GRANT NUMBER: DAMD17-95-1-5056

TITLE: 10th Annual Conference on Human Retrovirus Testing

PRINCIPAL INVESTIGATOR: Jerome R. Cordts

CONTRACTING ORGANIZATION: Association of State and Territorial Public Health Laboratory Directors
Washington, DC 20036

REPORT DATE: September 30, 1995

TYPE OF REPORT: Proceedings

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Report Documentation Page

<table>
<thead>
<tr>
<th>Field</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency Use Only (Leave Blank)</td>
<td></td>
</tr>
<tr>
<td>Report Date</td>
<td>September 1995</td>
</tr>
<tr>
<td>Report Type and Dates Covered</td>
<td>Proceedings 24 Jul 95 - 30 Sep 95</td>
</tr>
<tr>
<td>Title and Subtitle</td>
<td>10th Annual Conference on Human Retrovirus Testing</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Jerome R. Cordts</td>
</tr>
<tr>
<td>Performing Organization Name(s) and Address(es)</td>
<td>Association of State and Territorial Public Health Laboratory Directors</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20036</td>
</tr>
<tr>
<td>Sponsoring/Monitoring Agency Name(s) and Address(es)</td>
<td>U.S. Army Medical Research and Materiel Command</td>
</tr>
<tr>
<td></td>
<td>Fort Detrick, Maryland 21702-5012</td>
</tr>
<tr>
<td>Supplementary Notes</td>
<td></td>
</tr>
<tr>
<td>Distribution/Availability Statement</td>
<td>Approved for public release; distribution unlimited</td>
</tr>
<tr>
<td>Abstract (Max 200 words)</td>
<td></td>
</tr>
<tr>
<td>Subject Terms</td>
<td>Human Retrovirus Testing, Conference</td>
</tr>
<tr>
<td>Security Classification of Report</td>
<td>Unclassified</td>
</tr>
<tr>
<td>Security Classification of This Page</td>
<td>Unclassified</td>
</tr>
<tr>
<td>Security Classification of Abstract</td>
<td>Unclassified</td>
</tr>
<tr>
<td>Limitation of Abstract</td>
<td>Unlimited</td>
</tr>
</tbody>
</table>

Form Approved
OMN No. 0704-0188
Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the US Army.

Where copyrighted material is quoted, permission has been obtained to use such material.

Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

Citations of commercial organizations and trade names in this report do not constitute an official Department of Army endorsement or approval of the products or services of these organizations.

In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).

For the protection of human subjects, the investigator(s) adhered to policies of applicable Federal Law 45 CFR 46.

In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

In the conduct of research utilizing recombinant DNA, the investigator(s) adhered to the NIH Guidelines for Research Involving Recombinant DNA Molecules.

In the conduct of research involving hazardous organisms, the investigator(s) adhered to the CDC-NIH Guide for Biosafety in Microbiological and Biomedical Laboratories.

[Signature]
[Date]
10th Annual Conference on Human Retroviral Testing

March 1995
Reno, Nevada
CONFERENCE PURPOSE

A forum on national and international laboratory-related retroviral issues which will allow for an exchange of information and ideas and encourage discussion of current issues.

DESIRED CONFERENCE OUTCOMES

1. To review state-of-the-art technologies and produce summary papers on current retrovirus issues.

2. To identify specific issues that require follow-up and establish action plans.

3. To raise questions even if the answers are not known.
The Association of State and Territorial Public Health Laboratory Directors (ASTPHLD) represents state and territorial public health laboratory directors throughout the United States. The Association maintains a Headquarters Office and seven Area Resource Offices, and operates a National Laboratory Training Network that forms alliances among federal, state and local health agencies and private sector organizations to develop and promote the delivery of localized laboratory training programs based on documented need. The Association also organizes and presents scientific conferences and symposia relevant to the testing activities of public health laboratories. ASTPHLD operates exclusively as a scientific and educational organization.
ASTPHLD Human Retrovirus Testing Committee

James L. Pearson, Dr.P.H., Virginia, Chairman
Arthur F. DiSalvo, M.D., Nevada
William J. Hausler, Jr., Ph.D., Iowa
Robert Martin, Dr.P.H., Michigan
David L. Maserang, Ph.D., Texas

Conference Planning Committee

Judith A. Wethers, M.S., New York, Chair
Michael Ascher, M.D., California
James W. Blaine, Ph.D., Virginia
LTC Arthur E. Brown, M.D., Department of Defense
Roger Dodd, Ph.D., American Red Cross
Jane Getchell, Dr.P.H., Iowa
Paul Mied, Ph.D., Food and Drug Administration
Charles Schable, M.S., Centers for Disease Control and Prevention
TABLE OF CONTENTS

Conference Speakers ... 1
Conference Summary .. 5
Abstract Listing ... 11
Abstract Authors .. 15
Abstracts ... 19
Attendees ... 43
CONFEREN CE SPEAKERS

The Basics of Retroviral Testing
Charles Schable, M.S.
Chief, Serology Section, Division of HIV / AIDS
Centers for Disease Control and Prevention

Plenary Session I:
James Pearson, Dr. P.H. - Moderator

Influence of HIV Variability on the Strategies for HIV Diagnosis and Vaccine Development
Professor Guido van der Groen
Chairman, Department Infection and Immunity,
Adjunct Chief Microbiology Division
World Health Organization Center on AIDS

Women’s Health -
Why is it important and What is CDC doing?
Wanda Jones, Dr.P.H.
Acting Associate Director for Women’s Health,
Centers for Disease Control and Prevention

Opportunistic Infections in HIV-Infected Persons:
Focus on Prevention
Jonathan Kaplan, Ph.D.
Assistant to the Director for Infectious Diseases,
Division of HIV / AIDS
Centers for Disease Control and Prevention
External Controls for HIV Testing: Pros and Cons
Margaret Hanson, Ph.D.
Virology Lab Manager
Memorial Blood Center of Minneapolis
Minneapolis, Minnesota

Plenary Session II
Robert Martin, Dr.P.H., Moderator

Closing the HIV Window
Paul Mied, Ph.D.
Acting Director, Division of Transfusion Transmitted Diseases,
CBER, Food and Drug Administration

AZT-Resistant HIV-1 in Seroconverters
Chief, Diagnostic Retrovirology,
Walter Reed Army Institute of Research

The CDC International Surveillance Program
for Unusual Variants of HIV
J. Richard George, Dr.P.H.
Chief, Developmental Technology Section,
Division of HIV / AIDS
Centers for Disease Control and Prevention

Evening Forum I: Issues of Retroviral Testing
Charles Schable, M.S.
Chief, Serology Section, Division of HIV / AIDS
Centers for Disease Control and Prevention

Issues Forum: HIV and the Newborn
Arthur DiSalvo, Moderator

Current Status on Transmission Prevention
The 076 Study
Yvonne Maldanado, M.D.
Division of Pediatric Infectious Disease
Stanford University School of Medicine
Newborn Screening in the Family of Serosurveys
Marta Gwinn, M.D.
Chief, Clinical and Special surveys Section
HIV Seroepidemiology Branch, DHA
Centers for Disease Control and Prevention

Diagnosis of HIV in the Newborn
I. Celine Hanson, M.D.
Professor of Pediatrics, Baylor College of Medicine
Texas Children’s Hospital

Ethical Consideration of Perinatal Screening
Ronald Bayer, Ph.D.
Professor,
Columbia University School of Public Health

Evening Forum II
Molecular Technologies; Flow Cytometry and its Alternatives
Jane Getchell, Dr.P.H., Moderator
Associate Director
State Hygienic Laboratory, University of Iowa

Plenary Session III
James Pearson, Dr.P.H., Moderator

Laboratory Training Initiative:
Improving the Quality of HIV Testing in India
Mahadeo P. Verma, Ph.D.
Director, Delaware Public Health Laboratory
Division of Public Health

Perspectives for HIV Antibody Testing
in Latin America and the Caribbean
José Ramiro Cruz, D.Sc.
Regional Advisor on Laboratory and Blood Services
Pan American Health Organization
Conference Tenth Anniversary

William J. Hausler, Jr., Ph.D.
Director, State Hygienic Laboratory
University of Iowa

David Carpenter, Ph.D.
President, ASTPHLD
Director, Division of Laboratories
Illinois Department of Health

Western Blot Workshop
Judith Wethers, M.S., Moderator

Presented by New York State Department of Health
Kurt Dunn, Tim Rem, Joyce Sanders
The Tenth Annual Conference on Human Retrovirus Testing sponsored by the Association of State and Territorial Public Health Laboratory Directors (ASTPHLD) was held March 6 to 9, 1995, in Reno, Nevada. The conference, which was attended by more than 300 representatives of public and private sector laboratories as well as test kit manufactureres, emphasized three themes: new HIV variants, international issues and ASTPHLD involvement, and testing of newborns.

New HIV Variants and Their Effects on HIV Testing

HIV variability was expertly discussed from both the European and U.S. points of view. Guido van der Groen (Chairman, Department of Infection and Immunity, Adjunct Chief Microbiology Division, World Health Organization (WHO) Center on AIDS, Antwerp, Belgium) summarized information on HIV-1, type O viruses presented just days earlier at a world Health Organization meeting. Sequence data for 21 type O isolates are now available. The immunodominant region of gp41 in the type O isolates varies from that in the main group of HIV-1 isolates -- this is probably why sera from some patients were non-reactive to envelope antigens when tested on conventional Western blots. J. Richard George, Dr.P.H. (Chief, Developmental Technology Section, Division of HIV / AIDS, Centers for Disease Control and Prevention, Atlanta, Georgia) complemented this talk by describing CDC’s surveillance for unusual variants of HIV. International collaborations to look for HIV variants were established in 1994 between CDC and Uganda, Kenya, Côte d’ Ivoire, and Brazil. Dr. George pointed out that nearly all HIV diagnostic kits have been made with viral lysates of a subtype B (IIIb) virus or gene products derived from its sequence.
Both speakers agreed that there are HIV-infected persons whose sera do not react with the gp41 IIIb epitopes, but the number of such persons is unknown. Retrospective studies in the United States have detected no unusual variants, and prospective studies to address this issue are beginning. More sera are needed from patients infected with HIV variants, and current assays need to be assessed against new information on variation.

Arthur Brown, M.D., LTC, M.P.H. (Chief, Diagnostic Retrovirology, Walter Reed Army Institute of Research, Rockville, Maryland) presented data on changing virologic face of the HIV epidemic in the United States and Europe. In U.S. military personnel who seroconverted and in patients with acute retroviral syndrome in Geneva, the frequency of zidovudine (AZT)-resistant virus has increased from zero to approximately 10% in the early 1990s. Similar frequencies are found in civilians in the United States and Australia.

HIV Testing of Newborns

A half-day forum with four speakers addressed issues of HIV testing and the newborn. The impetus for this session was the recent report of decreased maternal-neonatal transmission due to AZT prophylaxis. Yvonne Maldanado, M.D. (Division of Pediatric Infectious Disease, Stanford University School of Medicine, Stanford California) reviewed the results of this study, which was discontinued because the transmission rate was significantly lower in mother-child pairs receiving AZT than among those receiving placebo (8% vs. 25%). Dr. Maldonado pointed out that the time of infection of a neonate is usually not known; an estimated two-thirds of infected neonates are infected perinatally, and an additional 10% to 30% may be infected in association with breast-feeding. Because of the high death rates associated with pneumocystis pneumonia in the first year of life, diagnosis in the first weeks to months
after birth is essential for timely prophylaxis.

The national anonymous survey of HIV prevalence in newborns was reviewed by Marta Gwinn, M.D. (Chief, Clinic and Special Surveys Section, Division of HIV/AIDS, Centers for Disease Control and Prevention, Atlanta, Georgia). This survey represents one of the few HIV surveillance systems in the United States that describe prevalence of infection rather than prevalence of AIDS. Results from 1993 show that approximately 7,000 HIV-infected, pregnant women delivered an estimated 1,000 to 2,000 infected children.

While some argue that this survey should be unblinded, CDC recommends maintaining it as is for its unique epidemiologic value and to provide input for policy decisions; CDC also recommends offering HIV testing to all pregnant women. Dr. Gwinn used survey data to show that the number of women tested to detect one HIV-infected woman would be from <200 to 5,000 (national average, 500 to 600), depending on the prevalence of HIV in a given state.

Diagnosis of HIV in newborns was reviewed by I. Celine Hanson, M.D. (Associate Professor of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas). Three points were emphasized: No clinical signs distinguish HIV-infected children; risk for infection among exposed children appears to vary directly with maternal viremia (p24 Ag; quantitative RNA is not yet available) and inversely with CD4 count; and diagnosis in the first months of life depends on virologic assessment (polymerase chair reaction (PCR), culture, (p24 Ag), and these assays may approach 95% sensitivity when the child is 2 to 3 months old. Dr. Hanson said that confirming noninfection is now more difficult than diagnosing infection.

For the first time in the 10-year history of the conference, ethical issues were discussed formally. Ronald Bayer, Ph.D. (Professor, Columbia University School of Public Health, New York, New York) reviewed the ethical considerations of perinatal screening. He pointed out that although maternal and neonatal screening raised many similar issues, the ethical questions differed, and the main argument against mandatory
testing of pregnant women was that a woman could not be forced to take AZT and, thus, testing itself was not directly linked to decreased infection rates in the newborn.

International Issues and Involvement

An international perspective on HIV testing was brought to the Conference by presentations that focused on India and Latin America. Mahadeo P. Verma, Ph.D. (*Director, Delaware Public Health Laboratory, Division of Public Health, Smyrna, Delaware*) described the results of a project funded by a 12-month study grant from the World AIDS Foundation to provide training on HIV testing to laboratories in India.

Four Indian facilitators were trained in the United States and the provided translation and other assistance to eight ASTPHLD faculty who gave 6-day workshops in four training centers in India. Training focused on enzyme immunoassays (EIAs), linking trainees with staff from Indian reference centers, and establishing training materials and trainers for future workshops to be conducted by Indian staff.

Laboratory aspects of HIV testing in Latin America and the Caribbean were discussed by José Ramiro Cruz, D.Sc. (*Regional Advisor on Laboratory and Blood Services, Pan American Health Association (PAHO)*), who described the spectrum of HIV incidence rates and testing algorithms. PAHO is asking regional countries to assess their algorithms in terms of sensitivity / specificity and cost. PAHO aims to support national laboratories by providing guidelines and quality assurance; proficiency testing is encouraged and is provided by CDC (Centers for Disease Control and Prevention). Dr. Cruz invited ASTPHLD to work with PAHO in achieving those goals.

Additional Topics

Prevention of opportunistic infections in patients with AIDS was reviewed by
Jonathan Kaplan, Ph.D. (Assistant to the Director for Infectious Diseases, Division of HIV/AIDS, Centers for Disease Control and Prevention, Atlanta, Georgia). For 18 microorganisms that cause opportunistic infections, recommendations have been formulated for preventing infection, treating disease, and preventing relapse. CD will publish these in the summer of 1995. Dr. Kaplan emphasized that preventing opportunistic infections in AIDS patients depends on diagnosis of HIV infection and, therefore, on HIV testing.

The issues involved in the use of the external controls were reviewed by Margaret Hanson, Ph.D. (Virology Laboratory Manager, Memorial Blood Center of Minneapolis, Minneapolis, Minnesota), who used EIAs to illustrate the main points of the discussion. It was suggested that low-positive external controls are the most useful, especially in monitoring test system performance. When using external controls, it is necessary to specifically define the purpose and frequency of their use and to target values and corrective actions to be taken.

Paul Mied, Ph.D. (Acting Director, Division of Transfusion Transmitted Diseases, CBER, Food and Drug Administration, Rockville, Maryland), summarized the results of an FDA-sponsored meeting held 6 months previously which focused on detecting HIV infection through genetic-based technologies during the preseroconversion window. It was estimated that current third generation EIAs have narrowed this window to 3 to 4 weeks. Genetic technologies theoretically close this window further, but not completely.

One conclusion of the FDA meeting was that none of the technologies were ready for use in the volumes of specimens and through-put required by blood banks and that the cost per potential infection detected was prohibitive.

The basics of HIV testing were reviewed both in a session conducted by Charles Schable, M.S. (Chief, Serology Section, Division of HIV/AIDS, Centers for Disease Control and Prevention Atlanta, Georgia), and a Western blot workshop organized by
Judith Wethers, M.S. (Director of Testing, Retrovirology Laboratory, New York State Department of Health, Albany, New York). The continued interest in these presentations is derived from the turnover of technical personnel in HIV testing laboratories and the continued need for test improvement, especially at the confirmatory level.

Additional sessions discussed testing of alternative specimens (oral fluids, dried blood spots), home collection, CD4 cell quantitation, PCR/LCR, and p24 Ag after immune complex dissociation. Women's health issues and CDC participation in this arena were discussed by Wanda K. Jones, Dr.P.H. (Acting Associate Director for Women's Health, Centers for Disease Control and Prevention, Atlanta, Georgia). The founder of the ASTPHLD Conference, William J. Hausler, Jr., Ph.D. (Director, State Hygienic Laboratory, University of Iowa, Iowa City, Iowa), critiqued its first decade, and David Carpenter, Ph.D. (Director, Division of Laboratories, Illinois Department of Health, Springfield, Illinois), president, ASTPHLD, discussed its recent evolution and growth. The 11th ASTPHLD Conference will be held in Orlando, Florida, in March 1996.
1 Performance Evaluation of the FACSCount™ System for Absolute CD4 Counts less than 50 Cells / µL
Shiba A, Ward DM, Lock M, Webster K.

2 Flow Cytometric CD4 Cell Determination Based Upon CD3 Gating in HIV Infected Individuals
Alexander, T., R. Balaj and L. Define

3 Variable Hematology Results Due to Specimen Alterations Encountered In Developing a Protocol for a T-Lymphocyte Immunophenotyping Proficiency Testing Program

R.N. Taylor, G.D. Cross, W.O Schalla, and J.H. Handsfield

5 Does the current level of Laboratory Reliability of CD4+ Absolute Counts merit the current level of Physician Confidence in this test?

6 TRAx® CD8 Study Results From a Two Site Trial with HIV-positive Patients and Apparently Healthy Donors to Determine the Correlation to Flow Cytometry.
Susan Carrabis, Kim Craig, Annelize Alvarez and Kim Foster

7 Evaluation of a Modified HIV-1 / HIV-2 Recombinant / Peptide Based Antibody Screening EIA
Newton, J., Skora, C., Falcon, R., Fairweather, G., Peterson, MB., Gallarda, J., Liu, D.

8 Comparison of a HIV-1 / HIV-2 Recombinant Strip Immunoblot Assay and HIV-1 Western Blot in detecting HIV-1 "O" Subtype Samples
Ly, T.D., Schable, C, Sayre, K., DiNello, R

9 Improved Specificity of a HIV-1/2 Recombinant Strip Immunoblot (SIA) Compared with HIV-1 Western Blot
K. Sayre, I. Valinsky

10 Comparison between CHIRON® RIBA™ HIV ½ SIA and DBL HIV BLOT 2.2
C. Tamalet, S. Rousseau, Chu La Timone, K. Sayre
11 Specific and Sensitive HIV-1/HIV-2 EIA using ENV and POL Synthetic Peptides.

12 Comparison of FDA Licensed Western Blot Assays and Miniaturized Assays for Serum and Dried Bloodspot Confirmation
Susan K. Phillips, Timothy C. Granade and James R. George

13 Comparison of Dried Blood Spot (DBS) methods using HIV Seroconversion Panels and Low-Reactive Specimens
B.J. Weiblen, D. McCoy, J. Doherty, R.T. Schumacher, S.L. Stramer

14 Stability of DBS Samples Exposed to Heat and Humidity in Three Shipping Envelopes
Wandell, M., Frank, A., Weiblen, B.

15 Dried Blood Spot HIV PCR Improves the Diagnosis of HIV in Infants
Rick Galli, Carol Major, Stanley Read, Perry Gomez, Xiaoyi Li, Rosa Mae Bain, Percy McNeil, Tidiane Sy, George Strunc, M O'Shaughnessy, Sharon Cassol

16 Improved Western Blot Immunoassays for Confirmation of Human Antibody to HIV-1 in Dried Blood Spot Eluates
K.H. Brackmann, M.J. Alsup, M.A. Willey, and M.K. Shriver

17 Immune-Complex Dissociation (ICD) of HIV-1 p24 Antigen as a first step in the detection of Perinatally Transmitted HIV-1 Infection Base Dissociation & Acid ICD Compared.
Hyman, J., Lockwood, D., Holody, T., and Kay J.

18 HIV Dried Blood Spot (DBS) Western Blot Studies; Feasibility of using a strip processor for both Elution and Blot Processing of DBS Specimens
Kay, J.W.D, Jones, G.R, and Tan, P.L.

19 Western Blot Confirmatory Testing of Orasure Oral Fluid Specimens
Andrew S. Goldstein, Michael Hindahl, Michele Erbling, Kasey Griffin, Jeffrey Chun, John Fitchen

20 HIV Saliva Test for Surveillance and Surveys
Nora Eskes, P. Pagcharoenpol, C. Wongba, R.R. Frerichs, N Silarug

21 Field Evaluation of Methods to Detect Antibodies to HIV-1 in Oral Fluids
Timothy C. Granade, Susan K. Phillips, Bharet Parikh, Perry Gomez, Windy Kitson-Piggott, Stephanie Lee-Thomas and J. Richard George

22 Search for HIV-1 Group O Infections by Peptide Serology
Chou-Pong Pau, Mamika Kai, Charles Schable, Dale Hu, Robert Downing, Cathy Spruill, Gerry Schochetman and J. Richard George
23 Effects of Sample Preparation, Dilutions and Matrix Addition on the Performance of FDA Approved HIV-1 Tests

24 An Improved Enzyme Immunoassay for Detection of Human Antibody to HIV-1 Utilizing Viral Lyzate and a Purified Recombinant Envelope Antigen

25 Performance of Laboratories Testing HIV-1 Seroconversion Samples in the CDC Model Performance Evaluatin Program August 1994 Survey Panels
Sharon O. Blumer, William O. Schalla

26 Detection of Error in Infectious Disease Testing: Kit Validation Criteria versus Independent Control Values
B.J. Weiblen, P.E. Garrett, V.L. MacKen, R.T. Schumacher

27 Evaluation of HIV-1 Test Strips
Anthony Burgess-Cassler, Nora H. Eskes, Willfried, Schramm

28 Results of a Telephone Survey of Local Health Departments on Laboratory use for the HIV-1 Infected Patient

30 Design of RFP Product Evaluation: HIV-1 Antibody EIA Systems
William R. Oleszko, Sara T. Beatrice, Stanley Reimer, and Keith Lawrence

31 Validation of an Automated Microplate Processor
T. Grove, C. Jinneman, K. Shriver, R. Creager

32 The Effect of Microbial Contamination on HIV Antibody Detection

33 Significance of HIV-2 Screening in Geographic areas with High Incidence of HIV-1
Romulo Morales, Mahin Park, Raksha Modi and Charles Schable

34 HIV-2 Positive Blood Donor in Delaware
D.L. Winslow, M. Fosdick, C. Hancock, C. Schable, J.H. Jean, M.P. Verma and Christopher Bentsen

35 False-Negative Fluorochrom HIV-1 IFA Results
Marjorie Giles, Sydney M. Harvey and Deborah Emlein
36 Urine HIV-1 Antibody Testing to determine prevalence in Ontario Correctional Facilities
Rick Galli, Carol Major, L. Calzavara, J. Schlossberg, M. Fearon, E. Wallace, T. Myers, M. Millson, J. Parry, S. Read

37 Combination of Line Assay (LIA) and p24 Antigen EIA Improves Confirmation of HIV-1 Infection at the early stages of Seroconversion
D.R. Henrard, B. Phelps, E. Chan and D.E. Pollet

38 Hepatitis B and C as Markers of HIV Risk among Injecting Drug Users (IDU), Newark, NJ and San Francisco (SF) CA
H. Weinstock, C. Spruill, G. Lemp, R. Altman, W. Pizzuti, A. Back, R. Prevots, M. Gwinn

39 Can a single HTLV confirmatory assay give an accurate result?
F. Miles, S. Delaney, M. Sproch, C. Lawson, K. Lellish, V. Rieckenberg and S. Erickson

40 Comparison of Enzyme Immunoassays and Supplemental Tests for anti-HTLV-II

41 A Consensus PCR Primer / Probe Set Capable of Detecting Known HIV-1 Subtypes
R. Respess, A. Butcher, H. Wang, M. Kalish, R.A. Otten, J.R. George, A. Sangare, L. Haller and S. Kwok
<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexander, T.</td>
<td>2</td>
<td>Coleman, P.F.</td>
</tr>
<tr>
<td>Alsup, M.J.</td>
<td>15</td>
<td>Craig, K.</td>
</tr>
<tr>
<td>Altman, R.</td>
<td>38</td>
<td>Creager, R.</td>
</tr>
<tr>
<td>Alvarez, A.</td>
<td>6</td>
<td>Cross, G.D.</td>
</tr>
<tr>
<td>Attipoe, P.M.</td>
<td>23</td>
<td>Daanen, B.</td>
</tr>
<tr>
<td>Back, A.</td>
<td>38</td>
<td>Define, L.</td>
</tr>
<tr>
<td>Bain, R.M</td>
<td>15</td>
<td>Delaney, S.</td>
</tr>
<tr>
<td>Balaj, R.</td>
<td>2</td>
<td>DiNello, R.</td>
</tr>
<tr>
<td>Beatrice, S.T.</td>
<td>30</td>
<td>Doherty, J.</td>
</tr>
<tr>
<td>Benenson, A.S</td>
<td>5, 28</td>
<td>Domen, R.</td>
</tr>
<tr>
<td>Bentsen, C.</td>
<td>34</td>
<td>Downing, R.</td>
</tr>
<tr>
<td>Burgess-Cassler, A.</td>
<td>27</td>
<td>Erbling, M.</td>
</tr>
<tr>
<td>Blumer, S.O.</td>
<td>25, 29</td>
<td>Drew, J.A.</td>
</tr>
<tr>
<td>Boucher, C.</td>
<td>42</td>
<td>Emlein, D.</td>
</tr>
<tr>
<td>Brackmann, K.H.</td>
<td>16</td>
<td>Erickson, S.</td>
</tr>
<tr>
<td>Butcher, A.</td>
<td>41</td>
<td>Eskes, N.</td>
</tr>
<tr>
<td>Buytendorp, M.</td>
<td>40</td>
<td>Fairweather, G</td>
</tr>
<tr>
<td>Calzavara, L.</td>
<td>36</td>
<td>Falcon, R.</td>
</tr>
<tr>
<td>Carrabis, S.</td>
<td>6</td>
<td>Fearon, M.</td>
</tr>
<tr>
<td>Cassol, S.</td>
<td>15</td>
<td>Ferrera, D.</td>
</tr>
<tr>
<td>Chan, E.</td>
<td>37</td>
<td>Fitchen, J.</td>
</tr>
<tr>
<td>Christopherson, C.</td>
<td>42</td>
<td>Foerder, C.A.</td>
</tr>
<tr>
<td>Chun, J.</td>
<td>19</td>
<td>Foster, K.</td>
</tr>
<tr>
<td>Cohn, R.D.</td>
<td>3</td>
<td>Fosdick, M.</td>
</tr>
<tr>
<td>Cole, C.A.</td>
<td>11</td>
<td>Francis, D.P</td>
</tr>
</tbody>
</table>
Frank, A. 14 Jean, J.H. 34
Frazier, L. 24 Jinneman, C. 11, 31
Frerichs, R.R. 20 Jones, G.R. 18
Gaddis, L. 23 Jurgensen, P. 32
Gallarda, J. 7, 32 Kai, M. 22
Galli, R. 15, 36 Kalish, M. 41
Garrett, P.E. 26 Kay J. 17, 18
Gaunt, E.E. 3, 29 Kitson-Piggott, W 21
George, J.R. 12, 21, 22, 41 Kwok, S. 41, 42
Giles, M. 35 Lawrence, K. 30
Goldstein, A.S 19 Lawson, C. 39, 40
Gomez, P. 15, 21 Lee-Thomas, S. 21
Granade, T.C. 12, 21 Lellish, K. 39, 40
Griffin, K. 19 Lemp, G. 38
Grove, T. 31 Li, X. 15
Gwinn, M. 38 Liu, D. 7, 32
Haller, L. 41 Lock, M. 1
Hancock, C. 34 Lockwood, D. 17
Handsfield, J.H. 4 Ly, T.D. 8
Harvey, S.M 35 MacKean V.L. 26
Hatch, D. 23 Major, C. 15, 36
Hearn, T.L. 29 McCoy, D. 13
Henrard, D.R. 37 McKinney, N. 42
Higgs, M 11 McNiel, P. 15
Hindahl, M 19 Mercier, D. 11
Hofherr, L.K. 5, 28 Miles, F. 39, 40
Holody, T. 17 Millson, M. 36
Holzworth, D.A 3, 29 Mitchell, E.O. 24
Hu, D. 22 Modi, R. 33
Hyman, J. 17 Monji, N. 11

16
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montana, J.</td>
<td>11</td>
<td>Roberto, A.</td>
</tr>
<tr>
<td>Morales, R.</td>
<td>33</td>
<td>Robertson, E.</td>
</tr>
<tr>
<td>Morgan, J.R.</td>
<td>24</td>
<td>Rousseau, S</td>
</tr>
<tr>
<td>Motley, C.</td>
<td>40</td>
<td>Sangare, A.</td>
</tr>
<tr>
<td>Mulder, J.</td>
<td>42</td>
<td>Sayre, K.</td>
</tr>
<tr>
<td>Myers, T.</td>
<td>36</td>
<td>Schable, C.</td>
</tr>
<tr>
<td>Nelson, S.M.</td>
<td>24</td>
<td>Schalla, W.O.</td>
</tr>
<tr>
<td>Newton, J.</td>
<td>7</td>
<td>Scharf, D.B.</td>
</tr>
<tr>
<td>Oleszko, W.R.</td>
<td>30</td>
<td>Schindler, S.</td>
</tr>
<tr>
<td>O'Shaughnessy, M.</td>
<td>15</td>
<td>Schlossberg, J.</td>
</tr>
<tr>
<td>Otten, R.A.</td>
<td>41</td>
<td>Schochetman, G.</td>
</tr>
<tr>
<td>Pagcharoenopol, P.</td>
<td>20</td>
<td>Schramm, W.</td>
</tr>
<tr>
<td>Pan, P.L.</td>
<td>18</td>
<td>Schroeder, J.R.</td>
</tr>
<tr>
<td>Park, M.</td>
<td>33</td>
<td>Schumacher, R.T.</td>
</tr>
<tr>
<td>Parekh, B.</td>
<td>21</td>
<td>Schuurman, R.</td>
</tr>
<tr>
<td>Parry, J.</td>
<td>36</td>
<td>Seilkop, S.K.</td>
</tr>
<tr>
<td>Pau,C-P</td>
<td>22</td>
<td>Shiba, A.</td>
</tr>
<tr>
<td>Peddecord, K.M.</td>
<td>5, 28</td>
<td>Silarug, N.</td>
</tr>
<tr>
<td>Perry, S.</td>
<td>5</td>
<td>Shriver, M.K.</td>
</tr>
<tr>
<td>Peterson, M.B.</td>
<td>7</td>
<td>Skora, C.</td>
</tr>
<tr>
<td>Phelps, B.</td>
<td>37</td>
<td>Shores, P.</td>
</tr>
<tr>
<td>Phillips, S.K.</td>
<td>12, 21</td>
<td>Small, N.</td>
</tr>
<tr>
<td>Pizzuti, W.</td>
<td>38</td>
<td>Sninsky, J.</td>
</tr>
<tr>
<td>Pollet, D.E.</td>
<td>37</td>
<td>Sproch, M.</td>
</tr>
<tr>
<td>Prevots, R.</td>
<td>38</td>
<td>Spruill, C.</td>
</tr>
<tr>
<td>Prillaman, J.</td>
<td>40</td>
<td>Stramer, S.L.</td>
</tr>
<tr>
<td>Read, S.</td>
<td>15, 36</td>
<td>Stephens, J.</td>
</tr>
<tr>
<td>Respess, R.</td>
<td>41</td>
<td>Strunc, G.</td>
</tr>
<tr>
<td>Reimer, S.</td>
<td>30</td>
<td>Su, P. C-D</td>
</tr>
<tr>
<td>Rieckenberg, V.</td>
<td>39</td>
<td>Sy, T.</td>
</tr>
<tr>
<td>Name</td>
<td>Page Numbers</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>Tamalet, C.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Taylor, R.N.</td>
<td>3, 4, 5, 28, 29</td>
<td></td>
</tr>
<tr>
<td>Thompson L.R.</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Timone, C.L.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Valinsky, I.</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Verma, M.P.</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Wallace, E.</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Wallace, T.L.</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Wancho, A.</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Wandell, M.</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Wang, H.</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Ward, D.M.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Webster K</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Weiblen, B.J.</td>
<td>13, 14, 26</td>
<td></td>
</tr>
<tr>
<td>Weinstock, H.</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Willey, M.A.</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Winslow, D.L.</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Wongba, C.</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Xie, Q.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Yen-Lieberman, B.</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>
PERFORMANCE EVALUATION OF THE FACSCOUNT™ SYSTEM FOR ABSOLUTE CD4 COUNTS LESS THAN 50 CELLS/µL
Shiba A*, Ward DM*, Lock M*, Webster K*
*Becton Dickinson Immunocytometry Systems • San Jose, CA.

The FACSCount System is a complete system for the enumeration of absolute CD4+, CD8+, and CD3+ T lymphocytes in whole blood. The single instrument platform with dedicated software and reagents is easy to use and designed to improve reproducibility. In previous evaluations, the FACSCount System was shown to be equivalent to the standard methodology of a FACSscan™ flow cytometer and hematology analyzer. This evaluation focuses on the performance of the FACSCount System when enumerating absolute CD4 counts less than 50 cells/µL. Data presented in this poster compares the accuracy and precision of the FACSCount System for determination of absolute CD4 lymphocyte counts of less than 50 cells/µL.

Evaluation of system accuracy was determined by comparison of whole blood samples analyzed in parallel with the FACSCount System and the standard methodology. The standard methodology consisted of a FACSscan flow cytometer and a hematology analyzer. FACSCount System reproducibility was estimated from samples stained with four replicates each.

Data comparing absolute counts from the FACSCount System with counts from standard methodology are presented. Estimates of the within patient, between stain precision for CD4 counts less than 20, and for counts between 21 and 50 cells/µL are presented.

Flow Cytometric CD4 Cell Determination Based Upon CD3 Gating in HIV Infected Individuals, ALEXANDER T., R. BALAJ, and L. DEFINE, Summa Health System, Akron, OH 44309

CDC Guidelines for CD4 Immunophenotyping suggest a 6 tube, 2 color panel, but recommend evaluating 3-color approaches. Nicholson et al., (Cytometry 14(6), 685-692, 1993) showed acceptable QC using CD4/SS gating and a single CD3/4/45 tube. Often CD4 and CD8 values are of interest and a single tube which could provide both values would be useful. Recently introduced software for the Ortho Cytoronabsolute and BD FACSCount allow for CD4 determinations based upon CD3 gating. We tested the hypothesis that CD3/SS gating in a CD3/4/45 tube would provide results comparable to those obtained using either conventional light scatter gating or CD4/SS gating and provide both CD4 and CD8 values. 106 specimens obtained from HIV infected individuals were assayed for CD4+ using a CD3/4/45 tube gated on FS/SS and CD4/SS, and a CD3/4/8 tube gated on CD3/SS. CD4 values were expressed as the % of CD3+ positive cells for comparison. CD3/SS gating vs light scatter gating showed a linear regression equation of Y=0.99X+0.58 with an R2 of 0.99. CD45/SS gating vs FS/SS gating had a regression of 0.93X+0.25 with an R2 of 0.83. CD3/SS vs CD45/SS had an equation of 0.93+0.81 with an R2 of 0.82. CD3/SS gating was simpler to perform than CD45/SS gating due to the specificity of CD3 for lymphocyte populations and was reproducible (R2 = 0.98 for tube to tube variability). Our data confirms that CD3/SS gating is an appropriate method for determining CD4 values.
Variable Hematology Results Due To Specimen Alterations Encountered In Developing a Protocol for a T-Lymphocyte Immunophenotyping Proficiency Testing Program

CROSS, G.D.1; SCHALLA, W.O.1; TAYLOR, R.N.1; GAUNT, E.E.2; COHN, R.D.3; SEILKOP, S.K.2; HOLZWORTH, D.A.3

1Centers for Disease Control and Prevention (CDC), Atlanta, GA USA
2Analytical Sciences, Inc. (ASI), Durham, NC USA

Care and management of HIV-infected patients and the diagnosis of AIDS depend on accurate and reliable T-lymphocyte immunophenotyping (TLI) results. For developing a protocol for a national proficiency testing (PT) program, it was determined that a preliminary hematology study was necessary to provide information concerning the effects of specimen age and environmental factors on absolute lymphocyte counts. Specimens from 10 HIV-seropositive and 10 HIV-seronegative donors were subjected to two storage temperatures and two shipping conditions, and analyzed at 6-hour intervals. Three hematology instruments employing different techniques for counting and differentiating blood cells were used to evaluate identical specimens. Both the measured lymphocyte counts and their associated measurement variabilities changed over time. These changes were donor specific and dependent upon the particular hematology instrument and specimen storage temperature, e.g., measurement variability in aged specimens tended to be greater at 4°C than at ambient temperature. The effect due to different shipping conditions was comparatively minor and was only evident for certain instruments and storage temperatures. Measurement variability was homogeneous across donor specimens at 6 hours (baseline), but not at any time thereafter. Measurement variabilities were not explained by the HIV-antibody status or antiretroviral treatment of the donor.

R. N. TAYLOR, G. D. CROSS, W. O. SCHALLA, and J. H. HANDSFIELD. Centers for Disease Control and Prevention (CDC), Atlanta, Georgia

Information about the testing performance and the procedures used by laboratories in the CDC Model Performance Evaluation Program (MPEP) is obtained for laboratories that perform human T-lymphocyte immunophenotyping (TLI) by flow cytometry. The performance results as well as testing information are used to measure changes over time and to document adherence to guidelines. Results from the June 1992, October 1992, March 1993, September 1993, and the March 1994 shipment panels were compared with recommendations of the CDC MAWR CD4-Cell Testing Guidelines to estimate how well some guidelines were being followed and whether compliance had improved. The percentage of laboratories using the recommended monoclonal antibody panels steadily increased, with the percentages being 31.0% in June 1992, 39.9% in October 1992, 54.0% in March 1993, 56.0% in September 1993, and 60.2% in March 1994. There were 77 combinations of monoclonal antibodies used by the 277 laboratories reporting results, but 66% of the laboratories used one of five most common combinations and 73% used one of the 11 most common combinations. The percentage of laboratories using whole-cell lysis was relatively constant between 95.9% and 97.3% in these surveys, and the percentage of those that fixed their cells before flow cytometric analysis also was relatively constant between 95.9% and 97.3%. The number of laboratories reporting results ranged from 262 to 279 in these surveys.
POSTER NUMBER 5

DOES THE CURRENT LEVEL OF LABORATORY RELIABILITY OF CD4+ ABSOLUTE COUNTS MERIT THE CURRENT LEVEL OF PHYSICIAN CONFIDENCE IN THIS TEST?

PEDDECORD KM,1 FRANCIS DP,1 BENENSON AS,1 HOFHERR LK,1 PERRY S, XIE Q,1 SCHARF DB,1 TAYLOR RN,2 CROSS GD,2 SCHALLA WO.2

1Graduate School of Public Health, San Diego State University, San Diego, CA
2Centers for Disease Control, Atlanta, GA

We estimated physician confidence in quality requirements for CD4+ testing from a nationwide survey of 498 responding physicians (a 33% response rate) specializing in infectious diseases, internists and family practitioners practicing in US metropolitan areas with high AIDS infection. Fifty-one percent found the accuracy of T-cell subsets very or completely satisfactory while only 7% rated it less than satisfactory. Physicians reported equal levels of confidence in CD4+ absolute counts and percentages with more than 72% expressing high or complete confidence in both measures. In general, there was no demand for major improvements in precision of CD4+ testing. Using a clinical scenario, when confronted with a significant drop in CD4+ count most physicians (53%) reported that they would reorder the test while 23% would initiate antiretroviral therapy.

We estimated the current level of within and between laboratory precision for CD4+ T-cell subsets using a series of blinded whole blood proficiency test specimens. Between laboratory precision of absolute counts ranged from 22% to 66% in contrast to a range of 8% to 15% in CD4+ percents. Unfortunately, physician impressions of precision are much more precise than empirical estimates from proficiency surveys.

Physicians using absolute counts should recognize the added potential for error introduced by the need for the total lymphocyte count to calculate the number of CD4+ cells. We recommend the use of percent counts wherever possible which are inherently less subject to laboratory analytic variations.

POSTER NUMBER 6

TRAX® CD8: Study Results From a Two Site Trial with HIV-positive Patients and Apparently Healthy Donors to Determine the Correlation to Flow Cytometry

TRAX® CD8 Test Kit is a simple ELISA which uses EDTA whole blood that has been lysed with a proprietary lysis reagent. The pretreatment of the specimen with the lysis reagent releases the CD8 protein from the cells. Specimens can then be assayed by ELA or stored at -20°C or -70°C for later study. The TRAX assay is performed in microtiter wells. Briefly, a monoclonal antibody to an epitope of the CD8 molecule is adsorbed onto polystyrene wells. An HRP-conjugated monoclonal antibody to a different epitope is added to the wells. The TRAX CD8 Kit Standards, lysed/diluted Kit Controls or lysed/diluted Samples are also added to the wells at this time, completing the sandwich. After a 3 hour incubation, the wells are washed to remove any unbound HRP-conjugate, and a substrate is added to the wells. The resultant color is directly proportional to the amount of CD8 protein in the wells. After a brief incubation the substrate reaction is stopped and the resulting color is read on a spectrophotometer at 450 nm. Unknown samples are read off of the Standard curve and reported as cells/μL.

Using the TRAX CD8 Test Kit a two site trial was run to establish the relationship between total CD8 protein measured by ELISA and the absolute CD8 T lymphocytes measured by flow cytometry and hematology. One site used for this study was in the northeast and the other was in the south. Both HIV-positive and normal donors were collected and processed at each site. In addition, each site did the flow cytometry/hematology analyses and ran the TRAX CD8 Test Kit. The correlation to flow was calculated using only the HIV-positive patients (98 subjects). The correlation to flow cytometry was determined to be 0.989. The data from this study were also used to calculate a conversion equation from units/mL to cells/μL for the TRAX CD8 Test Kit.

A third site, and the normal donors from the above sites, were used to validate this conversion equation. A total of 258 subjects were used to test this equation. The correlation to flow was determined to be 0.915. A small percentage of the HIV-positive samples were also diagnosed with Tuberculosis or Syphilis. No effect was observed due to these disease states or from the drugs associated with HIV therapy. In conclusion, the TRAX CD8 Test Kit offers a reliable and simple alternative to Flow Cytometry for the enumeration of CD8+ T cells. Clinical trial studies are currently underway to validate the conversion equation in additional HIV-positive and normal samples.
POSTER NUMBER 7

EVALUATION OF A MODIFIED HIV-1/HIV-2 RECOMBINANT/PEPTIDE BASED ANTIBODY SCREENING EIA
Newton, J.; Skora, C.; Falcón, R.; Fairweather, G.; Peterson, M.D.; Gallarda, J.; Liu, D.
Abbott Laboratories, Abbott Park, Illinois, USA

Background: Specimens from individuals infected with HIV-1 Group O have been identified in clinical settings in Europe and in West Africa. These specimens exhibit discrepant reactivity with various antibody detection assays. The addition of an HIV-1 Immuno Dominant Region (IDR) peptide to the Abbott HIV-1/HIV-2 3rd Generation EIA improves detectability of these Group O specimens. The purpose of this investigation is to compare the overall performance of the peptide modified HIV-1/HIV-2 antibody assay to the Abbott HIV-1/HIV-2 3rd Generation EIA (test of record).

Method: In the European clinical evaluation, the following were tested in the aforementioned assay formats: 2 HIV-1 Group O positive samples, 3041 random blood donor specimens, 315 HIV-1 Western Blot (WB) positive samples, 208 HIV-2 WB positive samples, and serum bleeds from 20 HIV-1 seroconverting individuals.

Results: The peptide modified assay detected 2/2 HIV-1 Group O positive samples which the test of record failed to detect. The initial reactive rate (IRR) and repeat reactive rate (RRR) for the improved assay were 0/3041 (0.0%) and 0/3041 (0.0%), respectively, for the test of record; the rates were 93/3041 (0.30%) and 0/3041 (0.0%). Both assays detected 315 HIV-1 WB positive samples and 208/208 HIV-2 WB positive specimens. Seroconversion sensitivity was comparable between the two assay formats; the peptide modified assay detected 98/150 bleeds and the test of record detected 97/150.

Conclusion: These data suggest that the peptide modified HIV-1/HIV-2 antibody assay will offer increased HIV-1 Group O sensitivity without compromising specificity, HIV-1 seroconversion or HIV-2 sensitivity.

POSTER NUMBER 8

COMPARISON OF A HIV-1/HIV-2 RECOMBINANT STRIP IMMUNOBLOT ASSAY AND HIV-1 WESTERN BLOT IN DETECTING HIV-1 "O" SUBTYPE SAMPLES
Ly, T.D.1, Schable, C.2, Sayre, K.3, Dinello, R.4, 1Institut A. Fournier, Paris, France, 2Centers for Disease Control, Atlanta, GA, 3Ortho Diagnostic Systems, Raritan, NJ, 4Chiron Corporation, Emeryville, CA

Objective: To determine the sensitivity and specificity of Chiron® RIBA™ HIV-1/HIV-2 SIA compared to Cambridge Biotech HIV-1 Western blot (FDA licensed) in detecting HIV-1 subgroup "O" samples.

Methods: Eighteen samples from HIV-1 infected individuals which are characterized as subgroup "O" were tested by Cambridge Biotech HIV-1 Western blot and Chiron® RIBA™ HIV-1/HIV-2. Ten were tested at Institut Fournier and eight at Centers for Disease Control. The tests were performed according to manufacturers' instructions; the positive criteria definitions used were those recommended by the manufacturers.

Results: 10/18 were positive and 8/18 were indeterminate by Western blot using ASTPHLD/CDC criteria. 6/8 Western blot indeterminate results were due to weak or absent gp160/gp120 and/or gp41 (envelope transmembrane tetrameric/trimeric and monomeric forms, respectively) band reactivity; 2/6 Western blot indeterminate results were due to weak or missing gp41 tetrameric (gp160) and p24 reactivity. All samples (18/18) were positive by RIBA™ HIV-1/HIV-2 SIA and were classified as HIV-1.

Conclusion: Chiron® RIBA™ HIV-1/HIV-2 SIA appears to be more sensitive than Western blot in detecting, as positive, HIV-1 subgroup "O" samples and is capable of discriminating these samples as HIV-1 rather than HIV-2. Western blot appears to have reduced sensitivity to envelope transmembrane antibodies in some samples.
POSTER NUMBER 9

Improved Specificity of a HIV-1/2 Recombinant Strip Immunoblot (SIA) Compared with HIV-1 Western Blot.

K. Sayre, I. Vainsky, 1. Ortho Diagnostic Systems, Raritan, NJ;

Background: Non-specific p24 reactions in Western blot are not uncommon when confirming HIV-1 or HIV-1/2 ELISA repeat reactive samples from low risk populations. Confirmatory data, (positive, negative, or indeterminate results) reflect both HIV-1/2 antibody prevalence in the tested population as well as false positive reactions produced by the screening ELISA. It has been demonstrated that combinator gag proteins in an immunoblot format tend not to react with Western Blot non-specific p24 reactive samples. The purpose of this study is to determine the specificity of a new HIV-1/2 recombinant strip immunoblot assay (SIA) when testing non-specific p24 only samples.

Design: 108 ELISA repeat reactive (but HIV infected) blood donor samples, having p24 only reactivity on HIV-1 Western blot, were tested by HIV-1/2 SIA. Samples were originally screened using 3 different ELISA tests: DuPont HIV-1 EIA, Abbot HIV-1 EIA and Abbot HIV-1/2 EIA.

Results: 30/108 (28%) samples were indeterminate and 78/108 (72%) became negative when tested by the HIV-1/2 SIA assay. 17/26 (65%) Dupont HIV-1, 6/13 (46%) Abbot HIV-1 and 7/69 (10%) Abbot HIV-1/2 repeat reactive samples continued to be indeterminate by SIA.

Conclusions: The HIV-1/2 strip immunoblot assay can reduce the number of non-specific p24 reactions when confirming HIV-1 or HIV-1/2 ELISA repeat reactive samples in low risk populations.

POSTER NUMBER 10

Comparison between CHIRON® RIBA™ HIV 1/2 SIA and DBL HIV BLOT 2.2

C. Tamalet, S. Rousseau, CHU La Timone, Marseille
K. Sayre, Ortho Diagnostic Systems, Inc. Raritan, New Jersey

Purpose: To compare the performance of RIBA™ HIV-1/HIV-2 SIA (strip immunoblot assay) to DBL HIV BLOT 2.2 Western Blot kit by testing well characterized samples.

Design: Sensitivity was determined by testing the following samples having antibody: 27 HIV-1, 13 HIV-1 seroconversion (SC) from 10 patients, 1 pre-seroconversion (EIA & Western Blot negative, p24 Ag positive), 9 HIV-2, 6 HIV-1/HIV-2 dual infections, and 4 uninfected infants born to HIV-1 infected mothers. Specificity was determined by testing samples from 23 Western Blot indeterminate but uninfected patients. Samples were tested by RIBA™ HIV-1/HIV-2 SIA, DBL HIV BLOT 2.2, Diagnost Pasteur HIV-2 WB, also Coulter p24 Ag if necessary.

Results: 27/27 HIV-1 positive samples were positive by RIBA™ and DBL. Nine SC samples were from 9 patients, 8/9 were positive by RIBA™ & DBL. 1/9 was indeterminate by both tests. Four SC samples, from one patient, showed RIBA™ positive 5 days before DBL. The pre-SC sample was indeterminate by RIBA™ and negative by DBL. 9/9 HIV-2 were positive by RIBA™ and classified as HIV-2. 6/6 HIV-1/HIV-2 dual infections were positive by RIBA™ and classified as dual; DBL scored 6/6 as positive and classified 6/6 as dual. Of 4 neonatal samples, RIBA™ was positive on 2 and indeterminate on 2; DBL was positive on 1 and indeterminate on 3. 16/23 (69.5%) of Western Blot indeterminate samples became negative by RIBA™.

Conclusion: RIBA™ HIV-1/HIV-2 SIA appears to be more sensitive and more specific than DBL HIV BLOT 2.2 and is able to distinguish between HIV-1 and HIV-2 infections.

An improved EIA has been developed which is based on synthetic peptides derived from highly conserved, immunodominant regions of the env and pol gene products for the detection of antibodies to HIV-1 and HIV-2. The Peptide EIA is an indirect, second antibody sandwich assay in a microplate format. The micro wells are coated with a cocktail of 4 peptides: env and pol sequences for both HIV-1 and HIV-2, respectively. The assay is performed using the following incubations: Diluted sample - 30 min. (37°C); Working strength HRP Conjugate - 30 min. (37°C); TMB Substrate - 30 min. (RT).

Various serum and plasma samples, including normal donors, commercially available, low-titer sensitivity panels, seroconversion panels and confirmed positives were tested. Of 7634 normal donor samples, 9 were initially reactive (IR = 0.12%) and 4 were repeatedly reactive (RR = 0.05%). The HIV-1/HIV-2 Peptide EIA detected all of the Western blot (WB) positive samples among low titer sensitivity panels. On commercially available seroconversion panels, the HIV-1/HIV-2 Peptide EIA detected samples 1-2 bleeds earlier than a licensed viral lysate based HIV-1/HIV-2 EIA (124/191 vs. 107/191) and is as sensitive as other licensed EIAs. More than 350 diverse HIV-1 WB positive samples and 300 HIV-2 WB positive samples were all positive (100% sensitivity for both HIV-1 and HIV-2). The sensitivities of the pol peptides alone for HIV-1 and HIV-2 were, 97% and 92%, respectively. Twenty one characterized HIV-1 "O" variant samples, tested in France and the US, were all positive by the HIV-1/HIV-2 Peptide EIA.

The HIV-1/HIV-2 Peptide EIA described here is more specific and more sensitive than a viral lysate-based EIA and is well suited for blood screening and diagnostic applications.

Comparison of FDA Licensed Western Blot Assays and Miniaturized Assays for Serum and Dried Bloodspot Confirmation.

SUSAN K. PHILLIPS, TIMOTHY C. GRANADE and JAMES R. GEORGE. Centers for Disease Control and Prevention Atlanta Ga.

Three licensed Western Blot (WB) kits (Cambridge Biotech HIV-1 Western Blot Kit - Cambridge Biotech, Novaphat Immunoblot Assay - BioRad Corporation, Organon Teknika HIV-1 Western Blot Kit - Organon Teknika Corporation) and the miniblot miniaturized WB method for HIV-1 were compared for the ability to confirm the presence of HIV-1 antibodies in serum. US and foreign HIV-1 positive sera (n=142), 11 seroconversion panels (n=84), 1 low and 1 mixed titer panel (n=40) were tested. Dried Bloodspots (DBS) were compared on Cambridge and the miniblot using HIV-1 simulated DBS and 4 DBS seroconversion panels. For the 142 HIV-1 specimens banding patterns for the three licensed kits and the miniblot were essentially equivalent. A reduction in detection of the p55 and p17 bands were observed for the miniblot and Organon Teknika assays. In 8 of 11 seroconversion panels detection of positivity was equivalent in all but 3 panels. The classification of positive in these panels depended on the kit used and did not vary by more than 2 collection periods within a specific panel. Banding patterns for Cambridge and the miniblot for DBS were essentially the same with the miniblot detecting fewer p55 and p17 bands. The miniblot detected antibody in 2 collection periods sooner in 2 of the seroconversion panels run. The Cambridge assay required a reduction in the primary incubation to remove background band formation. These data indicate that the 3 licensed kits and the miniblot are equivalent in their ability to detect HIV-1 antibodies in serum. The Cambridge WB assay can be easily modified to detect HIV-1 antibodies in DBS specimens.
COMPARISON OF DRIED BLOOD SPOT (DBS) METHODS USING HIV SEROCONVERSION PANELS AND LOW-REACTIVE SPECIMENS

B.J. WEIBLEN, D. MCCOY, J. DOHERTY, R.T. SCHUMACHER, S.L. STRAMER; Boston Biomedical Inc., West Bridgewater, MA and Abbott Laboratories, Abbott Park, IL

AIM: The purpose of this study was to evaluate the sensitivity of DBS techniques using specimens from early HIV seroconversion.

METHODS: DBS spots were prepared by mixing specimens from BBI HIV Seroconversion Panels and Low-Titer HIV Performance Panel with packed red blood cells and dotting on S & S 903 filter paper. Control plasma specimens were prepared by centrifugation of the same blood used for the DBS. DBS were tested by 2 Abbott methods (current and new elution buffers), Genetic Systems, and Organon Teknika HIV EIA assays.

RESULTS: For reactive specimens, the DBS OD readings were lower than the controls by 56%, 14%, 0%, or 37%, respectively for the 4 methods. Some difference was accounted for by greater dilution of DBS specimens than plasma specimens in some methods. The new Abbott elution buffer (3A11E) produced higher reactivity with early HIV seroconversion specimens and lower background OD on nonreactive specimens than the current elution buffer (1A96) or the other 2 methods. The four DBS procedures identified 14, 15, 11, and 8 reactive specimens, respectively, in comparison to the controls with 16, 16, 11, and 12 reactive specimens.

CONCLUSION: Results indicate differences in sensitivity of the DBS methods related to DBS eluate dilution, qualities of the elution buffer, and EIA kit sensitivity.

Stability of DBS Samples Exposed to Heat and Humidity in Three Shipping Envelopes

WANDELL, M., FRANK, A., WEIBLEN, B.

Background: The search to expand HIV-1 testing has led to application of dried blood spot (DBS) testing to home collection. Previous data has demonstrated that DBS stored or shipped could deteriorate under humid conditions. This study compared the stability of DBS samples exposed to heat and humidity for changes in EIA reactivity using three shipping envelopes.

Materials & Methods: 40 previously characterized HIV antibody positive and 10 HIV antibody negative serum or plasma samples were reconstituted with HIV negative packed outdated red blood cells to achieve normal physiologic concentrations. The 50 mock blood samples were spotted onto filter paper (Schleicher & Schuell #903) in four 3/8 inch diameter blood spots. Blood spots were air-dried 30 minutes, packaged into foil envelope with desiccant, mail envelope, or mail envelope with desiccant. Remaining DBS samples were stored in an incubator at 37°C at 95% relative humidity. 50 samples from each of the 3 packaging methods were removed prior to exposure, and after 4, 7, 10, and 14 days. Samples were eluted and analyzed at MetPath Clinical Laboratories, Wood Dale, IL, using EIA according to package instructions (Organon Teknika Corp.).

Results: Under conditions of heat and humidity, EIA reactivity in DBS samples was observed to decline over time. An air-impermeable barrier with desiccant protects DBS samples from deterioration when compared to air-permeable envelopes currently recommended by NCCLS. In this study, the deterioration differential was significant at 10 and 14 days (p<.001).

Conclusion: EIA reactivity for DBS samples exposed to high heat and humidity is better preserved when shipped/stored in a barrier envelope with desiccant when compared to air-permeable envelope methods.
Dried Blood Spot HIV PCR Improves the Diagnosis of HIV in Infants. Rick Galli, Carol Major, Stanley Read, Perry Gomez, Xiaoyi Li, Rosa Mae Bain, Percy McNeil, Tidiane Sy, George Strunc, M O'Shaughnessy, Sharon Cassol. Ontario Ministry of Health, Hospital for Sick Children, Toronto, British Columbia Centre for Excellence in HIV/AIDS, Canada, Princess Margaret Hospital, Nassau, Bahamas

The diagnosis of vertically transmitted HIV infection is complicated by the presence of maternal antibodies and requires detection of the virus or viral DNA. We have evaluated recent advances in PCR technology using dried blood spot (DBS) extraction vs whole blood lysis with the Roche Amplicor PCR kit in a prospective study of 178 infants born to HIV infected women in the Bahamas.

Methods: 311 DBS (1.2 cm) were tested for HIV PCR after extraction of hemoglobin using the Amplicor Whole Blood Specimen Preparation Kit (AWBSP), and subsequent recovery of DNA from the filters in 200 ul of a chelex containing solution. 119 whole blood (wb) specimens were prepared using the AWBSP. The PCR testing was carried out using 50 ul of extracted DBS or wb material. Outcome for each infant was determined using PCR and HIV culture, HIV antibody, p24 antigen and long-term clinical follow up.

Observations: Of the 77 DBS from 30 infants known to be HIV infected, 74 were PCR positive (96.2%). One infant with an initial negative PCR at 47 days of age (positive on repeat testing), was PCR positive at 19 days and at 3 months. The other 2 negative PCR results were from infants under 2 weeks of age. All 144 DBS from 59 HIV negative infants were PCR negative. The remaining 89 DBS PCR results indicate 5 of the 89 indeterminate babies are HIV infected. All 12 wb specimens from 7 HIV infected infants were PCR positive. The remaining 83 wb PCR results indicate 8 of 44 indeterminate infants are infected. 100% concordance was observed when DBS and wb specimens were examined for the same specimen date (17 positive, 48 negative).

Conclusions: DBS PCR provides a valuable alternative in the diagnosis of vertically transmitted HIV infection. DBS have advantages in specimen collection, stability, transportation, storage, and the convenience of centralized testing. While PCR may be positive as soon as a few days after birth, optimal performance is after one month of age.

An improved version of the Genetic Systems™ PageBlot HIV-1, a "page" format Western blot immunoassay which is performed using either the Genetic Systems (GSC) Integra instrument or the Immunetics Miniblotter apparatus, was developed. The improved assay employs a 1:101 dilution for both serum/plasma and dried blood spot (DBS) samples and the same rapid incubation times as the current product for specimen, conjugate, and color development reagent. Improved reagents include a 5X Specimen Diluent/Wash solution, a working strength Conjugate Reagent containing specific reactivity to IgG, IgM, and IgA, and a working strength Color Development Reagent.

The improved reagents were also configured in a rapid mini-strip format (Genetic Systems HIV-1 Western Blot), which employs the same 1:101 sample dilution and a rapid procedure (60', 45', and 3'). Because of the small strip size, a protocol for confirmation of dried blood spot samples is practicable in this format as well; a single 1/4" DBS punch may be eluted directly in the Western blot reaction tray to yield an effective 1:101 dilution by either a one hour (RT with rotation) or overnight (static) protocol.

Sensitivity for the rapid mini-strip blot was equivalent to a licensed Western blot kit (which uses an overnight procedure) in testing of HIV-1- positive and seroconversion specimens. Equivalent sensitivity and band reactivity for dried blood spot eluates compared to serum or plasma was demonstrated by testing matched serum/DBS pairs. These results support the feasibility of the Western blot immunoassay in either format as a confirmatory method for dried blood spot eluates.
IMMUNE-COMPLEX DISSOCIATION (ICD) OF HIV-1 p24 ANTIGEN AS A FIRST STEP IN THE DETECTION OF PERINATALLY TRANSMITTED HIV-1 INFECTION. BASE DISSOCIATION & ACID ICD COMPARED.

HYMAN, J., LOCKWOOD, D., HOLODY, T., AND (KAY, J.), Organon Teknika Corporation (OTC), Durham, NC USA

The transmission rate of HIV-1 from mother to child has been reported to be 10-30% of all births. A reliable means of determining the infected state of a child born to an HIV-1 infected mother is crucial for establishing appropriate therapy. Detection of antibody to HIV-1 proteins is of limited use in these children under the age of 12-15 months because maternal antibodies to HIV-1 are usually present.

Methods that detect direct evidence of virus are more effective in this situation. Nucleic acid amplification and viral culture are often used but are expensive. Direct detection of viral proteins is less expensive but is complicated by the presence of maternal antibodies. ICD detection of p24 antigen, however, can detect p24 antigen in many HIV-1 infected infants.

Fifty-one (51) samples were obtained from pediatric patients, 1-48 months in age, born of HIV-1 infected mothers in Argentina. Twenty-seven (27) of the samples came from children infected with HIV-1 and twenty-four (24) from individuals shown to be non-infected. All samples were tested with the Organon Teknika base and Coulter acid ICD procedures.

Of the 27 samples from infected patients, 19 (70.4%) were reactive with Organon and 15 (55.6%) with Coulter. Of the 24 samples from non-infected patients, 1 was reactive with Organon and 2 were reactive in the Coulter ICD assay. Further testing is being done to confirm reactives and determine antibody loads in these samples.

HIV DRIED BLOOD SPOT (DBS) WESTERN BLOT STUDIES; FEASIBILITY OF USING A STRIP PROCESSOR FOR BOTH ELUTION AND BLOT PROCESSING OF DBS SPECIMENS

KAY, J. W. D., JONES, G. R. and TAN, P. L., Organon Teknika Corporation (OTC), Durham, NC USA

Introduction: Using instrumentation to facilitate running Western blot strips may be a critical adjunct to standardization of this technology. This study was conducted to determine the feasibility of using the programmable SLT Profi-BLOT Western blot strip processor for both elution and processing of DBS eluates.

Experimental: Simulated DBSs were prepared from HIV sera according to the CDC protocol ("Preparation of Dried Blood Spot Materials for Quality Assurance of Assays for Antibodies to Human Immunodeficiency Virus"). The SLT Lab Instruments Profi-BLOT Western blot strip processor was programmed to provide a 60 minute elution of material from DBSs directly into the troughs of the tray. The eluted spots were removed, the Western blot strips added to the eluate in the trough, and a programmed OTC Western blot protocol used to process the strips. Multiple numbers of 1/4" DBSs or 1/8" DBSs from the simulated spots were compared with the serum used to prepare the spots to determine how many punches of spots are necessary to provide results comparable to the serum in an investigational OTC Western blot test system. Actual DBSs from normal adults and neonates were run with the same protocol.

Sensitivity: Comparable Western blot reactivity of the sera could be obtained with their respective simulated DBSs if two (2) spots (1/4") or eight (8) spots (1/8") were analyzed by this method.

Specificity: This procedure did not give abnormal specificity problems with actual normal neonate or adult DBS specimens.

Conclusion: It is feasible to develop instrumentation-assisted methods to detect dilutions of reactive HIV sera without compromising the specificity of testing with normal DBS specimens. Elution of the two 1/4" punched spots directly in the troughs works well; elution of the eight 1/8" punched spots is done better in a test tube with the resulting eluates added to the troughs.
WESTERN BLOT CONFIRMATORY TESTING OF ORASURE ORAL FLUID SPECIMENS.

Andrew S. Goldstein, Michael Hindahl, Michele Erbling, Kasey Griffin, Jeffrey Chun, John Fitchen. EPITOPE, INC. BEAVERTON, OREGON, USA.

Oral fluid specimens collected with the OraSure HIV-1 oral specimen collection device are approved by the U.S. Food and Drug Administration for screening for HIV-1 antibodies with the Oral Fluid Vironostika HIV-1 Microelisa System. A Western blot confirmatory assay has been developed specifically for use with OraSure specimens. The OraSure Western Blot (OWB) uses a 1:8 specimen dilution instead of a 1:50 dilution for serum, specimen incubation time is increased from 1 hour to 3 hours, and a more sensitive enzyme/substrate system is used. Preclinical sensitivity testing revealed that the OWB was positive in 224 of 226 HIV positive individuals. The remaining two were indeterminate with positive gp160 and gp120 bands and indeterminate gp41 and p24 bands. There were no false negatives. Specificity testing demonstrated that the performance of the OWB was very similar to the serum Western blot comparator and showed no false positives. Two hundred forty-five matched serum and OraSure "non-specificity" HIV-negative specimens were also evaluated. The specificity characteristics of the OWB [241 negative or nonviral band only, 4 indeterminate (viral bands)] was superior to those of the serum comparator Western blot [218 negative or nonviral band only, 27 indeterminate (viral bands)]. These results indicate that the OWB represents a promising means of confirming the presence of HIV-1 specific antibodies in OraSure specimens. A large-scale, multi-institutional clinical trial with the OraSure Western Blot is in progress.
Poster Number 21

Field Evaluation of Methods to Detect Antibodies to HIV-1 in Oral Fluids. TIMOTHY C. GRANADE, SUSAN K. PHILLIPS, BHARAT PAREKH, PERRY GOMEZ, WENDY KITSON-PIGGOTT, STEPHANIE LEE-THOMAS, AND J. RICHARD GEORGE. 1Centers for Disease Control and Prevention, Atlanta, GA; 2Caribbean Epidemiology Centre, Port-of-Spain, Trinidad, and 3Ministry of Health and Environment, Nassau, Bahamas.

Advances in collection technology have resulted in the use of oral fluids (OF) as a clinical specimen for detection of antibodies to HIV-1. Recently, an oral fluid collection device (Orasure) and an enzyme immunoassay (EIA) (Organon Teknika Corp.) have been licensed by the Food and Drug Administration for HIV-1 antibody detection. We collected matched serum and oral fluid pairs (N=4448) from blood donors and patients attending local STD clinics in Trinidad and the Bahamas and tested for the presence of HIV-1 antibodies. Sera were tested by the Abbott HIV AB HIV-1/HIV-2 (tDNA) EIA and positive specimens were confirmed by Cambridge HIV-1 and HIV-2 Western blot (WB). Oral fluid specimens were tested by Murex GACELISA and an OTC research-use-only test and were confirmed by miniaturized Western blot (OFWB). The results of serum EIA and WB determined 475 specimens to be HIV antibody positive. GACELISA detected 472 positive specimens (sensitivity = 99.4%, specificity = 99.4%) and OTC detected 468 positive specimens (sensitivity = 98.3%, specificity = 99.6%). Concordance of OFWB with serum WB was 99.4% and banding patterns determined by both methods were essentially identical. These data further confirm that OF specimens can be tested for HIV antibodies with available tests without significant loss of sensitivity or specificity.

Poster Number 22

Search for HIV-1 Group O Infections by Peptide Serology. DEBRA H. CANDAL, CHOU-PONG PAU, MAMIRO KAI, CHARLES SCHABLE, DALE HU, ROBERT DOWNING, CATHY SPRUILL, GERRY SCHOCHETMAN, AND J. RICHARD GEORGE. 1Centers for Disease Control and Prevention, Atlanta, Georgia, USA; 2Uganda Viral Research Institute, Entebbe, Uganda.

Since it has been shown that some screening tests for human immunodeficiency virus type-1 (HIV-1) have not been able to detect infections with new highly divergent strains of HIV-1 known as group O, active surveillance for group O infections as well as other variants of HIV-1 will become increasingly important to insure the safety of the blood supply. Most of the reported infections with HIV-1 group O strains have occurred among persons in or from Cameroon or neighboring Gabon. However, the world-wide distribution of these divergent strains is not known. This study uses enzyme immunoassays (EIAs) based on synthetic peptides representing all of the currently known subtypes A-H as well as group O to screen and type 790 sera from the United States and Puerto Rico and 622 African sera. No group O type infections have been found among any of the US/PR samples. Only 2 group O infections were detected among the African sera, both of which were from Cameroon. Although infections with HIV-1 group O strains still appear to be rare, the potential for divergent strains to infect persons living in the U.S. and in some cases to remain undetected by current HIV antibody tests is of concern for the public-health and blood-banking communities. Active surveillance for HIV variants will be important and the evaluation of HIV screening tests for detecting these variants will be critical.
Effects of Sample Preparation, Dilutions and Matrix Addition on the Performance of FDA Approved HIV-1 Tests. B. YEN-LIEBERMAN, S. SCHINDLER, D. HATCH, A. ROBERTO, L. GADDIS, and R. DOMEN. Cleveland Clinic Foundation, Cleveland, OH.

Samples included in some large scale proficiency testing programs (PT) are processed (pooled, heated, centrifuged, diluted with matrix materials) before packaging. In this study, the effect of sample treatment on the performance of selected FDA approved HIV EIAs was evaluated.

METHODS: The Murex SUDS HIV-1 Test (SUDS), the Cambridge Biotech Recombigen (env & gag) HIV-1 EIA (CBC) and the Abbott HIVAB HIV-1/HIV-2 (rDNA) EIA (HIVAB) were performed according to manufacturer's guidelines. Sample processing was performed at the Cleveland Clinic Foundation according to at least one PT provider. Seroconversion samples were purchased from BBI.

RESULTS: SUDS exhibited 100% sensitivity in comparison with CBC and HIVAB when tested with HIV-1(+/-) sera. With BBI seroconversion panels, SUDS exhibited 100% correlation with Western Blot. Heating samples at 60°C for 60 min increased absorbance readings with CBC EIA at least 10-fold and gave false positive results with SUDS. The HIVAB test did not give expected results with a diluted HIV-1(+) serum panel. CBC and Murex EIAs were non-reactive with sera diluted to endpoints in pooled negative plasma.

CONCLUSIONS: These data show that there are differences in the performance in HIV tests with PT samples. Diluting in pooled negative plasma, heating and centrifuging may adversely affect the results of some FDA approved HIV tests. Testing processed PT samples may provide an inaccurate assessment of test performance.

An Improved Enzyme Immunoassay for Detection of Human Antibody to HIV-1 Utilizing Viral Lysate and a Purified Recombinant Envelope Antigen. C. A. FORRERD1, J. R. SCHROEDER1, S. M. NELSON1, P. M. ATTIPOE1, T. L. WALLACE1, J. R. MORGAN1, L. R. THOMPSON1, E. O. MITCHELL1, M. K. SHRIVER1, N. SMALL2, AND L. FRAZIER2. Genetic Systems/Sanofi Diagnostics Pasteur, Redmond, WA 980521 and Kaiser Permanente, N. Hollywood, CA 916052

An enhanced version of the Genetic Systems™ LAV EIA (GSC LAV EIA) was developed by combining a highly purified recombinant protein, containing antigenic regions of HIV-1 gp120 and gp41, with HIV-1 viral lysate as the capture elements of the solid phase. Addition of the recombinant antigen permitted a reduction in certain viral lysate antigens, e.g. p18, which are a source of false positive reactivity in low prevalence populations, while maintaining high levels of those proteins needed to ensure cross-reactivity with variant HIV subtypes. The assay employs a 1:101 dilution for serum and plasma and a slightly modified protocol with a 1:401 dilution for dried blood spot testing. The resulting assay configuration demonstrated both significant reduction in the detection of indeterminate specimens and significant improvement in sensitivity as measured by detection of early seroconversion specimens when compared to the current GSC LAV EIA.

Banked specimens, selected to be reactive by GSC LAV EIA and indeterminate by licensed Western Blot, were tested with the improved assay configuration. Of 100 indeterminate samples reactive by GSC LAV EIA, only 23 (23%) were reactive with the improved assay. In testing of 12 commercial seroconversion panels, the improved assay configuration detected seroconversion 0-3 weeks earlier than the current GSC LAV EIA. The improved assay cross-reacted with 90% (9 of 10) of the HIV-2 samples tested, which was equivalent to the current LAV EIA. Banked specimens from a plasma center were tested with the improved assay to estimate specificity in a normal donor population: of 1000 specimens tested, one was initially reactive (IR = 0.1%) and none repeated (RR = 0.0%). Dried blood spot testing with the improved assay utilized either a 1 hour (RT with shaking) or overnight (2-8°C static) elution protocol. The performance for dried blood spot eluates by the modified protocol was equivalent to the 1:101 dilution of serum or plasma.
Performance of Laboratories Testing HIV-1 Seroconversion Samples in the CDC Model Performance Evaluation Program August 1994 Survey Panels

SHARON O. BLUMER, WILLIAM O. SCHALLA
Centers for Disease Control and Prevention (CDC), Atlanta, GA

The CDC Model Performance Evaluation Program (MPEP) evaluates the quality of performance of laboratories testing for HIV-1 antibody to assist them in identifying and correcting problems so that testing performance will be maintained or improved. As a part of the performance evaluation process, the testing of HIV-1 antibody-weak positive samples was assessed by sending panels that contained HIV-1 seroconversion samples to participating laboratories in August 1994. Each laboratory received 2 HIV-1 seroconversion samples among the 6 samples in their panel. The HIV-1 antibody (Ab) reactivity of donor samples in this survey was determined first by CDC after testing samples with all HIV-1 enzyme immunoassay (EIA) and Western blot (WB) kits licensed by the Food and Drug Administration (FDA) and interpreting WB results using the ASTPHLD/CDC HIV-1 WB interpretive criteria. Of 1530 final EIA interpretations for the HIV-1 seroconversion samples tested by laboratories using FDA-licensed EIA kits, 118 (7.7%) EIA negative interpretations were reported. Among 376 Western blot interpretations for the HIV-1 seroconversion samples tested by laboratories using FDA-licensed WB kits, 195 (51.9%) indeterminate, 168 (44.7%) reactive, and 13 (3.5%) nonreactive interpretations were reported. Of 62 IIF interpretations for these same samples tested by laboratories using an FDA-licensed HIV-1 IFA kit, 27 (43.5%) reactive, 7 (11.3%) indeterminate, and 28 (45.2%) nonreactive interpretations were reported. Of 30 interpretations for these samples tested by laboratories using an FDA-licensed rapid qualitative microfilitration EIA 18 (60%) reactive, 11 (36.7%) nonreactive, and 1 (3.3%) indeterminate interpretations were reported. Final EIA and WB test interpretations varied for some HIV-1 seroconversion samples depending on which FDA-licensed EIA or WB test kit was used by the laboratory.

DETECTION OF ERROR IN INFECTIOUS DISEASE TESTING: KIT VALIDATION CRITERIA VERSUS INDEPENDENT CONTROL VALUES

B.J. WEIBLEN, P.E. GARRETT, V.L. MACKEEN, R.T. SCHUMACHER;
Boston Biomedica Inc., West Bridgewater, MA

AIM: Our goal was to compare independent low-reactive controls and manufacturers' run validation criteria as indicators of systematic errors in infectious disease assays.

METHODS: Testing problems such as kit deterioration, faulty pipettors, and inadequate incubation conditions were simulated by decreasing reagent concentration, sample volume, incubation temperatures, and incubation times. Manufacturers' positive and negative kit controls and external controls were tested under normal and simulated error conditions. Infectious disease EIA tests that were studied included: HIV, HTLV, HBsAg, HBe, and HCV.

RESULTS: Under simulated error conditions in 32 runs, the kit positive control indicated only 4 invalid runs (13%); the kit negative controls indicated 3 invalid runs (9%). The external controls warned of a problem in 20 runs (63%) that were outside the 3 sd range and 24 runs (75%) that were outside the 2 sd range. The external negative control provided a warning in 9 (28%) or 13 (42%), for the 3sd and 2sd ranges, respectively.

CONCLUSION: We conclude that monitoring of external run controls using 2sd and 3sd rules is more useful for identifying systematic errors or technical problems than the sole use of the manufacturer's acceptance ranges for the kit calibrators.
POSTER NUMBER 27

ANOTHY BURGESS-CASSLER, PH.D., NORA ESKES, WILLERIED SCHRAMM, PH.D. Saliva Diagnostic Systems, Inc., Vancouver, WA 98628, USA

EVALUATION OF HIV-1 TEST STRIPS

In an effort to simplify testing for HIV antibodies in serum and plasma, we have developed test strips that are as easy to use as contemporary pregnancy tests. A total of 3281 serum specimens from four different geographic locations (Mexico, Thailand, USA, and Myanmar) have been analyzed with these strips, SeroStrip HIV, in five blind studies and by personnel from different laboratories. All specimens were also analyzed with at least one EIA and if discrepant results were obtained, further analysis with a reference method was performed (either Western blot or LineTec). The clinical status of patients with AIDS was also considered for the classification of specimens. One of the specimens provided indeterminate results with the reference method and was excluded for calculations of diagnostic sensitivity and specificity of the SeroStrip tests (Table 1).

One of the false negative specimens was also non-reactive with the reference method but the patient was in an advanced stage of AIDS and under AZT treatment (Study 2). It can be reasonably assumed that the immune system of this patient was compromised (no circulating immunoglobulins). Another false negative specimen originated from a deteriorated sample (Study 5). The third false negative specimen was repeatedly reactive on the SeroStrip HIV assay upon re-analysis (Study 1).

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>SeroStrip pos</th>
<th>SeroStrip neg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>761</td>
<td>758</td>
<td>31</td>
</tr>
<tr>
<td>Negative</td>
<td>2519</td>
<td>1</td>
<td>2518</td>
</tr>
<tr>
<td>Indeterminate</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>99.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specificity</td>
<td>99.96%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 One specimen was also negative with the reference method; patient at advanced stage of AIDS and under AZT treatment (i.e., break-down of the immune system). Excluding this specimen, the specificity would be 99.7%.

So far, we find that other (non-HIV) diseases or medical conditions (a total of 403 specimens) do not affect the specificity of the SeroStrip test. The sensitivity of the SeroStrip HIV was comparable to traditional enzyme immunoassays; also, the specificity exceeded the results obtained with the enzyme immunoassays used in the respective studies.

POSTER NUMBER 28

RESULTS OF A TELEPHONE SURVEY OF LOCAL HEALTH DEPARTMENTS ON LABORATORY USE FOR THE HIV-1-INFECTED PATIENT

HOFHERR LK, FRANCIS DP, PEDDECORD KM, BENENSON AS, DREW JA, TAYLOR RN, SCHALLA WO

1Graduate School of Public Health, San Diego State University, San Diego, CA
2Centers for Disease Control and Prevention, Atlanta, GA

During September through November 1994, the Laboratory Assurance Program at San Diego State University performed a national telephone survey of local health departments. Out of 361 attempted surveys, 89% (320) were completed, 4% declined to participate, 6% were considered ineligible to respond as they were boards of health making policy decisions only, and 1% were nonparticipants. Most of these local health departments had HIV testing and counseling programs (80%), fewer (28%) had an HIV early intervention program. By far, the majority of departments performing testing used the HIV-1 EIA screen (94%) and Western blot test (91%) in the evaluation and treatment of clients in their programs. Yet, less than half (48%) had their own laboratory. Most of the laboratories performing these tests were rated good to excellent. Other testing results used by these departments were CD4+ T-cell (49%), IFA (19%), HIV-2 EIA screen (19%), and PCR (11%). The laboratories utilizing CD4+ T-cell testing results send most of this work to commercial or state laboratories.

SCHALLA, W.O.1; BLUMER, S.O.1; TAYLOR, R.N.1; HEARN, T.L.1; GAUNT, E.E.2; SEILKOP, S.K.2; HOLZWORTH, D.A.2

1Centers for Disease Control and Prevention (CDC), Atlanta, GA USA
2Analytical Sciences Inc. (ASI), Durham, NC USA

Using federally funded counseling and testing (CT) sites, the CDC Model Performance Evaluation Program (MPEP) implemented a blind performance evaluation study to assess the performance of HIV-antibody testing laboratories. A total of 162 CT sites located in 44 states and 99 corresponding testing laboratories are participating in this study. Split (duplicate) specimens were collected from patients who were determined to be at high risk for HIV infection to increase the probability of collecting HIV-antibody-positive specimens in addition to the HIV-antibody-negative specimens. One of the duplicate (blind) specimens was sent to the testing laboratory through the CT site routine requisition procedures, while the other duplicate specimen was forwarded to CDC, processed, and sent as a known specimen to the same testing laboratory that had received the original patient specimen. Among the testing results reported for the 4,704 HIV-antibody-positive and antibody-negative specimens collected to date, 19 errors were recorded. An error was recorded if the screening or supplemental test result was not consistent among the duplicate (split) specimens from the same patient. Discrepancies in both screening and supplemental testing for the open and blind specimens showed a 0.15% error in the open specimen testing and a 0.25% error in the blind specimen testing. Preliminary results from both phases of this study indicate that these discrepancies are random and not repetitive over time.

DESIGN OF RFP PRODUCT EVALUATION: HIV-1 ANTIBODY EIA SYSTEMS

WILLIAM R. OLESZKO, PH.D., SARA T. BEATRICE, PH.D., STANLEY REINER, PH.D. and KEITH LAWRENCE, Retrovirology and Immunobiology Division, Bureau of Laboratories, New York City Department of Health, New York, NY, 10016

ABSTRACT

The City of New York's Department of Health performs approximately 500,000 HIV-1 antibody screening EIA's each year. Therefore, it is essential that this laboratory periodically re-evaluates all available FDA licensed HIV-1 antibody EIA systems, on a request for proposal (RFP) basis, for the issuance of multi-year testing system(s) requirement contracts. In November of 1993 the Department of Health advertised for proposals from vendors of HIV-1 antibody EIA systems who were interested in having their products evaluated by the City's HIV testing laboratory. Interested vendors responded with written proposals in accordance with stated City guidelines. Vendors, successful in their written response, were invited to have their products evaluated by the HIV testing laboratory. The basic design of the evaluation was explained to each of the invited vendors prior to the delivery of kits and equipment. Each vendor was allowed to perform up to 60% of the actual specimen testing. The evaluation was designed to determine the following from each vendor's HIV-1 antibody screening EIA kit/system: (A) sensitivity, (B) specificity, (C) reproducibility, (D) productivity, and (E) LAN compatibility. The initial design for specimen selection consisted of 1000 to 1200 random fresh serum submissions and 500 previously characterized repository specimens (from approximately 150 known HIV-1 antibody positive patients, 50 known negatives and the remainder from various combinations of HIV-1 EIA and VI inconclusives), all with available patient history. The outline of the specifics of our initial evaluation design and how this development will be modified for future application are presented.
POSTER NUMBER 31

VALIDATION OF AN AUTOMATED MICROPLATE PROCESSOR, T. GROVE; C. JINNEMAN; K. SHRIVER, Genetic Systems/Sanofi Diagnostics Pasteur, Seattle, WA; R. CREAGER, Sanofi Diagnostics Pasteur, Chaska, MN.

The Procession™ Microplate Processor automatically incubates, washes, adds reagents, and reads the optical densities (O.D.s) of microplate based EIAs.

We performed a comparison study of the Procession™ with a reference method using the Genetic Systems/Sanofi Diagnostics Pasteur HIV1/HIV2 EIA, LAV, ALT and HBsAg EIAs. The purpose was to determine equivalent results with an accepted reference method. The reference method consisted of: Pipetman® pipets for preparing sample dilutions and reagents, a BioTek® EL403 washer, a TriTek® 8-channel pipet for dispensing reagent, and a BioTek® EL312 reader.

We tested and compared a variety of assay parameters against the standard reference method: sensitivity, specificity, precision, carryover, reagent stability, and method correlation. In addition, for the LAV assay we tested dried blood spots eluates.

The results are as follows:

<table>
<thead>
<tr>
<th></th>
<th>LAV</th>
<th>HIV-1/HIV-2</th>
<th>HBsAg</th>
<th>ALT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specificity of Normal Donors (Mean S/C ; N)</td>
<td>0.145 / 300</td>
<td>0.129 / 290</td>
<td>0.338 / 300</td>
<td>N/A</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>Equivalent to Reference</td>
<td>Equivalent to Reference</td>
<td>< 0.29 ng/ml ad</td>
<td>< 0.34 ng/ml ay</td>
</tr>
<tr>
<td>Correlation to Reference Method (R)</td>
<td>> 0.95</td>
<td>> 0.95</td>
<td>> 0.95</td>
<td>> 0.95</td>
</tr>
<tr>
<td>Precision (%CV)</td>
<td><10 @ 1.786</td>
<td><10 @ 1.104</td>
<td><10 @ 1.415</td>
<td><20 @ 17 IU/L</td>
</tr>
<tr>
<td>Carryover Stability</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>Reagent Stability</td>
<td>Equivalent to Reference</td>
<td>Equivalent to Reference</td>
<td>Equivalent to Reference</td>
<td>Equivalent to Reference</td>
</tr>
<tr>
<td>Dried Blood Spot Specificity (Mean S/C; N)</td>
<td>0.412 / 85</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Our results indicate that the Procession™ Microplate Processor provides assay results which are equivalent to the reference method results. The Procession™ will be an important tool for the automation of microplate EIAs.

POSTER NUMBER 32

THE EFFECT OF MICROBIAL CONTAMINATION ON HIV ANTIBODY DETECTION

Background: A number of HIV antibody positive repository specimens have given discrepant results between current HIV antibody assays when tested after storage. These specimens have also been found to be microbiologically contaminated. The following is an investigation to determine if microbial contamination is responsible for the discrepant results and to investigate the mechanism of the signal suppression.

Methods: I) HIV repository specimens, which were microbiologically contaminated, were tested by EIA, Western Blot (WB) and Immunofluorescence (IFA) assays. II) One HIV antibody negative and six HIV antibody positive specimens were experimentally inoculated with bacteria and evaluated for performance in the Abbott HIV-1/2 rDNA EIA (LN 3A77). III) Samples were evaluated by HPLC sizing for IgG integrity and its relationship to EIA detectability. HPLC fractions were evaluated for total IgG and HIV specific IgG using Goat Anti-Human and HIV antigen HRPPO conjugates.

Results: I) Bacterially contaminated repository specimens showed discrepant results between historical and current testing, as well as discrepancies among current EIA and WB assays. II) Direct inoculation of microbes did not immediately impact HIV antibody detection, but HIV antibody detection decreased after 3 months of storage. III) The microbiologically contaminated samples showed no IgG peak at 160,000 MW. IgG activity was detected in fractions at less than 20,000 MW, indicating structural degradation. No IgG reactivity was detected using the HIV antigen conjugate in these degraded IgG fractions. Minimal HIV reactivity was observed with the Goat Anti-human conjugate with these fractions.

Conclusion: Microbial contamination of human specimens has a significant impact on HIV detectability. Data suggests that degradation of IgG in such samples is the likely cause of the compromised detection.
SIGNIFICANCE OF HIV-2 SCREENING IN GEOGRAPHIC AREAS WITH HIGH INCIDENCE OF HIV-1. ROMULO MORALES, MAHIN PARK, RAKSHA MODI, and CHARLES SCHABLE. Georgia Public Health Lab and the Centers for Disease Control. Atlanta, GA.

Although HIV-2 infections were first reported exclusively in West Africa, in spite of its low prevalence, so far, this infection has been reported in several continents including North America. Atlanta is becoming a center of international travel and its African American population for Metropolitan Statistical Area constitutes 28.5% of the total population. The purpose of this study was to determine the prevalence of HIV-2 infections in a total of 127,790 specimens we had already screened for HIV-1 infection during 1994. For this study, we chose 588 specimens which were either negative (43%) or indeterminate (54%) by our Western Blot analysis. In addition, we included 1.5% Western Blot positive specimens for control. When tested by ELISA for HIV-2, 10% turned out positive in the first and 7% in the repeated screening assay. When tested against the synthetic peptide assay for HIV-2 (test performed at the CDC), 1% (7 specimens) turned out positive for HIV-2. Dot Blot assay at the CDC demonstrated that 3 specimens were positive for both HIV-1 and 2. Further testing is underway to determine if any of these specimens are HIV-2 positive. The result of our study showed that some of HIV-1 positive specimens demonstrated cross-reactivity with HIV-2 in the ELISA. In spite of this cross reactivity, we think it is important to test all repeat reactive HIV-1 specimens by HIV-2, as well. We speculate that some HIV-1 infected individuals, especially those in the high risk category, may be dually infected with both viruses. Additionally, by testing HIV-1 alone, we may miss very few HIV-2 positive patients. Although confirmation of HIV-2 infection is only investigational, it can provide important epidemiological information for prevention of this deadly disease.

POSTER NUMBER 34

HIV-2 POSITIVE BLOOD DONOR IN DELAWARE.

D. L. WINSLOW¹, M. FOSDICK¹, C. HANCOCK¹,
C. SCHABLE², L.H. JEAN³, M. P. VERMA³ and
CHRISTOPHER BENTSEN⁴

Blood Bank of Delaware; Newark, DE, ¹ Centers for Disease Control and Prevention, Atlanta, GA ² and Delaware Public Health Laboratory, Smyrna, DE 19973 and Genetic Systems/Sanofo Diagnostics Pasteur, Redmond, WA ⁴

A 30 year old black female, who is a U.S. citizen born in the United States, presented at the Blood Bank of Delaware as a first time blood donor in June 1994. The donor initially denied all risk factors at the time of donation. Initial and repeat testing of the blood donor sample was performed with the Genetic Systemswm HIV-1/HIV-2 EIA and found to be repeatedly reactive. The HIV-1 Western Blot was positive when tested at DPHIL. An investigational HIV-2 Western Blot (Cambridge Bioscience) was found to be strongly positive. Testing at CDC with the investigational Genetic Systems GENIE® HIV-1/HIV-2 rapid test produced 4+ reaction for HIV-2 and a 1+ reaction for HIV-1. The investigational Biochem Immuno Systems peptide EIA was positive for HIV-2 and weakly positive for HIV-1. The HIV-1 Western Blot was indeterminate at CDC and an investigational HIV-2 Western Blot testing was positive. In addition, at CDC, the Waldheim Pharmazeutika (Austria) Fluorognost® HIV-1 IFA was positive and the investigational Fluorognost®™ HIV-2 IFA was strongly positive. This first time blood donor is the first known HIV-2 positive donor detected since the institution of combination HIV-1/HIV-2 antibody testing in blood banks in 1991 and it is the second known HIV-2 positive blood donor found in the United States.
FALSE-NEGATIVE FLUOROGNOST HIV-1 IFA RESULTS

MARJORIE GILES, SYDNEY M. HARVEY and DEBORAH EMLEIN. Los Angeles County Public Health Laboratory, Los Angeles, California.

On February 5, 1992, the FDA approved “Fluorognost HIV-1, IFA” as an indirect immunofluorescence assay for both a confirmatory and screening assay for the detection of antibodies to HIV-1 in human serum or plasma. Since May of 1986 the Los Angeles County Public Health Laboratory has used the IFA assay as a supplementary test in conjunction with the HIV-1 Western Blot for confirmatory testing. Originally, the Public Health Laboratory used the IFA slides prepared by the Viral & Rickettsial Disease Laboratory of the California State Department of Health Services (CSDH) for testing but converted to the Fluorognost product after it was FDA approved. At this time the microbiologists performing the tests successfully completed the proficiency test provided by Fluorognost.

Over a seven month period in 1994 we have documented 28 cases in which the EIA was repeatedly reactive, the Western Blot was reactive but the Fluorognost IFA was negative or nonspecific. Because of the discrepant readings, some of these sera were sent to the CSDH for repeat testing. Their testing verified our results.

Our conclusion is that, in our laboratory, the Fluorognost procedure is not as sensitive as the Western Blot in detecting HIV-1 antibodies. Specimens giving EIA repeatedly reactive and IFA negative results should always be followed up by a Western Blot.

URINE HIV1 ANTIBODY TESTING TO DETERMINE PREVALENCE IN ONTARIO CORRECTIONAL FACILITIES. Rick Gilli1, Carol Major1, L. Calzavara2, J. Schlossberg3, M. Fearon3, E. Wallace1, T. Myers1, M. Millson1, J. Parry1, S. Read1
1Laboratory Services Branch, Ontario Ministry of Health, 2 University of Toronto, 3 Central Public Health Laboratory, London, UK.

Objective: To determine rates of HIV infection in those entering jails, detention and youth centres. To compare two methods of detecting HIV1 antibody in urine specimens.

Methods: Leftover urine specimens routinely obtained from adults and young offenders admitted to 42 Ontario facilities between February and August 1993, were tested in an unlinked, anonymous prevalence study. Data on gender, age and history of injection drug use (IDU) was collected. Urines were screened using a modified HIV1 EIA kit (Cambridge Biotech Recombigen) and confirmed (after 10x concentration) for HIV1 antibody with a modified in house western blot (WB) assay. In addition, all reactive, grey zone and 5400 randomly selected negative specimens were tested using the Murax GACELISA HIV1/2 kit.
Additional testing (WB, GACPAT, RIPA) was carried out on specimens giving discrepant results.

Results: Urine specimens were tested for 87.9% of new entrants. Among adult males (n = 9201), 0.99% were HIV positive; among adult females (n = 1302), 1.23% were HIV positive. For those with a history of IDU, 3.6% of males were positive, as were 4.2% of females. None of the young offenders were HIV positive. 106 urine specimens contained HIV antibody. All 106 were detected by the GACELISA assay, while the CBC assay detected 95/106 (89.6%). The respective specificities of the two assay were: CBC 99.99% (5572/5572) and GACELISA 98.6% (5450/5529). Additional testing of discrepant specimens confirmed western blot results.

Conclusions: For the first time, Canadian officials have an estimate of the number of HIV infected individuals admitted to Ontario prisons. A strategy for dealing with HIV is needed. Urine testing provides accurate estimates of HIV prevalence. A dual ELISA algorithm for determining HIV prevalence using urine specimens can provide a convenient, cost effective and accurate estimation of HIV infection in various populations.
COMBINATION OF LINE ASSAY (LIA) AND p24 ANTIGEN EIA IMPROVES CONFIRMATION OF HIV-1 INFECTION AT THE EARLY STAGES OF SEROCONVERSION.

D. R. Henriard¹, B. Phelps¹, E. Chan¹ and D. E. Follgøtt¹, Abbott Laboratories, Abbott Park, IL and Innogenetics, Antwerp, Belgium.

Specimens and Methods: Twenty four specimens obtained at the early stages of seroconversion from 9 subjects were evaluated. All were reactive by HIV-1/2 3rd generation EIA (Abbott) but either negative (n=6) or indeterminate (n=18) by conventional Western blot (Cambridge/Biotech). They were tested by LIA and p24 antigen EIA (Abbott). Identical interpretation criteria (CDC) were used for LIA and Western blot.

Results: Using Western Blot, 10/18 (55%) indeterminate and 5/6 (83%) negative samples were positive for p24 antigen. Using LIA, 15/24 (62%) samples were classified as positive, only 4 (17%) were indeterminate and 5 (21%) were negative. Of the 4 LIA-indeterminate samples, 2 were positive for p24 antigen and 2 had anti-gp41 antibodies. Four of the five LIA-negative samples were positive for p24 antigen. The HIV-1/2 EIA was positive a mean 4.1 days before LIA and 9.8 days before Western blot.

Conclusion: The combination of LIA and p24 antigen testing greatly reduces the number of seroindeterminate results for samples obtained at the early stages of seroconversion.
Can a single HTLV confirmatory assay give an accurate result?

F. MILLS, S. DELANEY, M. SPROCH, C. LAWSON, K. LEHISH, V. RIEKENBERG, and S. ERICKSON.
Abbott Laboratories, Abbott Park, IL, USA

We evaluated 2460 HTLV-I EIA repeat reactive samples between April and December of 1994 using the Diagnostic Biotechnology HTLV Blot 2.3 (DB WB) and HTLV-I RIPA for confirmation of antibodies to HTLV-I and HTLV-II. 84% of these samples were from blood banks and the remainder were for diagnostic purposes. A sample is identified as anti-HTLV positive with reactivity to gag (p19/p24) and env as gp41 (DB WB) and gp61 (RIPA). If a sample is also reactive to gp46f or gp46if by DB WB, then it is ultimately classified as anti-HTLV-1 or anti-HTLV-II, respectively. With this algorithm, env detection by the DB WB must be substantiated with reactivity to gp61 by RIPA.

Analysis of this population indicated 21% positive, 54% inconclusive and 25% negative. Of the positive samples, there were 67 anti-HTLV positive, 165 anti-HTLV-1 and 278 anti-HTLV-II. Among anti-HTLV positives, gag predominated as p24 in nearly 70% of samples, whereas 30% had p19 and p24. No sample was classified as anti-HTLV positive with the pattern of p19, gp21, and gp61. Of the majority of the inconclusive samples, 71% were p19/p24, 9% were gp41 only, and 12% were p19/p41 and gp21.

We further reevaluated these results using only the DB WB interpretation criteria. Those samples reactive to p19/p24 and gp41 would now be classified as anti-HTLV positive. An additional 158 samples were then classified as anti-HTLV positive. Of these samples, 84 were p19 and gp21, 63 were p24 and gp21, and 11 were p19, p24, and gp21. Additionally, there were 5 samples which were gag plus env as gp21 and gp46/f in which no gp61 was detected and additional testing could not identify env. This redistribution results in 27% positive, 48% indeterminate and no change for the negative samples of this population.

Our evaluation shows that based on the DB WB interpretation criteria alone, an additional 6% of this population would be identified as anti-HTLV positive. Reactivity to gp61 was detected in 99% of samples with gag and 2 env (gp21 and gp46f/II), whereas reactivity to gp61 was detected in 29% of samples with gag (p19/p24) and a single env (gp21 only) reactivity is present, without detection of envelope by an alternate method, is an inaccurate means to assess the presence of antibodies to HTLV and results in falsely positive sample classification. Therefore, we use the HTLV-I RIPA as an obligatory partner to the DB Western blot.

Comparison of Enzyme Immunoassays and Supplemental Tests for anti-HTLV-II.

The purpose of this study was to evaluate the sensitivity of supplemental tests for detection of anti-HTLV-II samples. A 40 member panel was used for evaluation consisting of 35 HTLV-II samples (18 undiluted and 17 serially diluted from 4 samples), 3 HTLV-I samples (1 undiluted and 2 diluted), 1 indeterminate sample, and 1 negative sample. The panel was used to compare the HTLV-II sensitivity of 4 HTLV screening assays (HTLV-II viral lysate EIA, HTLV-II/HIV viral lysate EIA, and 2 HTLV-II viral lysate ELAs) with 7 supplemental tests (HTLV-II western blot, HTLV-II viral lysate western blot, 2 HTLV-I RIPA, HTLV-I/IFA, HTLV-II/IFA, and HTLV-II RIPA).

The 4 enzyme immunoassays detected 33/35, 28/35, 18/33, 18/35 of the HTLV-II samples, respectively. Using the U.S. Public Health Service criteria, the HTLV-II western blot and the HTLV-II western blot detected 16/35 and 7/35 of the HTLV-II samples, respectively. The HTLV-II RIPA which used a gp61 env band was reactive with 13/35 and the HTLV-II RIPA which used a gp68 env band reacted with 11/35 HTLV-II samples. The HTLV-II IFA detected 13/35 and the HTLV-II IFA detected 20/35 HTLV-II samples. The HTLV-II RIPA which used a gp67 env band reacted with 12/35 HTLV-II samples. The HTLV-I samples were detected by all ELAs and supplemental tests with the exception of the HTLV-II western blot and the HTLV-II RIPA. The indeterminate specimen was reactive only on the western blots and the negative sample was negative by all ELAs and supplemental tests.

These data clearly demonstrate the enhanced sensitivity of the HTLV-II and HTLV-II enzyme immunochromatographic assay for these HTLV-II samples when compared to the 7 supplemental tests.
A Consensus PCR Primer/Probe Set Capable of Detecting Known HIV-1 Subtypes.
R. Respess¹, A. Butcher¹, H. Wang¹, M. Kalish², R.A. Otten², J.R. George², A Sangare³, L. Haller⁴ and S. Kwok¹. ¹Roche Molecular Systems, Alameda, CA and Branchburg, NJ; ²Centers for Disease Control and Prevention, Atlanta, GA; and ³Institut Pasteur and ⁴Roche African Research Foundation, Abidjan, Cote d’Ivoire

The availability of sequence information from a large number of HIV-1 isolates has permitted the classification of various viral sub-types. Of particular interest, a divergent strain of HIV-1 (MVP5180), now characterized as subtype O, has been isolated from patients in Cameroon in West-Central Africa. Although the genomic organization of the subtype O isolate is similar to other HIV-1 subtypes, the viral sequence varies significantly. We have tested a primer/probe set targeting a conserved region of the HIV-1 viral genome for its ability to amplify all known subtypes. By amplifying under optimal conditions, using lower stringency annealing conditions, and designing primers ≥ 28 base pairs in length and terminating with a 3’ thymidine, the probability of detecting all known subtypes should be enhanced.

Representative isolates of subtypes A-F and O were successfully amplified and detected with the consensus primer/probe set. In addition, we have also analyzed 132 HIV-1 seropositive specimens from the Cote d’Ivoire by PCR for the presence of HIV-1 DNA. One hundred-thirty (98.6%) were PCR positive, and two (1.4%) PCR negative. The two PCR negative samples were negative with multiple primer sets. Reasons for the inability to amplify these samples by PCR may be viral load, specimen quality, or more divergent strains not yet identified.

The Use of Quantitative PCR to Monitor HIV Viral Load
S. Kwok¹, N. McKinney¹, C. Christopherson¹, J. Mulder¹, R. Schuurman², C. Boucher³ and J. Sninsky³. Roche Molecular Systems¹, Alameda, CA and University of Amsterdam², Amsterdam, The Netherlands

A quantitative RNA PCR assay that has the ability to discern three-fold differences with 87% power has been used to measure HIV viral load in a broad spectrum of patients. With an analytical sensitivity of 200 copies/ml, quantification of HIV RNA in individuals with CD4 counts and in those with undetectable p24 antigen has been achieved. Because as little as 50 µl of plasma/sera is required, quantification of HIV in pediatric patients is feasible.

The assay has been used to monitor various antiretroviral therapies. A sharp decline in viral RNA load is observed after initiation of successful intervention followed by a subsequent rise in viral load. The increase in viral load during therapy appears to be associated with the emergence of antiviral resistant mutants. Where p24 antigen is measurable, the quantitative RNA results correlate with antigen titre. This assay will permit expanded entry into clinical trials, allow measurement of viral load throughout therapy, and enable balancing the benefits of therapy with the deleterious side effects of intervention strategies.

The quantitative assay used offers numerous advantages over conventional RNA quantitative assays: (1) the RNA extraction procedure avoids ultracentrifugation and use of organic solvents; (2) reverse transcription and amplification is carried out with a single enzyme in a single buffer solution; (3) dUTP and UNG are incorporated to ensure that previously amplified material does not contribute to the signal; (4) an internal quantitation standard is used to monitor reaction variability; and (5) quantitative detection is achieved with a colorimetric microwell format. The assay has a four-log dynamic range and can be completed within 8 hours. (J. Clin. Microbiol.: Feb. 1994).
ATTENDEES
Al Absher
Organon Teknika
100 Akzo Avenue
Durham, NC 27712

Jean Agostini
Chernay International Russia

Lisa Alaxanian
Retrovirology Laboratory, NYS Dept. of Health
Box 509
Albany, New York 12201

Sandra Alexander
Organon Teknika
100 Akzo Avenue
Durham, NC 27712

Thomas S. Alexander Ph.D.
Summa Health Services
525 E. Market St., Dept. of Pathology
Akron, Ohio 44309-2090

Diane Anderson
Organon Teknika
100 Akzo Avenue
Durham, NC 27712

Kim Anderson
Osborn Laboratories
14901 W. 117th St.
Olathe, KS 66062

Kirk Andree
Hamilton Company
4970 Energy Way
Reno, Nevada 89502

Michael Ascher M.D.
CA Department of Health Services
2151 Berkeley Way, Room 803
Berkeley, CA 94704

Jim Ausdenmore
Abbott Diagnostics
One Abbott Park Road
Abbott Park, IL 60064

Jane E. Avansino
Nevada State Health Lab
1660 N. Virginia St.
Reno, Nevada 89503

Mary Beth Baker
Pathology Associates Medical Laboratories
E. 11604 Indiana
Spokane, Washington 99206

Dan Barker
Ortho Diagnostics
Highway 202
Raritan, NJ 08869

Sharon L. Barnes
Nevada State Health Lab
1660 N. Virginia St.
Reno, Nevada 89503
John R. Barron
Boston Biomedica, Inc.
375 West Street
West Bridgewater, MA 02379

John Dean Barry M.S.
Virus Reference Laboratory
7540 Louis Pasteur
San Antonio TX 78229

Ronald Bayer Ph.D.
Columbia University School of Public Health

Elizabeth Baylis
Public Health Foundation Enterprises
2151 Berkeley Way, Room 426
Berkeley, CA 94704

Sara Beatrice Ph.D.
Bureau of Labs. NYC Dept. of Health
455 First Ave.
New York, NY 10128

Carol J. Bell
Centers for Disease Control and Prevention
4770 Buford Highway, NE, MS F19
Atlanta, Georgia 30341-3724

Zn Benissa
Bio-Rad Laboratories
4000 Alfred Nobel Drive
Hercules, CA 94709

Roberto Benezam
Organon Teknika
100 Akzo Avenue
Durham, NC 27712

Spencer B. Bennett
Florida Office of Lab. Services
1217 Pearl street
Jacksonville, FL 32202

Billie Bentley
Epitope, Inc.
8505 SW Creekside Place
Beaverton, Oregon 97008

Christopher Bentzson
Genetic Systems Corporation
6565 185th Avenue, N.E.
Redmond, Washington 98052

Richard E. Berman
P.A. Dept. of Health
P.O. Box 500
Exton, PA 19341-0500

Rasa Bertuzis
Abbott Laboratories
100 Abbott Park Road
Abbott Park, IL 60064

James W. Blaine Ph.D.
Commonwealth of Virginia
Box 1877
Richmond, Virginia 23215
David Carpenter Ph.D.
Illinois Department of Public Health
825 N. Rutledge
Springfield, IL 62754

Jim Casey
Abbott Diagnostics
One Abbott Park Road
Abbott Park, IL 60064

Randy Casey
Organon Teknika
100 Akzo Avenue
Durham, NC 27712

Joaquin Castillo
Chernay International Russia

Mei-Hao Chen
Wisconsin State Laboratory of Hygiene
465 Henry Mall
Madison, WI 53706

Celeste Chenet-Monte
Cambridge Biotech Corporation
365 Plantation Street
Worcester, MA 01605

Cindy Christopherson
Roche
California

Dr. Lorraine M. Clarke
S.U.N.Y. Health Science Cent. at Brooklyn
Box 37, 450 Clarkson Avenue
Brooklyn, New York 11203

Dr. Patrick Coleman
Genetic Systems Corporation
6565 185th Avenue, N.E.
Redmond, Washington 98052

Beth Concaugh
Epitope, Inc.
8505 SW Creekside Place
Beaverton, Oregon 97008

Niel T. Constantine Ph.D.
Univ. of Maryland
22 S. Greene St.
Baltimore MD 21201

Steve Coonan
Chem Trak
929 E. Arques
Sunnyvale, CA 94086

Ron Cormier
Syva Company
PO Box 49013, MS E1-228
San Jose, CA 95161-9013

Cynthia Cossen
California Dept. of Health Services
2151 Berkeley Way
Berkeley, California 94704
Chuck Crampton
Organon Teknika
100 Akzo Avenue
Durham, NC 27712

Michael Cronin
Organon Teknika Corporation
100 Akzo Ave.
Durham NC 27712

David Cross
Centers for Disease Control and Prevention
4770 Buford Highway, N.E. MS-G-23
Atlanta, GA 30341-3724

Pat Cruse
USAF HIV Testing Services
AL/AOELH Bldg. 930
Brooks AFB, TX 78235-5241

Jose Cruz
Pan American Health Association
Washington, D.C.

Beverly Dale M.D.
Roche
California

Phill Davis
Sanofi Diagnostics Pasteur
1000 Lake Hazelteine Drive
Chaska, Minnesota 55318

Stephen P. Day Ph.D.
Viromed Laboratories, Inc.
6101 Blue Circle Drive
Minneapolis, MN 55343

Denise Deines
Organon Teknika
100 Akzo Avenue
Durham, NC 27712

Elizabeth Delamater Ph.D.
Texas Dept. of Health
1100 W. 49th Street
Austin, Texas 78756

Stephen R. Delaney Ph.D.
Abbott Laboratories
100 Abbott Park Rd., Dept 09YH
Abbott Park, IL 60064-3500

Susanne Desrosiers
New Hampshire Public Health Laboratories
6 Hazen Drive
Concord New Hampshire 03301

Dr. Yair Devash
Devaron, Inc.
2235 Route 130, Fresh Ponds Corp. Vill
Dayton, NJ 08810

Patti Dewey
Organon Teknika
100 Akzo Avenue
Durham, NC 27712
Arthur F. DiSalvo M.D.
State of Nevada
1660 N. Virginia Street
Reno, Nevada 89503

P. Davis Dotson, Jr.
Indiana State Dept. of Health
1330 W. Michigan Street
Indianapolis, Indiana 46206-1964

James Douglas
Sanofi Diagnostics Pasteur
1000 Lake Hazeltine Drive
Chaska, Minnesota 55318

Kurt Dunn
Retrovirology Lab., NYS Dept. of Health
Box 509
Albany, New York 12201

Roger B. Eaton Ph.D.
N.E. Regional Newborn Screening
305 South St.
Jamaica Plain, MA 02130

Brook M. Edwards
ABBOTT IABS
100 Abbott Park Rd.
Abbott Park, IL 60064

Nora Eskes
SDS
11719 NE 95th St.
Vancouver, WA 98682

Carol Ferrera
Genetic Systems Corporation
6565 185th Avenue, N.E.
Redmond, Washington 98052

Dennis V. Ferrero
San Joaquin County
P.O. Box 2009
Stockton, CA 95201

John H. Fitchen M.D.
Epitope Medical Products
8505 SW Creekside Place
Beaverton, Oregon 97008

Steve Fitzwilliam
Roche
California

Tim Flowers
VTS Corporation
4988 Bridgeport Way
Norcross, GA 30092

Dr. Chuck Foerder
Genetic Systems Corporation
6565 185th Avenue, N.E.
Redmond, Washington 98052

Dr. Bagher Forghani
C.A. Dept. of Health Services
2151 Berkeley Way
Berkeley, CA 94704
Diane Francis MT(ASCP)
San Diego State University
San Diego, California 92182-4162

Dr. Allan Frank
Anonymous Test Services, Inc.
2550 W. Gold Road, Suite 106
Rolling Meadows, IL 60008-4051

Elizabeth A. Franko Dr.P.H.
State of Georgia
47 Trinity Avenue, S.W.
Atlanta, Georgia 30334

Sarah Fuller
CMDRS, DOD
13 Taft Court
Rockville, Maryland 20850

Richard Galli
Ontario Ministry of Health
81 Resources Road
Etobicoke, Ontario, Canada

Dana Gallo
CA Department of Health Services
2151 Berkeley Way
Berkeley, CA 94704

J. Phillip Galvin
Direct Access Diagnostics
440 Rt. 22 East
Bridgewater, NJ 08807

Myriam Garcia
Dept. of Health of Puerto Rico
PO Box 71423 correo General
San Juan, Puerto Rico 00936

Greg Garcia
Ortho Diagnostic Systems, Inc.

J. Ronald Genevie
OH Dept. of Health Laboratory
P.O. Box 2568
Columbus, OH 43216-2568

J. Richard George
Centers for Disease Control and Prevention
1600 Clifton Road, MS D12
Atlanta GA 30333

Jane Getchell Dr.P.H.
University of Iowa
Iowa City, Iowa 52242

Marjorie Giles
L.A. County Public Health Laboratory
313 N. Figueroa St. Rm. 1234
Los Angeles, CA 90012

Ed Gilligan
Organon Teknika
100 Akzo Avenue
Durham, NC 27712
Andrew S. Goldstein
Epitope, Inc.
8505 SW Creekside Place
Beaverton, OR 97008

Kathy Gombel
Retrovirology Lab, NYS Dept. of Health
Box 509
Albany, New York 12201

Timothy C. Granade
Centers for Disease Control and Prevention
1600 Clifton Road D-12
Atlanta, GA 30333

Cindy Green
Calypse Biomedical
1440 Fourth Street
Berkeley, California 94710

Dr. Howard Greenspan
MMT, Inc.
23 Spring Hill Road
Annandale, NJ 08801

Dan Grosso
Ortho Diagnostics
Highway 202
Raritan, NJ 08869

Terry Grove
Genetic Systems Corporation
6565 185th Avenue NE
Redmond, Washington 98052

Louis E. Guskey
MI Department of Public Health
3500 N. Martin Luther King Blvd.
Lansing, MI 48909

Marta Gwinn M.D., M.P.H.
HIV Seroepidemiology Branch, DHA
Centers for Disease Control
Atlanta, Georgia

Deb Hall
Mayo Clinic
200 First street, S.W.
Rochester, MN 55905

Dr. Robert Hallowitz
Avriel
1641 Shookstown Road
Frederick, MD 21702

Margaret Hanson
Memorial Blood Center
Minnesota

I. Celine Hanson M.D.
Baylor College of Medicine
Houston, Texas

Dick Harding
Sanofi Diagnostics Pasteur
1000 Lake Hazeltine Drive
Chaska, Minnesota 55318
Thomas D. Harrigan Ph.D.
Metropolitan Life Insurance Company
4 Westchester Plaza
Elmsford, NY 10523

William J. Hausler, Jr. Ph.D.
University of Iowa
Iowa City, Iowa 52242

Patrick L. Hays Ph.D.
KS Health and Environmental Laboratory
Bldg. #740, Forbes Field
Topeka, Kansas 66620

Milton Headings
Anonymous Test Services, Inc.
2550 W. Gold Road, Suite 106
Rolling Meadows, IL 60008-4051

Regna B. Heisinger
Missouri Department of Health
307 West McCarty
Jeffersin City Missouri 65101

Sharon Henderson
Community Blood Center
4040 Main Street
Kansas City, MO 64111

Richard Herberling Ph.D.
Virus Reference Laboratory
7540 Louis Pasteur
San Antonio TX 78229

J.J. Hicks
Sanofi Diagnostics Pasteur
1000 Lake Hazeltine Drive
Chaska, Minnesota 55318

Ann Hildebrand
Organon Teknika
100 Akzo Avenue
Durham, NC 27712

Mildred Hillard MT(ASCP), NRCC
AR Dept. of Health Laboratory
4815 W. Markham, Slot 47
Little Rock, AR 72205

Michael S. Hindahl
Epitope, Inc.
8505 S.W. Creekside Place
Beaverton, Oregon 97008

Sue Hocker
Epitope, Inc.
8505 SW Creekside Place
Beaverton, Oregon 97008

Jean Hogsed
Organon Teknika
100 Akzo Avenue
Durham, NC 27712

Sandra Irons
Nebraska State Health Lab
3701 S. 14th Street
Lincoln NE 68502
Diana Kohrin
Gen-Probe
9880 Campus Point Drive
San Diego, California 92121

Dr. Yevgeny V. Kochergin
AIDS Symposium

Michael Kusznik
Fitzco, Inc.
5600 Pioneer Creek Drive
Maple Plain, Minnesota 55359

Jerry Kudlác
OK State Department of Health
PO Box 24106
Oklahoma City, OK 73124-0106

Donald Kwalick M.D.
Nevada Department of Human Resources
Carson City, Nevada

Ruth Lane
Sanofi Diagnostics Pasteur
1000 Lake Hazeltine Drive
Chaska, Minnesota 55318

Julie Larsen
Abbott Laboratories
100 Abbott Park Road, Dept 8A3
Abbott Park, IL 60064-3500

Dr. Tatiana V. Lavareva
AIDS Symposium

Keith Lawrence
Bureau of Labs. NYC Dept of Health
455 First Ave.
New York, NY 10016

Jeanne Leal
North American Biologicals, Inc.
16500 NW 15th Avenue
Miami, Florida 33169

Suzanne Ledin
Sanofi Diagnostics Pasteur
1000 Lake Hazeltine Drive
Chaska, Minnesota 55318

Tsun-Kong Lee
HETL
221 statae Street
Augusta, ME 04333

Gretchen Legarza
Nevada State Health Lab
1660 N. Virginia St.
Reno, Nevada 89503

Bill Link
Bio-Rad Laboratories
5500 E. Second Street
Benicia CA 04510

53
Brian Louie
San Francisco Public Health Department
101 Grove Street, Room 419
San Francisco, CA 94102

Dr. Carl Ludvigsen
LabOne, Inc.
8915 Lenexa Drive
Overland Park, KS 66214

Larry Lugo
Hamilton Company
4970 Energy Way
Reno, Nevada 89502

Corky Lyttle
Organon Teknika
100 Akzo Avenue
Durham, NC 27712

Dawn Madigan
Viral Testing Systems
19627 I-45 North, Suite 210
Spring, Texas 77388

Yvonne Maldanado M.D.
Stanford University, School of Medicine
Stanford, California

Laurie Malloch
Health Canada: HIV/AIDS Laboratories
RM 180 Virus Blvd. #10
Ottawa, Ontario, CANADA K1A OL2

Pam Markwardt-Elmer
Wisconsin State Laboratory of Hygiene
465 Henry Mall
Madison, WI 53706

Jay Marshall
Cambridge Biotech Corporation
365 Plantation Street
Worcester, MA 01605

Vincent C. Marsiglia
Baltimore City Health Dept.
BDC Laboratory Rm 237
Baltimore, MD 21217

Guy Martin
State of Nevada
1660 N. Virginia Street
Reno, Nevada 89503

David Maserang Ph.D.
Texas Department of Health
1100 West 49th Street
Austin, Texas 78756

Eleanor Matano
Univ. of Virginia Medical Center
Hospital Clinical Labs - Immunology
Charlottesville, VA 22908

Allyson 'May
Epitope, Inc.
8505 SW Creekside Place
Beaverton, Oregon 97008
Patsy McCarty
Mississippi Public Health Laboratory
2433 North State Street
Jackson, MS 39216

Sean McClure
Organon Teknika
100 Akzo Avenue
Durham, NC 27712

Rick Medeiros
Blackhawk BioSystems, Inc.
12945 Alcosta Blvd.
San Ramon, California 94583

Pat Meisner
T-Cell Diagnostics, Inc.
6 Gill Street
Woburn, MA 01801

Terry Meiszberg
Abbott Labs.
100 Abbott Park Rd. (AP8B, D-9DC)
Abbott Park, IL 60064-3500

Jeffrey N. Meshulam
Cellular Products, Inc.
872 Main Street
Buffalo, NY 14202

Paul Mied Ph.D.
Food and Drug Administration
CBER FDA HFM 310
Rockville, Maryland 20852-1448

Mark J. Miller
Placer County, CA PHL
11475 C Avenue
Auburn, CA 95603

William S. Miller
William Miller Company
5618 St. Albans Way
Baltimore MD 21212

Tracey Miller
Organon Teknika
100 Akzo Avenue
Durham, NC 27712

Larry Moore
Hamilton Company
4970 Energy Way
Reno, Nevada 89502

Romulo T. Morales
State of Georgia
47 Trinity Avenue, S.W.
Atlanta, Georgia 30334

Ray Morrill
T-Cell Diagnostics, Inc.
6 Gill Street
Woburn, MA 01801

Susan Mottice Ph.D.
Utah Department of Health
46 North Medical Drive
Salt Lake City, Utah 84113
C. Roy Moulton
State of Idaho, Bureau of Laboratories
2220 Old Penitentiary Road
Boise, Idaho 83712

Dr. Hermann Mucke
Waldheim Pharmazeutika
Boltzmanngasse 9A-11
A-1091 Wein Austria

Michael Neal
Retrovirology Laboratory, NYS Dept. of Health
Box 509
Albany, New York 12201

Dr. Pat Necessary
LabOne, Inc.
8915 Lenexa Drive
Overland Park, KS 66214

Lawrence W. Nelson
Nevada State Health Lab
1660 N. Virginia St.
Reno, Nevada 89503

Sherian D. Nestor MT(ASCP)
WVDHHR/OLS
167 11th Ave.
South Charleston, WV 25303

'Jan Nicholson
Centers for Disease Control and Prevention
1600 Clifton Road, NE, MS A-25
Atlanta, Georgia 30333

Patricia T. Nix
Alpha Therapeutic Corp.
5700 Pleasant View Road
Memphis, TN 38134-6503

Kiyotada Numomura
Gen-Probe, Inc.
9880 Campus Point Drive
San Diego, California 92121

Naziha Nuwayhid
VA Medical Center, Amarillo
1400 Wallace Blvd.
Amarillo, TX 79106

Sean O'Connor
Ortho Diagnostic Systems, Inc.

Dr. Anton A. Obgolz
AIDS Symposium

Linda Orwoll
Sanofi Diagnostics Pasteur
1000 Lake Hazeltine Drive
Chaska, Minnesota 55318

Linda Orwoll
Sanofi Diagnostics Pasteur
1000 Lake Hazeltine Drive
Chaska, Minnesota 55318

56
Mary Owens
Nevada State Health Lab
1660 N. Virginia St.
Reno, Nevada 89503

Terri Ozegovich
Sanofi Diagnostics Pasteur
1000 Lake Hazeltine Drive
Chaska, Minnesota 55318

William R. Pagels
Direct Access Diagnostics
440 Rt. 22 East
Bridgewater, NJ 08807

Mahin M. Park Ph.D.
State of Georgia
47 Trinity Avenue, S.W.
Atlanta, Georgia 30334

Elizabeth K. Parker M.P.H.
SC Dept. of Health & Environmental Control
8231 Parklane Rd.
Columbia, SC 29223

James L. Pearson Dr. P.H.
Commonwealth of Virginia
Box 1877
Richmond, Virginia 23215

Jane Peck
Organon Teknika
100 Akzo Avenue
Durham, NC 27712

K. Michael Peddecord Dr.P.H.
San Diego State University
San Diego, California 92182-4162

Bea Pelayo
Kaiser Permanente
11668 Sherman Way
North Hollywood, California 91605

Debra Perkins
North American Biologicals, Inc.
16500 NW 15th Avenue
Miami, Florida 33169

Chris Peter Ph.D.
San Diego County Dept. of Health Services
P.O. Box 85222
San Diego, CA 92186-5222

Roberta Pfeiffer
Oregon Public Health Laboratory
1717 SW 10th Avenue, PO Box 275
Portland, Oregon 97007

John R. Pfister
WI State Lab of Hygiene
465 Henry Mall
Madison, Wisconsin 53706

Jack Phillips
Abbott Laboratories
100 Abbott Park Road
Abbott Park, IL 60064-3500
Susan K. Phillips
Centers for Disease Control and Prevention
1600 Clifton Rd.
Atlanta, GA 30333

Jim Pickett
Sanofi Diagnostics Pasteur
1000 Lake Hazeltine Drive
Chaska, Minnesota 55318

Carole Polito
Blackhawk BioSystems, Inc.
12945 Alcosta Blvd.
San Ramon, California 94583

Rich Quattrocchi
Anonymous Test Services, Inc.
2550 W. Gold Road, Suite 106
Rolling Meadows, IL 60008-4051

Scott Rairigh
Epotope, Inc.
8505 SW Creekside Place
Beaverton, Oregon 97008

Michael T. Ramirez
Univ. of Iowa Hygienic Laboratory
Univ. of Iowa, Oakdale Hall
Iowa City IA 52242

Stanley M. Reimer Ph.D.
Bureau of Laboratories
455 First Avenue, Rm 1274
New York NY 10016

Timothy A. Rem
Retrovirology Laboratory, NYS Dept. of Health
Box 509
Albany, New York 12201

Bob Rhoades
Organon Teknika
100 Akzo Avenue
Durham, NC 27712

Lori Rhodes
Becton Dickinson Immunocytometry Systems
2350 Qume Drive
San Jose, California 95131

Todd A. Ritter
United States Air Force
2601 West Road, Suite 2
Brooks Air Force Base, TX 78235

Dr. Bill Roberts
LabOne, Inc.
8915 Lenexa Drive
Overland Park, KS 66214

Claudia Rogers
Wyoming Public Health Laboratory
517 Hathaway Bldg.
Cheyenne, Wyoming 82002

Noel Rolon
Direct Access Diagnostics
440 Rt. 22 East
Bridgewater, NJ 08807
<table>
<thead>
<tr>
<th>Name</th>
<th>Address/Contact Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Chitra Roy</td>
<td>Medical Devices Bureau
Statistics Canada Main Bldg., Rm 1605
Ottawa, CANADA K1A022</td>
</tr>
<tr>
<td>Mario Sampedro</td>
<td>Abbott Laboratories
100 Abbott Park Road, Dept 8A3
Abbott Park, IL 60064-3500</td>
</tr>
<tr>
<td>Joyce Sanders</td>
<td>Retrovirology Laboratory, NYS Dept. of Health
Box 509
Albany, New York 12201</td>
</tr>
<tr>
<td>Keith Sayre M.S.</td>
<td>Ortho Diagnostics Systems, Inc.
1001 U.S. Hwy. P.O. Box 350
Raritan NJ 08869-0606</td>
</tr>
<tr>
<td>Charles Schable M.S.</td>
<td>Centers for Disease Control and Prevention
4770 Buford Highway, MS D12
Atlanta, GA</td>
</tr>
<tr>
<td>William O. Schalla</td>
<td>Centers for Disease Control and Prevention
4770 Buford Highway, N.E. MS-G-23
Atlanta, GA 30341-3724</td>
</tr>
<tr>
<td>Peter Scheiss</td>
<td>Virion (USA), Inc.</td>
</tr>
<tr>
<td>Nick Schmitz</td>
<td>LabOne, Inc.
8915 Lenexa Drive
Overland Park, KS 66214</td>
</tr>
<tr>
<td>Nancy Schneider</td>
<td>Organon Teknika
100 Akzo Avenue
Durham, NC 27712</td>
</tr>
<tr>
<td>Willfried Schramm Ph.D.</td>
<td>SDS
11719 NE 95th St.
Vancouver WA 98682</td>
</tr>
<tr>
<td>Richard T. Schumacher</td>
<td>Boston Biomedica, Inc.
375 West Street
West Bridgewater, MA 02379</td>
</tr>
<tr>
<td>Jacqueline Sheffield</td>
<td>National Naval Medical Center
P.O. Box 658, 8901 Wisconsin Ave.
Bethesda, MD 20889-5600</td>
</tr>
<tr>
<td>Haynes W. Sheppard Jr.</td>
<td>VRDL/CDHS
2151 Berkeley Way
Berkeley CA 94704</td>
</tr>
<tr>
<td>Ann Shiba</td>
<td>Becton Dickinson
2350 Qume Drive
San Jose, California</td>
</tr>
</tbody>
</table>
Dr. Kathy Shriver
Genetic Systems Corporation
6565 185th Avenue, N.E.
Redmond, Washington 98052

Cindy Skora
Abbott Laboratories
100 Abbott Park Road,
Abbott Park, IL 60064-3500

William Slanta
Arizona State Laboratory
1520 W. Adams Street
Phoenix, Arizona 85007

Nancy Small
SCPMG Permanente Kaiser Laboratory
11666 Sherman Way
North Hollywood, CA 91601

Edith S.H. Smith
National Naval Medical Center
P.O. Box 658, 8901 Wisconsin Ave.
Bethesda, MD 20889-5600

Nancy Somerholder
Organon Teknika
100 Akzo Avenue
Durham, NC 27712

Catherine Spruill
Centers for Disease Control and Prevention
1600 Clifton Road, NE, MS E-46
Atlanta, GA 30333

Jared B. Standish
E.I. Du Pont
22 Brookside Road
Wallingford, PA 19086

Marsha Starnes
Organon Teknika
100 Akzo Avenue
Durham, NC 27712

Chip Stephens
STC Diagnostics
57 Grove Pt.
Westpoint, CT 06880

Dr. Susan Stramerr
Abbott Diagnostics
One Abbott Park Road
Abbott Park, IL 60064

Henry Strother
Missouri Department of Health
307 West McCarty
Jeffersin City Missouri 65101

Capt. William B. Tauber
National Naval Medical Center
8901 Wisconsin Avenue
Bethesda, Maryland 20889

Roger N. Taylor
Centers for Disease Control and Prevention
4770 Buford Highway, N.E. MS-G-23
Atlanta, GA 30341-3724
Michael Trythall
ND State Department of Health
1205 Ave A West, Box 5520
Bismarck, ND 58502

Anne Ulm
ASTPHLD
1211 Connecticut Ave., N.W., Suite 608
Washington, D.C. 20036

Howard B. Urnovitz Ph.D.
Calyphe Biomedical
1440 Fourth Street
Berkeley, California 94710

Carol Valstyn
Becton Dickinson Immunocytochemistry Systems
2350 Qume Drive
San Jose, California 95131

Guido van der Groen
Department of Infection and Immunity
WHO Center on AIDS
Antwerpen, Belgium

Mahadeo (Dave) Verma Ph.D.
State of Delaware
30 Sunnyside Road, PO Box 1047
Smyrna, DE 19977

Dolores B. Villareal
Washington State Public Health labs
1610 NE 150th
Seattle, Washington 98155

Karen Von Hagel
Organon Teknika
100 Akzo Avenue
Durham, NC 27712

Trevor Wall
Bio-Rad
4000 Alfred Nobel Drive
Hercules, CA 94547

Dr. Michael Wandell
Anonymous Test Services, Inc.
2550 W. Gold Road, Suite 106
Rolling Meadows, IL 60008-4051

Dr. Erik Warschauer
Genetic Systems Corporation
6565 185th Avenue, N.E.
Redmond, Washington 98052

Barbara Weiblen
Boston Biomedica
375 West Street
W. Bridgewater, MA 02379

Barbara Weiser M.D.
NYS Health Department
120 New Scotland Avenue
Albany, New York 12201

Judith Wethers M.S.
Retrovirology Laboratory, NYS Dept. of Health
Box 509
Albany, New York 12201
Tim White
Organon Teknika
100 Akzo Avenue
Durham, NC 27712

Allison Williams
Organon Teknika
100 Akzo Avenue
Durham, NC 27712

Ardine Williams
Syva Company
PO Box 49013
San Jose, CA 95161

Pat Williams
Fitzco
5600 Beaver Creek Drive
Maple Plain, MN 55359

Donald J. Witt Ph.D.
Organon Teknika Corp.
100 Akzo Avenue
Durham, NC 27712

Jolene Wong-Lee
Genelabs Diagnostics
505 Penobscot Drive
Redwood City, CA 94063

Norman Woods
Sanofi Diagnostics Pasteur
3899 Daniel Woods
Lake Oswego, Oregon 97035

Arthur Wozniak Dr.P.H.
SC Dept. of Health & Environ. Cont.
8231 Parklane Rd.
Columbia, SC 29223

JoAnn Yee
University of California
Department of Medical Pathology
Davis, CA 95616

Elaine Yeh
State of CA - Virus Laboratory- DOHS
2151 Berkeley Way
Berkeley, CA 94704

Belinda Yen-Lieberman Ph.D.
Cleveland Clinic Fdn.
Dept. of Clinical Pathology, L-40
Cleveland OH 44195

Sue Yoshino
Orange County Public Health Laboratory
1729 W. 17th Street
Santa Ana, California 92706

Gloria Young
Becton Dickinson Immunocytometry Systems
2350 Qume Drive
San Jose, California 95131

Madonna L. Young
Corning Nichols Institute
33608 Ortega Highway
San Juan, Capistrano, CA 92690
Susanne Zanto
Montana Public Health Lab
W.F. Cogswell Bldg.
Helena, MT 59620

Minas Zartarian
UCI Medical Center
101 City Drive South, Rt. #19
Orange, CA 92668

Dr. Olga I. Zyrinova
AIDS Symposium