECONNECTIONABLE MOTOR WINDINGS IN WHEELS</td>
<td>REIMERS, E.</td>
</tr>
<tr>
<td></td>
<td>1973</td>
<td>ELECTRIC VEHICLE HYBRID POWER TRAIN</td>
<td>KUGLER, G. C.</td>
</tr>
<tr>
<td></td>
<td>1973</td>
<td>FLYWHEEL-ELECTRIC SYSTEM FOR LOCAL-DUTY VEHICLES</td>
<td>AUTOMOTIVE ENG.</td>
</tr>
<tr>
<td></td>
<td>1973</td>
<td>IS THERE A FLYWHEEL IN YOUR FUTURE</td>
<td>LAWSON, L. J.</td>
</tr>
<tr>
<td></td>
<td>1973</td>
<td>APPLICATION OF TWO-PHASE DC CHOPPER MOTOR DRIVE</td>
<td>REIMERS, E.</td>
</tr>
<tr>
<td></td>
<td>1973</td>
<td>INERTIAL ENERGY STORAGE APPARATUS</td>
<td>POST, S. F.</td>
</tr>
<tr>
<td></td>
<td>1973</td>
<td>HYBRID CAR: PART-TIME ENGINE + PART-TIME FLYWHEEL = FULL TIME TRANSPORTATION</td>
<td>LINDSEY, E. P.</td>
</tr>
<tr>
<td></td>
<td>1973</td>
<td>STORED ENERGY IN A SPINNING DISK COULD ALLEVIATE THE ENERGY CRISIS</td>
<td>PRODUCT ENGINEERING</td>
</tr>
<tr>
<td></td>
<td>1973</td>
<td>FLYWHEELS</td>
<td>POST, R. F./POST, S. F.</td>
</tr>
<tr>
<td></td>
<td>1973</td>
<td>FLYWHEEL ENERGY PROPULSION AND THE ELECTRIC VEHICLE</td>
<td>WEBER, E. / MENKES, S.</td>
</tr>
<tr>
<td></td>
<td>1974</td>
<td>GYROSCOPIC EFFECT OF FLYWHEELS IN MACHINES</td>
<td>GULIA, N. V. ET AL</td>
</tr>
<tr>
<td></td>
<td>1974</td>
<td>KINETIC ENERGY SYSTEMS FOR MOVING PEOPLE</td>
<td>BAXTER, J. W. / LAWSON, L. J.</td>
</tr>
<tr>
<td></td>
<td>1974</td>
<td>FLYWHEEL BRAKES STORE NEW TRAIN'S ENERGY FOR ELECTRICITY-HAVING STARTS; NEW YORK'S LATEST SUBWAY CARS</td>
<td>ARMAGNAC, A. P.</td>
</tr>
<tr>
<td></td>
<td>1974</td>
<td>A FLYWHEEL IN YOUR FUTURE</td>
<td>NEWSWEEK</td>
</tr>
<tr>
<td></td>
<td>1974</td>
<td>ELECTRICAL PROPULSION SYSTEMS FOR ROAD VEHICLES. STATE OF THE ART AND PRESENT-DAY PROBLEMS</td>
<td>BADEN, C. / PLUST, H. G.</td>
</tr>
<tr>
<td></td>
<td>1974</td>
<td>HYBRID DRIVE WITH FLYWHEEL COMPONENT FOR ECONOMIC AND DYNAMIC OPERATION</td>
<td>HELLING, J. / SCHRECK, H. / GIERA, B.</td>
</tr>
<tr>
<td></td>
<td>1974</td>
<td>CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS</td>
<td>ARSOSPACE CORP.</td>
</tr>
<tr>
<td></td>
<td>1974</td>
<td>STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES</td>
<td>LAPDES, D. E./MELTZER, J.</td>
</tr>
<tr>
<td></td>
<td>1974</td>
<td>SUPERFLYWHEEL: THE BATTERY THAT SPINS</td>
<td>LAMPE, R.</td>
</tr>
<tr>
<td></td>
<td>1975</td>
<td>FLYWHEEL ENERGY SYSTEMS</td>
<td>BIGGS, F.</td>
</tr>
<tr>
<td></td>
<td>1975</td>
<td>THE KINETIC ENERGY WHEEL</td>
<td>LAWSON, L. J.</td>
</tr>
<tr>
<td></td>
<td>1975</td>
<td>ENERGY TECHNOLOGY II (NAVY APPLICATIONS)</td>
<td>PETRICK, P. A.</td>
</tr>
<tr>
<td></td>
<td>1975</td>
<td>ENERGY-STORAGE SYSTEMS</td>
<td>PENNER, S. S. / ICKERN, L.</td>
</tr>
<tr>
<td></td>
<td>1975</td>
<td>NEW YORK SUBWAY TRIES OUT FLYWHEEL ENERGY STORAGE</td>
<td>RAILWAY GAZETTE INTERNATIONAL</td>
</tr>
<tr>
<td></td>
<td>1975</td>
<td>HYBRID VEHICLES</td>
<td>VIVIAN, H. C.</td>
</tr>
<tr>
<td></td>
<td>1975</td>
<td>POWER PLANT</td>
<td>ARIGA, H.</td>
</tr>
<tr>
<td></td>
<td>1975</td>
<td>AN EVALUATION OF THE FUTURE ROLE OF STORAGE TECHNIQUES IN ELECTRIC POWER TECHNOLOGY</td>
<td>PEZZIBIT, G. F.</td>
</tr>
<tr>
<td></td>
<td>1976</td>
<td>ENERGY STORAGE</td>
<td>AMERICAN NUCLEAR SOCIETY, HINSDALE, ILL.</td>
</tr>
</tbody>
</table>

| VELOCITIES | 1976 | ESTIMATING THE VELOCITIES OF THE CONTROL FLYWHEELS OF A FREE GYROSTAT | LITVIN-FEDOJ, M. Z. | 1 | 39 |

| VENTILATION | 1975 | KAGIT NUCLEAR POWER PROJECT, UNITS 1 AND 2. LICENSE APPLICATION | PUGET SOUND POWER AND LIGHT CO. | 3 | 180 |

| | 1974 | A PHYSICAL MECHANISM FOR THE EARLY ACOUSTIC EMISSION IN AN ORGANIC FIBER/EPOXY PRESSURE VESSEL | MEYER, M. D./KATAYANAGI, T. E. | 6 | 350 |

| VESSELS | 1973 | FILAMENT-WOUND VESSELS FROM AN ORGANIC FIBER/EPOXY RESIN SYSTEM | CHIAO, T. T./HAMSTAD, M. A./MARCON, M. A./HANAFEE, J. | 6 | 323 |
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

VESSELS (CONT'D.)
1974 ORGANIC FIBER/EPoxy PRESSURE VESSELS
1974 POLYMER-LINED FILAMENT-WOUND PRESSURE VESSELS FOR NITROGEN CONTAINMENT
1974 FATIGUE PERFORMANCE OF METAL-LINED GRAPHITE/EPoxy VESSELS
1975 HIGH PERFORMANCE VESSELS FROM AN AROMATIC POLYAMIDE FIBER/EPoxy COMPOSITE
1975 FATIGUE LIFE OF ORGANIC FIBER/EPoxy PRESSURE VESSELS
1975 PERFORMANCE OF FILAMENT-WOUND VESSELS FROM AN ORGANIC FIBER IN SEVERAL EPoxy MATRICES

VESSELS FOR NITROGEN
1974 POLYMER-LINED FILAMENT-WOUND PRESSURE VESSELS FOR NITROGEN CONTAINMENT

VIA FLYWHEELS
1973 ENERGY STORAGE VIA FLYWHEELS

VIBRATION
1962 VIBRATION OF A 45-DEG. RIGHT TRIANGLE CANTILEVER PLATE BY A GRIDWORK METHOD.
1969 A RANDOM WALK MODEL IN RANDOM VIBRATION
1972 NON-STATIONARY RANDOM VIBRATION OF NONLINEAR STRUCTURES

VIBRATION OF NONLINEAR
1972 NON-STATIONARY RANDOM VIBRATION OF NONLINEAR STRUCTURES

VIBRATIONS
1974 METHOD OF CALCULATING TORSIONAL VIBRATIONS IN A POWER UNIT WITH A NON-LINEAR SILICONE DAMPER

VIBRATOR SAVES POWER
1968 CAPTURED LOAD RESILIENCE OF A HYDRAULIC VIBRATOR SAVES POWER

VICARIO, A. A.
1973 FAILURE CRITERIA AND FAILURE ANALYSIS OF COMPOSITE STRUCTURES

VISCOELASTIC CYLINDER
1965 RESPONSE TO PRESSURIZATION OF A VISCOELASTIC CYLINDER WITH AN ERODING INTERNAL BOUNDARY.

VISCOELASTIC DEFORMATION
1965 SOME INTERESTING ASPECTS OF GENERAL LINEAR VISCOELASTIC DEFORMATION

VISCOELASTIC FLUIDS
1973 A SPECIAL THEORY OF VISCOELASTIC FLUIDS FOR APPLICATION TO SUSPENSION.

VISCOELASTIC PROPERTIES
1969 VISCOELASTIC PROPERTIES OF HETEROGENEOUS MEDIA

CHIAO, T. T./HAMSTAD, W. A./MARCON, M. A.
HAMSTAD, W. A./CHIAO, T. T./JESSOP, E. S.
HAMSTAD, W. A./CHIAO, T. T./PATTERSON, R.
CHIAO, T. T./HAMSTAD, W. A.
HAMSTAD, W. A./CHIAO, T. T./PATTERSON, R. G.
CHIAO, T. T./JESSOP, E. S./HAMSTAD, M. A.

GILMAN, J. J./HUCKE, E. E.
CHRISTENSEN, R. M.
TOLAND, R. H./YANG, C. Y.
TOLAND, R. H./YANG, C. Y./HSU, C. S.
TOLAND, R. H./YANG, C. Y./HSU, C. S.
SHIRAELY, M. P./KHUDZHILOO, V. A.
LANKESTER, J. A.
TOLAND, R. H./VICARIO, A. A.
CHRISTENSEN, R. M./SCHREINER, R. N.
CHRISTENSEN, R. M./GOTTENBERG, W. G.
CHRISTENSEN, R. M.
CHRISTENSEN, R. M.

204
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Year</th>
<th>Bibliographic Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>VISCOElastic RELAXATION FUNCTIONS</td>
<td>CHRISTENSEN, R. M.</td>
<td>1972</td>
<td>6 203</td>
</tr>
<tr>
<td>1972 Restrictions upon VISCOElastic RELAXATION Functions and Complex Moduli</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VISCOElastic SOLID</td>
<td>CHRISTENSEN, R. M. / GOTTENBERG, W.</td>
<td>1984</td>
<td>6 256</td>
</tr>
<tr>
<td>1984 An EXPERIMENT FOR DETERMINATION OF THE MECHANICAL PROPERTY IN WHEAT FOR A LINEAR ISOtropic VISCOElastic SOLID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VISCOElastic SOLIDS</td>
<td>CHRISTENSEN, R. M. / GOTTENBERG, W.</td>
<td>1987</td>
<td>6 260</td>
</tr>
<tr>
<td>1987 Linear non-ISOthermal VISCOElastic SOLIDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VISCOElastic SPHERE</td>
<td>CHRISTENSEN, R. M. / GOTTENBERG, W.</td>
<td>1984</td>
<td>6 257</td>
</tr>
<tr>
<td>1984 The DYNAMIC RESPONSE OF A SOLID, VISCOElastic SPHERE TO TRANSLATIONAL AND ROTATIONAL EXCITATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VISCOElasticITY</td>
<td>CHRISTENSEN, R. M.</td>
<td>1987</td>
<td>6 263</td>
</tr>
<tr>
<td>1987 APPLICATION OF THE METHOD OF TIME-DEPENDENT BOUNDARY CONDITIONS IN LINEAR VISCOElasticITY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988 ON OBTAINING SOLUTIONS IN NONLINEAR VISCOElasticITY</td>
<td>CHRISTENSEN, R. M.</td>
<td>1988</td>
<td>6 268</td>
</tr>
<tr>
<td>1988 VARIATIONAL AND MINIMUM THEOREMS FOR THE LINEAR THEORY OF VISCOElasticITY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971 THEORY OF VISCOElasticITY: AN INTRODUCTION</td>
<td>CHRISTENSEN, R. M.</td>
<td>1971</td>
<td>6 262</td>
</tr>
<tr>
<td>VIVIAN, H. C.</td>
<td>VIVIAN, H. C.</td>
<td>1975</td>
<td>2 131</td>
</tr>
<tr>
<td>1975 HYBRID VEHICLES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAALS, F. M.</td>
<td>CHRISTENSEN, R. M. / WAALS, F. M.</td>
<td>1972</td>
<td>6 292</td>
</tr>
<tr>
<td>1972 EFFECTIVE STIFFNESS OF RANDOMLY ORIENTED FIBRE COMPOSITES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972 HIGH PERFORMANCE HELICOPTER HOIST PROGRAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WALK</td>
<td>TOLAND, R. H. / YANG, C. Y.</td>
<td>1969</td>
<td>6 275</td>
</tr>
<tr>
<td>1969 A RANDOM WALK MODEL IN RANDOM VIBRATION</td>
<td>TOLAND, R. H. / YANG, C. Y.</td>
<td>1971</td>
<td>6 289</td>
</tr>
<tr>
<td>1971 A RANDOM WALK MODEL FOR FIRST-PASSAGE PROBABILITY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971 RESEARCH AND DEVELOPMENT PROGRAMS. QUARTERLY PROGRESS REPORT.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 JAN. -- 31 MAR. 1971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WALKUP, C. M.</td>
<td>CHIAO, T. T. / MOORE, R. L. / WALKUP, C. M.</td>
<td>1973</td>
<td>6 321</td>
</tr>
<tr>
<td>1973 MATERIALS EVALUATION FOR ZK11B MAGNET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974 ALTERNATIVE PRIME MOVERS FOR FUTURE AUTOMOBILES</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

205
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

WARWICK, M. G.
1974 THE LUBRICATION OF BEARINGS AND SLIP RINGS IN VACUUM
ODONNELL, P. J. / HARRIS, L. C. / WARWICK, M. G.

WASHBURN, D. C.
1971 OPERATING LARGE EXCAVATORS ON SMALL POWER SYSTEMS
1974 CYCLOCONVERTER-CONTROLLED SYNCHRONOUS MACHINES FOR LOAD
COMPENSATION ON AC POWER SYSTEMS
KILGORE, L. A. / WASHBURN, D. C.
FINLAYSON, F. T. / WASHBURN, D. C.

WASTE HEAT
1974 INDEPENDENT ENERGY SYSTEMS FOR BETTER EFFICIENCY
MARSHALL, G. W. / MORASH, R. T. / BARBER, R. J.

WATER RESERVOIRS
1974 ENERGY STORAGE. (1): USING ELECTRICITY MORE EFFICIENTLY
1974 ASSESSMENT OF ADVANCED CONCEPTS IN ENERGY STORAGE AND THEIR
APPLICATION ON ELECTRIC UTILITY SYSTEMS
1975 STORING ELECTRICAL ENERGY ON A LARGE SCALE
ROBINSON, A. L.
FERRANTES, E. A. / GILDERSTEELE, D. S. / SCHNEIDER, T. R.
GARDNER, G. C. / HART, A. B. / MOFFITT, R. D. / WRIGHT, J.

WAVE PROPAGATION
1974 WAVE PROPAGATION IN ELASTIC MEDIA WITH A PERIODIC ARRAY OF
DISCRETE INCLUSIONS
1976 WAVE PROPAGATION IN LAYERED ELASTIC MEDIA
CHRISTENSEN, R. M.
CHRISTENSEN, R. M.

WAVES IN LAYERED
1973 ATTENUATION OF HARMONIC WAVES IN LAYERED MEDIA
CHRISTENSEN, R. M.

WEBER, R.
1974 FLYWHEEL ENERGY PROPULSION AND THE ELECTRIC VEHICLE
WEBER, R. / MENKES, S.

WEDGE
1966 DEFORMATION OF AN ELASTIC SPHERICAL WEDGE.
1967 LARGE ELASTIC DEFORMATION OF A SPHERICAL WEDGE
CHRISTENSEN, R. M.
CHRISTENSEN, R. M.

WEBDE, HEINZ
1971 THE DRALLRAD: A FLYWHEEL FOR THE STABILIZATION OF
SYNCHRONOUS SATELLITES
WEBDE, HEINZ

WEBBULL ANALYSIS
1973 STRESS-RUPTURE BEHAVIOR OF STRANDS OF AN ORGANIC FIBER/EPoxy
MATRIX
CHIAO, T. T. / WELLS, J. E. / MOORE, W. L. / HAMSTAD, M. A.

WEIGHT
1959 WEIGHT IS SAVED WHEN FLYWHEEL ENERGY STORAGE UNIT
SUPPLEMENTS AIRCRAFT SECONDARY POWER SYSTEMS.
HELSLEY, C. W.
VIVIAN, H. C.

WEIGHT IS SAVED
1969 WEIGHT IS SAVED WHEN FLYWHEEL ENERGY STORAGE UNIT
SUPPLEMENTS AIRCRAFT SECONDARY POWER SYSTEMS.
HELSLEY, C. W.

WEISS, R. O.
1972 HEAT-ENGINE MECHANICAL-ENERGY-STORAGE HYBRID PROPULSION
SYSTEMS FOR VEHICLES. FINAL REPORT
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Year</th>
<th>Keywords</th>
<th>Journal/Citation</th>
<th>Volume/Issue</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>WESTINGHOUSE ELECTRIC CORP.</td>
<td>CYCLOCONVERTER-CONTROLLED SYNCHRONOUS MACHINES FOR LOAD COMPENSATION ON AC POWER SYSTEMS</td>
<td>1974</td>
<td></td>
<td>FINLAYSON, P.T./WASHBURN, D.C.</td>
<td>3 176</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC/DC POWER CONDITIONING AND CONTROL EQUIPMENT FOR ADVANCED CONVERSION AND STORAGE TECHNOLOGY.</td>
<td>1975</td>
<td></td>
<td>WOOD, F./PELNY, B.R.</td>
<td>3 185</td>
<td></td>
</tr>
<tr>
<td>WETHERBEKE, A. E.</td>
<td>FEASIBILITY OF FLYWHEEL HIGH-ENERGY STORAGE</td>
<td>1976</td>
<td></td>
<td>SVENSSON, A./WETHERBEKE, A.E.</td>
<td>3 142</td>
<td></td>
</tr>
<tr>
<td>WEYLER, GEORGE M. JR.</td>
<td>PATENT APPLICATION 14 NOV 1975</td>
<td>1976</td>
<td></td>
<td>WEYLER, GEORGE M. JR. PATENT APPLICATION 14 NOV 1975</td>
<td>1 51</td>
<td></td>
</tr>
<tr>
<td>WHEEL</td>
<td>HIGH-SPEED ENERGY WHEEL OFFERS TROLLEYS PORTABLE ELECTRICITY</td>
<td>1976</td>
<td></td>
<td>PRODUCT ENGINEERING</td>
<td>2 72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIRCUIT DESIGN REPORT FOR A MOMENTUM WHEEL MOTOR CURRENT CONTROL UNIT</td>
<td>1976</td>
<td></td>
<td>HAINES, J.E.</td>
<td>4 228</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SAFETY REVIEW OF THE KINETIC ENERGY WHEEL (KEW) SYSTEM FOR BUS APPLICATION</td>
<td>1974</td>
<td></td>
<td>NATIONAL ACADEMY OF SCIENCES</td>
<td>2 103</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FURTHER TESTING AND DESIGN IMPROVEMENT OF GREASE LUBRICATED SPIRAL GROOVE BEARING MOMENTUM WHEEL</td>
<td>1974</td>
<td></td>
<td>BOLLEN, J.A.C.</td>
<td>4 220</td>
<td></td>
</tr>
<tr>
<td></td>
<td>THERMAL VACUUM QUALIFICATION TESTS ON A TELDIX DOUBLE-GIMBALED MOMENTUM WHEEL</td>
<td>1974</td>
<td></td>
<td>TODD, M.J./WILSON, N.G.</td>
<td>4 234</td>
<td></td>
</tr>
<tr>
<td></td>
<td>THE KINETIC ENERGY WHEEL</td>
<td>1975</td>
<td></td>
<td>LAWSON, L.I.</td>
<td>2 122</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DESIGN AND DEVELOPMENT OF A MOMENTUM WHEEL WITH A MAINLY PASSIVE MAGNETIC BEARING FINAL REPORT</td>
<td>1975</td>
<td></td>
<td>ESA</td>
<td>1 45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAGNETICALLY SUSPENDED LARGE MOMENTUM WHEEL</td>
<td>1975</td>
<td></td>
<td>SABNIS, A.V./DENDT, J.B./SCHMITT, F.W.</td>
<td>4 238</td>
<td></td>
</tr>
<tr>
<td>WHEEL MOTOR CURRENT</td>
<td>CIRCUIT DESIGN REPORT FOR A MOMENTUM WHEEL MOTOR CURRENT CONTROL UNIT</td>
<td>1973</td>
<td></td>
<td>HAINES, J.E.</td>
<td>4 228</td>
<td></td>
</tr>
<tr>
<td>WHEEL OFFERS TROLLEYS</td>
<td>HIGH-SPEED ENERGY WHEEL OFFERS TROLLEYS PORTABLE ELECTRICITY</td>
<td>1976</td>
<td></td>
<td>PRODUCT ENGINEERING</td>
<td>2 72</td>
<td></td>
</tr>
<tr>
<td>WHEELS</td>
<td>HYBRID ELECTRIC PROPULSION UTILIZING RECONNECTION MOtor WINDINGS IN WHEELS</td>
<td>1973</td>
<td></td>
<td>REIMERS, E.</td>
<td>2 91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEW UNINTERRUPTIBLE POWER SYSTEM ALTERNATIVES USING HIGH CAPACITY KINETIC ENERGY WHEELS</td>
<td>1973</td>
<td></td>
<td>LAWSON, L.J.</td>
<td>3 155</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STUDY OF DOUBLE GIMBALED MOMENTUM WHEELS IN THE ATTITUDE AND ORBIT CONTROL SYSTEM OF A GEOSTATIONARY COMMUNICATION SATELLITE.</td>
<td>1975</td>
<td></td>
<td>BOERSMA, G./SONNENSCHEIN, F.J.</td>
<td>4 237</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MOMENTUM WHEELS</td>
<td>1975</td>
<td></td>
<td>TOROSSIAN, R.</td>
<td>1 49</td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Title</td>
<td>Year</td>
<td>Volume</td>
<td>Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitfield, E.</td>
<td>Flywheels take on light and powerful new lease on life</td>
<td>1974</td>
<td>1</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitlaw, R. L.</td>
<td>Two new weapons against automotive air pollution: the hydrostatic drive and the flywheel-electric LDV.</td>
<td>1972</td>
<td>2</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitney</td>
<td>Characterization of anisotropic composites</td>
<td>1969</td>
<td>6</td>
<td>271</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilcox, J. P.</td>
<td>Flywheel energy storage systems for transit buses</td>
<td>1987</td>
<td>2</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilcox, J. P.</td>
<td>Study of unconventional thermal, mechanical, and nuclear low-pollution-potential power sources for urban vehicles</td>
<td>1988</td>
<td>2</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilson, N. G.</td>
<td>Thermal vacuum qualification tests on a Teldix double-gimbaled momentum wheel</td>
<td>1974</td>
<td>4</td>
<td>234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>Wind Up Car</td>
<td>1970</td>
<td>2</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>Wind Power Conversion System</td>
<td>1974</td>
<td>3</td>
<td>170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>Skagit nuclear power project units 1 and 2. License application</td>
<td>1975</td>
<td>3</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>Wind Power Conversions</td>
<td>1975</td>
<td>5</td>
<td>249</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>Energy Storage for wind energy conversion systems</td>
<td>1976</td>
<td>3</td>
<td>207</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind Energy Conversion</td>
<td>Energy storage for wind energy conversion systems</td>
<td>1975</td>
<td>3</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind Energy Conversion</td>
<td>Independent Energy Systems for better efficiency</td>
<td>1974</td>
<td>3</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>Wind Power Conversion System</td>
<td>1974</td>
<td>3</td>
<td>170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>Energy technology II (navy applications)</td>
<td>1975</td>
<td>5</td>
<td>249</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>Wind Power Conversion System</td>
<td>1976</td>
<td>5</td>
<td>249</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>Wind Power Conversion System</td>
<td>1974</td>
<td>3</td>
<td>170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>Wind Power Conversion System</td>
<td>1974</td>
<td>3</td>
<td>170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>Wind Electric</td>
<td>1974</td>
<td>3</td>
<td>170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>Wind Power Conversion System</td>
<td>1974</td>
<td>3</td>
<td>170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>Wind Turbines</td>
<td>1974</td>
<td>3</td>
<td>170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>Wind Power Conversion System</td>
<td>1975</td>
<td>3</td>
<td>170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>Wind Up Car</td>
<td>1970</td>
<td>3</td>
<td>170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind-Generated Electricity</td>
<td>Assessment of the state-of-the-art of feeding wind-generated electricity into utility power grids</td>
<td>1976</td>
<td>3</td>
<td>207</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WINDING APPLICATIONS</td>
<td>1970</td>
<td>SCREENING OF EPOXY SYSTEMS FOR HIGH-PERFORMANCE FILAMENT WINDING APPLICATIONS</td>
<td>CHAO, T. T. / JESSE, E. S. / PENN, L. S.</td>
<td>6 355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
<td>--</td>
<td>--</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WINDINGS IN WHEELS</td>
<td>1973</td>
<td>HYBRID ELECTRIC PROPULSION UTILIZING RECONNECTIBLE MOTOR WINDINGS IN WHEELS</td>
<td>RENWERS, E.</td>
<td>2 91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOOD TECHNOLOGY</td>
<td>1975</td>
<td>THE APPLICATION OF WOOD TECHNOLOGY TO KINETIC ENERGY STORAGE</td>
<td>BARENBERG, D. W.</td>
<td>1 19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOODS, P.</td>
<td>1975</td>
<td>AC/DC POWER CONDITIONING AND CONTROL EQUIPMENT FOR ADVANCED CONVERSION AND STORAGE TECHNOLOGY</td>
<td>WOODS, P. / PELLY, B. R.</td>
<td>3 195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WORKING FLUIDS</td>
<td>1989</td>
<td>STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW- POLLUTION POTENTIAL POWER SOURCES FOR URBAN VEHICLES</td>
<td>BATTELLO COLUMBUS LABS.</td>
<td>2 70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WORLD DEMAND</td>
<td>1974</td>
<td>ENERGY, VOLUME I, DEMANDS, RESOURCES, IMPACT, TECHNOLOGY, AND POLICY</td>
<td>PENNER, B. S. / IERMAN, L.</td>
<td>5 243</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WORLD ENERGY CONFERENCE</td>
<td>1974</td>
<td>NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY</td>
<td>LUCCHI, A. F.</td>
<td>5 248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOUND BOTTLES</td>
<td>1973</td>
<td>ACOUSTIC EMISSION PRODUCED DURING BURST TESTS OF FILAMENT-WOUND BOTTLES</td>
<td>HAMSTAD, W. A. / CHAO, T. T.</td>
<td>6 320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOUND COMPOSITES</td>
<td>1975</td>
<td>ELONGATED-RING SPECIMEN FOR TENSIILE PROPERTIES OF FILAMENT-WOUND COMPOSITES</td>
<td>CLEMENTS, L. L. / MOORE, R. L. / CHAO, T. T.</td>
<td>6 355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOUND PIPE</td>
<td>1987</td>
<td>THE TEMPERATURE EFFECT OF INTERNAL AND EXTERNAL PRESSURE OF TWO ANGLE WOUND PIPE</td>
<td>CHAO, T. T.</td>
<td>6 285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WU, E. M.</td>
<td>1965</td>
<td>A FRACTURE CRITERION FOR ORTHOTROPIC PLATES UNDER THE INFLUENCE OF COMPRESSION AND SHEAR</td>
<td>WU, E. M.</td>
<td>6 258</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1965</td>
<td>CRACK EXTENSION IN FIBERGLASS-REINFORCED PLASTICS</td>
<td>WU, E. M. / REUTER, R. C.</td>
<td>6 259</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1967</td>
<td>APPLICATION OF FRACTURE MECHANICS TO ANISOTROPIC PLATES</td>
<td>WU, E. M.</td>
<td>6 262</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1968</td>
<td>FRACTURE MECHANICS OF ANISOTROPIC PLATES</td>
<td>WU, E. M.</td>
<td>6 266</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1968</td>
<td>DISCONTINUOUS MODE OF CRACK EXTENSION IN UNIDIRECTIONAL COMPOSITES</td>
<td>WU, E. M.</td>
<td>6 267</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1968</td>
<td>OFF-AXIS TEST OF A COMPOSITE</td>
<td>WU, E. M. / THOMAS, R. L.</td>
<td>6 270</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1968</td>
<td>CHARACTERIZATION OF ANISOTROPIC COMPOSITES</td>
<td>HALPIN, J. C. / PAGANO / WHITNEY / WU, E. M.</td>
<td>6 271</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
CONCORDANCE ON TITLE, AUTHOR, ORGANIZATION AND KEYWORDS

WU, E. M. (CONT'D.)
1989 SOME UNIQUE CRACK PROPAGATION PHENOMENA IN UNIDIRECTIONAL COMPOSITES AND THEIR MATHEMATICAL CHARACTERIZATION
1989 INTERFACIAL FRACTURE PHENOMENA
1971 A GENERAL THEORY OF STRENGTH FOR ANISOTROPIC MATERIALS
1971 MEASUREMENT AND CONTROL OF DYNAMIC CRACKS IN COMPOSITES
1971 FRACTURE CRITERIA FOR ORTHOTROPIC PLATE UNDER COMPRESSION AND SHEAR
1971 THE EFFECT OF SOLVENTS AND STRESS ON THE STRESS RUPTURE LIFE OF EPOXY-CLASS COMPOSITES
1971 COMPUTER AIDED MECHANICAL TESTING OF COMPOSITES
1972 KINETIC FAILURE PROCESSES OF POLYMERS
1972 STRENGTH TENSORS AND THEIR INVARIANTS - THEORY AND EXPERIMENT
1972 OPTIMAL EXPERIMENTAL MEASUREMENT OF ANISOTROPIC FAILURE TENSORS
1973 DATA AVERAGING OF ANISOTROPIC MATERIAL CONSTANTS
1973 THE EFFECT OF STRESS ON DIFFUSION IN COMPOSITES - EXPERIMENTAL OBSERVATIONS.
1974 PHENOMENOLOGICAL ANISOTROPIC FAILURE CRITERION
1974 STRENGTH AND FRACTURE OF COMPOSITES
1974 FAILURE CRITERIA TO FRACTURE MODE ANALYSIS OF COMPOSITE MATERIALS
1974 LAMINATE STRENGTH - A DIRECT CHARACTERIZATION PROCEDURE
1974 STRESS RUPTURE OF GLASS/EPOXY COMPOSITES - ENVIRONMENT AND STRESS EFFECTS.

WU, E. M.

YANG, C. Y.
1969 A RANDOM WALK MODEL IN RANDOM VIBRATION
1971 A RANDOM WALK MODEL FOR FIRST-PASSAGE PROBABILITY
1972 NON-STATIONARY RANDOM VIBRATION OF NONLINEAR STRUCTURES

YUDOVSKII, I. D.
1974 SYNTHESIS OF THE BELT OF A DISCRETE BELT VARIATOR

ZEROMISSION CAR
1970 SUPER FLYWHEEL TO POWER ZERO-EMISSION CAR

ZINC CHLORIDE
1974 HEAT STORAGE USING ALKALI METAL SALTS, ALKALI EARTH SALTS, IRON CHLORIDE, ZINC CHLORIDE, BORON OXIDE, AND EUTECTIC FLUORIDE MIXTURES

ZLOTNICK, M.
1975 ENERGY STORAGE FOR WIND ENERGY CONVERSION SYSTEMS

ZUCKER, O.
1974 IMPROVED REGENERATIVE BRAKING SYSTEM

ZYGIELBAUM, P. S.
1974 POTENTIAL FOR LARGE-SCALE ENERGY STORAGE IN ELECTRIC UTILITY SYSTEMS

WU, E. M. / THOMAS, R. L.
TSAIR, S. W. / WU, E. M.
BRISSEY, P. L. / WU, E. M.
WU, E. M.
RUHMANN, D. C. / WU, E. M.
WU, E. M. / JERINA, K. L.
WU, E. M. / HALPIN, J. C.
WU, E. M.
WU, E. M. / JERINA, K. L.
LAVENGOOD, R. E.
RUHMANN, D. C. / WU, E. M.
WU, E. M.
WU, E. M.
WU, E. M.
WU, E. M. / SCHUEBLEIN, J. K.
WU, E. M. / RUHMANN, D. C.
TOLAND, R. H. / YANG, C. Y.
TOLAND, R. H. / YANG, C. Y.
TOLAND, R. H. / YANG, C. Y. / HSU, C. S.
GULIA, N. V. / YUDOVSKII, I. D.
ARMAGNAC, A. P.
SCHROEDER, J.
ZLOTNICK, M.
HYNE, A. / ZUCKER, O.
KALHAMMER, F. / ZYGIELBAUM, P. S.

210
Part-2

MAIN LISTING OF CITATIONS
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

1 PROPERTIES OF FLYWHEELS

1 TITLE........: DETERMINING INERTIA AND TIME REQUIREMENTS FOR FLYWHEEL MACHINES
AUTHORS........: SPOTTS, M. F.
PUBL. DATE......: MAR 28 1963

2 TITLE........: TESTING MAGNETO FLYWHEELS AT SPEEDS UP TO 25000 RPM.
AUTHORS........: MACHY (LOND)
PUBL. DATE......: JUL 24 1963

3 TITLE........: THE UNIFORM-STRESS SPINNING FILAMENTARY DISK
AUTHORS........: KYSER, A. C.
ORGANIZATION: ASTRO RESEARCH CORP.
ADDRESS........: SANTA BARBARA, CA.
SOURCE..........: REPORT NO. NASA CR-108
PUBL. DATE......: 1964
TYPE............: REPORT
KEYWORDS........: FLYWHEELS/COMPOSITE MATERIALS/CALCULATIONS/FLYWHEEL OPTIMIZATION/FLYWHEEL DESIGN/ISOTENSOID DESIGN

4 TITLE........: MAGNETIC BEARINGS
AUTHORS........: BEAMS, J. W.
SOURCE..........: SAE AUTOMOTIVE CONGRESS PROCEEDINGS, JAN. 1964.
PUBL. DATE......: JAN 1964
TYPE............: PROCEEDINGS
5 TITLE........: RESPONSE TO PRESSURIZATION OF A VISCOELASTIC CYLINDER WITH AN ERODING INTERNAL BOUNDARY.
AUTHORS......: CHRISTENSEN, R. M. / SCHREINER, R. N.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
PUBL. DATE...: 1965
TYPE.........: JOURNAL
CATEGORY.....: MECHANICS

6 TITLE........: DEFORMATION OF AN ELASTIC SPHERICAL WEDGE.
AUTHORS......: CHRISTENSEN, R. M.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
SOURCE......: J. OF APPLIED MECHANICS 33, 52 (1966).
PUBL. DATE...: 1966
TYPE.........: JOURNAL
CATEGORY.....: MECHANICS

7 TITLE........: LARGE ELASTIC DEFORMATION OF A SPHERICAL WEDGE
AUTHORS......: CHRISTENSEN, R. M.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
SOURCE......: INTERNATIONAL J. OF NONLINEAR MECHANICS 2, 207 (1967).
PUBL. DATE...: 1967
TYPE.........: JOURNAL
CATEGORY.....: MECHANICS

8 TITLE........: COMPOSITE FLYWHEEL STRESS ANALYSIS AND MATERIALS STUDY
AUTHORS......: MORGANTHALER, G. F. / BONK, S. P.
I PROPERTIES OF FLYWHEELS

8 TITLE........: COMPOSITE FLYWHEEL STRESS ANALYSIS AND MATERIALS STUDY (CONTD.)
SOURCE........: 12TH. NAT. SAMPE SYMPOSIUM, OCT. 1967, SEC. D-5.
PUBL. DATE....: OCT 1967
TYPE..........: PROCEEDINGS

KEYWORDS.....: FLYWHEELS/COMPOSITE MATERIALS/STRESS CALCULATIONS

9 TITLE........: CAPTURED LOAD RESILIENCE OF A HYDRAULIC VIBRATOR SAVES POWER
AUTHORS.......: LANKESTER, J. A.

SOURCE........: HYDRAULICS AND PNEUMATICS 21, P 113, MAY 1968.
PUBL. DATE....: MAY 1968

10 TITLE........: BEARING SUPPORT FLYWHEEL
AUTHORS.......: ENGINEER

SOURCE........: ENGINEER 227, P 41, JAN 10, 1969
PUBL. DATE....: JAN 10 1969

11 TITLE........: MODIFICATION OF DC MOTOR WITH MAGNETICALLY SUSPENDED ROTOR
AUTHORS.......: CAMBRIDGE THERMIONIC CORP., MASS.

SOURCE.......: NASA-CR-115792
CONTRACT #:.....: NAS5-1585
PUBL. DATE....: JUL 31 1970

KEYWORDS.....: FLYWHEELS/ENERGY STORAGE/MODIFICATION OF D.C. MOTOR

12 TITLE........: NEW CONCEPTS IN MECHANICAL ENERGY STORAGE
AUTHORS.......: RABENHORST, D. W.
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

I. PROPERTIES OF FLYWHEELS

12 TITLE: NEW CONCEPTS IN MECHANICAL ENERGY STORAGE (CONT'D.)
SOURCE: ENERGY 70, PROC. OF 6TH INTERSOC. ENERGY CONVERSION ENG.
CONF., LAS VEGAS, SEP. 21-5, 1970, VOL. 1, A73-25976 11-03
ALSO: AMER. NUCLEAR SOC., 1972 P.2-95 TO 2-99
PUBL. DATE: SEP 1970
TYPE: PROCEEDINGS
KEYWORDS: FLYWHEELS/ENERGY STORAGE/VEHICLES/COMPOSITE FIBERS

13 TITLE: APPLICATION OF AIR BEARINGS TO HIGH SPEED TURBOMACHINERY
AUTHORS: BARNETT, M. A. / SILVER, A.
SOURCE: SAE PAPER NO. 700720
PUBL. DATE: SEP 14 1970
CONFERENCE: POWERPLANT MEETING
LOCATION: MILWAUKEE, WIS.
DATE: SEP 14-17, 1970

14 TITLE: PRIMARY ENERGY STORAGE AND THE SUPER FLYWHEEL
AUTHORS: RABENHORST, D. W.
ADDRESS: LAUREL, MARYLAND
SOURCE: JOHNS HOPKINS UNIV., APPL. PHYS. LAB. RPT. TG1081 (REV.)
PUBL. DATE: OCT 1970
TYPE: REPORT

15 TITLE: SUPER FLYWHEEL
AUTHORS: MECH. ENG.
PUBL. DATE: NOV 1970
16 TITLE........: MINIMIZATION OF MECHANISM OSCILLATIONS THROUGH FLYWHEEL TUNING
AUTHORS.......: MAHIG, J.
ORGANIZATION: UNIV. OF FLORIDA, GAINESVILLE
SOURCE........: J. ENG. IND., TRANS ASME 93, SER B, NO 1, FEB 1971, P 120
PUBL. DATE....: FEB 1971

17 TITLE........: MATERIAL REQUIREMENTS FOR THE SUPERFLYWHEEL
AUTHORS.......: RABENHORST, D. W.
ORGANIZATION: JOHNS HOPKINS UNIV.
SOURCE........: PROCEEDINGS OF FOURTH BUHL INTERNATIONAL CONFERENCE,
PITTSBURGH, CARNEGIE PRESS, 1971, P 195. (A73-14740-04-17)
PUBL. DATE....: NOV 1971
LOCATION......: PITTSBURGH, PA.
DATE...........: NOV 16-18, 1971

18 TITLE........: HEAT-ENGINE MECHANICAL-ENERGY-STORAGE HYBRID PROPULSION SYSTEMS FOR VEHICLES.FINAL REPORT
AUTHORS.......: DUGGER, G. L./BRANDT,A./GEORGE,J.F./PERINI,L.L./RABENHORST,
D. W./SMALL,T.R./WEISS,R.O.
ORGANIZATION: JOHNS HOPKINS UNIV., APPLIED PHYSICS LAB.
ADDRESS.......: SILVER SPRING, MD
SOURCE........: APTD--1344 CP--011
PUBL. DATE....: MAR 1972

CATEGORY.......: ENERGY CONVERSION
KEYWORDS.......: FLYWHEELS/VEHICLES/FLYWHEEL POWERED VEHICLES/HYBRIDS/
FLYWHEEL MATERIALS/FIBER COMPOSITES

19 TITLE........: THE APPLICATION OF WOOD TECHNOLOGY TO KINETIC ENERGY STORAGE
AUTHORS.......: RABENHORST, D. W.
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

I PROPERTIES OF FLYWHEELS

19 TITLE........: THE APPLICATION OF WOOD TECHNOLOGY TO KINETIC ENERGY STORAGE (CONTD.)
SOURCE.......: APPLIED PHYSICS LAB. TECHNICAL DIGEST 11, 2 (1972).
PUBL. DATE...: MAY 1972
TYPE.........: JOURNAL

KEYWORDS.....: FLYWHEELS/FLYWHEELS—WOOD/ECONOMICS/SAFETY

20 TITLE........: CALCULATION OF STRESSES AND STRENGTH RETENTION OF ROTATING DISKS AND FLYWHEELS
AUTHORS.......: KRITZER, R.
ORGANIZATION: TECHNISCHE BERECHNUNG DER MOTOREN—WERKE
ADDRESS......: MANNHEIM, GERMANY
SOURCE.......: KONSTRUKTION 24, 5, 186-194 (GERMANY)
PUBL. DATE...: MAY 1972

KEYWORDS.....: CALCULATIONS/FLYWHEELS/STRESSES/SAFETY

21 TITLE........: DISPOSITIF DE PROTECTION CONTRE LES CONSEQUENCES DE LA RUPTURE D'UN VOLANT D'INERTIE. (A PROTECTIVE DEVICE TO PREVENT THE CONSEQUENCES OF A FLYWHEEL RUPTURE)
AUTHORS.......: BONNET—THIRION, C.J./ROBIDA, L./FOLDES, G.

SOURCE.......: FRENCH PATENT 2,200,906 D 26 SEP 1972 (IN FRENCH)
PUBL. DATE...: SEP 26 1972
TYPE.........: PATENT
ASSIGNED.....: BASCOCK—ATLANTIQUE

KEYWORDS.....: FLYWHEELS/PROTECTIVE DEVICES/RUPTURE OF FLYWHEELS/COOLING SYSTEMS/SAFETY

22 TITLE........: SUPER FLYWHEEL; A SECOND LOOK
AUTHORS.......: BRUNELLE, E. J.

SOURCE.......: J. ENG. MATERIALS & TECH. TRANS. ASME, V. 95, 63 (JAN 1973)
PUBL. DATE...: JAN 1973
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

1 PROPERTIES OF FLYWHEELS

23 TITLE........: REVOLUTION IN FLYWHEELS
AUTHORS........: DANN, R. T.
SOURCE.........: MACHINE DESIGN 45, 130 (MAY 17, 1973)
PUBL. DATE.....: MAY 17 1973

24 TITLE........: ANGULAR MOMENTUM AND THE AIRCRAFT-STORE SEPARATION PROBLEM
AUTHORS........: DANIELS, P./ CLARE, T. A.
SOURCE.........: J. AIRCRAFT 10, 511 (AUG. 1973)
PUBL. DATE.....: AUG 1973

25 TITLE........: FLYWHEELS
AUTHORS........: POST, R. F./POST, S. F.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS........: LIVERMORE, CA
SOURCE.........: SCIENTIFIC AMERICAN 229(6), 17-23
PUBL. DATE.....: DEC 1973
TYPE...........: JOURNAL
CATEGORY.......: ENERGY STORAGE
KEYWORDS.......: FIBER COMPOSITE/COST/ECONOMICS/ENERGY STORAGE/MECHANICAL PROPERTIES/COMPOSITE/METALS/ALUMINUM ALLOY/STEEL/LEAD-ACID BATTERY/DESIGN/STRESS-BEARING CHARACTERISTICS/DELAMINATION/UTILITIES/VEHICLES/GENERATORS

26 TITLE........: DESIGN CONSIDERATIONS FOR A 100-MEGAJOULE/500-MEGAWATT SUPERFLYWHEEL
AUTHORS........: RABENHOEST, D. W./TAYLOR, R. J.
ORGANIZATION: JOHNS HOPKINS UNIV., APPLIED PHYSICS LAB.
ADDRESS........: SILVER SPRING, MD.
SOURCE.........: AD-774736/APL-TG-1229
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

I PROPERTIES OF FLYWHEELS

26 TITLE..........: DESIGN CONSIDERATIONS FOR A 100-MEGAOULE/500-MEGAWATT (CONTD.)
CONTRACT #:.......: N00017-C-4401
PUBL. DATE:.......: DEC 1973
KEYWORDS........: COST/DESIGN/ENERGY STORAGE/FLYWHEELS

27 TITLE..........: TECHNICAL PROGRAM PLAN FOR SUPERFLYWHEEL DEVELOPMENT
AUTHORS..........: RABENHORST, D. W.
ORGANIZATION:....: APPLIED PHYSICS LAB., JOHNS HOPKINS UNIV.
SOURCE: RPT. PREPARED FOR A.E.C., 1974
PUBL. DATE:.......: 1974
TYPE............: REPORT PREPARED FOR ATOMIC ENERGY COMMISSION, 1974.
KEYWORDS........: FLYWHEELS/FIBER COMPOSITES/FLYWHEEL--HIGH PERFORMANCE

28 TITLE..........: THERMAL STRESSES IN COMPOSITE FLYWHEELS
AUTHORS..........: REUTER, R. C. JR.
ORGANIZATION:....: SANDIA LABS.
ADDRESS.........: ALBUQUERQUE, N.MEX. (USA)
SOURCE: SAND--75-5496 CONF--751013--2
PUBL. DATE:.......: 1974
CONFERENCE.......: 12.ANNUAL MEETING OF THE SOCIETY OF ENGINEERING SCIENCE
LOCATION........: AUSTIN, TEXAS, USA
DATE............: 21 OCT 1976
CATEGORY.........: ENGINEERING
KEYWORDS.........: COMPOSITE MATERIALS/ENERGY STORAGE/FLYWHEELS/STRESS
ANALYSIS/TEMPERATURE GRADIENTS/ THERMAL STRESSES/

29 TITLE..........: METHOD OF CALCULATING TORSIONAL VIBRATIONS IN A POWER UNIT
WITH A NON-LINEAR SILICONE DAMPER
AUTHORS..........: SHIRAEV, M. P. / KHUDOZHILOV, V. A.
SOURCE..........: RUSS. ENG. J. (ENGL. TRANSL.) 54,6, 51-54
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

I PROPERTIES OF FLYWHEELS

29 TITLE........: METHOD OF CALCULATING TORSIONAL VIBRATIONS IN A POWER UNIT (CONTD.)
PUBL. DATE.....: 1974
TYPE..........: JOURNAL

KEYWORDS.....: DAMPING/ ENERGY STORAGE/ FLYWHEELS/ FRICTION/ MECHANICAL
VIBRATIONS/ NONLINEAR PROBLEMS/ OSCILLATION MODES/ SILICONES

30 TITLE........: FLYWHEELS AS AN ENERGY STORAGE DEVICE, A SELECTED
BIBLIOGRAPHY
AUTHORS........: LLL
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS........: LIVERMORE, CA. 94550
SOURCE.........: LLL-TID-BIB-899
PUBL. DATE.....: MAR 1974

31 TITLE........: ITERATIVE PROCEDURES FOR CALCULATING THE FIRST TORSIONAL
EIGENFREQUENCY OF A SHAFT WITH SEVERAL FLYWHEELS
AUTHORS.........: ATZORI, B. / CURTI, G.

SOURCE.........: TORINO, ACCADEMIA DELLE SCIENZE, CLASSE DI SCIENZE FISICHE,
PUBL. DATE.....: MAY 1974

KEYWORDS.......: FLYWHEELS/EIGENFREQUENCY CALCULATIONS

32 TITLE........: FLYWHEELS TAKE ON LIGHT AND POWERFUL NEW LEASE ON LIFE
AUTHORS.........: WHITFIELD

SOURCE.........: ENGINEER 238, 47 (MAY 16, 1974)
PUBL. DATE.....: MAY 16 1974
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

I PROPERTIES OF FLYWHEELS

33 TITLE........: MULTIRIM SUPERFLYWHEEL.TECHNICAL MEMO
AUTHORS........: RABENHORST, D. W.
ORGANIZATION: JOHNS HOPKINS UNIV., APPLIED PHYSICS LAB. OFFICE OF NAVAL RESEARCH
ADDRESS.......: (J.H.U.) SILVER SPRING, MD. (O.N.R.) ARLINGTON, VA.
SOURCE........: AD A--001081 APL JHU-TG--1240
CONTRACT #....: N00017-72-C-4401
PUBL. DATE....: AUG 1974
KEYWORDS.......: CONFIGURATION/COST/ENERGY STORAGE/FLYWHEELS/PERFORMANCE/

34 TITLE........: A 1000 NMS FLYWHEEL OPTIMISATION STUDY
AUTHORS........: STANDING, J. M.
ORGANIZATION: HAWKER SIDDELEY DYNAMICS, LTD.
ADDRESS.......: STEVENAGE, ENGLAND
SOURCE........: ESRO-CR-92
CONTRACT #....: ESTEC-1335/71-SL
PUBL. DATE....: SEP 1974
KEYWORDS.......: FLYWHEEL/1000 NMS FLYWHEEL/FLYWHEEL DESIGN

35 TITLE........: A 150 NMS FLYWHEEL OPTIMISATION STUDY
AUTHORS........: STANDING, J. M.
ORGANIZATION: HAWKER SIDDELEY DYNAMICS, LTD.
ADDRESS.......: STEVENAGE, ENGLAND
SOURCE........: ESRO-CR-92
CONTRACT #....: ESTEC-1335/71-SL
PUBL. DATE....: SEP 1974
KEYWORDS.......: FLYWHEEL/DESIGN OF FLYWHEEL/FLYWHEEL THERMAL PROPERTIES/
CALCULATIONS

10
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

1 PROPERTIES OF FLYWHEELS

36 TITLE.......: SUPERFLYWHEEL: THE BATTERY THAT SPINS
AUTHORS.......: LAMPE, D.
SOURCE.......: POPULAR MECHANICS, NOV. 1974, P. 124.
PUBL. DATE...: NOV 1974
TYPE.........: PERIODICAL
KEYWORDS.....: FLYWHEELS/VEHICLES/SUPERFLYWHEELS/ENERGY STORAGE

37 TITLE.......: FLYWHEEL ENERGY SYSTEMS
AUTHORS.......: BIGGS, F.
ORGANIZATION: SANDIA LABS.
ADDRESS......: ALBUQUERQUE, N.MEX. (USA)
SOURCE.......: SAND—74-0113
PUBL. DATE...: NOV 1974
KEYWORDS.....: FLYWHEELS/ENERGY STORAGE/FLYWHEEL DESIGNS/FLYWHEEL MATERIALS/ VEHICLES/UTILITIES/FLYWHEEL R&D

38 TITLE.......: THE LUBRICATION OF BEARINGS AND SLIP RINGS IN VACUUM
AUTHORS.......: O'DONNELL, P. J. / HARRIS, L. C. / WARWICK, M. G.
ORGANIZATION: MARCONI SPACE AND DEFENSE SYSTEMS LTD.
ADDRESS......: CAMBERLEY, ENGLAND
SOURCE.......: ESRO-CR-214
CONTRACT #:....: ESTEC-763/69-AA
PUBL. DATE...: NOV 1974
TYPE.........: PROGRESS REPORT
KEYWORDS.....: FLYWHEELS/LUBRICATION OF BEARINGS

39 TITLE.......: ESTIMATING THE VELOCITIES OF THE CONTROL FLYWHEELS OF A FREE GYROSTAT
AUTHORS.......: LITVIN—SEDOI, M. Z.
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

I PROPERTIES OF FLYWHEELS

39 TITLE.......: ESTIMATING THE VELOCITIES OF THE CONTROL FLYWHEELS OF A
CONT'D.
ORGANIZATION: SCI RES INST FOR MECH, MOSCOW UNIV, USSR
SOURCE.......: MOSC. UNIV. MECH. BULL. V 30 N 3-4 1975 P 26-31
PUBL. DATE...: 1975
KEYWORDS.....: GYROSCOPES/FLYWHEELS

40 TITLE.......: FINITE ELEMENT STUDY OF A CAST IRON FLYWHEEL WITH
PARTICULAR EMPHASIS ON STRESS CONCENTRATIONS
AUTHORS.......: BINDIN, P.J.
ORGANIZATION: PERKINS ENGINES LTD.
ADDRESS......: PETERBOROUGH, ENGLAND
SOURCE.......: CONF. PROCEEDINGS. JOHN WILEY, N. Y. 1975
PUBL. DATE...: 1975
PUBLISHER.....: JOHN WILEY, N.Y.
CONFERENCE....: INST. OF PHYS. STRESS ANAL. GROUP, ANNUAL CONF: STRESS, VIB.
AND NOISE ANAL. IN VEH.
LOCATION.....: UNIV. OF ASTRON.
KEYWORDS.....: MATHEMATICAL TECHNIQUES/ FINITE ELEMENT METHOD/ STRESS
CONCENTRATION/ FLYWHEEL BURSTING SPEED/FLYWHEELS/CAST IRON
FLYWHEELS/STRESS FRACTURE/CALCULATIONS

41 TITLE.......: ACTIVE STABILIZATION OF THE ROTARY MOTION OF A SOLID BODY
AUTHORS.......: SAAKIAN, L. S.
SOURCE.......: JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, VOL 39, NO.5
1975 P. 882-890, 5REF.
PUBL. DATE...: 1975

42 TITLE.......: DESIGN AND APPLICATIONS OF FLYWHEELS (A BIBLIOGRAPHY WITH
ABSTRACTS)
AUTHORS.......: LEHMANN, E. J.
ORGANIZATION: NTIS
ADDRESS......: SPRINGFIELD, VA.
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

I PROPERTIES OF FLYWHEELS

42 TITLE........: DESIGN AND APPLICATIONS OF FLYWHEELS (A BIBLIOGRAPHY WITH (CONT'D.)
SOURCE........: REPORT FOR 1964-OCT. 1974
PUBL. DATE.....: JAN 1975

43 TITLE........: METALS AND COMPOSITES IN SUPERFLYWHEEL ENERGY STORAGE SYSTEMS
AUTHORS.......: RABENHORST, D. W.
SOURCE........: SAMPE Q. 6 2, 23.
PUBL. DATE.....: JAN 1975
KEYWORDS......: ANISOTROPY/COMPOSITE MATERIALS/ENERGY STORAGE/FLYWHEELS/MATERIALS TESTING/

44 TITLE........: DEVELOPMENT OF HIGH-DENSITY INERTIAL-ENERGY STORAGE
AUTHORS.......: BROBECK, W. M. ASSOC.
SOURCE........: EPRI 269-1 FINAL REPORT, JULY 1975, FOR ELECTRIC POWER RESEARCH INSTITUTE
PUBL. DATE.....: JUL 1975

45 TITLE........: DESIGN AND DEVELOPMENT OF A MOMENTUM WHEEL WITH A MAINLY PASSIVE MAGNETIC BEARING FINAL REPORT
AUTHORS.......: ESA
SOURCE........: (CONTRACT ESTEC-2038/73-PP (MU/EX-47.055/75; ESA-CR(P)-696
AVIL: NTIS HC $4.50
PUBL. DATE.....: JUL 1975
KEYWORDS......: FLYWHEELS/MAGNETIC BEARINGS/FLYWHEEL DESIGN
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

I PROPERTIES OF FLYWHEELS

46 TITLE........: DESIGN AND APPLICATIONS OF FLYWHEELS (A BIBLIOGRAPHY WITH ABSTRACTS)
AUTHORS......: HABERCOM, G. E.
ORGANIZATION: NTIS
ADDRESS......: SPRINGFIELD, VA.
SOURCE.......: NTIS/PS-75/743/5SL
PUBL. DATE...: OCT 1976

47 TITLE........: ON OPTIMAL SHAPES FOR ANISOTROPIC ROTATING DISKS.
AUTHORS......: GERSTLE, F. P. / BIGGS, F.
SOURCE.......: SOCIETY OF ENGINEERING SCIENCE, ANNUAL MEETING, 12TH,
AUSTIN, TEXAS, OCTOBER 20-22, 1975, PROCEEDINGS. P. 143-153
PUBL. DATE...: OCT 20 1975
KEYWORDS.....: FLYWHEELS/ANISOTROPIC/SHAPES OF FLYWHEELS/ENERGY STORAGE

48 TITLE........: EPOXY RESINS FOR FLYWHEEL APPLICATIONS.
AUTHORS......: RINDE, J. A.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
SOURCE.......: LAWRENCE LIVERMORE LABORATORY REPORT UCRL-77543, NOV. 1975.
PROC. OF THE 1975 FLYWHEEL TECHNICAL SYMPOSIUM, BERKELEY,
CA, NOV. 10-12, 1975.
PUBL. DATE...: NOV 1975
TYPE..........: REPORT
CATEGORY......: MATERIAL PROPERTIES

49 TITLE........: MOMENTUM WHEELS
AUTHORS......: TOROSSIAN, R.
ORGANIZATION: AEROSPATIALE, FRANCE
I PROPERTIES OF FLYWHEELS

49 TITLE........: MOMENTUM WHEELS (CONTD.)
PUBL. DATE....: NOV 1975
CONFERENCE....: FLYWHEEL TECHNOLOGY SYMPOSIUM, BERKELEY, CA, NOV 1975.

50 TITLE........: 1975 FLYWHEEL TECHNOLOGY SYMPOSIUM
AUTHORS.......: ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION, AND
LAWRENCE LIVERMORE LABORATORY
EDITOR........: CHANG, G. C.
SOURCE........: ERDA-76-85
PUBL. DATE....: NOV 10 1975
DATE..........: NOV. 10-12, 1975

51 TITLE........: AN IMPROVED ROTATABLE MASS FOR A FLYWHEEL
AUTHORS.......: WLEYER, GEORGE M. JR. PATENT APPLICATION 14 NOV 1975
SOURCE........: (NASA-CASE-MFS-23051-1; US-PATENT-APPL-SN-632111) AVAIL:
NTIS NC $3.50 CSCL 20K
PUBL. DATE....: NOV 14 1975
KEYWORDS.....: FLYWHEELS/ENERGY STORAGE/FIBER COMPOSITES/FLYWHEEL DESIGN

52 TITLE........: FIBER EVALUATION FOR FLYWHEEL APPLICATIONS
AUTHORS.......: PENN, L. S. / CHIAO, T. T.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
SOURCE........: LAWRENCE LIVERMORE LABORATORY REPORT UCRL-77569, DEC.15,
1975. / PROC. OF 1975 FLYWHEEL TECHNICAL SYMPOSIUM,
BERKELEY, CA, NOV. 10-12, 1975.
PUBL. DATE....: DEC 15 1975
TYPE..........: REPORT
CATEGORY.....: MATERIAL PROPERTIES
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

I PROPERTIES OF FLYWHEELS

53 TITLE........: MECHANICAL DESIGN OF A COMPOSITE CENTERLESS FLYWHEEL
AUTHORS........: BLAKE, A.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS........: LIVERMORE, CA. 94550
SOURCE.........: UCRL-51978
CONTRACT #......: W-7405-ENG-48
PUBL. DATE......: DEC 16 1975
TYPE...........: REPORT
PUBLISHER.......: LLL
KEYWORDS.......: COMPOSITE MATERIALS/ CONFIGURATION/ DESIGN/ ENERGY STORAGE/
FILAMENTS/ FLYWHEELS/ RINGS/ STRESSES

54 TITLE........: FERRO-RESONANT CIRCUIT FOR A NEW FLYWHEEL MOTOR GENERATOR
AUTHORS........: AALAND, K.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS........: LIVERMORE, CA. 94550
SOURCE.........: UCRL-77508-ABSTRACT
PUBL. DATE......: 1976

55 TITLE........: FLYWHEELS, A REPORT BIBLIOGRAPHY
AUTHORS........: DEFENSE DOCUMENTATION CENTER
ORGANIZATION: DEFENSE DOCUMENTATION CENTER
ADDRESS........: ALEXANDRIA, VA.
SOURCE.........: SCN-CF022D
PUBL. DATE......: FEB 16 1976

56 TITLE........: FLYWHEELS, A SELECTED BIBLIOGRAPHY
AUTHORS........: MADDEN, W. E.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS........: LIVERMORE, CA. 94550
56 TITLE........: FLYWHEELS, A SELECTED BIBLIOGRAPHY (CONTD.)
SOURCE........: LLL-TID-BIB-1093
PUBL. DATE....: MAR 16 1976

57 TITLE........: FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS
AUTHORS........: STONE, R. G.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS........: LIVERMORE, CA, 94550
SOURCE........: UCRL-50033-76-1
PUBL. DATE....: MAY 1976

58 TITLE........: RESEARCH LEADING TO THE PRODUCTION AND EARLY USE OF NUMERIC
DATA BANKS OF MATERIAL PROPERTIES AND SYSTEM ANALYSES
AUTHORS.........: HENRY, E. A.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.........: LIVERMORE, CA, 94550
SOURCE..........: UCRL-50038-76-1,-2,-3,-4,-5
PUBL. DATE......: MAY 14 1976

59 TITLE........: COMPOSITE FIBER FLYWHEEL FOR ENERGY STORAGE
AUTHORS.........: RINDE, J. A.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.........: LIVERMORE, CA, 94550
SOURCE..........: UCRL-78085
PUBL. DATE......: JUN 04 1976
II FLYWHEELS IN VEHICLES

60 TITLE........: COMPARISON OF ELECTRICALLY RUN UP FLYWHEEL (DC MOTOR) WITH TURBINE. HOT GAS MOTOR AND OTHER SYSTEMS FOR MINUTEMAN APPLICATION.

AUTHORS........: FRUKTOW, N. N.
ORGANIZATION: TRW SPACE TECHNOLOGY LABS.
ADDRESS.......: LOS ANGELES, CA.
SOURCE........: TN-59-0000-00266
PUBL. DATE....: MAY 1959
TYPE..........: REPORT

KEYWORDS......: COMPARATIVE EVALUATIONS/ FLYWHEELS/ MISSILES

61 TITLE........: ON-BOARD ENERGY STORAGE IN RAIL RAPID TRANSIT

AUTHORS........: MARLOWE, E. W.
ORGANIZATION: DEVELOPMENT LABS., INC.
ADDRESS.......: SANTA MONICA, CAL.
SOURCE........: TN-64-23
PUBL. DATE....: JUN 1964
TYPE..........: REPORT
PUBLISHER.....: DEVELOPMENT LABS., INC.

KEYWORDS......: CONTROL SYSTEMS/ DESIGN/ ENERGY STORAGE/ FLYWHEELS/ MECHANICAL TRANSMISSIONS/ RAPID TRANSIT SYSTEMS/ TRAINS

62 TITLE........: GENERAL THEORETICAL ANALYSIS AND EVALUATION OF AN EXPERIMENTAL MODEL OF A CONSTANT-SPEED FLYWHEEL POWER SOURCE

AUTHORS........: MATTHEWS, L. E. / EVERETT, W. D. / BINDER, R.
ORGANIZATION: U. S. NAVAL MISSILE CENTER
ADDRESS.......: POINT MUGU, CA.
PUBL. DATE....: JUN 25 1964
TYPE..........: REPORT

KEYWORDS......: FLYWHEELS/VEHICLES/FLYWHEEL-LIQUID FILLED
II FLYWHEELS IN VEHICLES

63 TITLE........: TRANSFER LINE FOR SHORT RUNS
AUTHORS.......: AM. MACH.
SOURCE.......: AM. MACH. 109, P 83, AUG 16, 1965
PUBL. DATE...: AUG 16 1965

64 TITLE........: SPECIFICATIONS FOR SHIPBOARD STORED ENERGY CATAPULT
FLYWHEEL PACKAGE
AUTHORS.......: NAVAL ORDNANCE STATION, FOREST PARK, ILL.
SOURCE.......: AD-876 244L, IDEF 347.55.00.00-Y7-05S
PUBL. DATE...: APR 14 1966

65 TITLE........: EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS
FOR AIRCRAFT ACTUATION FUNCTIONS
AUTHORS.......: NORTH AMERICAN AVIATION INC, LOS ANGELES DIV.
SOURCE.......: NA-66-1142-1, QUARTERLY TECH. RPT. NO. 1, 1 JUL-30SEP 1966
CONTRACT #...: AF33(615)-5173
PUBL. DATE...: OCT 12 1966

66 TITLE........: FLYWHEEL ENERGY STORAGE SYSTEMS FOR TRANSIT BUSES
AUTHORS.......: WILCOX, J. P.
ORGANIZATION: Battelle Labs.
ADDRESS......: Columbus, OH10
PUBL. DATE...: OCT 1967
TYPE.........: REPORT
PUBLISHER...: Battelle Columbus Labs.

KEYWORDS.....: BUSES/ ECONOMICS/ ENERGY STORAGE/ FEASIBILITY STUDIES/
FLYWHEELS/ RAPID TRANSIT SYSTEMS/ REGENERATIVE BRAKING/
TRANSIENTS
II FLYWHEELS IN VEHICLES

67 TITLE: FLYWHEEL INERTIA ACTUATES AUTOMATIC ANTI-SKID DEVICE
AUTHORS: PRODUCT ENG.
SOURCE: PRODUCT ENG. 38, P 59, DEC 18, 1967
PUBL. DATE: DEC 18 1967

68 TITLE: PRIMARY ENERGY STORAGE AND THE SUPER FLYWHEEL
AUTHORS: RABENHORST, D. W.
ORGANIZATION: APPLIED PHYSICS LAB., JOHNS HOPKINS UNIV.
ADDRESS: SILVER SPRING, MD.
SOURCE: AD--697906; APL--TG-1081
CONTRACT #: NOW--62-0604-C
PUBL. DATE: SEP 1969
KEYWORDS: FLYWHEEL/FLYWHEEL DESIGN/ENERGY STORAGE/SUPERFLYWHEEL

69 TITLE: STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-POPLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES
ORGANIZATION: BATTELLE COLUMBUS LABS.
ADDRESS: OHIO (USA)
SOURCE: AD--69-51
CONTRACT #: PH 66-67-109
PUBL. DATE: OCT 1969
TYPE: FB--192321
CATEGORY: ENERGY CONVERSION HEAT SOURCES
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

II FLYWHEELS IN VEHICLES

70 TITLE........: STUDY OF UNCONVENTIONAL THERMAL, MECHANICAL, AND NUCLEAR LOW-
POLLUTION-POTENTIAL POWER SOURCES FOR URBAN VEHICLES

AUTHORS.......: BATTELLE COLUMBUS LABS.
ORGANIZATION: BATTELLE COLUMBUS LABS.
ADDRESS.......: OHIO (USA)
SOURCE........: NP--20359
CONTRACT #: PH 86-67-109
PUBL. DATE....: OCT 1969

CATEGORY.......: ENERGY CONVERSION ENERGY SOURCES REACTORS--POWER SNAP
TECHNOLOGY

KEYWORDS......: AIR FILTERS/ AUTOMOBILES/ AUTOMOTIVE FUELS/ COMBUSTION
CHAMBERS/ COMPARATIVE EVALUATIONS/ COST/ DESIGN/ ENERGY
STORAGE/ EXHAUST GASES/ FEASIBILITY STUDIES/ FLYWHEELS/ FUEL CONSUMPTION/ GAS TURBINES/ HEAT
ENGINES/ HYDRODYNAMICS/ MECHANICAL TRANSMISSIONS/ MHD
GENERATORS/ ML-1 REACTOR/ MOBILE REACTORS/ NUCLEAR
POWER/ PERFORMANCE/ POWER TRANSMISSION/ PROPULSION/ RADIOISOTOPE BATTERIES/ RADIOISOTOPE HEAT SOURCES/ RANKINE
CYCLE ENGINES/ REVIEWS/ SNAP REACTORS/ SNAP 8
REACTOR/ SPRINGS/ STIRLING ENGINES/ THERMIONIC
CONVERTERS/ THERMOELECTRIC GENERATORS/ USES/ WORKING FLUIDS/

71 TITLE........: WIND UP CAR

AUTHORS.......: HOHENEMSER, K. / MCCAUll, J.

SOURCE.......: ENVIRON 12, P 14, JUN 1970.
PUBL. DATE....: JUN 1970

72 TITLE........: HIGH-SPEED ENERGY WHEEL OFFERS TROLLEYS PORTABLE ELECTRICITY

AUTHORS.......: PRODUCT ENGINEERING

SOURCE.......: PROD. ENG. 41: 80, JULY 20, 1970
PUBL. DATE....: JUL 20 1970

21
II FLYWHEELS IN VEHICLES

73 TITLE........: SUPER FLYWHEEL TO POWER ZERO-EMISSION CAR
AUTHORS.......: ARMAGNAC, A. P.

SOURCE........: POPULAR SCIENCE 197, P 41, AUG 1970.
PUBL. DATE....: AUG 1970

74 TITLE........: CUT SUBWAY POWER COSTS
AUTHORS.......: NEW YORK CITY METROPOLITAN TRANSPORTATION AUTHORITY

PUBL. DATE....: SEP 1970

75 TITLE........: SURVEY OF PROPULSION SYSTEMS FOR LOW EMISSION URBAN VEHICLES, FINAL REPORT.
AUTHORS.......: FRAIZE, W. E. / LAY, R. K.
ORGANIZATION: MITRE CORP.
ADDRESS.......: MCLEAN, VA.

CONTRACT #....: F19628-68-C-0365
PUBL. DATE....: SEP 1970
TYPE...........: REPORT

KEYWORDS......: AIR POLLUTION/ AUTOMOBILES/ AUTOMOTIVE FUELS/ ELECTRIC-POWERED VEHICLES/ ENGINES/ EXHAUST GASES/ FLYWHEELS/ FOSSIL FUELS/ FUEL CELLS/ HEAT ENGINES/ INTERNAL COMBUSTION ENGINES/ RANKINE CYCLE ENGINES/ REVIEWS/ URBAN AREAS

76 TITLE........: SUPER FLYWHEEL CONFIGURATIONS FORM HEART OF MECHANICAL-POWERED DRIVES
AUTHORS.......: CHIRONIS, N. P.

SOURCE........: PRODUCT ENG. 42, P 54, APR 12, 1971.
PUBL. DATE....: APR 12 1971
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

II FLYWHEELS IN VEHICLES

77 TITLE........: FLYWHEEL FEASIBILITY STUDY AND DEMONSTRATION. FINAL REPORT
AUTHORS........: GILBERT, R. R./HARVEY, J. R./HEUER, G. E./LAWSON, L. J.
ORGANIZATION: LOCKHEED MISSILES AND SPACE CO.
ADDRESS........: SUNNYVALE, CALIF. (USA)
SOURCE.........: (D--007915)=(D007915) STANDARDS/URBAN AREAS/VEHICLES/AIR
POLLUTION/FLYWHEELS/HYBRID
PUBL. DATE.....: APR 30 1971
CATEGORY.......: ENERGY CONVERSION
KEYWORDS......: ENERGY STORAGE/FEASIBILITY STUDIES/PERFORMANCE TESTING

78 TITLE........: EVALUATION OF HYBRID HEAT ENGINE/ELECTRIC SYSTEMS FOR LOW
EXHAUST EMISSION POTENTIAL IN AUTOMOTIVE APPLICATIONS
AUTHORS........: LAPEDES, D. E./MELTZER, J.
SOURCE.........: SAE, INTERSOCIETY ENERGY CONVERSION ENG CONF, PAP 719151
PUBL. DATE.....: AUG 03 1971
LOCATION......: BOSTON, MASS.
DATE...........: AUG 3-5, 1971

79 TITLE........: DESIGN AND TESTING OF HIGH ENERGY DENSITY FLYWHEELS FOR
APPLICATION TO FLYWHEEL HEAT ENGINE HYBRID VEHICLE DRIVES
AUTHORS.........: LAWSON, L. J.
SOURCE.........: 1971 INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE
PAPER 719150, P. 1142 BOSTON, MA 3 AUG 1971
PUBL. DATE.....: AUG 03 1971
PUBLISHER......: SOCIETY OF AUTOMOTIVE ENGINEERS, INC. NEW YORK
LOCATION......: BOSTON, MA
DATE...........: 3 AUG 1971
KEYWORDS......: ACCELERATION/AUTOMOBILES/DESIGN/ENERGY STORAGE/EXHAUST
GASES/FLYWHEELS/GEOMETRY/HEAT ENGINES/HYBRID
SYSTEMS/MATERIALS/PERFORMANCE TESTING/POWER/
VEHICLES/ENERGY STORAGE/FLYWHEELS/GEOMETRY/HYBRID SYSTEMS/
PERFORMANCE TESTING/POWER
II FLYWHEELS IN VEHICLES

80 TITLE: FLYWHEEL AND FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEMS FOR LOW-EMISSION VEHICLES
ORGANIZATION: JOHNS HOPKINS UNIV.
ADDRESS: BALTIMORE
SOURCE: PAPER 719149, P. 1126, 1971 INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE BOSTON, MA 3 AUG 1971
PUBL. DATE: AUG 03 1971
PUBLISHER: SOCIETY OF AUTOMOTIVE ENGINEERS, INC. NEW YORK
LOCATION: BOSTON, MA
DATE: 3 AUG 1971

81 TITLE: POTENTIAL APPLICATIONS FOR THE SUPERFLYWHEEL
AUTHORS: RABENHORST, D. W.
ORGANIZATION: JOHNS HOPKINS UNIV.
ADDRESS: BALTIMORE
SOURCE: 1971 INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE PAPER 719148, P. 1118 BOSTON, MA 3 AUG 1971
PUBL. DATE: AUG 03 1971
PUBLISHER: SOCIETY OF AUTOMOTIVE ENGINEERS, INC. NEW YORK
LOCATION: BOSTON, MA
DATE: 3 AUG 1971
KEYWORDS: AIRCRAFT/COST/ENERGY STORAGE/FLYWHEELS/NOISE/PURS/PERFORMANCE/POWER SUPPLIES/SPACE VEHICLES/TOOLS/TRANSPORTATION SYSTEMS/USES/VEHICLES/FLYWHEEL/SUPER FLYWHEEL/VEHICLES/TOOLS/POWER SUPPLIES/LOW EMISSION

82 TITLE: FEASIBILITY ANALYSIS OF THE TRANSMISSION FOR A FLYWHEEL HEAT ENGINE HYBRID PROPULSION SYSTEM
AUTHORS: MECHANICAL TECHNOLOGY, INC.
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

II FLYWHEELS IN VEHICLES

82 TITLE........: FEASIBILITY ANALYSIS OF THE TRANSMISSION FOR A FLYWHEEL (CONTD.)
ORGANIZATION: MECHANICAL TECHNOLOGY, INC.
ADDRESS......: LATHAM, N.Y., (USA)
SOURCE.......: MTI-71TR76 APTD-1181
CONTRACT #....: EPA 68-04-0033
PUBL. DATE....: NOV 1971

CATEGORY.....: ENERGY CONVERSION
KEYWORDS.....: AUTOMOBILES / COMPUTER
CALCULATIONS/CONTROL/COST/DESIGN/FEASIBILITY
STUDIES/FLYWHEELS/HEAT ENGINES/HYBRID SYSTEMS/MECHANICAL
TRANSMISSIONS/PERFORMANCE/PROPULSION/SAFETY/SIMULATION/

83 TITLE........: PROCEEDINGS SECOND INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM
ORGANIZATION: ELECTRIC VEHICLE COUNCIL
ADDRESS......: NEW YORK
PUBL. DATE....: NOV 08 1971
TYPE..........: CONF. PROCEEDINGS
PUBLISHER.....: ELECTRIC VEHICLE COUNCIL
CONFERENCE....: SECOND INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM
LOCATION.....: ATLANTIC CITY, N.J.
DATE..........: 8-10 NOV., 1971

KEYWORDS.....: AIR POLLUTION/ AUTOMOBILES/ ELECTRIC BATTERIES/ ELECTRIC-
POWERED VEHICLES/ FLYWHEELS/ HYBRID ELECTRIC-POWERED
VEHICLES/ MEETINGS/ NEW JERSEY/ RESEARCH PROGRAMS/
SEMICONDUCTOR MATERIALS/ TRAINS

84 TITLE........: ELECTRIC ROAD VEHICLE
AUTHORS.......: CALVERT, W.L.
SOURCE.......: (DEC. 26, 1967)=(- FILED DATE DEC 23, 1967)
PUBL. DATE....: NOV 24 1971
TYPE..........: PATENT
ASSIGNED......: UNION CARBIDE CORP.

KEYWORDS.....: FLYWHEELS/HYBRID/BATTERIES/ELECTRIC GENERATORS/ENERGY
STORAGE/ VEHICLES

25
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

II FLYWHEELS IN VEHICLES

85 TITLE........: LIFT FOR THE AUTO: ENGINE—FLYWHEEL HYBRIDS
AUTHORS........: MCCAU LL, J.
PUBL. DATE......: DEC 1971

86 TITLE........: HYBRID PROPULSION SYSTEM TRANSMISSION EVALUATION, PHASE I, FINAL REPORT
AUTHORS........: CORDNER, M.A./GRIMM, D.H.
ORGANIZATION: SUNDBRAND AVIATION
ADDRESS........: ROCKFORD, I11. (USA)
SOURCE..........: APTD-1121 PB-210-057
CONTRACT #......: 66-04-0034
PUBL. DATE......: FEB 25 1972
CATEGORY........: ENERGY CONVERSION

87 TITLE........: FLYWHEEL DRIVE SYSTEMS STUDY. FINAL REPORT
ORGANIZATION: LOCKHEED MISSILES AND SPACE CO., SUNNYVALE, CALIF. (USA)
SOURCE..........: APTD-1182, PB-213342 9 LMSC-D846393
CONTRACT #......: 66-04-0048
PUBL. DATE......: JUL 31 1972
CATEGORY........: ENERGY CONVERSION
KEYWORDS........: AUTOMOBILES / DESIGN/ENERGY STORAGE/EXHAUST GASES/FEASIBILITY STUDIES/FLYWHEELS/HYBRID SYSTEMS/MECHANICAL TRANSMISSIONS/PROPULSION/SAFETY/USES/
II FLYWHEELS IN VEHICLES

88 TITLE........: INERTIAL ENERGY STORAGE APPARATUS AND SYSTEM FOR UTILIZING THE SAME
AUTHORS........: POST, R. F. / POST, S. F.
PUBL. DATE......: AUG 08 1972
TYPE............: PATENT
KEYWORDS........: FLYWHEELS/VEHICLES/FLYWHEEL DESIGN

89 TITLE........: APPLICATION OF KINETIC ENERGY PROPULSION TO MASS TRANSPORTATION
AUTHORS........: LAWSON, L. J.
ORGANIZATION: LOCKHEED MISSILES AND SPACE CO.
SOURCE.........: SAE PAPER 720681
PUBL. DATE......: AUG 21 1972
PUBLISHER......: SAE, NEW YORK
CONFERENCE......: SOCIETY OF AUTOMOTIVE ENGINEERS, NATIONAL WEST COAST MEETING
LOCATION.......: SAN FRANCISCO, CA.
DATE............: 21-24 AUG 1972
KEYWORDS........: FLYWHEELS/VEHICLES ENVIRONMENT/SAN FRANCISCO BUS

90 TITLE........: TWO NEW WEAPONS AGAINST AUTOMOTIVE AIR POLLUTION: THE HYDROSTATIC DRIVE AND THE FLYWHEEL-ELECTRIC LDV.
AUTHORS..........: WHITLAW, R. L.
ORGANIZATION: VA. POLYTECHNIC INST. AND STATE UNIV., BLACKSBURG
SOURCE..........: ASME PAPER N 72-WA/APC-5
PUBL. DATE......: NOV 26 1972
DATE.............: NOV. 26-30, 1972

91 TITLE........: HYBRID ELECTRIC PROPULSION UTILIZING RECONNECTIBLE MOTOR WINDINGS IN WHEELS
AUTHORS..........: REIMERS, E.
II FLYWHEELS IN VEHICLES

91 TITLE.......: HYBRID ELECTRIC PROPULSION UTILIZING RECONNECTIBLE MOTOR (CONT'D.)
SOURCE.......: 8TH INTERSOC. ENERGY CONVERSION ENG. Conf., Paper 739116
PUBL. DATE...: 1973
TYPE.........: CONFERENCE PAPER

KEYWORDS.....: FLYWHEELS/ENERGY STORAGE/VEHICLES/FOUR-WHEEL
 DRIVE/HYBRID/ECONOMICS

92 TITLE.......: ELECTRIC VEHICLE HYBRID POWER TRAIN
AUTHORS.......: KUGLER, G. C.
ORGANIZATION: ESB, INC.
SOURCE.......: INTERNATIONAL AUTOMOTIVE ENGINEERING CONGRESS, DETROIT,
 MICH. PAPER 730254
PUBL. DATE...: JAN 08 1973
TYPE.........: CONF. PAPER
PUBLISHER.....: SOCIETY OF AUTOMOTIVE ENGINEERS, INC.
CONFERENCE...: INTERNATIONAL AUTOMOTIVE ENGINEERING CONGRESS, DETROIT,
 MICH.
LOCATION.....: NEW YORK
DATE.........: 8-12 JAN 1973

KEYWORDS.....: FLYWHEELS/HYBRID/ELECTRIC MOTORS/ENERGY
 STORAGE/REGENERATIVE BRAKING/VEHICLES

93 TITLE.......: FLYWHEEL-ELECTRIC SYSTEM FOR LOCAL-DUTY VEHICLES
AUTHORS.......: AUTOMOTIVE ENG.

PUBL. DATE...: FEB 1973

94 TITLE.......: IS THERE A FLYWHEEL IN YOUR FUTURE
AUTHORS.......: LAWSON, L. J.
ORGANIZATION: LOCKHEED MISSILES AND SPACE CO.

SOURCE.......: SAE SPEC. PUBL. SP-379, MAR 1973, PAP 730621, P 48
PUBL. DATE...: MAR 1973
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

II FLYWHEELS IN VEHICLES

94 TITLE: IS THERE A FLYWHEEL IN YOUR FUTURE (CONTD.)
KEYWORDS: FLYWHEELS/HYBRID/VEHICLES/ENERGY STORAGE/HEAT ENGINE/LOW POLLUTION

95 TITLE: APPLICATION OF TWO-PHASE DC CHOPPER MOTOR DRIVE
AUTHORS: REIMERS, E.

SOURCE: IEEE TRANS. IND. APPLICATIONS 9, 285 (MAY 1973)
PUBL. DATE: MAY 1973

KEYWORDS: FLYWHEELS/VEHICLES/HYBRID DRIVE/DC CHOPPER MOTOR

96 TITLE: INERTIAL ENERGY STORAGE APPARATUS
AUTHORS: POST, S. F.

PUBL. DATE: JUN 26 1973
TYPE: PATENT

KEYWORDS: FLYWHEELS/VEHICLES/FLYWHEEL DESIGN

97 TITLE: HYBRID CAR: PART-TIME ENGINE + PART-TIME FLYWHEEL = FULL TIME TRANSPORTATION
AUTHORS: LINDSLEY, E. F.

SOURCE: POPULAR SCIENCE, AUG. 1973, P. 68.
PUBL. DATE: AUG 1973
TYPE: PERIODICAL

KEYWORDS: FLYWHEELS/FLYWHEEL TRANSAXLE/VEHICLES/REGENERATIVE BRAKING/ENERGY STORAGE
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

II FLYWHEELS IN VEHICLES

98 TITLE........: KINETIC ENERGY STORAGE: A 'NEW' PROPULSION ALTERNATIVE FOR MASS TRANSPORTATION
AUTHORS........: LAWSON, L. J.
SOURCE.........: PRESENTED AT ASME INTERSOCIETY CONFERENCE ON TRANSPORTATION
PUBL. DATE......: SEP 1973
TYPE...........: PRESENTED PAPER

99 TITLE........: STORED ENERGY IN A SPINNING DISK COULD ALLEVIATE THE ENERGY CRISIS
AUTHORS........: PRODUCT ENGINEERING
SOURCE.........: PRODUCT ENG. 44, 27 (OCT. 1973)
PUBL. DATE......: OCT 1973
KEYWORDS......: FLYWHEELS/ENERGY/CONSERVATION/VEHICLES

100 TITLE........: FLYWHEEL ENERGY PROPULSION AND THE ELECTRIC VEHICLE
AUTHORS........: WEBER, R. / MENKES, S.
ORGANIZATION: CITY COLLEGE OF NEW YORK, DEPT. OF MECHANICAL ENGINEERING
PUBL. DATE......: 1974
TYPE...........: REPORT
KEYWORDS......: FLYWHEELS/VEHICLES/HYBRID VEHICLES/MAGNETIC BEARINGS

101 TITLE........: ENERGY CONSERVATION FACTORS FOR A HIGH-EFFICIENCY ELECTRIC-DRIVE AUTOMOBILE
AUTHORS........: POST, R.F.
ADDRESS........: WALNUT CREEK, CA.
SOURCE.........: SPEECH
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

II FLYWHEELS IN VEHICLES

101 TITLE........: ENERGY CONSERVATION FACTORS FOR A HIGH-EFFICIENCY ELECTRIC-- (CONTD.)
PUBL. DATE........: 1974
TYPE............: SPEECH OR PRESENTATION
KEYWORDS........: FLYWHEELS/HYBRID VEHICLES/ENERGY STORAGE

102 TITLE........: EMISSION CHARACTERISTICS OF A PRIME MOVER FOR HYBRID VEHICLE USE
AUTHORS........: ALLSUP, J.R./FLEMING, R.D.
ORGANIZATION: BUREAU OF MINES, BARTLESVILLE ENERGY RESEARCH CENTER
ADDRESS........: BARTLESVILLE, OKLA. (USA)
SOURCE........: BM-RI--7988
PUBL. DATE......: 1974
CATEGORY.........: ENERGY CONVERSION ENVIRONMENTAL STUDIES
KEYWORDS.........: AUTOMOBILES / CARBON MONOXIDE/CATALYTIC CONVERTERS/DYNAMOMETERS/EXHAUST GASES/FLYWHEELS/FUEL SYSTEMS/HYBRID ELECTRIC-POWERED VEHICLES/HYBRID SYSTEMS/HYDROCARBONS/NITROGEN OXIDES/SPARK IGNITION ENGINES/

103 TITLE........: SAFETY REVIEW OF THE KINETIC ENERGY WHEEL (KEW) SYSTEM FOR BUS APPLICATION
AUTHORS..........: NATIONAL ACADEMY OF SCIENCES
ORGANIZATION: NATIONAL ACADEMY OF SCIENCES
ADDRESS........: WASHINGTON, DC
PUBL. DATE.......: 1974
KEYWORDS.........: BUSES / ELECTRIC-POWERED VEHICLES/FLYWHEELS/HAZARDS/INSPECTION/MATERIALS/NONDESTRUCTIVE TESTING/SAFETY / SAFETY ENGINEERING/STRESS ANALYSIS/

104 TITLE........: SYNTHESIS OF THE BELT OF A DISCRETE BELT VARIATOR
AUTHORS........: GULIA, N. V. / YUDOVSKII, I. D.
ORGANIZATION: KURSK POLYTECH. INST., USSR
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

II FLYWHEELS IN VEHICLES

104 TITLE........: SYNTHESIS OF THE BELT OF A DISCRETE BELT VARIATOR (CONTD.)
SOURCE........: IZV. VYSSH. UCHEBN. ZAVED., MASHINOESTR. 9, 1974.
PUBL. DATE....: 1974
TYPE..........: JOURNAL ART.

KEYWORDS.....: ACCELERATION/ AUTOMOBILES/ DESIGN/ ENERGY STORAGE/
 FLYWHEELS/ MACHINE PARTS

105 TITLE........: GYROSCOPIC EFFECT OF FLYWHEELS IN MACHINES
AUTHORS.......: GULIA, N. V. ET AL

SOURCE.......: RUSS. ENG. J. (ENGL. TRANS.) 54, 7, 1974 RUSS. ENG. J.
 (ENGL. TRANS.) 54, 7, 41-43 1974
PUBL. DATE....: 1974
TYPE..........: JOURNAL TRANSLATION

KEYWORDS.....: ANGULAR VELOCITY/ AUTOMOBILES/ ENERGY STORAGE/ FLYWHEELS/
 MECHANICS/ ROTATION/GYROSCOPIC EFFECT/INERTIA
 STORAGE/ANGULAR VELOCITY/ VEHICLES/CALCULATIONS

106 TITLE........: BATTERY POWERED VEHICLE DRIVE
AUTHORS.......: DEANE, C. T.

SOURCE.......: U.S. PATENT 3,874,472
PUBL. DATE....: JAN 25 1974
TYPE..........: PATENT
ASSIGNED......: WEST VIRGINIA HIGH BIRD CORP., ST. ALBANS, W.VA.

KEYWORDS.....: AUTOMOBILES/ CONTROL SYSTEMS/ DESIGN/ ELECTRIC BATTERIES/
 ELECTRIC GENERATORS/ ELECTRIC MOTORS/ ELECTRIC-POWERED
 VEHICLES/ FLYWHEELS/ HYBRID SYSTEMS/ MECHANICAL
 TRANSMISSIONS VEHICLES/HYBRID/FLYWHEELS

107 TITLE........: KINETIC ENERGY SYSTEMS FOR MOVING PEOPLE
AUTHORS.......: BAXTER, J. W. / LAWSON, L. J.

SOURCE.......: AUTOMOTIVE ENGINEERING CONGRESS, DETROIT, MICH., FEB. 1974,
 PAPER NO. 740231.
II FLYWHEELS IN VEHICLES

107 TITLE........: KINETIC ENERGY SYSTEMS FOR MOVING PEOPLE (CONTD.)
PUBL. DATE....: FEB 1974
TYPE..........: PAPER PRESENTED AT MEETING

KEYWORDS.....: FLYWHEELS/VEHICLES/TROLLEY BUS/MASS TRANSIT

108 TITLE........: FLYWHEEL BRAKES STORE NEW TRAIN'S ENERGY FOR ELECTRICITY-SAVING STARTS; NEW YORK'S LATEST SUBWAY CARS
AUTHORS.......: ARMAGNAC, A. P.

SOURCE.......: POP. SCI. 204, 70
PUBL. DATE....: FEB 1974

KEYWORDS.....: REGENERATIVE BRAKING/FLYWHEELS/VEHICLES/MASS TRANSPORTATION

109 TITLE........: A FLYWHEEL IN YOUR FUTURE
AUTHORS.......: NEWSWEEK

SOURCE.......: NEWSWEEK, FEB. 11, 1974, P. 98.
PUBL. DATE....: FEB 11 1974

KEYWORDS.....: FLYWHEELS/VEHICLES/FLYWHEEL DESIGN/REGENERATIVE BRAKING/ UTILITIES

110 TITLE........: HYBRID DRIVE WITH FLYWHEEL COMPONENT FOR ECONOMIC AND DYNAMIC OPERATION
AUTHORS.......: HELLING, J. / SCHRECK, H. / GIERA, B.
ORGANIZATION: TECH. HOCHSCH., AACHEN, GER.

SOURCE.......: PROC., 3RD INT. ELECTR. VEH. SYMP. AND EXPO. PAPER 7453
PUBL. DATE....: FEB 19 1974

LOCATION.....: WASHINGTON, D.C.
DATE..........: FEB. 19-21, 1974

KEYWORDS.....: FLYWHEELS/HYBRID/ENERGY STORAGE/ VEHICLES/INTERNAL COMBUSTION ENGINE
II FLYWHEELS IN VEHICLES

111 TITLE........: ELECTRICAL PROPULSION SYSTEMS FOR ROAD VEHICLES. STATE OF THE ART AND PRESENT-DAY PROBLEMS
AUTHORS.......: BADER, C. /PLUST, H. G.
ORGANIZATION: DEUTSCHE AUTOMobilGESellschaft mbH
ADDRESS.......: ESSLINGEN, GERMANY
SOURCE.......: PROCEEDINGS OF THE THIRD SYMPOSIUM AND EXPOSITION OF THE INSTITUTE OF ELECTRICAL VEHICLES INTERNATIONAL ELECTRICAL VEHICLE SYMPOSIUM AND EXPOSITION PROCEEDINGS, VOLUME 2, PAPER 7478
PUBL. DATE....: FEB 19 1974
TYPE..........: PROCEEDINGS OF CONF.
CONFERENCE....: 3RD INSTITUTE OF ELECTRICAL VEHICLES SYMPOSIUM AND EXPOSITION 3RD INTERNATIONAL INSTITUTE OF ELECTRICAL VEHICLE SYMPOSIUM AND EXPOSITION
LOCATION.....: WASHINGTON, D.C.
DATE..........: 19 FEB., 1974

112 TITLE........: METALS AND COMPOSITES IN SUPERFLYWHEEL ENERGY STORAGE SYSTEMS
AUTHORS.......: RABENHORST, D. W.
ORGANIZATION: JOHNS HOPKINS UNIV.
ADDRESS.......: SILVER SPRING, MD
SOURCE.......: PROCEEDINGS OF THE 14 ANNUAL ASME SYMPOSIUM SAMPE Q., 6, 2, P. 23.
PUBL. DATE....: FEB 28 1974
PUBLISHER....: AMERICAN SOCIETY OF MECHANICAL ENGINEERS, NEW MEXICO SECTION
CONFERENCE....: SYMPOSIUM ON ENGINEERING FOR THE MATERIALS ENERGY CHALLENGE
LOCATION.....: ALBUQUERQUE, NEW MEXICO, USA
DATE..........: 26 FEB 1974
KEYWORDS.....: COMPOSITE MATERIALS/DESIGN/ENERGY STORAGE/FLYWHEELS/MATERIALS/Mechanical properties/METALS/
I. FLYWHEELS IN VEHICLES

113 TITLE........: CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS
AUTHORS.......: AEROSPACE CORP.
SOURCE.......: VOL. IV, ELECTRIC AND HYBRID POWER SYSTEMS, ATR-74(7325)-1
PUBL. DATE...: JUL 1974
TYPE.........: REPORT
KEYWORDS.....: FLYWHEELS/VEHICLES/VEHICLE POWER/HYBRID

114 TITLE........: CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.
SUBTITLE.....: VOLUME IV.ELECTRIC AND HYBRID POWER SYSTEMS
AUTHORS......: LAPIDESE,D.E./HINTON,M.G./MELTZER,J./IURA,T./DYKEMA,O.
/FORREST,L./HAGEN,K./KETTLER,J./LAFRANCE,R./SMALLEY,W.
ORGANIZATION: AEROSPACE CORP.
ADDRESS......: EL SEGUNDO, CALIF. (USA)
SOURCE.......: EPA--460 3-74-013-D(VOL.4)
CONTRACT #...: 68-01-0417
PUBL. DATE...: JUL 1974
CATEGORY.....: ENERGY CONVERSION

115 TITLE........: CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND FUELS.
SUBTITLE.....: VOLUME I. EXECUTIVE SUMMARY
AUTHORS......: LAPIDESE,D.E./HINTON,M.G./MELTZER,J./IURA,T.
ORGANIZATION: AEROSPACE CORP.
ADDRESS......: EL SEGUNDO, CALIF. (USA)
SOURCE.......: EPA--460 3-74-013-A(VOL.1)
CONTRACT #...: 68-01-0417
PUBL. DATE...: JUL 1974
115 TITLE........: CURRENT STATUS OF ALTERNATIVE AUTOMOTIVE POWER SYSTEMS AND (CONT'D.)
CATEGORY......: ENERGY CONVERSION

KEYWORDS.....: AMMONIA / AUTOMOBILES / AUTOMOTIVE FUELS / COMPARATIVE
 EVALUATIONS / DIESEL ENGINES/ELECTRIC BATTERIES/ ELECTRIC-
POWERED VEHICLES / ENGINES
/ETHANOL/FLYWHEELS/GASOLINE/HYBRID ELECTRIC-POWERED
VEHICLES/HYDRAZINE/HYDROGEN FUELS / METHANE / METHANOL
/MIXTURES/NATURAL GAS/PROPANE/PROPULSION/RANKINE CYCLE
 ENGINES/STIRLING ENGINES/STRATIFIED CHARGE
 ENGINES/SYNTHETIC FUELS/SYNTHETIC PETROLEUM/WANKEL ENGINES/

116 TITLE........: ATA RAIL TRANSIT CONFERENCE. CAR EQUIPMENT SESSIONS.
AUTHORS.......: LAWSON, L. J. / ET AL.
ORGANIZATION: AMER. TRANSIT ASSN.
ADDRESS.......: WASHINGTON, D. C.

SOURCE.......: PAPERS PRESENTED AT ATA RAIL TRANSIT CONF. SAN FRANCISCO,
 CA., APR. 14-16, 1974 REPORT NO. ATA/RT-74/1
PUBL. DATE....: AUG 1974

KEYWORDS.....: FLYWHEELS/URBAN TRANSPORT/SAN FRANCISCO MUNI/BUSES/D.C.
 MOTORS/ BATTERIES/ TRAINS

117 TITLE........: HYBRID AUTOMOTIVE ENGINE WITH KINETIC ENERGY STORAGE
AUTHORS.......: SCHRECK, H./TORRES, F.
ORGANIZATION: TECHNISCHE HOCHSCHULE
ADDRESS.......: AACHEN GERMANY

SOURCE.......: CONF-741151--- (GERMAN)
PUBL. DATE....: SEP 1974

CONFERENCE....: SECOND SYMPOSIUM ON LOW POLLUTION POWER SYSTEMS DEVELOPMENT
LOCATION.....: DUSSELDORF,F.R.GERMANY
DATE..........: 4 NOV 1974

KEYWORDS.....: AUTOMOBILES/FLYWHEELS/FUEL CONSUMPTION/HYBRID
 SYSTEMS/PERFORMANCE TESTING/SPARK IGNITION ENGINES/
II FLYWHEELS IN VEHICLES

118 TITLE........: STATUS REVIEW OF HYBRID HEAT ENGINE BATTERY AND HEAT ENGINE FLYWHEEL VEHICLES
AUTHORS........: LAPEDES, D.E./MELTZER, J.
ORGANIZATION: AEROSPACE CORP.
ADDRESS........: EL SEGUNDO, CA
SOURCE..........: CONF-741151
PUBL. DATE.....: SEP 1974
CONFERENCE......: SECOND SYMPOSIUM ON LOW POLLUTION POWER SYSTEMS DEVELOPMENT
LOCATION........: DUSSELDORF, F.R. GERMANY
DATE...........: 4 NOV 1974

119 TITLE........: ALTERNATIVE PRIME MOTORS FOR FUTURE AUTOMOBILES
SUBTITLE........: INCLUDES RESULTS OF TESTS ON VARIOUS VEHICLES MADE BY THE U. S. ENVIRONMENTAL PROTECTION AGENCY
AUTHORS..........: STERNLICHT, B./THUR, G.M.
ORGANIZATION: MECHANICAL TECH., INC.
ADDRESS.........: LATHAM, NY
SOURCE..........: CONF-741151
PUBL. DATE......: SEP 1974
CONFERENCE......: SECOND SYMPOSIUM ON LOW POLLUTION POWER SYSTEMS DEVELOPMENT
LOCATION........: DUSSELDORF, F.R. GERMANY
DATE............: 4 NOV 1974
120 TITLE.......: KINETIC ENERGY STORAGE FOR MASS TRANSPORTATION
 AUTHORS.......: LAWSON, L. J.
 ORGANIZATION: LOCKHEED MISSILES AND SPACE CO.
 ADDRESS.......: SUNNYVALE, CA
 SOURCE.......: CONF-740641-1
 PUBL. DATE.: SEP 1974
 PUBLISHER.: MECH.ENG. 96 9
 CONFERENCE.: CONFERENCE ON ADVANCED ENERGY SYSTEMS
 LOCATION.: DENVER, COLORADO, USA
 DATE.: 20 JUN 1974
 CATEGORY.: ELECTRONICS AND ELECTRICAL ENGINEERING ENERGY SOURCES
 ENGINEERING
 KEYWORDS.: AIR POLLUTION / AUTOMOBILES / EFFICIENCY / ELECTRIC
 GENERATORS/ENERGY SHORTAGES/ENERGY SOURCES/ENERGY STORAGE /
 ENVIRONMENTAL EFFECTS/FLYWHEELS/HEAT ENGINES/KINETIC
 ENERGY/MOTORS/NOISE/TRANSPORTATION SYSTEMS/URBAN AREAS/

121 TITLE.......: IMPROVED REGENERATIVE BRAKING SYSTEM
 AUTHORS.......: HYNE, A. / ZUCKER, O.
 SOURCE.......: DISCLOSURE, INVENTION CASE NO. IL-5925, 1974.
 PUBL. DATE.: SEP 24 1974
 TYPE.: INVENTION DISCLOSURE

122 TITLE.......: THE KINETIC ENERGY WHEEL
 SUBTITLE.: A MEANS OF REDUCING POLLUTION WHILE CONSERVING RESOURCES
 AUTHORS.......: LAWSON, L. J.
 ORGANIZATION: INSTITUTE OF ENVIRONMENTAL SCIENCES
 SOURCE.: 21ST ANNUAL TECHNICAL MEETING OF THE INSTITUTE OF
 ENVIRONMENTAL SCIENCES. VOLS. I AND II, 130
 PUBL. DATE.: 1975
 CONFERENCE.: 21. ANNUAL TECHNICAL MEETING OF THE INSTITUTE OF
 ENVIRONMENTAL SCIENCES
 LOCATION.: ANAHEIM, CA
 DATE.: 14 APR 1975
122 TITLE........ : THE KINETIC ENERGY WHEEL (CONT'D.)
KEYWORDS..... : ELECTRIC POWER/ENERGY CONSERVATION/ENERGY
CONSUMPTION/ENERGY STORAGE/ENVIRONMENTAL
EFFECTS/FLYWHEELS/KINETIC ENERGY /VEHICLES/ ENERGY
STORAGE/ENVIRONMENT VEHICLES/TRANSPORTATION/FLYWHEELS

123 TITLE........ : NEW YORK SUBWAY TRIES OUT FLYWHEEL ENERGY STORAGE
AUTHORS...... : RAILWAY GAZETTE INTERNATIONAL
SOURCE....... : (JAN 1975)=(23-24)
PUBL. DATE... : JAN 1975
KEYWORDS..... : MASS
TRANSPORTATION/VEHICLES/FLYWHEELS/CHOPPERS/REGENERATIVE
BRAKING/HYBRID/ENERGY STORAGE

124 TITLE........ : AUTOMOBILE AIR POLLUTION, PART 4. NEW AUTOMOTIVE ENGINES (A
BIBLIOGRAPHY WITH ABSTRACTS). PERIOD COVERED: 1970-DEC.
1974.
AUTHORS...... : LEHMANN, E. J.
ORGANIZATION: NTIS
ADDRESS..... : SPRINGFIELD, VA.
SOURCE....... : NTIS/PS-75/312
PUBL. DATE... : FEB 1975
PUBLISHER.... : NTIS
KEYWORDS..... : AIR POLLUTION/ AUTOMOBILES/ BIBLIOGRAPHIES/ DESIGN/
ENGINES/ EXHAUST GASES/ FLYWHEELS/ GAS TURBINES/ HYBRID
ELECTRIC-POWERED VEHICLES/ HYBRID SYSTEMS/ RANKINE CYCLE
ENGINES/ ROTARY ENGINES/ STRATIFIED CHARGE ENGINES

125 TITLE........ : DYNAMIC BRAKING
AUTHORS...... : KALRA, P.
ORGANIZATION: BECHTEL, INC.
ADDRESS..... : SAN FRANCISCO, CA.
SOURCE....... : IEEE SPECTRUM, V 12, NO. 5, MAY 1975, P. 63
EEDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

II FLYWHEELS IN VEHICLES

125 TITLE........: DYNAMIC BRAKING (CONTD.)
PUBL. DATE....: MAY 05 1975

KEYWORDS.....: DYNAMIC BRAKING /FLYWHEELS/ENERGY STORAGE/THYRISTOR INVERTOR- RECUPERATIVE/RAPID TRANSIT/RAIL TRANSIT

126 TITLE........: VEHICLE POWER SYSTEM FOR LIMITED VEHICLE MOVEMENT WITHOUT USE OF FUEL
AUTHORS.......: STROHLEIN, J.N.

SOURCE.......: US PATENT 3,882,950 FILED DATE 11 JUL 1972
PUBL. DATE....: MAY 13 1975
TYPE..........: PATENT

KEYWORDS.....: FLYWHEEL/VEHICLE/HYBRID/TRANSFERRECE OF ENERGY/AUTOMATIC RECHARGE

127 TITLE........: THREE MILE ISLAND NUCLEAR STATION,UNIT 2,LICENSE APPLICATION,FSAR,AMENDMENT 27
SUBTITLE.....: RESPONSES TO FIRST ROUND NRC QUESTIONS PERTAINING TO PUMP FLYWHEEL INTEGRITY

AUTHORS.......: METROPOLITAN EDISON CO.

ORGANIZATION: METROPOLITAN EDISON CO.
ADDRESS.......: READING, PA. (USA)
PUBL. DATE....: MAY 16 1975
TYPE..........: DOCKET-50320---145

KEYWORDS.....: FLYWHEELS/PUMPS/REACTOR COOLING SYSTEMS/SPECIFICATIONS/THREE MILE ISLAND-2 REACTOR/

128 TITLE........: INCREASED FUEL ECONOMY IN TRANSPORTATION SYSTEMS BY USE OF ENERGY MANAGEMENT

AUTHORS.......: BEACHLEY, N. H. / FRANK, A. A.

ORGANIZATION: DEPT. OF TRANSPORTATION
ADDRESS.......: CAMBRIDGE, MASS.
II FLYWHEELS IN VEHICLES

<table>
<thead>
<tr>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>INCREASED FUEL ECONOMY IN TRANSPORTATION SYSTEMS BY USE OF (CONTD.)</td>
</tr>
<tr>
<td>Source</td>
<td>DOT-TSC-OST-75-31. ALSO: CONF-750123</td>
</tr>
<tr>
<td>Publ. Date</td>
<td>JUN 1975</td>
</tr>
<tr>
<td>Type</td>
<td>REPORT</td>
</tr>
<tr>
<td>Publisher</td>
<td>DOT</td>
</tr>
<tr>
<td>Conference</td>
<td>CONTRACTORS COORDINATION MEETING</td>
</tr>
<tr>
<td>Location</td>
<td>CAMBRIDGE, MASS.</td>
</tr>
<tr>
<td>Date</td>
<td>15 JAN 1975</td>
</tr>
<tr>
<td>Keywords</td>
<td>AUTOMOBILES/ BRAKES/ COMPUTER CALCULATIONS/ EXHAUST GASES/ FLYWHEELS/ FUEL CONSUMPTION/ INTERNAL COMBUSTION ENGINES/ MATHEMATICAL MODELS/ MECHANICAL TRANSMISSIONS/ SIMULATION</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>129</td>
<td>HYBRID POWER SYSTEM</td>
</tr>
<tr>
<td>Authors</td>
<td>SUGIYAMA, H./ HIROTA, T./KAKEI, J./ KABASAWA, Y.</td>
</tr>
<tr>
<td>Source</td>
<td>US PATENT 3,886,810 PRIORITY DATE 21 SEP 1973, JAPAN</td>
</tr>
<tr>
<td>Publ. Date</td>
<td>JUN 03 1975</td>
</tr>
<tr>
<td>Type</td>
<td>PATENT</td>
</tr>
<tr>
<td>Assigned</td>
<td>NISSAN MOTOR CO., LTD.</td>
</tr>
<tr>
<td>Keywords</td>
<td>AUTOMOBILES/CONTROL SYSTEMS/DESIGN/FLYWHEELS/HYBRID SYSTEMS/MECHANICAL TRANSMISSIONS/</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>FLYWHEELS - FLYWHEEL IN AUTO TO REPLACE GASOLINE</td>
</tr>
<tr>
<td>Authors</td>
<td>MACHINE DESIGN</td>
</tr>
<tr>
<td>Source</td>
<td>MACHINE DESIGN 47:12 AUGUST 07, 1975</td>
</tr>
<tr>
<td>Publ. Date</td>
<td>AUG 1975</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>131</td>
<td>HYBRID VEHICLES</td>
</tr>
<tr>
<td>Authors</td>
<td>VIVIAN, H. C.</td>
</tr>
<tr>
<td>Organization</td>
<td>CALIF. INST. OF TECHNOLOGY</td>
</tr>
<tr>
<td>Address</td>
<td>PASADENA, CA.</td>
</tr>
<tr>
<td>Source</td>
<td>NP-20719-P2</td>
</tr>
<tr>
<td>Publ. Date</td>
<td>AUG 1975</td>
</tr>
</tbody>
</table>
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

II FLYWHEELS IN VEHICLES

131 TITLE.........: HYBRID VEHICLES (CONTD.)
TYPE.........: REPORT

KEYWORDS....: VEHICLES/HYBRID/ECONOMICS/WEIGHT/SAFETY/ELECTRIC-FLYWHEEL
 VEHICLES/ENERGY STORAGE

132 TITLE.........: IDEAS AND EXPERIMENTS IN MAGNETIC INTERFACING
AUTHORS.......: AALAND, K. / LANE, J. E.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA. 94550
SOURCE.......: UCRL-77486. ALSO: CONF-751133-8
PUBL. DATE....: DEC 10 1975
TYPE.........: REPORT
PUBLISHER.....: LLL

CONFERENCE....: FLYWHEEL TECHNOLOGY SYMPOSIUM
LOCATION.....: BERKELEY, CA.
DATE.........: 10 NOV 1975

KEYWORDS....: AUTOMOBILES/ BENCH-SCALE EXPERIMENTS/ COMPOSITE MATERIALS/
 CONTROL SYSTEMS/ ELECTRIC GENERATORS/ ELECTRIC MOTORS/
 ENERGY STORAGE/ FIBERS/ FLYWHEELS/ LEVITATION/ MAGNETIC
 BEARINGS/ SIMULATION

133 TITLE.........: HYBRID DRIVE WITH KINETIC ENERGY STORE AS VEHICLE DRIVE
AUTHORS.......: SCHRECK, H. / TORRES, F.
ORGANIZATION: TECHNISCHE HOCHSCHULE AACHEN (F.R. GERMANY)
SOURCE.......: HYBRIDENTRIEB MIT KINETISCHEM ENERGIESPEICHER ALS
 FAHRZEUGANtrieB
PUBL. DATE....: FEB 1976
TYPE.........: TRANSLATION

KEYWORDS....: AUTOMOBILES/ FLYWHEELS/ FUEL CONSUMPTION/ FUNCTIONAL
 MODELS/ HYBRID SYSTEMS/ INTERNAL COMBUSTION ENGINES/
 PERFORMANCE TESTING/ REGENERATIVE BRAKING
II FLYWHEELS IN VEHICLES

134 TITLE........: BATTERY–FLYWHEEL HYBRID ELECTRIC POWER SYSTEM FOR NEAR–TERM APPLICATION, VOL. 1, SYSTEM DESCRIPTION.
AUTHORS........: DAVIS, D. D.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA. 94550
SOURCE........: UCID-17098-VOLUME-1
PUBL. DATE....: APR 15 1976

135 TITLE........: BATTERY–FLYWHEEL HYBRID ELECTRIC POWER SYSTEM FOR NEAR–TERM APPLICATION, VOL. 2, SYSTEM DESIGN.
AUTHORS........: DAVIS, D. D.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA. 94550
SOURCE........: UCID-17098-VOLUME-2
PUBL. DATE....: APR 15 1976

136 TITLE........: FLYWHEELS – PRACTICAL FLYWHEEL ENGINE: WILL FIBER GLASS BE THE ANSWER?
AUTHORS........: IL BUS W
SOURCE........: IL BUS W. P. 109 MAY 03, 1976
PUBL. DATE....: MAY 03 1976

137 TITLE........: FLYWHEELS: ENERGY-SAVING WAY TO GO
AUTHORS........: ENVIRONMENTAL SCIENCE AND TECHNOLOGY
SOURCE........: ENVIRONMENTAL SCIENCE AND TECHNOLOGY, VOL 10, JULY 1976, P. 636-639
PUBL. DATE....: JUL 1976
KEYWORDS......: FUNDING/STATE-OF-THE-ART/HYBRIDS/FLYWHEELS/COMPOSITES/REVIEW/ SOVIET FLYWHEELS/ACT-1 CARS/R-32 CARS
III FLYWHEELS IN UTILITIES

138 TITLE........: ENERGY STORING MASS AND METHOD FOR MAKING
AUTHORS........: CALL, B. J.

PUBL. DATE.....: SEP 1966
TYPE...........: PATENT

139 TITLE........: MOMENTUM EXCHANGE ACQUISITION SYSTEM, FINAL REPORT
AUTHORS........: FISCHER, WM. A.

SOURCE........: AD-813466, AFAPL TR-67-9
CONTRACT #.....: AF 33(615)-3243, PROJ. AF-3145, TASK 314502
PUBL. DATE.....: MAR 1967

140 TITLE........: FLYWHEEL STABILIZATION OF A RIGID BODY SUBJECTED TO
CONSTANTLY APPLIED PERTURBATIONS
AUTHORS........: DERGACHEVA, E. I.

SOURCE........: AUTOMATION AND REMOTE CONTROL, P 25, JAN 1968.
PUBL. DATE.....: JAN 1968

141 TITLE........: EMERGENCY PUMP SYSTEMS ARE BOOTSTRAPS TO POWER
AUTHORS........: PRODUCT ENG.

SOURCE........: PRODUCT ENG. 39, P 138, MAY 20, 1968
PUBL. DATE.....: MAY 20, 1968

142 TITLE........: FEASIBILITY OF FLYWHEEL HIGH-ENERGY STORAGE
AUTHORS........: SVENSSON, A. / WETHERBEE, A. E.
III FLYWHEELS IN UTILITIES

142 TITLE.......: FEASIBILITY OF FLYWHEEL HIGH-ENERGY STORAGE (CONTD.)
ORGANIZATION: PRATT AND WHITNEY AIRCRAFT
ADDRESS.......: EAST HARTFORD, CONN.
SOURCE.......: REPORT PWA-3676
PUBL. DATE...: APR 15 1969
TYPE.........: REPORT
KEYWORDS.....: FLYWHEELS/COMPOSITE MATERIALS/FLYWHEEL FABRICATION/
 FLYWHEELS-HIGH ENERGY

143 TITLE.......: FINAL DESIGN REPORT, PROTOTYPE GEARBOX FLYWHEEL (FLYBOX)
 FOR STORED ENERGY ROTARY DRIVE SHIPBOARD CATAPULT
AUTHORS.......: NELLI, V. C.
ORGANIZATION: GENERAL ELECTRIC CO.
ADDRESS.......: LYNN, MASS.
SOURCE.......: REPORT NO. NAEC-ENG-7657, PREPARED FOR NAVAL AIR ENGINEER-
 ING CENTER, PHILADELPHIA, PA.
PUBL. DATE...: 1970
TYPE.........: REPORT
KEYWORDS.....: FLYWHEELS/FLYBOX/FLYWHEEL DESIGN/SHIPBOARD CATAPULT/ ENERGY
 STORAGE

144 TITLE.......: FIRST NATIONAL CITY BANK USES CONSTANT-POWER SYSTEM FOR
 COMPUTERS
AUTHORS.......: ORTIZ, J. V.
ORGANIZATION: SYSKA AND HENNESSY, INC. ENGINEERS
ADDRESS.......: NEW YORK, N.Y.
SOURCE.......: ELECT. CONSTR. MAINT. 69, 1, JAN 1970 ELECTRICAL
 CONSTRUCTION AND MAINTENANCE 69, 1, 96-97
PUBL. DATE...: JAN 1970
TYPE.........: PERIODICAL
KEYWORDS.....: COMPUTERS/ DIESEL ENGINES/ ENERGY STORAGE/ FLYWHEELS/ POWER
 SUPPLIES/POWER FAILURE/FLYWHEELS/DIESEL ELECTRIC
 SETS/UTILITIES/CONSTANT POWER SYSTEM/ENERGY STORAGE
III FLYWHEELS IN UTILITIES

145 TITLE........: FLYWHEEL GENERATORS FOR INSTANT POWER
AUTHORS.......: ASHMOLE, P. H.
SOURCE.......: ELECTR. TIMES 157, 4, 45
PUBL. DATE....: JAN 22, 1970
TYPE..........: PERIODICAL
KEYWORDS.....: ALTERNATING CURRENT/ ELECTRIC GENERATORS/ ENERGY STORAGE/ FLYWHEELS/ GAS TURBINES/ TRANSIENTS

146 TITLE........: ACHIEVEMENTS AND PROSPECTS IN THE UTILIZATION OF KINETIC ENERGY
AUTHORS.......: GROSU, S. I.
SOURCE.......: IEEE TRANS. IND. AND GEN. APPLICATIONS 6, P 647, NOV 1970.
PUBL. DATE....: NOV 1970

147 TITLE........: POWER-SYSTEMS RESEARCH SHIFTS TO MEET SOCIAL GOALS
AUTHORS.......: CHEM. ENG.
SOURCE.......: CHEM. ENG. 77, P 48, NOV. 2, 1970.
PUBL. DATE....: NOV 02, 1970

148 TITLE........: OPERATING LARGE EXCAVATORS ON SMALL POWER SYSTEMS
AUTHORS.......: KILGORE, L. A./ WASHBURN, D. C.
SOURCE.......: ENG. AND MIN. J. 172, 131 (JUNE 1971)
PUBL. DATE....: JUN 1971
III FLYWHEELS IN UTILITIES

149 TITLE........: HYDRAULIC TRANSMISSION COUPLED STANDBY POWER UNIT
AUTHORS........: DYNAMICS CORP.
SOURCE.........: (FILED)=(FILED DATE)
PUBL. DATE.....: DEC 15 1971
TYPE...........: PATENT
ASSIGNED.......: DYNAMICS CORP.
KEYWORDS.......: FLYWHEELS/HYDRAULIC POWER/ENERGY STORAGE/STANDBY/HYBRID/
POWER SYSTEM

150 TITLE........: LOW PEAK TEMPERATURES AND HYDRODYNAMIC BEARINGS - KEY TO
LONG LIFE ORGANIC RANKINE CYCLE SYSTEMS
AUTHORS........: BORETZ, J. E.
SOURCE.........: 7TH, INTERSOC. ENERGY CONVERSION ENG. CONF., 1972.
PUBL. DATE.....: 1972
TYPE...........: PROCEEDINGS

151 TITLE........: FLYWHEEL ENERGY BUFFER
AUTHORS.........: JAKUBOWSKI,M.
ORGANIZATION: IBM SYSTEMS DEVELOPMENT DIVISION
ADDRESS........: ENDICOTT,NY
SOURCE.........: 7TH INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE
1972, SAN DIEGO, CA. PAPER 729170 P. 1141-1145
PUBL. DATE.....: SEP 1972
TYPE...........: CONFERENCE PAPER
CATEGORY........: ENERGY STORAGE
KEYWORDS........: FLYWHEELS/ENERGY STORAGE/UTILITIES/ECONOMICS

152 TITLE........: ACHIEVING HIGH ENERGY EFFICIENCY
AUTHORS.........: [INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE
III FLYWHEELS IN UTILITIES

152 TITLE........: ACHIEVING HIGH ENERGY EFFICIENCY (CONT'D.)
PUBL. DATE.....: 1973

153 TITLE........: SUPERFLYWHEEL
AUTHORS........: RABENHORST, D. W.
ORGANIZATION...: MARYLAND UNIV., COLLEGE PARK (USA), DEPT. OF MECHANICAL
 ENGINEERING
ADDRESS........: JOHN HOPKINS UNIV., APPLIED PHYS. LAB.
SOURCE........: CONF-730350--P1
PUBL. DATE.....: 1973
TYPE...........: PROCEEDINGS OF THE SOLAR HEATING AND COOLING FOR BUILDINGS
 WORKSHOP, WASHINGTON, DC, MARCH 21-23, 1973, PART 1, TECHNICAL
 SESSIONS, MARCH 21 AND 22
CONFERENCE.....: SOLAR HEATING AND COOLING FOR BUILDINGS WORKSHOP
LOCATION......: WASHINGTON, DISTRICT OF COLUMBIA, USA
DATE...........: 21 MAR 1973
KEYWORDS.......: ENERGY STORAGE/FLYWHEELS/ROTATION/SOLAR ENERGY
 CONVERSION/STRESSES/

154 TITLE........: ENERGY STORAGE VIA FLYWHEELS
AUTHORS........: GILMAN, J. J./ HUCKE, E. E.
SOURCE........: CONF-730749--P2
PUBL. DATE.....: JUL 1973
TYPE...........: PRELIMINARY REPORTS, MEMORANDA AND TECHNICAL NOTES OF THE
 MATERIALS RESEARCH COUNCIL SUMMER CONFERENCE, LA JOLLA,
 CALIFORNIA, VOL. 11, PROCEEDINGS OF THE DISCUSSION GROUP ON
 SOLAR ENERGY CONVERSION
CONFERENCE.....: MATERIALS RESEARCH COUNCIL SUMMER CONFERENCE, LA JOLLA
LOCATION......: LA JOLLA, CALIFORNIA, USA
DATE...........: 5 JUL 1973
KEYWORDS.......: EFFICIENCY/ENERGY STORAGE/FEASIBILITY
 STUDIES/FLYWHEELS/KINETIC ENERGY/PERFORMANCE/STRESSES/
III FLYWHEELS IN UTILITIES

155 TITLE........: NEW UNINTERRUPTIBLE POWER SYSTEM ALTERNATIVES USING HIGH CAPACITY KINETIC ENERGY WHEELS
AUTHORS........: LAWSON, L. J.
ORGANIZATION: LOCKHEED MISSILES AND SPACE CO.
ADDRESS........: SUNNYVALE, CA.
SOURCE.........: IEEE IND. APPL. SOC. ANNU. MEET., 8TH, CONF. REC. PAP.
PUBL. DATE.....: OCT 08 1973
LOCATION.......: MILWAUKEE, WIS.
DATE............: OCT 8-11, 1973
KEYWORDS.......: FLYWHEELS/ENERGY STORAGE/UNINTERRUPTIBLE POWER SYSTEMS/UTILITIES/NO-BREAK SET

156 TITLE........: INVESTIGATION OF THE HOMOPOLAR MOTOR-GENERATOR AS A POWER SUPPLY FOR CONTROLLED FUSION EXPERIMENTS
ORGANIZATION: UNIV. OF TEXAS
ADDRESS.........: AUSTIN, TEXAS
SOURCE..........: PROCEEDINGS OF THE FIFTH SYMPOSIUM ON ENGINEERING PROBLEMS OF FUSION RESEARCH, P. 447
PUBL. DATE......: NOV 06 1973
PUBLISHER......: INST. OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC. NEW YORK 1974
CONFERENCE.....: 5. SYMPOSIUM ON ENGINEERING PROBLEMS OF FUSION RESEARCH
LOCATION.......: PRINCETON, NEW JERSEY, USA
KEYWORDS.......: EFFICIENCY/ELECTRIC GENERATORS/ENERGY STORAGE/FLYWHEELS/POWER SUPPLIES/THERMONUCLEAR REACTORS/HOMOPOLAR MACHINE/ENERGY STORAGE/THERMONUCLEAR REACTORS

157 TITLE........: SUPERFLYWHEEL ENERGY STORAGE SYSTEM
AUTHORS.........: RABENHORST, D. W.
ORGANIZATION: APPLIED PHYSICS LAB., JOHNS HOPKINS UNIV.
ADDRESS.........: SILVER SPRING, MD.
SOURCE..........: NASA LEWIS RES. CENTER WIND ENERGY SYSTEMS
PUBL. DATE......: DEC 1973
III FLYWHEELS IN UTILITIES

157 TITLE........: SUPERFLYWHEEL ENERGY STORAGE SYSTEM (CONTD.)
KEYWORDS.......: FLYWHEELS/SUPER FLYWHEELS/STEEL FLYWHEEL/ENERGY
 STORAGE/SOLAR ENERGY/BATTERIES/WIND ENERGY/DESIGN/SAFETY

158 TITLE........: COMPUTER CONTROLLED 125 MVA POWER SUPPLY FACILITY FOR
NUCLEAR FUSION RESEARCH
AUTHORS........: MIYAHARA, A. / BANNAI, E. / KITANO, Y.
ADDRESS.......: JAPAN
SOURCE.........: TOSHIBA REV., INT. ED. 94, 1974, 7-13 (1974, 7-13)=(7-13)
PUBL. DATE....: 1974
KEYWORDS.......: COMPUTER CALCULATIONS/ CONTROL SYSTEMS/ FLYWHEELS/ POWER
 SUPPLIES/ THERMONUCLEAR REACTORS

159 TITLE........: INDEPENDENT ENERGY SYSTEMS FOR BETTER EFFICIENCY
SUBTITLE.......: ON-SITE POWER GENERATION
AUTHORS........: MARSHALL, O.W. / MORASH, R.T. / BARBER, R.J.
ORGANIZATION: ROSEL LABS.
ADDRESS.......: BRADENTON, FL
SOURCE.........: SEE CONF--740605--
PUBL. DATE....: 1974
TYPE..........: 9TH INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE
 PROCEEDINGS
PUBLISHER....: AMERICAN SOCIETY OF MECHANICAL ENGINEERS NEW YORK
CONFERENCE....: 9TH INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE
LOCATION.....: SAN FRANCISCO, CALIFORNIA, USA
DATE..........: 26 AUG 1974
KEYWORDS......: AIR CONDITIONING / DIESEL ENGINES /
 ECONOMICS/EFFICIENCY/ELECTRIC GENERATORS/ELECTRIC
 POWER/ENERGY CONVERSION/ENERGY STORAGE / ENERGY SUPPLIES /
 FLYWHEELS / HEATING/HOUSSES/PLANNING/POWER PLANTS/SITE
 SELECTION/SOLAR ENERGY/TOTAL ENERGY SYSTEMS/USES/WASTE
 HEAT/WIND POWER/

160 TITLE........: STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS. FIFTEEN PAPERS--
SURVEY OF PRESENT AND PROSPECTIVE HEAT AND ENERGY STORAGE
SYSTEMS

50
III FLYWHEELS IN UTILITIES

160 TITLE........: STORAGE SYSTEMS FOR ENERGY PEAKING DEMANDS. FIFTEEN PAPERS-- (CONTD.)
AUTHORS........: VDI
ORGANIZATION: VDI (VER. DTSCH. ING.)
ADDRESS......: BERLIN, GER.
SOURCE........: VDI BER. 223, 1974 (CONF. STUTGART, GERMANY)
PUBL. DATE...: 1974
PUBLISHER.....: VDI
KEYWORDS....: ELECTRIC BATTERIES/ ENERGY STORAGE/ FLYWHEELS/ GAS TURBINES/ HEAT STORAGE/ LIQUEFIED NATURAL GAS/ WOLLEN SALTS/ NUCLEAR POWER PLANTS/ OFF-PEAK ENERGY STORAGE/ PONDS/ REVIEWS/ STEAM/ SUPERCONDUCTING MAGNETS ENERGY STORAGE/LATENT HEAT/BATTERIES/ TURBINES/SUPERCONDUCTING MAGNETS

161 TITLE........: NEW MOMENTUM FOR NUCLEAR FUSION. IN THE MAX-PLANCK-INSTITUT IN MÜNCHEN, A NEW PHASE OF PLASMA RESEARCH HAS BEGUN
SUBTITLE......: FLYWHEELS FOR ENERGY STORAGE
AUTHORS........: BRUNS, K.
PUBL. DATE...: JAN 1974
PUBLISHER....: WELT (HAMBURG) 26 JAN 1974 16 (IN GERMAN)
KEYWORDS....: FUSION/FLYWHEELS/PLASMA/ENERGY STORAGE

162 TITLE........: MECHANICAL AND BATTERY-STORED ENERGY SYSTEMS FOR MEETING UNINTERRUPTIBLE AND BUFFERED ELECTRIC POWER NEEDS
AUTHORS........: COMEAU, G. E.
ORGANIZATION: BRINCO LTD.
ADDRESS......: MONTREAL, P.Q. CANADA
SOURCE........: IEEE TRANS. IND. APPL., 1A-10, 2, 209.
PUBL. DATE....: MAR 1974
TYPE.........: JOURNAL
PUBLISHER.....: IEEE
KEYWORDS....: COMPARATIVE EVALUATIONS/ ELECTRIC BATTERIES/ ENERGY STORAGE/ FLYWHEELS
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

III FLYWHEELS IN UTILITIES

163 TITLE........: ULTRAHIGH TEMPERATURE SUBTITLE.......: TECHNOLOGY OF CONTROLLED THERMONUCLEAR FUSION EXPERIMENTS AND THE ENGINEERING ASPECTS OF FUSION REACTORS
AUTHORS.......: RYLANDER, H.G./WOODSON, H.H./BECKER, E.B./ROWBERG, R.

164 TITLE........: ENERGY CRISIS SUBTITLE.......: A POWER CRISIS. NEW TECHNOLOGIES REQUIRED TO SATISFY THE INCREASING PEAK POWER DEMAND IN EUROPE IN THE 1980'S.
AUTHORS.......: BECCU, K. D.
ORGANIZATION: BATTETLE RESEARCH CENTRE ADDRESS.......: GENEVA, SW.

165 TITLE........: ENERGY STORAGE. (I): USING ELECTRICITY MORE EFFICIENTLY
AUTHORS.......: ROBINSON, A.L.
SOURCE.......: SCIENCE 184, NO. 4138, P. 785.
PUBL. DATE...: MAY 17 1974 PUBLISHER....: SCIENCE 184 4138
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

III FLYWHEELS IN UTILITIES

165 TITLE........: ENERGY STORAGE. (I): USING ELECTRICITY MORE EFFICIENTLY (CONTD.)
KEYWORDS.......: CHEMICAL REACTIONS/CHEMICAL REACTIONS/COMPRESSED
 AIR/COMPRESSION/ECONOMICS/EFFICIENCY/ELECTRIC
 BATTERIES/ELECTRICITY / ENERGY CONVERSION / ENERGY STORAGE
 / ENVIRONMENTAL EFFECTS / FLYWHEELS/GAS
 TURBINES/HEATING/HIGH TEMPERATURE / HYDROELECTRIC POWER
 PLANTS / MAGNETISM / MECHANICS / NUCLEAR POWER/PUMPED
 STORAGE/STEAM TURBINES/STORED ENERGY/WATER RESERVOIRS/

166 TITLE........: ENERGY STORAGE. (II): DEVELOPING ADVANCED TECHNOLOGIES
AUTHORS........: ROBINSON, A.L.
SOURCE.........: SCIENCE 184, NO. 4139, P. 884.
PUBL. DATE.....: MAY 24 1974
PUBLISHER......: SCIENCE 184 4139
KEYWORDS.......: ELECTRIC BATTERIES / ELECTROMAGNETS / ENERGY
 STORAGE/FLYWHEELS/NUCLEAR HEAT/HYDROGEN/INVESTMENT / MAGNETIC
 FIELDS/SOLAR ENERGY/STORED
 ENERGY/SUPERCONDUCTIVITY/SUPERCONDUCTORS/TRANSPORT/

167 TITLE........: NO-BREAK SETS
AUTHORS........: MOODY, R. L.
ORGANIZATION: DALE ELECTRIC OF GREAT BRITAIN, LTD
ADDRESS.......: LONDON, ENG.
SOURCE........: STANDBY PLANT AND EMERGENCY EQUIPMENT CONFERENCE, ELECTR.
SUPERV. 54,4, JUN 1974
PUBL. DATE....: JUN 1974
TYPE..........: JOURNAL
KEYWORDS.......: ENERGY STORAGE/SHORT-TERM FAILURE/LONG-TERM
 FAILURE/FLYWHEEL/ BATTERIES/HYBRID/COMPARISONS

168 TITLE........: ENERGY STORAGE FOR THE ELECTRIC POWER INDUSTRY
AUTHORS........: KELLER, W.E.
ORGANIZATION: LOS ALAMOS SCIENTIFIC LAB.
ADDRESS.......: LOS ALAMOS, N.MEX. (USA)
III FLYWHEELS IN UTILITIES

168 TITLE........: ENERGY STORAGE FOR THE ELECTRIC POWER INDUSTRY (CONT'D.)
SOURCE.........: CONF-740641-1 CONFERENCE ON ADVANCED ENERGY SYSTEMS
PUBL. DATE.....: JUN 20 1974
CONFERENCE.....: CONFERENCE ON ADVANCED ENERGY SYSTEMS
LOCATION......: DENVER, COLORADO, USA
DATE...........: 20 JUN 1974
KEYWORDS......: ECONOMICS/ELECTRIC POWER/ENERGY STORAGE/
 FLYWHEELS/HYDROELECTRIC POWER/POWER PLANTS/SUPERCONDUCTING
 MAGNETS/

169 TITLE........: CAN FLYWHEELS REPLACE PUMPED STORAGE?
AUTHORS........: GINSBURG, T.
SOURCE.........: (BLL-CE-TRANS-6761-(9022.09) AVAIL. BRITISH LIBRARY LENDING
 DIV., BOSTON SPA, ENGLAND
PUBL. DATE.....: JUL 15 1974
KEYWORDS......: FLYWHEELS/ENERGY STORAGE/OFF-PEAK ENERGY/UTILITIES/FLYWHEEL
 DESIGN/FLYWHEEL MATERIALS/PUMPED STORAGE/ECONOMIC

170 TITLE........: WIND POWER CONVERSION SYSTEM
AUTHORS........: TROLL, J. H.
SOURCE.........: U.S. PATENT 3,944,840 FILED DATE 07 AUG 1974
PUBL. DATE.....: AUG 07 1974
TYPE...........: PATENT
KEYWORDS......: FLYWHEELS/ POWER GENERATION/ SPECIFICATIONS/ WIND
 TURBINES/WIND TO ELECTRIC/FLYWHEEL STABILIZED/ENERGY
 STORAGE/UTILITIES/ HYBRID

171 TITLE........: ENERGY STORAGE TECHNOLOGY
AUTHORS........: VANDERRYN, J.
ORGANIZATION: U.S. A.E.C., DIVISION OF APPLIED TECHNOLOGY
ADDRESS.......: WASHINGTON, D.C.
III FLYWHEELS IN UTILITIES

171 TITLE.......: ENERGY STORAGE TECHNOLOGY (CONTD.)
PUBL. DATE....: AUG 18 1974
PUBLISHER....: AMER. SOC. OF CIVIL ENG., N.Y.

CONFERENCE......: CONVERTING EXISTING HYDRO-ELECTRIC DAMS AND RESERVOIRS INTO
PUMPED STORAGE FACILITIES
LOCATION.......: RINDGE, NEW HAMPSHIRE
DATE...........: 18 AUG., 1974

KEYWORDS......: UTILITIES/ENERGY STORAGE/FLYWHEELS/PUMPED STORAGE/STATE-OF-THE-ART/SOLAR ENERGY/WIND ENERGY/FLYWHEELS/COMPRessed
AIR/HEAT STORAGE/REVIEW

172 TITLE.......: ENERGY STORAGE AND ITS ROLE IN ELECTRIC POWER SYSTEMS
AUTHORS.......: HAYDOCK, J. L.

SOURCE.......: WEC/CME, IX, 1 (1974), DETROIT
PUBL. DATE....: SEP 1974
TYPE..........: PROCEEDINGS

KEYWORDS......: ENERGY STORAGE/SUPERCONDUCTING MAGNETS/HEAT STORAGE/PUMPED
STORAGE/UNDERGROUND PUMPED STORAGE/AIR STORAGE/COAL
GASIFICATION/FLYWHEELS/BATTERIES

173 TITLE.......: LARGE FLYWHEEL POWER SUPPLY FOR FUSION EXPERIMENTS IN THE
MAX-PLANCK-INSTITUT FUER PLASMAPHYSIK,GARCHING, GERMANY

AUTHORS.......: KNOBLOCH,A./KOTTMAIR,M./SCHLUETER,W./VAU,G.

ORGANIZATION: MAX-PLANCK-INSTITUT FUER PLASMAPHYSIK
ADDRESS.......: GARCHING, GERM.

SOURCE.......: CONF-740630/- PROCEEDINGS OF THE 8TH SYMPOSIUM ON FUSION
TECHNOLOGY
PUBL. DATE....: SEP 1974

CONFERENCE....: 8. SYMPOSIUM ON FUSION TECHNOLOGY
LOCATION.....: NOORDWIJKERHOUT, NETHERLANDS
DATE..........: 17 JUN 1974

KEYWORDS......: DESIGN/ELECTRIC GENERATORS/ENERGY STORAGE/
FLYWHEELS/THERMONUCLEAR DEVICES/
III FLYWHEELS IN UTILITIES

174 TITLE........: ENERGY STORAGE: INCENTIVES AND PROSPECTS FOR ITS DEVELOPMENT
AUTHORS.......: KALHAMMER, F.

SOURCE.......: AMER. CHEM. SOC. 1974 ANNUAL MEETING, SEP. 12, 1974,
 ATLANTIC CITY, N. J.
PUBL. DATE...: SEP 12 1974
TYPE.........: PRESENTED PAPER

KEYWORDS.....: ENERGY STORAGE/BATTERIES/UTILITIES/CHEMICAL ENERGY
 STORAGE/HYDROGEN/FLYWHEELS/FLYWHEEL DESIGN/PUMPED
 STORAGE/COMPRESSED AIR STORAGE/HIGH TEMPERATURE/SOLAR ENERGY

175 TITLE........: USE OF FLYWHEELS FOR ENERGY STORAGE
AUTHORS.......: RABENHORST, D. W.

SOURCE.......: PRESENTED AT FALL ACS MEET., SEP. 12, 1974, ATLANTIC CITY
PUBL. DATE...: SEP 12 1974
TYPE.........: MEETING PAPER

KEYWORDS.....: FLYWHEELS/UTILITIES/ENERGY STORAGE

176 TITLE........: ASSESSMENT OF ADVANCED CONCEPTS IN ENERGY STORAGE AND THEIR
APPLICATION ON ELECTRIC UTILITY SYSTEMS
AUTHORS.......: FERNANDES, R. A. / GILDERSLEEVE, O.D. / SCHNEIDER, T. R.

SOURCE.......: CONF-740910-P6
PUBL. DATE...: SEP 22 1974
TYPE.........: CONFERENCE PAPER
PUBLISHER.....: WORLD ENERGY CONFERENCE

CONFERENCE...: 9TH WORLD ENERGY CONFERENCE
LOCATION......: DETROIT, MICH. USA
DATE..........: 22 SEP 1974

KEYWORDS.....: COMPARATIVE EVALUATIONS/ COMPRESSED AIR/ ECONOMICS/
 ELECTRIC BATTERIES/ ENERGY STORAGE/ ENVIRONMENTAL EFFECTS/
 FLYWHEELS/ HEAT STORAGE/ HYDROGEN/ OFF-PEAK ENERGY STORAGE/
 POWER PLANTS/ SUPERCONDUCTING MAGNETS/ WATER RESERVOIRS
III FLYWHEELS IN UTILITIES

177 TITLE........: POTENTIAL FOR LARGE-SCALE ENERGY STORAGE IN ELECTRIC UTILITY SYSTEMS
AUTHORS........: KALHAMMER, F. / ZYGIELBAUM, P. S.
PUBL. DATE......: NOV 1974
TYPE...........: PRESENTED PAPER
KEYWORDS.......: ENERGY STORAGE/BATTERIES/UTILITIES/CHEMICAL ENERGY STORAGE/HYDROGEN/FLYWHEELS/FLYWHEEL DESIGN/PUMPED STORAGE/COMPRESSED AIR STORAGE/HIGH TEMPERATURE/SOLAR ENERGY

178 TITLE........: CYCLOCONVERTER-CONTROLLED SYNCHRONOUS MACHINES FOR LOAD COMPENSATION ON AC POWER SYSTEMS
AUTHORS.........: FINLAYSON, P. T. / WASHBURN, D. C.
ORGANIZATION: WESTINGHOUSE ELECTRIC CORP.
ADDRESS........: BUFFALO, N.Y.
SOURCE..........: IEEE TRANS. IND. APPL., IA-10, 6, 808.
PUBL. DATE......: NOV 1974
TYPE............: JOURNAL
PUBLISHER.......: IEEE
KEYWORDS........: ALTERNATING CURRENT/ CONTROL SYSTEMS/ ELECTRIC POWER/ ENERGY STORAGE/ ENGINEERING/ FLYWHEELS/ POWER DEMAND/ TRANSIENTS/ VARIATIONS

179 TITLE........: ELECTRIC POWER SYSTEMS
SUBTITLE........: C-3 ENERGY STORAGE, TRANSMISSION AND DISTRIBUTION, ELECTRIC POWER APPARATUS AND SYSTEMS
AUTHORS.........: ERDA
ORGANIZATION: USAEC
ADDRESS.........: WASHINGTON, D.C.
SOURCE..........: TID--26756
PUBL. DATE......: NOV 11 1974
CATEGORY........: ADMINISTRATION ELECTRONICS AND ELECTRICAL ENGINEERING ENERGY SOURCES

57
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

III FLYWHEELS IN UTILITIES

179 TITLE........: ELECTRIC POWER SYSTEMS (CONTD.)
KEYWORDS......: MANAGEMENT/PLANNING/RESEARCH PROGRAMS/ELECTRIC
 BATTERIES/ENERGY STORAGE/FLYWHEELS / HYDROGEN/MAGNET
 COILS/PRODUCTION/EHV SYSTEMS/ HVDC SYSTEMS/POWER
 TRANSMISSION/ POWER TRANSMISSION LINES/SUPERCONDUCTING
 CABLES/UNDERGROUND POWER TRANSMISSION/

180 TITLE........: SKAGIT NUCLEAR POWER PROJECT, UNITS 1 AND 2. LICENSE
APPLICATION
SUBTITLE.......: PSAR VOLUME 4 DESIGN OF STRUCTURES, COMPONENTS, EQUIPMENT, AND
 SYSTEMS COOLANT SYSTEMS AND ENGINEERED SAFETY FEATURES
AUTHORS.......: PUGET SOUND POWER AND LIGHT CO.
ORGANIZATION: PUGET SOUND POWER AND LIGHT CO.
ADDRESS......: BELLEVUE, WASH. (USA)
SOURCE.......: DOCKET-STN-50522—27 DOCKET-STN-50523—27
PUBL. DATE...: 1976

KEYWORDS......: CONCRETES/CONTAINMENT/COOLANT CLEANUP
 SYSTEMS/DESIGN/ELECTRICAL EQUIPMENT/ENGINEERED SAFETY
 SYSTEMS/FEEDWATER/FLOODS / FLOW REGULATORS / FLYWHEELS /
 FOUNDATIONS/HYDRAULICS/INSPECTION/ISOLATION/LEAK
 TESTING/MECHANICAL STRUCTURES /MISSILE PROTECTION /
 PIPELINES / POWER GENERATION/ PRESSURE VESSELS/PUMPS/REACTOR
 COMPONENTS/ REACTOR COOLING SYSTEMS/ REACTOR
 CORES/ RUPTURES/SEISMIC EFFECTS/SKAGIT-1 REACTOR/SKAGIT-2
 REACTOR/STEAM LINES/TORNADOES/TRANSIENTS/VENTILATION/WIND/

181 TITLE.......: ENERGY STORAGE
AUTHORS.......: KALHAMMER, F. R. / COOPER, V. R.
ORGANIZATION: EPRI
ADDRESS......: PALO ALTO, CA
SOURCE.......: EPRI RESEARCH PROGRESS REPORT FF2, 11-17
PUBL. DATE...: JAN 1975

KEYWORDS......: ELECTRIC POWER RESEARCH INST. / ENERGY STORAGE R & D /
 FLYWHEELS/ BATTERIES/ PEAK LOAD MANAGEMENT/ PUMPED STORAGE /
 COMPRESSED AIR/ THERMAL ENERGY STORAGE/ SUPERCONDUCTING
 MAGNETS/ ECONOMICS/ ENERGY STORAGE FLYWHEELS/ UTILITIES/OFF-
 PEAK ENERGY/BATTERIES/PUMPED STORAGE/ COMPRESSED
 AIR/THERMAL ENERGY/SUPER CONDUCTING MAGNETS
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

III FLYWHEELS IN UTILITIES

182 TITLE.......: THREE MILE ISLAND NUCLEAR STATION, UNIT 2.80 INSPECTION REPORT NO.75-01 AND CORRESPONDENCE
SUBTITLE......: INSPECTION OF CONSTRUCTION ACTIVITIES AND RECORDS
AUTHORS.......: METROPOLITAN EDISON CO.
ORGANIZATION: METROPOLITAN EDISON CO.
ADDRESS......: READING, PA. (USA)
SOURCE.......: DOCKET-50320-131
PUBL. DATE..: JAN 31 1975
PUBLISHER....: 31 JAN 1975
KEYWORDS.....: CONTAINMENT SPRAY SYSTEMS
 /FLYWHEELS/INSPECTION/MODIFICATIONS/PUMPS/REACTOR
 INTERNALS/RESTRAINTS/THREE MILE ISLAND-2 REACTOR/ULTRASONIC
 TESTING/

183 TITLE.......: ANALYSIS OF HOMOPOLAR GENERATORS AND SUPERCONDUCTING
INDUCTIVE ENERGY STORAGE SYSTEMS AS POWER SUPPLIES FOR HIGH-
ENERGY, SPACE-BASED LASERS
AUTHORS.......: GILBERT, J.S./KERN, E.A.
ORGANIZATION: LOS ALAMOS SCIENTIFIC LAB.
ADDRESS......: N.MEX. (USA)
SOURCE.......: LA-5837-MS
CONTRACT # ..: W-7405-ENG-36
PUBL. DATE..: FEB 1975

CATEGORY......: ENERGY SOURCES

KEYWORDS.....: ELECTRIC GENERATORS/ENERGY
 STORAGE/FLYWHEELS/INDUCTION/LASERS/POWER
 SUPPLIES/SUPERCONDUCTING MAGNETS/

184 TITLE.......: UTILITIES EYE LARGE-SCALE ENERGY STORAGE
AUTHORS.......: RICCI, L. J.
PUBL. DATE..: FEB 03 1975
TYPE.........: PERIODICAL
184 TITLE: UTILITIES EYE LARGE-SCALE ENERGY STORAGE (CONT'D.)
KEYWORDS: UTILITIES/OFF-PEAK STORAGE/FLYWHEELS/BATTERIES/HYDROGEN
GENERATORS/SUPERCONDUCTING MAGNETS

185 TITLE: ENERGY STORAGE BY FLYWHEELS
AUTHORS: FULLMAN, R. L.
ORGANIZATION: GENERAL ELECTRIC CO.
ADDRESS: CORPORATE RESEARCH AND DEVELOPMENT, SCHENECTADY, N. Y.
SOURCE: REPORT NO. 75CRD051
PUBL. DATE: APR 1975
TYPE: REPORT

KEYWORDS: FLYWHEELS/ENERGY STORAGE/FLYWHEEL DESIGN/ECONOMICS

186 TITLE: STORING ELECTRICAL ENERGY ON A LARGE SCALE
ORGANIZATION: CENTRAL ELECTRICITY RESEARCH LABS
ADDRESS: LEATHERHEAD, ENG.
SOURCE: CEBR RES./2/MAY 1975/12-20/
PUBL. DATE: MAY 1975

KEYWORDS: AIR/COMPRESSION/CGST/ECONOMICS/ELECTRIC BATTERIES/ELECTRIC
POWER/FEEDWATER HEATERS/FLYWHEELS/NUCLEAR POWER/NUCLEAR
POWER PLANTS/OFF-PEAK ENERGY STORAGE/OPERATION/PLANNING/
SUPERCONDUCTING MAGNETS/WATER RESERVOIRS/

187 TITLE: DIGEST OF CURRENT RESEARCH IN THE ELECTRIC UTILITY INDUSTRY
AUTHORS: EPRI
ORGANIZATION: ELECTRIC POWER RESEARCH INST.
ADDRESS: 3412 HILLVIEW AVE., PALO ALTO, CA. 94304
PUBL. DATE: MAY 1975
TYPE: REPORT
PUBLISHER: EPRI
III FLYWHEELS IN UTILITIES

187 TITLE.......: DIGEST OF CURRENT RESEARCH IN THE ELECTRIC UTILITY INDUSTRY (CONTD.)
 KEYWORDS.....: AIR POLLUTION/ AQUACULTURE/ ELECTRIC BATTERIES/ ELECTRIC
 POWER/ ELECTRIC-POWERED VEHICLES/ ENVIRONMENTAL EFFECTS/
 FLYWHEELS/ FOSSIL FUELS/ FUEL CELLS/ GEOTHERMAL POWER
 PLANTS/ HYDROELECTRIC POWER/ INFORMATION/
 MAGNETOHYDRODYNAMICS/ NUCLEAR POWER/ POWER TRANSMISSION/
 PUBLIC UTILITIES/ RESEARCH PROGRAMS/ SOLAR POWER PLANTS

188 TITLE.......: SUPERFLYWHEEL FOR STORING ENERGY FROM OTEC PLANTS
 AUTHORS......: RABENHORST, D. W. / DUGGER, G. L.
 EDITOR.......: DUGGER, G. L.
 ORGANIZATION: JOHNS HOPKINS UNIV.
 ADDRESS......: LAUREL, MD.
 SOURCE.......: APL/ JHU-SR-75-2. ALSO: CONF-750579. PROCEEDINGS, THIRD
 WORKSHOP ON OCEAN THERMAL ENERGY CONVERSION (OTEC)
 PUBL. DATE...: MAY 08 1975
 TYPE..........: REPORT
 CONFERENCE...: WORKSHOP ON OCEAN THERMAL ENERGY CONVERSION
 LOCATION.....: HOUSTON, TEXAS
 DATE..........: 8 MAY, 1975
 KEYWORDS.....: DESIGN/ ENERGY STORAGE/ FEASIBILITY STUDIES/ FLYWHEELS/
 OFF-PEAK ENERGY STORAGE/ SOLAR SEA POWER PLANTS/ OTEC/ OCEAN
 THERMAL ENERGY CONVERSION

189 TITLE.......: ENERGY STORAGE DEVICE
 AUTHORS......: TIN, W.C.
 PUBL. DATE...: MAY 21 1975
 TYPE..........: PATENT
 KEYWORDS.....: FLYWHEELS/ENERGY STORAGE/HYBRID

190 TITLE.......: ENERGY STORAGE FOR WIND ENERGY CONVERSION SYSTEMS
 AUTHORS......: ZLOTNICK, M.
 ORGANIZATION: ERDA
III FLYWHEELS IN UTILITIES

190 TITLE........: ENERGY STORAGE FOR WIND ENERGY CONVERSION SYSTEMS (CONTD.)
SOURCE.........: PRESENTED AT ERDA/NSF 2ND WIND ENERGY CONVERSION SYSTEM
 WORKSHOP, WASH. D.C.
PUBL. DATE.....: JUN 09 1975
TYPE..........: TECHNICAL PUBLICATION

KEYWORDS......: WIND ENERGY/ ENERGY STORAGE/ FLYWHEELS/ COMPRESSED AIR/
 PUMPED STORAGE/ BATTERIES/ CONF PAPER

191 TITLE........: TECHNICAL ASSESSMENT OF ENERGY STORAGE TECHNOLOGIES
AUTHORS........: SCHNEIDER, T. R.
ORGANIZATION...: PUBLIC SERVICE ELECTRIC AND GAS CO.
ADDRESS.......: NEWARK, NJ
SOURCE........: AM. NUCL. SOC. TRANS., P. 145
PUBL. DATE.....: JUN 21 1975
CONFERENCE....: AMERICAN NUCLEAR SOCIETY 1975 ANNUAL MEETING
LOCATION......: NEW ORLEANS, LA
DATE...........: 6 JUN 1975

KEYWORDS......: ENERGY STORAGE COMPARISON/PUMPED HYDRO/COMPRESSED AIR/
 TURBINE/ BATTERIES/FLYWHEEL/CHEMICAL/ THERMAL/ECONOMICS
 TECHNOLOGY

192 TITLE........: FOSSIL FUEL AND ADVANCED SYSTEMS DIVISION RESEARCH PROGRESS
SUBTITLE.......: REVIEW OF MAJOR PROJECTS
AUTHORS........: ELECTRIC POWER RESEARCH INST.
ORGANIZATION...: ELECTRIC POWER RESEARCH INST.
ADDRESS.......: PALO ALTO, CALIF. (USA)
SOURCE.........: EPRI-FF--3
PUBL. DATE.....: JUL 1975
TYPE...........: STAFF REPORTS

KEYWORDS......: COAL / COAL GASIFICATION/ COAL LIQUEFACTION/ COAL
 MINING/ COMBINED CYCLES/ CONTROL/ CORROSION/ DESULFURIZATION/
 ELECTRIC BATTERIES/ENERGY STORAGE/ EROSION/ FLUE
 GAS/ FLUIDIZED-BED COMBUSTION/ FLYWHEELS/ GAS TURBINES/
 GEOTHERMAL ENERGY/ METALS/ MHD GENERATORS/ NITROGEN
 OXIDES/ REMOVAL/ SCRUBBERS/ SOLAR ENERGY/ SULFUR OXIDES/
 THERMONUCLEAR REACTORS/
193 TITLE........: DEVELOPMENT OF HIGH-DENSITY INERTIAL-ENERGY STORAGE FINAL REPORT
AUTHORS........: GORDON, H. S.
SOURCE.........: (PB-245998/0; EPRI-269-1) AVAL: NTIS HC $6.00 CSCL 10C
PUBL. DATE.....: JUL 1975
KEYWORDS.......: FLYWHEEL/FLYWHEEL DEVELOPMENT/FIBER COMPOSITES

194 TITLE........: REPETITIVE PLASMA FOCUS POWERED BY A APPROX. 200 MJ
FLYWHEEL GENERATOR.
AUTHORS........: NARDI, V.
ORGANIZATION: ARGONNE NATIONAL LAB.
ADDRESS........: ARGONNE, ILL.
SOURCE.........: CONF-750723 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON
RADIATION TEST FACILITIES FOR THE CTR SURFACE AND MATERIALS
PROGRAM. ALSO: ANL/CTR-75-4
PUBL. DATE.....: JUL 15 1975
PUBLISHER......: ANL. ALSO: ERDA, DIV. OF CONTROLLED THERMONUCLEAR RESEARCH,
AND AVOGADRO ENERGY SYSTEMS, INC., JAMAICA, N.Y.
CONFERENCE.....: INTERNATIONAL CONFERENCE ON RADIATION TEST FACILITIES FOR
THE CTR SURFACE AND MATERIALS PROGRAM
LOCATION.......: ARGONNE, ILL.
DATE...........: 15 JULY, 1975
KEYWORDS.......: DEUTERIUM/ ELECTRODES/ FLYWHEELS/ NEUTRON SOURCES/
PERFORMANCE/ PLASMA FOCUS DEVICES

195 TITLE........: AC/DC POWER CONDITIONING AND CONTROL EQUIPMENT FOR ADVANCED
CONVERSION AND STORAGE TECHNOLOGY.
AUTHORS........: WOOD, P. / PELLY, B. R.
ORGANIZATION: WESTINGHOUSE ELECTRIC CORP.
SOURCE.........: ELECTRIC POWER RESEARCH INST. REPORT 390-1-1
PUBL. DATE.....: AUG 1975
TYPE...........: REPORT

KEYWORDS.......: UTILITIES/AC-DC POWER CONVERSION/CONTROL/ECONOMICS/ ENERGY
STORAGE/BATTERIES/INVERSION
III FLYWHEELS IN UTILITIES

196 TITLE........: REACTOR COOLANT PUMP FLYWHEEL INTEGRITY
AUTHORS........: NUCLEAR REGULATORY COMM.
ORGANIZATION: NUCLEAR REGULATORY COMMISSION, OFFICE OF STANDARDS DEVELOPMENT
ADDRESS.......: WASHINGTON, D.C. (USA)
SOURCE........: (REG G-1.14 (REV. 1) (8-75))
PUBL. DATE.....: AUG 1975
KEYWORDS.......: FAILURES/FLYWHEELS/POWER REACTORS/PRIMARY COOLANT CIRCUITS/
PUMPS/REGULATORY GUIDES/

197 TITLE........: POWER PLANT
AUTHORS........: ARIGA, H.
SOURCE........: US PATENT 3,808,794 FILED DATE 26 MAR 1973
PUBL. DATE.....: AUG 12 1975
TYPE...........: PATENT
ASSIGNED.......: NISSAN MOTOR CO.LTD., JAPAN

KEYWORDS.......: VEHICLES/HYDROGEN PEROXIDE TURBINE/FLYWHEEL

198 TITLE........: KINETIC ENERGY STORAGE OF OFF-PEAK ELECTRICITY
AUTHORS........: SIMPSON, L. A. / OLDAKER, I. E. / STERMSCHEG, J.
ORGANIZATION: ATOMIC ENERGY OF CANADA LTD., WHITESHELL NUCLEAR RESEARCH
ESTABLISHMENT
ADDRESS.......: PINAWA, MANITOBA, CAN.
SOURCE........: AECL-5116
PUBL. DATE.....: SEP 1975
TYPE...........: REPORT
PUBLISHER.......: AECL

KEYWORDS.......: COMPOSITE MATERIALS/ COST/ DESIGN/ ELECTRIC POWER/ ENERGY
LOSSES/ FLYWHEELS/ OFF-PEAK ENERGY STORAGE
199 TITLE: AN EVALUATION OF THE FUTURE ROLE OF STORAGE TECHNIQUES IN ELECTRIC POWER TECHNOLOGY

AUTHORS: PEZDIERTZ, G. F.

ORGANIZATION: ERDA, DIV. OF CONSERVATION RESEARCH AND TECHNOLOGY.

SOURCE: PRESENTED AT INTL. ENERGY ENGINEERING CONGRESS, CHICAGO

PUBL. DATE: NOV 04 1975

CONFERENCE: INTL. ENERGY ENGINEERING CONGRESS, CHICAGO, ILL., SESSION C9C

KEYWORDS: SOLAR ENERGY STORAGE/ BATTERIES/ FLYWHEELS/ PUMPED STORAGE/ FUEL CELLS/ COMRESSED AIR/ THERMAL STORAGE/ AUTOMOBILE ENERGY USAGE/ ENERGY, PRE-20TH CENTURY/ CONF PAPER UTILITIES/ENERGY STORAGE/BATTERIES/FLYWHEEL/SOLAR ENERGY/PUMPED STORAGE/COMRESSED AIR/VEHICLES

200 TITLE: PROPOSED TFTR ELECTRICAL SYSTEM

AUTHORS: BRONNER, G. / MURRAY, J.

ORGANIZATION: PRINCETON UNIV., PLASMA PHYSICS LAB., N.J.

SOURCE: CONF-751125-91

PUBL. DATE: NOV 17 1975

TYPE: PROCEEDINGS

CONFERENCE: IEEE 6. SYMPOSIUM ON ENGINEERING PROBLEMS OF FUSION RESEARCH

LOCATION: SAN DIEGO, CA.

DATE: NOV. 17 1975

KEYWORDS: ENERGY STORAGE/ FLYWHEELS/ POWER SUPPLIES/ POWER TRANSMISSION/ RECTIFIERS/ TFTR DEVICE

201 TITLE: ECONOMIC AND TECHNICAL FEASIBILITY STUDY FOR ENERGY STORAGE FLYWHEELS

AUTHORS: ROCKWELL INTERNATIONAL, SPACE DIV.

SOURCE: SD 75-SA-0166, DEC. 1975

PUBL. DATE: DEC 1975
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

III FLYWHEELS IN UTILITIES

202 TITLE........: FLYWHEELS - POWER ON THE FLY
AUTHORS........: MECH. ENG.
SOURCE.........: MECH ENG 97:50 DECEMBER 1975
PUBL. DATE.....: DEC 1975

203 TITLE........: LIL PROGRAM FOR COMPOSITE FLYWHEEL
AUTHORS........: CHIAO, T. T. / STONE, R. G.
ORGANIZATION..: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA. 94550
SOURCE........: UCRL-77567
PUBL. DATE.....: DEC 15 1975
TYPE..........: REPORT
PUBLISHER.....: LIL
CONFERENCE.....: FLYWHEEL TECHNOLOGY SYMPOSIUM
LOCATION......: BERKELEY, CA.
DATE..........: 10 NOV 1975
KEYWORDS......: COMPOSITE MATERIALS / ENERGY STORAGE / FLYWHEELS / MATERIALS / RESEARCH PROGRAMS

204 TITLE........: ENERGY STORAGE - FEASIBILITY STUDY OF AN EXPERIMENT INVOLVING SOLAR ENERGY COLLECTION, ITS STORAGE BY A SUPER FLYWHEEL, AND ELECTRIC POWER GENERATION.
AUTHORS........: TATRY, B.
SOURCE.........: L’AERONAUTIQUE ET L’ASTRONAUTIQUE, NO. 56, 46-51.
PUBL. DATE.....: 1976
KEYWORDS.......: FLYWHEEL/UTILITIES/ENERGY STORAGE/SOLAR ENERGY/SUPERFLYWHEEL/COMPOSITE MATERIALS

205 TITLE........: WHEN DO ELECTRIC STORAGE DEVICES MAKE ECONOMIC SENSE?
AUTHORS........: BRAUN, C. / CHERNIAVSKY, E. A. / SALZANO, F. J.
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONologically WITHIN EACH CATEGORY

III FLYWHEELS IN UTILITIES

205 TITLE.......: WHEN DO ELECTRIC STORAGE DEVICES MAKE ECONOMIC SENSE? (CONTD.)
ORGANIZATION: BROOKHAVEN NATIONAL LABORATORY
ADDRESS.....: UPTON, N.Y.
SOURCE......: (1, 2, WIN 1976)=(24)
PUBL. DATE..: 1976

KEYWORDS.....: PUMPED STORAGE/UTILITIES/HYDROGEN/MAGNETIC/COMPRESSED AIR/
FLYWHEELS/BATTERIES

206 TITLE.......: MECHANICAL CAPACITOR
AUTHORS......: KIRK, JAMES A. / STUDER, PHILIP A. / EVANS, HAROLD E.

SOURCE......: (NASA-TN-D-6185: G-7639) AVAIL: NTIS HC $4.50 CSCL 10C
PUBL. DATE..: MAR 1976

KEYWORDS.....: FLYWHEELS/MECHANICAL CAPACITOR/ENERGY STORAGE/FLYWHEEL
DESIGN

207 TITLE.......: ASSESSMENT OF THE STATE-OF-THE-ART OF FEEDING WIND-
GENERATED ELECTRICITY INTO UTILITY POWER GRIDS
AUTHORS......: REED, J. J.
ORGANIZATION: TETRA TECH INC.
ADDRESS.....: ARLINGTON, VA.
SOURCE......: TETRAT-A-642-76-240
CONTRACT #: ..: N00014-76-C-0239
PUBL. DATE..: MAR 08 1976
TYPE.........: TECHNICAL REPT.

KEYWORDS.....: ELECTRIC GENERATORS/ WIND/ POWER DISTRIBUTION/ ENERGY
STORAGE/ TRANSMISSION LINES/ COMPRESSED AIR/ FLYWHEELS/
HYDROGEN/ ELECTRIC BATTERIES/ FUEL CELLS

208 TITLE.......: ENERGY STORAGE
AUTHORS......: CASAZZA, J. A. / SCHNEIDER, T. R. / SULZBERGER, V. T.
ORGANIZATION: PUBLIC SERVICE ELECTRIC AND GAS CO.
III FLYWHEELS IN UTILITIES

208 TITLE.......: ENERGY STORAGE (CONTD.)
SOURCE.......: PRESENTED AT ENERGY TECHNOLOGY 3RD CONF, WASH DC, MAR 29-31, 1976.
PUBL. DATE....: MAR 29 1976
TYPE.........: TECHNICAL FEATURE

KEYWORDS.....: FLYWHEELS/ENERGY STORAGE/UTILITIES/ECONOMICS

209 TITLE.......: ENERGY ON CALL: A MORE EFFICIENT PEAKING SYSTEM WOULD EXPLOIT THE ADVANTAGES OF ENERGY STORAGE, WHILE CONSERVING CAPITAL AND RESOURCES

AUTHORS.......: CASAZZA, J. A. / SCHNEIDER, T. R. / SULZBERGER, V. T.
ORGANIZATION: PUBLIC SERVICE ELECTRIC AND GAS CO.
ADDRESS.......: NEWARK, N.J.
SOURCE.......: IEEE SPECTRUM 13, 6, JUN 1976, 45-47
PUBL. DATE....: JUN 1976
TYPE.........: JOURNAL ART.
PUBLISHER.....: IEEE

KEYWORDS.....: ENERGY STORAGE/ECONOMICS/OFF-PEAK STORAGE
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

IV FLYWHEELS IN AIRCRAFT AND SPACECRAFT

210 TITLE.......: AN ELECTRO-MECHANICAL ENERGY STORAGE SYSTEM FOR SPACE APPLICATION
AUTHORS.......: ROES, J. B.
ORGANIZATION: GENERAL DYNAMICS CORP.
ADDRESS.......: SAN DIEGO, CA.
SOURCE.......: PROG. ASTRONAUT. AERONAUT. 3, 1961, 613-622 ENERGY CONVERSION FOR SPACE POWER
PUBL. DATE...: 1961
TYPE.........: JOURNAL BOOK (ACADEMIC PRESS)
KEYWORDS.....: BEARINGS/ DESIGN/ ELECTROMAGNETS/ ENERGY STORAGE/ FLYWHEELS/ INVERTERS/ LEVITATION/ RECTIFIERS/ SPACECRAFT POWER SUPPLIES/ SPECIFICATIONS/ TRANSFORMERS ENERGY STORAGE/FLYWHEELS/SPACECRAFT POWER SUPPLY/MAGNETICALLY SUSPENDED FLYWHEELS

211 TITLE.......: MAGNETIC BEARINGS FOR AEROSPACE APPLICATIONS
AUTHORS.......: EDGAR, R. F. / ET AL.
SOURCE.......: TDR 63-474, FOR WRIGHT PATTERSON AFB, OHIO, 1963.
PUBL. DATE...: 1963
TYPE.........: REPORT
KEYWORDS.....: BEARINGS/AEROSPACE VEHICLES/FRICITIONLESS SUPPORT/ MAGNETOHYDRODYNAMICS

212 TITLE.......: EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS FOR AIRCRAFT ACTUATION FUNCTIONS
AUTHORS.......: NORTH AMERICAN AVIATION INC, LOS ANGELES DIV.
SOURCE.......: NA-66-1142-2, QUART TECH RPT NO 2, 1 OCT- 31 DEC 1966
CONTRACT #...: AF33(615)-5173
PUBL. DATE...: JAN 12 1967
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

IV FLYWHEELS IN AIRCRAFT AND SPACECRAFT

213 TITLE........: EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS
FOR AIRCRAFT ACTUATION FUNCTIONS
AUTHORS........: NORTH AMERICAN AVIATION INC., LOS ANGELES DIV.
SOURCE.........: NA-66-1142-3, QUART TECH RPT NO 3, 1 JAN - 31 MAR 1967
CONTRACT #.....: AF33(615)-5173
PUBL. DATE.....: APR 10 1967

214 TITLE........: EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS
FOR AIRCRAFT ACTUATION FUNCTIONS
AUTHORS........: NORTH AMERICAN AVIATION INC., LOS ANGELES DIV.
SOURCE.........: NA-66-1142-4, QUART TECH RPT NO 4, 1 JUN - 30 JUN 1967
CONTRACT #.....: AF33(615)-5173
PUBL. DATE.....: JUL 10 1967

215 TITLE........: EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS
FOR AIRCRAFT ACTUATION FUNCTIONS
AUTHORS........: NORTH AMERICAN AVIATION INC., LOS ANGELES DIV.
SOURCE.........: NA-66-1142-5, QUART TECH RPT NO 5, 1 JULY - 30 SEP 1967
CONTRACT #.....: AF33(615)-5173
PUBL. DATE.....: OCT 10 1967

216 TITLE........: EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS
FOR AIRCRAFT ACTUATION FUNCTIONS
AUTHORS........: HELSLEY, C. W. / CALL, B. J.
ORGANIZATION: NORTH AMERICAN ROCKWELL, LOS ANGELES DIV.
SOURCE.........: REPORT NO. NA-67-964, PREPARED FOR AIR FORCE SYSTEMS
COMMAND, WRIGHT-PATTERSON AFB, OHIO, DEC. 1967.
PUBL. DATE.....: DEC 1967
TYPE...........: REPORT
IV FLYWHEELS IN AIRCRAFT AND SPACECRAFT

216 TITLE........: EXPERIMENTAL DEMONSTRATION OF ENERGY STORAGE SUBSTATIONS
KEYWORDS....: FLYWHEELS/ENERGY STORAGE/UTILITIES/PEAK ENERGY DEMANDS (CONTD.)

217 TITLE........: WEIGHT IS SAVED WHEN FLYWHEEL ENERGY STORAGE UNIT
SUPPLMENTS AIRCRAFT SECONDARY POWER SYSTEMS.
AUTHORS......: HELESLEY, C. W.
SOURCE.......: SAE J. VOL 77, P 64, JAN 1969.
PUBL. DATE...: JAN 1969

218 TITLE........: A GREASE-LUBRICATED HYDRODYNAMIC BEARING SYSTEM FOR A
SATELLITE FLYWHEEL
AUTHORS......: REINHOURDT, J. P.
SOURCE.......: LUBRICATION ENGINEERING, MAR. 1970, P. 95.
PUBL. DATE...: MAR 1970
TYPE..........: JOURNAL

KEYWORDS....: FLYWHEELS/POWER SUPPLY/SPACECRAFT

219 TITLE........: SATELLITE FLYWHEEL
ORGANIZATION: BRITISH AIRCRAFT CORP.
ADDRESS......: STEVENAGE, ENGLAND
SOURCE.......: ECSR-CR-28
CONTRACT #:..: ESTEC-568-68
PUBL. DATE...: MAR 1970
TYPE..........: FINAL REPORT

KEYWORDS....: FLYWHEELS/SPACECRAFT/GAS BEARINGS
IV FLYWHEELS IN AIRCRAFT AND SPACECRAFT

220 TITLE: A NEW TECHNICAL IDEA ON FLYWHEELS {NOUVELLE CONCEPTION TECHNIQUE DES VOLANTS D'INERTIE}
AUTHORS: POUBEAU, P.
SOURCE: NASA-TT-F-13075, TRANS. INTO ENGLISH FROM NORD-AVIATION REPORT NO. X.S./010/69 BY SCIENTIFIC TRANSLATION SERVICE, SANTA BARBARA, CALIF
CONTRACT #: NASW-2035
PUBL. DATE: JUN 1970
KEYWORDS: FLYWHEEL/SATELLITES/FLYWHEEL SYSTEMS DESIGN

221 TITLE: SATELLITE FLYWHEEL
AUTHORS: BARWELL, L. D. G. / SWAIN, J.
ORGANIZATION: BRITISH AIRCRAFT CORP., GUIDED WEAPONS DIV.
ADDRESS: STEVENAGE, ENGLAND
SOURCE: ST-5139
CONTRACT #: ESTEC-568-68-SL
PUBL. DATE: DEC 1970
TYPE: FINAL REPORT
KEYWORDS: FLYWHEEL/SPACECRAFT/FLYWHEEL DESIGN/FLYWHEEL CONSTRUCTION/ HYDRODYNAMIC GAS BEARINGS

222 TITLE: THE DRALLRAD: A FLYWHEEL FOR THE STABILIZATION OF SYNCHRONOUS SATELLITES
AUTHORS: WEHDE, HEINZ
ORGANIZATION: TELDIX LUFTFAHRT-AUSRUESTUNGS G.M.B.H.
ADDRESS: HEIDELBERG, WEST GERMANY
SOURCE: AGARD AVIONICS IN SPACECRAFT
PUBL. DATE: SEP 1971
KEYWORDS: FLYWHEELS/SPACECRAFT/FLYWHEEL OPTIMIZATION/FLYWHEEL DESIGN
IV FLYWHEELS IN AIRCRAFT AND SPACECRAFT

223 TITLE........: SUMMARY OF GAS BEARING APPLICATIONS IN THE FIELD OF SPACE ELECTRIC POWER SYSTEMS
AUTHORS........: DUNN, J. H. / REAM, L. W.
SOURCE.........: 7TH. INTERSOC. ENERGY CONVERSION ENG. CONF., 1972.
PUBL. DATE......: 1972
TYPE...........: CONFERENCE PROCEEDINGS

224 TITLE........: APPLICATION OF ISOTENSOID FLYWHEELS TO SPACECRAFT ENERGY AND ANGULAR MOMENTUM STORAGE
AUTHORS........: ADAMS, L. R.
ORGANIZATION: ASTRO RESEARCH CORP.
ADDRESS.......: SANTA BARBARA, CALIF.
SOURCE.........: NASA-CR-1971; ARC-R-423
CONTRACT #...: NAS7-726
PUBL. DATE....: FEB 1972
TYPE...........: FINAL REPORT

KEYWORDS.......: FLYWHEELS/FLYWHEEL DESIGN/ISOTENSOID FLYWHEEL/FLYWHEEL EVALUATION/CONTROL MOMENT GYROS

225 TITLE........: QUALIFICATION TESTS ON REACTION FLYWHEELS SUPPORTED ON GREASE-LUBRICATED BEARINGS
AUTHORS........: BOS, J. G. G.
ORGANIZATION: PHILIPS GLOEILAMPENFABRIEKEN N. V.
ADDRESS.......: EINDHOVEN, NETHERLANDS
SOURCE.........: ESRD-CR-87
CONTRACT #...: ESTEC-1119/70
PUBL. DATE....: JUL 1972

KEYWORDS.......: FLYWHEELS/SPACECRAFT/FLYWHEELS TEMPERATURE DEPENDENCE/FLYWHEELS- VIBRATION/FLYWHEELS-SHOCK
IV FLYWHEELS IN AIRCRAFT AND SPACECRAFT

226 TITLE........: HIGH PERFORMANCE HELICOPTER HOIST PROGRAM
ORGANIZATION: LOCKHEED MISSILES AND SPACE CO., GROUND VEHICLE SYSTEMS
ADDRESS.......: SUNNYVALE, CALIF.
SOURCE........: AD-751217; LMSC-D267477; LWL-CR-02M72
CONTRACT #....: DAAD05-72-C-0099
PUBL. DATE....: AUG 1972
TYPE..........: FINAL REPORT

KEYWORDS.....: FLYWHEELS/HELICOPTER/FLYWHEEL CONFIGURATIONS/FLYWHEEL MATERIALS

227 TITLE........: DYNAMICS OF A SATELLITE WITH A FLYWHEEL AND FLEXIBLE SOLAR ARRAYS
AUTHORS........: PFEIFFER, F. / POHL, A.
ORGANIZATION: MESSERSCHMITT-BÖLKOW-BLOHM GMBH
ADDRESS.......: MUNICH, W. GERMANY
SOURCE........: ASTRONAUTICAL RESEARCH (TO BE PUBLISHED)
PUBL. DATE.....: 1973
PUBLISHER......: INTERNATIONAL ASTRONAUTICAL FEDERATION
CONFERENCE....: 24. IAF INTERNATIONAL ASTRONAUTICAL CONGRESS INTERNATIONAL ASTRONAUTICAL FEDERATION, INTERNATIONAL ASTRONAUTICAL CONGRESS, 24TH PAPER 87
LOCATION......: BAKU, AZERBAIJAN SSR
DATE...........: 7-13 OCT 1973

KEYWORDS.....: FLYWHEELS/SATELLITES/SOLAR CELL ARRAYS/SPACECRAFT POWER SUPPLIES/ FLYWHEELS/SATELLITES/SOLAR ARRAYS/CALCULATIONS

228 TITLE........: CIRCUIT DESIGN REPORT FOR A MOMENTUM WHEEL MOTOR CURRENT CONTROL UNIT
AUTHORS........: HAINES, J. E.
ORGANIZATION: HAWKER SIDDELEY DYNAMICS, LTD.
ADDRESS.......: STEVENAGE, ENGLAND
SOURCE........: HSD-TN-3866; ESRO-CR(P)-340
CONTRACT #....: ESTEC-1522/71
PUBL. DATE.....: 1973
IV FLYWHEELS IN AIRCRAFT AND SPACECRAFT

228 TITLE........: CIRCUIT DESIGN REPORT FOR A MOMENTUM WHEEL MOTOR CURRENT (CONTD.)
KEYWORDS.......: FLYWHEEL/FLYWHEEL DESIGN/FLYWHEEL RELIABILITY/SPACECRAFT

229 TITLE........: ENVIRONMENTAL TESTS ON DRALLRAD DR 20-6-ZKM
AUTHORS........: SCHULZ, HANS HOLGER
ORGANIZATION: TELDIX LUFTFAHRT-AUSRUESTUNGS G.M.B.H.
SOURCE.........: ESRO-CR-96
CONTRACT #....: ESTEC-1370/71
PUBL. DATE....: APR 1973
KEYWORDS.......: FLYWHEELS/FLYWHEEL TESTING/SPACECRAFT

230 TITLE........: FURTHER TESTING AND DESIGN IMPROVEMENT OF GREASE LUBRICATED
SPIRAL GROOVE BEARING MOMENTUM WHEEL
AUTHORS........: BOLLEN, J. A. C.
ORGANIZATION: HOLLANDSE SIGNAALAPPARATEN B. V.
ADDRESS.......: HENGELO, NETHERLANDS
SOURCE.........: FINAL REPORT ESRO-CR(P)-544
PUBL. DATE....: 1974
KEYWORDS.......: FLYWHEELS/ENERGY STORAGE/GREASE BEARING FLYWHEEL/DESIGN AND
MANUFACTURE/FLYWHEEL TESTING

231 TITLE........: INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS) STUDY.
VOLUME 1: FEASIBILITY STUDIES
AUTHORS........: NOTTI, J. E. / CORMACK, A. / SCHMILL, W. C.
ORGANIZATION: ROCKWELL INTERNATIONAL, SPACE DIV.
ADDRESS.......: DOWNEY, CALIF.
SOURCE.........: NASA-CR-2383; SD-73-SA-0101-1
CONTRACT #....: NAS1-11732
PUBL. DATE....: APR 1974
KEYWORDS.......: FLYWHEELS/ENERGY STORAGE/COST EFFECTIVENESS/SPACECRAFT/
FLYWHEEL ARRAY
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

IV FLYWHEELS IN AIRCRAFT AND SPACECRAFT

232
TITLE.......: INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS) STUDY. VOLUME 2: CONCEPTUAL DESIGNS
AUTHORS......: NOTTI, J. E. / CORMACK, A. / SCHMILL, W. C.
SOURCE.......: NASA-CR-2384; SD-73-SA-0101-2-VOL-2
PUBL. DATE..: APR 1974

233
TITLE.......: DESIGN AND LUBRICATION OF BALL BEARING UNIT FOR FLYWHEELS
AUTHORS......: AUER, WERNER
ORGANIZATION: TELDIX LUFTFAHRT-AUSRUHESTUNGS G.M.B.H.
ADDRESS......: HEIDELBERG, WEST GERMANY
PUBL. DATE..: APR 09 1974
CONFERENCE....: EUROPEAN SPACE TRIBOLOGY SYMP.
LOCATION.....: FRASCATI, ITALY
DATE.........: APRIL 9-11, 1974

234
TITLE.......: THERMAL VACUUM QUALIFICATION TESTS ON A TELDIX DOUBLE-GIMBALED MOMENTUM WHEEL
AUTHORS......: TODD, M. J. / WILSON, N. G.
ORGANIZATION: NATIONAL CENTRE OF TRIBOLOGY
ADDRESS......: RISLEY, ENGLAND
SOURCE.......: ESRO-EST-1; ESRO-CR(P)-566
CONTRACT #...: ESTEC-1560/72
PUBL. DATE..: AUG 1974
KEYWORDS.....: FLYWHEEL/SATELLITE/POWER SUPPLY/UTILITIES/FLYWHEEL TESTING/SPACE CRAFT

235
TITLE.......: QUALIFICATION AND LIFE TESTING OF A BALL-BEARING FLYWHEEL
AUTHORS......: TELDIX LUFTFAHRT-AUSRUHESTUNGS G.M.B.H.
ORGANIZATION: TELDIX LUFTFAHRT-AUSRUHESTUNGS G.M.B.H.
ADDRESS......: HEIDELBERG, WEST GERMANY

76
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

IV FLYWHEELS IN AIRCRAFT AND SPACECRAFT

235 TITLE........: QUALIFICATION AND LIFE TESTING OF A BALL-BEARING FLYWHEEL (CONTD.)
SOURCE.......: ESRO-CR(P)-549
CONTRACT #:...: ESTEC-1701/72-AA
PUBL. DATE.: NOV 11 1974
TYPE.........: FINAL REPORT

KEYWORDS.....: FLYWHEELS/FLYWHEEL TESTING/LUBRICANT SYSTEMS

236 TITLE........: APPLICATION SPIRAL-GROOVE BEARINGS ON SPACECRAFT
AUTHORS.......: VANDERWAL, U.
ORGANIZATION: HOLLANDSE SIGNAALAPPARATEN B. V.
ADDRESS......: HENGelo, Netherlands
SOURCE.......: CONF-THE EUROPEAN SPACE TRIBOLOGY SYMPO., FRASCATI, ITALY
PUBL. DATE.: APR 09 1975

KEYWORDS.....: GREASEBEAR/SPIRAL-GROOVE BEARING/TEMPERATURE EFFECTS/FLYWHEELS

237 TITLE........: STUDY OF DOUBLE GIMBALED MOMENTUM WHEELS IN THE ATTITUDE AND ORBIT CONTROL SYSTEM OF A GEOSTATIONARY COMMUNICATION SATELLITE.
AUTHORS.......: BOERSMA, G. / SONNENSCHEIN, F. J.
SOURCE.......: CONTRACT NIVR-1765, (NLR-TR-75056-U) AVAIL NTIS HC $4.50
PUBL. DATE.: APR 24 1975

KEYWORDS.....: FLYWHEELS/ATTITUDE CONTROL/SPACECRAFT

238 TITLE........: MAGNETICALLY SUSPENDED LARGE MOMENTUM WHEEL
AUTHORS.......: SABNIS, A. V. / DENDY, J. B. / SCHMITT, F. M.
SOURCE.......: J. SPACECRAFT AND ROCKETS 12, 420 (JULY 1975)
PUBL. DATE.: JUL 1975

KEYWORDS.....: FLYWHEEL/FLYWHEEL TESTING/SPACECRAFT/MAGNETICALLY SUSPENDED FLYWHEEL

77
IV FLYWHEELS IN AIRCRAFT AND SPACECRAFT

239 TITLE........: DESIGN AND TEST OF A FLYWHEEL ENERGY STORAGE UNIT FOR SPACECRAFT APPLICATION.
AUTHORS........: CORMACK, A. / NOTTI, J. E. / RUIZ, M. L.
SOURCE.........: IECEC '75 RECORD, P. 1275
PUBL. DATE.....: AUG 18 1975
CONFERENCE....: INTERSOCIETY ENERGY CONVERSION AND ENGINEERING CONF., 10TH.
LOCATION......: NEWARK, DEL.
DATE...........: AUGUST 18-22, 1975
KEYWORDS.......: ENERGY STORAGE

240 TITLE........: DESIGN AND TESTING OF AN ENERGY FLYWHEEL FOR AN INTEGRATED POWER/ATTITUDE CONTROL SYSTEM (IPACS)
AUTHORS........: NOTTI, J. E. / CORMACK, A.
SOURCE.........: AIAA PAPER NO. 75-1107
PUBL. DATE.....: AUG 20 1975
CONFERENCE....: AIAA GUIDANCE AND CONTROL CONFERENCE
LOCATION......: BOSTON, MASS.
DATE...........: AUGUST 20-22, 1975
KEYWORDS.......: FLYWHEEL/SPACE CRAFT/POWER SUPPLY
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

V OVERVIEW OF ENERGY RESOURCES

241 TITLE........: RESEARCH AND DEVELOPMENT PROGRAMS. QUARTERLY PROGRESS REPORT, 1 JAN. -- 31 MAR. 1971
AUTHORS.......: NOYES, C. F. / WALKER, R. E. / PIRKLE, J.C. / FRAZER, R. / RUBINSTEIN, N.
ORGANIZATION: JOHNS HOPKINS UNIV., APPLIED PHYSICS LAB.
ADDRESS.......: SILVER SPRINGS, MD.
SOURCE.......: AD-735869
PUBL. DATE....: MAR 31 1971
TYPE.........: REPORT
KEYWORDS.....: CARBON DIOXIDE LASERS / CARBON MONOXIDE LASERS / ENERGY STORAGE / FLYWHEELS / MICROELECTRONICS / RESEARCH PROGRAMS

242 TITLE........: HEAT STORAGE USING ALKALI METAL SALTS, ALKALI EARTH SALTS, IRON CHLORIDE, ZINC CHLORIDE, BORON OXIDE, AND EUTECTIC FLUORIDE MIXTURES
AUTHORS.......: SCHROEDER, J.
SOURCE.......: CONFERENCE, SPEICHERSYSTEME FUR SEKUNDARENERGIE STUTTGART, GERMANY OCT. 2-3, 1974. VDI BER. 223, 67-72 (GER.)
PUBL. DATE....: 1974
PUBLISHER.....: VDI (VER.DTSCH.ING.)BER. 223
KEYWORDS.....: ENERGY STORAGE / LATENT HEAT / TRANSITION TEMPERATURE / HIGH TEMPERATURE / SALTS / EUTECTIC / COMPARISONS

243 TITLE........: ENERGY, VOLUME I. DEMANDS, RESOURCES, IMPACT, TECHNOLOGY, AND POLICY
AUTHORS.......: PENNER, S. S. / ICERMAN, L.
PUBL. DATE....: 1974
TYPE.........: BOOK COMPILATION OF LECTURE NOTES
PUBLISHER.....: ADDISON-WESLEY PUBLISHING COMPANY, INC. READING, PA

79
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

V OVERVIEW OF ENERGY RESOURCES

244 TITLE........: GOVERNMENT-WIDE REPORT TO OFFICE ON MANAGEMENT AND BUDGET ON ENERGY STORAGE R AND D PROGRAM STRATEGIES AND IMPLEMENTATION PLANS
AUTHORS........: ERDA/DAT
ORGANIZATION: USAEC DIVISION OF APPLIED TECHNOLOGY
ADDRESS.......: WASHINGTON, D.C.
SOURCE........: TID--26751
PUBL. DATE....: JUN 01 1974
CATEGORY.......: ADMINISTRATION ENERGY CONVERSION ENERGY SOURCES

245 TITLE........: STORAGE OF HIGH-GRADE ENERGY
AUTHORS........: MCALLAN, J.V.
ORGANIZATION: NATIONAL MEASUREMENT LAB.
ADDRESS.......: SYDNEY, AUSTRALIA
SOURCE........: SEARCH 5, 9, 418-423
PUBL. DATE....: SEP 1974

KEYWORDS.......: ELECTRIC BATTERIES / FLYWHEELS / HEAT STORAGE/HYDROGEN/OFF-PEAK ENERGY STORAGE/PUMPED STORAGE/REVIEWS/TIDAL POWER5/

246 TITLE........: NINTH WORLD ENERGY CONFERENCE, BRIEF SUMMARY
AUTHORS........: LUCCHINI, A. P.
SOURCE........: REV. ELECTROTEC. 60, 6, NOV-DEC 1974
PUBL. DATE....: NOV 1974

KEYWORDS.......: EFFICIENCY/ ENERGY CONSUMPTION/ ENERGY SOURCES/ ENERGY STORAGE/FLYWHEELS/FUEL CELLS/GEOTHERMAL ENERGY CONVERSION/MHD GENERATORS/SOLAR ENERGY CONVERSION
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

V OVERVIEW OF ENERGY RESOURCES

247 TITLE........: ENERGY TECHNOLOGY II (NAVY APPLICATIONS)
AUTHORS.......: PETZRICK, P.A.
EDITOR.......: SULLIVAN, T.F.P. (ED.)
ORGANIZATION: GOVERNMENT INSTITUTES, INC.
ADDRESS.......: WASHINGTON, DC
SOURCE.......: ENERGY TECHNOLOGY II, PROCEEDINGS OF THE 2ND ENERGY
TECHNOLOGY CONFERENCE
PUBL. DATE....: 1975
CONFERENCE....: 2ND ENERGY TECHNOLOGY CONFERENCE (2) = (2ND)
LOCATION.....: WASHINGTON, DC
DATE..........: 12 MAY 1975
KEYWORDS.....: AIRCRAFT / BUDGETS / COMPRESSED AIR / CRYOGENICS / DEMAND
FACTORS / ENERGY CONSERVATION / ENERGY POLICY / ENERGY SOURCES /
ENERGY STORAGE / FLYWHEELS / LOW TEMPERATURE / MILITARY
EQUIPMENT / RESEARCH PROGRAMS / SEAS / SHIPS / SOLAR ENERGY / US
ERDA / VEHICLES / WIND POWER / ENERGY STORAGE / NAVY / COMPRESSED
AIR / LOW TEMPERATURE THERMAL / FLYWHEEL / SOLAR / WIND
POWER / OCEAN POWER.

248 TITLE........: ENERGY--STORAGE SYSTEMS
AUTHORS.......: PENNER, S. S. / ICERMAN, L.
SOURCE.......: ENERGY VOL. 11, P. 211
PUBL. DATE....: 1975
TYPE..........: BOOK
PUBLISHER.....: ADDISON-WESLEY PUBL. CO., READING, MA., 1975
KEYWORDS.....: CAPACITORS / COMPRESSED AIR / DESIGN / ECONOMICS / ELECTRIC
BATTERIES / ENERGY STORAGE / FLYWHEELS / HEAT STORAGE /
LIQUEFIED NATURAL GAS / NATURAL GAS / PETROLEUM / PROPULSION /
PUMPED STORAGE / REVIEWS / STORAGE / THERMAL ENERGY
STORAGE / MECHANICAL ENERGY STORAGE / ELECTRICAL-ENERGY
STORAGE / PUMPED-HYDRAULIC / COMPRESSED AIR / LIQUID
PETROLEUM / NATURAL GAS /
FLYWHEELS / ECONOMICS / BATTERIES / VEHICLES / UTILITIES

249 TITLE........: WIND POWER
SUBTITLE......: A SIGNIFICANT SOLAR ENERGY RESOURCE
AUTHORS.......: HERONEMUS, W.E.
V OVERVIEW OF ENERGY RESOURCES

249 TITLE........: WIND POWER (CONT'D.)
ORGANIZATION: UNIV. OF MASSACHUSETTS
ADDRESS.......: AMHERST MASS
SOURCE........: SPEECH AMERICAN CHEMICAL SOCIETY, APRIL 1975, PHILADELPHIA
PUBL. DATE....: JUN 1975
PUBLISHER.....: AWARE 57
CATEGORY......: POSSIBLE STORAGE SYSTEMS
KEYWORDS......: WIND POWER/SOLAR ENERGY/FLYWHEEL/UTILITIES/ENERGY STORAGE

250 TITLE........: MATERIALS REQUIREMENTS FOR ENERGY GENERATION, CONVERSION, AND STORAGE
AUTHORS.......: JAFFEE, R.I.
ORGANIZATION: ELECTRIC POWER RESEARCH INST.
ADDRESS.......: PALO ALTO, CA
SOURCE.......: AM. CERAM. SOC. BULL. 54 7, 657
PUBL. DATE....: JUL 1975
CONFERENCE....: AMERICAN CERAMIC SOCIETY'S JOINT FALL MEETING OF THE ELECTRONICS DIVISION AND THE NATIONAL INSTITUTE OF CERAMIC ENGINEERS
LOCATION.....: DENVER, CO
DATE..........: 18 SEP 1974

251 TITLE........: ENERGY STORAGE
AUTHORS.......: KALHAMMER, F. R. / SCHNEIDER, T. R.
ORGANIZATION: ELECTRIC POWER RESEARCH INST., PALO ALTO, CALIFORNIA /
PUBLIC SERVICE ELECTRIC AND GAS CO., NEWARK, N.J.
SOURCE........: (311)=(311-43, ED. HOLLANDER, J.M.)
PUBL. DATE....: 1976
TYPE..........: SURVEY REPORT
V OVERVIEW OF ENERGY RESOURCES

251 TITLE........: ENERGY STORAGE (CONTD.)
KEYWORDS.......: ENERGY STORAGE/HYDROELECTRIC/ELECTRIC VEHICLES/UTILITIES/COMBUSTION TURBINES/TURBINES/BATTERIES/SPACE HEATING/OFF-PEAK POWER/SOLAR
POWER/ECONOMICS/TAXING/HYDROGEN/SUPERCONDUCTING MAGNETS

252 TITLE........: ENERGY STORAGE
AUTHORS........: AMERICAN NUCLEAR SOCIETY, HINSDALE, ILL.
SOURCE........: PRESENTED AT AMER. NUCL. SOC. CONF. ON ENV. ASPECTS OF NONCONVENTIONAL ENERGY SOURCES, DENVER, COL.
PUBL. DATE.....: FEB 28 1976
CONFERENCE.....: CONF. ON ENVIRONMENTAL ASPECTS OF NONCONVENTIONAL ENERGY SOURCES, DENVER, COL.

253 TITLE........: ENERGY AND TECHNOLOGY REVIEW (MONTHLY PROGRESS REPORT 6/76)
AUTHORS........: Selden, R. W.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS........: LIVERMORE, CA. 94550
SOURCE..........: UCRL-52200-76-6
PUBL. DATE......: JUN 1976
254 TITLE........: SOME INTERESTING ASPECTS OF GENERAL LINEAR VISCOELASTIC DEFORMATION
AUTHORS........: CHRISTENSEN, R. M. / GOTTENBERG, W. G.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS........: LIVERMORE, CA 94550
PUBL. DATE......: 1963
TYPE...........: JOURNAL
CATEGORY.......: MECHANICS

255 TITLE........: VIBRATION OF A 45-DEG. RIGHT TRIANGLE CANTILEVER PLATE BY A GRIDWORK METHOD.
AUTHORS..........: CHRISTENSEN, R. M.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS..........: LIVERMORE, CA 94550
SOURCE..........: AIAA JOURNAL 1, 1790 (1963).
PUBL. DATE.......: 1963
TYPE...........: JOURNAL
CATEGORY........: MECHANICS

256 TITLE........: AN EXPERIMENT FOR DETERMINATION OF THE MECHANICAL PROPERTY IN SHEAR FOR A LINEAR ISOTROPIC VISCOELASTIC SOLID.
AUTHORS..........: CHRISTENSEN, R. M. / GOTTENBERG, W. G.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS..........: LIVERMORE, CA 94550
SOURCE..........: INTERNATIONAL J. OF ENGINEERING SCIENCE 2, 45 (1964).
PUBL. DATE.......: 1964
TYPE...........: JOURNAL
CATEGORY.........: MECHANICS

84
VI FIBER COMPOSITE PROPERTIES

257 TITLE........: THE DYNAMIC RESPONSE OF A SOLID, VISCOELASTIC SPHERE TO TRANSLATIONAL AND ROTATIONAL EXCITATION.
AUTHORS........: CHRISTENSEN, R. M. / GOTTENBERG, W. G.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS........: LIVERMORE, CA 94550
PUBL. DATE......: 1964
TYPE...........: JOURNAL
CATEGORY.......: MECHANICS

258 TITLE........: A FRACTURE CRITERION FOR ORTHOTROPIC PLATES UNDER THE INFLUENCE OF COMPRESSION AND SHEAR
AUTHORS........: WU, E. M.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS........: LIVERMORE, CA 94550
SOURCE.........: DEPT. OF THEORETICAL AND APPLIED MECHANICS REPORT 283,
UNIVERSITY OF ILLINOIS (1965).
PUBL. DATE......: 1965
TYPE...........: REPORT
CATEGORY.......: MECHANICS

259 TITLE........: CRACK EXTENSION IN FIBERGLASS-REINFORCED PLASTICS
AUTHORS........: WU, E. M. / REUTER, R. C.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS........: LIVERMORE, CA 94550
SOURCE.........: DEPT. OF THEORETICAL AND APPLIED MECHANICS REPORT 275,
UNIVERSITY OF ILLINOIS (1965).
PUBL. DATE......: 1965
TYPE...........: REPORT
CATEGORY.......: MECHANICS
VI FIBER COMPOSITE PROPERTIES

260 TITLE........: PREDICTION OF THE TRANSIENT RESPONSE OF A LINEAR VISCOELASTIC SOLID.
AUTHORS........: CHRISTENSEN, R. M. / GOTTENBERG, W. G.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
PUBL. DATE.....: 1966
TYPE..........: JOURNAL
CATEGORY......: MECHANICS

261 TITLE........: DESIGN FOR COMMERCIAL FILAMENT WINDING
AUTHORS........: CHIAO, T. T.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
SOURCE........: SOCIETY OF PLASTICS ENGINEERS JOURNAL, P. 43 (APRIL, 1966)
PUBL. DATE.....: APR 1966
TYPE..........: JOURNAL
CATEGORY......: FIBER COMPOSITES
KEYWORDS......: FIBER COMPOSITES/FILAMENT WINDING

262 TITLE........: APPLICATION OF FRACTURE MECHANICS TO ANISOTROPIC PLATES
AUTHORS........: WU, E. M.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
SOURCE........: J. OF APPLIED MECHANICS, TRANSACTIONS OF ASME. 34E:4 (1967)
PUBL. DATE.....: 1967
TYPE..........: JOURNAL
CATEGORY......: MECHANICS
VI FIBER COMPOSITE PROPERTIES

263 TITLE : APPLICATION OF THE METHOD OF TIME-DEPENDENT BOUNDARY CONDITIONS IN LINEAR VISCOELASTICITY.
AUTHORS : CHRISTENSEN, R. M.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS : LIVERMORE, CA 94550
PUBL. DATE : 1967
TYPE : JOURNAL
CATEGORY : MECHANICS

264 TITLE : LINEAR NON-ISOTHERMAL VISCOELASTIC SOLIDS
AUTHORS : CHRISTENSEN, R. M. / NAGHDI, P. M.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS : LIVERMORE, CA 94550
PUBL. DATE : 1967
TYPE : JOURNAL
CATEGORY : MECHANICS

265 TITLE : THE TEMPERATURE EFFECT OF INTERNAL AND EXTERNAL PRESSURE OF TWO ANGLE WOUND PIPE
AUTHORS : CHIAO, T. T.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS : LIVERMORE, CA 94550
SOURCE : THE SOCIETY OF THE PLASTICS INDUSTRY, INC./ SECTION 20-C
PUBL. DATE : FEB 1967
TYPE : PROCEEDING
CATEGORY : FIBER COMPOSITES
KEYWORDS : FIBER COMPOSITES/FILAMENT WINDING/HIGH TEMPERATURE
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

VI FIBER COMPOSITE PROPERTIES

266 TITLE:........: FRACTURE MECHANICS OF ANISOTROPIC PLATES
AUTHORS:.........: WU, E. M.
ORGANIZATION: Lawrence Livermore Laboratory
ADDRESS:.......: Livermore, CA 94550
SOURCE:.......: Composite Materials Workshop, Technomic Publishing Co.
PUBL. DATE:...: 1968
TYPE:.........: BOOK
CATEGORY:.....: MECHANICS

267 TITLE:........: DISCONTINUOUS MODE OF CRACK EXTENSION IN UNIDIRECTIONAL COMPOSITES
AUTHORS:.......: WU, E. M.
ORGANIZATION: Lawrence Livermore Laboratory
ADDRESS:......: Livermore, CA 94550
PUBL. DATE:...: 1968
TYPE:........: REPORT
CATEGORY:....: MECHANICS

268 TITLE:........: ON OBTAINING SOLUTIONS IN NONLINEAR VISCOELASTICITY.
AUTHORS:........: CHRISTENSEN, R. M.
ORGANIZATION: Lawrence Livermore Laboratory
ADDRESS:.......: Livermore, CA 94550
PUBL. DATE:...: 1968
TYPE:.........: JOURNAL
CATEGORY:.....: MECHANICS
VI FIBER COMPOSITE PROPERTIES

269 TITLE: VARIATIONAL AND MINIMUM THEOREMS FOR THE LINEAR THEORY OF VISCOELASTICITY
AUTHORS: CHRISTENSEN, R. M.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS: LIVERMORE, CA 94550
PUBL. DATE: 1968
TYPE: JOURNAL
CATEGORY: MECHANICS

270 TITLE: OFF-AXIS TEST OF A COMPOSITE
AUTHORS: WU, E. M. / THOMAS, R. L.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS: LIVERMORE, CA 94550
PUBL. DATE: OCT 1968
TYPE: JOURNAL
CATEGORY: MECHANICS

271 TITLE: CHARACTERIZATION OF ANISOTROPIC COMPOSITES
AUTHORS: HALPIN, J. C. / PAGANO / WHITNEY / WU, E. M.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS: LIVERMORE, CA 94550
PUBL. DATE: 1969
TYPE: REPORT
CATEGORY: MECHANICS

272 TITLE: SOME UNIQUE CRACK PROPAGATION PHENOMENA IN UNIDIRECTIONAL COMPOSITES AND THEIR MATHEMATICAL CHARACTERIZATION

89
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

VI FIBER COMPOSITE PROPERTIES

272 TITLE........: SOME UNIQUE CRACK PROPAGATION PHENOMENA IN UNIDIRECTIONAL (CONTD.)
 AUTHORS........: WU, E. M.
 ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
 ADDRESS........: LIVERMORE, CA 94550
 SOURCE........: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON STRUCTURES,
 SOLID MECHANICS AND ENGINEERING DESIGN, SOUTHAMPTON, ENG.
 PUBL. DATE.....: 1969
 TYPE...........: PROCEEDINGS
 CATEGORY.......: MECHANICS

273 TITLE........: INTERFACIAL FRACTURE PHENOMENA
 AUTHORS........: WU, E. M. / THOMAS, R. L.
 ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
 ADDRESS........: LIVERMORE, CA 94550
 SOURCE........: PROCEEDINGS OF THE FIFTH INTERNATIONAL CONGRESS ON RHEOLOGY,
 KYOTO, JAPAN, 1969.
 PUBL. DATE.....: 1969
 TYPE...........: PROCEEDINGS
 CATEGORY.......: MECHANICS

274 TITLE........: VISCOELASTIC PROPERTIES OF HETEROGENEOUS MEDIA
 AUTHORS........: CHRISTENSEN, R. M.
 ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
 ADDRESS........: LIVERMORE, CA 94550
 PUBL. DATE.....: 1969
 TYPE...........: JOURNAL
 CATEGORY.......: MECHANICS

275 TITLE........: A RANDOM WALK MODEL IN RANDOM VIBRATION
 AUTHORS........: TOLAND, R. H. / YANG, C. Y.
VI FIBER COMPOSITE PROPERTIES

275 TITLE........: A RANDOM WALK MODEL IN RANDOM VIBRATION (CONT'D.)
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
SOURCE.......: PREPRINT 869, ASCE NATIONAL MEETING ON STRUCTURAL
 ENGINEERING, LOUISVILLE, KY, APRIL 1969.
PUBL. DATE....: APR 1969
TYPE..........: PREPRINT
CATEGORY.....: MECHANICS

276 TITLE........: EVALUATION OF HIGH-STRENGTH, HIGH-MODULUS BERYLLIUM OXIDE/
 GLASS FIBER
AUTHORS........: CHIAO, T. T./ LEWIS, A./KIMPLE, R. F.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
SOURCE.......: LAWRENCE LIVERMORE LABORATORY REPORT, UCID-15593, (DEC., 196
 DEC. 1969
TYPE..........: REPORT
CATEGORY.....: FIBER COMPOSITES
KEYWORDS.....: FIBER COMPOSITES/FIBER STRENGTH

277 TITLE........: A TENSILE TEST METHOD FOR FIBERS
AUTHORS........: CHIAO, T. T./MOORE, R. L.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
SOURCE.......: JOURNAL OF COMPOSITE MATERIALS, VOL. 4 P. 118, (JAN./ 1970)
PUBL. DATE....: JAN 1970
TYPE..........: JOURNAL
CATEGORY.....: FIBER COMPOSITES
KEYWORDS.....: FIBER COMPOSITES/TENSILE STRENGTH/STRENGTH TESTING

91
VI FIBER COMPOSITE PROPERTIES

278 TITLE........: AXISYMMETRIC FILAMENTARY STRUCTURES
 AUTHORS......: FRASER, A. F. / PREISWERK, P. R. / BENSON, M. D. / BURG-GRAP, O. R.
 PUBL. DATE...: APR 1970
 TYPE.........: REPORT

279 TITLE........: A GENERAL THEORY OF STRENGTH FOR ANISOTROPIC MATERIALS
 AUTHORS......: TSAI, S. W. / WU, E. M.
 ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
 ADDRESS......: LIVERMORE, CA 94550
 PUBL. DATE...: 1971
 TYPE.........: JOURNAL
 CATEGORY.....: MECHANICS

280 TITLE........: MEASUREMENT AND CONTROL OF DYNAMIC CRACKS IN COMPOSITES.
 AUTHORS......: BRISSEY, F. L. / WU, E. M.
 ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
 ADDRESS......: LIVERMORE, CA 94550
 SOURCE.......: PROCEEDINGS OF ASME-SESA SYMPOSIUM ON EXPERIMENTAL MECHANICS (1971).
 PUBL. DATE...: 1971
 TYPE.........: PROCEEDINGS
 CATEGORY.....: MECHANICS

281 TITLE........: FRACTURE CRITERIA FOR ORTHOTROPIC PLATE UNDER COMPRESSION AND SHEAR
 AUTHORS......: WU, E. M.
281 TITLE........: FRACTURE CRITERIA FOR ORTHOTROPIC PLATE UNDER COMPRESSION (CONT'D.)
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
PUBL. DATE...: 1971
TYPE.........: PROCEEDINGS
CATEGORY.....: MECHANICS

282 TITLE........: THEORY OF VISCOELASTICITY: AN INTRODUCTION
AUTHORS.......: CHRISTENSEN, R. M.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
SOURCE.......: ACADEMIC PRESS, 1971.
PUBL. DATE....: 1971
TYPE.........: BOOK
CATEGORY.....: MECHANICS

283 TITLE........: THE EFFECT OF SOLVENTS AND STRESS ON THE STRESS RUPTURE LIFE OF EPOXY-Glass COMPOSITES
AUTHORS.......: RUHMANN, D. C. / WU, E. M.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
PUBL. DATE....: 1971
TYPE.........: JOURNAL
CATEGORY.....: COMPOSITE PROPERTIES

284 TITLE........: STRESS-RUPTURE OF S-Glass/EPoxy MULTIFILAMENT STRANDS
AUTHORS.......: CHIAO, T. T./MOORE, R. L.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
VI FIBER COMPOSITE PROPERTIES

284 TITLE........: STRESS-RUPTURE OF S-GLASS/EPoxy MULTIFILAMENT STRANDS (CONT'D.)
ADDRESS.......: LIVERMORE, CA 94550
SOURCE.........: JOURNAL COMPOSITES MATERIALS VOL. 5 P. 2 (JAN./ 1971)
PUBL. DATE....: JAN 1971
TYPE..........: JOURNAL
CATEGORY......: FIBER COMPOSITES
KEYWORDS......: FIBER COMPOSITES/STRESS RUPTURE/MULTIFILAMENT

285 TITLE........: STRAIN RATE EFFECT ON THE ULTIMATE TENSILE STRESS OF FIBER/EPoxy STRANDS
AUTHORS........: CHIAO, T. T./MOORE, R. L.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
SOURCE.........: JOURNAL COMPOSITES MATERIALS VOL. 5, P. 124, (JAN., 1971)
PUBL. DATE....: JAN 1971
TYPE..........: JOURNAL
CATEGORY......: FIBER COMPOSITES
KEYWORDS......: FIBER COMPOSITES/STRAIN RATE EFFECT/UNIDIRECTIONAL COMPOSITES

286 TITLE........: COMPUTER AIDED MECHANICAL TESTING OF COMPOSITES
AUTHORS........: WU, E. M. / JERINA, K. J.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
SOURCE.........: J. OF MATERIALS AND STANDARDS (FEB. 1971).
PUBL. DATE....: FEB 1971
TYPE..........: JOURNAL
CATEGORY......: MECHANICS
VI FIBER COMPOSITE PROPERTIES

287 TITLE: Fracture Toughness in Unidirectional Glass-Reinforced Plastics
AUTHORS: Sanford, R. J. / Stonesifer, F. R.
PUBL. DATE: APR 1971
TYPE: JOURNAL

288 TITLE: Study of Epoxy Resins for Fiber Composites
AUTHORS: Richardson, J. / Moore, R. L. / Chiao, T. T.
ORGANIZATION: Lawrence Livermore Laboratory
ADDRESS: Livermore, CA 94550
SOURCE: Lawrence Livermore Laboratory Report UCID-15857, (June, 1971)
PUBL. DATE: JUN 1971
TYPE: REPORT
CATEGORY: FIBER COMPOSITES
KEYWORDS: FIBER COMPOSITES/TENSILE STRENGTH/CRYOGENIC APPLICATIONS

289 TITLE: A Random Walk Model for First-Passage Probability
AUTHORS: Toland, R. H. / Yang, C. Y.
ORGANIZATION: Lawrence Livermore Laboratory
ADDRESS: Livermore, CA 94550
PUBL. DATE: JUN 1971
TYPE: JOURNAL
CATEGORY: MECHANICS

290 TITLE: Kinetic Failure Processes of Polymers
AUTHORS: Wu, E. M. / Halpin, J. C.
VI FIBER COMPOSITE PROPERTIES

290 TITLE........: KINETIC FAILURE PROCESSES OF POLYMERS (CONT'D.)
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
SOURCE.......: AMERICAN PHYSICAL SOCIETY, DIV. OF HIGH POLYMER PHYSICS,
 1972.
PUBL. DATE...: 1972
CATEGORY.....: MECHANICS

291 TITLE........: STRENGTH TENSORS AND THEIR INVARIANTS - THEORY AND
 EXPERIMENT
AUTHORS.......: WU, E. M.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
SOURCE.......: (BRITISH) J. OF PHYSICS D (1972).
PUBL. DATE...: 1972
TYPE.........: JOURNAL
CATEGORY.....: MECHANICS

292 TITLE........: EFFECTIVE STIFFNESS OF RANDOMLY ORIENTED FIBRE COMPOSITES
AUTHORS.......: CHRISTENSEN, R. M. / WAALS, F. M.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
SOURCE.......: J. OF COMPOSITE MATERIALS 6, 518 (1972).
PUBL. DATE...: 1972
TYPE.........: JOURNAL
CATEGORY.....: MECHANICS

293 TITLE........: RESTRICTIONS UPON VISCOELASTIC RELAXATION FUNCTIONS AND
 COMPLEX MODULI.
AUTHORS.......: CHRISTENSEN, R. M.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

VI FIBER COMPOSITE PROPERTIES

293 TITLE.......: RESTRICTIONS UPON VISCOELASTIC RELAXATION FUNCTIONS AND (CONTD.)
ADDRESS.......: LIVERMORE, CA 94550
SOURCE.......: TRANS. SOCIETY OF RHEOLOGY 16, 603 (1972).
PUBL. DATE....: 1972
TYPE..........: JOURNAL
CATEGORY......: MECHANICS

294 TITLE.......: EXPERIMENTAL INVESTIGATION OF FRACTURE IN AN ADVANCED FIBER COMPOSITE
AUTHORS.......: KONISH, H. J. / SWEDLOW, J. L. / CRUSE, T. A.
SOURCE.......: J. COMPOSITE MATERIALS, V. 6, 114 (1972).
PUBL. DATE....: 1972
TYPE..........: JOURNAL

295 TITLE.......: STRENGTH RETENTION OF S-GLASS/EPOXY COMPOSITES
AUTHORS.......: CHIAO, T. T./ MOORE, R. L.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
SOURCE.......: JOURNAL COMPOSITE MATERIALS, VOL. 6 P. 156, (JAN./ 1972)
PUBL. DATE....: JAN 1972
TYPE..........: JOURNAL
CATEGORY......: FIBER COMPOSITES
KEYWORDS.....: FIBER COMPOSITES/STRENGTH RETENTION

296 TITLE.......: FABRICATION AND TESTING OF EPOXY TENSILE SPECIMENS
AUTHORS.......: CHIAO, T. T./ CUMINS, A. D./MOORE, R. L.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
SOURCE.......: COMPOSITES, P. 10 (JAN/FEB./ 1972)
PUBL. DATE....: JAN 1972
VI FIBER COMPOSITE PROPERTIES

296 TITLE........: FABRICATION AND TESTING OF EPOXY TENSILE SPECIMENS (CONTD.)
 TYPE.........: JOURNAL
 CATEGORY.....: FIBER COMPOSITES
 KEYWORDS.....: FIBER COMPOSITES/TENSILE PROPERTIES/TESTING METHODS

297 TITLE........: OPTIMAL EXPERIMENTAL MEASUREMENT OF ANISOTROPIC FAILURE TENSORS
 AUTHORS......: WU, E. M.
 ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
 ADDRESS.......: LIVERMORE, CA 94550
 SOURCE.......: J. OF COMPOSITE MATERIALS (JA. 1972).
 PUBL. DATE...: JAN 1972
 TYPE.........: JOURNAL
 CATEGORY.....: MECHANICS

298 TITLE........: ANALYSIS OF STRESS-RUPTURE DATA FROM S-GLASS COMPOSITES
 AUTHORS......: ROBINSON, E. Y./CHIAO, T. T.
 ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
 ADDRESS.......: LIVERMORE, CA 94550
 SOURCE.......: PROC. 27TH ANNUAL CONFERENCE, SPI REINFORCED PLASTIC/COMPOS
 PUBL. DATE...: FEB 1972
 TYPE.........: PROCEEDINGS
 CATEGORY.....: FIBER COMPOSITES
 KEYWORDS.....: FIBER COMPOSITES/STRENGTH RETENTION/STRESS RUPTURE

299 TITLE........: STRENGTH OF S-GLASS FIBER
 AUTHORS......: CHIAO, T. T./MOORE, R. L.
 ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
 ADDRESS.......: LIVERMORE, CA 94550
VI FIBER COMPOSITE PROPERTIES

299 TITLE........: STRENGTH OF S-GLASS FIBER (CONTD.)
SOURCE........: SAMPE QUARTERLY, VOL. 3, NO. 3, (APRIL, 1972)
PUBL. DATE....: APR 1972
TYPE..........: JOURNAL

CATEGORY....: FIBER COMPOSITES
KEYWORDS.....: FIBER COMPOSITES/STRENGTH/FILAMENT WINDING

300 TITLE........: STRESS RUPTURE OF S-GLASS/EPoxy MULTIFILAMENT STRANDS: TIME-BREAK-DATA.
AUTHORS........: CHIAO, T. T./MOORE, R. L.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
SOURCE........: LAWRENCE LIVERMORE LAB. REPORT UCRL-51220 (MAY 2, 1972).
PUBL. DATE....: MAY 02 1972
TYPE..........: REPORT

CATEGORY....: FIBER COMPOSITES
KEYWORDS.....: FIBER COMPOSITES/STRESS RUPTURE/CALCULATIONS

301 TITLE........: FAILURE MODES IN IMPACT LOADED COMPOSITE MATERIALS
AUTHORS........: TOLAND, R. H.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
SOURCE........: AIME FAILURE MODES IN COMPOSITES SYMPOSIUM, BOSTON, MA, MAY 8-11, 1972.
PUBL. DATE....: MAY 11 1972
TYPE..........: PRESENTED PAPER

CATEGORY....: MECHANICS

302 TITLE........: STRESS-RUPTURE OF SIMPLE S-GLASS/EPOXY COMPOSITES
AUTHORS........: CHIAO, T. T./LEPPER, J. K./HETHERINGTON, N.W./MOORE, R. L.
VI FIBER COMPOSITE PROPERTIES

302 TITLE........: STRESS-RUPTURE OF SIMPLE S-GLASS/EPOXY COMPOSITES (CONTD.)
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
SOURCE........: J. OF COMPOSITES MATERIALS, VOL. 6, P. 358 (JULY 1972)
PUBL. DATE.....: JUL 1972
TYPE..........: JOURNAL

CATEGORY.......: FIBER COMPOSITES
KEYWORDS.......: FIBER COMPOSITES/STRESS RUPTURE/CALCULATIONS

303 TITLE........: NON-STATIONARY RANDOM VIBRATION OF NONLINEAR STRUCTURES
AUTHORS........: TOLAND, R. H./ YANG, C. Y./ HSU, C. S.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
SOURCE..........: INTERNATIONAL J. OF NONLINEAR MECHANICS 7, NO. 9 (AUG. 1972)
PUBL. DATE.....: AUG 1972
TYPE...........: JOURNAL

CATEGORY.......: MECHANICS

304 TITLE........: DESIGN AND ANALYSIS OF THE ATS GRAPHITE EPOXY SATELLITE TRUSS
AUTHORS........: BURNS, J. M./ TOLAND, R. H.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
SOURCE..........: CONFERENCE ON FIBROUS COMPOSITES IN FLIGHT VEHICLE DESIGN,
 DAYTON, OH, SEPT. 26, 1972.
PUBL. DATE.....: SEP 26 1972
TYPE...........: PRESENTED PAPER

CATEGORY.......: MECHANICS

305 TITLE........: TENSILE PROPERTIES OF PRD-49 FIBER IN EPOXY MATRIX
AUTHORS........: CHIAO, T. T./ MOORE, R. L.
VI FIBER COMPOSITE PROPERTIES

305 TITLE........: TENSILE PROPERTIES OF PRD-49 FIBER IN EPOXY MATRIX (CONT'D.)
 ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
 ADDRESS.....: LIVERMORE, CA 94550
 SOURCE......: J. OF COMPOSITE MATERIALS, VOL. 6, P. 547 (OCT./ 1972)
 PUBL. DATE..: OCT 1972
 TYPE........: JOURNAL
 CATEGORY.....: FIBER COMPOSITES
 KEYWORDS.....: FIBER COMPOSITES/TENSILE STRENGTH/FILAMENT WINDING/
 TEMPERATURE CHARACTERISTICS/STRAIN RATE

306 TITLE........: ACOUSTIC EMISSION FROM FILAMENT-WOUND PRESSURE BOTTLES
 AUTHORS.....: HAMSTAD, M. A.
 ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
 ADDRESS.....: LIVERMORE, CA 94550
 SOURCE......: LAWRENCE LIVERMORE LABORATORY REPORT, UCRL-73763
 PUBL. DATE..: OCT 1972
 TYPE........: REPORT
 CATEGORY.....: FIBER COMPOSITES

307 TITLE........: ACOUSTIC EMISSION FROM FILAMENT-WOUND PRESSURE BOTTLES
 AUTHORS.....: HAMSTAD, M. A.
 ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
 ADDRESS.....: LIVERMORE, CA 94550
 SOURCE......: PROCEEDINGS OF THE 4TH NATIONAL SAMPE TECHNICAL CONFERENCE,
 PALO ALTO, CA, OCT. 1972.
 PUBL. DATE..: OCT 1972
 TYPE........: PROCEEDINGS
 CATEGORY.....: COMPOSITE PRESSURE VESSEL TECHNOLOGY

308 TITLE........: FIBER STRENGTH OF S-GLASS/EPOXY COMPOSITES UNDER BI-AXIAL
 LOADING
VI FIBER COMPOSITE PROPERTIES

308 TITLE........: FIBER STRENGTH OF S-GLASS/EPOXY COMPOSITES UNDER BI-AXIAL (CONTD.)
AUTHORS........: CHIAO, T. T./COMINS, A.D.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS........: LIVERMORE, CA 94550
SOURCE.........: PROC. 4TH NATIONAL SAMPE TECHNICAL CONFERENCE, OCT. 17-19, 1972
PUBL. DATE.....: OCT 17 1972
TYPE...........: PROCEEDINGS
CATEGORY.......: FIBER COMPOSITES
KEYWORDS.......: FIBER COMPOSITES/UNIAXIAL TENSION/FIBER PROPERTIES

309 TITLE........: CHARACTERIZATION OF AN EPOXY SYSTEM FOR FILAMENT WINDING
AUTHORS........: CHIAO, T. T./ALTHOUSE, L. P.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS........: LIVERMORE, CA 94550
SOURCE.........: PROC. 4TH NATIONAL SAMPE TECHNICAL CONFERENCE, OCT. 17-19, 1972
PUBL. DATE.....: OCT 17 1972
TYPE...........: PROCEEDINGS
CATEGORY.......: FIBER COMPOSITES
KEYWORDS.......: FIBER COMPOSITES/TENSILE STRENGTH/CURE OF EPXIES

310 TITLE........: FAILURE CRITERIA AND FAILURE ANALYSIS OF COMPOSITE STRUCTURES
AUTHORS........: TOLAND, R. H./VICARIO, A. A.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS........: LIVERMORE, CA 94550
PUBL. DATE.....: 1973
TYPE...........: BOOK CONTRIBUTION
CATEGORY.......: MECHANICS
VI FIBER COMPOSITE PROPERTIES

311 TITLE........: DATA AVERAGING OF ANISOTROPIC MATERIAL CONSTANTS
AUTHORS........: WU, E. M. / JERINA, K. L. / LAVENGOOD, R. E.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
PUBL. DATE....: 1973
TYPE..........: JOURNAL
CATEGORY.....: MECHANICS

312 TITLE........: A CRITICAL TEST FOR A CLASS OF NONLINEAR CONSTITUTIVE EQUATIONS
AUTHORS........: CHRISTENSEN, R. M. / VAN ES, H. E.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
SOURCE.......: TRANS. SOCIETY OF RHEOLOGY 17, 325 (1973).
PUBL. DATE....: 1973
TYPE..........: JOURNAL
CATEGORY.....: MECHANICS

313 TITLE........: A SPECIAL THEORY OF VISCOELASTIC FLUIDS FOR APPLICATION TO SUSPENSION.
AUTHORS........: CHRISTENSEN, R. M.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
PUBL. DATE....: 1973
TYPE..........: JOURNAL
CATEGORY.....: MECHANICS

103
VI FIBER COMPOSITE PROPERTIES

314 TITLE: ATTENUATION OF HARMONIC WAVES IN LAYERED MEDIA
AUTHORS: CHRISTENSEN, R. M.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS: LIVERMORE, CA 94550
SOURCE: J. OF APPLIED MECHANICS 40, 155 (1973)
PUBL. DATE: 1973
TYPE: JOURNAL
CATEGORY: MECHANICS

315 TITLE: THE EFFECT OF STRESS ON DIFFUSION IN COMPOSITES - EXPERIMENTAL OBSERVATIONS.
AUTHORS: RUHLMANN, D. C. / WU, E. M.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS: LIVERMORE, CA 94550
SOURCE: AMERICAN CHEMICAL SOCIETY, DIV. OF POLYMER CHEMISTRY 14, NO. 1 (1973)
PUBL. DATE: 1973
TYPE: JOURNAL
CATEGORY: COMPOSITE PROPERTIES

316 TITLE: ORGANIC FIBER/EPoxyIDE COMPOSITES
AUTHORS: CHIAO, T. T./MOORE, R. L.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS: LIVERMORE, CA 94550
PUBL. DATE: JAN 1973
TYPE: JOURNAL
CATEGORY: FIBER COMPOSITES
KEYWORDS: FIBER COMPOSITES/PROPERTY EVALUATION

104
VI FIBER COMPOSITE PROPERTIES

317 TITLE........: FILAMENT-WOUND VESSEL FROM AN ORGANIC FIBER/EPoxy SYSTEM
AUTHORS........: CHIAO, T. T./MARCON, M. A.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
SOURCE........: PROC. 28TH ANNUAL CONFERENCE, S.P.I. REINFORCED PLASTICS/
COMPOSITES INSTITUTE, WASHINGTON, D.C.,SECT. 9-B. FEB./1973
PUBL. DATE....: FEB 1973
TYPE..........: PROCEEDING
CATEGORY......: FIBER COMPOSITES
KEYWORDS.....: FIBER COMPOSITES/SHEAR LOADING/STRESS

318 TITLE........: STRESS-RUPTURE BEHAVIOR OF STRANDS OF AN ORGANIC
FIBER/EPoxy MATRIX
AUTHORS........: CHIAO, T. T./WELLS, J. E./MOORE, R. L./HAMSTAD, M. A.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
SOURCE........: ASTM THIRD SYMPOSIUM ON COMPOSITE MATERIALS: TESTING AND
DESIGN, MARCH 21-22, 1973, WILLIAMSBURG, VIRGINIA, STP 546
PUBL. DATE....: MAR 21 1973
TYPE..........: PROCEEDINGS
CATEGORY......: FIBER COMPOSITES
KEYWORDS.....: STRESS RUPTURE/PRD-49-III EPOXY COMPOSITE/WEIBULL ANALYSIS

319 TITLE........: INSTRUMENTED IMPACT TESTING OF CARBON FIBER COMPOSITE
MATERIALS
AUTHORS........: TOLAND, R. H.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
SOURCE........: ASTM SYMPOSIUM ON INSTRUMENTED IMPACT TESTING, PHILADELPHIA
PUBL. DATE....: JUN 1973
TYPE..........: PRESENTED PAPER
VI FIBER COMPOSITE PROPERTIES

319 TITLE.......: INSTRUMENTED IMPACT TESTING OF CARBON FIBER COMPOSITE (CONT'D.)
CATEGORY.....: MECHANICS

320 TITLE.......: ACOUSTIC EMISSION PRODUCED DURING BURST TESTS OF FILAMENT-
WOUND BOTTLES
AUTHORS......: HAMSTAD, M. A./CHIAO, T. T.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.....: LIVERMORE, CA 94550
PUBL. DATE...: JUL 1973
TYPE.........: JOURNAL

CATEGORY.....: FIBER COMPOSITES
KEYWORDS.....: FIBER COMPOSITES/NOISE DURING RUPTURE

321 TITLE.......: GRAPHITE FIBER/EPOXY COMPOSITES
AUTHORS......: CHIAO, T. T./MOORE, R. L./WALKUP, C. M.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.....: LIVERMORE, CA 94550
SOURCE.......: SAMPE QUARTERLY, VOL. 4, NO. 4, JULY, 1973
PUBL. DATE...: JUL 1973
TYPE.........: JOURNAL

CATEGORY.....: FIBER COMPOSITES
KEYWORDS.....: FIBER COMPOSITES/TENSILE STRENGTH/FIBER COMPARISON

322 TITLE.......: MATERIALS EVALUATION FOR 2X11B MAGNET
AUTHORS......: CHIAO, T. T./WALKUP, C. M./NEWY, H. A.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.....: LIVERMORE, CA 94550
SOURCE.......: LAWRENCE LIVERMORE LABORATORY REPORT, UCID-16340.
PUBL. DATE...: SEP 10 1973
TYPE.........: REPORT
VI FIBER COMPOSITE PROPERTIES

322 TITLE........: MATERIALS EVALUATION FOR 2XIIB MAGNET (CONTD.)
CATEGORY.......: FIBER COMPOSITES
KEYWORDS.......: FIBER COMPOSITES/TENSILE STRENGTH/COMPRESSIVE STRENGTH

323 TITLE........: FILAMENT-WOUND VESSELS FROM AN ORGANIC FIBER/EPOXY RESIN SYSTEM
AUTHORS.......: CHIAO, T. T./HAMSTAD, M. A./MARCON, M. A./HANAFEE, JR.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
SOURCE........: LAWRENCE LIVERMORE LABORATORY REPORT, UCRL-51466 NOV. 1973
PUBL. DATE....: NOV 1973
TYPE..........: REPORT
CATEGORY.......: FIBER COMPOSITES
KEYWORDS.......: FIBER COMPOSITES/STRENGTH OF FIBERS/FIBER PROPERTIES

324 TITLE........: STRESS-RUPTURE BEHAVIOR OF GRAPHITE FIBER/EPOXY STRANDS
AUTHORS.......: MOORE, R. L./CHIAO, T. T./HAMSTAD, M. A.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
SOURCE........: FUKUGO ZAIRYO (COMPOSITE MATERIALS AND STRUCTURES) VOL. 3,
 NO. 1, P.19, 1974
PUBL. DATE....: 1974
TYPE..........: JOURNAL
CATEGORY.......: FIBER COMPOSITES
KEYWORDS.......: FIBER COMPOSITES/LONG TERM PERFORMANCE

325 TITLE........: STRAIN MEASUREMENT TECHNIQUES FOR FIBER MODULUS DETERMINATION
AUTHORS.......: MOORE, R. L./LEPPER, J. K.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
VI FIBER COMPOSITE PROPERTIES

325 TITLE........: STRAIN MEASUREMENT TECHNIQUES FOR FIBER MODULUS (CONTD.)
SOURCE........: J. OF TESTING AND EVALUATION, VOL.2, NO.3, 1974
PUBL. DATE....: 1974
TYPE..........: JOURNAL

CATEGORY......: FIBER COMPOSITES
KEYWORDS......: FIBERS/TENSILE PROPERTIES/EPOXY RESINS/MODULUS OF ELASTICITY/STRAIN MEASUREMENT

326 TITLE........: PHENOMENOLOGICAL ANISOTROPIC FAILURE CRITERION
AUTHORS.......: WU, E. M.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
SOURCE........: COMPOSITE MATERIALS, VOL. 2, CHAPT. 9, ACADEMIC PRESS.
PUBL. DATE....: 1974
TYPE..........: BOOK CHAPTER

CATEGORY......: MECHANICS

327 TITLE........: STRENGTH AND FRACTURE OF COMPOSITES
AUTHORS.......: WU, E. M.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
SOURCE........: COMPOSITE MATERIALS, VOL. 5, CHAPT. 5, ACADEMIC PRESS.
PUBL. DATE....: 1974
TYPE..........: BOOK CHAPTER

CATEGORY......: MECHANICS

328 TITLE........: FAILURE CRITERIA TO FRACTURE MODE ANALYSIS OF COMPOSITE MATERIALS
AUTHORS.......: WU, E. M.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
VI FIBER COMPOSITE PROPERTIES

328 TITLE........: FAILURE CRITERIA TO FRACTURE MODE ANALYSIS OF COMPOSITE (CONT'D.)
SOURCE........: PROCEEDINGS OF THE 39TH MEETING OF THE STRUCTURAL AND
 MATERIALS PANEL, NATO, 1974.
PUBL. DATE....: 1974
TYPE..........: PROCEEDINGS
CATEGORY.....: MECHANICS

329 TITLE........: PROBABILISTIC DESIGN OF COMPOSITE STRUCTURES
AUTHORS.......: MAXWELL, R./ TOLAND, R. H./ JOHNSON, C. W.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
PUBL. DATE....: 1974
TYPE..........: JOURNAL
CATEGORY.....: MECHANICS

330 TITLE........: LAMINATE STRENGTH - A DIRECT CHARACTERIZATION PROCEDURE
AUTHORS.......: WU, E. M./ SCHUEBLEIN, J. K.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
SOURCE........: ASTM STP 546, 1974.
PUBL. DATE....: 1974
TYPE..........: JOURNAL
CATEGORY.....: MECHANICS

331 TITLE........: WAVE PROPAGATION IN ELASTIC MEDIA WITH A PERIODIC ARRAY OF
 DISCRETE INCLUSIONS
AUTHORS.......: CHRISTENSEN, R. M.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
VI FIBER COMPOSITE PROPERTIES

331: WAVE PROPAGATION IN ELASTIC MEDIA WITH A PERIODIC ARRAY OF (CONTD.)
- **Title:** Wave Propagation in Elastic Media with a Periodic Array of (Contd.)
- **Publ. Date:** 1974
- **Type:** Journal
- **Category:** Mechanics

332: STRESS RUPTURE OF GLASS/EPOXY COMPOSITES - ENVIRONMENT AND STRESS EFFECTS.
- **Title:** Stress Rupture of Glass/Epoxy Composites - Environment and Stress Effects
- **Authors:** Wu, E. M. / Ruhman, D. C.
- **Organization:** Lawrence Livermore Laboratory
- **Address:** Livermore, CA 94550
- **Source:** ASTM STP 580, P. 263, 1974.
- **Publ. Date:** 1974
- **Type:** Report
- **Category:** Composite Properties

333: A PHYSICAL MECHANISM FOR THE EARLY ACOUSTIC EMISSION IN AN ORGANIC FIBER/EPOXY PRESSURE VESSEL
- **Title:** A Physical Mechanism for the Early Acoustic Emission in an Organic Fiber/Epoxy Pressure Vessel
- **Authors:** Hamstad, M. A./Chiao, T. T.
- **Organization:** Lawrence Livermore Laboratory
- **Address:** Livermore, CA 94550
- **Source:** SAMPE Quarterly, Vol. 5, No. 2, Jan./1974.
- **Publ. Date:** Jan. 1974
- **Type:** Journal
- **Category:** Fiber Composites
- **Keywords:** Fiber Composites/Noise During Rupture/Failure Detection

334: ACOUSTIC EMISSION FROM STRESS-RUPTURE AND FATIGUE OF AN ORGANIC FIBER COMPOSITE
- **Title:** Acoustic Emission from Stress-Rupture and Fatigue of an Organic Fiber Composite
- **Authors:** Hamstad, M. A./Chiao, T. T.
- **Organization:** Lawrence Livermore Laboratory
- **Address:** Livermore, CA 94550
VI FIBER COMPOSITE PROPERTIES

<table>
<thead>
<tr>
<th>Title</th>
<th>ACOUSTIC EMISSION FROM STRESS-RUPTURE AND FATIGUE OF AN (CONTD.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>LAWRENCE LIVERMORE LABORATORY REPORT, UCRL-74745, JAN. 1974</td>
</tr>
<tr>
<td>Publ. Date</td>
<td>JAN 1974</td>
</tr>
<tr>
<td>Type</td>
<td>REPORT</td>
</tr>
<tr>
<td>Category</td>
<td>FIBER COMPOSITES</td>
</tr>
<tr>
<td>Keywords</td>
<td>COMPOSITE MATERIALS/ACOUSTICS/EMISSION/FIBER COMPOSITES/ FATIGUE TEST/CREEP RUPTURE TESTS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>A ROOM TEMPERATURE-CURABLE EPOXY FOR ADVANCED FIBER COMPOSITES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>CHIAO, T. T./MOORE, R. L.</td>
</tr>
<tr>
<td>Organization</td>
<td>LAWRENCE LIVERMORE LABORATORY</td>
</tr>
<tr>
<td>Address</td>
<td>LIVERMORE, CA 94550</td>
</tr>
<tr>
<td>Source</td>
<td>PROC. 29TH ANNUAL CONFERENCE, SPI REINFORCED PLASTICS COMPOSITES INST., SECT. 16-8, FEB. 1974</td>
</tr>
<tr>
<td>Publ. Date</td>
<td>FEB 1974</td>
</tr>
<tr>
<td>Type</td>
<td>PROCEEDINGS</td>
</tr>
<tr>
<td>Category</td>
<td>FIBER COMPOSITES</td>
</tr>
<tr>
<td>Keywords</td>
<td>FIBER COMPOSITES/EASY HANDLING EPOXY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>ORGANIC FIBER/EPOXY PRESSURE VESSELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>CHIAO, T. T./HAMSTAD, M. A./MARCON, M. A.</td>
</tr>
<tr>
<td>Organization</td>
<td>LAWRENCE LIVERMORE LABORATORY</td>
</tr>
<tr>
<td>Address</td>
<td>LIVERMORE, CA 94550</td>
</tr>
<tr>
<td>Source</td>
<td>SAMPE QUARTERLY, VOL. 5, NO. 3, APRIL, 1974</td>
</tr>
<tr>
<td>Publ. Date</td>
<td>APR 1974</td>
</tr>
<tr>
<td>Type</td>
<td>JOURNAL</td>
</tr>
<tr>
<td>Category</td>
<td>FIBER COMPOSITES</td>
</tr>
<tr>
<td>Keywords</td>
<td>FIBER COMPOSITES/LOW TEMPERATURES/BURST PRESSURE</td>
</tr>
</tbody>
</table>
VI FIBER COMPOSITE PROPERTIES

337 TITLE........: TENSILE PROPERTIES OF AN ULTRA-HIGH-STRENGTH GRAPHITE FIBER AN EPOXY MATRIX
AUTHORS........: CHIAO, T. T./ HAMSTAD, M. A./JESSOP, E. S.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
SOURCE........: LAWRENCE LIVERMORE LABORATORY REPORT, UCRL-75209, DEC., 1973
PRESENTED AT THE ASTM D-30 MEETING, LAS VEGAS, NEV., APRIL, 1
PUBL. DATE....: APR 1974
TYPE..........: REPORT
CATEGORY......: FIBER COMPOSITES
KEYWORDS......: COMPOSITE MATERIALS/CARBON FIBERS/EPOXY RESINS/FIBERS/
PERFORMANCE/ACoustics/EMISSION

338 TITLE........: POLYMER-LINED FILAMENT-WOUND PRESSURE VESSELS FOR NITROGEN CONTAINMENT
AUTHORS........: HAMSTAD, M. A./ CHIAO, T. T./JESSOP, E. S.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
SOURCE........: LAWRENCE LIVERMORE LABORATORY REPORT, UCRL-75361, MAY, 1974
PRESENTED AT THE AIME MEETING, MAY 1974, PITTS./ PA.
PUBL. DATE....: MAY 1974
TYPE..........: REPORT
CATEGORY......: FIBER COMPOSITES
KEYWORDS......: FIBER COMPOSITES/LOW TEMPERATURE/FATIGUE RESISTANCE

339 TITLE........: FATIGUE PERFORMANCE OF METAL-LINED GRAPHITE/EPOXY VESSELS
AUTHORS........: HAMSTAD, M. A./ CHIAO, T. T./PATTERSON, R.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.......: LIVERMORE, CA 94550
SOURCE........: LAWRENCE LIVERMORE LABORATORY REPORT, UCRL-75759, JUNE, 1974
PUBL. DATE....: JUN 1974
TYPE..........: REPORT
VI FIBER COMPOSITE PROPERTIES

<table>
<thead>
<tr>
<th>No.</th>
<th>Title:</th>
<th>Authors:</th>
<th>Organization:</th>
<th>Address:</th>
<th>Source:</th>
<th>Publ. Date:</th>
<th>Type:</th>
<th>Category:</th>
<th>Keywords:</th>
</tr>
</thead>
<tbody>
<tr>
<td>340</td>
<td>An Epoxy System for Filament Winding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fiber Composites</td>
<td>Fiber Composites/Epoxy</td>
<td></td>
</tr>
<tr>
<td>342</td>
<td>Stress-Rupture of Epoxy-Coated Be-Wire</td>
<td>Chiao, T. T./ Hamstad, M. A./ Jessop, E. S.</td>
<td></td>
<td></td>
<td>Livermore, CA 94550</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VI FIBER COMPOSITE PROPERTIES

342 TITLE.........: STRESS-RUPTURE OF EPOXY-COATED BE-WIRE (CONT'D.)
SOURCE.........: LAWRENCE LIVERMORE LABORATORY REPORT, UCRL-75712, MAY 1974,
J. OF COMPOSITE MATERIALS, VOL. 8, P. 405, OCTOBER, 1974.
PUBL. DATE.....: OCT 1974
TYPE..........: REPORT
CATEGORY......: FIBER COMPOSITES
KEYWORDS......: FIBER COMPOSITES/STRESS RUPTURE

343 TITLE.........: THE APPLICATION OF THREE DIMENSIONAL FINITE ELEMENT
ANALYSIS TO THE MICRO-MECHANICS OF FIBROUS COMPOSITE
MATERIALS
AUTHORS.......: LARDER, R. A.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
SOURCE.......: PUBLISHED IN PROCEEDINGS OF THE CUBE SYMPOSIUM, LAWRENCE
LIVERMORE LABORATORY OCTOBER 1974, P. 109
PUBL. DATE...: OCT 1974
TYPE..........: PROCEEDINGS
CATEGORY.....: FIBER COMPOSITES

344 TITLE.........: TENSILE PROPERTIES OF AN ULTRAHIGH-STRENGTH GRAPHITE FIBER
AN EPOXY MATRIX
AUTHORS.......: CHIAO, T. T./ HAMSTAD, M. A./ JESSOP, E. S.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
SOURCE.......: LAWRENCE LIVERMORE LABORATORY REPORT, UCRL-75209 REV. 1
PUBL. DATE...: OCT 01 1974
TYPE..........: REPORT
CATEGORY.....: FIBER COMPOSITES

345 TITLE.........: A MODERATE-TEMPERATURE-CURABLE EPOXY FOR ADVANCED COMPOSITE
AUTHORS.......: CHIAO, T. T./ JESSOP, E. S./ NEWEY, H. A.
VI FIBER COMPOSITE PROPERTIES

345 TITLE........: A MODERATE-TEMPERATURE-CURABLE EPOXY FOR ADVANCED COMPOSITE (CONTD.)
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
SOURCE.......: LAWRENCE LIVERMORE LABORATORY REPORT, UCRL-76126, PUBLISHED
 SAMPE QUARTERLY 6 (3), APRIL 1975
PUBL. DATE...: OCT 23 1974
TYPE........: REPORT
CATEGORY.....: FIBER COMPOSITES
KEYWORDS.....: FIBER COMPOSITES/PROPERTIES OF EPOXY

346 TITLE........: ACOUSTIC EMISSION USES IN RESEARCH AND DEVELOPMENT OF
 COMPOSITE MATERIALS
AUTHORS.......: HAMSTAD, M. A.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
SOURCE.......: LAWRENCE LIVERMORE LABORATORY REPORT, UCRL-76257, PUBLISHED
 AMER. SOC. OF NON-DESTRUCTIVE TESTING ACOUSTIC EMISSION
 HANDBOOK
PUBL. DATE...: NOV 21 1974
TYPE........: REPORT
CATEGORY.....: FIBER COMPOSITES

347 TITLE........: ENGINEERING DESIGN DATA FOR COMPOSITE MATERIALS
AUTHORS.......: CLEMENTS, L. L.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
SOURCE.......: LAWRENCE LIVERMORE LABORATORY REPORT UCRL-77568, 1975
 FLYWHEEL TECHNOLOGY SYMPOSIUM, BERKELEY, CA 10-12 NOV. 1975
PUBL. DATE...: 1975
TYPE........: REPORT
CATEGORY.....: COMPOSITE PROPERTIES
VI FIBER COMPOSITE PROPERTIES

348 TITLE........: TESTING OF FIBER COMPOSITE MATERIALS
 AUTHORS.......: CHIAO, T. T./HAMSTAD, M. A.
 ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
 ADDRESS.......: LIVERMORE, CA 94550
 SOURCE.......: LAWRENCE LIVERMORE LABORATORY REPORT UCRL-76365, KEY SPEECH
 FOR 1975 INTL. CONF. ON COMPOSITE MATERIALS IN GENEVA, SWITZ./
 AND BOSTON MASS.
 PUBL. DATE...: JAN 09 1975
 TYPE..........: REPORT
 CATEGORY.....: FIBER COMPOSITES

349 TITLE........: STOCHASTIC FINITE ELEMENT SIMULATION OF THE NONLINEAR
 STRUCTURAL RESPONSE OF FIBROUS COMPOSITE MATERIALS.
 AUTHORS.......: LARDER, R. A.
 ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
 ADDRESS.......: LIVERMORE, CA 94550
 SOURCE.......: LAWRENCE LIVERMORE LABORATORY REPORT UCRL-51717
 PUBL. DATE...: JAN 15 1975
 TYPE..........: THESIS
 CATEGORY.....: FIBER COMPOSITES

350 TITLE........: EVALUATION OF INTERLAMINAR SHEAR TEST FOR FIBER COMPOSITES
 AUTHORS.......: CHIAO, T. T./MOORE, R. L.
 ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
 ADDRESS.......: LIVERMORE, CA 94550
 SOURCE.......: LAWRENCE LIVERMORE LABORATORY REPORT, UCRL-51766
 PUBL. DATE...: MAR 05 1975
 TYPE..........: REPORT
 CATEGORY.....: FIBER COMPOSITES
VI FIBER COMPOSITE PROPERTIES

351 TITLE........: HIGH PERFORMANCE VESSELS FROM AN AROMATIC POLYAMIDE FIBER/EPoxy COMPOSITE
AUTHORS........: CHIAO, T. T./HAMSTAD, M. A.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS........: LIVERMORE, CA 94550
SOURCE..........: LAWRENCE LIVERMORE LABORATORY REPORT, UCRL-74780
PUBL. DATE.....: APR 07 1975
TYPE...........: REPORT
CATEGORY.......: FIBER COMPOSITES

352 TITLE........: CHEMICAL CHARACTERIZATION OF A HIGH-PERFORMANCE ORGANIC FIBER
AUTHORS........: PENN, LYNN/NEWHEY, H. A./CHIAO, T. T.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS........: LIVERMORE, CA 94550
SOURCE..........: LAWRENCE LIVERMORE LABORATORY REPORT UCRL-76694
PUBL. DATE.....: APR 09 1975
TYPE...........: REPORT
CATEGORY.......: FIBER COMPOSITES

353 TITLE........: KEVLAR/EPoxy AND KEVLAR/GRAPHITE/EPoxy COMPOSITES FOR THE C-4 (TRIDENT) CHAMBER PROGRAM
AUTHORS........: CLEMENTS, L. L./MOORE, R. L./MONES, E. T./CHIAO, T. T.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS........: LIVERMORE, CA 94550
SOURCE..........: LAWRENCE LIVERMORE LABORATORY REPORT, UCID-16747
PUBL. DATE.....: APR 24 1975
TYPE...........: REPORT
CATEGORY.......: FIBER COMPOSITES
VI FIBER COMPOSITE PROPERTIES

354 TITLE........: FATIGUE LIFE OF ORGANIC FIBER/EPOXY PRESSURE VESSELS
AUTHORS........: HAMSTAD, M. A./CHIAO, T. T./PATTERSON, R. G.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS........: LIVERMORE, CA 94550
SOURCE.........: LAWRENCE LIVERMORE LABORATORY REPORT, UCRL-76174 PUBLISHED PROCEEDINGS 7TH NATIONAL SAMPE CONFERENCE OCT., 14-16, ALBUQ.
NM
PUBL. DATE.....: MAY 01 1975
TYPE...........: REPORT
CATEGORY......: FIBER COMPOSITES

355 TITLE........: SCREENING OF EPOXY SYSTEMS FOR HIGH-PERFORMANCE FILAMENT WINDING APPLICATIONS
AUTHORS........: CHIAO, T. T./JESSOP, E. S./PENN, L. S.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS........: LIVERMORE, CA 94550
SOURCE.........: 7TH NATIONAL SAMPE CONFERENCE OCTOBER 14-16, 1975, ALBUQUERQUE NEW MEXICO
PUBL. DATE.....: MAY 19 1975
TYPE...........: PROCEEDING
CATEGORY......: FIBER COMPOSITES

356 TITLE........: A LONG POT LIFE EPOXY SYSTEM FOR FILAMENT WINDING
AUTHORS........: PENN, L. S./CHIAO, T. T.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS........: LIVERMORE, CA 94550
SOURCE.........: LAWRENCE LIVERMORE LABORATORY REPORT, UCRL-76918
PUBL. DATE.....: JUN 01 1975
TYPE...........: REPORT
CATEGORY......: FIBER COMPOSITES
VI FIBER COMPOSITE PROPERTIES

357 TITLE.......: PERFORMANCE OF FILAMENT-WOUND VESSELS FROM AN ORGANIC FIBER IN SEVERAL EPOXY MATRICES
AUTHORS......: CHIAO, T. T./ JESSOP, E. S./HAMSTAD, M. A.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
SOURCE.......: LAWRENCE LIVERMORE LABORATORY REPORT, UCRL-76913
PUBL. DATE...: JUN 11 1975
TYPE.........: REPORT
CATEGORY.....: FIBER COMPOSITES

358 TITLE.......: ELONGATED-RING SPECIMEN FOR TENSILE PROPERTIES OF FILAMENT-WOUND COMPOSITES
AUTHORS......: CLEMENTS, L. L./ MOORE, R. L./CHIAO, T. T.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
SOURCE.......: LAWRENCE LIVERMORE LABORATORY REPORT, UCRL 76917
PUBL. DATE...: JUN 13 1975
TYPE.........: REPORT
CATEGORY.....: FIBER COMPOSITES

359 TITLE.......: STRENGTH DISTRIBUTION OF SINGLE FILAMENTS
AUTHORS......: LARDER, R. A./BEADLE, C. W.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
SOURCE.......: JOURNAL OF COMPOSITE MATERIALS 9, 241
PUBL. DATE...: JUL 1976
TYPE.........: JOURNAL
CATEGORY.....: FIBER COMPOSITES
VI FIBER COMPOSITE PROPERTIES

360 TITLE........: HOLOGRAPHIC EXAMINATION OF A COMPOSITE PRESSURE VESSEL
AUTHORS........: MEYER, M.D./KATAYANAGI, T. E.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS........: LIVERMORE, CA 94550
SOURCE.........: LAWRENCE LIVERMORE LABORATORY REPORT, UCRL 77300
PUBL. DATE.....: SEP 10 1975
TYPE...........: REPORT
CATEGORY.......: FIBER COMPOSITES

361 TITLE........: STRENGTH RETENTION AND LIFE OF FIBER COMPOSITE MATERIALS
AUTHORS........: CHIAO, T. T./SHERRY, R. J.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS........: LIVERMORE, CA 94550
SOURCE.........: LAWRENCE LIVERMORE LABORATORY REPORT, UCRL-77225
PUBL. DATE.....: SEP 19 1975
TYPE...........: REPORT
CATEGORY.......: FIBER COMPOSITES

362 TITLE........: FIBER COMPOSITES FOR ENERGY STORAGE FLYWHEELS.
AUTHORS........: PENN, L. S./CHIAO, T. T.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS........: LIVERMORE, CA 94550
SOURCE.........: LAWRENCE LIVERMORE LABORATORY REPORT, UCRL-76891 ALSO: PROC.
ANNUL. CONF. REINF. PLAST. COMPOS. INST. SOC. PLAST. IND.
31, 12-2.
PUBL. DATE.....: OCT 07 1975
TYPE...........: REPORT
CATEGORY.......: FIBER COMPOSITES
KEYWORDS.......: FIBER COMPOSITES/FLYWHEELS/FLYWHEEL MATERIALS
VI FIBER COMPOSITE PROPERTIES

363 TITLE: CHARACTERIZATION PROCEDURE FOR THERMOSETTING RESINS
AUTHORS: PENN, L. S. / NEWEY, H.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS: LIVERMORE, CA 94550
SOURCE: LAWRENCE LIVERMORE LABORATORY REPORT UCID-16934, 10 OCTOBER 1975.
PUBL. DATE: OCT 10 1975
TYPE: REPORT
CATEGORY: MATERIAL PROPERTIES

364 TITLE: FIBER COMPOSITE PROGRAM FOR FLYWHEEL APPLICATIONS. SECOND QUARTERLY PROGRESS REPORT.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS: LIVERMORE, CA 94550
SOURCE: UCRL-50033-75
CONTRACT #: W-7405-ENG-48
PUBL. DATE: NOV 1975
TYPE: REPORT
PUBLISHER: LLL

KEYWORDS: COMPOSITE MATERIALS/ ENERGY STORAGE/ FIBERS/ FLYWHEELS/ GLASS/ MATERIALS TESTING/ MECHANICAL PROPERTIES/ MEETINGS/ RESEARCH PROGRAMS/ STRESSES

365 TITLE: FIBER COMPOSITES HIGHLIGHTS
AUTHORS: CHIAO, T. T.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS: LIVERMORE, CA 94550
SOURCE: UCIR-942-75-2
PUBL. DATE: NOV 14 1975
VI FIBER COMPOSITE PROPERTIES

366 TITLE........: LONG-TERM PERFORMANCE OF FIBER COMPOSITES
 AUTHORS......: CHIAO, C. C.
 ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
 ADDRESS......: LIVERMORE, CA. 94550
 SOURCE.......: UCRL-77547. ALSO: CONF-751133-1
 CONTRACT #....: W-7405-ENG-48
 PUBL. DATE....: DEC 01 1975
 TYPE..........: REPORT
 PUBLISHER.....: LLL
 CONFERENCE....: FLYWHEEL TECHNOLOGY SYMPOSIUM
 LOCATION.....: BERKELEY, CA.
 DATE..........: 10 NOV., 1975
 KEYWORDS.....: COMPOSITE MATERIALS/ EPOXIDES/ FILAMENTS/ FLYWHEELS/ GLASS/
 MATERIALS/ MECHANICAL PROPERTIES/ POLYMERS/ RUPTURES/
 STRESSES

367 TITLE........: FIBER COMPOSITES HIGHLIGHTS
 AUTHORS......: CHIAO, T. T.
 ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
 ADDRESS......: LIVERMORE, CA. 94550
 SOURCE.......: UCIR-942-75-3
 PUBL. DATE....: DEC 15 1975

368 TITLE........: A THERMODYNAMIC CRITERION FOR THE GLASS—TRANSITION
 TEMPERATURE.
 AUTHORS......: CHRISTENSEN, R. M.
 ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
 ADDRESS......: LIVERMORE, CA 94550
 PUBL. DATE....: 1976
 CATEGORY.....: MECHANICS
VI FIBER COMPOSITE PROPERTIES

369 TITLE........: THE EFFECTIVE MODULI OF COMPOSITES CONTAINING RANDOMLY ORIENTED FIBERS.
 AUTHORS.....: CHRISTENSEN, R. M.
 ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
 ADDRESS.....: LIVERMORE, CA 94550
 PUBL. DATE..: 1976
 CATEGORY.....: MECHANICS

370 TITLE........: WAVE PROPAGATION IN LAYERED ELASTIC MEDIA
 AUTHORS.....: CHRISTENSEN, R. M.
 ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
 ADDRESS.....: LIVERMORE, CA 94550
 SOURCE.......: J. OF APPLIED MECHANICS
 PUBL. DATE..: 1976
 TYPE.........: JOURNAL
 CATEGORY.....: MECHANICS

371 TITLE........: COMPOSITE MATERIALS FOR ENERGY STORAGE FLYWHEELS
 AUTHORS.....: CHIAO, T. T.
 ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
 ADDRESS.....: LIVERMORE, CA 94550
 SOURCE.......: UCRL-78225-ABSTRACT
 PUBL. DATE..: 1976

372 TITLE........: CHARACTERIZATION OF A POLYAMIDE MATRIX FOR FIBER COMPOSITES
 AUTHORS.....: PENN, L. S. / MONES, E. T. / CHIAO, T. T.
 ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
 ADDRESS.....: LIVERMORE, CA 94550
 SOURCE.......: SAMPE QUARTERLY, JAN. 1976.
ERDA BIBLIOGRAPHY FOR FLYWHEEL ENERGY STORAGE SYSTEMS
MAIN LISTING, ORDERED CHRONOLOGICALLY WITHIN EACH CATEGORY

VI FIBER COMPOSITE PROPERTIES

372 TITLE........: CHARACTERIZATION OF A POLYAMIDE MATRIX FOR FIBER COMPOSITES (CONT'D.)
PUBL. DATE....: JAN 1976
TYPE.........: JOURNAL

CATEGORY.....: MATERIAL PROPERTIES

373 TITLE........: FIBER COMPOSITES HIGHLIGHTS
AUTHORS.......: CHIAO, T. T.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.....: LIVERMORE, CA. 94550
SOURCE.......: UCIR-942-75-4
PUBL. DATE...: JAN 15 1976

374 TITLE........: FIBER COMPOSITES HIGHLIGHTS
AUTHORS.......: CHIAO, T. T.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.....: LIVERMORE, CA. 94550
SOURCE.......: UCIR-942-76-1
PUBL. DATE...: FEB 15 1976

375 TITLE........: ORGANIC MATERIALS DIVISION QUARTERLY REPORT
AUTHORS.......: LEPPER, J. K.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS.....: LIVERMORE, CA. 94550
SOURCE.......: UCRL-50019-75-4
PUBL. DATE...: FEB 20 1976

376 TITLE........: AN ACCELERATED TEST FOR PREDICTING THE LIFETIME OF ORGANIC FIBER COMPOSITES

124
VI FIBER COMPOSITE PROPERTIES

376 TITLE........: AN ACCELERATED TEST FOR PREDICTING THE LIFETIME OF ORGANIC (CONT'D.)
AUTHORS.......: CHIAO, C. C.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
SOURCE.......: 3RD BIENNIAL AIME SYMPOSIUM, LAS VEGAS, NEVADA, FEB. 22-26, 1976
PUBL. DATE...: FEB 22 1976
TYPE.........: PROCEEDINGS
CATEGORY......: COMPOSITE PROPERTIES

377 TITLE........: CHEMISTRY AND TECHNOLOGY OF HIGH STRENGTH POLYAMIDE FIBERS
AUTHORS.......: LARSEN, F. N.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
SOURCE.......: PRELIMINARY NOTES
PUBL. DATE...: MAR 10 1976
TYPE.........: PRELIMINARY NOTES

378 TITLE........: FIBER COMPOSITES HIGHLIGHTS
AUTHORS.......: CHIAO, T. T.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
SOURCE.......: UCIR-942-76-2
PUBL. DATE...: MAR 15 1976

379 TITLE........: FIBER COMPOSITES HIGHLIGHTS
AUTHORS.......: CHIAO, T. T.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA 94550
SOURCE.......: UCIR-942-76-5
PUBL. DATE...: MAY 1976
VI FIBER COMPOSITE PROPERTIES

380 TITLE........: FIBER COMPOSITES HIGHLIGHTS
AUTHORS.......: CHIAO, T. T.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA. 94550
SOURCE.......: UCIR-942-76-4
PUBL. DATE....: MAY 15 1976

381 TITLE........: ORGANIC MATERIALS DIVISION QUARTERLY REPORT
AUTHORS.......: LEPPER, J. K.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA. 94550
SOURCE.......: UCRL-50019-76-1
PUBL. DATE....: MAY 28 1976

382 TITLE........: FIBER COMPOSITES HIGHLIGHTS
AUTHORS.......: CHIAO, T. T.
ORGANIZATION: LAWRENCE LIVERMORE LABORATORY
ADDRESS......: LIVERMORE, CA. 94550
SOURCE.......: UCIR-942-76-6-7
PUBL. DATE....: JUN 1976
NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research & Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights.

NOTICE

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Energy Research & Development Administration to the exclusion of others that may be suitable.

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
Price: Printed Copy $; Microfiche $3.00

<table>
<thead>
<tr>
<th>Page Range</th>
<th>Domestic Price</th>
<th>Page Range</th>
<th>Domestic Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>001–025</td>
<td>$ 3.50</td>
<td>326–350</td>
<td>10.00</td>
</tr>
<tr>
<td>026–050</td>
<td>4.00</td>
<td>351–375</td>
<td>10.50</td>
</tr>
<tr>
<td>051–075</td>
<td>4.50</td>
<td>376–400</td>
<td>10.75</td>
</tr>
<tr>
<td>076–100</td>
<td>5.00</td>
<td>401–425</td>
<td>11.00</td>
</tr>
<tr>
<td>101–125</td>
<td>5.50</td>
<td>426–450</td>
<td>11.75</td>
</tr>
<tr>
<td>126–150</td>
<td>6.00</td>
<td>451–475</td>
<td>12.00</td>
</tr>
<tr>
<td>151–175</td>
<td>6.75</td>
<td>476–500</td>
<td>12.50</td>
</tr>
<tr>
<td>176–200</td>
<td>7.50</td>
<td>501–525</td>
<td>12.75</td>
</tr>
<tr>
<td>201–225</td>
<td>7.75</td>
<td>526–550</td>
<td>13.00</td>
</tr>
<tr>
<td>226–250</td>
<td>8.00</td>
<td>551–575</td>
<td>13.50</td>
</tr>
<tr>
<td>251–275</td>
<td>9.00</td>
<td>576–600</td>
<td>13.75</td>
</tr>
<tr>
<td>276–300</td>
<td>9.25</td>
<td>601–up</td>
<td></td>
</tr>
<tr>
<td>301–325</td>
<td>9.75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Add $2.50 for each additional 100 page increment from 601 to 1,000 pages; add $4.50 for each additional 100 page increment over 1,000 pages.