Temperature and Dissolved Oxygen Simulations for the Upper Missouri River Reservoirs

by Thomas M. Cole, Michael L. Schneider, John G. Skogerboe, Ronald E. Heath, Herman O. Turner

Approved For Public Release; Distribution Is Unlimited

Prepared for Headquarters, U.S. Army Corps of Engineers and U.S. Army Engineer Division, Missouri River
The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
Temperature and Dissolved Oxygen Simulations for the Upper Missouri River Reservoirs

by Thomas M. Cole, Michael L. Schneider, John G. Skogerboe, Ronald E. Heath, Herman O. Turner

U.S. Army Corps of Engineers
Waterways Experiment Station
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Final report
Approved for public release; distribution is unlimited

Prepared for U.S. Army Corps of Engineers
Washington, DC 20314-1000

and U.S. Army Engineer Division, Missouri River
Omaha, NE 68101-0103
Waterways Experiment Station Cataloging-in-Publication Data

Temperature and dissolved oxygen simulations for the upper Missouri River reservoirs / by Thomas M. Cole ... [et al.]; prepared for U.S. Army Corps of Engineers and U.S. Army Engineer Division, Missouri River.
284 p. : ill. ; 28 cm. -- (Miscellaneous paper ; EL-95-7)
Includes bibliographic references.
1. Reservoirs -- Missouri River. 2. Water temperature -- Missouri River. 3. Missouri River. 4. Water quality -- Missouri River. I. Cole, Thomas M. II. United States. Army Corps of Engineers. Missouri River Division. III. U.S. Army Engineer Waterways Experiment Station. IV. Environmental Laboratory (U.S. Army Engineer Waterways Experiment Station) V. Series: Miscellaneous paper (U.S. Army Engineer Waterways Experiment Station) ; EL-95-7.
TA7 W34m no.EL-95-7
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xxvi</td>
</tr>
<tr>
<td>Conversion Factors, Non-SI to SI Units of Measurement</td>
<td>xxvii</td>
</tr>
<tr>
<td>1—Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>Purpose</td>
<td>1</td>
</tr>
<tr>
<td>Approach</td>
<td>1</td>
</tr>
<tr>
<td>Model Description</td>
<td>2</td>
</tr>
<tr>
<td>Site Description</td>
<td>4</td>
</tr>
<tr>
<td>Fort Peck Lake</td>
<td>5</td>
</tr>
<tr>
<td>Lake Sakakawea</td>
<td>5</td>
</tr>
<tr>
<td>Lake Oahe</td>
<td>6</td>
</tr>
<tr>
<td>Lake Francis Case</td>
<td>6</td>
</tr>
<tr>
<td>2—Input Data</td>
<td>7</td>
</tr>
<tr>
<td>Bathymetry</td>
<td>7</td>
</tr>
<tr>
<td>Fort Peck Lake</td>
<td>7</td>
</tr>
<tr>
<td>Lake Sakakawea</td>
<td>9</td>
</tr>
<tr>
<td>Lake Oahe</td>
<td>11</td>
</tr>
<tr>
<td>Lake Francis Case</td>
<td>13</td>
</tr>
<tr>
<td>Inflow and Outflow</td>
<td>14</td>
</tr>
<tr>
<td>Meteorology</td>
<td>20</td>
</tr>
<tr>
<td>Inflow Temperatures</td>
<td>29</td>
</tr>
<tr>
<td>Inflow DO</td>
<td>34</td>
</tr>
<tr>
<td>3—Calibration</td>
<td>39</td>
</tr>
<tr>
<td>Fort Peck Lake 1978 Simulation</td>
<td>39</td>
</tr>
<tr>
<td>Water Surface Elevations</td>
<td>39</td>
</tr>
<tr>
<td>Ice Cover</td>
<td>39</td>
</tr>
<tr>
<td>Temperature</td>
<td>40</td>
</tr>
<tr>
<td>Station Near Dam</td>
<td>40</td>
</tr>
<tr>
<td>Station Near Hell Creek</td>
<td>42</td>
</tr>
<tr>
<td>Release Temperature</td>
<td>43</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>44</td>
</tr>
<tr>
<td>Station Near Dam</td>
<td>44</td>
</tr>
<tr>
<td>Station Near Hell Creek</td>
<td>45</td>
</tr>
<tr>
<td>Release DO</td>
<td>46</td>
</tr>
<tr>
<td>Simulation</td>
<td>Section</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Fort Peck Lake 1980</td>
<td>Water Surface Levels</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ice Cover</td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
</tr>
<tr>
<td></td>
<td>Station Near Dam</td>
</tr>
<tr>
<td></td>
<td>Station Near Hell Creek</td>
</tr>
<tr>
<td></td>
<td>Release Temperature</td>
</tr>
<tr>
<td></td>
<td>Dissolved Oxygen</td>
</tr>
<tr>
<td></td>
<td>Station Near Dam</td>
</tr>
<tr>
<td></td>
<td>Station Near Hell Creek</td>
</tr>
<tr>
<td></td>
<td>Release DO</td>
</tr>
<tr>
<td>Lake Sakakawea 1978</td>
<td>Water Surface Elevations</td>
</tr>
<tr>
<td></td>
<td>Ice Cover</td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
</tr>
<tr>
<td></td>
<td>Station Near Dam</td>
</tr>
<tr>
<td></td>
<td>Station near New Town</td>
</tr>
<tr>
<td></td>
<td>Release Temperature</td>
</tr>
<tr>
<td></td>
<td>Dissolved Oxygen</td>
</tr>
<tr>
<td></td>
<td>Station Near Dam</td>
</tr>
<tr>
<td></td>
<td>Station Near New Town</td>
</tr>
<tr>
<td></td>
<td>Release DO</td>
</tr>
<tr>
<td>Lake Sakakawea 1980</td>
<td>Water Surface Elevations</td>
</tr>
<tr>
<td></td>
<td>Ice Cover</td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
</tr>
<tr>
<td></td>
<td>Station Near Dam</td>
</tr>
<tr>
<td></td>
<td>Station near New Town</td>
</tr>
<tr>
<td></td>
<td>Release Temperatures</td>
</tr>
<tr>
<td></td>
<td>Dissolved Oxygen</td>
</tr>
<tr>
<td></td>
<td>Station Near Dam</td>
</tr>
<tr>
<td></td>
<td>Station Near New Town</td>
</tr>
<tr>
<td></td>
<td>Release DO</td>
</tr>
<tr>
<td>Lake Oahe 1978</td>
<td>Water Surface Elevations</td>
</tr>
<tr>
<td></td>
<td>Ice Cover</td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
</tr>
<tr>
<td></td>
<td>Station near Dam</td>
</tr>
<tr>
<td></td>
<td>Station near Pollack</td>
</tr>
<tr>
<td></td>
<td>Release Temperatures</td>
</tr>
<tr>
<td></td>
<td>Dissolved Oxygen</td>
</tr>
<tr>
<td></td>
<td>Station Near Dam</td>
</tr>
<tr>
<td></td>
<td>Station Near Pollack</td>
</tr>
<tr>
<td></td>
<td>Release DO</td>
</tr>
<tr>
<td>Lake Oahe 1980</td>
<td>Water Surface Elevations</td>
</tr>
<tr>
<td></td>
<td>Ice Cover</td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
</tr>
<tr>
<td></td>
<td>Station Near Dam</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Station Near Pollack</td>
<td>77</td>
</tr>
<tr>
<td>Release Temperature</td>
<td>78</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>78</td>
</tr>
<tr>
<td>Station near Dam</td>
<td>78</td>
</tr>
<tr>
<td>Station Near Pollack</td>
<td>79</td>
</tr>
<tr>
<td>Release DO</td>
<td>81</td>
</tr>
<tr>
<td>Lake Francis Case 1978 Simulation</td>
<td>81</td>
</tr>
<tr>
<td>Water Surface Elevations</td>
<td>81</td>
</tr>
<tr>
<td>Ice Cover</td>
<td>82</td>
</tr>
<tr>
<td>Temperature</td>
<td>82</td>
</tr>
<tr>
<td>Station Near Dam</td>
<td>82</td>
</tr>
<tr>
<td>Station near Elm Creek</td>
<td>84</td>
</tr>
<tr>
<td>Release Temperatures</td>
<td>85</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>85</td>
</tr>
<tr>
<td>Station Near Dam</td>
<td>85</td>
</tr>
<tr>
<td>Station Near Elm Creek</td>
<td>86</td>
</tr>
<tr>
<td>Release DO</td>
<td>87</td>
</tr>
<tr>
<td>Lake Francis Case 1980 Simulation</td>
<td>88</td>
</tr>
<tr>
<td>Water Surface Elevations</td>
<td>88</td>
</tr>
<tr>
<td>Ice Cover</td>
<td>88</td>
</tr>
<tr>
<td>Temperature</td>
<td>89</td>
</tr>
<tr>
<td>Station Near Dam</td>
<td>89</td>
</tr>
<tr>
<td>Station near Elm Creek</td>
<td>90</td>
</tr>
<tr>
<td>Release Temperature</td>
<td>91</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>92</td>
</tr>
<tr>
<td>Station Near Dam</td>
<td>92</td>
</tr>
<tr>
<td>Station Near Elm Creek</td>
<td>93</td>
</tr>
<tr>
<td>Release DO</td>
<td>93</td>
</tr>
<tr>
<td>4—Operational Scenarios</td>
<td>94</td>
</tr>
<tr>
<td>Input Data</td>
<td>94</td>
</tr>
<tr>
<td>Inflows</td>
<td>94</td>
</tr>
<tr>
<td>Fort Peck Lake</td>
<td>94</td>
</tr>
<tr>
<td>Lake Sakakawea</td>
<td>99</td>
</tr>
<tr>
<td>Lake Oahe</td>
<td>104</td>
</tr>
<tr>
<td>Lake Francis Case</td>
<td>108</td>
</tr>
<tr>
<td>Releases</td>
<td>113</td>
</tr>
<tr>
<td>Fort Peck Lake</td>
<td>113</td>
</tr>
<tr>
<td>Lake Sakakawea</td>
<td>117</td>
</tr>
<tr>
<td>Lake Oahe</td>
<td>122</td>
</tr>
<tr>
<td>Lake Francis Case</td>
<td>126</td>
</tr>
<tr>
<td>Inflow Temperatures</td>
<td>131</td>
</tr>
<tr>
<td>Fort Peck Lake</td>
<td>131</td>
</tr>
<tr>
<td>Lake Sakakawea</td>
<td>131</td>
</tr>
<tr>
<td>Lake Oahe</td>
<td>136</td>
</tr>
<tr>
<td>Lake Francis Case</td>
<td>141</td>
</tr>
<tr>
<td>Inflow DO</td>
<td>145</td>
</tr>
<tr>
<td>Fort Peck Lake</td>
<td>145</td>
</tr>
<tr>
<td>Lake Sakakawea</td>
<td>146</td>
</tr>
</tbody>
</table>
Figure 6. Fort Peck Lake computational grid 8
Figure 7. Fort Peck Lake computed versus USACE volume-area-elevation curves. ... 8
Figure 8. Lake Sakakawea computational grid 10
Figure 9. Lake Sakakawea computed versus USACE volume-area-elevation curves. ... 11
Figure 10. Lake Oahe computational grid .. 12
Figure 11. Lake Oahe computed versus USACE volume-area-curves. ... 13
Figure 12. Lake Francis Case computational grid 13
Figure 13. Lake Francis Case computed versus USACE volume-area-elevation curves. ... 14
Figure 14. Fort Peck Lake 1978 inflows and outflows 16
Figure 15. Fort Peck Lake 1980 inflows and outflows 16
Figure 16. Lake Sakakawea 1978 inflows and outflows 17
Figure 17. Lake Sakakawea 1980 inflows and outflows 17
Figure 18. Lake Oahe 1978 inflows and outflows 18
Figure 19. Lake Oahe 1980 inflows and outflows 18
Figure 20. Lake Francis Case 1978 inflows and outflows 19
Figure 21. Lake Francis Case 1980 inflows and outflows 19
Figure 22. Fort Peck Lake 1978 air/dew-point temperatures from Glasgow, MT ... 20
Figure 23. Fort Peck Lake 1980 air/dew-point temperatures for Glasgow, MT ... 21
Figure 24. Fort Peck Lake 1978 wind speeds from Glasgow, MT 21
Figure 25. Fort Peck Lake 1980 wind speeds from Glasgow, MT 22
Figure 26. Fort Peck Lake 1978 cloud cover from Glasgow, MT 22
Figure 27. Fort Peck Lake 1980 cloud cover from Glasgow, MT 23
Figure 28. Lake Sakakawea 1978 air/dew-point temperatures from Williston, ND ... 23
Figure 29. Lake Sakakawea 1980 air/dew-point temperatures for Williston, ND ... 24
Figure 30. Lake Sakakawea 1978 wind speeds from Williston, ND 24
Figure 31. Lake Sakakawea 1980 wind speeds from Williston, ND 25
Figure 32. Lake Sakakawea 1978 cloud cover from Williston, ND 25
Figure 33. Lake Sakakawea 1980 cloud cover from Williston, ND 26
Figure 34. Lake Oahe and Lake Francis Case 1978 air/dew-point temperatures from Pierre, SD 26
Figure 35. Lake Oahe and Lake Francis Case 1980 air/dew-point temperatures from Pierre, SD 27
Figure 36. Lake Oahe and Lake Francis Case 1978 wind speeds from Pierre, SD ... 27
Figure 37. Lake Oahe and Lake Francis Case 1980 wind speeds from Pierre, SD ... 28
Figure 38. Lake Oahe and Lake Francis Case 1978 cloud cover from Pierre, SD ... 28
Figure 39. Lake Oahe and Lake Francis Case 1980 cloud cover from Pierre, SD ... 29
Figure 40. Fort Peck Lake 1978 regressed inflow temperatures 30
Figure 41. Fort Peck Lake 1980 regressed inflow temperatures 30
Figure 42. Lake Sakakawea 1978 routed inflow temperatures 31
Figure 43. Lake Sakakawea 1980 routed inflow temperatures 31
Figure 44. Lake Oahe 1978 routed inflow temperatures 32
Figure 45. Lake Oahe 1980 routed inflow temperatures 32
Figure 46. Lake Francis Case 1978 routed inflow temperatures 33
Figure 47. Lake Francis Case 1980 routed inflow temperatures 33
Figure 48. Fort Peck Lake 1978 inflow DO ... 34
Figure 49. Fort Peck Oahe 1980 inflow DO ... 35
Figure 50. Lake Sakakawea 1978 inflow DO ... 35
Figure 51. Lake Sakakawea 1980 inflow DO ... 36
Figure 52. Lake Oahe 1978 inflow DO ... 36
Figure 53. Lake Oahe 1980 inflow DO ... 37
Figure 54. Lake Francis Case 1978 inflow DO ... 37
Figure 55. Lake Francis Case 1980 inflow DO ... 38
Figure 56. Fort Peck Lake 1978 computed versus observed water surface elevations at dam. 39
Figure 57. Fort Peck Lake 1978 computed ice cover .. 40
Figure 58. Fort Peck Lake 1978 computed versus observed temperatures at station near dam, January 27 - August 3 .. 42
Figure 77. Lake Sakakawea 1978 computed versus observed water surface elevations at dam 54

Figure 78. Lake Sakakawea 1978 computed ice cover 55

Figure 79. Lake Sakakawea 1978 computed versus observed temperatures at station near dam, February 14 - August 15 56

Figure 80. Lake Sakakawea 1978 computed versus observed temperatures at station near dam, September 20 - October 11 56

Figure 81. Lake Sakakawea 1978 computed versus observed temperatures at station near New Town, February - August 18 57

Figure 82. Lake Sakakawea 1978 computed versus observed temperatures at station near New Town, September 19 - October 20 57

Figure 83. Lake Sakakawea 1978 computed versus observed release temperatures .. 58

Figure 84. Lake Sakakawea 1978 computed versus observed DO at station near dam, February 14 - August 16 59

Figure 85. Lake Sakakawea 1978 computed versus observed DO at station near dam .. 60

Figure 86. Lake Sakakawea 1978 computed versus observed DO at station near New Town, February 15 - August 18 60

Figure 87. Lake Sakakawea 1978 computed versus observed DO at station near New Town, September 19 - October 20 61

Figure 88. Lake Sakakawea 1980 release DO 61

Figure 89. Lake Sakakawea 1980 computed versus observed water surface elevations at dam .. 62

Figure 90. Lake Sakakawea 1980 computed ice cover 63

Figure 91. Lake Sakakawea 1980 computed versus observed temperatures at station near dam, February 1 - July 31 63

Figure 92. Lake Sakakawea 1980 computed versus observed temperatures at station near dam, September 19 - October 1 64

Figure 93. Lake Sakakawea 1980 computed versus observed temperatures at station near New Town, February 2 - July 17 64
Figure 113. Lake Oahe 1980 computed versus observed temperatures at station near Dam, September 19 - October 22 .. 77

Figure 114. Lake Oahe 1980 computed versus observed temperatures at station near Pollack, April 29 - August 20 .. 78

Figure 115. Lake Oahe 1980 computed versus observed temperatures at station near Pollack, September 10 - October 7 .. 78

Figure 116. Lake Oahe 1980 computed versus observed release temperatures .. 79

Figure 117. Lake Oahe 1980 computed versus observed DO at station near dam .. 79

Figure 118. Lake Oahe 1980 computed versus observed DO at station near Pollack, April 29 - September 10 .. 80

Figure 119. Lake Oahe 1980 computed versus observed DO at station near Pollack, October 7 .. 80

Figure 120. Lake Oahe 1980 computed release DO .. 81

Figure 121. Lake Francis Case 1978 computed versus observed stages at dam .. 81

Figure 122. Lake Francis Case 1978 computed ice cover .. 82

Figure 123. Lake Francis Case 1978 computed versus observed temperatures at station near dam, February 24 - August 18 .. 83

Figure 124. Lake Francis Case 1978 computed versus observed temperatures at station near dam, September 15 - October 11 .. 84

Figure 125. Lake Francis Case 1978 computed versus observed temperatures at station near Elm Creek .. 84

Figure 126. Lake Francis Case 1978 computed versus observed release temperatures .. 85

Figure 127. Lake Francis Case 1978 computed versus observed DO at station near dam, February 24 - August 18 .. 86

Figure 128. Lake Francis Case 1978 computed versus observed DO at station near dam, October 11 .. 86

Figure 129. Lake Francis Case 1978 computed versus observed DO at station near Elm Creek .. 87

Figure 130. Lake Francis Case 1978 release DO .. 87

Figure 131. Lake Francis Case 1980 computed versus observed stages at dam .. 88
Figure 132. Lake Francis Case 1980 computed ice cover 89
Figure 133. Lake Francis Case 1980 computed versus observed
temperatures at station near dam,
April 24 - August 14 .. 90
Figure 134. Lake Francis Case 1980 computed versus observed
temperatures at station near dam,
September 6 - October 9 90
Figure 135. Lake Francis Case 1980 computed versus observed
temperatures at station near Elm Creek .. 91
Figure 136. Lake Francis Case 1980 computed versus observed
release temperatures ... 92
Figure 137. Lake Francis Case 1980 computed versus observed DO
at station near dam ... 92
Figure 138. Lake Francis Case 1980 computed versus observed DO
at station near Elm Creek .. 93
Figure 139. Lake Francis Case 1980 computed release DO 93
Figure 140. Fort Peck Lake scenario 1 inflows 95
Figure 141. Fort Peck Lake scenario 2 inflows 95
Figure 142. Fort Peck Lake scenario 3 inflows 96
Figure 143. Fort Peck Lake scenario 4 inflows 96
Figure 144. Fort Peck Lake scenario 5 inflows 97
Figure 145. Fort Peck Lake scenario 6 inflows 97
Figure 146. Fort Peck Lake scenario 7 inflows 98
Figure 147. Fort Peck Lake scenario 8 inflows 98
Figure 148. Fort Peck Lake scenario 9 inflows 99
Figure 149. Lake Sakakawea scenario 1 inflows 99
Figure 150. Lake Sakakawea scenario 2 inflows 100
Figure 151. Lake Sakakawea scenario 3 inflows 100
Figure 152. Lake Sakakawea scenario 4 inflows 101
Figure 153. Lake Sakakawea scenario 5 inflows 101
Figure 154. Lake Sakakawea scenario 6 inflows 102
Figure 155. Lake Sakakawea scenario 7 inflows 102
Figure 156. Lake Sakakawea scenario 8 inflows 103
Figure 157. Lake Sakakawea scenario 9 inflows 103
Figure 158. Lake Oahe scenario 1 inflows 104
Figure 159. Lake Oahe scenario 2 inflows 104
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>193</td>
<td>Lake Sakakawea scenario 9 outflows</td>
<td>121</td>
</tr>
<tr>
<td>194</td>
<td>Lake Oahe scenario 1 outflows</td>
<td>122</td>
</tr>
<tr>
<td>195</td>
<td>Lake Oahe scenario 2 outflows</td>
<td>122</td>
</tr>
<tr>
<td>196</td>
<td>Lake Oahe scenario 3 outflows</td>
<td>123</td>
</tr>
<tr>
<td>197</td>
<td>Lake Oahe scenario 4 outflows</td>
<td>123</td>
</tr>
<tr>
<td>198</td>
<td>Lake Oahe scenario 5 outflows</td>
<td>124</td>
</tr>
<tr>
<td>199</td>
<td>Lake Oahe scenario 6 outflows</td>
<td>124</td>
</tr>
<tr>
<td>200</td>
<td>Lake Oahe scenario 7 outflows</td>
<td>125</td>
</tr>
<tr>
<td>201</td>
<td>Lake Oahe scenario 8 outflows</td>
<td>125</td>
</tr>
<tr>
<td>202</td>
<td>Lake Oahe scenario 9 outflows</td>
<td>126</td>
</tr>
<tr>
<td>203</td>
<td>Lake Francis Case scenario 1 outflows</td>
<td>126</td>
</tr>
<tr>
<td>204</td>
<td>Lake Francis Case scenario 2 outflows</td>
<td>127</td>
</tr>
<tr>
<td>205</td>
<td>Lake Francis Case scenario 3 outflows</td>
<td>127</td>
</tr>
<tr>
<td>206</td>
<td>Lake Francis Case scenario 4 outflows</td>
<td>128</td>
</tr>
<tr>
<td>207</td>
<td>Lake Francis Case scenario 5 outflows</td>
<td>128</td>
</tr>
<tr>
<td>208</td>
<td>Lake Francis Case scenario 6 outflows</td>
<td>129</td>
</tr>
<tr>
<td>209</td>
<td>Lake Francis Case scenario 7 outflows</td>
<td>129</td>
</tr>
<tr>
<td>210</td>
<td>Lake Francis Case scenario 8 outflows</td>
<td>130</td>
</tr>
<tr>
<td>211</td>
<td>Lake Francis Case scenario 9 outflows</td>
<td>130</td>
</tr>
<tr>
<td>212</td>
<td>Fort Peck Lake scenario 1 inflow temperatures</td>
<td>131</td>
</tr>
<tr>
<td>213</td>
<td>Lake Sakakawea scenario 1 inflow temperatures</td>
<td>132</td>
</tr>
<tr>
<td>214</td>
<td>Lake Sakakawea scenario 2 inflow temperatures</td>
<td>132</td>
</tr>
<tr>
<td>215</td>
<td>Lake Sakakawea scenario 3 inflow temperatures</td>
<td>133</td>
</tr>
<tr>
<td>216</td>
<td>Lake Sakakawea scenario 4 inflow temperatures</td>
<td>133</td>
</tr>
<tr>
<td>217</td>
<td>Lake Sakakawea scenario 5 inflow temperatures</td>
<td>134</td>
</tr>
<tr>
<td>218</td>
<td>Lake Sakakawea scenario 6 inflow temperatures</td>
<td>134</td>
</tr>
<tr>
<td>219</td>
<td>Lake Sakakawea scenario 7 inflow temperatures</td>
<td>135</td>
</tr>
<tr>
<td>220</td>
<td>Lake Sakakawea scenario 8 inflow temperatures</td>
<td>135</td>
</tr>
<tr>
<td>221</td>
<td>Lake Sakakawea scenario 9 inflow temperatures</td>
<td>136</td>
</tr>
<tr>
<td>222</td>
<td>Lake Oahe scenario 1 inflow temperatures</td>
<td>136</td>
</tr>
<tr>
<td>223</td>
<td>Lake Oahe scenario 2 inflow temperatures</td>
<td>137</td>
</tr>
<tr>
<td>224</td>
<td>Lake Oahe scenario 3 inflow temperatures</td>
<td>137</td>
</tr>
<tr>
<td>225</td>
<td>Lake Oahe scenario 4 inflow temperatures</td>
<td>138</td>
</tr>
</tbody>
</table>
Figure 282. Fort Peck Lake computed release temperatures for scenario 6 168
Figure 283. Fort Peck Lake computed release temperatures for scenario 7 168
Figure 284. Fort Peck Lake computed release temperatures for scenario 8 169
Figure 285. Fort Peck Lake computed release temperatures for scenario 9 169
Figure 286. Fort Peck Lake release DO concentrations for scenario 1 170
Figure 287. Fort Peck Lake release DO concentrations for scenario 2 170
Figure 288. Fort Peck Lake release DO concentrations for scenario 3 171
Figure 289. Fort Peck Lake release DO concentrations for scenario 4 171
Figure 290. Fort Peck Lake release DO concentrations for scenario 5 172
Figure 291. Fort Peck Lake release DO concentrations for scenario 6 172
Figure 292. Fort Peck Lake release DO concentrations for scenario 7 173
Figure 293. Fort Peck Lake release DO concentrations for scenario 8 173
Figure 294. Fort Peck Lake release DO concentrations for scenario 9 174
Figure 295. Lake Sakakawea LRS versus CE-QUAL-W2 water surface elevations for scenario 1 175
Figure 296. Lake Sakakawea LRS versus CE-QUAL-W2 water surface elevations for scenario 2 175
Figure 297. Lake Sakakawea LRS versus CE-QUAL-W2 water surface elevations for scenario 3 176
Figure 298. Lake Sakakawea LRS versus CE-QUAL-W2 water surface elevations for scenario 4 176
Figure 299. Lake Sakakawea LRS versus CE-QUAL-W2 water surface elevations for scenario 5 177
Figure 300. Lake Sakakawea LRS versus CE-QUAL-W2 water surface elevations for scenario 6 177
Figure 301. Lake Sakakawea LRS versus CE-QUAL-W2 water surface elevations for scenario 7 178
Figure 302. Lake Sakakawea LRS versus CE-QUAL-W2 water surface elevations for scenario 8 178
Figure 303. Lake Sakakawea LRS versus CE-QUAL-W2 water surface elevations for scenario 9 179
Figure 304. Lake Sakakawea release temperatures for scenario 1 179
Figure 305. Lake Sakakawea release temperatures for scenario 2 180
Figure 306. Lake Sakakawea release temperatures for scenario 3 180
Figure 307. Lake Sakakawea release temperatures for scenario 4 181
Figure 308. Lake Sakakawea release temperatures for scenario 5 181
Figure 309. Lake Sakakawea release temperatures for scenario 6 182
Figure 310. Lake Sakakawea release temperatures for scenario 7 182
Figure 311. Lake Sakakawea release temperatures for scenario 8 183
Figure 312. Lake Sakakawea release temperatures for scenario 9 183
Figure 313. Lake Sakakawea release DO concentrations for scenario 1 184
Figure 314. Lake Sakakawea release DO concentrations for scenario 2 185
Figure 315. Lake Sakakawea release DO concentrations for scenario 3 185
Figure 316. Lake Sakakawea release DO concentrations for scenario 4 186
Figure 317. Lake Sakakawea release DO concentrations for scenario 5 186
Figure 318. Lake Sakakawea release DO concentrations for scenario 6 187
Figure 319. Lake Sakakawea release DO concentrations for scenario 7 187
Figure 320. Lake Sakakawea release DO concentrations for scenario 8 188
Figure 321. Lake Sakakawea release DO concentrations for scenario 9 188
Figure 322. Lake Oahe LRS versus CE-QUAL-W2 water surface elevations for scenario 1 189
Figure 323. Lake Oahe LRS versus CE-QUAL-W2 water surface elevations for scenario 2 190
Figure 324. Lake Oahe LRS versus CE-QUAL-W2 water surface elevations for scenario 3 190
Figure 325. Lake Oahe LRS versus CE-QUAL-W2 water surface elevations for scenario 4 191
Figure 326. Lake Oahe LRS versus CE-QUAL-W2 water surface elevations for scenario 5 191
Figure 327. Lake Oahe LRS versus CE-QUAL-W2 water surface elevations for scenario 6 192
Figure 328. Lake Oahe LRS versus CE-QUAL-W2 water surface elevations for scenario 7 192
Figure 329. Lake Oahe LRS versus CE-QUAL-W2 water surface elevations for scenario 8 193
Figure 330. Lake Oahe LRS versus CE-QUAL-W2 water surface elevations for scenario 9 193
Figure 331. Lake Oahe release temperatures for scenario 1 194
Figure 332. Lake Oahe release temperatures for scenario 2 194
Figure 333. Lake Oahe release temperatures for scenario 3 195
Figure 334. Lake Oahe release temperatures for scenario 4 195
Figure 335. Lake Oahe release temperatures for scenario 5 196
Figure 336. Lake Oahe release temperatures for scenario 6 196
Figure 337. Lake Oahe release temperatures for scenario 7 197
Figure 338. Lake Oahe release temperatures for scenario 8 197
Figure 339. Lake Oahe release temperatures for scenario 9 198
Figure 340. Lake Oahe release DO concentrations for scenario 1 ... 198
Figure 341. Lake Oahe release DO concentrations for scenario 2 ... 199
Figure 342. Lake Oahe release DO concentrations for scenario 3 ... 199
Figure 343. Lake Oahe release DO concentrations for scenario 4 ... 200
Figure 344. Lake Oahe release DO concentrations for scenario 5 ... 200
Figure 345. Lake Oahe release DO concentrations for scenario 6 ... 201
Figure 346. Lake Oahe release DO concentrations for scenario 7 ... 201
Figure 347. Lake Oahe release DO concentrations for scenario 8 ... 202
Figure 348. Lake Oahe release DO concentrations for scenario 9 ... 202
Figure 349. Lake Francis Case LRS versus CE-QUAL-W2 water surface elevations for scenario 1 203
Figure 350. Lake Francis Case LRS versus CE-QUAL-W2 water surface elevations for scenario 2 203
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>378</td>
<td>Fort Peck Lake plot of stage-discharge versus suitable habitat for March</td>
<td>219</td>
</tr>
<tr>
<td>379</td>
<td>Fort Peck Lake plot of stage-discharge versus suitable habitat for April</td>
<td>220</td>
</tr>
<tr>
<td>380</td>
<td>Fort Peck Lake plot of stage-discharge versus suitable habitat for May</td>
<td>220</td>
</tr>
<tr>
<td>381</td>
<td>Fort Peck Lake plot of stage-discharge versus suitable habitat for June</td>
<td>221</td>
</tr>
<tr>
<td>382</td>
<td>Fort Peck Lake plot of stage-discharge versus suitable habitat for July</td>
<td>221</td>
</tr>
<tr>
<td>383</td>
<td>Fort Peck Lake plot of stage-discharge versus suitable habitat for August</td>
<td>222</td>
</tr>
<tr>
<td>384</td>
<td>Fort Peck Lake plot of stage-discharge versus suitable habitat for September</td>
<td>222</td>
</tr>
<tr>
<td>385</td>
<td>Fort Peck Lake plot of stage-discharge versus suitable habitat for October</td>
<td>223</td>
</tr>
<tr>
<td>386</td>
<td>Fort Peck Lake plot of stage-discharge versus suitable habitat for November</td>
<td>223</td>
</tr>
<tr>
<td>387</td>
<td>Fort Peck Lake plot of stage-discharge versus suitable habitat for December</td>
<td>224</td>
</tr>
<tr>
<td>388</td>
<td>Lake Sakakawea plot of stage-discharge versus suitable habitat for January</td>
<td>225</td>
</tr>
<tr>
<td>389</td>
<td>Lake Sakakawea plot of stage-discharge versus suitable habitat for February</td>
<td>226</td>
</tr>
<tr>
<td>390</td>
<td>Lake Sakakawea plot of stage-discharge versus suitable habitat for March</td>
<td>226</td>
</tr>
<tr>
<td>391</td>
<td>Lake Sakakawea plot of stage-discharge versus suitable habitat for April</td>
<td>227</td>
</tr>
<tr>
<td>392</td>
<td>Lake Sakakawea plot of stage-discharge versus suitable habitat for May</td>
<td>227</td>
</tr>
<tr>
<td>393</td>
<td>Lake Sakakawea plot of stage-discharge versus suitable habitat for June</td>
<td>228</td>
</tr>
<tr>
<td>394</td>
<td>Lake Sakakawea plot of stage-discharge versus suitable habitat for July</td>
<td>228</td>
</tr>
<tr>
<td>395</td>
<td>Lake Sakakawea plot of stage-discharge versus suitable habitat for August</td>
<td>229</td>
</tr>
<tr>
<td>396</td>
<td>Lake Sakakawea plot of stage-discharge versus suitable habitat for September</td>
<td>229</td>
</tr>
</tbody>
</table>
List of Tables

Table 1. Correspondence between 1930's drought years and surrogate years ... 3
Table 2. Summary of reservoir hydrology for 1978 and 1979 ... 15
Table 3. Final values for coefficients adjusted during Fort Peck Lake temperature calibration 41
Table 4. Lake Fort Peck calibrated sediment and water column oxygen demand. 44
Table 5. Final values for coefficients adjusted during Lake Sakakawea temperature calibration 55
Table 6. Lake Sakakawea calibrated sediment and water column oxygen demand 58
Table 7. Final values for coefficients adjusted during Lake Oahe temperature calibration 70
Table 8. Lake Oahe calibrated sediment and water column oxygen demand .. 72
Table 9. Final values for coefficients adjusted during Lake Francis Case temperature calibration 83
Table 10. Lake Francis Case calibrated sediment and water column oxygen demand 85
Table 11. Summary of Scenarios .. 94
Table 12. Fort Peck Lake suitable habitat regression coefficients and statistics ... 218

Table 13. Lake Sakakawea suitable habitat regression coefficients and statistics 225

Table 14. Lake Oahe suitable habitat regression coefficients and statistics .. 232

Table 15. Lake Francis Case suitable habitat regression coefficients and statistics .. 239
Preface

The report herein was prepared by the Environmental Laboratory (EL), U.S. Army Engineer Waterways Experiment Station (WES), Vicksburg, MS, for use by engineers, scientists, and resource managers in the U.S. Army Engineer Division, Missouri River. It provides information on determining the effects of operational changes in the Upper Missouri River Reservoir System on suitable coldwater fish habitat. The study was sponsored by the Missouri River Division as part of the Missouri River Water Control Manual Review.

The authors of this report were Messrs. Thomas M. Cole and John G. Skogerboe, EL, and Messrs. Michael L. Schneider, Ronald E. Heath, and Herman O. Turner, Hydraulics Laboratory (HL), WES. This report was prepared under the direct supervision of Mr. Cole and under the general supervision of Dr. Mark S. Dortch, Chief, Water Quality and Contaminant Modeling Branch, EL; Mr. Donald L. Robey, Chief, Environmental Processes and Effects Division, EL; and Dr. John W. Keeley, Director, EL. Mr. Frank Hermann was Director, HL.

At the time of publication of this report, Director of WES was Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.

This report should be cited as follows:

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
Conversion Factors, Non-SI to SI Units of Measurement

Non-Si units of measurement used in this report can be converted to SI units as follows:

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To Obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>acres</td>
<td>4,046.873</td>
<td>square meters</td>
</tr>
<tr>
<td>acre-feet</td>
<td>1,233,489</td>
<td>cubic meters</td>
</tr>
<tr>
<td>cubic feet</td>
<td>0.02831685</td>
<td>cubic meters</td>
</tr>
<tr>
<td>feet</td>
<td>0.3048</td>
<td>meters</td>
</tr>
<tr>
<td>Fahrenheit degrees</td>
<td>5/9</td>
<td>Celsius degrees</td>
</tr>
<tr>
<td>miles (U.S. statute)</td>
<td>1.609347</td>
<td>kilometers</td>
</tr>
</tbody>
</table>

1 To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use the following formula: $C = (5/9)(F - 32)$.
1 Introduction

Background

The U.S. Army Engineer Division, Missouri River (MRD) controls water resources on the main stem Missouri River to fulfill project purposes authorized in the 1930’s and 1940’s. Since authorization, considerable demographic, social, economic, and political changes have occurred in the region. In 1990, MRD began reevaluating the Missouri River Master Water Control Manual to meet the changing priorities of the system. The goal was to develop methods of impact assessment that would help MRD identify and promote equitable use of resources for authorized purposes.

Purpose

The purpose of this study was to provide MRD with the ability to predict the effects of reservoir operational changes on suitable coldwater fish habitat in Fort Peck Lake, Lake Sakakawea, Lake Oahe, and Lake Francis Case. Coldwater fish habitat is defined as water less than or equal to 15°C and greater than or equal to 5 mg/l DO. The only system operational variables which can be changed are end-of-month stages and monthly average releases. Results of this study must therefore predict suitable coldwater fish habitat as a function of these two variables. The results will be incorporated into MRD’s Long Range System model (LRS) and will be used to predict suitable coldwater fish habitat under various operational alternatives.

Approach

Fort Peck Lake, Lake Sakakawea, and Lake Oahe are long, narrow, deep-storage reservoirs. Reservoirs of this type typically exhibit both longitudinal and vertical water quality gradients (Cole and Hannan, 1990). The likelihood of two-dimensional (2D) water quality gradients dictated the use of a 2D water quality model. The 2D water quality model, CE-QUAL-W2, was chosen to model temperature and dissolved oxygen (DO) and ultimately suitable coldwater fish habitat. Although Lake Francis Case more closely resembles a run-of-the-river reservoir in which longitudinal gradients may be negligible, it was also modeled using CE-QUAL-W2.
Since operational changes in an upstream reservoir could affect the downstream reservoir, the four reservoirs were modeled in series in which releases from the upstream reservoir were routed to the downstream reservoir. This required developing temperature and DO routing equations for the riverine reaches between reservoirs.

Evaluation of operational alternatives using the LRS model involves modeling a 92 year period using historical flows. Meteorologic data necessary to drive the water quality model during this historical period were not available prior to 1950. Therefore, a different approach was needed to produce results for coldwater fish habitat analysis for the 92 year period. The approach used was to model 30 years and produce regression relationships relating stage and discharge to suitable coldwater fish habitat.

The 30 years had to encompass the expected range of operating conditions used in the 92 year LRS simulations - specifically, the drought of the 1930’s had to be incorporated into the 30 year simulations. The drought of the 1930’s was represented by surrogate years in which years with available meteorologic data were chosen to represent the drought based on yearly runoff from above Sioux City, SD. Table 1 shows the correspondence between surrogate years and drought years. Nine 30 year operational scenarios developed by MRD were then run to produce monthly regressions relating stage and discharge to suitable coldwater fish habitat. The monthly regressions will be used to predict habitat for all of the operational alternatives proposed by the MRD.

Typically, DO is modeled along with a full suite of water quality variables including algal/nutrient interactions. Lack of available algal/nutrient data necessitated a different approach. DO was assumed to be a function of sediment and water column oxygen demands which were adjusted during calibration to reproduce the average DO depletion during summer stratification. The drawback to this approach is that operational changes which might affect algal/nutrient interactions cannot be predicted. This approach also precluded modeling algal blooms and die-offs during model calibration. Results from this study show only how physical factors relating to changes in reservoir stage and discharge affect DO.

Model Description

CE-QUAL-W2 is a 2-D (longitudinal-vertical), hydrodynamic and water quality model developed for rivers, lakes, reservoirs, and estuaries (Environmental and Hydraulics Laboratories, 1986; Martin, 1987; Martin, 1988). It is based upon the LARM model originally developed by Edinger and Buchak (1978). The model is capable of making long-term predictions of hydrodynamics and in-pool and release temperature and water quality con-
Table 1. Correspondence between 1930’s drought years and surrogate years

<table>
<thead>
<tr>
<th>Drought Year</th>
<th>Runoff (acre-ft)</th>
<th>Surrogate Year</th>
<th>Runoff (acre-ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1930</td>
<td>18,452,000</td>
<td>1980</td>
<td>18,687,000</td>
</tr>
<tr>
<td>1931</td>
<td>10,701,000</td>
<td>1988</td>
<td>12,352,000</td>
</tr>
<tr>
<td>1932</td>
<td>19,463,000</td>
<td>1956</td>
<td>19,418,000</td>
</tr>
<tr>
<td>1933</td>
<td>18,166,000</td>
<td>1989</td>
<td>17,700,000</td>
</tr>
<tr>
<td>1934</td>
<td>11,164,000</td>
<td>1988</td>
<td>12,352,000</td>
</tr>
<tr>
<td>1935</td>
<td>14,323,000</td>
<td>1977</td>
<td>16,080,000</td>
</tr>
<tr>
<td>1936</td>
<td>14,339,000</td>
<td>1977</td>
<td>16,080,000</td>
</tr>
<tr>
<td>1937</td>
<td>14,315,000</td>
<td>1977</td>
<td>16,080,000</td>
</tr>
<tr>
<td>1938</td>
<td>20,652,000</td>
<td>1980</td>
<td>18,687,000</td>
</tr>
<tr>
<td>1939</td>
<td>17,271,000</td>
<td>1989</td>
<td>17,700,000</td>
</tr>
<tr>
<td>1940</td>
<td>12,101,000</td>
<td>1988</td>
<td>12,352,000</td>
</tr>
<tr>
<td>1941</td>
<td>16,714,000</td>
<td>1955</td>
<td>16,410,000</td>
</tr>
</tbody>
</table>

stiuents. It is best suited for waterbodies that are relatively long and narrow exhibiting water quality gradients in both the longitudinal and vertical directions. The model has been used extensively by Government and private firms in the United States and throughout the world to investigate water quality problems. An extensive bibliography is given as a separate section in the References.

The model represents a reservoir as a grid of longitudinal segments and vertical layers having a length and height defined by the user. The width for each cell is defined as the surface area at the mid-height of the cell divided by the segment length. Predictions from the model represent values of temperature or a water quality constituent averaged over the length, height, and width of a cell. CE-QUAL-W2 has the following capabilities that were important in this study:

1. Multiple branches
2. Autostepping (automatic adjustment of timestep to maintain hydrodynamic stability)
3. Layer/segment addition and subtraction
4. Ice cover

The following improvements to the model were implemented during calibration to the Upper Missouri River reservoirs:

1. A higher-order explicit transport algorithm (QUICKEST, Leonard, 1979) in the longitudinal and vertical, and a time-weighted, implicit transport algorithm in the vertical
were added to the model. These improvements were necessary to more accurately reproduce the temperature gradient in the thermocline.

2. A fully implicit, vertical diffusion algorithm was implemented to eliminate density inversions during periods of rapid cooling.

3. An improved ice-cover algorithm was implemented to more accurately reproduce ice-in and ice-out dates.

4. A selective withdrawal algorithm was implemented to more accurately reproduce observed release temperatures.

Site Description

The modeled system consists of five reservoirs and two stretches of the Missouri River - Fort Peck Lake, Lake Sakakawea, Lake Oahe, Lake Sharp, Lake Francis Case, and the Missouri River below Fort Peck Dam and Garrison Dam (Lake Sakakawea) (Figure 1). Lake Sharpe was treated similarly to the Missouri River stretches. Release temperatures from Oahe Dam were routed as inflows to Lake Francis Case taking into account the travel time in Lake Sharpe (see page 29 for further details on the routing procedure).

Figure 1. Map of the Upper Missouri River system modeled for this study
Fort Peck Lake

Fort Peck Dam is located in eastern Montana on the Missouri River about 18 miles southeast of Glasgow (Figure 2). The major tributaries to the main body of Fort Peck Lake are the Missouri River and the Musselshell River. Because of the proximity of the upstream boundary and the confluence with the Musselshell River, inflows from both rivers were combined and treated as a single inflow at the upstream boundary. The primary inflow to the southern branch of Fort Peck Lake is Little Dry Creek. The two sampling stations used in calibration are located near the dam and midway up the reservoir near Hell Creek.

Lake Sakakawea

Garrison Dam is located in central North Dakota at Missouri River mile 1390 about 75 miles northwest of Bismark (Figure 3). The major tributaries to Lake Sakakawea are the Missouri River and the Little Missouri River. The Missouri River enters Lake Sakakawea upstream of Williston, MT. Flows at this point consist primarily of inflows from the Yellowstone and Milk Rivers and releases from Fort Peck Dam. The two sampling stations used in calibrating the model are located near the dam and a little over midway upstream from the dam near New Town.
Lake Oahe

Oahe Dam is located in central South Dakota on the Missouri River just north of Pierre, South Dakota (Figure 4). The Missouri River enters Lake Oahe just downstream from Bismarck, ND. Flow at this point is primarily from Garrison dam releases. The Cheyenne River is the other significant inflow. The two sampling stations used in calibrating the model are located near the dam and about two-thirds of the way upstream from the dam near Pollack.

Lake Francis Case

Fort Randall Dam is located on the Missouri River in southeastern South Dakota near the Nebraska state line (Figure 5). Lake Francis Case, formed by Fort Randall Dam, is 107 miles in length. The upstream boundary of Lake Francis Case is Big Bend Dam (river mile 988). Inflows to Lake Francis Case are from the White River and Crow Creek and releases from Big Bend Dam. The two sampling stations used in calibrating the model are located near Fort Randall Dam and a little over midway upstream from the dam near Elm Creek.

Figure 4. Lake Oahe study area showing sampling station locations

Figure 5. Lake Francis Case study area showing sampling station locations
2 Input Data

Bathymetry

CE-QUAL-W2 requires the reservoir be discretized into longitudinal segments and vertical layers that may vary in length and height. An average width must then be defined for each active cell where an active cell is defined as potentially containing water. Additionally, every branch has inactive cells at the upstream and downstream segments and top layer. Inactive cells are also located below the bottom active cell in each segment. Segment lengths and layer heights for all four reservoirs were constant for a given branch.

Once the segment lengths and layer weights were finalized, average widths were then determined for each cell from sediment range data obtained from the Omaha district. A computer program was written to average widths for each cell using linear interpolation.

Fort Peck Lake

The computational grid is shown in Figure 6. The reservoir was discretized into two branches with a total of 49 segments and 32 layers. Segments are numbered horizontally and layers are numbered vertically. Inactive cells are seen as blank spaces on the grid (i.e., segments 35 and 36). Branch one (segments 1-35) is the mainstem portion of Lake Fort Peck and branch two (segments 36-49) is the Big Dry Creek arm of the reservoir. Cells were 5km long and 2m high. A comparison of computed volume-area-elevation curves and U.S. Army Corps of Engineers (USACE) data is given in Figure 7.
Figure 6. Fort Peck Lake computational grid

Figure 7. Fort Peck Lake computed versus USACE volume-area-elevation curves.
Lake Sakakawea

The computational grid is shown in Figure 8. The reservoir was discretized into two branches with a total of 66 segments and 31 layers. Branch one (segments 1-55) is the mainstem portion of Lake Sakakawea and branch two (segments 56-66) is the Little Missouri River arm of the reservoir. Cells were 5km long and 2m high. A comparison of computed volume-area-elevation curves and USACE data is given in Figure 9.
Figure 8. Lake Sakakawea computational grid
Figure 9. Lake Sakakawea computed versus USACE volume-area-elevation curves.

Lake Oahe

The computational grid is shown in Figure 10. The reservoir was discretized into two branches with a total of 47 segments and 34 layers. Branch one (segments 1-37) is the mainstem portion of Lake Oahe and branch two (segments 38-47) is the Cheyenne River arm of the reservoir. Cells in branch one were 10km long and 2m high. Cells in branch two were 5km long and 2m high. A comparison of computed volume-area-elevation curves and USACE data is given in Figure 11.
Figure 10. Lake Oahe computational grid
Figure 11. Lake Oahe computed versus USACE volume-area-curves.

Lake Francis Case

The computational grid is shown in Figure 12. The reservoir was discretized into one branch with a total of 45 segments and 25 layers. Cells were 4km long and 2m high. A comparison of computed volume-area-elevation curves and USACE data is given in Figure 13.

Figure 12. Lake Francis Case computational grid
Inflow and Outflow

When determining which years to include for calibration, one of the first considerations is to choose years or conditions that reflect as wide a range of pool elevations, inflow/outflow, and meteorologic conditions as possible. The years 1978 and 1980 had the widest range of inflow/outflow of the years that had sufficient water quality data for calibration. Table 2 summarizes the flows and residence times for each reservoir for 1978 and 1980. Inflows and outflows are shown in Figure 14–Figure 21.
Table 2. Summary of reservoir hydrology for 1978 and 1979

<table>
<thead>
<tr>
<th>Reservoir</th>
<th>Year</th>
<th>Statistic</th>
<th>Inflow cfs</th>
<th>Outflow cfs</th>
<th>Elevation, ft</th>
<th>Residence Time, years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fort Peck Lake</td>
<td>1978</td>
<td>Min</td>
<td>2,291</td>
<td>0</td>
<td>2,227.5</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>90,425</td>
<td>15,285</td>
<td>2,250.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>14,971</td>
<td>11,671</td>
<td>2,241.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1980</td>
<td>Min</td>
<td>32</td>
<td>5,789</td>
<td>2,234.6</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>30,283</td>
<td>14,579</td>
<td>2,242.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>8,952</td>
<td>10,463</td>
<td>2,237.8</td>
<td></td>
</tr>
<tr>
<td>Lake Sakakawea</td>
<td>1978</td>
<td>Min</td>
<td>5,189</td>
<td>6,321</td>
<td>1,826.2</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>120,831</td>
<td>39,687</td>
<td>1,849.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>30,474</td>
<td>28,111</td>
<td>1,839.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1980</td>
<td>Min</td>
<td>2,316</td>
<td>16,803</td>
<td>1,833.6</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>44,587</td>
<td>29,703</td>
<td>1,842.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>19,153</td>
<td>22,994</td>
<td>1,838.0</td>
<td></td>
</tr>
<tr>
<td>Lake Oahe</td>
<td>1978</td>
<td>Min</td>
<td>9,473</td>
<td>0</td>
<td>1,594.8</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>58,500</td>
<td>54,306</td>
<td>1,616.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>29,064</td>
<td>29,768</td>
<td>1,608.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1980</td>
<td>Min</td>
<td>5,449</td>
<td>0</td>
<td>1,596.3</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>38,676</td>
<td>54,607</td>
<td>1,608.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>22,282</td>
<td>35,598</td>
<td>1,602.7</td>
<td></td>
</tr>
<tr>
<td>Lake Francis Case</td>
<td>1978</td>
<td>Min</td>
<td>8</td>
<td>801</td>
<td>1,337.8</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>100,033</td>
<td>53,208</td>
<td>1,362.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>31,235</td>
<td>32,453</td>
<td>1,363.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1980</td>
<td>Min</td>
<td>10</td>
<td>6,297</td>
<td>1,338.1</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>69,011</td>
<td>41,689</td>
<td>1,358.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>25,331</td>
<td>25,621</td>
<td>1,360.3</td>
<td></td>
</tr>
</tbody>
</table>
Figure 14. Fort Peck Lake 1978 inflows and outflows

Figure 15. Fort Peck Lake 1980 inflows and outflows
Figure 16. Lake Sakakawea 1978 inflows and outflows

Figure 17. Lake Sakakawea 1980 inflows and outflows
Figure 18. Lake Oahe 1978 inflows and outflows

Figure 19. Lake Oahe 1980 inflows and outflows
Figure 20. Lake Francis Case 1978 inflows and outflows

Figure 21. Lake Francis Case 1980 inflows and outflows
Meteorology

CE-QUAL-W2 requires air and dew-point temperature, wind speed and direction, and cloud cover for surface heat exchange and ice-cover computations. Previously, equilibrium temperatures were used in computing heat exchange and ice-cover. The new ice-cover algorithm employs a term-by-term solution in which the individual components of surface heat exchange are computed from the same meteorologic variables used previously in the equilibrium temperature computations. Hourly values for all meteorologic variables were obtained from first-order weather stations located in Glasgow, MT, Williston, ND, and Pierre, SD. Meteorologic inputs are shown in Figure 22-Figure 39.

![Fort Peck Lake 1978 Air and Dew Point Temperatures](image)

Figure 22. Fort Peck Lake 1978 air/dew-point temperatures from Glasgow, MT
Figure 23. Fort Peck Lake 1980 air/dew-point temperatures for Glasgow, MT

Figure 24. Fort Peck Lake 1978 wind speeds from Glasgow, MT
Figure 25. Fort Peck Lake 1980 wind speeds from Glasgow, MT

Figure 26. Fort Peck Lake 1978 cloud cover from Glasgow, MT
Figure 27. Fort Peck Lake 1980 cloud cover from Glasgow, MT

Figure 28. Lake Sakakawea 1978 air/dew-point temperatures from Williston, ND

Chapter 2 - Input Data

23
Figure 29. Lake Sakakawea 1980 air/dew-point temperatures for Williston, ND

Figure 30. Lake Sakakawea 1978 wind speeds from Williston, ND
Figure 31. Lake Sakakawea 1980 wind speeds from Williston, ND

Figure 32. Lake Sakakawea 1978 cloud cover from Williston, ND
Figure 33. Lake Sakakawea 1980 cloud cover from Williston, ND

Figure 34. Lake Oahe and Lake Francis Case 1978 air/dew-point temperatures from Pierre, SD
Figure 35. Lake Oahe and Lake Francis Case 1980 air/dew-point temperatures from Pierre, SD

Figure 36. Lake Oahe and Lake Francis Case 1978 wind speeds from Pierre, SD
Figure 37. Lake Oahe and Lake Francis Case 1980 wind speeds from Pierre, SD

Figure 38. Lake Oahe and Lake Francis Case 1978 cloud cover from Pierre, SD
Inflow Temperatures

Daily inflow temperatures were determined from regressions relating observed inflow temperatures to equilibrium temperatures. These values were used during the initial calibration of the reservoirs. However, since the scenarios would require linking the reservoirs in series with release temperatures routed downstream and used as inflow boundary conditions to the lower reservoir, this same method was used to obtain inflow temperatures for the lower three reservoirs during final calibration. The original regressed inflow temperatures were used for Fort Peck Lake.

Daily average values were used for routing inflow temperatures. Equation (1) was used to route the temperatures.

\[T_r = T_e + (T_o - T_e) e^{\left(-\frac{K_h}{h}\right)} \]

where

- \(T_r \) = routed inflow temperature
- \(T_e \) = average daily equilibrium temperature
- \(T_o \) = upstream release temperature
- \(K_h \) = coefficient of surface heat exchange
- \(h \) = average river depth over the reach
- \(t \) = travel time from upstream dam
Inflow temperatures are shown in Figure 40-Figure 47.

Figure 40. Fort Peck Lake 1978 regressed inflow temperatures

Figure 41. Fort Peck Lake 1980 regressed inflow temperatures
Figure 42. Lake Sakakawea 1978 routed inflow temperatures

Figure 43. Lake Sakakawea 1980 routed inflow temperatures
Figure 44. Lake Oahe 1978 routed inflow temperatures

Figure 45. Lake Oahe 1980 routed inflow temperatures
Figure 46. Lake Francis Case 1978 routed inflow temperatures

Figure 47. Lake Francis Case 1980 routed inflow temperatures
Inflow DO

Data were not available for inflow DO for the calibration years. The assumption was made that all inflow DO concentrations were saturated. Saturated DO concentrations were calculated from equation (2) in the same routing program used in determining inflow temperatures:

$$ DO = e^{7.7117 -1.314 \cdot [\ln(T_r) + 45.93]} \left[1 - \frac{E_i}{44.3} \right]^{5.25} $$ \hspace{1cm} (2)

where

- $DO = \text{dissolved oxygen concentration, mg l}^{-1}$
- $T_r = \text{routed temperature, } ^{\circ}C$
- $E_i = \text{elevation at the inflow, m}$

Inflow DO is shown in Figure 48-Figure 55.

![Figure 48. Fort Peck Lake 1978 inflow DO](image)

Chapter 2 - Input Data
Figure 49. Fort Peck Oahe 1980 inflow DO

Figure 50. Lake Sakakawea 1978 inflow DO
Figure 51. Lake Sakakawea 1980 inflow DO

Figure 52. Lake Oahe 1978 inflow DO
Figure 53. Lake Oahe 1980 inflow DO

Figure 54. Lake Francis Case 1978 inflow DO
Figure 55. Lake Francis Case 1980 inflow DO
3 Calibration

Fort Peck Lake 1978 Simulation

Water Surface Elevations

Computed and observed 1978 water surface elevations are shown in Figure 56. The net increase in storage was 12.7 ft with elevations ranging from 2,227.7 ft to 2,249.6 ft. Differences in computed and observed stages were less than 0.5 ft throughout the year.

![Figure 56. Fort Peck Lake 1978 computed versus observed water surface elevations at dam.](image)

Ice Cover

Computed ice cover is shown in Figure 57. Ice-out was predicted on April 17. Reported ice-out occurred on April 18. Reported ice-in occurred on January 14, 1979. No ice-in date was available from the 1978 simulation since the run did not continue into 1979.
Temperature

There are several important points to keep in mind when interpreting temperature predictions from CE-QUAL-W2. First, temperature predictions are averaged over the length, height, and width of a cell. Observed data represent temperature at a specific point in space. Also, predictions for all stations were output at 12 noon that may or may not be the same time of day at which measurements were taken since there was no record of when observed measurements were taken during the day. Also, meteorologic data from one station is applied to the entire reservoir. These caveats are most evident in discrepancies between predicted and observed epilimnetic temperatures when observed data may be taken early in the morning or late in the afternoon or when a weather front has moved through the reservoir at a different time than at the meteorologic station.

Table 3 shows the values of all coefficients that affect temperature and ice computations. Although nearly all values were varied during the calibration, all values were set back to their default values for the final calibration. Also, all values were the same for the four reservoirs. Temperature predictions were most sensitive to changes in the wind sheltering coefficient.

Station Near Dam. Observed and computed temperature profiles are shown in Figure 58 and Figure 59. Computed and observed profiles were generally in close agreement until July 21 when the model predicted lower hypolimnetic temperatures than observed. The August 3 profile showed similar discrepancies. However, by August 21, the computed hypolimnetic temperatures were considerably warmer than the observed. Observed hypolimnetic temperatures show considerable cooling took place between August 3 and August 21 that the model did not capture. Analysis of observed air temperatures (Figure 22, page
Table 3. Final values for coefficients adjusted during Fort Peck Lake temperature calibration

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal eddy viscosity</td>
<td>1.0 m²s⁻¹</td>
</tr>
<tr>
<td>Minimum vertical eddy viscosity</td>
<td>1.4 x 10⁻⁷ m² s⁻¹</td>
</tr>
<tr>
<td>Horizontal eddy diffusivity</td>
<td>1.0 m² s⁻¹</td>
</tr>
<tr>
<td>Minimum vertical eddy diffusivity</td>
<td>1.4 x 10⁻⁸ m² s⁻¹</td>
</tr>
<tr>
<td>Bottom frictional resistance</td>
<td>70.0 m³s⁻¹</td>
</tr>
<tr>
<td>Fraction of solar radiation absorbed at the water surface</td>
<td>0.45</td>
</tr>
<tr>
<td>Light extinction - water</td>
<td>0.40 m⁻¹</td>
</tr>
<tr>
<td>Fraction of solar radiation absorbed in the ice surface</td>
<td>0.60</td>
</tr>
<tr>
<td>Light extinction - ice</td>
<td>0.07 m⁻¹</td>
</tr>
<tr>
<td>Wind sheltering coefficient</td>
<td>1.0</td>
</tr>
<tr>
<td>Ice albedo</td>
<td>0.25</td>
</tr>
<tr>
<td>Water-to-ice heat exchange</td>
<td>10.0 W m⁻³ °C⁻¹</td>
</tr>
</tbody>
</table>

20) shows that the first significant cooling event occurred in the middle of September and not between August 3 and August 21. Since the meteorological data drive the temperature predictions, the model could not capture the observed changes in temperature during this time period. On September 14, the model significantly underpredicted the epilimnetic temperature. This is the time of the previously mentioned cold spell in the observed data and the model is responding to the colder air temperatures. By October 5, the reservoir had overturned. The model predicts nearly complete overturn.
Figure 58. Fort Peck Lake 1978 computed versus observed temperatures at station near dam, January 27 - August 3

Figure 59. Fort Peck Lake 1978 computed versus observed temperatures at station near dam, August 21 - October 5

Station Near Hell Creek. Observed and computed temperature profiles are given in Figure 60 and Figure 61. Computed versus observed temperatures follow the same trend as temperatures at the station near the dam with the exception that the October 3 computed profile had undergone fall overturn whereas the observed profile was still stratified. Apparently, the reservoir was in the process of overturn in the first week of October since the October 5 observed profile at the dam was isothermal.
Figure 60. Fort Peck Lake 1978 computed versus observed temperature profiles at station near Hell Creek, February 13 - August 2

Figure 61. Fort Peck Lake 1978 computed versus observed temperature profiles at station near Hell Creek, August 19 - October 3

Release Temperature. Computed and observed release temperatures are shown in Figure 62. They are in close agreement until October when the model predicts colder release temperatures than observed. Again, air temperatures (Figure 22, page 20) show a marked decrease at the beginning of October.
consistent with model predictions and not with observed release temperatures. The computed rate of increase and decrease and the maximum release temperature are nearly identical to observed.

![Temperature vs. Time Graph](image)

Figure 62. Fort Peck Lake 1978 computed versus observed release temperatures.

Dissolved Oxygen

As previously stated, insufficient water quality data existed to model algal/nutrient/DO dynamics. Instead, a "black box" approach was used that required specifying a zero-order sediment and water column oxygen demand. Values were adjusted until a reasonable fit with observed data was obtained which best represented the average oxygen demand during summer stratification. Final values for sediment and water column oxygen demand are given in Table 4.

Station Near Dam. Initial DO concentrations were set at saturated values for the beginning of the simulation. As a result, predicted DO on January 27 was much greater than observed throughout the water column. After overturn in April, the model was in close agreement with observed data (Figure 63). By July 6, observed hypolimnetic DO had decreas-
ed by ≈ 3 mg l$^{-1}$. Computed DO was slightly higher. The observed data for August 21 indicate that hypolimnetic DO had increased which is questionable. Computed and observed DO are in close agreement on October 5 just after overturn.

![Figure 63. Fort Peck Lake 1978 computed versus observed DO at station near dam](image)

Station Near Hell Creek. Computed DO is in close agreement with observed until May 22 when there was a significant oxygen deficit the model did not capture (Figure 64 and Figure 65). This event is most likely due to a spring phytoplankton bloom and die-off that the formulation for DO used in this study would not be able to capture. By August 19, computed and observed DO were back in agreement. The discrepancy between computed and observed DO on October 3 is due to the model having predicted overturn at this station that is not in agreement with observed temperature data.
Figure 64. Fort Peck Lake 1978 computed versus observed DO at station near Hell Creek, February 13 - August 24

Figure 65. Fort Peck Lake 1978 computed versus observed DO at station near Hell Creek, October 3

Release DO. Computed release DO concentrations are shown in Figure 66.
Fort Peck Lake 1980 Simulation

Water Surface Levels

Computed and observed 1980 water surface elevations are shown in Figure 67. The net decrease in storage was 6.1 ft with elevations ranging from 2,235.9 ft to 2,242.0 ft. Differences in computed and observed stages were less than 0.5 ft throughout the year.
Ice Cover

Computed ice cover is shown in Figure 68. Reported ice-out was on April 18 and computed ice-out was on April 19. Reported ice-in occurred on February 12, 1981. No computed ice-in date was available from the 1980 simulation since the run did not continue into 1981.

Figure 68. Fort Peck Lake 1980 computed ice cover

Temperature

Station Near Dam. Observed and computed temperature profiles are shown in Figure 69 and Figure 70. Computed and observed profiles are in close agreement until July 21 when the model predicted much lower hypolimnetic temperatures than observed. Temperatures were in closer agreement by August 11 when the observed hypolimnetic temperatures had cooled by several degrees. By August 22, computed and observed temperatures were in nearly exact agreement. Between July 21 and August 22, observed hypolimnetic temperatures had decreased by $\approx 8^\circ$F. If the observed data were correct, then the most likely explanation for the decrease in hypolimnetic temperatures during the hottest part of summer is displacement of hypolimnetic water near the dam because of internal seiching. More evidence of this phenomena can be seen in both Lake Sakakawea and Lake Oahe. By October 8, the model predicts nearly complete overturn while the observed data show the presence of a thermocline near 120 ft.
Figure 69. Fort Peck Lake 1980 computed versus observed temperatures at station near Hell Creek, February 26 - August 5

Figure 70. Fort Peck Lake 1980 computed versus observed temperatures at station near Hell Creek, August 21 - October 7

Station Near Hell Creek. Computed versus observed temperatures are shown in Figure 71 and Figure 72. With the exception of May 21, computed and observed temperatures are in reasonable agreement. The erosion of the thermocline between June 25 and July 9 was captured by the model. The model predicted complete overturn by October 7 while observed data still showed some stratification.
Figure 71. Fort Peck Lake 1980 computed versus observed temperatures at station near dam, February 25 - August 11

Figure 72. Fort Peck Lake 1980 computed versus observed temperatures at station near dam, August 22 - October 8

Release Temperature. Computed and observed release temperatures are shown in Figure 73. Computed temperatures are in close agreement with observations with the exception that release temperatures decreased earlier in the fall than observed, although not as early as in 1978. As in 1978, the rate of increase and decrease and maximum release temperature were nearly identical.
Figure 73. Fort Peck Lake 1980 computed versus observed release temperatures

Dissolved Oxygen

Station Near Dam. Computed versus observed DO profiles are given in Figure 73, Figure 74. With the exception of October 8, computed and observed profiles are in general agreement. In June and July, Fort Peck Lake exhibited a classic clinograde DO profile typical of dimictic, oligotrophic lakes. The model also reflected this pattern. The rapid decline in DO between the end of August and October is again most likely due to a phytoplankton bloom and die-off that has exerted a tremendous water column oxygen demand. The depth of the thermocline at this date is ≈ 120 ft and DO should be nearly saturated in the epilimnion as the reservoir is undergoing fall overturn. The presence of a significant oxygen deficit in the epilimnion suggests rapid decay or tremendous phytoplankton respiration.
Figure 74. Fort Peck Lake 1980 computed versus observed DO at station near dam

Station Near Hell Creek. Computed and observed DO profiles are shown in Figure 75. As in 1978, greater discrepancies between computed and observed DO profiles are found at this station than at the dam suggesting that phytoplankton blooms play a more important role in determining variations in DO. With the exceptions of July 9 and October 7, the model captures the trends in DO at this station. The model does not capture the DO deficits in spring and fall. However, the model does predict the overall oxygen demand during summer stratification by predicting fairly closely the observed DO on August 21. As in the station near the dam, there is evidence of a large phytoplankton bloom and die-off on October 7 that the model cannot capture.
Figure 75. Fort Peck Lake 1980 computed versus observed DO at station near Hell Creek

Release DO. Computed release DO concentrations are shown in Figure 76.

Figure 76. Fort Peck Lake 1980 computed release DO
Lake Sakakawea 1978 Simulation

Water Surface Elevations

Computed and observed 1978 water surface elevations are shown in Figure 77. The net increase in storage was 24.5 ft with elevations ranging from 1,825.0 ft to 1,849.5 ft. Differences in computed and observed stages were less than 0.5 ft throughout the year.

![Graph showing water surface elevations for Lake Sakakawea 1978](image)

Figure 77. Lake Sakakawea 1978 computed versus observed water surface elevations at dam

Ice Cover

Computed ice cover is shown in Figure 78. Reported ice-out was on April 22 and computed ice-out was on April 16. Reported ice-in occurred on January 17, 1979. No ice-in date was available from the 1978 simulation since it did not continue into 1979.
Figure 78. Lake Sakakawea 1978 computed ice cover

Temperature

Table 5 gives the values of all coefficients affecting temperature and ice computations. As in the Fort Peck calibration, all values except for the minimum vertical eddy diffusivity were reset to default values for the final calibration run.

Table 5. Final values for coefficients adjusted during Lake Sakakawea temperature calibration

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal eddy viscosity</td>
<td>1.0 m² s⁻¹</td>
</tr>
<tr>
<td>Minimum vertical eddy viscosity</td>
<td>1.4 x 10⁻⁷ m² s⁻¹</td>
</tr>
<tr>
<td>Horizontal eddy diffusivity</td>
<td>1.0 m² s⁻¹</td>
</tr>
<tr>
<td>Minimum vertical eddy diffusivity</td>
<td>1.4 x 10⁻⁶ m² s⁻¹</td>
</tr>
<tr>
<td>Bottom frictional resistance</td>
<td>70.0 m² s⁻¹</td>
</tr>
<tr>
<td>Fraction of solar radiation absorbed at the water surface</td>
<td>0.45</td>
</tr>
<tr>
<td>Light extinction - water</td>
<td>0.40 m⁻¹</td>
</tr>
<tr>
<td>Fraction of solar radiation absorbed in the ice surface</td>
<td>0.60</td>
</tr>
<tr>
<td>Light extinction - ice</td>
<td>0.07 m⁻¹</td>
</tr>
<tr>
<td>Wind sheltering coefficient</td>
<td>1.0</td>
</tr>
<tr>
<td>Ice albedo</td>
<td>0.25</td>
</tr>
<tr>
<td>Water-to-ice heat exchange</td>
<td>10.0 W m⁻²°C⁻¹</td>
</tr>
</tbody>
</table>

Station Near Dam. Observed and computed temperature profiles are shown in Figure 79 and Figure 80. Computed and observed profiles were generally in close agreement until August when profiles were taken one day apart. These two profiles illustrate some of the problems when calibrating water quality models to observed data. Although they were taken only one day apart, there is
a discernable difference in temperature at 100 ft. The model overpredicts hypolimnetic temperatures for both dates, but the difference appears to be more pronounced on August 16. On September 20, observed data indicate that the reservoir had overturned and then restratified while the model predicts nearly complete overturn but temperatures are \(\approx 8^\circ F\) higher than observed. By October 11, the reservoir has overturned and computed and observed temperatures are in close agreement. Between September 20 and October 11, the observed data show the reservoir has heated up by \(\approx 5^\circ F\). The model predicts a temperature decrease during this time that appears more reasonable based on air temperature during this period.

Figure 79. Lake Sakakawea 1978 computed versus observed temperatures at station near dam, February 14 - August 15

Figure 80. Lake Sakakawea 1978 computed versus observed temperatures at station near dam, September 20 - October 11
Station near New Town. Computed versus observed temperatures are shown in Figure 81 and Figure 82. Except for the profile on May 4, computed temperatures are in fairly close agreement with observed temperatures. Profiles on August 17 and 18 illustrate the day-to-day variability that can occur in temperature. Computed hypolimnetic temperatures are warmer than observed while one day later they are colder. Observed data in September show that the reservoir at this station had overturned as do the computed temperatures.

Figure 81. Lake Sakakawea 1978 computed versus observed temperatures at station near New Town, February - August 18

Figure 82. Lake Sakakawea 1978 computed versus observed temperatures at station near New Town, September 19 - October 20
Release Temperature. Computed versus observed release temperatures are shown in Figure 83. Computed release temperatures are generally in close agreement with observed release temperatures. The greatest discrepancies occur in June and July where computed temperatures are less than observed. As in Fort Peck Lake, the model predicts colder temperatures during the fall although the differences are not as pronounced. The model does not capture the lowest temperatures during December.

![Lake Sakakawea 1978 Computed vs. Observed Release Temperatures](image)

Figure 83. Lake Sakakawea 1978 computed versus observed release temperatures

Dissolved Oxygen

Values for sediment and water column oxygen demand were adjusted until a reasonable fit with observed data was obtained that best represented the average oxygen demand during summer stratification. Although oxygen deficits occurred during the winter months, only a small emphasis was placed on calibrating DO during the winter months. The assumption was made that the winter DO and temperature profiles would not have an impact on suitable fish habitat.

<table>
<thead>
<tr>
<th>Segment</th>
<th>Sediment, g m² day⁻¹</th>
<th>Water Column, g m² day⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>11-20</td>
<td>0.3-0.2</td>
<td>0.1-0.01</td>
</tr>
<tr>
<td>21-54</td>
<td>0.2</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table 6. Lake Sakakawea calibrated sediment and water column oxygen demand
Station Near Dam. Computed versus observed DO concentrations are shown in Figure 84 and Figure 85. The February 14 observed profile shows that a considerable oxygen demand existed during the winter months when the reservoir was under ice cover. The model did not capture the observed decrease in hypolimnetic DO. Apparently, there is a greater hypolimnetic oxygen demand during the winter months than during the summer since the minimum observed DO is less in February than in August. The present formulation for DO would not be able to account for the low DO in February. The formulation for DO demand in the model reduces oxygen uptake with decreasing temperatures. Either respiration rates are not dependent upon temperature in Lake Sakakawea (highly unlikely) or there is a greater concentration of organic matter during the winter. The remainder of the profiles are in close agreement. The clinograde profiles are typical of deep, oligotrophic lakes.

Figure 84. Lake Sakakawea 1978 computed versus observed DO at station near dam, February 14 - August 16
Figure 85. Lake Sakakawea 1978 computed versus observed DO at station near dam

Station Near New Town. Computed versus observed DO concentrations are shown in Figure 86 and Figure 87. Unlike the predictions near the dam on February 15, the model is predicting a relatively large decrease in DO with depth. Computed DO concentrations are in close agreement throughout the remainder of the year. A greater oxygen depletion is apparent at this station than at the dam that is consistent with the model predictions.

Figure 86. Lake Sakakawea 1978 computed versus observed DO at station near New Town, February 15 - August 18
Figure 87. Lake Sakakawea 1978 computed versus observed DO at station near New Town, September 19 - October 20

Release DO. Computed release DO concentrations are shown in Figure 88. As stated previously, the model did not capture the observed DO depletion during the winter months at the station near the dam. However, the release DO did show a constant decrease throughout the winter until ice-out.

Figure 88. Lake Sakakawea 1980 release DO
Lake Sakakawea 1980 Simulation

Water Surface Elevations

Computed versus observed water surface elevations are shown in Figure 89. The net decrease in storage was 8.4 ft with elevations ranging from 1,842.0 ft to 1,833.6 ft. Differences in computed and observed stages were less than 0.5 ft throughout the year.

Figure 89. Lake Sakakawea 1980 computed versus observed water surface elevations at dam

Ice Cover

Computed ice cover is shown in Figure 90. Reported ice-out was on April 24 and computed ice-out was on April 17. Reported ice-in was on January 3, 1979. No ice-in date was available from the 1980 simulation since it did not continue into 1981.
Temperature

Figure 90. Lake Sakakawea 1980 computed ice cover

Figure 91. Lake Sakakawea 1980 computed versus observed temperatures at station near dam, February 1 - July 31

Station Near Dam. Computed versus observed temperatures are shown in Figure 91 and Figure 92. Temperatures are generally in close agreement with the exception of June 3 when the model overpredicts epilimnetic temperatures by $\approx 8^\circ\text{F}$.
Figure 92. Lake Sakakawea 1980 computed versus observed temperatures at station near dam, September 19 - October 1

Station near New Town. Computed versus observed temperatures are shown in Figure 93 and Figure 94. Computed temperatures during the summer stratification period are in fairly close agreement with observed data. Computed temperatures during the spring and fall are consistently higher than observed temperatures.

Figure 93. Lake Sakakawea 1980 computed versus observed temperatures at station near New Town, February 2 - July 17
Figure 94. Lake Sakakawea 1980 computed versus observed temperatures at station near New Town, September 11 - September 30

Release Temperatures. Computed versus observed release temperatures are shown in Figure 95. Computed temperatures are in close agreement with observed until the beginning of October when they begin to decrease. Observed release temperatures do not begin to decrease until the end of October. Air temperatures drop rapidly at the beginning of October and the model is responding to the drop in air temperature.

Figure 95. Lake Sakakawea 1980 release temperatures

Dissolved Oxygen

Station Near Dam. Computed versus observed DO concentrations are shown in Figure 96 and Figure 97. A significant oxygen demand during the winter months is again evident in 1980. The April 30 observed data show a decrease of \(\approx 6\text{mg}^l^{-1}\) from the surface to the bottom. By June 3 following spring overturn, computed DO is in close agreement with observed. The profile on July
14 shows almost complete agreement between computed and observed data while the model overpredicts hypolimnetic DO on July 2 and July 31. More faith was placed in the July 14 data set for two reasons. First, the observed data were more extensive. Second, if the July 2 observed data is correct, then hypolimnetic DO has increased = 2-3 mg l⁻¹ between July 2 and July 14 (assuming that the July 14 data set is correct). There is no mechanism in the model that would allow the hypolimnetic DO to increase during summer stratification.

![Diagram showing DO concentration over depth for different dates](image)

Figure 96. Lake Sakakawea 1980 computed versus observed DO at station near dam, February 1 - July 31

On September 19, the reservoir is in the process of fall overturn. Again, if the more extensive data set on this date is assumed to be correct, then hypolimnetic DO must have increased from the end of July to the middle of September. The October 1 observed profile shows a significant oxygen deficit in the hypolimnion even though the temperature profile on this date shows that the reservoir has overturned. There is no mechanism in the DO formulation that could account for this.
Station Near New Town. Computed versus observed profiles are shown in Figure 98 and Figure 99. During the winter and spring, the supersaturated DO indicate a large algal bloom was present at the upstream station that the model cannot capture. DO is also consistently overpredicted during the summer. Water column and sediment oxygen demand could have been increased to more closely match the observed data, but this would affect the 1978 predictions that were in close agreement. The judgement was that the DO at this station was responding to the winter/spring algal bloom that resulted in a much higher oxygen demand at this station during 1980. It was assumed that this bloom was atypical after reviewing water quality data from other years. Therefore, values for water column and sediment oxygen demand were used from the 1978 simulation and were not adjusted for the 1980 data.

Figure 98. Lake Sakakawea 1980 computed versus observed DO at station near New Town, February 2 - July 30
Release DO. Computed release DO concentrations are given in Figure 100.

Lake Oahe 1978 Simulation

Water Surface Elevations

Computed versus observed 1978 water surface elevations are shown in Figure 101. The net increase in storage was 21 ft with elevations ranging from 1595 ft to 1616 ft. Computed and observed stages were in close agreement throughout the year.
Figure 101. Lake Oahe 1978 computed versus observed water surface elevations at dam

Ice Cover

Computed ice cover is shown in Figure 102. Predicted ice-out occurred on April 7 while reported ice-out occurred on April 8. Reported ice-in occurred on January 3, 1979. No ice-in date was available from the 1978 simulation since the run did not continue into 1979.

Figure 102. Lake Oahe 1978 computed ice cover

Temperature

Table 7 gives the values of all coefficients affecting temperature and ice computations. As in the Fort Peck and Sakakawea calibrations, all values except for the minimum vertical eddy diffusivity were reset to default values for the final calibration runs.
Table 7. Final values for coefficients adjusted during Lake Oahe temperature calibration

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal eddy viscosity</td>
<td>1.0 m² s⁻¹</td>
</tr>
<tr>
<td>Minimum vertical eddy viscosity</td>
<td>1.4 x 10⁻⁷ m² s⁻¹</td>
</tr>
<tr>
<td>Horizontal eddy diffusivity</td>
<td>1.0 m² s⁻¹</td>
</tr>
<tr>
<td>Minimum vertical eddy diffusivity</td>
<td>1.4 x 10⁻⁴ m² s⁻¹</td>
</tr>
<tr>
<td>Bottom frictional resistance</td>
<td>70.0 m³ s⁻¹</td>
</tr>
<tr>
<td>Fraction of solar radiation absorbed at the water surface</td>
<td>0.45</td>
</tr>
<tr>
<td>Light extinction - water</td>
<td>0.40 m⁻¹</td>
</tr>
<tr>
<td>Fraction of solar radiation absorbed in the ice surface</td>
<td>0.60</td>
</tr>
<tr>
<td>Light extinction - ice</td>
<td>0.07 m⁻¹</td>
</tr>
<tr>
<td>Wind sheltering coefficient</td>
<td>1.0</td>
</tr>
<tr>
<td>Ice albedo</td>
<td>0.25</td>
</tr>
<tr>
<td>Water-to-ice heat exchange</td>
<td>10.0 W m² °C⁻¹</td>
</tr>
</tbody>
</table>

Station near Dam. Computed versus observed temperatures are given in Figure 103 and Figure 104. Observed hypolimnetic temperatures exhibited an interesting behavior of periodically increasing and then decreasing temperatures throughout the summer stratification period. Although not as prevalent, this behavior was also observed in the 1980 data. Assuming that the data are correct, the most likely explanation for this behavior is internal seiching due to winds that causes the thermocline to tilt back and forth. As the thermocline tilts downwards at the dam, hypolimnetic temperatures would increase. As the thermocline tilted upwards at the dam, hypolimnetic temperatures would decrease. This is speculation, but lacking any further data, is a plausible explanation of the observed temperatures. Computed temperatures are in close agreement on July 24 and August 17 but are several degrees colder on July 14 and August 9. Overall, they are in good agreement with the observed data throughout the entire year.
Figure 103. Lake Oahe 1978 computed versus observed temperatures at station near dam, March 8 - August 9

Figure 104. Lake Oahe 1978 computed versus observed temperatures at station near dam, August 17 - October 13
Station near Pollack. Computed versus observed temperatures are shown in Figure 105. Computed temperatures capture the trends throughout the year. The March, April, and October computed profiles are isothermal as are the observed profiles. The May, July, and August profiles are slightly stratified as are the observed profiles.

| Temperature, °F | Temperature, °F | Temperature, °F |
| Depth, ft | Depth, ft | Depth, ft |

| Temperature, °F | Temperature, °F | Temperature, °F |
| Depth, ft | Depth, ft | Depth, ft |

Figure 105. Lake Oahe 1978 computed versus observed temperatures at station near Pollack

Release Temperatures. Computed versus observed release temperatures are shown in Figure 106. Computed temperatures are in general agreement with observed. Unlike Fort Peck Lake and, to a lesser extent Lake Sakakawea, the computed time at which release temperatures begin to decline is in close agreement with the observed time. A much greater variability in computed release temperatures occurs in Lake Oahe compared to Fort Peck Lake and Lake Sakakawea most likely due to the greater variability in releases.

Dissolved Oxygen

Values for sediment and water column oxygen demand were adjusted until a reasonable fit with observed data was obtained that best represented the average oxygen demand during summer stratification. Table 8 shows the values used for sediment and

<table>
<thead>
<tr>
<th>Segment</th>
<th>Sediment, g m⁻² day⁻¹</th>
<th>Water Column, g m⁻³ day⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-13</td>
<td>0.2</td>
<td>0.05</td>
</tr>
<tr>
<td>14-22</td>
<td>0.19-0.11</td>
<td>0.04-0.02</td>
</tr>
<tr>
<td>23-43</td>
<td>0.1</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Table 8. Lake Oahe calibrated sediment and water column oxygen demand
Figure 106. Lake Oahe 1978 computed versus observed release temperatures

water oxygen demand for both years of calibration.

Station Near Dam. Computed versus observed DO concentrations are shown in Figure 107. Observed DO in March and April under ice cover are supersaturated from algal production of DO. The May profile shows close agreement between computed and observed DO just after spring overturn. The July and August computed profiles during summer stratification are typical clino- grade DO profiles and are also in close agreement with observed DO. The October profile does not capture the supersaturated conditions at the dam. The supersaturation is likely due to an algal bloom that the present formulation for DO cannot reproduce.

Station Near Pollack. Computed versus observed DO concentrations are shown in Figure 108. With the exception of the August profile, computed DO is in agreement with observed DO. The increase in DO from top to bottom in the computed August profile must be due to an underflow bringing oxygenated waters to the hypolimnion since the reservoir is stratified at this station on this date.
Figure 107. Lake Oahe 1978 computed versus observed DO at station near dam

Figure 108. Lake Oahe 1978 computed versus observed DO at station near Pollack

Release DO. Computed release DO is shown in Figure 109.
Figure 109. Lake Oahe 1978 release DO

Lake Oahe 1980 Simulation

Water Surface Elevations

Computed versus observed water surface elevations are shown in Figure 110. The net decrease in storage was 11.8 ft with elevations ranging from 1,596.4 ft to 1,608.2 ft. Differences in computed and observed stages were less than 0.5 ft throughout the year.

Figure 110. Lake Oahe 1980 computed versus observed water surface elevations
Ice Cover

Computed ice cover is shown in Figure 111. Ice-out was predicted on April 19 and reported ice-out occurred on April 8. Reported ice-in occurred on January 3, 1981. No ice-in date was available from the 1980 simulation since the run did not continue into 1981.

![Lake Oahe 1980 Computed Ice Cover](image)

Figure 111. Lake Oahe 1980 computed ice cover

Temperature

Station Near Dam. Computed versus observed temperatures are shown in Figure 112 and Figure 113. The April and May computed profiles are in close agreement with observed data. The observed hypolimnetic temperature in June is $> 5^\circ F$ warmer than in July possibly due to seiching. Computed temperatures are lower than observed in June, but the July and August profiles are in close agreement. At the start of overturn in September, the computed depth of the thermocline is below the observed depth. Six days later, the observed depth of the thermocline is deeper than the computed depth. This is an excellent demonstration of the variability of temperature profiles during fall overturn. Computed temperatures may have been in much closer agreement either one day earlier or later. By October 22, the model predicted complete overturn. Observed data showed the reservoir was slightly stratified.
Figure 112. Lake Oahe 1980 computed versus observed temperatures at station near Dam, April 22 - September 13

Figure 113. Lake Oahe 1980 computed versus observed temperatures at station near Dam, September 19 - October 22

Station Near Pollock. Computed versus observed temperatures are shown in Figure 114 and Figure 115. Computed temperatures are in close agreement with observed throughout the year. The model correctly predicts stratified conditions in April and May with virtually no stratification throughout the summer.
Release Temperature. Computed versus observed release temperatures are shown in Figure 116. Computed temperatures are in general agreement with observed throughout the year. Computed release temperatures showed a much greater variability than any of the other reservoirs which is some evidence that the model may be capturing some of the internal seiching suspected to occur.

Dissolved Oxygen

Station near Dam. Computed versus observed DO concentrations are shown in Figure 117. Again, the model did not reproduce the supersaturated conditions in spring that were most likely due to an algal bloom. The remainder of the computed profiles were in general agreement with observed data. The
Figure 116. Lake Oahe 1980 computed versus observed release temperatures

computed profiles did not capture all of the hypolimnetic DO depletion in September and October.

Figure 117. Lake Oahe 1980 computed versus observed DO at station near dam

Station Near Pollack. Computed versus observed DO concentrations are shown in Figure 118 and Figure 119. For reasons mentioned previously, the model does not capture the supersaturated conditions in April and May.

Chapter 3 - Calibration
remainder of the computed profiles are in general agreement with observed data.

![Graphs of computed versus observed DO at various dates in Lake Oahe 1980.]

Figure 118. Lake Oahe 1980 computed versus observed DO at station near Pollack, April 29 - September 10

![Graph of computed versus observed DO at October 7, 1980.]

Figure 119. Lake Oahe 1980 computed versus observed DO at station near Pollack, October 7
Release DO. Computed release DO concentrations are shown in Figure 120.

Figure 120. Lake Oahe 1980 computed release DO

Lake Francis Case 1978 Simulation

Water Surface Elevations

Computed versus observed water surface elevations are shown in Figure 121. The net decrease in storage was 3 ft with elevations ranging from 1337.8 ft to 1362.6 ft. Differences in computed and observed stages were less than 0.5 ft throughout the year.

Figure 121. Lake Francis Case 1978 computed versus observed stages at dam
Ice Cover

Computed ice cover is shown in Figure 122. Reported ice-out was on April 3 and computed ice-out was on April 7. Reported ice-in was on December 24, 1978 and computed ice-in was on December 17. This is the only year out of 1978 and 1980 for all four reservoirs that reported ice-in and ice-out occurred during the same year. This is also the only year for all four reservoirs in which computed ice-in and ice-out occurred during the same year.

![Lake Francis Case 1978 Computed Ice Cover](image)

Figure 122. Lake Francis Case 1978 computed ice cover

Temperature

Unlike the upper three reservoirs, inflows to Lake Francis Case play a more dominant role in the heat budget. Residence time in 1978 for Lake Francis Case was \approx 2 months compared to \approx 2 years for Fort Peck Lake, \approx 1 year for Lake Sakakawea, and \approx 1 year for Lake Oahe. As a result, Lake Francis Case undergoes intermittent stratification during the summer. Table 9 gives the values of all coefficients affecting temperature and ice computations. As in the other three reservoirs, all values except for the minimum eddy diffusivity were reset to default values for the final calibration runs.

Station Near Dam. As mentioned previously, Lake Francis Case stratifies only briefly during the summer with much warmer hypolimnetic temperatures than the three upper reservoirs. The July 7 and 21 profiles are the only observed profiles that are stratified. These are the only times that computed profiles are stratified to any degree. The remainder of the observed profiles are essentially isothermal. Computed temperatures are in general agreement with observed for these dates (Figure 123 and Figure 124).
Table 9. Final values for coefficients adjusted during Lake Francis Case temperature calibration

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal eddy viscosity</td>
<td>1.0 m² s⁻¹</td>
</tr>
<tr>
<td>Minimum vertical eddy viscosity</td>
<td>1.4 x 10⁻⁷ m² s⁻¹</td>
</tr>
<tr>
<td>Horizontal eddy diffusivity</td>
<td>1.0 m² s⁻¹</td>
</tr>
<tr>
<td>Minimum vertical eddy diffusivity</td>
<td>1.4 x 10⁻⁶ m² s⁻¹</td>
</tr>
<tr>
<td>Bottom frictional resistance</td>
<td>70.0 m² s⁻¹</td>
</tr>
<tr>
<td>Fraction of solar radiation absorbed at the water surface</td>
<td>0.45</td>
</tr>
<tr>
<td>Light extinction - water</td>
<td>0.4 m⁻¹</td>
</tr>
<tr>
<td>Fraction of solar radiation absorbed in the ice surface</td>
<td>0.60</td>
</tr>
<tr>
<td>Light extinction - ice</td>
<td>0.07 m⁻¹</td>
</tr>
<tr>
<td>Wind sheltering coefficient</td>
<td>1.0</td>
</tr>
<tr>
<td>Ice albedo</td>
<td>0.25</td>
</tr>
<tr>
<td>Water-to-ice heat exchange</td>
<td>10.0 W m⁻² °C⁻¹</td>
</tr>
</tbody>
</table>

Figure 123. Lake Francis Case 1978 computed versus observed temperatures at station near dam, February 24 - August 18
Figure 124. Lake Francis Case 1978 computed versus observed temperatures at station near dam, September 15 - October 11

Station near Elm Creek. Computed versus observed temperatures are shown in Figure 125. With the exception of May 19, computed temperatures are in fairly close agreement with observed. This station shows no stratification during summer.

Figure 125. Lake Francis Case 1978 computed versus observed temperatures at station near Elm Creek
Release Temperatures. Computed versus observed release temperatures are shown in Figure 126. Computed release temperatures are in close agreement until August when computed temperatures are ≈ 5°F colder than observed. During this time, observed in-pool temperatures at the dam are 74°F at the surface to 7 °F at the bottom, computed in-pool temperatures are 72.4°F from top to bottom, and observed release temperatures are 75°F. Since observed release temperatures are greater than observed in-pool temperatures, there is obviously some error associated with either the observed release temperatures or observed in-pool temperatures. In any case, the maximum difference between computed and observed release temperatures is 3°F. As in Fort Peck Lake and Lake Sakakawea, computed release temperatures begin to decrease earlier in the fall than observed.

![Figure 126. Lake Francis Case 1978 computed versus observed release temperatures](image)

Dissolved Oxygen

Values for sediment and water column oxygen demand were adjusted until a reasonable fit with observed data was obtained that best represented the average oxygen demand during summer stratification. Table 10 gives the values for sediment and water column oxygen demand used in the 1978 and 1980 calibrations. Because of the short residence time, oxygen demand did not vary longitudinally as in the upstream reservoirs.

<table>
<thead>
<tr>
<th>Segment</th>
<th>Sediment, g m⁻³ day⁻¹</th>
<th>Water Column, g m⁻² day⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-40</td>
<td>0.5</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Station Near Dam. Computed versus observed DO concentrations are shown in Figure 127 and Figure 128. Except for April 22 and October 11 when the observed DO was supersaturated, computed and observed DO profiles are in
general agreement. During July when Lake Francis Case was stratified, computed hypolimnetic DO is in close agreement with observed.

Figure 127. Lake Francis Case 1978 computed versus observed DO at station near dam, February 24 - August 18

Figure 128. Lake Francis Case 1978 computed versus observed DO at station near dam, October 11

Station Near Elm Creek. Computed versus observed DO concentrations are shown in Figure 129. Since this station does not stratify, computed DO is saturated throughout the year. Deviations from observed data are due to DO uptake under ice-cover and algal produced supersaturation.
Figure 129. Lake Francis Case 1978 computed versus observed DO at station near Elm Creek

Release DO. Computed release DO concentrations are shown in Figure 130. Release DO concentration approaches 5 mg l\(^{-1}\) in August which is the lowest of the modeled reservoirs.

Figure 130. Lake Francis Case 1978 release DO
Lake Francis Case 1980 Simulation

Water Surface Elevations

Computed versus observed water surface elevations are shown in Figure 131. Water surface level decreased by 0.4 ft during 1980. Elevations ranged from 1,338.1 ft to 1,358.7 ft. Differences in computed and observed stages were less than 1 ft throughout the year.

![Lake Francis Case 1980 Computed vs. Observed Stages](image)

Figure 131. Lake Francis Case 1980 computed versus observed stages at dam

Ice Cover

Computed ice cover is shown in Figure 132. Reported ice-out was on April 3 and computed ice-out was on April 19. Reported ice-in was on January 8, 1981. No ice-in date was available from the 1980 simulation since it did not continue into 1981.
Temperature

Station Near Dam. Computed versus observed temperatures are shown in Figure 133 and Figure 134. Computed temperatures are consistently lower than observed temperatures throughout the simulation by ≈ 3-4°F with the exception of the profile in June. There are two possible sources of error for the under-prediction. Meteorologic data used in the heat exchange computations were obtained from Pierre, SD which is located upstream of Lake Sharpe approximately 120 miles northwest of the dam. Another possible source of error is the inflow temperatures obtained from Lake Sharpe releases since the residence time is so short in Lake Francis Case. The problem in determining the source of error is that the 1978 temperature predictions are in much closer agreement with observed data than the 1980 simulations. In any event, the model did show that the reservoir was slightly stratified from March to June which is in agreement with observed data. By August, both computed and observed profiles showed that the reservoir was very nearly isothermal.
Figure 133. Lake Francis Case 1980 computed versus observed temperatures at station near dam, April 24 - August 14

Figure 134. Lake Francis Case 1980 computed versus observed temperatures at station near dam, September 6 - October 9

Station Near Elm Creek. Computed versus observed temperatures are shown in Figure 135. Again, the model consistently underpredicts observed temperatures. The discrepancy is even greater at this station suggesting that the most likely source of error in temperature predictions is the inflow temperatures.
Release Temperature. Computed versus observed release temperatures are shown in Figure 136. As in 1978, computed release temperatures are consistently less than observed release temperatures starting in late July and continuing until late December. One source of error is the previously mentioned underprediction of temperatures at the dam. However, there is a discrepancy in the observed data in that the release temperatures in August are \(\approx 2^\circ F \) greater than the observed temperatures at the dam. For example, on August 11 the maximum in-pool temperature at the dam was 75°F while the observed release temperature was 78.8°F.
Figure 136. Lake Francis Case 1980 computed versus observed release temperatures

Dissolved Oxygen

Station Near Dam. Computed versus observed DO concentrations are shown in Figure 137. With the exception of April and May when the water column was supersaturated, computed and observed DO profiles are in close agreement.

Figure 137. Lake Francis Case 1980 computed versus observed DO at station near dam.
Station Near Elm Creek. Computed versus observed DO concentrations are shown in Figure 138. Observed DO profiles in April and May were supersaturated. An oxygen deficit existed in September and October which the model did not capture. Computed temperatures in July and August are in general agreement with observed.

Figure 138. Lake Francis Case 1980 computed versus observed DO at station near Elm Creek

Release DO. Computed release DO concentrations are shown in Figure 139.

Figure 139. Lake Francis Case 1980 computed release DO
4 Operational Scenarios

As stated in the introduction, nine operational scenarios were conducted that encompassed a 30 year period from 1960-1990. The first 11 years consisted of surrogate years that were intended to represent the drought of the 1930's while the remainder used actual data from 1972-1990. Table 11 summarizes the nine operational scenarios.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Study ID</th>
<th>Minimum Pool (acre-ft x 10^3)</th>
<th>Non-Navigation Releases (cfs x 10^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AFWQ1209</td>
<td>18.3</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>AIWQ1225</td>
<td>18.3</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>CFWQ1209</td>
<td>31.0</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>CHWQ1218</td>
<td>31.0</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>EFWQ1209</td>
<td>44.0</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>EHWQ1218</td>
<td>44.0</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>PFWQ1209</td>
<td>power series</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>PIWQ1225</td>
<td>power series</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>EVQ1</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Table 11. Summary of scenarios

Input Data

Inflows

Inflows for the surrogate years were obtained by combining the inflow and evaporation data with the actual depletion data for 1930-1941. The remaining years consisted of the actual inflow, evaporation, and depletion data.

Fort Peck Lake. Inflows for each scenario are given in Figure 140-Figure 148. Although differences in inflows existed for all nine scenarios, the differences were not as pronounced when compared to the other three reservoirs.
Figure 140. Fort Peck Lake scenario 1 inflows

Figure 141. Fort Peck Lake scenario 2 inflows
Figure 142. Fort Peck Lake scenario 3 inflows

Figure 143. Fort Peck Lake scenario 4 inflows
Figure 144. Fort Peck Lake scenario 5 inflows

Figure 145. Fort Peck Lake scenario 6 inflows
Figure 146. Fort Peck Lake scenario 7 inflows

Figure 147. Fort Peck Lake scenario 8 inflows
Lake Sakakawea. Inflows for the nine scenarios are given in Figure 149-Figure 157. Differences between scenarios are most obvious when comparing maximum and minimum flows for a given year. For example, the minimum inflows for years 5, 6, and 10 are much less for scenario two than for scenario one.
Figure 150. Lake Sakakawea scenario 2 inflows

Figure 151. Lake Sakakawea scenario 3 inflows
Figure 152. Lake Sakakawea scenario 4 inflows

Figure 153. Lake Sakakawea scenario 5 inflows
Figure 154. Lake Sakakawea scenario 6 inflows

Figure 155. Lake Sakakawea scenario 7 inflows
Figure 156. Lake Sakakawea scenario 8 inflows

Figure 157. Lake Sakakawea scenario 9 inflows
Lake Oahe. Inflows for the nine scenarios are given in Figure 158-Figure 166.

Figure 158. Lake Oahe scenario 1 inflows

Figure 159. Lake Oahe scenario 2 inflows
Figure 160. Lake Oahe scenario 3 inflows

Figure 161. Lake Oahe scenario 4 inflows
Figure 162. Lake Oahe scenario 5 inflows

Figure 163. Lake Oahe scenario 6 inflows
Figure 164. Lake Oahe scenario 7 inflows

Figure 165. Lake Oahe scenario 8 inflows
Figure 166. Lake Oahe scenario 9 inflows

Lake Francis Case. Inflows for the nine scenarios are given in Figure 167-Figure 175.

Figure 167. Lake Francis Case scenario 1 inflows
Figure 168. Lake Francis Case scenario 2 inflows

Figure 169. Lake Francis Case scenario 3 inflows
Figure 170. Lake Francis Case scenario 4 inflows

Figure 171. Lake Francis Case scenario 5 inflows
Figure 172. Lake Francis Case scenario 6 inflows

Figure 173. Lake Francis Case scenario 7 inflows
Figure 174. Lake Francis Case scenario 8 inflows

Figure 175. Lake Francis Case scenario 9 inflows
Releases

Fort Peck Lake. Releases for the nine scenarios are given in Figure 176-Figure 184.

Figure 176. Fort Peck Lake scenario 1 outflows

Figure 177. Fort Peck Lake scenario 2 outflows
Figure 178. Fort Peck Lake scenario 3 outflows

Figure 179. Fort Peck Lake scenario 4 outflows
Figure 180. Fort Peck Lake scenario 5 outflows

Figure 181. Fort Peck Lake scenario 6 outflows
Figure 182. Fort Peck Lake scenario 7 outflows

Figure 183. Fort Peck Lake scenario 8 outflows
Figure 184. Fort Peck Lake scenario 9 outflows

Lake Sakakawea. Releases for the nine scenarios are given in Figure 185-
Figure 193.

Figure 185. Lake Sakakawea scenario 1 outflows
Figure 186. Lake Sakakawea scenario 2 outflows

Figure 187. Lake Sakakawea scenario 3 outflows
Figure 188. Lake Sakakawea scenario 4 outflows

Figure 189. Lake Sakakawea scenario 5 outflows
Figure 190. Lake Sakakawea scenario 6 outflows

Figure 191. Lake Sakakawea scenario 7 outflows
Figure 192. Lake Sakakawea scenario 8 outflows

Figure 193. Lake Sakakawea scenario 9 outflows
Lake Oahe. Releases for the nine scenarios are given in Figure 194-
Figure 202.

Figure 194. Lake Oahe scenario 1 outflows

Figure 195. Lake Oahe scenario 2 outflows
Figure 196. Lake Oahe scenario 3 outflows

Figure 197. Lake Oahe scenario 4 outflows
Figure 198. Lake Oahe scenario 5 outflows

Figure 199. Lake Oahe scenario 6 outflows
Figure 200. Lake Oahe scenario 7 outflows

Figure 201. Lake Oahe scenario 8 outflows
Lake Francis Case. Releases for the nine scenarios are given in Figure 203-Figure 211.
Figure 204. Lake Francis Case scenario 2 outflows

Figure 205. Lake Francis Case scenario 3 outflows
Figure 206. Lake Francis Case scenario 4 outflows

Figure 207. Lake Francis Case scenario 5 outflows
Figure 208. Lake Francis Case scenario 6 outflows

Figure 209. Lake Francis Case scenario 7 outflows
Figure 210. Lake Francis Case scenario 8 outflows

Figure 211. Lake Francis Case scenario 9 outflows
Inflow Temperatures

Fort Peck Lake. Inflow temperatures for the nine scenarios are the same and are given in Figure 212.

![Graph showing temperature variations over years for Fort Peck Lake scenario 1.](image)

Figure 212. Fort Peck Lake scenario 1 inflow temperatures

Lake Sakakawea. Inflow temperatures for the nine scenarios are given in Figure 213-Figure 221.
Figure 213. Lake Sakakawea scenario 1 inflow temperatures

Figure 214. Lake Sakakawea scenario 2 inflow temperatures
Figure 215. Lake Sakakawea scenario 3 inflow temperatures

Figure 216. Lake Sakakawea scenario 4 inflow temperatures
Figure 217. Lake Sakakawea scenario 5 inflow temperatures

Figure 218. Lake Sakakawea scenario 6 inflow temperatures
Figure 219. Lake Sakakawea scenario 7 inflow temperatures

Figure 220. Lake Sakakawea scenario 8 inflow temperatures
Figure 221. Lake Sakakawea scenario 9 inflow temperatures

Lake Oahe. Inflow temperatures for the nine scenarios are given in Figure 222-Figure 230.

Figure 222. Lake Oahe scenario 1 inflow temperatures
Figure 223. Lake Oahe scenario 2 inflow temperatures

Figure 224. Lake Oahe scenario 3 inflow temperatures
Figure 225. Lake Oahe scenario 4 inflow temperatures

Figure 226. Lake Oahe scenario 5 inflow temperatures
Figure 227. Lake Oahe scenario 6 inflow temperatures

Figure 228. Lake Oahe scenario 7 inflow temperatures
Figure 229. Lake Oahe scenario 8 inflow temperatures

Figure 230. Lake Oahe scenario 9 inflow temperatures
Lake Francis Case. Inflow temperatures for the nine scenarios are given in Figure 231-Figure 239.

Figure 231. Lake Francis Case scenario 1 inflow temperatures

Figure 232. Lake Francis Case scenario 2 inflow temperatures
Figure 233. Lake Francis Case scenario 3 inflow temperatures

Figure 234. Lake Francis Case scenario 4 inflow temperatures
Figure 235. Lake Francis Case scenario 5 inflow temperatures

Figure 236. Lake Francis Case scenario 6 inflow temperatures
Figure 237. Lake Francis Case scenario 7 inflow temperatures

Figure 238. Lake Francis Case scenario 8 inflow temperatures
Figure 239. Lake Francis Case scenario 9 inflow temperatures

Inflow DO

Fort Peck Lake. Inflow DO for the nine scenarios are the same and are given in Figure 240.

Figure 240. Fort Peck Lake scenario 1 inflow DO
Lake Sakakawea. Inflow DO for the nine scenarios are given in Figure 241-Figure 249.

Figure 241. Lake Sakakawea scenario 1 inflow DO

Figure 242. Lake Sakakawea scenario 2 inflow DO
Figure 243. Lake Sakakawea scenario 3 inflow DO

Figure 244. Lake Sakakawea scenario 4 inflow DO
Figure 245. Lake Sakakawea scenario 5 inflow DO

Figure 246. Lake Sakakawea scenario 6 inflow DO
Figure 247. Lake Sakakawea scenario 7 inflow DO

Figure 248. Lake Sakakawea scenario 8 inflow DO
Figure 249. Lake Sakakawea scenario 9 inflow DO

Lake Oahe. Inflow DO for the nine scenarios are given in Figure 250-Figure 258

Figure 250. Lake Oahe scenario 1 inflow DO
Figure 251. Lake Oahe scenario 2 inflow DO

Figure 252. Lake Oahe scenario 3 inflow DO
Figure 253. Lake Oahe scenario 4 inflow DO

Figure 254. Lake Oahe scenario 5 inflow DO
Figure 255. Lake Oahe scenario 6 inflow DO

Figure 256. Lake Oahe scenario 7 inflow DO
Figure 257. Lake Oahe scenario 8 inflow DO

Figure 258. Lake Oahe scenario 9 inflow DO
Lake Francis Case. Inflow DO for the nine scenarios are given in Figure 259-Figure 267.

Figure 259. Lake Francis Case scenario 1 inflow DO

Figure 260. Lake Francis Case scenario 2 inflow DO
Figure 261. Lake Francis Case scenario 3 inflow DO

Figure 262. Lake Francis Case scenario 4 inflow DO
Figure 263. Lake Francis Case scenario 5 inflow DO

Figure 264. Lake Francis Case scenario 6 inflow DO
Figure 265. Lake Francis Case scenario 7 inflow DO

Figure 266. Lake Francis Case scenario 8 inflow DO
Figure 267. Lake Francis Case scenario 9 inflow DO
Scenarios

Fort Peck Lake

Water Surface Elevations. Water surface elevations for the nine scenarios are given in Figure 268-Figure 276. CE-QUAL-W2 predictions are in close agreement with LRS results.

![Graph showing Fort Peck Lake Scenario 1 LRS versus CE-QUAL-W2 Water Surface Elevations]

Figure 268. Fort Peck Lake LRS versus CE-QUAL-W2 water surface elevations for scenario 1
Figure 269. Fort Peck Lake LRS versus CE-QUAL-W2 water surface elevations for scenario 2

Figure 270. Fort Peck Lake LRS versus CE-QUAL-W2 water surface elevations for scenario 3
Figure 271. Fort Peck Lake LRS versus CE-QUAL-W2 water surface elevations for scenario 4

Figure 272. Fort Peck Lake LRS versus CE-QUAL-W2 water surface elevations for scenario 5
Figure 273. Fort Peck Lake LRS versus CE-QUAL-W2 water surface elevations for scenario 6

Figure 274. Fort Peck Lake LRS versus CE-QUAL-W2 water surface elevations for scenario 7
Figure 275. Fort Peck Lake LRS versus CE-QUAL-W2 water surface elevations for scenario 8

Figure 276. Fort Peck Lake LRS versus CE-QUAL-W2 water surface elevations for scenario 9
Release Temperatures. Release temperatures for the nine scenarios are given in Figure 277-Figure 285. Release temperatures are indicative of the temperature regime in the reservoir and can be used to identify which scenarios provide the most coldwater habitat. Scenarios one and two result in the highest release temperatures which is consistent with the water surface elevations that are the lowest of the nine scenarios.

Figure 277. Fort Peck Lake computed release temperatures for scenario 1
Figure 278. Fort Peck Lake computed release temperatures for scenario 2

Figure 279. Fort Peck Lake computed release temperatures for scenario 3
Figure 280. Fort Peck Lake computed release temperatures for scenario 4

Figure 281. Fort Peck Lake computed release temperatures for scenario 5
Figure 282. Fort Peck Lake computed release temperatures for scenario 6

Figure 283. Fort Peck Lake computed release temperatures for scenario 7
Figure 284. Fort Peck Lake computed release temperatures for scenario 8

Figure 285. Fort Peck Lake computed release temperatures for scenario 9
Release DO. Release DO concentrations for the nine scenarios are given in Figure 286-Figure 294.

![Figure 286. Fort Peck Lake release DO concentrations for scenario 1](image1)

![Figure 287. Fort Peck Lake release DO concentrations for scenario 2](image2)
Figure 288. Fort Peck Lake release DO concentrations for scenario 3

Figure 289. Fort Peck Lake release DO concentrations for scenario 4
Figure 290. Fort Peck Lake release DO concentrations for scenario 5

Figure 291. Fort Peck Lake release DO concentrations for scenario 6
Figure 292. Fort Peck Lake release DO concentrations for scenario 7

Figure 293. Fort Peck Lake release DO concentrations for scenario 8
Figure 294. Fort Peck Lake release DO concentrations for scenario 9

Lake Sakakawea

Water Surface Elevations. Water surface elevations for the nine scenarios are given in Figure 295-Figure 303.
Figure 295. Lake Sakakawea LRS versus CE-QUAL-W2 water surface elevations for scenario 1

Figure 296. Lake Sakakawea LRS versus CE-QUAL-W2 water surface elevations for scenario 2
Figure 297. Lake Sakakawea LRS versus CE-QUAL-W2 water surface elevations for scenario 3

Figure 298. Lake Sakakawea LRS versus CE-QUAL-W2 water surface elevations for scenario 4
Figure 299. Lake Sakakawea LRS versus CE-QUAL-W2 water surface elevations for scenario 5

Figure 300. Lake Sakakawea LRS versus CE-QUAL-W2 water surface elevations for scenario 6
Figure 301. Lake Sakakawea LRS versus CE-QUAL-W2 water surface elevations for scenario 7

Figure 302. Lake Sakakawea LRS versus CE-QUAL-W2 water surface elevations for scenario 8
Release Temperature. Release temperatures for the nine scenarios are given in Figure 304-Figure 312.

Figure 304. Lake Sakakawea release temperatures for scenario 1
Figure 305. Lake Sakakawea release temperatures for scenario 2

Figure 306. Lake Sakakawea release temperatures for scenario 3
Figure 307. Lake Sakakawea release temperatures for scenario 4

Figure 308. Lake Sakakawea release temperatures for scenario 5
Figure 309. Lake Sakakawea release temperatures for scenario 6

Figure 310. Lake Sakakawea release temperatures for scenario 7
Figure 311. Lake Sakakawea release temperatures for scenario 8

Figure 312. Lake Sakakawea release temperatures for scenario 9
Release DO. Release DO concentrations for the nine scenarios are given in Figure 313-Figure 321.

Figure 313. Lake Sakakawea release DO concentrations for scenario 1
Figure 314. Lake Sakakawea release DO concentrations for scenario 2

Figure 315. Lake Sakakawea release DO concentrations for scenario 3
Figure 316. Lake Sakakawea release DO concentrations for scenario 4

Figure 317. Lake Sakakawea release DO concentrations for scenario 5
Figure 318. Lake Sakakawea release DO concentrations for scenario 6

Figure 319. Lake Sakakawea release DO concentrations for scenario 7
Figure 320. Lake Sakakawea release DO concentrations for scenario 8

Figure 321. Lake Sakakawea release DO concentrations for scenario 9
Lake Oahe

Water Surface Elevations. Water surface elevations for the nine scenarios are given in Figure 322-Figure 330.

Figure 322. Lake Oahe LRS versus CE-QUAL-W2 water surface elevations for scenario 1
Figure 323. Lake Oahe LRS versus CE-QUAL-W2 water surface elevations for scenario 2

Figure 324. Lake Oahe LRS versus CE-QUAL-W2 water surface elevations for scenario 3
Figure 325. Lake Oahe LRS versus CE-QUAL-W2 water surface elevations for scenario 4

Figure 326. Lake Oahe LRS versus CE-QUAL-W2 water surface elevations for scenario 5
Figure 327. Lake Oahe LRS versus CE-QUAL-W2 water surface elevations for scenario 6

Figure 328. Lake Oahe LRS versus CE-QUAL-W2 water surface elevations for scenario 7
Figure 329. Lake Oahe LRS versus CE-QUAL-W2 water surface elevations for scenario 8

Figure 330. Lake Oahe LRS versus CE-QUAL-W2 water surface elevations for scenario 9

Release Temperature. Release temperatures for the nine scenarios are given in Figure 331-Figure 339.
Figure 331. Lake Oahe release temperatures for scenario 1

Figure 332. Lake Oahe release temperatures for scenario 2
Figure 333. Lake Oahe release temperatures for scenario 3

Figure 334. Lake Oahe release temperatures for scenario 4
Figure 335. Lake Oahe release temperatures for scenario 5

Figure 336. Lake Oahe release temperatures for scenario 6
Figure 337. Lake Oahe release temperatures for scenario 7

Figure 338. Lake Oahe release temperatures for scenario 8
Release DO. Release DO concentrations for the nine scenarios are given in Figure 340-Figure 348.

Figure 339. Lake Oahe release temperatures for scenario 9

Figure 340. Lake Oahe release DO concentrations for scenario 1
Figure 341. Lake Oahe release DO concentrations for scenario 2

Figure 342. Lake Oahe release DO concentrations for scenario 3
Figure 343. Lake Oahe release DO concentrations for scenario 4

Figure 344. Lake Oahe release DO concentrations for scenario 5
Figure 345. Lake Oahe release DO concentrations for scenario 6

Figure 346. Lake Oahe release DO concentrations for scenario 7
Lake Francis Case

Water Surface Elevations. Water surface elevations for the nine scenarios are given in Figure 349-Figure 357.
Figure 349. Lake Francis Case LRS versus CE-QUAL-W2 water surface elevations for scenario 1

Figure 350. Lake Francis Case LRS versus CE-QUAL-W2 water surface elevations for scenario 2
Figure 351. Lake Francis Case Scenario 3
LRS versus CE-QUAL-W2 Water Surface Elevations

Figure 352. Lake Francis Case Scenario 4
LRS versus CE-QUAL-W2 Water Surface Elevations

Figure 351. Lake Francis Case LRS versus CE-QUAL-W2 water surface elevations for scenario 3

Figure 352. Lake Francis Case LRS versus CE-QUAL-W2 water surface elevations for scenario 4
Figure 353. Lake Francis Case LRS versus CE-QUAL-W2 water surface elevations for scenario 5

Figure 354. Lake Francis Case LRS versus CE-QUAL-W2 water surface elevations for scenario 6
Figure 355. Lake Francis Case LRS versus CE-QUAL-W2 water surface elevations for scenario 7

Figure 356. Lake Francis Case LRS versus CE-QUAL-W2 water surface elevations for scenario 8
Release Temperature. Release temperatures for the nine scenarios are given in Figure 358-Figure 366.
Figure 359. Lake Francis Case release temperatures for scenario 2

Figure 360. Lake Francis Case release temperatures for scenario 3
Figure 361. Lake Francis Case release temperatures for scenario 4

Figure 362. Lake Francis Case release temperatures for scenario 5
Figure 363. Lake Francis Case release temperatures for scenario 6

Figure 364. Lake Francis Case release temperatures for scenario 7
Figure 365. Lake Francis Case release temperatures for scenario 8

Figure 366. Lake Francis Case release temperatures for scenario 9

Release DO. Release DO concentrations for the nine scenarios are given in Figure 367-Figure 375.
Figure 367. Lake Francis Case release DO for scenario 1

Figure 368. Lake Francis Case release DO for scenario 2
Figure 369. Lake Francis Case release DO for scenario 3

Figure 370. Lake Francis Case release DO for scenario 4
Figure 371. Lake Francis Case release DO for scenario 5

Figure 372. Lake Francis Case release DO for scenario 6
Figure 373. Lake Francis Case release DO for scenario 7

Figure 374. Lake Francis Case release DO for scenario 8
Figure 375. Lake Francis Case release DO for scenario 9
5 Suitable Habitat Regressions

The volume of suitable cold water fish habitat in each reservoir was calculated from reservoir water temperature and dissolved oxygen concentrations generated during the 30 year scenario model runs. Regression equations were then developed for each reservoir and month to correlate the suitable cold water fish habitat to reservoir stage and discharge. Using the SAS statistical analysis software, multiple linear regressions were conducted by month in which suitable habitat was the dependent variable and stage, stage squared, and discharge were the independent variables. Other independent variables were tried including stage cubed and discharge squared but they did not add significantly to the R^2 value. Results were best during the winter months and declined during summer as the water temperatures increased. The poorest correlations usually occurred in October during overturn.

Fort Peck Lake

Regression results are summarized in Table 12. Plots of stage and discharge versus suitable coldwater fish habitat are shown in Figure 376-Figure 387. These plots do not include the stage squared variable that was included in the regressions. However, they do give some insight into how well the regressions are predicting suitable fish habitat. In the figures, the gridded plane is the predicted regression plane and the points represent model predictions of suitable habitat. The vertical lines connected to the points are used to indicate the location above or below and the distance to the regression plane.
Table 12. Fort Peck Lake suitable habitat regression coefficients and statistics

<table>
<thead>
<tr>
<th>Month</th>
<th>Intercept</th>
<th>Discharge</th>
<th>Stage</th>
<th>Stage²</th>
<th>R^2</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>1.33×10^{14}</td>
<td>3.30×10^7</td>
<td>-4.15×10^{11}</td>
<td>3.24×10^8</td>
<td>0.998</td>
<td>0.0</td>
</tr>
<tr>
<td>February</td>
<td>1.29×10^{14}</td>
<td>4.17×10^7</td>
<td>-4.03×10^{11}</td>
<td>3.15×10^8</td>
<td>0.997</td>
<td>0.0001</td>
</tr>
<tr>
<td>March</td>
<td>1.48×10^{14}</td>
<td>0.84×10^7</td>
<td>-4.60×10^{11}</td>
<td>3.56×10^8</td>
<td>0.995</td>
<td>0.0001</td>
</tr>
<tr>
<td>April</td>
<td>1.47×10^{14}</td>
<td>-8.25×10^7</td>
<td>-4.56×10^{11}</td>
<td>3.53×10^8</td>
<td>0.716</td>
<td>0.0001</td>
</tr>
<tr>
<td>May</td>
<td>1.16×10^{14}</td>
<td>3.21×10^7</td>
<td>-3.64×10^{11}</td>
<td>2.86×10^8</td>
<td>0.992</td>
<td>0.0001</td>
</tr>
<tr>
<td>June</td>
<td>1.43×10^{14}</td>
<td>-1.67×10^7</td>
<td>-4.45×10^{11}</td>
<td>3.47×10^8</td>
<td>0.995</td>
<td>0.0001</td>
</tr>
<tr>
<td>July</td>
<td>2.57×10^{14}</td>
<td>4.33×10^7</td>
<td>-7.83×10^{11}</td>
<td>5.96×10^8</td>
<td>0.797</td>
<td>0.0001</td>
</tr>
<tr>
<td>August</td>
<td>1.11×10^{14}</td>
<td>-6.21×10^7</td>
<td>-3.40×10^{11}</td>
<td>2.62×10^8</td>
<td>0.894</td>
<td>0.0001</td>
</tr>
<tr>
<td>September</td>
<td>1.16×10^{14}</td>
<td>-12.3×10^7</td>
<td>-3.54×10^{11}</td>
<td>2.70×10^8</td>
<td>0.833</td>
<td>0.0001</td>
</tr>
<tr>
<td>October</td>
<td>-1.67×10^{14}</td>
<td>4.06×10^7</td>
<td>4.86×10^{11}</td>
<td>-3.52×10^9</td>
<td>0.260</td>
<td>0.0001</td>
</tr>
<tr>
<td>November</td>
<td>0.91×10^{14}</td>
<td>5.79×10^7</td>
<td>-2.91×10^{11}</td>
<td>2.32×10^8</td>
<td>0.983</td>
<td>0.0001</td>
</tr>
<tr>
<td>December</td>
<td>1.18×10^{14}</td>
<td>4.61×10^7</td>
<td>-3.71×10^{11}</td>
<td>2.91×10^8</td>
<td>0.999</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Figure 376. Fort Peck Lake plot of stage-discharge versus suitable habitat for January

218 Chapter 5 - Suitable Habitat Regressions
Figure 377. Fort Peck Lake plot of stage-discharge versus suitable habitat for February

Figure 378. Fort Peck Lake plot of stage-discharge versus suitable habitat for March

Chapter 5 - Suitable Habitat Regressions
Figure 379. Fort Peck Lake plot of stage-discharge versus suitable habitat for April

Figure 380. Fort Peck Lake plot of stage-discharge versus suitable habitat for May
Figure 381. Fort Peck Lake plot of stage-discharge versus suitable habitat for June

Figure 382. Fort Peck Lake plot of stage-discharge versus suitable habitat for July
Figure 383. Fort Peck Lake plot of stage-discharge versus suitable habitat for August

Figure 384. Fort Peck Lake plot of stage-discharge versus suitable habitat for September
Figure 385. Fort Peck Lake plot of stage-discharge versus suitable habitat for October

Figure 386. Fort Peck Lake plot of stage-discharge versus suitable habitat for November
Figure 387. Fort Peck Lake plot of stage-discharge versus suitable habitat for December

Lake Sakakawea

Regression results are summarized in Table 12. Plots of stage and discharge are shown in Figure 388-Figure 399.
Table 13. Lake Sakakawea suitable habitat regression coefficients and statistics

<table>
<thead>
<tr>
<th>Month</th>
<th>Intercept</th>
<th>Discharge</th>
<th>Stage</th>
<th>Stage²</th>
<th>R²</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>1.91 x 10⁴</td>
<td>3.72 x 10⁴</td>
<td>-7.21 x 10¹¹</td>
<td>6.81 x 10⁶</td>
<td>0.999</td>
<td>0.0</td>
</tr>
<tr>
<td>February</td>
<td>1.96 x 10⁴</td>
<td>3.50 x 10⁴</td>
<td>-7.39 x 10¹¹</td>
<td>6.97 x 10⁶</td>
<td>0.999</td>
<td>0.0</td>
</tr>
<tr>
<td>March</td>
<td>2.03 x 10⁴</td>
<td>3.16 x 10⁴</td>
<td>-7.61 x 10¹¹</td>
<td>7.14 x 10⁶</td>
<td>0.994</td>
<td>0.0001</td>
</tr>
<tr>
<td>April</td>
<td>2.18 x 10⁴</td>
<td>-3.98 x 10⁷</td>
<td>-8.14 x 10¹¹</td>
<td>7.63 x 10⁶</td>
<td>0.667</td>
<td>0.0001</td>
</tr>
<tr>
<td>May</td>
<td>1.73 x 10⁴</td>
<td>0.32 x 10⁷</td>
<td>-6.55 x 10¹¹</td>
<td>6.20 x 10⁶</td>
<td>0.993</td>
<td>0.0001</td>
</tr>
<tr>
<td>June</td>
<td>2.20 x 10⁴</td>
<td>-0.54 x 10⁷</td>
<td>-8.27 x 10¹¹</td>
<td>7.76 x 10⁶</td>
<td>0.990</td>
<td>0.0001</td>
</tr>
<tr>
<td>July</td>
<td>5.13 x 10⁴</td>
<td>0.02 x 10⁷</td>
<td>-10.9 x 10¹¹</td>
<td>17.2 x 10⁶</td>
<td>0.601</td>
<td>0.0001</td>
</tr>
<tr>
<td>August</td>
<td>1.95 x 10⁴</td>
<td>-3.85 x 10⁷</td>
<td>-7.16 x 10¹¹</td>
<td>6.58 x 10⁶</td>
<td>0.839</td>
<td>0.0001</td>
</tr>
<tr>
<td>September</td>
<td>1.50 x 10⁴</td>
<td>-6.16 x 10⁷</td>
<td>-3.54 x 10¹¹</td>
<td>2.70 x 10⁶</td>
<td>0.833</td>
<td>0.0001</td>
</tr>
<tr>
<td>October</td>
<td>1.06 x 10⁴</td>
<td>0.61 x 10⁷</td>
<td>-3.91 x 10¹¹</td>
<td>3.60 x 10⁶</td>
<td>0.243</td>
<td>0.0001</td>
</tr>
<tr>
<td>November</td>
<td>1.45 x 10⁴</td>
<td>2.12 x 10⁷</td>
<td>-5.53 x 10¹¹</td>
<td>5.27 x 10⁶</td>
<td>0.927</td>
<td>0.0001</td>
</tr>
<tr>
<td>December</td>
<td>1.91 x 10⁴</td>
<td>2.49 x 10⁷</td>
<td>-7.20 x 10¹¹</td>
<td>6.79 x 10⁶</td>
<td>0.998</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Figure 388. Lake Sakakawea plot of stage-discharge versus suitable habitat for January

Chapter 5 - Suitable Habitat Regressions
Figure 389. Lake Sakakawea plot of stage-discharge versus suitable habitat for February

Figure 390. Lake Sakakawea plot of stage-discharge versus suitable habitat for March
Figure 391. Lake Sakakawea plot of stage-discharge versus suitable habitat for April

Figure 392. Lake Sakakawea plot of stage-discharge versus suitable habitat for May
Figure 393. Lake Sakakawea plot of stage-discharge versus suitable habitat for June

Figure 394. Lake Sakakawea plot of stage-discharge versus suitable habitat for July
Figure 395. Lake Sakakawea plot of stage-discharge versus suitable habitat for August

Figure 396. Lake Sakakawea plot of stage-discharge versus suitable habitat for September
Figure 397. Lake Sakakawea plot of stage-discharge versus suitable habitat for October

Figure 398. Lake Sakakawea plot of stage-discharge versus suitable habitat for November
Lake Sakakawea
December Suitable Habitat

Figure 399. Lake Sakakawea plot of stage-discharge versus suitable habitat for December

Lake Oahe

Regression results are summarized in Table 14. Plots of stage and discharge versus suitable habitat are given in Figure 400-Figure 411.
Table 14. Lake Oahe suitable habitat regression coefficients and statistics

<table>
<thead>
<tr>
<th>Month</th>
<th>Intercept</th>
<th>Discharge</th>
<th>Stage</th>
<th>Stage²</th>
<th>R²</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>2.36 x 10⁴</td>
<td>3.17 x 10⁷</td>
<td>-10.0 x 10¹¹</td>
<td>10.7 x 10⁴</td>
<td>0.989</td>
<td>0.0001</td>
</tr>
<tr>
<td>February</td>
<td>2.33 x 10⁴</td>
<td>1.73 x 10⁷</td>
<td>-9.89 x 10¹¹</td>
<td>10.5 x 10⁴</td>
<td>0.986</td>
<td>0.0001</td>
</tr>
<tr>
<td>March</td>
<td>2.14 x 10⁴</td>
<td>1.74 x 10⁷</td>
<td>-9.09 x 10¹¹</td>
<td>9.66 x 10⁴</td>
<td>0.982</td>
<td>0.0001</td>
</tr>
<tr>
<td>April</td>
<td>2.07 x 10⁴</td>
<td>-14.1 x 10⁷</td>
<td>-8.82 x 10¹¹</td>
<td>9.41 x 10⁴</td>
<td>0.618</td>
<td>0.0001</td>
</tr>
<tr>
<td>May</td>
<td>0.40 x 10⁴</td>
<td>2.61 x 10⁷</td>
<td>-1.94 x 10¹²</td>
<td>2.32 x 10⁸</td>
<td>0.852</td>
<td>0.0001</td>
</tr>
<tr>
<td>June</td>
<td>1.47 x 10⁴</td>
<td>5.16 x 10⁷</td>
<td>-6.40 x 10¹¹</td>
<td>6.96 x 10⁸</td>
<td>0.935</td>
<td>0.0001</td>
</tr>
<tr>
<td>July</td>
<td>2.01 x 10⁴</td>
<td>2.90 x 10⁷</td>
<td>-8.47 x 10¹¹</td>
<td>8.95 x 10⁸</td>
<td>0.581</td>
<td>0.0001</td>
</tr>
<tr>
<td>August</td>
<td>0.71 x 10⁴</td>
<td>1.50 x 10⁷</td>
<td>-3.05 x 10¹¹</td>
<td>3.28 x 10⁸</td>
<td>0.738</td>
<td>0.0001</td>
</tr>
<tr>
<td>September</td>
<td>0.45 x 10⁴</td>
<td>0.91 x 10⁷</td>
<td>-1.93 x 10¹¹</td>
<td>2.08 x 10⁸</td>
<td>0.681</td>
<td>0.0001</td>
</tr>
<tr>
<td>October</td>
<td>0.21 x 10⁴</td>
<td>4.49 x 10⁷</td>
<td>-0.94 x 10¹¹</td>
<td>1.05 x 10⁸</td>
<td>0.546</td>
<td>0.0001</td>
</tr>
<tr>
<td>November</td>
<td>0.58 x 10⁴</td>
<td>3.02 x 10⁷</td>
<td>-2.56 x 10¹¹</td>
<td>2.99 x 10⁸</td>
<td>0.421</td>
<td>0.0001</td>
</tr>
<tr>
<td>December</td>
<td>1.82 x 10⁴</td>
<td>-1.02 x 10⁷</td>
<td>-7.84 x 10¹¹</td>
<td>8.43 x 10⁸</td>
<td>0.616</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Figure 400. Lake Oahe plot of stage-discharge versus suitable habitat for January
Figure 401. Lake Oahe plot of stage-discharge versus suitable habitat for February

Figure 402. Lake Oahe plot of stage-discharge versus suitable habitat for March
Figure 403. Lake Oahe plot of stage-discharge versus suitable habitat for April

Figure 404. Lake Oahe plot of stage-discharge versus suitable habitat for May
Figure 405. Lake Oahe plot of stage-discharge versus suitable habitat for June

Figure 406. Lake Oahe plot of stage-discharge versus suitable habitat for July
Figure 407. Lake Oahe plot of stage-discharge versus suitable habitat for August

Figure 408. Lake Oahe plot of stage-discharge versus suitable habitat for September
Figure 409. Lake Oahe plot of stage-discharge versus suitable habitat for October

Figure 410. Lake Oahe plot of stage-discharge versus suitable habitat for November

Chapter 5 - Suitable Habitat Regressions
Figure 411. Lake Oahe plot of stage-discharge versus suitable habitat for December

Lake Francis Case

Regression results are summarized in Table 15. Plots of stage and discharge versus suitable habitat are shown in Figure 412-Figure 422. Regressions for Lake Francis Case were the poorest of the four reservoirs due to intermittent stratification during the summer.
Table 15. Lake Francis Case suitable habitat regression coefficients and statistics

<table>
<thead>
<tr>
<th>Month</th>
<th>Intercept</th>
<th>Discharge</th>
<th>Stage</th>
<th>Stage²</th>
<th>R²</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>-0.28 x 10¹⁴</td>
<td>1.12 x 10¹⁴</td>
<td>1.21 x 10¹¹</td>
<td>-1.31 x 10⁸</td>
<td>0.992</td>
<td>0.0001</td>
</tr>
<tr>
<td>February</td>
<td>-3.26 x 10¹⁴</td>
<td>-0.75 x 10⁷</td>
<td>15.66 x 10¹¹</td>
<td>-18.7 x 10⁸</td>
<td>0.965</td>
<td>0.0001</td>
</tr>
<tr>
<td>March</td>
<td>8.45 x 10¹⁴</td>
<td>-0.92 x 10⁷</td>
<td>-41.05 x 10¹¹</td>
<td>49.85 x 10⁸</td>
<td>0.673</td>
<td>0.0001</td>
</tr>
<tr>
<td>April</td>
<td>-4.67 x 10¹⁴</td>
<td>-2.76 x 10⁷</td>
<td>22.50 x 10¹¹</td>
<td>-27.1 x 10⁸</td>
<td>0.124</td>
<td>0.0001</td>
</tr>
<tr>
<td>May</td>
<td>-0.93 x 10¹⁴</td>
<td>-0.04 x 10⁷</td>
<td>4.43 x 10¹¹</td>
<td>-5.23 x 10⁸</td>
<td>0.865</td>
<td>0.0001</td>
</tr>
<tr>
<td>June</td>
<td>1.22 x 10¹⁴</td>
<td>1.28 x 10⁷</td>
<td>-6.01 x 10¹¹</td>
<td>7.39 x 10⁸</td>
<td>0.272</td>
<td>0.0001</td>
</tr>
<tr>
<td>July</td>
<td>0.82 x 10¹⁴</td>
<td>-1.22 x 10⁷</td>
<td>-4.02 x 10¹¹</td>
<td>4.93 x 10⁸</td>
<td>0.078</td>
<td>0.0002</td>
</tr>
<tr>
<td>August</td>
<td>1.63 x 10¹⁴</td>
<td>-0.68 x 10⁷</td>
<td>-7.94 x 10¹¹</td>
<td>9.64 x 10⁸</td>
<td>0.170</td>
<td>0.0001</td>
</tr>
<tr>
<td>September</td>
<td>1.35 x 10¹⁴</td>
<td>-3.70 x 10⁷</td>
<td>-6.54 x 10⁸</td>
<td>7.94 x 10⁸</td>
<td>0.074</td>
<td>0.0004</td>
</tr>
<tr>
<td>October</td>
<td>-0.22 x 10¹⁴</td>
<td>1.56 x 10⁷</td>
<td>1.07 x 10¹¹</td>
<td>-1.30 x 10⁸</td>
<td>0.260</td>
<td>0.0001</td>
</tr>
<tr>
<td>November</td>
<td>1.22 x 10¹⁴</td>
<td>0.90 x 10⁷</td>
<td>-6.00 x 10¹¹</td>
<td>7.37 x 10⁸</td>
<td>0.033</td>
<td>0.0456</td>
</tr>
<tr>
<td>December</td>
<td>0.99 x 10¹⁴</td>
<td>-0.72 x 10⁷</td>
<td>-4.89 x 10¹¹</td>
<td>6.05 x 10⁸</td>
<td>0.467</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

![Lake Francis Case January Suitable Habitat](image)

Figure 412. Lake Francis Case plot of stage-discharge versus suitable habitat for January
Figure 413. Lake Francis Case plot of stage-discharge versus suitable habitat for February

Figure 414. Lake Francis Case plot of stage-discharge versus suitable habitat for March
Figure 415. Lake Francis Case plot of stage-discharge versus suitable habitat for April

Figure 416. Lake Francis Case plot of stage-discharge versus suitable habitat for May

Chapter 5 - Suitable Habitat Regressions
Figure 417. Lake Francis Case plot of stage-discharge versus suitable habitat for June

Figure 418. Lake Francis Case plot of stage-discharge versus suitable habitat for July
Figure 419. Lake Francis Case plot of stage-discharge versus suitable habitat for August

Figure 420. Lake Francis Case plot of stage-discharge versus suitable habitat for September
Figure 421. Lake Francis Case plot of stage-discharge versus suitable habitat for October

Figure 422. Lake Francis Case plot of stage-discharge versus suitable habitat for November
Figure 423. Lake Francis Case plot of stage-discharge versus suitable habitat for December
6 Summary and Recommendations

CE-QUAL-W2 accurately reproduced observed temperature dynamics including in-pool and release temperatures in the four reservoirs modeled. All coefficients affecting temperature were the same among the reservoirs. The model reproduced the major patterns of long-term DO dynamics through a gross sediment and water column oxygen demand without explicitly modeling algal/nutrient/DO interactions. As a result, model predictions during scenario runs represent only how physical factors affect DO and does not include the effects of reservoir operations on algal/nutrient dynamics and their effects on DO. To include algal/nutrient effects would require at least one year’s worth of detailed algal/nutrient data for each reservoir that were not and could not be made available during the time frame of this study.

Results from nine 30-year scenarios were used to determine monthly suitable coldwater fish habitat (volume of water > 5 mg l\(^{-1}\) DO and < 15 °C) for each month of the year. Results were then used to generate monthly regression relationships relating end-of-month stages and monthly discharges to suitable coldwater fish habitat. Suitable coldwater fish habitat was strongly correlated to stages which is intuitively obvious - higher stages result in larger volumes of water in the reservoir. However, the regression relationships developed during this study will allow MRD to quickly quantify the monthly habitat volumes for future scenarios of their choosing. Monthly volumes of coldwater fish habitat can now be objectively determined without the need to run the model for additional scenarios.

CE-QUAL-W2 is an extremely powerful tool to aid in addressing reservoir water quality management issues. The present implementation does not include algal/nutrient/DO interactions because of a lack of sufficient data to characterize these interactions in the model. However, a large portion of the work involved in setting up the complete model for the four reservoirs in this study has been completed. Steps should be taken to obtain a suitable database that can be used to calibrate the entire suite of water quality algorithms in the model. It is almost a certainty that water quality issues will remain important in the future. A fully calibrated water quality model for each of the reservoirs will allow
management to quickly address future water quality issues based on state-of-the-art environmental engineering practices.
References

CE-QUAL-W2 Bibliography

Peer Reviewed Publications

Presentations at Scientific Meetings

Reports and Miscellaneous Articles

This report describes the application of CE-QUAL-W2, a longitudinal/vertical hydrodynamic and water quality model to four reservoirs on the Upper Missouri River. Calibration results are presented for Fort Peck, Sakakawea, Oahe, and Francis Case reservoirs for water surface elevations, temperature, and dissolved oxygen. Monthly regression relationships are also presented which relate suitable fish habitat volume-days to average monthly discharge and end-of-month water surface elevations for each reservoir.