Visual Indicator-Stonefish
Exercise Mine, Polymeric
Materials Selection

R.J. Roseblade
Visual Indicator-Stonefish Exercise Mine, Polymeric Materials Selection

R.J. Roseblade

Ship Structures and Materials Division
Aeronautical and Maritime Research Laboratory

DSTO-GD-0034

ABSTRACT

The RAN has a requirement for a real time visual mine firing indicator (VISEM) for the Stonefish Exercise Mine (SEM). This device is an alternative indicator to the towed receiver which is not available to all ships that exercise with the SEM due to its limited availability and high cost.

This report documents aspects concerning the choice of polymeric materials for the VISEM. A design profile was drawn up and the critical parameters used in the PLASCAMS 'Plastics Computer Aided Materials Selector’ program to indicate suitable plastics materials for production of components of the VISEM. Acrylonitrile Butadiene Styrene (ABS) was selected as having the optimum properties to meet the design profile that included requirements for hydrolytic stability, toughness over a wide temperature range and ease of production by injection moulding and assembly with adhesives.

The report also includes information about other polymers and adhesives used in the device including some used to test concepts or selected as a matter of expediency during the development phase of the project.

RELEASE LIMITATION

Approved for public release

DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
Visual Indicator-Stonefish Exercise Mine, Polymeric Materials Selection

Executive Summary

This report describes the process used to select various polymeric materials for the manufacture of a visual indicator device to be used as an accessory to the Stonefish Exercise Mine (SEM).

The RAN acquired a number of SEM's for use in training exercises for mine detection and clearance. These can be used in one of two modes; cable controlled or free mode. In the free mode communication with the SEM is established when it emits an acoustic signal in response to a passing ship which can be recorded by ships in the area via an 'in-water' towed receiver. The mine firing acoustic signal registers on a display in the ship's bridge to tell the commanding officer that the mine has 'fired'. The limited availability and high cost of the towed receiver precludes the fitting of this equipment to all ships that exercise with the SEM. Consequently ships without the benefit of the 'in-water' electronics must rely upon receiving the results of the mine data transmission messages from other ships. The delay in notifying the recipient, and other ships, that a critical mine encounter may have occurred, causes a significant lack of realism and concern to participating ships and to the overall value of the training exercise. Consequently the RAN identified a requirement for a real time visual mine firing indicator, i.e. Visual Indicator Stonefish Exercise Mine (VISEM), which would indicate to all the ships in the exercise that an SEM had transmitted a simulated detonation signal. AMRL (Maritime Operations Division) undertook to develop the VISEM over a three year period, to a stage suitable for manufacture by Industry for the RAN.

The VISEM system is attached to the SEM by an external tether at deployment and is designed to float about 2 m above the SEM after it lodges on the ocean floor. The recommended indicator system consists of five Surface Position Markers (SPM) housed in separate compartments of a cradle that also includes a power supply module and an electronics module. On receipt of an acoustic signal from the SEM, indicating that it has been triggered by a passing ship, the VISEM releases one SPM that floats to the surface. At this point a flare ignites and a sequence of three photo flashes is ejected to a height of 4 m where they sequentially explode giving a sound and light signature. The flare continues to burn for about 20 s emitting a bright yellow/orange plume that is to be visible for a minimum of 3000 m. The remaining SPM's in the VISEM can be released by the passage of further ships during the deployment period. At the end of the operational time the VISEM, together with unused SPM's, can be recovered when the SEM is floated to the surface. Expended SPM's remain attached to the VISEM by
their tether lines and are also recovered at this time. The operational lifetime of the VISEM under exercise conditions is 90 days.

Production costs are to be competitive since annual usage by the RAN is estimated at 200 and there is a possibility of an export market. This indicated the need for relatively cheap, readily available plastics materials for the casing, which could be produced by a process such as injection moulding, and the components assembled by the use of adhesives.

To select the optimum plastics materials for construction of the VISEM the PLASCAMS 'Plastics Computer Aided Materials Selector' program was used. From the design profile a list of parameters was compiled for use in the program on a single property search basis for thermoplastic materials. Five materials (from a data base of 351) remained after the seventh search, these consisting of various grades of Acrylonitrile Butadiene Styrene (ABS) which is a readily available, cheap, engineering grade thermoplastic. A large range of available grades offered ample scope for 'fine tuning' depending on which material attributes became significant during the development phase of the project. The choice of ABS was supported by a creditable performance of the material in subsequent sea trials of the VISEM.

The VISEM is assembled with adhesives and contains a number of plastics materials, other than ABS, some of which were used in the development phase as a matter of expediency. Details of these are given in the report, along with an outline of the function which the various components are required to fulfil, and any shortcomings encountered during the proving trials. This information will enable an informed choice of material to be made for the production phase when other factors such as the number to be produced will influence material choice.
Contents

1. INTRODUCTION ... 1

2. DESIGN PROFILE .. 1

3. PLASTICS MATERIAL SELECTION ... 2

4. ACRYLONITRILE BUTADIENE STYRENE (ABS) TECHNICAL DETAILS 4

5. OTHER PLASTICS MATERIALS .. 6

6. FLOAT DEVELOPMENT ... 8
 6.1 Fabrication from Foam Sheet Material ... 9
 6.2 Moulding with Polyurethane Foam ... 10
 6.3 Injection Moulding from Plastics Material ... 11

7. ADHESIVES .. 11

8. CONCLUSIONS AND RECOMMENDATIONS ... 13

10. REFERENCES .. 13
1. Introduction

The RAN requirement for a visual mine firing indicator for the Stonefish Exercise Mine (SEM) was originally outlined in [1] while background information relating to the requirement was given in [2] as follows:

The RAN acquired a number of SEM’s for use in training exercises for mine detection and clearance. The SEM emits an acoustic signal in response to a passing ship which can be recorded by ships in the area via an ‘in-water’ towed receiver. The mine firing acoustic signal registers on a display in the ship’s bridge to tell the commanding officer that the mine has ‘fired’. The limited availability and high cost of the towed receiver precludes the fitting of this equipment to all ships that exercise with the SEM. Consequently ships without the benefit of the ‘in-water’ electronics must rely upon receiving the results of the mine data transmission messages from other ships. The delay in notifying the recipient, and other ships, that a critical mine encounter may have occurred, causes a significant lack of realism and concern to participating ships and to the overall value of the training exercise.

Consequently, the RAN identified a requirement for a real time visual mine firing indicator, i.e. Visual Indicator Stonefish Exercise Mine (VISEM), which would indicate to all the ships in the exercise that an SEM had transmitted a simulated detonation signal. Thus the proposed VISEM system was required to generate a visual and audible signal of sufficient magnitude to unequivocally indicate that the SEM had been initiated and indicate the proximity of the SEM to that vessel.

AMRL (Maritime Operations Division) undertook to develop the VISEM, over a three year period, to a stage suitable for manufacture by Industry for the RAN. This report documents aspects concerning the choice of polymeric materials for the device.

2. Design Profile

The VISEM system is attached to the SEM by an external tether at deployment and is designed to float about 2 m above the SEM after it lodges on the ocean floor. The recommended indicator system consists of five Surface Position Markers (SPM) housed in separate compartments of a cradle that also includes a power supply module and an electronics module as shown by Figure 1. On receipt of an acoustic signal from the SEM, indicating that it has been triggered by a passing ship, the VISEM releases one SPM that floats to the surface. At this point a flare ignites and a sequence of three photo flashes is ejected to a height of 4 m where they sequentially explode giving a sound and light signature. The flare continues to burn for about 20 s emitting a bright yellow/orange plume that is to be visible for a minimum of 3000 m. The remaining SPM’s in the VISEM can be released by the passage of further ships during the deployment period. At the end of the operational time the VISEM, together with unused SPM’s, can be recovered when the SEM is floated to the surface. Expended
SPM's remain attached to the VISEM by their tether lines and are also recovered at this time. The operational lifetime of the VISEM under exercise conditions is 90 days.

A depth range of 15 m to 90 m and a design temperature range of -10°C to +55°C is required. The flare composition is to be contained in a cardboard cylinder so that direct contact with the plastics case is precluded. After it has reached the surface and the plastics cap on the VISEM has been removed by internal pressure from the ignition sequence, the flare burns for 20 s at a temperature around 2000°C. It is a desired feature (unlikely to be achieved in practice) that the burning flare composition will consume the casing and/or buoyancy jacket (float) causing only a small remnant of the flare to sink, thus avoiding the potential environmental problems that might arise from debris being washed ashore.

Production costs are to be competitive since annual usage by the RAN is estimated at 200 and there is a possibility of an export market. This indicated the need for relatively cheap, readily available plastics materials for the casing, which could be produced by a process such as injection moulding, and the components assembled by the use of adhesives.

3. Plastics Material Selection

A reasonable choice of plastics material for a particular application can usually be made with experience alone. However it is more effective to apply experience in a systematic way using one or more of the various published or computer aided selection guides that are available. In this case the PLASCAMS 'Plastics Computer Aided Materials Selector' program [3] was used to indicate suitable plastics materials for production of selected parts of the VISEM. From the design profile a list of parameters was compiled, as shown in Table 1, for use in the program on a single property search basis for thermoplastic materials. Specific parameter values were used in the program where possible, otherwise value judgements on a 0-9 scale were used where a value of 0 indicates that the material does not possess the property in question, and a value of 9 indicates that the property is well represented. In searching for the top 50 % of materials, value judgements in the range 5-9 would be specified.
ITEM No.	DESCRIPTION
1 | BASE PLATE & CENTRE TUBE ASSY.
2 | SPM. ASSY. (2-VARIANTS)
3 | POWER SUPPLY ASSY.
4 | ELECTRONICS HOUSING ASSY.
5 | MOORING
6 | SPM. LEAD/CONNECTOR ASSY.
7 | POWER SUPPLY LEAD/CONNECTOR ASSY.
8 | CONTAINER BODY
9 | CONNECTOR
10 | MOUNTING FRAME
11 | FRAME ATTACHING BRACKET

Figure 1: VISEM Assembly [8].
Table 1: VISEM Design Parameters for use in the PLASCAMS Plastics Computer Aided Materials Selector

<table>
<thead>
<tr>
<th>Search No.</th>
<th>Category</th>
<th>Property</th>
<th>Value 0-9 or Specific</th>
<th>Materials Listed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(4) Prod. method</td>
<td>Injection moulding</td>
<td>6-9</td>
<td>123</td>
</tr>
<tr>
<td>2</td>
<td>(5) Post processing</td>
<td>Bonding</td>
<td>6-9</td>
<td>51</td>
</tr>
<tr>
<td>3</td>
<td>(3) Chem.& rad. resist.</td>
<td>Hydrolytic stability</td>
<td>7-9</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>(1) Gen.& electrical</td>
<td>Heat distort. temp.</td>
<td>55°C</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>(2) Mechanical props.</td>
<td>Toughness at 20°C</td>
<td>5-9</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>(2) Mechanical props.</td>
<td>Tensile strength</td>
<td>> 35 MPa</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>(2) Mechanical props.</td>
<td>Brittle temperature</td>
<td>6-9</td>
<td>5</td>
</tr>
</tbody>
</table>

It can be seen from Table 1 that five materials (from a data base of 351) remained after the seventh search, these consisting of various grades of Acrylonitrile Butadiene Styrene (ABS).

4. Acrylonitrile Butadiene Styrene (ABS) Technical Details

ABS is a readily available, cheap, engineering grade thermoplastic. It consists of styrene-acrylonitrile copolymer as a continuous phase, with a dispersed phase of microscopic polybutadiene rubber particles onto which styrene-acrylonitrile copolymer has been grafted. Through variations in composition, molecular weight, and morphology of the rubber phase, these materials can be tailored to exhibit a very wide range of properties. ABS can also be blended (alloyed) with other polymers to achieve some of the superior properties of each of the constituents (e.g. nylon, PVC, polycarbonate) or copolymerised with additional monomers (e.g. methylmethacrylate, alphamethylstyrene).

The PLASCAMS data sheet for ABS (high impact) is shown by Table 2.
Table 2: PLASCAMS data sheet (ABS high impact)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resin type</td>
<td>T.P. amorp.</td>
<td>Cost per tonne</td>
<td>$3200</td>
</tr>
<tr>
<td>Max. operating temp.</td>
<td>70°C</td>
<td>SG</td>
<td>1.03</td>
</tr>
<tr>
<td>Water absorption</td>
<td>0.3 %</td>
<td>Surface hardness</td>
<td>102RR</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>38 MPa</td>
<td>Linear expansion</td>
<td>9 x 10^-5</td>
</tr>
<tr>
<td>Flexural modulus</td>
<td>2.2 GPa</td>
<td>Flammability (UL94)</td>
<td>HB</td>
</tr>
<tr>
<td>Elongation at break</td>
<td>8 %</td>
<td>Oxygen index</td>
<td>19 %</td>
</tr>
<tr>
<td>Notched izod</td>
<td>0.4 kJ/m</td>
<td>Volume resistivity</td>
<td>16 log ohm cm</td>
</tr>
<tr>
<td>Heat distortion temp. (0.45 MPa)</td>
<td>98°C</td>
<td>Dielectric strength</td>
<td>25 MV/m</td>
</tr>
<tr>
<td>Heat distortion temp. (1.80 MPa)</td>
<td>89°C</td>
<td>Dielectric const. (1 kHz)</td>
<td>2.8</td>
</tr>
<tr>
<td>Material drying</td>
<td>2 h at 90°C</td>
<td>Dissipation factor (1kHz)</td>
<td>0.007</td>
</tr>
<tr>
<td>Mould shrinkage</td>
<td>0.7 %</td>
<td>Melt temp. range</td>
<td>230-270°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mould temp. range</td>
<td>40-60°C</td>
</tr>
</tbody>
</table>

The PLASCAMS text describes ABS as follows:

Advantages: Hard for a thermoplastic. Reasonably tough (maintains impact resistance to low temperatures). Easily processed (may be electroplated), easily bonded. Good gloss, surface scuff resistant. Low shrinkage and warpage.

Disadvantages: Poor solvent and fatigue resistance. Poor U.V. resistance, unless protected. Maximum continuous use temperature 70°C. Poor bearing properties (high friction and wear). High smoke evolution.

Applications: Cabinets and cases, particularly for domestic and industrial instruments, e.g. TV cabinets, food mixers, telephone sets, vacuum cleaners. Vacuum formings for baths, shower trays, etc. Extruded into pipe. Used in preference to PVC for high (50-70°C) or low (<20°C) temperatures. Mouldings may be electroplated for bathroom or automotive applications.

Many grades of ABS are manufactured by a number of companies including General Electric (Cycolac), Bayer (Novodur), Dow (Magnum), Monsanto (Lustran), Huntsman Chemical Company Australia Ltd. (Astralac), and BASF (Terluran). General Electric alone produces about 70 grades of Cycolac exhibiting a very wide range of properties such as medium, high and super impact, flame retardant, high heat, transparent, static dissipative, and alloys with other polymers. Cycolac grades 'GSM' and 'T' were recommended as they exhibit a range of properties appropriate to the VISEM, particularly high impact strength (equivalent grades now are GPM 4700 and GPM 5600 respectively). The range of grades available offered ample scope for 'fine tuning' depending on which material attributes became significant during the development phase of the project.
5. Other Plastics Materials

A number of other plastics materials have been used for special items in the VISEM during the development phase as follows:

Power Supply Housing

This assembly has been made from unplasticised poly (vinyl chloride), (UPVC), as a matter of expediency and economy since two of its main components (items 3 and 5, Table 3) can be made from standard 'off the shelf' piping. It is expected that a relatively large number of these assemblies will be produced as it is an expendable item with a service life dependant on the life of the batteries (maximum 90 days). Although UPVC has inferior low temperature impact strength to ABS this is not considered important for this assembly as it will be well protected and supported within the VISEM. However there remains a further disadvantage of UPVC in that it gives off corrosive fumes (hydrochloric acid) during melt processing and this determines that any injection moulding dies required to manufacture the other plastics items in the Power Supply Housing will need to be made from stainless steel. Alternatively there is no technical reason why UPVC and ABS cannot be used together in this assembly. The economics of this choice will need to be assessed prior to commencing commercial production of the VISEM.

Washer

The function of the washer (item 3 of Surface Position Marker, Table 3) is to prevent any excess adhesive from the cap/body joint adhering other items below this joint. Polypropylene has been chosen because of its poor bonding properties and relatively good machineability. Polyethylene and polytetrafluoroethylene (eg. Teflon) have poorer bonding properties but are difficult to machine.

Packing

The function of the packing (item 16 of Surface Position Marker, Table 3) is to fill the space between the photosflash payload and the compression disc. Polystyrene foam has been chosen as it will not be subject to the hydrostatic pressure resulting from immersion underwater and otherwise fulfills all requirements of this application.

Tether Line Pack

This package (item 17 of Surface Position Marker, Table 3) is a commercially available item containing polyester string coated with PVA to cause the string to adhere to itself when wound on a mandrel.
Table 3: VISEM Polymeric Components

<table>
<thead>
<tr>
<th>Drawing Title</th>
<th>Drawing No.</th>
<th>Item No.</th>
<th>Description</th>
<th>Material Selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-surface System Assy.</td>
<td>8/09/M3/6</td>
<td>1</td>
<td>Base plate & centre tube assy.</td>
<td>ABS</td>
</tr>
<tr>
<td>Surface Position Marker assy.</td>
<td>8/09/M3/4</td>
<td>8</td>
<td>Container body</td>
<td>Divinycell with GRP skin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Float</td>
<td>Divinycell H130 foam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Cap</td>
<td>ABS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Washer</td>
<td>Polypropylene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Washer</td>
<td>ABS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Body</td>
<td>ABS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Connector</td>
<td>ABS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Tail assy.</td>
<td>ABS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>Packing</td>
<td>Styrene foam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>Tether line pack</td>
<td>Polyester string</td>
</tr>
<tr>
<td>Electronics Housing</td>
<td>8/09/M5/14</td>
<td>1</td>
<td>Body</td>
<td>ABS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Micro switch disc</td>
<td>ABS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Micro switch plate</td>
<td>ABS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Connector spigot</td>
<td>ABS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Connector housing</td>
<td>ABS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Top closure</td>
<td>ABS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Conduit</td>
<td>ABS</td>
</tr>
<tr>
<td>Power Supply Housing</td>
<td>8/09/M5/5</td>
<td>1</td>
<td>Connector sleeve</td>
<td>UPVC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Top closure</td>
<td>UPVC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Conduit</td>
<td>UPVC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Conduit base</td>
<td>UPVC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Body</td>
<td>UPVC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Base closure</td>
<td>UPVC</td>
</tr>
</tbody>
</table>

Connector

The connector (item 7 of Surface Position Marker, Table 3) is required to encapsulate two brass pins to enable an electrical connection between the electronics housing and the SPM and to mechanically take the thrust of the SPM launch. In the production phase it is intended that this item will be injection moulded using ABS but to avoid the cost and risk (of design change) in producing a die in the development phase, connectors were cast using epoxy resin. During this prototyping phase 42 connectors were cast using six moulds produced from Dow Corning RTV E Mould Making silicone rubber. (Earlier moulds had been produced from Rhodorsil RTV 585/CAT 60R silicone rubber but this material was too soft and did not maintain its shape during the exothermic curing reaction and problems were also encountered due to air inclusions.) Various modifications to technique and formulation were made during the production of connectors 1 to 12 mainly due to problems with air inclusions and maintaining dimensional integrity. The procedure was basically standardised for connector No's 13 to 42 and it was these which were used in the March 1993 sea trials. Details of the final casting procedure and epoxy resin system used is shown in Table 4.
Table 4: Casting of VISEM Electrical Connector

<table>
<thead>
<tr>
<th>Resin Type (100 parts)</th>
<th>Araldite Weight (g)</th>
<th>Hardener Type (40 parts)</th>
<th>Hardener Weight (g)</th>
<th>Additional Hardener (4.2 parts)</th>
<th>Hardener Weight (g)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araldite M*</td>
<td>114.3</td>
<td>HY5160*</td>
<td>45.7</td>
<td>HY956*</td>
<td>4.8</td>
<td>*Ciba-Geigy product</td>
</tr>
<tr>
<td>Totals</td>
<td>138.3</td>
<td></td>
<td>45.7</td>
<td></td>
<td>4.8</td>
<td>**Extra added in ratio 5 : 1 to react with HY956</td>
</tr>
</tbody>
</table>

METHOD
1. Ensure mould is clean then insert brass pins.
2. Weigh out ingredients & mix thoroughly avoiding entrapment of air as far as possible.
3. Partly fill mould then probe air bubbles from undercut at base of mould.
4. Complete filling of mould to ~3 mm from top.
5. Place mould in oven at ~70°C for ~24 h to cure resin.
6. Roll back top of mould & extract connector.

On almost all occasions these items failed to withstand the launch forces during sea trials and were extensively damaged. Additionally the connectors were difficult to hold in the lathe chuck during machining (due to lack of stiffness) and this lead to problems in maintaining the tolerance band of 0.15 mm. If for some reason connectors were to be produced by this method in the future (rather than using ABS) formulation changes and perhaps better post curing would be required to overcome the above problems.

6. Float Development

During the initial development phase of the VISEM the following design criteria were established for the float (buoyancy collar) of the SPM.

- The float is required to maintain buoyancy at a maximum depth of 90 m for 90 days, bring the flare to the surface after release, float during flare operation and, ideally, burn away and allow the indicator to sink after operation.

- Compression strength required is 1100 kPa (90 m immersion in sea water plus 20 m safety factor).

- Float to provide maximum possible buoyancy.
• Very low water absorption.

• Flare burns for 30 s at a white heat in a metal tube.

• Shape designed to give fastest possible rise time.

• Attached (probably adhered) to a central plastics tube.

• Float may stand alone or be required to give structural support to the outer shell. Conversely, the outer shell may give some structural support, allowing the use of a lower compressive strength foam.

In developing the float three options were explored, i.e. fabricating from Divinycell closed cell PVC foam, moulding with closed cell polyurethane (PU) foam, and moulding a hollow float from solid plastics material.

6.1 Fabrication from foam sheet material

Foams which were considered to have properties relevant to the above design criteria are shown in Table 5. All give the required buoyancy, have low water absorption and are amenable to bonding to the central plastics tube of the flare. A number of these materials are normally supplied in sheet form requiring the buoyancy collar to be fabricated by bonding and machining sections. However the possibility of moulding the required shape could be negotiated with some companies.

Divinycell and Airex are similar closed cell PVC foams, both imported in sheet form, and both available in grades of adequate compressive strength. These materials are self extinguishing and therefore might have been able to fulfil the opposing requirements for the indicator to remain afloat during the flare period but to burn away and sink after operation. Divinycell HCP grades are specifically designed for sub-sea applications and a special adhesive (Divilette) is marketed for bonding the material. Diab-Barracuda fabricated a number of floats using Divinycell grade H-130 and these were used successfully in prototype trials (short term immersion). It was found necessary to coat the floats to reduce drag and hence rise time. The floats did not burn sufficiently to allow the SPM to sink after operation and furthermore the burning foam reduced the flare performance. This problem was overcome by use of a special paper insert to give a chimney effect but burning of the foam was further reduced.

Styrofoam Floormate (polystyrene) is cheap, has excellent buoyancy, very low water absorption, combustibility that can be reduced by addition of a fire retardant and has excellent bondability. However no work was undertaken with this material as the compressive strength (700 kPa min.) was insufficient.
Firesafe (phenolic) has very low combustibility and excellent heat resistance but has a high open cell content making it prone to water absorption under high pressure and furthermore development of this product at the time had not proceeded to the point where material of known high compressive strength was available.

Table 5: Foam Properties

<table>
<thead>
<tr>
<th>Foam description</th>
<th>Grade</th>
<th>Density (kg/m³)</th>
<th>Water absorption</th>
<th>Combustibility</th>
<th>Bondability</th>
<th>Comp. strength (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airx (Plastrol Trading) Poly (vinyl chloride) closed cell, cross-linked</td>
<td>55</td>
<td>75</td>
<td>100</td>
<td>0.9% v/v (7 days) 0.6% v/v (7 days)</td>
<td>Self extinguishing</td>
<td>Yes</td>
</tr>
<tr>
<td>Divinycell (Diab-Barracuda) Poly (vinyl chloride), closed cell, cross-linked</td>
<td>H-80</td>
<td>80</td>
<td>H-130</td>
<td>130</td>
<td>200</td>
<td>0.046 kg/m² 0.03 kg/m² <0.1% @ 100 h</td>
</tr>
<tr>
<td>Strofoam Floormate (Dow) poly styrene closed cell</td>
<td>700</td>
<td>45</td>
<td></td>
<td></td>
<td>Flame retarded but will burn</td>
<td>Yes</td>
</tr>
<tr>
<td>Firesafe (Insulco) Phenolic, 50% closed cell</td>
<td>35</td>
<td>120</td>
<td>200</td>
<td>2% (ASTM C-272)</td>
<td>Very low</td>
<td>Yes</td>
</tr>
<tr>
<td>Polyurethane, closed cell</td>
<td>50</td>
<td>130</td>
<td></td>
<td>Burns but can be flame retarded</td>
<td>Yes</td>
<td>350 1100</td>
</tr>
</tbody>
</table>

Polyurethane was used in an attempt to mould floats as described in the following paragraph.

6.2 Moulding with Polyurethane Foam

Although a successful prototype had been developed by fabricating Divinycell foam it was anticipated that a considerable saving in unit cost might be achieved by moulding the float from a suitable grade of closed cell polyurethane foam. Accordingly an aluminium mould (MRL drawing No.3863-01) was constructed and a series of floats moulded using various grades of Aptane polyurethane foam ingredients as supplied by Ariel Industries Pty. Ltd. [4] and a mould release agent provided by Glenmount Pty. Ltd. [5]. Although the compressive strength of standard grades of polyurethane foam is much lower than the 1100 kPa required by the float there is a more or less linear relationship between density and compressive strength and by very extended extrapolation of density/compressive strength data [6] a compressive strength of 1100 kPa at a density of about 130 kg/m³ was considered feasible. Further increase in strength of a moulded foam article can be achieved by encouraging the 'integral skin effect' (mainly by formulation) whereby a very dense skin is formed against the walls.
of the mould whilst the interior has a foam structure. A series of floats was moulded as detailed in Table 6 and some were further reinforced by coating with polyurethane adhesive or epoxy resin. The hydrostatic compressive strength of suitable floats was then determined in a compression chamber at 1034 kPa (150 psi) and any increase in weight due to water absorption measured. It can be seen from Table 6 that float A10 (density approximately 208 kg/m3) showed promise with only a one gram increase in weight after the pressure test and an 18 gram increase when retested after five deliberate perforations of the outer skin. It is feasible that, with further experimentation, floats meeting the performance criteria could be produced by this procedure.

6.3 Injection Moulding from Plastics Material

This option was developed to meet the RAN environmental requirement to recover the SPM after firing. To enable this it was necessary for the SPM to sink after operation and remain tethered to the VISEM cradle which could later be brought to the surface together with any spent SPM’s. Since burning of the foam float during operation of the flare had not been achieved, and its fragmentation after operation was deemed to be environmentally unacceptable, a hollow plastics float was designed such that it would fill with water after operation and sink.

Prototypes were machined from UPVC because ABS was not available ‘off the shelf’ in a suitable size and special extrusion was prohibitively expensive. However, in the production phase it is anticipated that the floats would be injection moulded using ABS as it is lighter and has a higher impact strength than UPVC. Although the prototypes have not been operationally tested at this time the hollow moulded float is expected to be successful as it does not incorporate any untested features.

7. Adhesives

Adhesives are to be used for assembly of the various plastics components of the VISEM and this requirement was used as one of the selection criteria for the plastics materials (paragraph 3). ABS is readily assembled using suitable epoxy or cyanoacrylate adhesives or solvent cements based on either methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran or methylene chloride. A proprietary solvent cement is marketed by Dura-Wills [7] (manufacturer of ABS pipe) which is formulated to withstand the same working conditions as the rest of the system and correctly made joints made using this method are claimed to be stronger than either pipe or fitting.
Table 6: VISEM Float Development (Polyurethane Foam)

<table>
<thead>
<tr>
<th>Float No.</th>
<th>Material A (pbw)</th>
<th>Material B (g)</th>
<th>Moulding Notes</th>
<th>Float Wt. (moulded) (g)</th>
<th>Density (Note 1) (Kg/m³)</th>
<th>Float Coating</th>
<th>Float Wt. (coated) (g)</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>100</td>
<td>75</td>
<td>Aptane B 900</td>
<td>118</td>
<td>88.5</td>
<td>Mould not filled</td>
<td>143</td>
<td>READD 128M (Note 2) 154</td>
</tr>
<tr>
<td>A2</td>
<td>100</td>
<td>112.5</td>
<td>Aptane B 900</td>
<td>118</td>
<td>132.7</td>
<td>Filled except top corner</td>
<td>221</td>
<td>170 Nil</td>
</tr>
<tr>
<td>A3</td>
<td>100</td>
<td>127.5</td>
<td>Aptane B 900</td>
<td>118</td>
<td>150.4</td>
<td>Filled except top corner</td>
<td>256</td>
<td>197 Nil</td>
</tr>
<tr>
<td>A4</td>
<td>100</td>
<td>90</td>
<td>Aptane B 900</td>
<td>118</td>
<td>106.2</td>
<td>Not quite filled</td>
<td>174</td>
<td>134 Epoxy resin (Note 3) 186</td>
</tr>
<tr>
<td>A5</td>
<td>100</td>
<td>100</td>
<td>Aptane B 900-1</td>
<td>103</td>
<td>103</td>
<td>Filled except top corner</td>
<td>174</td>
<td>134 Epoxy resin (Note 4) 200</td>
</tr>
<tr>
<td>A6</td>
<td>100</td>
<td>80</td>
<td>Aptane B 900-1</td>
<td>103</td>
<td>82.4</td>
<td>Mould heated to 45°C</td>
<td>131</td>
<td>101 Epoxy resin (Note 5) ?</td>
</tr>
<tr>
<td>A7</td>
<td>100</td>
<td>80</td>
<td>Aptane B 900</td>
<td>160</td>
<td>128</td>
<td>Mould heated to 30°C</td>
<td>177</td>
<td>Nil Not tested (incomplete moulding, surface bubbles)</td>
</tr>
<tr>
<td>A8</td>
<td>100</td>
<td>110</td>
<td>Aptane B 900</td>
<td>160</td>
<td>176</td>
<td>Mould heated to 30°C</td>
<td>240</td>
<td>Nil Not tested (incomplete moulding, surface bubbles)</td>
</tr>
<tr>
<td>A9</td>
<td>100</td>
<td>130</td>
<td>Aptane B 900</td>
<td>160</td>
<td>208</td>
<td>Mould heated to 50°C</td>
<td>292</td>
<td>225 Nil Not tested (incomplete moulding, surface bubbles)</td>
</tr>
<tr>
<td>A10</td>
<td>100</td>
<td>120</td>
<td>Aptane B 900</td>
<td>160</td>
<td>192</td>
<td>Mould heated to 50°C</td>
<td>271</td>
<td>208 Nil Test 1-pressure tested @ 150 psi/1 min. weight = 272 g. Test 2-skin perforated 5 places then pressure tested @ 150 psi/1 min. weight = 289 g.</td>
</tr>
</tbody>
</table>

Notes:
1. Based on filled mould volume of 1300 cm³
2. Polyurethane adhesive (1 coat)
3. Ciba Geigy Epoxy resin GY 6010 with amine hardner LC 177 in ratio 104 (1 coat)
4. As per note 3 (2 coats)
5. Expanded after curing @ 100°C & wouldn't fit pressure chamber
6. International Paints 'Intershield' EGA100/EGA105 (2 coats black).
7. Integral skin type PU foam system from Ariel Industries.
8. Conclusions and Recommendations

A design profile for the VISEM has been drawn up with a view to selecting appropriate polymeric materials for its construction. The requirement that the device withstand being submerged in sea water to a maximum of 90 m for 90 days and for the SPM to rise to the surface in a limited time and function reliably was of paramount importance. To enable cheap mass production of components by injection moulding and assembly with adhesives, ABS was selected as the optimum plastics material to fulfill these requirements. This choice was supported by a creditable performance of the material during sea trials of the VISEM.

During the development phase UPVC was used as an alternative to ABS for the construction of the Power Supply Housing of the VISEM. This choice was based on material availability and the fact that the superior impact strength of ABS would not be required by this assembly because it is protected within the VISEM. However stainless steel dies will be needed if UPVC is to be injection moulded and the economics of this choice will need to be assessed prior to commencing commercial production of the VISEM.

In developing the float of the SPM three options were explored, i.e., fabrication from Divinycell closed cell PVC foam, moulding with closed cell PU foam and moulding a hollow float from plastics material. Although floats used successfully in the sea trials were fabricated from Divinycell, and some promise was shown by the moulded PU option, the final choice will be for a hollow plastics float due to the requirement for the float to sink after operation of the SPM.

With the original design profile remaining basically unchanged during the development phase of the project the VISEM system evolved through a number of variations culminating in a system proposed for manufacture as shown by Figure 1. Table 3 indicates the main sub assemblies of the VISEM and lists the items made from polymeric materials.

10. References

2. Feasibility study for the development of a visual firing indicator for the Stonefish Exercise Mine by Peter Ramsay (MRL).

4. Ariel Industries Pty. Ltd., 26 Kembla Street, Cheltenham, Victoria 3192, Australia. (Contact Mr. Gerard Murray Telephone (03) 584 3966).
5. Glenmount Pty. Ltd., 32 Cahill Street, Dandenong 3175, Victoria, Australia. (Contact Mr. Ian Urquhart Telephone (03) 794 5877).

7. Dura-Wills, 12-18 Strong Avenue, Thomastown 3074, Victoria, Australia (Telephone (03) 460 5966).

Visual Indicator-Stonefish Exercise Mine, Polymeric Materials Selection

R.J. Roseblade

DSTO-GD-0034

DISTRIBUTION LIST

Director, AMRL
Chief, Ship Structures and Materials Division
Chief, Weapons Systems Division
Chief, Maritime Operations Division
Dr G.R. Johnston
Mr R.J. Roseblade
Dr D.D. Richardson
M. de Sousa
Mr F. May
Library, AMRL Maribyrnong
Library, AMRL Fishermens Bend

Chief Defence Scientist (for CDS, FASSP, ASSCM) 1 copy only
Director, ESRL
Head, Information Centre, Defence Intelligence Organisation
OIC Technical Reports Centre, Defence Central Library
Officer in Charge, Document Exchange Centre
Air Force Scientific Adviser, Russell Offices
Senior Defence Scientific Adviser/Scientific Adviser - Policy and Command
Senior Librarian, Main Library DSTOS
Librarian, DSD, Kingston ACT
Serials Section (M List), Deakin University Library, Deakin University, Geelong 3217
NAPOC QWG Engineer NBCD c/- DENGRS-A, HQ Engineer Centre, Liverpool Military Area, NSW 2174
ABCA, Russell Offices, Canberra ACT 2600 4 copies
Librarian, Australian Defence Force Academy
Head of Staff, British Defence Research and Supply Staff (Australia)
NASA Senior Scientific Representative in Australia
INSPEC: Acquisitions Section Institution of Electrical Engineers
Head Librarian, Australian Nuclear Science and Technology Organisation
Senior Librarian, Hargrave Library, Monash University
Library, Chemical Abstracts Reference Service
Engineering Societies Library, US
Documents Librarian, The Center for Research Libraries, US
Army Scientific Adviser, Russell Offices - data sheet only
Navy Scientific Adviser - data sheet only
Director General Force Development (Land) - data sheet only
DASD, APW2-1-OA2, Anzac Park West, Canberra ACT - data sheet only
SO (Science), HQ 1 Division, Milpo, Enoggera, Qld 4057 - data sheet only
Librarian - AMRL Sydney - data sheet only
Counsellor, Defence Science, Embassy of Australia - data sheet only
Counsellor, Defence Science, Australian High Commission - data sheet only
Scientific Adviser to DSTC Malaysia, c/- Defence Adviser - data sheet only
Scientific Adviser to MRDC Thailand, c/- Defence Attache - data sheet only
DSTO-GD-0034

DISTRIBUTION LIST (Contd)

Chairman, Australian Ordnance Council
Warren Canning, AMRL Business Office
MWSCP D (Cmdr Mike Welford)
DGFD (Sea) (Cmdr G.J. Kelly)
DNW (Attn. Lt Cmdr S. McCarey)
COMAUSMINDIVFOR, HMAS Waterhen
DRANSWARS, HMAS Watson
MSD (Cmdr D. Ramsden)
MHCPD (Capt M. Davis)
MHIPD (Cmdr E. Glass)
DSMPW
FONTC (Cdre R.A. Christie)
Director, Naval Combat Systems Engineering
Director, Naval Electrical Engineering
Maritime Headquarters (Attention: FMCDO)
OIC, Royal Australian Navy Ranges and Assessing Unit
Visual indicator-Stonefish exercise mine, polymeric materials selection

R.J. Roseblade

CORPORATE AUTHOR
DSTO Aeronautical and Maritime Research Laboratory
PO Box 4331
Melbourne Victoria 3001

March 1995

NAV 99/024

RAN

510/207/0171

8

20

Chief, Ship Structures and Materials Division

Approved for public release

Announcement of this report is unlimited

Stonefish Exercise Mines
Polymeric Materials
Injection Moulding

Fabrication
Polyurethane Resins
Indicator (visual/acoustic)

Adhesives
Mine Detection

The RAN has a requirement for a real time visual mine firing indicator (VISEM) for the Stonefish Exercise Mine (SEM). This device is an alternative indicator to the towed receiver which is not available to all ships that exercise with the SEM due to its limited availability and high cost.

This report documents aspects concerning the choice of polymeric materials for the VISEM. A design profile was drawn up and the critical parameters used in the PLASCAMS 'Plastics Computer Aided Materials Selector' program to indicate suitable plastics materials for production of components of the VISEM. Acrylonitrile Butadiene Styrene (ABS) was selected as having the optimum properties to meet the design profile that included requirements for hydrolytic stability, toughness over a wide temperature range and ease of production by injection moulding and assembly with adhesives.

The report also includes information about other polymers and adhesives used in the device including some used to test concepts or selected as a matter of expediency during the development phase of the project.