FINITE ELEMENT APPROXIMATION OF LARGE AIR POLLUTION PROBLEMS I: ADEPTION

by

Francis X. Giraldo
Beny Neta

April 1995

Report for Period
January 1995 - March 1995

Approved for public release; distribution is unlimited

Prepared for: Naval Postgraduate School
Monterey, CA 93943

19950523 008
Rear Admiral T.A. Mercer
Superintendent

Harrison Shull
Provost

This report was prepared in conjunction with research conducted for the Naval Postgraduate School and funded by the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Francis X. Giraldo
NRC Research Associate

Beny Neta
Professor of Mathematics

Reviewed by:

RICHARD FRANKE
Chairman

Released by:

PAUL J. MARTO
Dean of Research
Finite Element Approximation of Large Air Pollution Problems I: Advection

AUTHOR(S)

Francis X. Giraldo and Beny Neta

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

SUPPORTING NOTES

The views expressed in this report are those of the authors and do not reflect the official policy or position of the Department of Defense or the United States Government.

DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

ABSTRACT

An Eulerian and semi-Lagrangian finite element methods for the solution of the two dimensional advection equation were developed. Bilinear rectangular elements were used. Linear stability analysis of the method is given.
FINITE ELEMENT
APPROXIMATION OF LARGE AIR
POLLUTION PROBLEMS I:
ADVECTION

Francis X. Giraldo
NRC Research Associate
Naval Postgraduate School
Department of Mathematics
Monterey, CA 93943

Beny Neta
Naval Postgraduate School
Department of Mathematics
Code MA/Nd
Monterey, CA 93943

19 April 1995
Abstract

An Eulerian and semi-Lagrangian finite element methods for the solution of the two-dimensional advection equation were developed. Bilinear rectangular elements were used. Linear stability analysis of the method is given.

1. Introduction

Two photographs appearing in the New York Times (March 28, 1994) show the damage of air pollution near big emission sources. But the problem exists even away from sources since air pollutants can be transported, mainly by advection. Thus air pollution becomes a global problem. This physical phenomenon consists of three major stages (see e.g. Zlatev [1]):

1. emission,
2. transport/advection,
3. transformation during the transport which includes: diffusion, deposition and chemical reactions.

In this paper, we only discuss the transport stage and the solution of the two-dimensional advection equation by finite element methods.

2. Finite Element Solution

The two-dimensional advection equation is given by

$$\frac{\partial c}{\partial t} = - \frac{\partial}{\partial x} (uc) - \frac{\partial}{\partial y} (vc), \quad x_L \leq x \leq x_R, \quad y_L \leq y \leq y_U, \quad 0 < t \leq T \quad (1)$$

where c is the concentration of a certain pollutant and u and v are the wind velocity components in the x and y directions, respectively. Clearly, when one is interested in several pollutants, the equation is replaced by a system of such equations coupled only via the chemical interaction between species.

The methods for numerical solution of the advection equation can be divided into five groups:

1. Finite differences,
2. Spectral methods,
3. Finite volume,
4. Characteristic-based methods or semi-Lagrangian,
5. Finite elements.
The finite difference methods are most popular and have been analyzed thoroughly (see e.g Richtmeyer and Morton [2]). Spectral methods (see e.g Orszag [3,4]) are used in weather forecasting, but not very much in air pollution. The pseudo spectral methods are of the same group. Here the solution is approximated by a truncated polynomial whose derivatives are substituted in the equation. The spectral methods require periodic boundary conditions. Finite volume or cell method is based on the integral form of the equation. The computational domain is divided into elements (volumes or cells) within which the integration is carried out. This method preserves the property of conservation (see Peyret and Taylor [11]). The semi-Lagrangian methods are not very popular among scientists working with air pollution models, but these are now gaining popularity in weather prediction. “Discretization schemes based on a semi-Lagrangian treatment of advection have elicited considerable interest... since they offer the promise of allowing larger time steps (with no loss of accuracy) than Eulerian-based schemes whose time step length is overly limited by consideration of stability” (see Staniforth and Côté [9]). Semi-Lagrangian methods based on finite difference or finite element spatial discretization were developed.

Here we discuss the finite element approximation to the two dimensional advection equation. Both Eulerian and semi-Lagrangian finite elements will be discussed and tested. Software will be available upon request or electronically via world wide web at the URL address http://math.nps.navy.mil/~beta. The advantage of finite elements is the fact that the discretization can be as easily carried out for nonuniform grids. Thus one can use a fine grid only where the action is and a coarser grid away from there. First order linear one dimensional elements have been previously used, see e.g Pepper et al [5]. We now discuss bilinear finite elements on rectangles. It was shown by Neta and Williams [6] that isosceles triangles with linear basis functions and rectangular bilinear elements are superior to other triangulations and to finite differences. If the grid is uniform, rectangular elements are preferred since Staniforth et al [7] have shown how to evaluate the integrals efficiently and the mass matrix can be replaced by a tensor product of two tridiagonal matrices. If the grid is nonuniform again the rectangular elements are preferred, since the isosceles triangles lose their shape.

3. Bilinear Finite Elements

Discretize the rectangular domain, by introducing the nodes

\[(x_i, y_j), \quad i = 0, 1, \ldots, I + 1, \quad j = 0, 1, \ldots, J + 1,\]

where

\[x_0 = x_L, x_{I+1} = x_R, y_0 = y_L, y_{J+1} = y_U.\]

Suppose we number the interior nodes

\[n = 1, \ldots, IJ\]
from bottom left to top right, see figure 3 for the case \(I = 4, J = 3 \).

\[
\begin{array}{cccccc}
 & y_4 & & & & \\
 & & 16 & 17 & 18 & 19 & 20 \\
 y_3 & 9 & 10 & 11 & 12 & & \\
 y_2 & 11 & 12 & 13 & 14 & 15 & \\
 y_1 & 5 & 6 & 7 & 8 & & \\
 y_0 & 6 & 7 & 8 & 9 & 10 & \\
 \hline
 x_0 & 1 & 2 & 3 & 4 & 5 & x_5
\end{array}
\]

Figure 3: node and element numbering

The number of finite (rectangular) elements is \(N_e = (I + 1)(J + 1) = 20 \) in this case.

We now define the basis functions \(\varphi_m(x, y) \) as bilinear functions on each rectangle, so that

\[
\varphi_m(x, y) = \begin{cases}
1 & \text{at node } m \\
0 & \text{at all other nodes.}
\end{cases}
\]

(4)

To obtain the bilinear basis functions defined on the \(k^{th} \) element, we can make a transformation of this rectangle to a square centered at the origin having sides of length 2 (see figure 4).
Figure 4: k^{th} element (top) and its transformed one.
The transformation is given by
\[
\xi = \frac{2}{x_{i+1} - x_i} x - \frac{x_{i+1} + x_i}{x_{i+1} - x_i} \\
\eta = \frac{2}{y_{m+1} - y_m} y - \frac{y_{m+1} + y_m}{y_{m+1} - y_m}
\]
and the basis functions in the $\xi - \eta$ domain are given by
\[
\varphi_A = \frac{1}{4}(\xi - 1)(\eta - 1) \\
\varphi_B = -\frac{1}{4}(\xi + 1)(\eta - 1) \\
\varphi_C = \frac{1}{4}(\xi + 1)(\eta + 1) \\
\varphi_D = -\frac{1}{4}(\xi - 1)(\eta + 1)
\]
where the subscripts denote the vertex at which $\varphi = 1$. Note that the basis functions are product of the appropriate linear basis functions, i.e.
\[
\varphi_A(x, y) = e_1(x)e_m(y) \\
\text{where} \\
e_i(\theta) = \frac{\theta_{i+1} - \theta}{\theta_{i+1} - \theta_i}.
\]
This property is crucial to efficiently evaluating the integrals (Staniforth et al [7]).

The approximate problem becomes
\[
M\ddot{c} - Kc = b
\]
where the entries of the matrices M, and K are given by
\[
M_{ij} = \int_{R} \int_{R} \varphi_j \varphi_i dxdy \\
K_{ij} = \int_{R} \int_{R} \left(u\varphi_j \frac{\partial \varphi_i}{\partial x} + v\varphi_j \frac{\partial \varphi_i}{\partial y} \right) dxdy.
\]
The vector c gives the concentrations at grid points at any time t, and b gives the boundary data
\[
b_j = -\sum_{i=1}^{N_x} c_i(t) \left[\int_{y_L}^{y_U} \left(u\varphi_j \varphi_i \right) _{x_L}^{x_R} dy + \int_{x_L}^{x_R} \left(v\varphi_i \varphi_j \right) _{y_L}^{y_U} dx \right]
\]
Since u, v are in general functions of x and y, we use numerical quadrature to evaluate K_{ij}. The quadrature we employed in our case is the two point open type, i.e.
\[
\int_{a}^{b} f(x)dx = \frac{3h}{2} \left[f(a + h) + f(a + 2h) \right],
\]
where
\[h = \frac{b - a}{3} \]
and the error term is given by
\[\frac{3}{8} h^2 f''(\xi). \]
Thus for the first integral in \(K_{ij} \) we get
\[\int_{R} \int w \varphi_j \frac{\partial \varphi_i}{\partial x} dx dy = \sum_{k=1}^{N_x} \int_{x_i}^{x_{i+1}} \int_{y_m}^{y_{m+1}} w \varphi_j \frac{\partial \varphi_i}{\partial x} dx dy. \quad (12) \]
Now use the quadrature for each integral and centered differences for the partial derivatives to get
\[
\sum_{k=1}^{N_x} \frac{3}{2} h_x \frac{3}{2} h_y \left\{ u(E) \varphi_j(E) \frac{\varphi_i(P) - \varphi_i(Q)}{2h_x} + \\
u(F) \varphi_j(F) \frac{\varphi_i(W) - \varphi_i(X)}{2h_y} \quad (13) \right\}
\]
Figure 5: location of quadrature nodes
where

\[h_x = \frac{x_{i+1} - x_l}{3}, \quad h_y = \frac{y_{m+1} - y_m}{3} \] \hspace{1cm} (14)

and \(\delta \), the spacing for the centered differences was arbitrarily chosen as

\[\delta = .05(x_{i+1} - x_l). \] \hspace{1cm} (15)

Similarly, we can approximate the second integral in \(K_{ij} \) except that now the points will be \(\delta = .05(y_{m+1} - y_m) \) units above and below the four points \(E, F, G, H \).

4. Semi-Lagrangian Finite Elements

Semi-Lagrangian schemes belong to the general class of upwinding methods. For hyperbolic equations, upwinding methods incorporate characteristic information into the numerical method. In Lagrangian schemes, the evolution of the system is monitored by following specific fluid particles through space. As a result, Lagrangian schemes allow larger time steps than Eulerian. The problem with fully Lagrangian schemes is that an initially regularly spaced set of particles will generally evolve into irregularly spaced particles. As a result, some important features in the flow may not be captured properly. Semi-Lagrangian schemes combine the best of both worlds: the regular resolution of an Eulerian scheme and the high stability of a Lagrangian method. The idea is to choose a different set of particles such that at the end of the time step, they arrive at points on a regular Cartesian grid. The departure points of the particles are determined by an iterative process using the interpolated velocity vector from the previous time.

A semi-Lagrangian formulation of (1)

\[\frac{c^+ - c^-}{2\Delta t} + \frac{1}{2} \left[(cu_x + cv_y)^+ (cu_x + cv_y)^- \right] = 0 \] \hspace{1cm} (16)

where \(c^+ \) is the solution at the grid points at time \(t + \Delta t \), \(c^- \) is the solution at time \(t - \Delta t \) at those points arriving at the grid points at time \(t + \Delta t \). Since one requires two previous time levels, the program uses Matsuno’s (see e.g. Haltiner and Williams [12]) method to get the first time step.

In the appendix, we bring plots of the solution for the cone test (see e.g. Zlatev [1]) using Eulerian finite elements with explicit, Crank-Nicholson and fully implicit time discretizations as well as the semi-Lagrangian method.

5. Stability Analysis

There are four rectangles having a vertex in common, as indicated in the next figure. The approximate solution at the vertices of the rectangles may be obtained by solving the following first order ordinary differential equation (see Neta and Williams [6] for the one dimensional advection case).
\[
\dot{c}(P) + \frac{1}{4} [\dot{c}(G) + \dot{c}(B) + \dot{c}(D) + \dot{c}(E)] \\
+ \frac{1}{16} [c(F) + c(H) + c(A) + c(R)] \\
+ \frac{3}{16} u \Delta x \left\{ c(H) - c(F) + c(R) - c(A) + 4 [c(E) - c(D)] \right\} \\
+ \frac{3}{16} v \Delta y \left\{ c(H) - c(R) + c(F) - c(A) + 4 [c(G) - c(B)] \right\} = 0
\]

Substitute a Fourier mode

\[c(x, y, t) = A(t) e^{i(\mu x + \nu y)} \]

in (17) to get

\[
\dot{A}(t) \left\{ 1 + \frac{1}{4} (2 \cos \mu \Delta x + 2 \cos \nu \Delta y) + \frac{1}{16} 4 \cos \mu \Delta x \cos \nu \Delta y \right\} \\
+ \frac{3}{16} u \Delta x A(t) \left\{ 4 + 2 \cos \nu \Delta y \right\} 2 i \sin \mu \Delta x \\
+ \frac{3}{16} v \Delta y A(t) \left\{ 4 + 2 \cos \mu \Delta x \right\} 2 i \sin \nu \Delta y = 0
\]
\[\dot{A}(t) + 3i \left\{ \frac{u}{\Delta x} \frac{\sin \mu \Delta x}{2 + \cos \mu \Delta x} + \frac{v}{\Delta y} \frac{\sin \nu \Delta y}{2 + \cos \nu \Delta y} \right\} A(t) = 0. \]
(20)

For the special case of flow along the x or y axis one of the terms in braces will drop. For flow along the diagonal

\[\frac{u}{v} = \frac{\Delta y}{\Delta x} \]
(21)

we have

\[\dot{A}(t) + 3i \left\{ \frac{u}{\Delta x} \frac{\sin \mu \Delta x}{2 + \cos \mu \Delta x} \right\} A(t) = 0. \]
(22)

In general, the ordinary differential equation becomes

\[\dot{A}(t) + i\sigma A(t) = 0, \]
(23)

where \(\sigma \) is 3 times the term in braces in (20). For the leap-frog time discretization

\[A_{n+1} - A_{n-1} + 2i\sigma \Delta t A_n = 0 \]
(24)

we have

\[\lambda_{1,2} = -i\sigma \Delta t \pm \sqrt{1 - \sigma^2 (\Delta t)^2}, \]
(25)

and thus for stability (|\(\lambda \) ≤ 1), we must have

\[|\sigma \Delta t| \leq 1. \]
(26)

If we let

\[U = \max(|u|, |v|) \]
(27)

\[\delta = \min(\Delta x, \Delta y) \]

then the method is stable if

\[\frac{\Delta t}{\delta} \leq \frac{2}{3U}. \]
(28)

This is the CFL condition.

6. Fourier Transform

The Fourier transform of a function \(c(x, y, t) \) is given by

\[\mathcal{F}\{c\} \hat{c}(k, l, t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} c(x, y, t)e^{-i(kx + ly)} dx dy \]
(29)

Taking the Fourier transform of the linearization of (1), one gets the initial value problem

\[\frac{d\hat{c}}{dt} + i(ku + lv)\hat{c} = 0, \]
(30)
\[\dot{c}(k, l, 0) = \dot{c}_0(k, l). \]

The solution of which is given by
\[\dot{c}(k, l, t) = \dot{c}_0(k, l)e^{i\nu t}, \]

where
\[\nu = -(ku + lv). \]

To get the solution \(c(x, y, t)\) in the physical domain, we have to take the inverse Fourier transform and use the convolution theorem. This yields the well known solution
\[c(x, y, t) = c_0(x - ut, y - vt). \]

In order to obtain the Fourier transform of the approximate solution, recall that
\[\int_{-\infty}^{\infty} u(x + \Delta x, y, t)e^{-ikx}dx = e^{ik\Delta x}\hat{u}(k, y, t). \]

Applying Fourier transform to (17), one gets
\[\frac{\dot{c}}{dt} + \left[iu \frac{3}{\Delta x} \frac{\sin k\Delta x}{2 + \cos k\Delta x} + iv \frac{3}{\Delta y} \frac{\sin l\Delta y}{2 + \cos l\Delta y}\right] \dot{c} = 0. \]

Compare (36) and (30), to find that \(k, l\) are replaced by \(\sigma_x, \sigma_y\) respectively, where
\[\sigma_x = \frac{3}{\Delta x} \frac{\sin k\Delta x}{2 + \cos k\Delta x}, \quad \sigma_y = \frac{3}{\Delta y} \frac{\sin l\Delta y}{2 + \cos l\Delta y}. \]

Note that as \(\Delta x \to 0, \sigma_x \to k\) and as \(\Delta y \to 0, \sigma_y \to l\), thus at the limit (36) becomes (30). In fact
\[\sigma_x \sim k - \frac{1}{180}k^5\Delta x^4 - \frac{1}{1512}k^7\Delta x^6 + O(k^9) \]
\[\sigma_y \sim l - \frac{1}{180}l^5\Delta y^4 - \frac{1}{1512}l^7\Delta y^6 + O(l^9) \]

The solution of (36) with the same initial value is given by
\[\dot{c}(k, l, t) = \dot{c}_0(k, l)e^{i\tilde{\nu} t}, \]
where
\[\tilde{\nu} = -(\sigma_x u + \sigma_y v). \]

The inverse transform is given by
\[c(x, y, t) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{c}_0(k, l)e^{-i(x\sigma_x + y\sigma_y)k}e^{i(kx+ly)}dkdl \]
or by using convolution
\[c(x, y, t) = c_0 * \mathcal{F}^{-1}\left\{e^{-i(u\sigma_x + v\sigma_y)t}\right\}. \] \hspace{1cm} (40)

7. Program Notes

The program can run semi-Lagrangian as well as Eulerian finite elements. In the Eulerian case the time differencing is one of the following:

- Explicit
- Crank Nicholson
- fully implicit

where the resulting linear system of equations is solved by the conjugate gradient method with symmetric SOR preconditioning (see e.g. Ortega [15]).

The four lines of input contain:

1. \(I, J \)
2. \(x_L, x_R, y_L, y_U \)
3. \(\Delta t, T \) (final time of integration), IPLOT (number of time steps between solution plots).
4. \(\theta \) (a parameter dictating the time integrator). This is needed only for Eulerian finite elements.

Here we include the input file and the programs used to test the Eulerian and semi-Lagrangian finite element methods. First we give the input file. The first line contains the number of grid points in the \(x \) and \(y \) directions. The second line describe the rectangular domain on which the problem is solved. The interval for \(x \) is given followed by the interval for \(y \). The third line gives the time step \(\Delta t \), the final time of integration, and the number of time steps between plots. For Eulerian finite elements, we have a fourth line with the value of \(\theta \).

Here is the input file for the explicit time discretization.

21 21
0.0 2.0 0.0 2.0
0.0125 1.0 10
0.
Here is the program for the Eulerian finite elements.

*This program solves the 2D Advection Equation *
* dc/dt + d/dx(cu) + d/dy(cv) = 0 *
*on a square domain using Periodic B.C's *
in both x and y using Bilinear Rectangular Finite Elements *
*and THETA Time-Integration Algorithms. *
* THETA=0 -> FORWRD EULER (Explicit) *
* THETA=1/2 -> CRANK-NICOLSON (Semi-Implicit) *
* THETA=2/3 -> GALERKIN (Semi-Implicit) *
* THETA=1 -> BACKWARD EULER (Implicit) *
*Written by F.X. Giraldo on 3/95 *
* NRC Fellow *
* Department of Mathematics *
* Naval Postgraduate School *
* Monterey, CA 93940 *

program fem_advect
implicit real*8(a-h,o-z)
parameter (imax=21)
c
c mxpoi max number of points
c mxele max number of elements
c mxbou max number of boundary points
c nd max number of vertices for each elements
c
parameter (mx=imax*imax, mxpoi=mx, mxele=mx, mxbou=mx/5, nd=4)
c
c global matrices
c
dimension alhs(mxpoi,mxpoi), arhs(mxpoi,mxpoi), b(mxpoi)
dimension coord(mxpoi,2)
integer intma(mxele,nd), iboun(mxbou,4), node(imax,imax)
c
c u velocity arrays
c
dimension u(mxpoi)
c
c v velocity arrays
c
dimension v(mxpoi)
c
c phi arrays
dimension phi0(mxpoi), phi0(mxpoi)

Read the Input Variables and create the Grid

input file contains 4 lines
on first: number of grid points in x (nx) and y (ny) direction
on second: range of x values (xmin, xmax),
range of y values (ymin,ymax)
on third: delta t,
final time of integration (time_final),
number of times steps between plots (iplot)
on fourth: theta (see above)

call init(phi0,u,v,node,coord,intma,iboun,npoin,nelem,
$ nboun,xmin,xmax,ymin,ymax,ym,nx,ny,nd,dx,dy,dt,
$ ntime,theta,mxpoi,mxele,mxbou,imax,iplot)
pi=4.0*atan(1.0)
open(1,file='matlab.out')

iset = number of time steps at which solution is plotted
iset=ntime/iplot + 2
write(1,*)(iset

always plot initial condition

call output(phi0,u,v,npoin,time,nx,ny,mxpoi)

cbegin the time marching
time=0.0
c
create the stiffness matrix once
call lhs(alhs,arhs,coord,intma,iboun,node,u,v,npoin,nelem,
$ nboun,nx,ny,nd,dx,dy,dt,theta,mxpoi,mxele,mxbou,imax)
do i=1,npoin
do j=1,npoin
write(2,*)(i,j,alhs(i,j))
end do
end do

c
TIME MARCH

do itime=1,ntime

time=time + dt
write(*,'(" timestep time = ",i5,2x,e12.4")itime,time/(2.0*pi)

Solve for the GeoPotential

call rhs(b,arhs,phi0,coord,intma,iboun,node,
 npoin,nelem,nboun,nx,ny,nd,dx,dy,
 mxpoi,mxele,mxbou,imax)
if (theta.eq.0.0) then
 call solve_explicit(alhs,phi,b,npoin,mxpoi)
else if (theta.ne.0.0) then
 call pcgm(alhs,phi,b,npoin,mxpoi)
endif

Enforce B.C.s Explicitly

do i=1,nx
 ji=node(i,1)
 jny=node(i,ny)
 phi(ji)=phi(jny)
end do

do j=1,ny
 ii=node(1,j)
 inx=node(nx,j)
 phi(ii)=phi(inx)
end do

Update

do ip=1,npoin
 phi0(ip)=phi(ip)
end do

check printing status

if (mod(itime,iplot).eq.0)
 call output(phi0,u,v,npoin,time,nx,ny,mxpoi)
end do
1000 continue
 call output(phi0,u,v,npoin,time,nx,ny,mxpoi)
 close(1)
 stop
end

*This subroutine writes the output. It is currently set only to
*print the concentration (or color) function at each node point.
*Written by F.X. Giraldo on 2/95

subroutine output(phi,u,v,npoin,time,nx,ny,mxpoi)
 implicit real*8(a-h,o-z)
 dimension phi(mxpoi), u(mxpoi), v(mxpoi)
pi=4.0*atan(1.0)
write(1,'(2(i6,1x),e16.8)'),nx,ny,time/(2.0*pi)
write(1,'((e12.4)') (phi(ip), ip=1,npoin)
return
end

*This subroutine reads in the input file.
*The info read is the number of grid points (in x and y), the domain,
*the time step, the final time, and the number of time steps for plotting.
*Written by F.X. Giraldo on 2/95

subroutine init(phi0,u0,v0,node,coord,intma,iboun,npoin,nelem,
 nboun,xmin,xmax,ymin,ymax,ym,nx,ny,nd,dx,dy,dt,
 ntime,theta,mxpoi,mxele,mxbou,imax,iplot)
 implicit real*8(a-h,o-z)
 dimension coord(mxpoi,2)
 dimension phi0(mxpoi), u0(mxpoi), v0(mxpoi)
 integer intma(mxele,nd), iboun(mxbou,4), node(imax,imax)

c c Read Input File
 c
read(*,*)nx,ny
read(*,*)xmin,xmax,ymin,ymax
read(*,*)dt,time_final,iplot
read(*,*)theta

 c
 check bounds
 c
 if (nx*ny.gt.mxpoi) then
write(*,'(" Error! - Need to Enlarge MXPOI")')
 stop
else if ((nx-1)*(ny-1).gt.mxele) then
 write(*,'(" Error! - Need to Enlarge MXELE")')
 stop
else if (2*(nx-1)+2*(ny-1).gt.mxbou) then
 write(*,'(" Error! - Need to Enlarge MXBOU")')
 stop
endif

set some constants
pi=4.0*atan(1.0)
time=nint(time_final/dt)
dt=dt*2.0*pi
time_final=time_final*2.0*pi
xm=0.5*(xmax+xmin)
ym=0.5*(ymax+ymin)
dx=(xmax-xmin)/(nx-1)
dy=(ymax-ymin)/(ny-1)
xl=xmax-xmin
yl=ymax-ymin
w=1.0
cx=0.25*xl
cy=0.50*yl
h=100.0
rc=0.125*xl
v(elm)=1e5

set the Initial Conditions
ip=0
do j=1,ny
 y=ymin + real(j-1)*dy
 do i=1,nx
 x=xmin + real(i-1)*dx
 ip=ip+1
 r=sqrt((x-cx)**2 + (y-cy)**2)
 phi0(ip)=0.0
 if (r.lt.rc) then
 phi0(ip)=h*(1.0-r/rc)
 endif
 u0(ip)=+(y-ym)
 v0(ip)=-(x-xm)
vel1 = u0(ip)**2 + v0(ip)**2
velmax = max(velmax, vel1)
end do
end do
cfl = dt*sqrt(velmax/(dx**2 + dy**2))
print*, ' ** CFL = ', cfl

c
GENERATE COORD
	npoin = nx*ny

ip = 0
do j = 1, ny
 do i = 1, nx
 ip = ip + 1
 node(i, j) = ip
 coord(ip, 1) = xi + dx*real(i-1)
 coord(ip, 2) = yi + dy*real(j-1)
 end do
end do

c
GENERATE INTMA

nelem = (nx-1)*(ny-1)

ie = 0
do j = 1, ny - 1
 do i = 1, nx - 1
 ie = ie + 1
 intma(ie, 1) = node(i, j)
 intma(ie, 2) = node(i + 1, j)
 intma(ie, 3) = node(i + 1, j + 1)
 intma(ie, 4) = node(i, j + 1)
 end do
end do

c
GENERATE IBOUND

nboun = 2*(nx-1) + 2*(ny-1)
ib = 0

d bottom (y = ymin)

ie = 1
do i = 1, nx - 1
 ib = ib + 1
 iboun(ib, 1) = node(i, 1)
iboun(ib,2)=node(i+1,1)
iboun(ib,3)=ie
iboun(ib,4)=1
ie=ie+1
end do

! top (y=ymax)
ie=nelem
do i=nx,2,-1
 ib=ib+1
 iboun(ib,1)=node(i,ny)
 iboun(ib,2)=node(i-1,ny)
 iboun(ib,3)=ie
 iboun(ib,4)=1
 ie=ie-1
end do

! right (x=xmax)
ie=(nx-1)
do j=ny,2,-1
 ib=ib+1
 iboun(ib,1)=node(nx,j)
 iboun(ib,2)=node(nx,j+1)
 iboun(ib,3)=ie
 iboun(ib,4)=2
 ie=ie + (nx-1)
end do

! left (x=xmin)
ie=nelem - (nx-1) + 1
do j=ny,2,-1
 ib=ib+1
 iboun(ib,1)=node(1,j)
 iboun(ib,2)=node(1,j-1)
 iboun(ib,3)=ie
 iboun(ib,4)=2
 ie=ie - (nx-1)
end do

return
end

*This subroutine constructs the LHS matrix for Bilinear Rectangular
*Elements for the Advection Equation with Periodic
East-West and North-South Boundary Conditions.
Written by F.X. Giraldo on 2/95

```
*------------------------------------------------------*
    subroutine lhs(alhs, arhs, coord, intma, iboun, node, u, v, npoin, nelem, 
                   nboun, nx, ny, nd, dx, dy, dt, theta, mxpoi, mxele, mbou, imax)
      implicit real*8(a-h,o-z)
      parameter (mx=3000)
      c
      c      global arrays
      c
      dimension alhs(mxpoi,mxpoi), arhs(mxpoi,mxpoi)
      dimension coord(mxpoi,2), u(mxpoi), v(mxpoi)
      integer intma(mxele,nd), node(imax,imax), iboun(mxbou,4)
      c
      c      local coordinate system for a CCW ordered rectangle
      c
      dimension xi(4), eta(4), a_temp(mx)
      data xi / -1, 1, 1, -1 /
      data eta / -1, -1, 1, 1 /
      c
      c      initialize the global matrix
      c
      do j=1,npoin
            do i=1,npoin
               alhs(i,j)=0.0
               arhs(i,j)=0.0
            end do
      end do
      c
      c      loop thru the elements
      c
      do ie=1,nelem
      c
      assemble element matrix cm == consistent mass matrix
      ckc == conduction-like matrix
      c
      do i=1,nd
            ii=intma(ie,i)
            cm_lump=0.0
            do j=1,nd
                  jj=intma(ie,j)
                  cm=(2.0+2.0/3.0*xi(i)*xi(j))*(2.0+2.0/3.0*eta(i)*eta(j))
                  cxx=0.0
                  cxy=0.0
                  do k=1,nd
```
\[uk = u(intma(ie,k)) \]
\[vk = v(intma(ie,k)) \]
\[ckx = ckx + uk* \]
\[(2.0*xi(i) + 2.0/3.0*xi(i)*xi(j)*xi(k))* \]
\[(2.0 + 2.0/3.0*(eta(i)*eta(j) + eta(i)*eta(k) + eta(j)*eta(k)))* \]
\[cky = cky + vk* \]
\[(2.0*eta(i) + 2.0/3.0*eta(i)*eta(j)*eta(k)) \]
\[(2.0 + 2.0/3.0*(xi(i)*xi(j) + xi(i)*xi(k) + xi(j)*xi(k)))* \]
\[end do \]
\[cmm = dx*dy/64.0*cm \]
\[ck = dy/128.0*ckx + dx/128.0*cky \]
\[alhs(i1, jj) = alhs(i1, jj) + 1.0/dt*cmm - theta*ck \]
\[arhs(i1, jj) = arhs(i1, jj) + 1.0/dt*cmm + (1.0-theta)*ck \]
\[end do \]
\[end do \]
\[end do \]
\[Account for Periodicity \]
\[do i=1, nx \]
\[j1 = node(i, 1) \]
\[jny = node(i, ny) \]
\[do jj = 1, npoin \]
\[a_temp(jj) = alhs(j1, jj) + alhs(jny, jj) \]
\[end do \]
\[do jj = 1, npoin \]
\[alhs(j1, jj) = a_temp(jj) \]
\[alhs(jny, jj) = a_temp(jj) \]
\[end do \]
\[alhs(j1, j1) = a_temp(j1) + a_temp(jny) \]
\[alhs(jny, jny) = a_temp(j1) + a_temp(jny) \]
\[end do \]
\[do j=1, ny \]
\[i1 = node(1, j) \]
\[inx = node(nx, j) \]
\[do jj = 1, npoin \]
\[a_temp(jj) = alhs(i1, jj) + alhs(inx, jj) \]
\[end do \]
\[do jj = 1, npoin \]
\[alhs(i1, jj) = a_temp(jj) \]
\[alhs(inx, jj) = a_temp(jj) \]
\[end do \]
\[alhs(i1, i1) = a_temp(i1) + a_temp(inx) \]
alhs(inx,inx)=a_temp(ii) + a_temp(inx)
end do

If theta=0, then Lump.

c
if (theta.eq.0.0) then
do i=1,npoin
 asum=0.0
 do j=1,npoin
 asum=asum + alhs(i,j)
 alhs(i,j)=0.0
 end do
 alhs(i,i)=asum
end do
endif

return
end

--
*The next 4 Subroutines solve a linear system \([A]x=b\), for \(n\) unknowns using *
*the CONJUGATE GRADIENT METHOD with an SSOR preconditioner. *
*The variable \(w\) determines the preconditioner. for \(w=1\) it is *
*Symmetric Jacobi and for \(w>1\) it is Symmetric SOR (SSOR). *
Written by F.X. Giraldo on 4/14/90
Modified for any type of spd Matrix \(A\) on 2/95
--

subroutine pcgm(a,x,b,n,mx)
implicit real*8(a-h,o-z)
parameter (nmax=3000, kmax=15, w=1.0)
dimension a(mx,mx), b(mx), x(mx)
dimension r(nmax), rw(nmax), p(nmax), ap(nmax)

do i=1,n
 sum=0.0
 do j=1,n
 sum=sum + a(i,j)*x(j)
 end do
 r(i)=b(i) - sum
end do

call ssor(r,rw,a,n,w,nmax,mx)

do i=1,n
 p(i)=rw(i)

23
end do

call ip(rop, rw, r, n, nmax)

do k=1, kmax

do i=1, n
 sum=0.0
 do j=1, n
 sum=sum + a(i, j)*p(j)
 end do
 ap(i)=sum
end do

alfden=0.0
do i=1, n
 alfden=alfden + p(i)*ap(i)
end do
alf=rop/alfden

do i=1, n
 x(i)=x(i)-alf*p(i)
end do

do i=1, n
 r(i)=r(i) + alf*ap(i)
end do

call convtest(rop, r, n, flag, nmax)
if (flag .eq. 1.0) goto 200

call ssor(r, rw, a, n, w, nmax, mx)
call ip(rnp, rw, r, n, nmax)

beta=rnp/rop
do i=1, n
 p(i)=rw(i) + beta*p(i)
end do
rop=rnp
end do
k=k-1
print*, ' No Convergence'
200 continue

24
print*, SSOR PCG Loops = ', k
return
end

*--

subroutine ssor(r, rw, a, n, w, nmax, mx)
implicit real*8(a-h,o-z)
dimension r(nmax), rw(nmax)
dimension a(mx, mx)

* symmetric sor on the residual
* zeroing the wiggle residual

do i=1, n
 rw(i) = 0.0
end do

* up sweep

do i=1, n
 sum = 0.0
 do j=1, n
 sum = sum + a(i, j) * rw(j)
 end do
 rw(i) = rw(i) + w/a(i, i) * (r(i) - sum)
end do

* down sweep

do i=n, 1, -1
 sum = 0.0
 do j=1, n
 sum = sum + a(i, j) * rw(j)
 end do
 rw(i) = rw(i) + w/a(i, i) * (r(i) - sum)
end do
return
end

*--

subroutine ip(f, fw, fr, n, nmax)
implicit real*8(a-h,o-z)
dimension fw(nmax), fr(nmax)
f = 0.0

do i=1, n
 f = f + fw(i) * fr(i)
end do

25
end do
return
end

subroutine convtest(rop,r,n,flag,nmax)
 implicit real*8(a-h,o-z)
 dimension r(nmax)

 emin=1.0e-6
 flag=0.0
 rtest=0.0
 if (rop .lt. emin) then
 do i=1,n
 rtest=rtest + r(i)**2.0
 end do
 if (rtest .lt. emin) flag=1.0
 endif
return
end

*This subroutine Builds the RHS vector for Bilinear Rectangular Finite
*Elements for the 2D SLSI Shallow Water Equations with Periodic
*West-East and North-South Boundaries.
*Written by F.X. Giraldo on 2/95

subroutine rhs(b,arhs,phi0,coord,ntma,iboun,node,
 $ npoin,nelem,nboun,nx,ny,nd,dx,dy,
 $ mxpoi,mxele,mxbou,imax)
 implicit real*8(a-h,o-z)
 parameter (mx=5000)

 c
global arrays
c
dimension b(mxpoi), arhs(mxpoi,mxpoi), phi0(mxpoi)
dimension coord(mxpoi,2)
integer intma(mxele,nd), iboun(mxbou,4), node(imax,imax)
c
local coordinates for a CCW ordered Rectangle
c
dimension xi(4), eta(4)
data xi /-1, 1, 1,-1/
data eta /-1,-1, 1, 1/
c
initialize the right hand side

26
do ip=1,npoin
 b(ip)=0.0
end do
dc

Construct the RHS Vector
dc

do i=1,npoin
 do j=1,npoin
 b(i)=b(i) + arhs(i,j)*phi0(j)
 end do
end do
dc

Account for Periodicity
dc

do i=1,nx
 j1=node(i,1)
 jny=node(i,ny)
 b_temp=b(j1) + b(jny)
 b(j1)=b_temp
 b(jny)=b_temp
end do
do j=1,ny
 i1=node(1,j)
 inx=node(nx,j)
 b_temp=b(i1) + b(inx)
 b(i1)=b_temp
 b(inx)=b_temp
end do
return
end

--
This subroutine solves a Linear NxN system where the Coefficient
*Matrix is diagonal. *
*Written by F.X. Giraldo on 4/14/90 *
--

subroutine solve_explicit(a,x,b,n,mx)
 implicit real*8(a-h,o-z)
 dimension a(mx,mx), b(mx), x(mx)
 do i=1,n
 x(i)=b(i)/a(i,i)
 end do
 return
end
Here is the program for the semi-Lagrangian finite elements.

*This program solves the 2D Advection Equation
* \[\frac{dc}{dt} + \frac{d}{dx}(cu) + \frac{d}{dy}(cv) = 0 \]
*on a square domain using Periodic B.C.'s
*in both x and y and using Semi-Implicit Semi-Lagrangian
*Bilinear Rectangular Finite Elements.
*Written by F.X. Giraldo on 3/95
* NRC Fellow
* Department of Mathematics
* Naval Postgraduate School
* Monterey, CA 93940

program slt_advect
 implicit real*(a-h,o-z)
 parameter (imax=21)

 cmxpoi max number of points
 cmxlele max number of elements
 cmxbou max number of boundary points
 cnd max number of vertices for each elements

 parameter (mx=imax*imax, mxpoi=mx, mxele=mx, mxbou=mx/5, nd=4)

 c global matrices
 dimension a(mxpoi,mxpoi), b(mxpoi)
 dimension f(mxpoi)
 dimension coord(mxpoi,2)
 dimension cmat(mxpoi)
 integer intma(mxele,nd), iboun(mxbou,4)

 c u velocity arrays
 dimension um(mxpoi), u0(mxpoi), up(mxpoi)
 dimension u0_x(mxpoi)

 c v velocity arrays
 dimension vm(mxpoi), v0(mxpoi), vp(mxpoi)
 dimension v0_y(mxpoi)

 c phi arrays

28
dimension phim(mxpoi), phi0(mxpoi), phi(mxpoi)

departure point arrays

dimension alfm(mxpoi,2), alf0(mxpoi,2)

spline derivative arrays

dimension dphi(mxpoi)

dimension du0(mxpoi), du0_x(mxpoi)

dimension dv0(mxpoi), dv0_y(mxpoi)

Auxiliary Matrices

integer node(imax,imax)

Read the Input Variables and create the Grid

input file contains 4 lines
on first: number of grid points in x (nx) and y (ny) direction
on second: range of x values (xmin, xmax),
range of y values (ymin,ymax)
on third: delta t,
final time of integration (time_final),
number of times steps between plots (iplot)

call init(phi0,u0,v0,node,coord,alf0,intma,iboun,npoin,
$ nelem, nboun,xmin,xmax,ymin,ymax,nx,ny,dx,dy,dt,
$ ntime,ym,nd,mxpoi,mxele,mxbou,imax,iplot)

Construct the Lumped Mass Matrix used for the derivative computation

call get_geom(nelem,npoin,intma,coord,cmat,node,
$ nx,ny,nd,dx,dy,mxpoi,mxele,imax)

time=0.0
pi=4.0*atan(1.0)
open(1,file='matlab.out')

isets = number of time steps at which solution is plotted
isets=ntime/iplot + 2
write(1,*)isets
always plot initial condition

call output(phi0,u0,v0,npoin,time,nx,ny,mxpoi)

begin the time marching

Do the 1st Time-step Integration to get 2-time levels

do itime=1,1
 time=time + dt
 dtime=time/(2.0*pi)
 write(*,'(" timestep time = ",i5,2x,e12.4')itime,dtime
 call matsuno(phim,phi0,php,um,u0,up,
 $ vm,v0,vp,coord,intma,npoin,nelem,dx,dy,
 $ node,nx,ny,ym,nd,mxpoi,mxele,imax)
 call update(phim,phi0,php,um,u0,up,vm,v0,vp,alfm,alf0,
 $ npoin,mxpoi)
end do

TIME MARCH

do itime=2,ntime

 time=time + dt
 dtime=time/(2.0*pi)
 write(*,'(" timestep time = ",i5,2x,e12.4')itime,dtime

 1st, DETERMINE DEPARTURE POINT
 *
 call splie2(du0,u0,coord,nx,ny,node,mxpoi,imax)
 call splie2(dv0,v0,coord,nx,ny,node,mxpoi,imax)
 call depart(alf0,alfm,coord,u0,du0,v0,dv0,
 $ npoin,dt,xmin,xmax,ymin,ymax,
 $ nd,mxpoi,node,nx,ny,imax)
 *
 2nd, COMPUTE DERIVATIVES
 *
 call deriv_x(u0_x,u0,ntma,cmat,node,npoin,nelem,
 $ nx,ny,nd,dy,mxpoi,mxele,imax)
 call deriv_y(v0_y,v0,ntma,cmat,node,npoin,nelem,
 $ nx,ny,nd,dx,mxpoi,mxele,imax)
 *
 3rd, INTERPOLATE PHIM, UM_X=U0_X, VM_Y=V0_Y
 * at the departure point = X - 2*ALPHA
*
call splie2(dphim,phim,coord,nx,ny,node,mxpoi,imax)
call splie2(du0_x,u0_x,coord,nx,ny,node,mxpoi,imax)
call splie2(dv0_y,v0_y,coord,nx,ny,node,mxpoi,imax)

INTERPOLATE THE RIGHT HAND SIDE FUNCTION

 call interp(f,phim,u0_x,v0_y,dphim,du0_x,dv0_y,coord,
 $ alf0,node,npoin,dt,xmin,xmax,ymin,ymax,ym,
 $ nx,ny,nd,mxpoi,imax)
 do ip=1,npoin
 phi(ip)=f(ip)
 u(ip)=u0(ip)
 v(ip)=v0(ip)
 end do

Update the values

 call update(phim,phi0,phi0,um,up,vm,vp,v0,alrm,alf0,
 $ npoin,mxpoi)

check time for printing output

 if (mod(itime,iplot).eq.0)
 call output(phi0,u0,v0,npoin,time,nx,ny,mxpoi)
 end do

1000 continue

 call output(phi0,u0,v0,npoin,time,nx,ny,mxpoi)
close(1)
stop
end

*This subroutine finds the departure point
* ALPHA1=DT*U(X-ALPHA1,Y-ALPHA2,T) ALPHA2=DT*V(X-ALPHA1,Y-ALPHA2,T)
*Written by F.X. Giraldo on 2/95

subroutine depart(alf0,alfm,coord,u0,du0,v0,dv0,
 $ npoin,dt,xmin,xmax,ymin,ymax,
 $ nd,mxpoi,node,nx,ny,imax)
implicit real*8(a-h,o-z)
dimension alf0(mxpoi,2), alfm(mxpoi,2)
dimension u0(mxpoi), du0(mxpoi)
dimension v0(mxpoi), dv0(mxpoi)
dimension coord(mxpoi,2)
integer node(imax,imax)

 do ip=1,npoi
 alpha1=alfm(ip,1)
 alpha2=alfm(ip,2)
 do k=1,3
 xd=coord(ip,1) - alpha1
 yd=coord(ip,2) - alpha2
 if (XD.lt.xmin) xd=xmin -(xmin - xd)
 if (XD.gt.xmax) xd=xmin + (xd - xmax)
 if (yd.lt.ymin) yd=ymin -(ymin - yd)
 if (yd.gt.ymax) yd=ymin + (yd - ymax)
 if ((yd.lt.ymin.or.yd.gt.ymax).or.
 (yd.lt.ymin.or.yd.gt.ymax)) then
 print*, 'Error in DEPART'
 print*, 'XD out of Range = ',xd,yd
 print*, 'ip alpha = ',ip, alpha1, alpha2
 stop
 endif
 call spline(u, coord, u0, du0, xd, yd, nx, ny, node, mxpoi, imax)
call spline(v, coord, v0, dv0, xd, yd, nx, ny, node, mxpoi, imax)

 alpha1=dt*u
 alpha2=dt*v
 end do
 alfo(ip,1)=alpha1
 alfo(ip,2)=alpha2
 end do

 return
end

This subroutine computes the 4th Order Accurate derivative WRT X of the *
variable UNKNO and stores it in DERIP using Bilinear Rectangular *
Finite Elements *
Written by F.X. Giraldo on 2/95 *
---*

subroutine deriv_x(derip, unkno, intma, cmat, node, npoin, nelem,
x, ny, nd, dy, mxpoi, mxele, imax)
implicit real*8(a-h,o-z)

global arrays

dimension derip(mxpoi), unkno(mxpoi)
dimension cmat(mxpoi)
integer intma(mxele,nd), node(imax,imax)

local coordinate system for a CCW ordered rectangle

dimension xi(4), eta(4)
data xi / -1, 1, 1, -1 /
data eta / -1, -1, 1, 1 /

initialize arrays

do ip=1,npoin
 derip(ip)=0.0
end do

Loop thru the Elements and find the 1St DERIVATIVES

do ie=1,nelem
 do i=1,nd
 phi_x=0.0
 ip=intma(ie,i)
 do k=1,nd
 phik=unkno(intma(ie,k))
 phi_x=phi_x + xi(k)*phik*(2.0 + 2.0/3.0*eta(k)*eta(i))
 end do
 derip(ip)=derip(ip) + dy/16.0*phi_x
 end do
end do

Account for Periodicity

 do j=1,ny
 i1=node(1,j)
inx=node(nx,j)
derip_temp=derip(i1) + derip(inx)
derip(i1)=derip_temp
derip(inx)=derip_temp
 end do

33
Now multiply by the Inverse of the Lumped mass matrix

```c
do ip=1,npoi
    derip(ip)=derip(ip)*cmat(ip)
end do
```

```
return
end
```

*This subroutine computes the 4th Order Accurate derivative WRT Y of the
*variable UNKNO and stores it in DERIP using Bilinear Rectangular
*Finite Elements
*Written by F.X. Giraldo on 2/95

```c
subroutine deriv_y(derip,unkno,intma,cmat,node,npoin,nelem, $  
   nx,ny,nd,dx,mxpoi,mxele,imax)
  implicit real*8(a-h,o-z)
  
  c
global arrays
  
c
dimension derip(mxpoi), unkno(mxpoi)
dimension cmat(mxpoi)
integer intma(mxele,nd), node(imax,imax)

  c
local coordinate system for a CCW ordered rectangle
  
c
dimension xi(4), eta(4)
data xi / -1, 1, 1,-1 /
data eta / -1,-1, 1, 1 /

  c
initialize arrays
  
c
do ip=1,npoi
    derip(ip)=0.0
end do
  
  c
Loop thru the Elements and find the 1St DERIVATIVES
  
c
do ie=1,nelem
    do i=1,nd
      phi_y=0.0
      ip=intma(ie,i)
doi k=1,nd
        phik=unkno(intma(ie,k))
```
\[
\phi_y = \phi_y + \eta(k) \cdot \phi(k) \cdot \left(2.0 + 2.0/3.0 \cdot \xi(k) \cdot \xi(i) \right)
\]
end do

derip(ip) = derip(ip) + dx/16.0 \cdot \phi_y
end do
end do

Account for Periodicity

do j=1,ny
 i1=node(1,j)
 inx=node(nx,j)
 derip_temp=derip(i1) + derip(inx)
 derip(i1) = derip_temp
 derip(inx) = derip_temp
end do

Now multiply by the Inverse of the Lumped mass matrix

do ip=1,npoin
 derip(ip) = derip(ip) * cmat(ip)
end do

return
end

--

This subroutine computes the Inverse Lumped Mass Matrix
for Bilinear Rectangular Finite Elements used for obtaining the
4th Order Accurate 1st and 2nd derivatives in both X and Y.
Written by F.X. Giraldo on 2/95

--

subroutine get_geom(nelem,npoin,intma,coord,cmat,node, $*
 nx,ny,nd,dx,dy,mxpoi,mxele,imax)

implicit real*8(a-h,o-z)

global arrays

dimension coord(mxpoi,2), cmat(mxpoi)
integer intma(mxele,nd), node(imax,imax)

Compute the inverse lumped mass matrix

do ip=1,npoin
 cmat(ip) = 0.0
end do

35
do ie=1,nelem
 do in=1,nd
 ip=intma(ie,in)
 cmat(ip)=cmat(ip) + dx*dy/4.0
 end do
end do

c
Account for Periodicity in X
c
d do j=1,ny
 i1=node(ie,j)
 inx=node(nx,j)
 cmat_temp=cmat(i1) + cmat(inx)
 cmat(i1)=cmat_temp
 cmat(inx)=cmat_temp
end do
c
Invert the lumped mass matrix
c
d do ip=1,npoin
 cmat(ip)=1.0/cmat(ip)
end do

return
end

*This subroutine reads in the input file. *
*The info read is the number of grid points (in x and y), the domain, *
the time step, the final time, and the number of time steps for plotting.
*Written by F.X. Giraldo on 2/95 *

subroutine init(phi0,u0,v0,node,coord,alf0,intma,iboun,npoin,
 nelem,nboun,xmin,xmax,ymin,ymax,nx,ny,dx,dy,dt,
 ntime,ym,nx,mpoi,mxele,nxbou,imx,iplot)
 implicit real*8(a-h,o-z)
dimension coord(mp0i,2), alf0(mp0i,2)
dimension phi0(mp0i), u0(mp0i), v0(mp0i)
it integer intma(mxele,nd), iboun(nxbou,4), node(imx,imax)

c
Read Input File
c
read(*,*)nx,ny
read(*,*)xmin,xmax,ymin,ymax

36
read(*,*)dt,time_final,iplot

check bounds

if (nx*ny.gt.mxpoi) then
 write(*,'(" Error! - Need to Enlarge MXPOI")')
 stop
else if ((nx-1)*(ny-1).gt.mxele) then
 write(*,'(" Error! - Need to Enlarge MXELE")')
 stop
else if (2*(nx-1)+2*(ny-1).gt.mxbou) then
 write(*,'(" Error! - Need to Enlarge MXBOU")')
 stop
endif

set some constants

pi=4.0*atan(1.0)
ntime=nint(time_final/dt)
dt=dt*2.0*pi
time_final=time_final*2.0*pi
xm=0.5*(xmax+xmin)
ym=0.5*(ymax+ymin)
dx=(xmax-xmin)/(nx-1)
dy=(ymax-ymin)/(ny-1)
xl=xmax-xmin
yl=ymax-ymin
w=1.0
cx=0.25*xl
cy=0.50*yl
h=100.0
rc=0.125*xl
velmax=-1e6

set the Initial Conditions

ip=0
do j=1,ny
 y=ymin+real(j-1)*dy
do i=1,nx
 x=xmin+real(i-1)*dx
 ip=ip+1
 r=sqrt((x-cx)**2 + (y-cy)**2)
 phi0(ip)=0.0
if (r.lt.rc) then
 phi0(ip)=h*(1.0-r/rc)
endif
u0(ip)=+(y-ym)
v0(ip)=-(x-xm)
vel1=u0(ip)**2 + v0(ip)**2
velmax=max(velmax,vel1)
end do
end do
cfl=dt*sqrt(velmax/(dx**2 + dy**2))
print*,' ** CFL = ',cfl
c
GENERATE COORD
c
npoin=nx*ny
ip=0
do j=1,ny
 do i=1,nx
 ip=ip+1
 node(i,j)=ip
 coord(ip,1)=xi + dx*real(i-1)
 coord(ip,2)=yi + dy*real(j-1)
 alf0(ip,1)=0.5*dx
 alf0(ip,2)=0.5*dy
 end do
end do
c
GENERATE INTMA
c
nelem=(nx-1)*(ny-1)
ie=0
do j=1,ny-1
 do i=1,nx-1
 ie=ie+1
 intma(ie,1)=node(i,j)
 intma(ie,2)=node(i+1,j)
 intma(ie,3)=node(i+1,j+1)
 intma(ie,4)=node(i,j+1)
 end do
end do
c
GENERATE IBOUN
c
nboun=2*(nx-1)

38
ib=0

bottom (y=ymin)
ie=1
do i=1,nx-1
 ib=ib+1
 iboun(ib,1)=node(i,1)
 iboun(ib,2)=node(i+1,1)
 iboun(ib,3)=ie
 iboun(ib,4)=3
 ie=ie+1
end do

top (y=ymax)
ielem=nelem
do i=nx,2,-1
 ib=ib+1
 iboun(ib,1)=node(i,ny)
 iboun(ib,2)=node(i-1,ny)
 iboun(ib,3)=ielem
 iboun(ib,4)=3
 ielem=ielem-1
end do

return
end

*This subroutine interpolates the right hand side function for the
*2D Advection Equation using a 3-time level Semi-Lagrangian
*Semi-implicit Method
*Written by F.X. Giraldo on 2/95

subroutine interp(f,phim,u0_x,v0_y,dphim,du0_x,dv0_y,coord,
 $ alf0,node,npoin,dt,xmin,xmax,ymin,ymax,ym,$
 $ nx,ny,nd,mxpoi,imax)
implicit real*8(a-h,o-z)
dimension f(mxpoi)
dimension phim(mxpoi), u0_x(mxpoi), v0_y(mxpoi)
dimension dphim(mxpoi),du0_x(mxpoi),dv0_y(mxpoi)
dimension coord(mxpoi,2), alf0(mxpoi,2)
integer node(imax,imax)

do ip=1,npoin

c
c 1st, Interpolate "-" values = F(x - 2*alpha, t - dt)
c
xd=coord(ip,1) - 2.0*alf0(ip,1)
yd=coord(ip,2) - 2.0*alf0(ip,2)
if ((xd.lt.xmin) xd=xmax - (xmin - xd))
if ((xd.gt.xmax) xd=xmin + (xd - xmax))
if ((yd.lt.ymin) yd=ymax - (ymin - yd))
if ((yd.gt.ymax) yd=ymin + (yd - ymax))

if ((xd.lt.xmin.or.xd.gt.xmax) .or. (yd.lt.ymin.or.yd.gt.ymax)) then
 print*, ' Error in INTERP'
 print*, ' XD out of Range = ', xd, yd
 stop
endif

c Do Interpolation
 call splin2(phi,coord,phim,dphim,xd,yd,nx,ny,node,mxpoi,imax)
 call splin2(u_x,coord,u0_x,du0_x,xd,yd,nx,ny,node,mxpoi,imax)
 call splin2(v_y,coord,v0_y,dv0_y,xd,yd,nx,ny,node,mxpoi,imax)

 f(ip)=(1.0-dt*(u_x + v_y))/(1.0+dt*(u0_x(ip) + v0_y(ip)))*phi
end do

return
end

*This subroutine solves the 2D Advection Equation
*using the Backward Euler with a predictor-corrector strategy
*Written by F.X. Giraldo on 2/95

subroutine matsuno(phim,phi0,phi,um,u0,up,
 $ \text{vm,v0,vp,coord,ntma,npoi,nelem,dt,dx,dy,}$
 $ \text{node,nx,ny,ym,nd,mxpoi,mxele,imax)}$
 implicit real*8(a-h,o-z)
 dimension phim(mxpoi), phi0(mxpoi), phip(mxpoi)
 dimension um(mxpoi), u0(mxpoi), up(mxpoi)
 dimension vm(mxpoi), v0(mxpoi), vp(mxpoi)
 dimension coord(mxpoi,2)
 integer intma(mxele,nd), node(imax,imax)

 Loop through the points and integrate using Forward Time
 and Centered Space...
* Predictor Stage (forward Euler)

 do j=1,ny
 j1=j-1
 j2=j+1
 if (j1.lt.1) j1=ny-1
 if (j2.gt.ny) j2=2
 do i=1,nx
 i1=i-1
 i2=i+1
 if (i1.lt.1) i1=nx-1
 if (i2.gt.nx) i2=2
 c
 Set up the nodes in X and Y
 c
 ip=node(i,j)
 ip1=node(i1,j)
 ip2=node(i2,j)
 jp1=node(i,j1)
 jp2=node(i,j2)
 c
 integrate PHI
 c
 phim(ip)=phi0(ip)
 $ -0.5*dt*dx*u0(ip)*(phi0(ip2)-phi0(ip1))$
 $ -0.5*dt/dy*v0(ip)*(phi0(jp2)-phi0(jp1))$
 c
 integrate U
 c
 um(ip)=u0(ip)
 c
 integrate V
 c
 vm(ip)=v0(ip)
 end do
 end do

* Corrector Stage (backward Euler)

 do j=1,ny
 j1=j-1
 j2=j+1

if (j1.lt.1) j1=ny-1
if (j2.gt.ny) j2=2
do i=1,nx
 i1=i-1
 i2=i+1
 if (i1.lt.1) i1=nx-1
 if (i2.gt.nx) i2=2
 print*,'Set up the nodes in X and Y'
 ip=node(i,j)
 ip1=node(i1,j)
 ip2=node(i2,j)
 jp1=node(i,j1)
 jp2=node(i,j2)
 print*,'integrate PHI'
 phi(ip)=phi0(ip)
 $ -0.5*dt/dx*um(ip)*(phim(ip2)-phim(ip1))
 $ -0.5*dt/dy*vm(ip)*(phim(jp2)-phim(jp1))
 print*,'integrate U'
 up(ip)=u0(ip)
 print*,'integrate V'
 vp(ip)=v0(ip)
end do
end do

Apply the Periodic Boundary Conditions

do j=1,ny
 ii=node(1,j)
 i2=node(nx,j)
 phi(ip)=phi(i2)
 up(ip)=up(i2)
 vp(ip)=vp(i2)
end do
end do

do i=1,nx

i1=node(i,1)
i2=node(i,ny)
phi(i1)=phi(i2)
up(i1)=up(i2)
vp(i1)=vp(i2)
end do

1000 continue

return
end

*This subroutine writes the output. It is currently set only to
*print the concentration (or color) function at each node point.
*Written by F.X. Giraldo on 2/95

subroutine output(phi,u,v,npoin,time,nx,ny,mxpoi)
implicit real*8(a-h,o-z)
dimension phi(mxpoi), u(mxpoi), v(mxpoi)

pi=4.0*atan(1.0)
write(1,'(2(i6,1x),e16.8)'),nx,ny,time/(2.0*pi)
write(1,'(e12.4)')(phi(ip), ip=1,npoin)
return
end

*These next 4 subroutines construct the Hermitian Interpolation functions
*required by the semi-Lagrangian method.
*Obtained from Numerical Recipes.
*Written by F.X. Giraldo on 2/95

subroutine splie2(df,f,coord,nx,ny,node,mxpoi,imax)
implicit real*8(a-h,o-z)
parameter (nmax=3000)
c
c global arrays
c
dimension coord(mxpoi,2), f(mxpoi), df(mxpoi)
integer node(imax,imax)
c
c local arrays
c
dimension x(nmax), y(nmax), y2(nmax)
do j=1,ny
 do i=1,nx
 y(i)=f(node(i,j))
 x(i)=coord(node(i,j),1)
 end do
 call spline(y2,y,x,nx,idum,nmax)
 do i=1,nx
 df(node(i,j))=y2(i)
 end do
end do

return
end

--
subroutine splin2(fd,coord, f, df, xd, yd, nx, ny, node, mxpoi, imax)
implicit real*8(a-h,o-z)
parameter (nmax=3000)

c
c global arrays
c
dimension coord(mxpoi,2), f(mxpoi), df(mxpoi)
integer node(imax,imax)

c local arrays
c
dimension x(nmax), y(nmax), y2(nmax), y22(nmax)

do j=1,ny
 do i=1,nx
 y(i)=f(node(i,j))
 y2(i)=df(node(i,j))
 x(i)=coord(node(i,j),1)
 end do
 call splint(fd,x,y,y2,xd,nx,nmax)
 y22(j)=fd
end do

do j=1,ny
 x(j)=coord(node(1,j),2)
 y(j)=y22(j)
end do

return

44
end

subroutine spline(y2,y,x,n,idum,mx)
implicit real*8(a-h,o-z)
parameter (nmax=3000)
dimension y(mx), y2(mx), x(mx), u(nmax)

if (mx.gt.nmax) then
 write(*,'(" Must expand NMAX in Subroutine Spline")')
 stop
endif

y2(1)=0.0
u(1)=0.0
do i=2,n-1
 sig=(x(i)-x(i-1))/(x(i+1)-x(i-1))
 p=sig*y2(i-1) + 2.0
 y2(i)=(sig - 1.0)/p
 u(i)=(6.0*((y(i+1)-y(i))/(x(i+1)-x(i)) - (y(i)-y(i-1))
 /((x(i)-x(i-1)))/(x(i+1)-x(i-1)) - sig*u(i-1))/p
end do
y2(n)=0.0
do i=n-1,1,-1
 y2(i)=y2(i)*y2(i+1) + u(i)
end do

return
end

subroutine splint(yd,x,y,y2,xd,n,mx)
implicit real*8(a-h,o-z)
dimension x(mx), y(mx), y2(mx)

ii=1
i2=n
10 if (i2-ii.gt.1) then
 im=(i2+ii)/2
 if (xd.gt.x(im)) then
 ii=im
 else
 i2=im
 endif
 goto 10
endif

45
x1=x(i1)
x2=x(i2)
dx=x2-x1
a=(x2-xd)/dx
b=(xd-x1)/dx
$y_d=a*y(i1)+b*y(i2)+((a**3-a)*y2(i1)+(b**3-b)*y2(i2))*(dx**2)/6.0$
return
end

--
This subroutine updates the arrays PHIM, UM, VM, ALFM, PHI0, U0, V0, ALF0
*Written by F.X. Giraldo on 2.95
--

subroutine update(phim, phi0, phi1p, um, u0, up, vm, v0, vp, alfm, alf0, n)
\quad implicit real*8(a-h,o-z)
\quad dimension phim(mxpoi), phi0(mxpoi), phi1p(mxpoi)
\quad dimension um(mxpoi), u0(mxpoi), up(mxpoi)
\quad dimension vm(mxpoi), v0(mxpoi), vp(mxpoi)
\quad dimension alfm(mxpoi,2), alf0(mxpoi,2)

do ip=1,npoint
 Loop through all the nodes and update
 \quad Update $F(x-2*alpha,t-dt)=F(x-alpha,t)$
 \quad phim(ip)=phi0(ip)
 \quad um(ip)=u0(ip)
 \quad vm(ip)=v0(ip)
 \quad alfm(ip,1)=alf0(ip,1)
 \quad alfm(ip,2)=alf0(ip,2)
 \quad Update $F(x-alpha,t)=F(x,t+dt)$
 \quad phi0(ip)=phi1p(ip)
 \quad u0(ip)=up(ip)
 \quad v0(ip)=vp(ip)
 end do
return
end
A Matlab Program to plot the output showing the cone at various time is given

```matlab
c1g
i=0;
j=0;
fid=fopen('matlab.out','r');
ab=fscanf(fid,'%d',1);
isets=ab(1)
while (i < isets)
    ab=fscanf(fid,'%d%d%f',3);
    nx=ab(1)
    ny=ab(2)
    hour=ab(3)
    count=nx*ny;
jj=1;
    while (j < ny)
        [aa,count]=fscanf(fid,'%e%e%e%e',nx);
        ab(jj:jj+count-1)=aa;
        j=j+1;
        jj=jj+count;
    end;
u=reshape(ab,nx,ny);
v=u';
c=contour(v,10);
clabel(c);
    title(['concentration after ',num2str(hour),' revolutions'])
    print c -dps -append
i=i+1;
j=0;
end;
```
Conclusion

We have developed a bilinear finite element Fortran code to solve the two-dimensional advection equation on a unix-based SUN Sparc 10 workstation. The stability of the method is analyzed. We have also developed a semi-Lagrangian finite element code. These codes were experimented with in solving the cone test problem. It is clear from the plots that the semi-Lagrangian is superior to the Eulerian finite elements, since the cone rotates back to its position without leaving a noisy trail behind.

Acknowledgement

The first author would like to thank the National Research Council and the Naval Postgraduate School for their support. The second author would like to thank Dr. Zahari Zlatev at the Danish Environmental Research Institute for his support during his two week visit to the Institute. This research was supported in part by the Naval Postgraduate School.
Explicit

\[n_x = n_y = 21 \]
\[\Delta t = .0125 \]
Explicit

\[n_x = n_y = 21 \]
\[\Delta t = 0.0125 \]
Explicit

\[n_x = n_y = 21 \]
\[\Delta t = 0.0125 \]
Crank-Nicholson

\[n_x = n_y = 21 \]

\[\Delta t = .0125 \]
Crank-Nicholson
\[n_x = n_y = 21 \]
\[\Delta t = 0.0125 \]
Crank-Nicholson

\[n_x = n_y = 21 \]

\[\Delta t = 0.0125 \]
Fully implicit
\[n_x = n_y = 21 \]
\[\Delta t = .0125 \]
concentration after 0.5 revolutions

Fully implicit

\[n_x = n_y = 21 \]
\[\Delta t = .0125 \]
Fully implicit

\[n_x = n_y = 21 \]

\[\Delta t = 0.0125 \]
Semi-Lagrangian

\(n_x = n_y = 21 \)

\(\Delta t = .0125 \)
Semi-Lagrangian

\[n_x = n_y = 21 \]
\[\Delta t = .0125 \]
Semi-Lagrangian

\[n_x = n_y = 21 \]
\[\Delta t = .0125 \]
References

DISTRIBUTION LIST

Director
Defense Tech Information Center
Cameron Station
Alexandria, VA 22314

Research Office
Code 81
Naval Postgraduate School
Monterey, CA 93943

Library
Code 52
Naval Postgraduate School
Monterey, CA 93943

Professor Richard Franke
Department of Mathematics
Naval Postgraduate School
Monterey, CA 93943

Center for Naval Analysis
4401 Ford Avenue
Alexandria, VA 22302-0268

Professor Beny Neta
Department of Mathematics
Code MA/Nd
Monterey, CA 93943

Professor Francis X. Giraldo
Department of Mathematics
Code MA/Fg
Monterey, CA 93943