Report Title: Hybrid Harmonic Gyrotron Traveling Wave Amplifier

Author: Professor V. L. Granatstein

Performing Organization:
- Electrical Engineering Department
- Institute for Plasma Research
- University of Maryland
- College Park, MD 20742-3516

Sponsoring Agency:
- AFOSR/NE
- 110 Duncan Avenue Suite B115
- Bolling AFB DC 20332-0001

Funding Numbers: 61102F 2301/ES

DISTRIBUTION CODE:
- APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

Security Classification:
- UNCLASSIFIED
- UNCLASSIFIED
- UNCLASSIFIED
Final Report

HYBRID HARMONIC GYROTRON TRAVELING WAVE AMPLIFIER

AFOSR Grant #AFOSR-93-0142A
F49620-93-1-0162

Submitted to
Air Force Office of Scientific Research/NP
Bolling Air Force Base
Washington, DC 20332-6448

Submitted by
Electrical Engineering Department
and
Institute for Plasma Research
University of Maryland
College Park, MD 20742-3516

Principal Investigators
V. L. Granatstein
H. Guo

February 1995

19950323 114
Contents

1 Executive Summary 1

2 Major Accomplishments to Date 2
 2.1 Completion of designs for 35 GHz and 70 GHz Gyro-TWTs 2
 2.2 Cold tests 2
 2.3 Establishment of facilities for hot tests 2

Appendix: Copies of Abstracts submitted to the 22nd IEEE International Conference on Plasma Science 8
1 Executive Summary

This progress report summarizes the work done on the project “Hybrid Harmonic Gyrotron Traveling Wave Amplifier” covering the period from March 15, 1994 to October 31, 1994.

In the past seven and a half months, we have designed a compact harmonic multiplying gyro-TWT amplifier. The device is a three-stage tube with the output section running as an fourth harmonic gyro-TWT, the input section running as a fundamental gyro-TWT, and the middle section operating at the second harmonic of the cyclotron frequency. Radiation is suppressed by servers between the sections. The electron beam which drives the tube is produced by a magnetron injection gun (MIG). A TE_0n mode selective interaction circuit consisting of mode converters and a mode-filtering waveguide is employed for both input and output sections to solve the mode competition problem which is pervasive in overmoded gyro-TWT operation. The input section has an input coupler designed as a TE_0n mode launcher. It excites a signal at the fundamental cyclotron frequency (17.5 GHz), which is amplified in the first TWT interaction region. The bunched beam emerging from the first section has a frequency component at the second harmonic (35 GHz), which is amplified in the second section. Up to that point, the device is similar to a two-stage harmonic gyro-TWT. The distinction is that in the three-stage device the second section will be optimized not for output power but for fourth harmonic bunching of the beam. The beam then passes through a third TWT section which amplifies the fourth harmonic signal (70 GHz). The advantage of such a device is that the operating magnetic field is only 6.5 kilogauss, which may be realized with permanent magnets. A bandwidth larger than 10% is expected. Preliminary analysis indicates significant efficiency enhancement (by a factor > 2) will result from this type of staged harmonic multiplication compared with an amplifier in which the penultimate stage operates at the fundamental of the electron cyclotron frequency.

The experimental work was included in an AFOSR contract entitled, “Harmonic Gyrotron Amplifiers and Phase-Locked Oscillators.” Basic facilities for hot test of this gyro-TWT have been established and initially employed in a successful experimental study of phase-locking of a second harmonic gyrotron oscillator via a quasi-optical circulator. Cold test results of the vacuum compatible input coupler and the mode selective interaction circuit for the
fundamental prebunching section have been obtained. Single-mode, TE₀₂ propagation has been confirmed using liquid crystal indicating that the realization of the hybrid gyro-TWT concepts is technically feasible.

2 Major Accomplishments to Date

This study is aimed at demonstrating the feasibility of a gyrotron amplifier operating at a higher harmonic of the electron cyclotron frequency for millimeter wave radar and advanced material processing applications. Accomplishments to date includes the following.

2.1 Completion of designs for 35 GHz and 70 GHz Gyro-TWTs

We have completed designs for a 35 GHz (two-stage) and a 70 GHz (three-stage) harmonic multiplying gyro-TWT. The operating mechanism of these devices is indicated in Fig. 1. The experimental work has been started with the two-stage gyrotron amplifier shown in Fig. 2 and 3. Table 1 shows the expected performance.

2.2 Cold tests

We have conducted cold tests of the vacuum compatible input coupler and the mode selective interaction circuit. Single-mode, TE₀₂ propagation has been confirmed using liquid crystal as illustrated in Fig. 4.

2.3 Establishment of facilities for hot tests

We have established the basic facilities for hot test of the hybrid gyro-TWT and employed them in a successful experimental study of phase-locking of a second harmonic gyrotron oscillator via a quasi-optical circulator. A paper related to this achievement has been submitted to IEEE Transactions on Plasma Science for publication.
Fig. 1a Physical Mechanism and Configuration of the Harmonic Multiplying Gyrotron

1st. stage: \[
\begin{align*}
&i) \text{ beam modulation by } V_f, = \int E^{(0)} d(r, \theta) \\
&ii) \text{ fundamental ECRM interaction} \\
&iii) \quad I_b = I_0 \rightarrow \text{ at the entrance}
\end{align*}
\]

2nd. stage: \[
\begin{align*}
&i) \quad I_b = I_{n_2} + I_{n_3} + \ldots \text{ at the entrance and } f_2 = 2f_1 \\
&ii) \quad V_f, = \int E^{(0)} d(r, \theta) \text{ initiated by } I_{n_3} \\
&iii) \quad \text{second harmonic ECRM interaction} \\
&iv) \quad \text{beam further modulated by } V_{n_3}
\end{align*}
\]

3rd. stage: \[
\begin{align*}
&i) \quad I_b = I_{n_4} + I_{n_4} + \ldots \text{ at the entrance and } f_4 = 2f_2 = 4f_1 \\
&ii) \quad V_f, = \int E^{(0)} d(r, \theta) \text{ initiated by } I_{n_4} \\
&iii) \quad \text{fourth harmonic ECRM interaction} \\
&iv) \quad V_{n_4} \rightarrow \text{rf power}
\end{align*}
\]
Synchronous E Field Interacting with the Electrons on the Orbit at mth Harmonic of the Cyclotron Frequency - E_m

\[m_0c^2 \frac{d\gamma}{dt} = -e (\overline{V \cdot E_\theta}) \quad (6) \]

\[\frac{d\gamma}{dt} = \left(\frac{e}{m_0c^2} \right) V_\perp E_\theta \cos \varphi \quad (7) \]

\[E_\Phi = E_\theta \cos \varphi \]

\[= E_0 J_1 (K_c r) \sin (K_c z) \cos \omega t \cos \varphi \quad (8) \]

(for TE_{0n} mode)

According to Graf’s formula of Bessel function

\[E_\Phi = -E_0 \sum_{m=0}^{\infty} J_m(k_c r_0) J'_m(k_c r_e) \epsilon_m \cos m\phi \sin (k_c z) \cos \omega t \]

\[= \sum_{m=0}^{\infty} E_{\text{effect}}^m \epsilon_m \cos m\phi \sin (k_c z) \cos \omega t \quad (9) \]

($\epsilon_{m=1, m=0; \epsilon_{m=2, m>0}$)

\[E_{\text{effect}}^m = J_m(k_c r_0) J'_m(k_c r_e) (-E_0) \quad (10) \]

E_{effect}^m is the amplitude of mth cyclotron space harmonic of E_Φ experienced by electrons.
Fig. 3. 35 GHz frequency and harmonic multiplying gyro-TWT amplifier

Fig. 2. Two-stage Gyro-TWA output power versus buncher section length.
Table 1. Expected performance of the 35 GHz, harmonic multiplying, wideband gyro-TWT amplifier

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output center frequency</td>
<td>35 GHz</td>
</tr>
<tr>
<td>Instantaneous bandwidth</td>
<td>> 7%</td>
</tr>
<tr>
<td>Output power</td>
<td>> 100 kW (peak), 1 kW (avg.)</td>
</tr>
<tr>
<td>Efficiency</td>
<td>> 20%</td>
</tr>
<tr>
<td>Gain</td>
<td>35 dB (linear), 26 dB (saturated)</td>
</tr>
<tr>
<td>Harmonic number</td>
<td>2, 1</td>
</tr>
<tr>
<td>Output mode</td>
<td>TE_{03}</td>
</tr>
<tr>
<td>Magnetic field</td>
<td>6.5 kG (max.) compatible with modern</td>
</tr>
<tr>
<td></td>
<td>permanent magnets (Ne/Fe/B)</td>
</tr>
<tr>
<td>Gun type</td>
<td>Magnetron Injection Gun</td>
</tr>
<tr>
<td>Gun voltage</td>
<td>60 kV</td>
</tr>
<tr>
<td>Gun current</td>
<td>9 A</td>
</tr>
</tbody>
</table>
Fig. 4 Cold Test Demonstration of a Mode Selective Gyro-TWT

- Transmission in TE_{02} mode observed in consistent with the theoretical pattern

- All components can be vacuum compatible

- With the potential of broadband operation

- With the capability to solve mode competition problems in gyro-TWT
APPENDIX

Copies of Abstracts submitted to the
22nd IEEE International Conference on Plasma Science
June 5-8, 1995, Madison, WI

A. Phase-locking of a Second Harmonic Gyrotron Oscillator Using a Quasi-Optical Circulator to Separate Injection and Output Signals

B. Compact, Harmonic Multiplying Gyrotron Amplifiers
Phase-Locking of a Second-Harmonic Gyrotron Oscillator
Using a Quasi-Optical Circulator to Separate Injection
and Output Signals*

H.Z. Guo, D.J. Hoppe, J. Rodgers, R.M. Perez, J.P. Tate, MEMBER, IEEE, B.L. Conroy,
V.L. Granatstein, FELLOW, IEEE, A. Bhanji, P.E. Latham, MEMBER, IEEE,
G.S. Nusinovich, SENIOR MEMBER, IEEE, and M. Naiman

Phase-locking in a 34.5 GHz special complex cavity gyrotron oscillator operating at the
second harmonic of the electron cyclotron frequency was studied. Injection of the locking
power was made via a quasi-optical circulator connected to the gyrotron output waveguide.
Locking bandwidth was measured both by instantaneous observation of a beat signal and
by computer signal processing. Locking was observed with input power level as low as 40
dB below the gyrotron output power. The locking bandwidth is, however, narrower than in
gyrotrons operating at the fundamental of the cyclotron frequency which may be attributed
to the longer resonant cavity in the second harmonic gyrotron and the corresponding larger
value of external quality factor. The measurements are roughly in agreement with predic-
tions of a generalized Adler's phase-locking equation that allows for partial reflection of the
injection signal at the entrance to the overcoupled gyrotron cavity.

*This work was supported in part by the DoD Vacuum Electronics Initiative and managed
by the Air Force Office of Scientific Research under Grant AFOSR-91-0390.

are with the Institute for Plasma Research, University of Maryland, College Park, MD 20742.

D.J. Hoppe, R.M. Perez, B.L. Conroy, and A. Bhanji are with the Jet Propulsion Labora-
tory, Pasadena, CA 91109.

J.P. Tate was with the University of Maryland and is now with Florida A & M University,
Tallahassee, FL 32307
Compact, Harmonic Multiplying Gyrotron Amplifiers

H.Z. Guo, V.L. Granatstein, T.M. Antonsen, Jr.,
B. Levush, J. Tate, and S.H. Chen
Institute for Plasma Research
University of Maryland
College Park, MD 20742-3511 USA

A compact, harmonic multiplying gyrotron traveling wave amplifier is being developed. The device is a three-stage tube with the output section running as a fourth harmonic gyro-TWT, the input section running as a fundamental gyro-TWT, and the middle operating at the second harmonic of the cyclotron frequency. Radiation is suppressed by servers between the sections. The operating beam of the tube is produced by a magnetron injection gun (MIG). A TE_{0m} mode selective interaction circuit consisting of mode converters and a filter waveguide is employed for both input and output sections to solve the mode competition problem, which is pervasive in gyro-TWT operation. The input section has an input coupler designed as a TE_{0m} mode launcher. It excites a signal at the fundamental cyclotron frequency (17.5 GHz), which is amplified in the first TWT interaction region. The bunched beam emerging from the first section has a frequency component at the second harmonic (35 GHz), which is amplified in the second section. So far the device is similar to a two-stage harmonic gyro-TWT. The distinction is that in the three-stage device the second section will be optimized not for output power but for fourth harmonic bunching of the beam. The beam then passes through a third TWT section which amplifies the fourth harmonic signal (70 GHz). The advantage of such a device is that the operating magnetic field is only 6.5 kilogauss, which may be realized with permanent magnets. A wide bandwidth larger than 10% is expected. Preliminary analysis indicates significant efficiency enhancement (by a factor >2) will result from this type of staged harmonic multiplication compared with an amplifier in which the penultimate stage operates at the fundamental of the electron cyclotron frequency. A gyrokystron amplifier has also been designed. The configuration is similar to the gyro-TWT but with the traveling wave interaction structures replaced by mode selective special complex cavities. Cold test results of the wideband input coupler and the TE_{0m} mode selective interaction circuit have been obtained. Single TE_{0m} mode propagation has been confirmed using liquid crystal.

Work supported by the DoD Vacuum Electronics Initiative and managed by the Air Force Office of Scientific Research under grant AFOSR-91-0390 and by AFOSR under grant AFOSR-90-0142.

Abstract Submitted for the 22nd IEEE International Conference on Plasma Science

June 5-8 1995
Madison, Wisconsin, USA

Subject Topic: 2
Subject Number: 2.2

☐ Prefer Oral Session
☐ Prefer Poster Session
☐ No preference
☐ Special requests for placement of this abstract:

☐ Special requests for equipment:

Submitted by:

Hezhong Guo
Institute for Plasma Research
University of Maryland
College Park, MD 20742-3511
USA
(301) 405-5018