CONJUGATED POLYMERS FROM CYCLOHEXADIENEDIOL MONOMERS

Dr. Robert H. Grubbs

Dept of Chemistry
California Institute of Technology
Pasadena CA 91125

AFOSR/RL
110 Duncan Ave Suite B115
Bolling AFB DC 20332-0001
Dr. Frederick L. Hedberg

Approved for public release; distribution unlimited.

19950127 183

The ICI cyclohexadiene monomer has been used to prepare poly(arylenevinylene) derivatives through a precursor route. The polyarylene vinylenes show interesting properties and some derivatives have been used to fabricate photoemitting diodes. A general route to polynaphthalene vinylenes has been developed that is now being expanded into the synthesis of block polymers. A simple route to substituted benzene precursors (8a,b) was developed and the resulting benzenes were added to the ICI monomer. It was found that these adducts (9a,b) would not ROMP with any of the available catalysts.
AFOSR, F49620-92-J-0483

Program Manager: Frederick L. Hedberg

September 1, 1992 - November 30, 1995

Robert H. Grubbs
Division of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, CA 91125

Final
Technical Report
January 31, 1995

"Conjugated Polymers from Cyclohexadienediol Monomers"
Reporting Period: 9/1/93 - 11/30/94
Robert H. Grubbs
California
Institute of Technology
Pasadena, California 91125

Technical Report

Conjugated Polymers
From Cyclohexadienediol
Monomers

Technical Report

a. Publications

b. Chapters

"Ring -Chain Equilibria in Ring-Opening Metathesis Polymerization (ROMP) of Cycloolefins" Zhongren Chen, J. A. Kornfield, J.P. Claverie, R.H. Grubbs, Polymer Preprints, 1994, 692

c. Graduate students supported
 J.P. Claverie
 M. Wagaman

d. Postdoctorals Supported

Lin Pu

Technical Accomplishments:

Polyarylenevinylene:

The ICI cyclohexadiene monomer has been used to prepare poly(arylenevinylene) derivatives through a precursor route. The polyarylene vinyles show interesting properties and some derivatives have been used to fabricate photoemitting diodes. A general route to polynaphthalene vinyles has been developed that is now being expanded in to the synthesis of block polymers. A simple route to substituted benzyn precursors (8a,b) was developed and the resulting benzynees were added to the ICI monomer. It was found that these adducts (9a,b) would not ROMP with any of the available catalysts.
However the adducts could be converted to benzobarrelene analogs (10a, b) by the treatment of the benzaldehyde acetal derivative with a strong base such as LDA.

The resulting benzobarrelenes could be polymerized to 11a, b in high yields with a variety of ROMP catalysts. These living systems could be used to control the molecular weight and molecular weight distribution.
The resulting soluble polymers could then be converted to the soluble vinlylenenaphthylene (13a,b) with a variety of oxidizing agents, however DDQ was the most effective.

![Diagram of chemical reactions](image)

11a-b

13a: R' = -(CH₂)₄CH₃
13b: R' = -(CH₂)₁₀CH₃

DDQH₂

The UV/Vis spectrum of 13a displays a strong absorbance at 448 nm, which demonstrates the formation of an extended p-conjugation in the oxidized polymer after the dehydrogenation of 11a (Figure 1 & 2). The UV/Vis spectrum of 13b shows a similar absorbance at 450 nm. When excited at 440 nm, the fluorescence emission spectra of 13a and 13b show strong signals at 583 nm and 572 nm respectively. By visual observation, solutions of the conjugated polymers glow yellow orange under UV irradiation. In preliminary studies, electroluminescence devices have been fabricated by spin coating using these materials. A key finding was that good internal electroluminescence quantum efficiencies of up to 0.05% could be obtained using an air stable Aluminum electrode. Derivatives that contain halogens as electron withdrawing groups have been prepared and converted to polymers. It has been found that these derivatives can be used to tune the emission spectrum of the resulting polymer.

Since the monomers that are being prepared are new substrates for ROMP, a method of predicting which compounds will polymerize has been developed and is being applied to a number of new substrates.

Polyparaphenylene: The final papers on the synthesis of polyparaphenylene have been published. A collaboration with A. MacDiarmid at U. of Penn has resulted in the conversion of the precursors into extremely stable films of PPP. Samples of the high molecular weight, linear precursor to polyparaphenylene that was prepared were sent to the University of Dayton, Edwards Airforce Base and to other federal laboratories. Other applications in the construction of blue electroluminescence diodes and in the development of a high density battery are being explored.