GRANT NO: DAMD17-94-J-4441

TITLE: Initiation of Breast Cancer by Endogenous Estrogens: Mechanism and Prevention

PRINCIPLE INVESTIGATOR: Jack Fishman, Ph.D.

CONTRACTING ORGANIZATION: Cornell University Medical College
New York, NY 10021

REPORT DATE: July 30, 1995

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Material Command
Fort Detrick
Frederick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
4. TITLE AND SUBTITLE

Initiation of Breast Cancer by Endogenous Estrogens: Mechanism and Prevention

6. AUTHOR(S)

J. Fishman, Ph.D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Cornell University Medical College
New York, New York 10021

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

US Army Medical Research and Material Command
Fort Detrick, Maryland 21701-5012

11. SUPPLEMENTARY NOTES

Prepared in cooperation with Dr. C.P. Martucci and Dr. J. Leonard

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release, distribution unlimited

13. ABSTRACT (Maximum 200 words)

We have carried out experiments in cell culture systems demonstrating the unique ability of 16α-OHE1 to bring about hyperproliferation with increased anchorage-independent growth. This, as well as other studies, has indicated the carcinogen-like activity of 16α-OHE1. We have also carried out studies with mouse and human explant cultures of two types (high and low risk for breast cancer) and a marked increase in 16α-hydroxylation was observed with cultures from the high risk mice or women. The differences demonstrated in these normal tissues indicate the importance of a chronic increase in estrogen 16α-hydroxylation prior to the development of breast tumors.

Experiments with 16α-OHE1 in the control of PS2 gene expression in MCF-7 cells demonstrate that an "irreversible" interaction between estrogen receptors and 16α-OHE1 can cause sustained response in estrogen-responsive genes. Also, experiments to identify the cytochrome P450 gene which catalyzes estrogen 16α-hydroxylation have indicated that it is probably Cyp2-dx. Further studies should confirm whether or not it is this gene which is responsible for the enzyme. Once identified it may be possible to alter the expression of this gene in breast cells and therefore reduce the risk of breast cancer.
FOREWORD

Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the US Army.

Where copyrighted material is quoted, permission has been obtained to use such material.

Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

Citations of commercial organizations and trade names in this report do not constitute an official Department of Army endorsement or approval of the products or services of these organizations.

In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).

For the protection of human subjects, the investigator(s) adhered to policies of applicable Federal Law 45 CFR 46.

In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

In the conduct of research utilizing recombinant DNA, the investigator(s) adhered to the NIH Guidelines for Research Involving Recombinant DNA Molecules.

In the conduct of research involving hazardous organisms, the investigator(s) adhered to the CDC0NIH Guide for Biosafety in Microbiological and Biomedical Laboratories.

Signature: ______________________ Date: 8/22/95

PI: __________________________
TABLE OF CONTENTS

I. Introduction

A. Nature of the Problem ... 1

B. Background ... 1 - 3

C. Purpose of the Present Work 3

D. Methods of Approach ... 3

II. Progress Report

A. Experiments using mouse and human
 mammary cell culture systems 4 -10

B. Molecular Aspects of 16α-hydroxylase 10 - 15

III. General Conclusions .. 16

IV. References .. 17 - 22

V. Appendix ... 23 - 35
I. Introduction

A. Nature of the Problem

While there is general consensus for a role for estrogens in breast cancer, the biological mechanism for it is unknown. This proposal presents a novel biological rationale for the estrogen breast cancer link. We have obtained considerable evidence derived from in vivo and in vitro studies that 16α-hydroxyestrone (16α-OHE1), a metabolite of estradiol, which uniquely among all endogenous estrogens can participate in a specific covalent interaction with the estrogen receptor (1) and is involved in estrogen target cell transformation (2). Based on this concept a strategy which diminishes the formation of this metabolite relative to other endogenous estradiol metabolites has been devised and has been shown to be effective in sharply diminishing the incidence of spontaneous mammary tumors in the mouse model (3). Despite the large amount of circumstantial evidence, supporting a role for 16α-OHE1 in breast cancer initiation, the concept remains hypothetical and it is the purpose of the studies described here to obtain definitive evidence for or against the postulated scheme.

B. Background

The role of endogenous estrogens as a predisposing factor for breast cancer has been one of the central themes in the studies devoted to the biology and epidemiology of this prevalent disease. Numerous studies have been devoted to the measurement of endogenous
estrogens in the urine and plasma of breast cancer patients and normal controls in an attempt to detect differences between the two populations but no consistent and reproducible distinctions have been generally recognized (4-6). This could be due to the fact that differences in hormonal levels present at the time of the initiation of the disease would most likely be extinguished at the time of the clinical diagnosis which often occurs at a different reproductive stage and hormonal milieu of the woman.

We, therefore, pursued another strategy in which we sought to identify hormonal parameters which did not change with age or reproductive status, and which could be examined in a population of post and perimenopausal women with and without breast cancer with some assurance that any differences found would have been present at the time of disease initiation, when the women were younger and premenopausal. Specifically we established that the three main components of the oxidative metabolism of estradiol (E₂), as measured in vivo by a radiometric technique, were invariant with age (7). When measured in postmenopausal women with breast cancer, a significant increase in 16α-hydroxylation relative to a control group was found, without any differences being observed in the other two main oxidative pathways, 2-hydroxylation and 17-ol oxidation (8). Subsequent studies carried out by us and by other groups, both in humans and in animals, established a consistent pattern of increased 16α-hydroxylation of estrogens being associated with an increased risk of mammary tumor formation (9). Furthermore, studies on enzymatic activity in specific tissues indicated that in the mouse and in the human, the increased 16α-hydroxylase activity was detectable in breast tissue and more specifically in the terminal duct lobular units, the site of ductal carcinoma which represents about 80% of all human breast cancer. Estrone (E₁) functions as a common precursor that, via a competing but mutually exclusive metabolic pathway, is converted to 2-hydroxyestrones (2-OHE₁) or to 16α-
hydroxyestrone (16α-OHE1). It is therefore important to note that because of the competing nature of 2- and 16α-hydroxylations, a decrease in the former is tantamount to an increase in the formation of the products of the latter, while conversely an increase in 2-hydroxylation results in a decrease of 16α-hydroxylated estrogens. Among a number of mammalian species studied, only the human and the mouse exhibited high 16α-hydroxylase activity consistent with their high rate of spontaneous mammary tumor formation (2, 4, 9). The activity of the 16α-hydroxylation was also examined in a series of mouse strains with differing rates of mammary tumor formation. An excellent direct correlation between 16α-hydroxylation and tumor incidence was observed (10).

C. Purpose of the Present Work

The purpose of this proposed work is to obtain direct evidence of the impact of 16α-hydroxylation in the initiation of breast cancer at the molecular and physiological level, and to identify methods for the prevention of this disease.

D. Methods of Approach

The overall approach for the experiments conducted on the cell culture and explant culture models involves i) detection of the extent of E2 metabolism using radiometric, gas chromatographic-mass spectrometric (GC-MS) and immunoenzymatic assays (7, 8, 26), ii) evaluation of E2 responsiveness by assays for growth regulation and for hormone receptor content, and iii) assessment of genotoxicity by unscheduled DNA synthesis assay. All of these assays have been optimized for the in vitro models (11, 12, 14) and are routinely being used in our laboratory.
II. Progress Report (September 1994 - August 1995)

A. Experiments Using Mouse and Human Mammary Cell Culture Systems

The primary focus of the experiments utilizing the \textit{in vitro} models was to examine the role of estrogens in mammary tumorigenesis in an effort to identify mechanisms for efficacious prevention. The research during the first year funding utilized the developed murine and human mammary epithelial cell culture system as a model to examine i.) the relationship between oncogene-mediated upregulation of growth and cellular metabolism of 17\beta-estradiol (E$_2$) and ii.) the relationship between elevated C2-hydroxylation of E$_2$ and inhibition of aberrant hyperproliferation. In addition, studies utilizing the mammary explant culture system have been systematically analyzed to examine whether this system represents a valid \textit{in vitro} model for identifying a role for estrogens in human mammary carcinogenesis and in chemoprevention.

The following is a brief summary of experiments completed and results obtained during the first year funding of the grant \#DAMD 17-94-J-4441.

1. \textbf{Alteration in E$_2$ metabolism in mouse mammary epithelial cells expressing c-myc oncogene [collaborating investigators: Inoue, Bradlow, Telang]}:

Our previous studies on immortalized, non tumorigenic murine mammary epithelial cell lines have demonstrated that exposure to chemical carcinogens or transfection with oncogenes results in induction of aberrant hyperproliferation as evidenced by anchorage-independent growth (AIG) \textit{in vitro} prior to tumorigenesis in vivo as evidenced by mammary fat pad or subcutaneous transplantation (11-15). The experiment presented in AT-1 was
performed to examine whether relative extent of AIG corresponds with the
degree of transformation in the parental MMEC, oncogene-initiated
MMEC/myc₃ and oncogene-transformed MMEC/myc₃-Pr₁ cells. The AIG
assay revealed a progressive increase in anchorage-independent colonies
formed by MMEC/myc₃ and MMEC/myc₃-Pr₁ cells and a positive correlation
with tumorigenicity in vivo. The parental MMEC cells, however, were negative
in the AIG assay as well as in the tumorigenicity assay. These results suggest
that AIG may represent a valid cellular marker for preneoplastic and
neoplastic transformation of mammary epithelial cells.

The experiment presented in AT-2 was conducted to examine whether
c-myc oncogene-induced tumorigenic transformation influences the cellular
metabolism of E₂ and steroid receptor status. The relative extent of E₂
metabolism was determined by the radiometric assay measuring C2- and
C16α-hydroxylation of E₂. The data is expressed as the ratio of C2/C16α-
hydroxylation. The relative extent of estrogen receptor protein (ERP) and
progesterone receptor protein (PRP) was determined using a commercially
available immuno-assay. The C2/C16α ratio exhibited a progressive decrease
in MMEC/myc₃ and MMEC/myc₃-Pr₁ cells relative to that observed in
MMEC cells. The observed decrease in the ratio was due to an increase in
the C16α-hydroxylation and a concomitant decrease in the C2-hydroxylation
pathway of E₂ metabolism (data not shown). Consistent with the alteration in
cellular metabolism of E₂, the ERP levels also decreased in MMEC/myc₃ and
MMEC/myc₃-Pr₁ cells relative to those in MMEC cells. In contrast, PRP
levels were found to increase in MMEC/myc₃ cells but not in MMEC/myc₃-
Pr1 cells. These results suggest that overexpression of c-myc may induce aberrant hyperproliferation in part by influencing E2 metabolism to increase 16α-hydroxylation and by downregulating hormone responsiveness in mammary epithelial cells.

2. Estrogen responsiveness of myc-oncogene-transformed mammary epithelial cells [collaborating investigators: Katdare, Sepkovic, Bradlow, Telang]:

The conventional determinants for estrogen response include: E2-mediated initiation of replicative DNA synthesis, expression of early response genes, estrogen and progesterone receptor upregulation, polypeptide growth factor expression and reversible growth inhibition by antiestrogens (16, 17). In addition, oxygenated metabolites of E2 generated via oxido-reductases or P450-dependent hydroxylases are noted to exert direct effects on hormone-responsive target tissue (18, 19). Our earlier observation that constitutive overexpression of c-myc confers aberrant hyperproliferation and partial abrogation of serum-derived growth factor requirement (15) prompted us to examine the extent of E2 metabolism and degree of E2 responsiveness in myc oncogene-transformed MMEC/myc3-Pr1 cells.

In the experiment presented in AT-3 MMEC/myc3-Pr1 were incubated with 10nM E2 for 96 hours and the culture medium was used for product isolation and identification by GC/MS. The results of this experiment clearly demonstrate that the cells were capable of converting E2 into such oxygenated metabolites as E1, 16α-OHE1, 2-OHE1 and E3. These results, together with those obtained using the radiometric assay provide a strong support to the
concept that mammary epithelial cells in culture retain the ability to metabolize E2.

The persistence of E2 responsiveness in MMEC/myc2-Pr1 cells was examined by determining whether E2 can upregulate growth and increase ERP content in MMEC/myc2-Pr1 cells. The data presented in AT-4 demonstrates that a continuous 5 day exposure to E2 resulted in a dose-dependent increase in cell number as well as in ERP levels and that at physiological levels (1-10nM), E2 induced a substantial increase in growth and in ER and PR positivity.

Our earlier studies on the murine mammary epithelial cell culture systems have shown that exposure to prototypic initiators of tumorigenesis (chemical carcinogens and oncogenes) results in decreased ratio of C2/C16α-hydroxylation of E2 and increased aberrant hyperproliferation (11-14). These biochemical and cellular perturbations are reversed by the presence of known inhibitors of mammary carcinogenesis (12, 20). The experiment presented in AT-5 was designed to validate E2 metabolism and aberrant hyperproliferation as markers for human mammary carcinogenesis. The extent of alteration in 2-OHE1 formation as an endpoint for E2 metabolism, and in AIG as an endpoint for aberrant hyperproliferation was measured in MCF-7 cells treated with the tumor inhibitors indole-3-carbinol (I3C), tamoxifen (TAM) and its
metabolite 4-hydroxy tamoxifen (4-OHTAM). The results presented in AT-5 demonstrate that treatment with I3C and 4-OHTAM resulted in increased 2-OHE$_1$ formation and decreased AIG. The inhibitory effect of TAM on AIG, however, was not accompanied by enhanced 2-OHE$_1$ formation, suggesting a distinct mechanism for antiproliferative effect of TAM. Treatment of MCF-7 cells with the E$_2$ metabolites revealed enhancement of AIG with 16α-OHE$_1$ but not with 2-OHE$_1$ treatment. Taken together, the experiment on MCF-7 cell culture system indicates that E$_2$ metabolism and AIG provide useful in vitro markers for inhibitors of human mammary carcinogenesis and that specific metabolites of E$_2$ exert distinct modulatory influence on the growth of MCF-7 cells in culture.

4. Application of mammary explant culture system and mammary epithelial cell culture system as models for identifying the role of estrogens in mammary carcinogenesis [collaborating investigators: Telang, Fishman, Osborne]:

In vitro models derived from mammary explant and cell culture systems provide an innovative approach to examine the effects of exogenous agents on the process of mammary carcinogenesis and its modulation directly at the level of target tissue (11, 13, 20-24). Earlier experiments conducted on murine mammary explant culture system have shown that treatment of the non-involved mammary tissue to chemical carcinogens results in increased carcinogen-DNA binding, enhanced C16α-hydroxylation of E$_2$ and high incidence of aberrant hyperplasia in vitro, prior to tumorigenicity in vivo (21-25). Independent studies utilizing the epithelial cell culture model have also
shown that treatment with carcinogens or transfection with oncogenes results in upregulation of same biochemical and cellular endpoints (11, 13-25). The results obtained from the two in vitro models therefore provide strong evidence that perturbed biochemical and cellular events detectable prior to the appearance of cancer represent markers for preneoplastic transformation.

The experiment presented in AT-6 was designed to examine the relationship between the extent of E₂ metabolism via C16α-hydroxylation and breast cancer risk in murine and human mammary explant cultures. The relative extent of E₂ C16α-hydroxylation was found to increase about 3-5 fold in the explants from the high risk groups relative to the respective low risk groups. In addition, explants from the high risk groups exhibited a greater response to carcinogen-induced perturbation of E₂ C16α-hydroxylation (data not shown). The data generated with the experiments on the mammary explant culture model indicates that E₂ C16α-hydroxylation represents a biochemical marker whose alteration may predict the susceptibility of the target tissue to carcinogenesis.

The experiment to examine whether E₂ metabolites generated via the C16α-hydroxylation pathway may function as initiators of mammary carcinogenesis utilized the mouse mammary epithelial cells as the model (AT-7). Unscheduled DNA synthesis (UDS) and anchorage-independent growth (AIG) represented the biomarkers for genotoxicity and aberrant hyperproliferation respectively. From amongst the metabolites tested, only 16α-hydroxyestrone (16α-OHE₁) exhibited maximal induction in UDS and AIG. The upregulation of the two endpoints was qualitatively similar to that
observed in cells treated with genotoxic chemical carcinogen (positive control).

B. Molecular Aspects of 16α-hydroxylase

To examine the molecular aspects of 16α-hydroxylase, two experimental approaches have been utilized during the first year of funding. First, we have initiated studies to test the hypothesis that 16α-hydroxyestrone has unique effects on estrogen receptor function. Second, we have made substantial progress in isolating cDNA clones which encode estrogen 16α-hydroxylase activity. Conclusive identification of the gene(s) encoding this activity will allow us to define the mechanisms by which 16α-hydroxylated estrogens are overproduced and open new avenues for diagnosis and prevention of breast cancer. The data obtained in the initial year of funding are briefly summarized below.

1. Effects of 16α-hydroxyestrone on estrogen receptor function

In order to perform informative studies relating to this issue, we first needed to establish two important criteria in our experimental system. First, we wished to establish that the MCF-7 cells were inducing gene expression in an estrogen-dependent manner. This is especially important because of the reported heterogeneity of MCF-7 cells in different laboratories. Second, we wanted to obtained evidence that estrogen receptor-dependent gene expression could be selectively altered by 16α-hydroxyestrone in these cells. We used pS2 expression as our marker for these studies, because it is transcriptionally regulated by estrogens in MCF-7 cells. pS2 mRNA is virtually undetectable in MCF-7 cells incubated in media without estrogens,
but is induced 20- to 40-fold after exposure to estradiol (27). We found that most of the lots of MCF-7 cells made available to us were suboptimal because they contained significant basal levels of pS2 mRNA which were poorly induced by estrogens. However, one lot (a gift from Ann Bowcock, University of Texas Southwestern Medical Center, Dallas, TX) exhibited barely detectable levels of pS2 mRNA which was strongly induced by estradiol. These cells have been chosen for use in our subsequent studies.

To obtain functional evidence that ER function might be selectively altered by exposure to 16α-hydroxyestrone, we stimulated MCF-7 cells with estradiol, 16α-hydroxyestrone, or estriol for 1 or 14 days. We then removed the hormone for 5 days and measured pS2 promoter function by transfection with a pS2-CAT reporter plasmid (AT-8). Cells pretreated with estradiol or estriol for either length of time displayed virtually no CAT activity, except when re-exposed to estradiol post-transfection, where a marked induction was observed. On the other hand, cells pretreated with 16α-hydroxyestrone for 14 days had substantial CAT activity which was only marginally induced by re-exposure to estradiol. Indeed, the reporter activity in the 16α-hydroxyestrone-pretreated cells was about 20% of the levels observed in "virgin" cells treated with estradiol for 48 hr post-transfection. None of these effects were observed in cells which had been pretreated with 16α-hydroxyestrone for 1 day. These data support the concept that an "irreversible" interaction between ER and 16α-hydroxyestrone can cause a sustained response in estrogen-responsive genes. We have isolated nuclear extracts from MCF-7 cells stimulated by the above paradigm, which we are using to evaluate directly the effect of these
estrogens on ER binding to its cognate element.

2. **Isolation of cDNA clones with estrogen 16α-hydroxylase activity**

 In order to clone the estrogen 16-hydroxylase, we have taken advantage of murine T₁Pr₁ and human MCF-10 cell lines, which contain exceptionally high levels of this activity (28, 29). Inhibition studies strongly suggest that the 16α-hydroxylase is a member of the cytochrome P450 superfamily of mono-oxygenases. Hence, our strategy has relied on PCR amplification with degenerate primers that correspond to conserved regions in certain P450 families. We have previously used a similar PCR-based approach to clone rare homeodomain-containing proteins (30). Additionally, others have recently used this strategy to identify a novel DMBA-inducible P450 species in fibroblasts (31). We have designed three sets of degenerate primers, which should amplify P450 sequences from families 1, 2, or 3. We suspect that the unidentified estrogen 16α-hydroxylase may fall within these classes for the following reasons. First, CYP1A1 is the best candidate for the breast-specific estrogen 2-hydroxylase (32) and CYP1B1 may be responsible for the estrogen 4-hydroxylase activity observed in MCF-7 cells. Hence, it is reasonable to postulate that the CYP gene encoding estrogen 16α-hydroxylase activity might also reside within the CYP1 family. The rationale for considering the CYP2 family is based on the observation that the mouse male-specific testosterone 16α-hydroxylase belongs to the Cyp2d subfamily and the rat female-specific 15β-hydroxylase lies within the CYP2C cluster (33). Hence, CYP family 2 contains sexually dimorphic genes which encode activities
closely related to estrogen 16α-hydroxylase. Finally, we have considered family 3 because certain members, such as CYP3A4, exhibit a remarkably diverse array of activities which includes the metabolism of endogenous steroids.

Thus far, two sets of degenerate primers (specific for families 1 or 2) have been used successfully to amplify fragments of the correct size, using either T₁Pr₁ or MCF-10 cDNA as template. Because these fragments may be heterogeneous, we have subcloned them into the vector pGEM-T (Promega) and numerous clones have been analyzed by DNA sequencing. For family 1, all clones analyzed thus far correspond to CYP1A2, which is a stronger estrogen 2-hydroxylase than CYP1A1. This is somewhat surprising, because previous reports had indicated that CYP1A1 and CYP1B1, but not CYP1A2, are present in human MCF-7 cells. Our primers amplify CYP1A1, CYP1A2 and CYP1B1 with similar efficiency, so we entertained the hypothesis that CYP1A2 may indeed be preferentially expressed in these cells. Indeed, Northern analysis indicates that CYP1A2 levels are significantly higher than CYP1A1 in T₁Pr₁ cells. We do not know the basis for this heterogeneity of expression for CYP1A members in mammary cell lines at present, but our observations emphasize the need to evaluate CYP1A gene expression in vivo very carefully. This has yet to be done in the breast. In any event, since CYP1A2 does not 16-hydroxylate estrogens, and no other CYP1 PCR fragments have been detected in our analysis to date, we have adopted the working hypothesis that the 16-hydroxylase is not a CYP1 family member.
Using the family 2 primers and T₁Pr₁ cDNA as template, we have amplified a particularly strong DNA fragment of the correct size. We have sequenced 16 clones derived from this fragment, all of which correspond to a novel mouse Cyp2-d family member. We have yet to obtain a full-length clone corresponding to this PCR fragment (currently termed Cyp2-dx), but several observations suggest that Cyp2-dx may correspond to a bona fide estrogen 16α-hydroxylase. First, the clone is similar to a rat Cyp2-d member termed CMF-3 (34) (Fig. 1). CMF-3 was isolated by screening a rat liver cDNA library with a monoclonal antibody raised against a purified P450 with estrogen 16α-hydroxylase activity. Second, Cyp2-dx RNA levels are very high in T₁Pr₁ and RIII/Pr1 cells, but barely detectable in MMEC and RIII/MG cells. This correlates with the observed 16α-hydroxylase activities for these cells. Third, Cyp2-dx is also highly related to murine Cyp2d-9, which encodes testosterone 16α-hydroxylase activity (Fig. 1).

Once a full-length clone has been obtained for Cyp2-dx, we will need to examine its ability to 16α-hydroxylate estrogens. This is best accomplished by stable expression in a mammalian cell line with low endogenous 16α-hydroxylase activity. MCF-7 cells are an appropriate choice for our purposes; they 16-hydroxylate poorly, are easily transfectable and we have found that they contain undetectable levels of Cyp2-d-related RNA species. Moreover, it would be of additional benefit if the test gene were inducible, so that its expression would be minimal during generation of the stable line. We have evaluated a tetracycline-dependent expression system in MCF-7 cells, and found it to work extremely well. This system requires two components; 1) a plasmid that encodes a tet repressor/VP16 fusion protein, termed TTA, and 2) a tet operator-controlled expression plasmid that drives the expression of the gene of interest (35). TTA is a potent repressor in the presence of tetracycline, but permits potent activation of the tet-controlled gene in the absence of
tetracycline. Using a firefly luciferase cDNA to test this system in MCF-7 cells, we have observed that removal of tetracycline from the culture medium induces luciferase activity by more than 200-fold. Tetracycline does not influence Cyp2-dx levels in T1Pr1 cells; hence, this should be an excellent system to evaluate the capacity of Cyp2-dx to 16α-hydroxylate estrogens.
III. General Conclusions

In the first year of the grant the foundation has been constructed from which a clarification of the mechanism of 16α-OHE$_1$ action in breast cancer can be achieved. We have carried out experiments in cell culture systems demonstrating the unique ability of 16α-OHE$_1$ to bring about hyperproliferation with increased anchorage-independent growth. This, as well as other studies has indicated the carcinogen like activity of 16α-OHE$_1$. We have also carried out studies with mouse and human explant cultures of two types (high and low risk for breast cancer) and a marked increase in 16α-hydroxylation was observed with cultures from the high risk mice or women. The differences demonstrated in these non-cancerous tissues indicate the importance of a chronic increase in estrogen 16α-hydroxylation prior to the development of breast tumors.

The experiments to identify the cytochrome P450 gene which catalyzes estrogen 16α-hydroxylation have indicated that it is probably Cyp2-dx. Further studies should confirm whether or not it is this gene which is responsible for the enzyme. Once identified it may be possible to alter the expression of this gene in breast cells and therefore reduce the risk of breast cancer.
References

Cancer Res Treat 27:193-202;1993

33. Nelson DR, Kamataki T, Waxman DJ et al. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and
nomenclature. DNA Cell Biol 12:1-51;1993

34. Ishida N, Tawaragi Y, Inuzuka C et al. Four species of cDNAs for cytochrome P450 isozymes immunorelated to p450C-M/F encode for members of P450IID subfamily, increasing the number of members within the subfamily. Biochem Biophys Res Comm 156:681-688;1988

AT-1

Induction of Aberrant Hyperproliferation and Tumorigenic Transformation by C-myc Oncogene in Mouse Mammary Epithelial Cells.

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>Status of Transformation</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>in vitro</td>
<td>in vivo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anchorage-independent growth (%CFE)<sup>a</sup></td>
<td>Tumorigenecity<sup>b</sup></td>
</tr>
<tr>
<td>MMEC</td>
<td>ND<sup>c</sup></td>
<td></td>
<td>ND<sup>c</sup></td>
</tr>
<tr>
<td>MMEC/myc<sub>3</sub></td>
<td>12.8 ± 3.8</td>
<td></td>
<td>7/10</td>
</tr>
<tr>
<td>MMEC/myc<sub>3</sub>-Pr<sub>1</sub></td>
<td>26.8 ± 3.8</td>
<td></td>
<td>10/10</td>
</tr>
</tbody>
</table>

^a Number of colonies/Initial seeding density × 100

^b Number of tumors/Number of transplant sites

^c ND: not detected
AT-2

C-myc Oncogene-Mediated Alteration in Estradiol Metabolism and in Hormone Receptor Status

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>E₂ Metabolism(^a) (C2/C16α-hydroxylation)</th>
<th>Receptor Protein Content(^b) (fmols per 1.0 x 10⁶ cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ERP</td>
</tr>
<tr>
<td>MMEC</td>
<td>5.4 ± 0.4</td>
<td>11.9 ± 0.5</td>
</tr>
<tr>
<td>MMEC/myc₃</td>
<td>2.7 ± 0.4</td>
<td>8.8 ± 1.5</td>
</tr>
<tr>
<td>MMEC/myc₃-Pr₁</td>
<td>1.6 ± 0.6</td>
<td>2.9 ± 0.5</td>
</tr>
</tbody>
</table>

\(^a\) determined by \(^3\)H₂O formation after incubation with [C2-\(^3\)H]E₂ and [C16α-\(^3\)H]E₂

\(^b\) determined by immunoassay
AT-3

Metabolism of 17β-Estradiol (E₂) in MMEC/myc₃-Pr₁ Cells

<table>
<thead>
<tr>
<th>E₂ Metabolites</th>
<th>Relative Abundanceᵃᵇ (Normalized per 1.0 x 10⁷ cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E₁</td>
<td>1465 ± 304</td>
</tr>
<tr>
<td>16α-OHE₁</td>
<td>206 ± 20</td>
</tr>
<tr>
<td>2-OHE₁</td>
<td>799 ± 178</td>
</tr>
<tr>
<td>E₃</td>
<td>190 ± 14</td>
</tr>
</tbody>
</table>

ᵃ determined by the RP-HPLC and GC-MS analysis of the culture medium

ᵇ MMEC/myc₃-Pr₁ cells incubated with 1.0 x 10⁻⁶M E₂ for 96 hours
AT-4

Ligand-mediated Upregulation of Proliferation and Hormone Receptor Status in MMEC/myc$_3$-Pr$_1$ Cells

<table>
<thead>
<tr>
<th>E2 Treatment (nM)</th>
<th>Increase in cell numbera (x105)</th>
<th>Receptor Protein Contentb (fmol/1.0 x 106 cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ERP</td>
</tr>
<tr>
<td>0.0</td>
<td>2.3 ± 0.6</td>
<td>2.1 ± 0.4</td>
</tr>
<tr>
<td>0.1</td>
<td>2.8 ± 0.4</td>
<td>2.9 ± 0.5</td>
</tr>
<tr>
<td>1.0</td>
<td>4.2 ± 0.5</td>
<td>8.0 ± 1.0</td>
</tr>
<tr>
<td>10.0</td>
<td>4.4 ± 0.5</td>
<td>13.7 ± 3.1</td>
</tr>
</tbody>
</table>

a cells maintained in serum-free medium for 5 days

b determined by immunoassay
Modulation of Estradiol 2-Hydroxylation and Aberrant Hyperproliferation in Human Mammary Carcinoma MCF-7 Cells

<table>
<thead>
<tr>
<th>Agent</th>
<th>2-hydroxylation of E$_2$(^a) (% per 1.0 x 104 cells)</th>
<th>Anchorage-Independent Growth (% CFE)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(solvent control)</td>
<td>2.4 ± 0.4</td>
<td>15.3 ± 1.4</td>
</tr>
<tr>
<td>I3C</td>
<td>6.2 ± 0.3</td>
<td>5.0 ± 1.1</td>
</tr>
<tr>
<td>TAM</td>
<td>1.6 ± 0.1</td>
<td>3.7 ± 0.7</td>
</tr>
<tr>
<td>4-OH TAM</td>
<td>3.6 ± 0.2</td>
<td>1.8 ± 0.2</td>
</tr>
<tr>
<td>2-OHE$_1$</td>
<td>NDc</td>
<td>4.9 ± 2.9</td>
</tr>
<tr>
<td>16α-OHE$_1$</td>
<td>NDc</td>
<td>25.9 ± 2.0</td>
</tr>
</tbody>
</table>

\(^a\) determined from 3H$_2$O formation after a 48 hour incubation with [C2-3H] E$_2$

\(^b\) Number of colonies

\[\text{Number of colonies} \times 100 \]

Initial seeding density

\(^c\) ND: not done
Breast Cancer Risk-Dependent Enhancement of Estradiol 16α-Hydroxylation in Murine and Human Mammary Explant Cultures

<table>
<thead>
<tr>
<th>Origin</th>
<th>Cancer Risk</th>
<th>Tissue Type a</th>
<th>Estradiol C16α-hydroxylation (% per mg tissue) b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murine</td>
<td>Low</td>
<td>NFS-MDE</td>
<td>0.16 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>C3H-MDE</td>
<td>0.59 ± 0.13</td>
</tr>
<tr>
<td>Human</td>
<td>Low</td>
<td>TDLU-LR</td>
<td>0.05 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>TDLU-HR</td>
<td>0.31 ± 0.05</td>
</tr>
</tbody>
</table>

a Mammary ductal epithelium from low risk NFS strain, mammary ductal epithelium from high risk C3H strain, terminal duct lobular units from reduction mammoplasty, terminal duct lobular units from cancer mastectomy

b determined from 3H_2O formation after a 48 hour incubation with [C16α-3H] E$_2$
Induction of Unscheduled DNA Synthesis and Aberrant Hyperproliferation by Estradiol Metabolites in Mouse Mammary Epithelial C57/MG Cells

<table>
<thead>
<tr>
<th>Agent</th>
<th>Unscheduled DNA Synthesis (HU-insensitive 3H-thymidine uptake, cpm x 106/mg DNA)</th>
<th>Anchorage-Independent Growth (% CFE)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO (solvent control)</td>
<td>12.5 ± 1.0</td>
<td>NDb</td>
</tr>
<tr>
<td>DMBA (positive control)</td>
<td>21.4 ± 2.2</td>
<td>24.0 ± 2.4</td>
</tr>
<tr>
<td>E_2</td>
<td>12.5 ± 1.0</td>
<td>1.0 ± 0.5</td>
</tr>
<tr>
<td>16α-OHE$_1$</td>
<td>22.0 ± 3.5</td>
<td>5.5 ± 0.3</td>
</tr>
<tr>
<td>2-OHE$_1$</td>
<td>13.0 ± 0.9</td>
<td>0.3 ± 0.2</td>
</tr>
</tbody>
</table>

a Number of colonies

b initial seeding density × 100

ND: not detected
pS2-CAT activity in MCF-7 cells pre-exposed to estrogens

<table>
<thead>
<tr>
<th>Pretransfection Hormone</th>
<th>Duration</th>
<th>Postransfection Treatment</th>
<th>CAT Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol</td>
<td>1</td>
<td>Ethanol</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>E₂</td>
<td>19.7</td>
</tr>
<tr>
<td>Ethanol</td>
<td>14</td>
<td>Ethanol</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>E₂</td>
<td>17.4</td>
</tr>
<tr>
<td>16αOHE₁</td>
<td>1</td>
<td>Ethanol</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>E₂</td>
<td>20.2</td>
</tr>
<tr>
<td>16αOHE₁</td>
<td>14</td>
<td>Ethanol</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>E₂</td>
<td>18.9</td>
</tr>
<tr>
<td>Estradiol</td>
<td>1</td>
<td>Ethanol</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>E₂</td>
<td>22.4</td>
</tr>
<tr>
<td>Estradiol</td>
<td>14</td>
<td>Ethanol</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>E₂</td>
<td>16.9</td>
</tr>
<tr>
<td>Estriol</td>
<td>1</td>
<td>Ethanol</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>E₂</td>
<td>17.8</td>
</tr>
<tr>
<td>Estriol</td>
<td>14</td>
<td>Ethanol</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>E₂</td>
<td>20.0</td>
</tr>
</tbody>
</table>

MCF-7 cells were treated for 1 or 14 days with the indicated hormone at a concentration of 10^{-8}M. Cells were then incubated in the absence of hormone for 5 days. After transfection with a pS2-CAT reporter, cells were incubated in the presence or absence of 10^{-8}M estradiol for 48 hours and harvested for CAT assay. CAT activity indicates % conversion of chloramphenicol to monoacetylated forms.
Fig. 1

Alignment of Cyp2-dx with rat CYP2D4 (P450-CMF3) and mouse Cyp2-d9 (testosterone 16α-hydroxylase)

<table>
<thead>
<tr>
<th></th>
<th>Cyp2-dx</th>
<th>TGGCGCTGGTG CATGAGTTGC AGCGCTTTGC AGACATTCTC CCTCTTGTTG TACCTCACAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>CYP2D4</td>
<td>TGGCTGTcaTc CATGAGTTGC AGCGCTTTGC AGACATTCTC CCTCTTGTTG TgCCTCACAA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>^^^vvvvvvvv ^^^^^^^^^^ ^^^^^^^^^^ ^^^^^^^^^^ ^^^^^^^^^^</td>
</tr>
<tr>
<td>20</td>
<td>Cyp2-d9</td>
<td>TGGCTGTcaTc CATGAGTTGC AGCGCTTTTG ggGACATTGxTtc CGagTgaaTtc TgCCaCGCAT</td>
</tr>
</tbody>
</table>
| | | ^^^vvvvvvvv ^^^^^^^^^^ ^^^^^^^^^^ ^^^^^^^^^^ ^^^^^^^^^^ ^ ^
| 30| | 70 80 90 100 110 120 |
| | Cyp2-dx | GACTTCTCGT GACATTGAAC TACAGGGCTT CTTATCCCT AACGGAGGAC CCTCATCACCC |
| 40| CYP2D4 | GACTTCTCGT GACATTGAAG TgCAGGGCTT CTTATCCCT AACGGACaAC CCTCATCACCC |
| | | ^^^^^^^^^^ ^^^^^^^^^^ ^^^^^^^^^^ ^^^^^^^^^^ ^ ^ ^ ^
| 50| Cyp2-d9 | cACaagTCaT GACATTGAAG TgCAGGaaCTT CCTcATCCCc AAGGGACGAt CCTCceTCcCC |
| | | ^^^vvvvvvvv ^^^^^^^^^^ ^^^^^^^^^^ ^^^^^^^^^^ ^ ^ ^
| 60| | 130 140 150 160 |
| | Cyp2-dx | AACCGTGTCCT CCGGCTAAA AGATGAGACT GTCTGGGAGA AGCCCTCT |
| 70| CYP2D4 | AACCGTGTCCT CaGtGCTgAA gGATGAGAcC GTCTGGGAGA AGCC-CT |
| | | ^^^^^^^^^^ |
| 80| Cyp2d-9 | AACaTGTCCT CCatGCTgAA AGATGAGtCT GTCTGGGAGA AGCC-CT |
| | | ^^^vvvvvvvv ^ |
| 90| | 100 |
| 100| | 110 |
| 110| | 120 |
| 120| | 130 |
| 130| | 140 |
| 140| | 150 |
| 150| | 160 |
| 160| | 170 |

31
The Role of Estrogen in Mammary Carcinogenesis

JACK FISHMAN AND NITIN T. TELANG
Strang-Cornell Cancer Research Laboratory
Cornell University Medical College
New York, New York 10021

INTRODUCTION

Human breast cancer is one of the most prevalent diseases in women. The American Cancer Society estimates approximately 182,000 new cases of breast cancer and about 46,000 breast cancer–related deaths for 1994.1 The epidemiological evidence provides strong support for the concept that environmental, hormonal, and genetic factors affect the risk and development of breast cancer.2-6 From among the various recognized risk factors, age at menarche, age at first pregnancy, and age at menopause suggest that endogenous ovarian steroids may profoundly affect initiation, promotion, and progression of carcinogenesis.3-7

Experimental studies on rodent mammary tissue have demonstrated that the ovarian steroids, 17β-estradiol (E2) and progesterone (Prg), acting in concert, induce proliferation and positively regulate mammary epithelial morphogenesis, that is, formation of the epithelial ductal system exhibiting proliferative terminal end-buds (TEB). In response to such mammotrophic/lactogenic hormones as adrenal glucocorticoids and the pituitary polypeptide prolactin, TEB are induced for functional cytodifferentiation as evidenced by the presence of transformation to secretory lobule alveoli. The selected steroid and polypeptide hormones that are mammotrophic in the rodent mammary system are also reported to regulate epithelial cell proliferation in human mammary terminal duct lobular units (TDLU), the principal target site for carcinogenesis in humans.5,7,8

From among the mammotrophic hormones as endogenous factors that influence mammary carcinogenesis, estrogens have attracted the most attention. The natural estrogen E2 is a well-known promoter of rodent mammary carcinogenesis. Carcinogen-induced as well as spontaneous mammary tumors in rodent models are negatively growth-regulated by surgical or chemical ablation of ovarian function.2,3,7,9,10 E2 induces DNA synthesis in quiescent cells, increases the expression of oncoproteins, and functions as a potent mitogen in estrogen-responsive tissues.3,6,11 Taken together, these observations provide evidence that estrogens, because of their mitogenic property, may increase the susceptibility of the target tissue to initiation. Additionally, E2-mediated mitogenicity on preinitiated target cells may predispose these cells to tumorigenic transformation.

Microsomal hydroxysteroid dehydrogenases and P450-dependent steroid hydroxylases are critical for the estrogen biotransformation that converts highly estrogenic E2 to progressively less estrogenic metabolites.12,13

In vivo experiments utilizing strains of mice that differ in their relative risk of developing the murine mammary tumor virus (MvT)-induced mammary adenocarcinoma...
Estrogen Metabolite Ratios and Risk Assessment of Hormone-related Cancers

Assay Validation and Prediction of Cervical Cancer Risk

D. W. SEPKOVIC,* E. L. BRADLOW,* G. HO*
S. E. HANKINSON,** L. GONG,** M. P. OSBORNE,** AND J. FISHERMAN***

*Strange-Cornell Cancer Research Laboratories
New York, New York 10021
**Department of Epidemiology and Social Medicine
Albert Einstein College of Medicine
Bronx, New York 10461
***Channing Laboratory
Brigham and Women's Hospital
and
Harvard Medical School
Boston, Massachusetts 02115

INTRODUCTION

Estrogens are believed to act as mutagenic promoters in breast malignancies causing increased growth rates in transformed cells. The major metabolites of estradiol, estrone, and estradiol, are hydroxylated at either the C-2 or C-4 position with a mild activity towards the C-2 position. C-2 metabolites represent an irreversible transformation of estradiol compounds that are essentially devoid of estrogenic activity. C-2 and C-4 hydroxylation are competitive alternative pathways and increases in the activity of one of these two oxidative pathways will result in a diminution of metabolites formed via the alternative pathway. The principal C-2 metabolite in humans is 2-hydroxyestrone (2-OHE1). Recent studies have shown that 2-OHE2 is weakly estrogenic.

The other major pathway of estradiol metabolism, C-16α hydroxylation, results in the formation of 16α-hydroxyestrone (16α-OHE1) and estradiol (E2). Both of these compounds retain significant estrogen agonist activity. 16α-OHE1 is a uniquely reactive estrogen that is known to be present in humans at levels that are comparable to free estradiol. This estradiol metabolite is capable of covalently binding to estrogen receptors, nuclear histone proteins, and to other amino-containing compounds. The formation of 16α-OHE1 is elevated in women with breast cancer, in women at high risk for breast cancer, and in strains of mice with a high incidence of spontaneous mammary tumors.

In the present study, we utilize an enzyme-linked immunosorbent assay for these metabolites in urine and correlate this endocrine biomarker with cervical intraepithelial neoplasia

COPY AVAILABLE TO DTIC DOES NOT PERMIT FULLY LEGIBILE REPRODUCTION

33
Effects of Pesticides on the Ratio of 16α/2-Hydroxyestrone: A Biologic Marker of Breast Cancer Risk

H. Leon Bradlow, Devra Lee Davis, Gong Lin, Daniel Sepkovic, and Raj Tiwari

1Strang-Cornell Cancer Research Laboratory, New York, New York; 2Office of the Assistant Secretary for Health, Dept.of Health and Human Services, Washington, DC

Xenobiotic estrogens are external compounds with estrogenic activity that may thereby affect the risk of breast cancer. This paper describes a mechanism by which xenestrogens may affect the development of breast cancer. Estradiol metabolism proceeds by hydroxylation at one or two mutually exclusive sites at C-2 and C-16a. The catechol pathway yields the weakly estrogenic 2-hydroxyestrone (2-OHE), which inhibits breast cell proliferation. In contrast, the alternative pathway yields the genotoxic 16α-hydroxyestrone (16α-OHE), which enhances breast cell growth. The alternative pathway increases unscheduled DNA synthesis, DNA damage, and virus expression, and increases anchorage-independent growth. Using a radiometric assay that measures the relative formation of 16α-OHE versus 2-OHE, from specifically labeled estradiol in IPE-A MCF-7 cells, we compared the ratio of 16α-OHE/2-OHE observed after treatment with the known breast carcinogen, DMBA, with the ratio of 16α-OHE/2-OHE observed after treatment with DDT, Atrazine, and benzene, solubilized PCBs, Endosulfan I and II, linoleic and eicosapentaenoic acids, and indole-3-carbinol (I3C). These results are significant increases in the ratio of 16α-OHE/2-OHE, metabolites to values comparable or greater than those observed after DMBA. In contrast, the antagonist agent I3C increased 2-OHE formation and yielded ratios that are 1/3 of those found in unexposed control cells and 1/10th of those found in DMBA-treated cells. Thus the ratio of 16α-OHE/2-OHE may provide a marker for the risk of breast cancer. Assays of this ratio, which can be measured in host tissues, may prove useful for a variety of in vitro and in vivo studies bearing on breast cancer risk. — Environ Health Perspectives 103:Suppl:8;00-00) (1995)

Key words: Estrogens, 450-hydroxylation, pesticides, cancer risk, hydroxysterogens

Introduction
Changes in screening practices or in known or suspected risk factors cannot completely account for recently observed increases in the incidence of breast, prostate, and recticular cancer or suspected increases in men and female reproductive disorders, such as reduced sperm counts, increased reproductive failures, endometriosis, and ovarian fibroid tumors. With respect to breast cancer, most of the known risk factors other than genetic makeup for the disease can be related to cumulative lifetime exposure to estrogen (1,2).

We have recently hypothesized that foreign compounds with estrogenic activity can affect the risk of breast cancer (3). Estradiol metabolism predominatively proceeds via two mutually exclusive pathways: one pathway yields the catechol estrogen 2-hydroxyestrone (2-OHE), which is weakly antiestrogenic and nongenotoxic (4); the alternative pathway yields 16α-hydroxyestrone (16α-OHE), a fully potent estrogen, which is tumorigenic and genotoxic and causes increased cell proliferation (Figure 1) (5). The reasons for suspecting that alterations in endocrine function underlie estrogen-mediated cancers, such as those of the breast and endometrium, have evolved from diverse observations in endocrinology, biochemistry, and epidemiology. Some 30 years ago, it was calculated that on a molar basis about 2-OHE, possessed about 0.25% of the uterotrophic activity of estradiol (6). Indeed some studies suggest that 2-OHE is a weak antisterogen (7,8). Others have noted that 4-OHE is carcinogenic in the Syrian hamster kidney model where it is a major metabolite (9), but it is a minor metabolite in people. In contrast, 16α-OHE, covalently binds with estrogen receptors and amino functions on DNA (10,11) and elicits persistent biological responses (12). A number of lines of evidence suggest that 16α-hydroxylation is a biological marker of risk for breast cancer and may directly contribute to the initiation and progression of the disease. 16α-OHE, the product of the 16α-hydroxylation pathway of E2 metabolism, causes prolonged growth responses by virtue of its ability to bind covalently to the estrogen receptor (10). This paper presents results of an established assay of estradiol metabolism applied to a number of organochlorine pesticides. Materials that increase the ratio of 16α-OHE/2-OHE should be regarded as potential breast carcinogens.

Methods
Estradiol metabolism via the C-2 and C-16a hydroxylation pathways was assayed radiometrically (13). We measured the amount of estradiol metabolized by these two pathways in estrogen receptor positive (ER+) human breast cell cultures (MCF-7) in the presence and absence of DMBA and linoleic acid as positive tumorogenic con-
Reliability of an Enzyme Immunoassay for Simultaneous Quantitation of 2- and 16α-hydroxyestrone in Urine of Premenopausal Healthy Women

*Department of Epidemiology
Graduate School of Public Health
University of Pittsburgh
130 DeSoto Street
Pittsburgh, Pennsylvania 15261, USA

**Strang Cornell Cancer Research Laboratory
Cornell University
510 East 73rd Street
New York, New York 10021, USA

Address reprint requests to:
Dr. Araxi Pasagian-Macaulay
University of Pittsburgh
3600 Forbes Avenue, Suite 600
Pittsburgh, Pennsylvania 15213

Running Title: Reliability of measurements of 2- and 16α-hydroxylation in urine of premenopausal women.

This study was supported by the National Cancer Institute Grant # CA63401.

KEYWORDS
2-hydroxyestrone, 16α-hydroxyestrone, estrogen metabolism, reliability