AFTER ACTION REPORT FOR THE SERVICE RESPONSE FORCE
CONDUCTING OPERATION SAFE REMOVAL,
5 JANUARY - 3 FEBRUARY 1993

DOCUMENTS AND REPORTS
VOLUME II: SPECIAL STAFF

Jeffery K. Smart
CORPORATE INFORMATION OFFICE
November 1994

Approved for public release; distribution is unlimited.

Aberdeen Proving Ground, MD 21010-5423
Disclaimer

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorizing documents.
Operation Safe Removal was the designation for an emergency Service Response Force (SRF) mission at Spring Valley, Washington, DC. The SRF work was designated Phase I of the clean-up of the former American University Experiment Station site, designated a Formerly Used Defense Site by the U.S. Army Corps of Engineers. During Phase I, the SRF safely recovered and removed 144 WWI era munitions, some of which contained toxic chemical agents, from a residential construction site. This operation was accomplished with the complete approval of environmental officials, local and state officials, DoD officials, and local residents.
4. TITLE AND SUBTITLE (Continued)

5 January - 3 February 1994, Documents and Reports, Volume II: Special Staff

11. SUPPLEMENTARY NOTES (Continued)

**When this study was conducted, the U.S. Army Chemical and Biological Defense Command was known as the U.S. Army Chemical and Biological Defense Agency.
PREFACE

This work was started in January 1993 and completed in February 1993.

The use of trade names or manufacturers' names in this report does not constitute an official endorsement of any commercial products. This report may not be cited for purposes of advertisement.

This report has been approved for release to the public. Registered users should request additional copies from the Defense Technical Information Center; unregistered users should direct such requests to the National Technical Information Service.

Acknowledgments

The author wishes to acknowledge each Service Response Force action officer who took the time to collect their documents and write their after action reports.
CONTENTS

After Action Report, COL Charles B. Kenison, with the following enclosures: 1

Memorandum for Record, from BG Friel, subj: Verification Plan for Termination of the Emergency Response Phase, 14 Jan 93 6

Daily Plan Chronology of the Special Staff 12

Memorandum for Record, subj: Major Delays in Shipping the Munitions from the Site 33

Memorandum for Record, subj: Current Storage Installation May Become Unacceptable to Arkansas 34

Equipment for the Director of the Special Staff and His Staff, In General To be Supplied by SRF 35

Equipment to be Brought by the Director of the Special Staff for Himself 37

Memorandum for DAMO-SWS, from COL Charles B. Kenison, subj: Initial Results of Sampling - WWI Munitions from Spring Valley, 4 Feb 93 39

Environmental 40

After Action Report, Teresa M. Mann, 2 Feb 93, with the following enclosures: 40

EPA Notification of Regulated Waste Activity Form 43

Memorandum for Record, subj: Disposition of Suspect Agent Filled Rounds 45

Memorandum for On-Scene Commander for Operation Safe Removal, from Wendell L. Fortner, Pine Bluff Arsenal, subj: Permit Modification at Pine Bluff Arsenal, 12 Jan 93 46

Letter, Vicky Prewett, State Of Arkansas Department of Pollution Control and Ecology to Pine Bluff Arsenal, 11 Jan 93 47

Arkansas Department of Pollution Control and Ecology Hazardous Waste Transportation Permit 48
Letter, Phillip Murphy, State of Arkansas Department of Pollution Control and Ecology to Wendal Fortner, Environmental Coordinator, Pine Bluff Arsenal, 12 Jan 93 49

State of Arkansas Uniform Hazardous Waste Manifest, AR-611927 ... 50

State of Arkansas Uniform Hazardous Waste Manifest, AR-611920 ... 51

State of Arkansas Uniform Hazardous Waste Manifest, AR-611921 ... 52

Memorandum for Record, subj: Disposition of Solid Filled, Suspect HE Rounds .. 53

Letter, Garwin W. Eng, Commonwealth of Virginia, Department of Waste Management to Terry Banks, Fort A.P. Hill, subj: Temporary Emergency Permit, 20 Jan 93 ... 55

Hazardous Waste Management Program Temporary Emergency Permit to Treat Hazardous Wastes, 20 Jan 93 ... 56

Map, Fort A.P. Hill Demolition Site Location ... 60

Memorandum for Unit Personnel, from CPT John T. Dluza k, 67th EOD, subj: Standard Operating Procedures (Emergency Destruction Operation), 12 Jan 93 ... 61

Information Paper, subj: Spring Valley Munitions Recovery, 16 Jan 93 64

Memorandum for Record, from BG Friel, subj: Supplemental Information for the Permit for Destruction of HE and WP Rounds at Ft. AP Hill .. 66

Memorandum for Record, from BG Friel, subj: Supplemental Information (2) for the Permit for Destruction of HE and WP Rounds at Ft. AP Hill .. 68

Letter, John E. Ely, Commonwealth of Virginia, Department of Waste Management to Terry Banks, Fort A.P. Hill, subj: Temporary Emergency Permit 69

Memorandum for Record, from BG Friel, subj: Soil Sampling Plan for Ft. A.P. Hill CD Range ... 72

Memorandum for Record, from LT Martin J. Weber, TEU, subj: A.P. Hill Demolition Operations AAR, 27 Jan 93 ... 77
Memorandum for Record, subj: Plan for Disposal of Miscellaneous Wastes

Memorandum for Record, subj: Plan for Disposal of Miscellaneous Wastes - Followup, 1 Feb 93

Chemical Waste Management, Inc., Waste Profile, 12 Jan 93

Generator's Certification, 12 Jan 93

State of New York, Hazardous Waste Manifest (2)

Illinois Uniform Hazardous Waste Manifest, 1 Feb 93

Memorandum for Record, from Teresa Mann, subj: Drum of Contaminated Soil, 1 Feb 93

Message, Marguerite E. Brooks to George Mason, subj: Analysis of DC Sample, 28 Jan 93

Memorandum for Record, from COL Charles E. Kenison, subj: Soil Sampling Plan to Verify Termination of the Emergency Response Phase, 27 Jan 93

Memorandum for Record, from BG Friel, subj: Soil Sampling Plan, 25 Jan 93 (with appendices)

Map, Spring Valley Site Pit and Pile Samples

Map, Spring Valley Site Lateral Contamination Samples

Map, Spring Valley Site Background Samples

Memorandum for Record, subj: Visit by Maryland Department of the Environment (MDE) Officials

Memorandum for Record, from Teresa M. Mann, subj: Visit by MDE Officials/Approval to Ship Rounds to ERDEC, 25 Jan 93

Memorandum for Record, subj: Lessons Learned

Note, List of Equipment Brought to SRF

Memorandum for Record, subj: Points of Contact

Legal

After Action Report, LTC Michael K. Millard and LTC Warren G. Foote, 1 Feb 93, with the following enclosures:

Memorandum for Record, subj: Hydrolysis Products of Suspected Agents in the Spring Valley Residential Area ... 193

Memorandum for Record, subj: Medical Contacts - Off Site .. 194

Memorandum for Record, subj: Chronology of Medical Improvements with Operation Safe Removal 196

Memorandum for Record, subj: Medical References Service Response Force ... 198

SRF Surgeon Log, MAJ Gum, 9 Jan- 2 Feb 93 200

Safety ... 217

After Action Report, George Collins and Greg Mason, 3 Feb 93, with the following enclosures: 217

Memorandum for Record, from BG Friell and LTC William T. Batt, subj: Risk Assessment for Safe Removal of Chemical Filled Unexploded Ordnance at the American University Chemical Warfare Center Site, 11 Jan 93 ... 221

Decision Paper, from BG Friell and LTC Batt, subj: Based on the Risk Assessment, dated 23 Jan 93, the Following Safety Precautions are Directed to be Implemented .. 229

Memorandum for Record, from George Collins and Greg Mason, subj: Revised Risk Assessment for Safe Removal of Chemical Filled Unexploded Ordnance at the American University Chemical Warfare Center Site (Operation Safe Removal), 23 Jan 93 ... 231

Memorandum for Record, subj: Chronology of Safety Improvements with Operation Safe Removal 247

Memorandum for Operation Safe Removal Staff, from BG Friell, subj: SRF at the Spring Valley Recovery Site (Operation Safe Removal), Commander's Policy (Rules of Engagement), 27 Jan 93 ... 251

Safety Office, ERDEC, "Chemicals Known to be Used by American University," 25 Jan 93 253

Memorandum for TEU Commander, from Manuel Lopez, ERDEC Safety Manager, subj: Interim Hazard Classification (ERDEC No. 93-06) for 75mm, Chemical Projectile, 13 Jan 93 ... 281

x
Memorandum for TEU Commander, from Manual Lopez, ERDEC Safety Manager, subj: Interim Hazard Classification (ERDEC No. 93-07) for Livens Chemical Projectile, 13 Jan 93 283

Memorandum for TEU Commander, from Manual Lopez, ERDEC Safety Manager, subj: Interim Hazard Classification (ERDEC No. 93-08) for 4.7-inch, Gun Projectile, Chemical, 13 Jan 93 285

Memorandum for TEU Commander, from Manual Lopez, ERDEC Safety Manager, subj: Interim Hazard Classification (ERDEC No. 93-09) for 3.0-inch, Stokes Trench Mortar, HE, Projectile, 13 Jan 93 287

Memorandum for TEU Commander, from Manual Lopez, ERDEC Safety Manager, subj: Interim Hazard Classification (ERDEC No. 93-10) for 3.0-inch, Stokes Trench Mortar, Smoke Projectile, 14 Jan 93 289

Memorandum for TEU Commander, from Manual Lopez, ERDEC Safety Manager, subj: Interim Hazard Classification (ERDEC No. 93-11) for 75mm, MK III, HE, Projectile, 14 Jan 93 291

Memorandum for TEU Commander, from Carol Eason, ERDEC Safety Engineer, subj: Interim Hazard Classification (ERDEC No. 93-12) for White Phosphorus Igniter, 25 Jan 93 293

Memorandum for TEU Commander, from Carol Eason, ERDEC Safety Engineer, subj: Interim Hazard Classification (ERDEC No. 93-14) for 75mm, Common Shrapnel, MK I, 25 Jan 93 295

Memorandum for TEU Commander, from Carol Eason, ERDEC Safety Engineer, subj: Interim Hazard Classification (ERDEC No. 93-15) for 75mm, Common Steel Shell, MK I (Incendiary) 297

Memorandum for TEU Commander, from Carol Eason, ERDEC Safety Engineer, subj: Interim Hazard Classification (ERDEC No. 93-16) for 3-inch Stokes, Trench Burning, Smoke, Projectile, 25 Jan 93 299

Memorandum for TEU Commander, from Carol Eason, ERDEC Safety Engineer, subj: Interim Hazard Classification (ERDEC No. 93-17) for 3-inch Steel, Shell HE, 25 Jan 93 301

Memorandum for TEU Commander, from Carol Eason, ERDEC Safety Engineer, subj: Interim Hazard Classification (ERDEC No. 93-18) for 75mm, Experimental Smoke, Projectile, 25 Jan 93 303

xi
Memorandum for TEU Commander, from Carol Eason, ERDEC Safety Engineer, subj: Interim Hazard Classification (ERDEC No. 93-19) for 75mm, Common Steel Shell, MK I, 25 Jan 93 305

Memorandum for TEU Commander, from Carol Eason, ERDEC Safety Engineer, subj: Interim Hazard Classification (ERDEC No. 93-20) for Liven's Projectile, 25 Jan 93 307

Memorandums for Record, Gregory Mason and George Collins, subj: Lessons Learned, 24-27 Jan 93 309

Operation Safe Removal Safety Journal, 11 Jan - 28 Jan 93 329

Memorandum for Record, subj: List of Equipment to be Provided by SRF 341

Memorandum for Record, subj: List of Personal Equipment/ References to be Brought by Safety Consultant 343

Memorandum for Record, subj: Key Personnel Contacts 345

Memorandum for Director, Operations, from Gregory Mason, subj: SRC Reuse Policy/Procedures, 25 Jan 93 (with enclosure) 346

xii
1. PURPOSE

a. Introduction and Background. The following paragraphs discuss an array of subjects concerning the Director of the Special Staff.

(1) Designee. COL Charles B. Kenison, MS, normally the Director of Risk Management for the Chemical and Biological Defense Agency.

(2) How Activated. Requested by name; directed to accompany the Service Response Force when it deployed on Sunday, 11 January 1993.

(3) Response Time Available. 26 hours were available.

(4) Protective Mask Available. I had my own mask because of my responsibilities with the Chemical and Biological Defense Agency.

(5) Working Position Title. Director of Special Staff.

(6) Point of Contact On Site. Upon arrival, I reported immediately to the Deputy, Service Response Force.

(7) Job Description. Synchronize the efforts of the legal, medical, safety, and environmental consultants.

(9) On Site Work Location. Main HQ Building of the SRF.

(10) Chronology of Work. Please see Appendix II.

(11) Accomplishments Summary. As Director, I created a working environment in which the special staff was able to excel.

(12) Key Problems Solved. Please refer to the after action reports prepared by the members of my special staff.

(13) Key Problems Unresolved. Please see Appendix III.
(14) **POV Requirements.** Access to a government vehicle would suffice. The POV is desirable, but not essential.

(15) **Equipment Requirements.** Please see Appendix IV.

(16) **Equipment Shortages.** No critical shortages were incurred during the operation. However, please note Appendix IV which requests a FAX and Xerox for the special staff on future operations.

(17) **Professional Preparation.** I would have preferred to have attended the SRF course before deploying to Spring Valley.

(18) **Additional Personnel.** Recommend that the special staff be increased to include a medical service corps officer. If possible, that person should have an environmental background.

(19) **When Deactivated.** 2 February 1993 after the evening community meeting.

b. **OBJECTIVES.**

(1) **Excellent Responsiveness.** To be efficient and quick so the people we support get the answers they need when they need them!

(2) **Constant Improvement.** To never be "quite" satisfied with safety, medical, and environmental precautions.

2. **OPERATIONAL SUMMARY.** Please see the after action reports prepared by the members of my special staff.

3. **OBSERVATIONS AND RECOMMENDATIONS.**

a. **Lessons Learned and Unresolved Problems.** Please reference to Appendix III and the after action reports prepared by the members of my special staff.

b. **Conclusion.** The special staff was magnificent in responding to an unbelievable number of problems in a wide variety of professional arenas.
4. **APPENDICES.**

I. Verification Plan

II. Chronology of Work

III. Unresolved Problems

IV. List of Equipment to be provided by the SRF

V. List of Equipment to be brought by the Director

CHARES B. KENISON
COL, MS
Director, Special Staff
Blank
Appendix I

Verification Plan

Special Staff

Please see the plan which follows:
Operation Safe Removal
Verification Plan for Termination of the Emergency Response Phase

1. SITUATION.

a. On 5 January 1993 while digging a trench to connect sewage to a new home, a commercial real estate developer discovered a cache of potentially hazardous explosive and chemical munitions at a formerly used defense site located in the Spring Valley section of Washington, D.C.

b. The Army responded by activating a Service Response Force (SRF) and developed a two phase operation plan to approach the situation.

c. The emergency response phase (Phase I) included removing, testing, packaging, and transporting potentially hazardous munitions from Spring Valley to safe storage locations for safe disposal.

d. The recovery/remediation phase (Phase II) is expected to be accomplished by the U.S. Army Corps of Engineers, Baltimore District and will consist of remedial operations to restore conditions at and in the vicinity of the site to an acceptable environmental state.

c. The purpose of this plan is to establish criteria for verifying termination of the emergency response phase and the beginning of the recovery/remediation phase.

d. Parties involved:

(1) Service Response Force
(2) Municipal Authorities of Washington, D.C.
(3) Emergency Response Team of Region III, EPA
(4) Baltimore District of the Corps of Engineers
(5) U.S. Army Environmental Hygiene Agency
(6) Technical Escort Unit
(7) Roy F. Weston Environmental Consulting Firm
(8) Edgewood Research, Development, Engineering Center
(9) Dept of Health and Human Services (HHS)
(10) Dept of Labor Occupational Safety & Health Admin
2. MISSION. During the emergency response phase, the SRF is responsible for taking those actions necessary to control the site, reduce imminent risk, ensure health and safety, contain and render safe hazardous materials, protect the environment, and promote public confidence in the emergency response operations. Concurrent with removal actions, the SRF will obtain a representative body of reliable information to describe the risk and its effects on the environment.

a. Concept of Operations. The SRF personnel will take necessary actions to recover, package, and remove exposed potentially explosive or chemically hazardous munitions or debris. Monitoring personnel, by taking air, water, and soil samples, will collect, analyze, and report potential contamination information to assure safety of the recovery operations and to serve as the basis for verifying the absence of imminent risk.

b. Criteria for termination of the Emergency Response Phase. The emergency response phase will continue until the SRF Commander has determined that the threat of imminent risk has been eliminated. The following criteria, if met, will help to establish that the emergency response phase may be concluded when:

(1) All liquid or solid filled munitions and other objects or debris located in the suspected disposal pit which are also suspected to contain or be contaminated by chemical agents are removed, containerized, and rendered safe for transportation.

(2) All of the above liquid and solid filled munitions and material are removed from the Spring Valley residential area.

(3) The SRF Commander determines that the soil in, removed from, and immediately surrounding the excavated area poses no imminent risk of harm. At least 14 soil samples shall be taken and shall be tested for substances listed below. A determination that the soil poses no risk of imminent harm shall not be made unless test results reflect less than the following levels:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Limit (mg/gram of soil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mustard</td>
<td>0.06</td>
</tr>
<tr>
<td>Lewisite</td>
<td>0.06</td>
</tr>
<tr>
<td>Adamsite</td>
<td>2.6</td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.097</td>
</tr>
<tr>
<td>Chloroacetophenone (CN)</td>
<td>1.57</td>
</tr>
<tr>
<td>Cyanogen Chloride</td>
<td>3.12</td>
</tr>
<tr>
<td>Chloropicrin</td>
<td>3.5</td>
</tr>
<tr>
<td>Phosgene</td>
<td>2.07</td>
</tr>
<tr>
<td>Mercury</td>
<td>1.6</td>
</tr>
<tr>
<td>Lead</td>
<td>0.50</td>
</tr>
<tr>
<td>Chromium VI</td>
<td>3.9</td>
</tr>
</tbody>
</table>

(or to soil baseline level)
c. The Commander, Service Response Force and On Scene Coordinator will:

(1) Develop criteria for verifying the termination of the emergency phase.

(2) Complete the actions and conduct the sampling required.

(3) Determine, in coordination with local and federal agencies, when criteria have been met.

(4) Coordinate with the Baltimore District, Corps of Engineers to assure a smooth transition to Phase II.

d. The Deputy On-Scene Coordinator will:

(1) Coordinate the results with local and federal authorities to verify the absence of imminent risk.

(2) Host a transition information exchange meeting between key personnel from Phase I, Phase II, Federal, Civil and Local authorities prior to the conclusion of Phase I.

e. The Commander of the Baltimore District will:

(1) Be prepare to initiate Phase II activities.

(2) Coordinate with the Service Response Force to assure a smooth transition.

4. SERVICE SUPPORT

a. The U.S. Army Environmental Hygiene Agency will evaluate the overall situation and develop a constituent list, maximum constituent level, and sampling strategy for verifying the absence of imminent risk in the soil.

b. The Emergency Response Team of EPA Region III will oversee the sampling program.

c. The Edgewood Research, Development and Engineering Center will conduct air space monitoring to assure the absence of chemical surety material and thereby protect laboratory employees from accidental exposure to chemical warfare agents.

d. The Edgewood Research, Development, and Engineering Center will conduct laboratory analysis for mustard, lewisite, and total arsenicals.
e. The U.S. Army Environmental Hygiene Agency will conduct laboratory analysis for chloroacetophenone, cyanogen chloride, chloropicrin, and phosgene. This laboratory will also conduct total metals and semivolatiles on approximately 20% of the samples.

f. Roy F. Weston Laboratories will conduct analysis for total metals and base, neutrals and acids (BNA) (equivalent to semivolatiles) in split samples which duplicate those cited in paragraphs d and e above.

g. The Service Response Force will provide the Baltimore District with the following:

(1) A detailed list of recovered munitions.
(2) The data acquired during soil sampling.
(3) Fact sheets concerning the potential contaminants.
(4) A roster of Spring Valley residents by name and address.
(5) Copies of topographic and archeological products as required.
(6) Other data as required.

5. COMMAND AND CONTROL.

a. Management of the sampling program will be accomplished by the Service Response Force HQ during the emergency phase.

b. Management of subsequent sampling will accomplished by the agency responsible for optimization of the remediation phase.

c. This action is being coordinated with Baltimore District, Corps of Engineers.

G. E. FRIEL
BG, USA
Commander
Service Response Force
Appendix II

Chronology
Special Staff

Please see the pages which follow:
DAILY PLAN

<table>
<thead>
<tr>
<th>Time</th>
<th>Plans</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td>Called AE/F&A to establish standards and remaining plan for RLI treatment</td>
<td>Begin development of treatment for RLI treatment</td>
</tr>
<tr>
<td>10:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:00</td>
<td>Told AE/F&A/JS: discussion concerning standards for Veneno/Transition of RLI</td>
<td></td>
</tr>
<tr>
<td>3:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00</td>
<td>Special Staff Meeting</td>
<td></td>
</tr>
<tr>
<td>5:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:00</td>
<td>Told AE/F&A/JS: Drug treatment for related conditions</td>
<td></td>
</tr>
<tr>
<td>7:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mileage Log & Expense Recap

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ending Mileage</td>
<td></td>
</tr>
<tr>
<td>Beg. Mileage</td>
<td></td>
</tr>
<tr>
<td>Total Expenses</td>
<td></td>
</tr>
<tr>
<td>Entertainment</td>
<td></td>
</tr>
<tr>
<td>Lodging</td>
<td></td>
</tr>
<tr>
<td>Supplies</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>Cleaning</td>
<td></td>
</tr>
<tr>
<td>Total Expense</td>
<td></td>
</tr>
</tbody>
</table>

Planned Accomplishments

...
Daily Plan

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00</td>
<td>Special Staff Meeting</td>
</tr>
<tr>
<td></td>
<td>Called and discussed concerning coordination of plans</td>
</tr>
<tr>
<td>10:00</td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>Called another staff concerning C-130 availability at 15</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td></td>
</tr>
</tbody>
</table>

Mileage Log & Expense Recap

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ending Mileage</td>
<td></td>
</tr>
<tr>
<td>Beg. Mileage</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Meals</td>
<td></td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
</tr>
<tr>
<td>Entertainment</td>
<td></td>
</tr>
<tr>
<td>Tolls</td>
<td></td>
</tr>
<tr>
<td>Lodging</td>
<td></td>
</tr>
<tr>
<td>Parking</td>
<td></td>
</tr>
<tr>
<td>Supplies</td>
<td></td>
</tr>
<tr>
<td>Service</td>
<td></td>
</tr>
<tr>
<td>Misc. Expenses</td>
<td></td>
</tr>
<tr>
<td>Cleaning</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
DAILY PLAN

PLANS

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4. Work/Transport Meeting 5. Free Time</td>
</tr>
<tr>
<td>9</td>
<td>6. Bath & Sleep</td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

NOTES

- Approved Transportation: Bus to Bus Stop, Walk to HHS
- Ask Mrs. Johnson to refer to HHS
- Staff City Meeting
- Special City Meeting
- Lodge at Hotel | Meals | Entertainment | Travel | Supplies | Misc. | Total |
--- | --- | --- | --- | --- | --- | --- |
Ending Mileage | | | | | | |
Beginning Mileage | | | | | | |
Total | | | | | | |
Tolls | | | | | | |
Parking | | | | | | |
Service | | | | | | |
Other | | | | | | |
Total | | | | | | |
DAILY PLAN

<table>
<thead>
<tr>
<th>Time</th>
<th>Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:30</td>
<td></td>
</tr>
<tr>
<td>6:00</td>
<td></td>
</tr>
<tr>
<td>6:45</td>
<td></td>
</tr>
<tr>
<td>7:00</td>
<td>Called LPC to obtain list of cars.</td>
</tr>
<tr>
<td>8:00</td>
<td>Special Staff Meeting</td>
</tr>
<tr>
<td>8:45</td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td></td>
</tr>
<tr>
<td>9:45</td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td></td>
</tr>
<tr>
<td>10:45</td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td></td>
</tr>
<tr>
<td>11:45</td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td></td>
</tr>
<tr>
<td>12:45</td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td></td>
</tr>
<tr>
<td>1:45</td>
<td></td>
</tr>
<tr>
<td>2:00</td>
<td>Received EPA pre-test for Kevan Korb for Hg. Pl. at 8.</td>
</tr>
<tr>
<td>2:45</td>
<td>Assisted Dr. on introductive nursing paper.</td>
</tr>
<tr>
<td>3:00</td>
<td>Special Staff Meeting</td>
</tr>
<tr>
<td>3:45</td>
<td></td>
</tr>
<tr>
<td>4:00</td>
<td></td>
</tr>
<tr>
<td>4:45</td>
<td></td>
</tr>
<tr>
<td>5:00</td>
<td></td>
</tr>
<tr>
<td>5:45</td>
<td></td>
</tr>
<tr>
<td>6:00</td>
<td></td>
</tr>
<tr>
<td>6:45</td>
<td></td>
</tr>
<tr>
<td>7:00</td>
<td></td>
</tr>
<tr>
<td>7:45</td>
<td></td>
</tr>
<tr>
<td>8:00</td>
<td></td>
</tr>
<tr>
<td>8:45</td>
<td></td>
</tr>
</tbody>
</table>

Mileage Log & Expense/Recap

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ending Mileage</td>
<td></td>
</tr>
<tr>
<td>Beg. Mileage</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Tolls</td>
<td></td>
</tr>
<tr>
<td>Parking</td>
<td></td>
</tr>
<tr>
<td>Service</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Planned Accomplishments

- []
<table>
<thead>
<tr>
<th>Time</th>
<th>Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Collect LTE nickels to confirm no lead effects</td>
</tr>
<tr>
<td>8</td>
<td>Table scenario at start of breakout session</td>
</tr>
<tr>
<td>8:45</td>
<td>Special staff meeting</td>
</tr>
<tr>
<td>10</td>
<td>Get get M.D. to write</td>
</tr>
<tr>
<td>11</td>
<td>Discuss potential for trial with G.s.</td>
</tr>
<tr>
<td>11:15</td>
<td>Recommend development of plan for presentation prior to test.</td>
</tr>
<tr>
<td>15</td>
<td>Begin drafting the sampling plan</td>
</tr>
<tr>
<td>5</td>
<td>Every Supplier Meeting</td>
</tr>
<tr>
<td>6</td>
<td>Introduce US Rick, Director of DI Energy Program</td>
</tr>
<tr>
<td>7:15</td>
<td>Committee meeting turnaround</td>
</tr>
<tr>
<td>8</td>
<td>Every Supplier Meeting</td>
</tr>
</tbody>
</table>

Mileage Log & Expense Recap

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ending Mileage</td>
<td></td>
</tr>
<tr>
<td>Beg. Mileage</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Tolls</td>
<td></td>
</tr>
<tr>
<td>Parking</td>
<td></td>
</tr>
<tr>
<td>Service</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Planned Accomplishments

- [] Mileage Log & Expense Recap
- [] Planned Accomplishments
<table>
<thead>
<tr>
<th>Time</th>
<th>Plans</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00</td>
<td>Arrive at Expresso</td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td>Decenten from Spring Valley</td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>Finished host shift of Spring Valley</td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>Special Skills training</td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>Called SBID SA to arrange in assessing such student</td>
<td></td>
</tr>
<tr>
<td>13:00</td>
<td>Coordinated with Transportation and Vicki for assessment</td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td>Coordinated with LF's OT and FTEs for placement information</td>
<td></td>
</tr>
</tbody>
</table>

Mileage Log & Expense Recap

<table>
<thead>
<tr>
<th>Mileage Log & Expense Recap</th>
<th>Planned Accomplishments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ending Mileage</td>
<td>Meals</td>
</tr>
<tr>
<td>Beg. Mileage</td>
<td>Transportation</td>
</tr>
<tr>
<td>Total</td>
<td>Entertainment</td>
</tr>
<tr>
<td>Tolls</td>
<td>Lodging</td>
</tr>
<tr>
<td>Parking</td>
<td>Supplies</td>
</tr>
<tr>
<td>Service</td>
<td>Misc.</td>
</tr>
<tr>
<td>Other</td>
<td>Cleaning</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
</tbody>
</table>
DAILY PLAN

<table>
<thead>
<tr>
<th>Date</th>
<th>Plans</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Sales Person Meeting</td>
<td>Mr. Parker Office</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mileage Log & Expense Recap

<table>
<thead>
<tr>
<th>Mileage Log & Expense Recap</th>
<th>Planned Accomplishments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ending Mileage</td>
<td>Meals</td>
</tr>
<tr>
<td>Beg. Mileage</td>
<td>Transportation</td>
</tr>
<tr>
<td>Total</td>
<td>Entertainment</td>
</tr>
<tr>
<td>Tolls</td>
<td>Lodging</td>
</tr>
<tr>
<td>Parking</td>
<td>Supplies</td>
</tr>
<tr>
<td>Service</td>
<td>Misc.</td>
</tr>
<tr>
<td>Other</td>
<td>Cleaning</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
</tbody>
</table>

19
DAILY PLAN

<table>
<thead>
<tr>
<th>Time</th>
<th>Plans</th>
<th>Notes</th>
<th>Expense/Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:00</td>
<td>Dropped</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:00</td>
<td>Special Staff Meeting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:00</td>
<td>Facilitate 1st Draft E-mail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00</td>
<td>Corr with Supply Mgr of FEAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:00</td>
<td>Special Staff Meeting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:00</td>
<td>Special Staff Meeting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:00</td>
<td>Special Staff Meeting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mileage Log & Expense Recap

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ending Mileage</td>
<td>Meals</td>
</tr>
<tr>
<td>Beg. Mileage</td>
<td>Transportation</td>
</tr>
<tr>
<td>Total</td>
<td>Entertainment</td>
</tr>
<tr>
<td>Tolls</td>
<td>Lodging</td>
</tr>
<tr>
<td>Parking</td>
<td>Supplies</td>
</tr>
<tr>
<td>Service</td>
<td>Misc</td>
</tr>
<tr>
<td>Other</td>
<td>Cleaning</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
</tbody>
</table>

20
<table>
<thead>
<tr>
<th>Time</th>
<th>Plans</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:00</td>
<td>Parked in basement for GBF Bus.</td>
<td>Special Staff Meeting</td>
</tr>
<tr>
<td>8:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td>Asked by WASH to prepare notices to residents (to be signed)</td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:00</td>
<td>Special Staff Meeting</td>
<td></td>
</tr>
</tbody>
</table>

Mileage Log & Expense Recap

<table>
<thead>
<tr>
<th>Mileage Log & Expense Recap</th>
<th>Planned Accomplishments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ending Mileage</td>
<td>Meals</td>
</tr>
<tr>
<td>Beg. Mileage</td>
<td>Transportation</td>
</tr>
<tr>
<td>Total</td>
<td>Entertainment</td>
</tr>
<tr>
<td>Tolls</td>
<td>Lodging</td>
</tr>
<tr>
<td>Parking</td>
<td>Supplies</td>
</tr>
<tr>
<td>Service</td>
<td>Misc.</td>
</tr>
<tr>
<td>Other</td>
<td>Cleaning</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
</tbody>
</table>
DAILY PLAN

<table>
<thead>
<tr>
<th>Time</th>
<th>Plans</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30</td>
<td>Special Staff Meeting</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Discussed lessons learned from Field Staff Team</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Special Staff Meeting</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Staff Meeting</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mileage Log & Expense Recap

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ending Mileage</td>
<td></td>
</tr>
<tr>
<td>Beg. Mileage</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Tolls</td>
<td></td>
</tr>
<tr>
<td>Parking</td>
<td></td>
</tr>
<tr>
<td>Service</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Planned Accomplishments

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meals</td>
<td></td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
</tr>
<tr>
<td>Entertainment</td>
<td></td>
</tr>
<tr>
<td>Lodging</td>
<td></td>
</tr>
<tr>
<td>Supplies</td>
<td></td>
</tr>
<tr>
<td>Misc.</td>
<td></td>
</tr>
<tr>
<td>Cleaning</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
DAILY PLAN

<table>
<thead>
<tr>
<th>Time</th>
<th>PLAN</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mileage Log & Expense Recap

<table>
<thead>
<tr>
<th>Category</th>
<th>Cost</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ending Mileage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beg. Mileage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entertainmnet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lodging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Misc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleaning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Planned Accomplishments

- Special Staff Meeting
- Conducted Staff Review eloped BP/HB
- Attended meeting of ITT concerning phase 2
- Provided insight into constituent levels

- Sent Fax to AEIA concerning supply array
- Special IT Meeting
- 3EF Staff Meeting
DAILY PLAN

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:00</td>
<td>Special Stop Meeting</td>
</tr>
<tr>
<td></td>
<td>Visited photo observe FEM Contingency</td>
</tr>
<tr>
<td>9:30</td>
<td>Coordinated w/ Col. Hughes of APHIS</td>
</tr>
<tr>
<td>10:15</td>
<td>Coordinated w/ Maryland State EPA, et al</td>
</tr>
<tr>
<td></td>
<td>APG ISA</td>
</tr>
<tr>
<td>12:30</td>
<td>Received forensics approval to ship samples to EA</td>
</tr>
<tr>
<td></td>
<td>(as they needed back to Chicago)</td>
</tr>
<tr>
<td>2:00</td>
<td>RAE's "Suspect Material" returned to USDA APHIS</td>
</tr>
<tr>
<td>3:00</td>
<td>Special Staff Meeting</td>
</tr>
<tr>
<td>6:00</td>
<td>Special Staff Meeting</td>
</tr>
<tr>
<td>7:00</td>
<td>SEP Staff Meeting</td>
</tr>
</tbody>
</table>

Mileage Log & Expense Recap

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ending Mileage</td>
<td></td>
</tr>
<tr>
<td>Beg. Mileage</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Tolls</td>
<td></td>
</tr>
<tr>
<td>Parking</td>
<td></td>
</tr>
<tr>
<td>Service</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Planned Accomplishments
<table>
<thead>
<tr>
<th>Time</th>
<th>Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00</td>
<td>Special Staff Meeting</td>
</tr>
<tr>
<td>8:00</td>
<td>Coordinate w. col. agency / submit w/ B round sheet</td>
</tr>
<tr>
<td>9:00</td>
<td>Engage col. round team: allow 9 w/ round sheet</td>
</tr>
<tr>
<td>10:00</td>
<td>Conf. LHR with Virginia or Federal EPA of B round sheet</td>
</tr>
<tr>
<td>11:00</td>
<td>v</td>
</tr>
<tr>
<td>12:00</td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td></td>
</tr>
<tr>
<td>2:00</td>
<td></td>
</tr>
<tr>
<td>3:00</td>
<td>Received calls from ADHS acknowledge VA approval</td>
</tr>
<tr>
<td>4:00</td>
<td></td>
</tr>
<tr>
<td>5:00</td>
<td>Special Staff Meeting</td>
</tr>
<tr>
<td>6:00</td>
<td>ORF Staff Meeting</td>
</tr>
<tr>
<td>7:00</td>
<td></td>
</tr>
<tr>
<td>8:00</td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td></td>
</tr>
</tbody>
</table>

Mileage Log & Expense Recap

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ending Mileage</td>
<td></td>
<td>Meals</td>
<td></td>
</tr>
<tr>
<td>Beg. Mileage</td>
<td></td>
<td>Transportation</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>Entertainment</td>
<td></td>
</tr>
<tr>
<td>Tolls</td>
<td></td>
<td>Lodging</td>
<td></td>
</tr>
<tr>
<td>Parking</td>
<td></td>
<td>Supplies</td>
<td></td>
</tr>
<tr>
<td>Service</td>
<td></td>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>Cleaning</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
DAILY PLAN

PLANS

<table>
<thead>
<tr>
<th>Time</th>
<th>Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:00</td>
<td>Special Staff Meeting</td>
</tr>
<tr>
<td>5:30</td>
<td>Called with CEC to review ETA of 6 PM.</td>
</tr>
<tr>
<td>6:00</td>
<td>Coordinated w/ Tim to expedite AP flood samples.</td>
</tr>
<tr>
<td>6:30</td>
<td>Coordinated w/ ASLA to expedite AP flood study.</td>
</tr>
<tr>
<td>7:00</td>
<td>Review with ASLA of flood report,</td>
</tr>
<tr>
<td>7:30</td>
<td>with CEC to draft new report.</td>
</tr>
<tr>
<td>8:00</td>
<td>Received feedback from ASLA concerning</td>
</tr>
<tr>
<td>8:30</td>
<td>2007 flood analysis of AP flood study.</td>
</tr>
<tr>
<td>9:00</td>
<td>Special Staff Meeting</td>
</tr>
<tr>
<td>9:30</td>
<td>TCIF Staff Meeting</td>
</tr>
<tr>
<td>10:00</td>
<td>Confirmed with TCIF concerning TCIF survey.</td>
</tr>
</tbody>
</table>

NOTES

- Coordinated w/ TCIF to expedite TCIF survey.
- Review with ASLA of flood report.
- Called with CEC to review ETA of 6 PM. |
- Coordinated w/ Tim to expedite AP flood samples.
- Coordinated w/ ASLA to expedite AP flood study.
- Review with ASLA of flood report.
- Received feedback from ASLA concerning 2007 flood analysis of AP flood study.
- Special Staff Meeting
- TCIF Staff Meeting
- Confirmed with TCIF concerning TCIF survey.

Mileage Log & Expense Recap

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning Mileage</td>
<td>Meals</td>
</tr>
<tr>
<td>Total</td>
<td>Transportation</td>
</tr>
<tr>
<td>Tolls</td>
<td>Entertainment</td>
</tr>
<tr>
<td>Parking</td>
<td>Lodging</td>
</tr>
<tr>
<td>Service</td>
<td>Supplies</td>
</tr>
<tr>
<td>Other</td>
<td>Misc.</td>
</tr>
<tr>
<td>Total</td>
<td>Cleaning</td>
</tr>
</tbody>
</table>

Planned Accomplishments

- Confirmed with TCIF concerning TCIF survey.
- Review with ASLA of flood report.
- Received feedback from ASLA concerning 2007 flood analysis of AP flood study.
- Special Staff Meeting
- TCIF Staff Meeting

26
Mileage Log & Expense Recap

<table>
<thead>
<tr>
<th>Ending Mileage</th>
<th>Meals</th>
<th>Transportation</th>
<th>Entertainment</th>
<th>Tolls</th>
<th>Lodging</th>
<th>Supplies</th>
<th>Misc.</th>
<th>Cleaning</th>
<th>Total</th>
</tr>
</thead>
</table>

Planned Accomplishments

- Took missing sample to ABBA.
- Participated in final round appointment.
- EPA representative recommended I file. Signed up to Mr. Brown.
- Special Mtg.
- SF Mtg.

Daily Plan

<table>
<thead>
<tr>
<th>5</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mileage Log & Expense Recap

<table>
<thead>
<tr>
<th>Mileage Log & Expense Recap</th>
<th>Planned Accomplishments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beg. Mileage</td>
<td>Transportation</td>
</tr>
<tr>
<td>Total</td>
<td>Entertainment</td>
</tr>
<tr>
<td>Tolls</td>
<td>Lodging</td>
</tr>
<tr>
<td>Parking</td>
<td>Supplies</td>
</tr>
<tr>
<td>Service</td>
<td>Misc.</td>
</tr>
<tr>
<td>Other</td>
<td>Cleaning</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
</tbody>
</table>
DAILY PLAN

- Called TED for explanation as to why an ET was made to be avoided during the detention at 10:15 which was to be kept only.

- Called TED concerning disappearence of yellow 2326 dozer that had been sitting at the back edge of the pit.

- Medical plan
 - Safety plan
 - Termination plan

- Health Plan
 - Supervision plan

- Meeting/Briefing
 - to discuss...
Appendix III

Key Problems Unresolved

Special Staff

Major Delays in Shipping the Munitions from the Site

SITUATION: Regulatory agencies are reluctant to authorize shipment of chemical agents into their state. In addition, Commanders of military installations are reluctant to authorize shipment of chemical agents onto their installation. This creates a serious future potential for major delays in removing munitions from sites.

DISCUSSION: The reason for their reluctance is understandable. During all interactions with State Officials, it was apparent that they were genuinely concerned for their constituency and that the delays were caused by professional conscientiousness. The problem is that delays put local citizens at unnecessary risk. They also put recovery workers at unnecessary risk. Consider the following:

(1) It took longer than a week for Andrews Air Force Base to grant the Army permission for transshipment of recovered munitions from helicopters to C-23 aircraft for the flight to Pine Bluff.

(2) It took longer than a week for the State of Virginia to grant permission to detonate high explosive and white phosphorus munitions at Fort A.P. Hill, even though the ranges had been used for that purpose for years.

(3) The State of Maryland initially rejected the Army request to ship a few munitions to the Edgewood Research, Development, and Engineering Center for drilling to determine the nature of fills. Intervention by members of the Army Secretariat was necessary to win Maryland’s approval.

(4) And although the State of Arkansas needed only 3 days to approve the shipment of recovered munitions to Pine Bluff Arsenal, a bill has since been submitted in that State legislature in an attempt to prohibit chemical agents from entering or passing through Arkansas in the future.

RECOMMENDATIONS:

(1) Seek Congressional approval to allow the SRF Commander to determine the safest destination for recovered munitions, thereby circumventing delays or denials by state regulatory agencies.

(2) When negotiating the above, tell Congress that the Army will adhere to state regulatory requirements within our capacity to do so under the emergency situation.
Current Storage Installation May Become Unacceptable to Arkansas

1. SITUATION: The Army may not be allowed to ship recovered chemical munitions to Pine Bluff Arsenal.

2. DISCUSSION:

 a. Reasons. There are two reasons why the Army should prepare to store recovered chemical munitions at the nearest installation rather than attempt to ship them to Pine Bluff Arsenal, as in the case of Spring Valley.

 (1) ARKANSAS DENIAL. There is an indication that the State of Arkansas will refuse out-of-state chemical munitions in the future.

 (2) RISK MANAGEMENT. The Army transportation and storage operation should put the fewest number of American people at risk. Although the aircraft used for the shipment of recovered munitions is reliable, the flight to Arkansas is in excess of 1,000 miles, thereby placing an unnecessary number of people at risk.

 b. Constraints. There are two constraints that would have to be overcome for the Army to use the nearest installation:

 (1) RIGOROUS SECURITY REQUIREMENTS. Current regulations, AR 190-59 and AR 50-6, require that recovered chemical munitions be provided the same security as stockpile munitions, even though no competent terrorist organization would want or need to abscond with munitions which had been buried for decades.

 (2) RIGOROUS PERMITTING REQUIREMENTS. If no State agrees to accept shipment of recovered munitions, the Army will be forced to store the munitions in the state of discovery, probably at the nearest military installation. Current regulations in most States require that special permits be obtained for storage of hazardous wastes. Although the Army has authority for emergency storage at any installation, such storage would be limited to a period of 90 days. A potential legal problem will occur if a State refuses to grant a storage permit after the military installation submits its application.

3. RECOMMENDATIONS:

 a. With respect to the rigorous security requirements, that AR 190-59 and AR 50-6 be modified, as appropriate, to establish sensible security requirements for recovered munitions.

 b. With respect to rigorous permitting requirements, that The Judge Advocate General, prepare a legal position in anticipation of the future situation in which no States agrees to accept shipment of recovered munitions, AND in which the nearest military installation is denied a permit for storage.
Appendix IV

Equipment for
The Director of the Special Staff and
His Staff, in general
to be supplied by

SRF
(HQ Commandant)

Table 1
Chairs 2
Phone 1
FAX 1
XEROX 1
Appendix V

Equipment
to be brought by
The Director of the Special Staff
for Himself

SRF Manual 1
DA Pamphlet 50-6 1
Telephone directory with POC . . 1
Laptop computer 1
Other references 1
FACSIMILE TRANSMISSION COVER SHEET

<table>
<thead>
<tr>
<th>To:</th>
<th>COL ENGLE</th>
<th>Office Symbol</th>
<th>Office Telephone</th>
<th>Fax No.</th>
<th>DSN/Comm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DAMO-5WS</td>
<td>O 271-6226</td>
<td></td>
<td>703 614-2675</td>
<td>703 693-9725</td>
</tr>
</tbody>
</table>

Classification | Precedence | No. Pages (incl.-header) | Date-Time | Month | Year | Reader's Signature |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>R</td>
<td>2</td>
<td>02-1540</td>
<td>FEB</td>
<td>93</td>
<td>Boyd</td>
</tr>
</tbody>
</table>

Remarks
MEMORANDUM FOR DAMO-SWS

SUBJECT: Initial Results of Sampling—WWI Munitions from Spring Valley

1. The following data represents initial results from drilling and sampling of the nine munitions transported to ERDEC from Spring Valley, District of Columbia:

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Description</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>Livens Projectile</td>
<td>Water and metal salts</td>
</tr>
<tr>
<td>71</td>
<td>75mm Projectile</td>
<td>Fuming sulfuric Acid</td>
</tr>
<tr>
<td>82</td>
<td>75mm Projectile</td>
<td>Fuming sulfuric Acid</td>
</tr>
<tr>
<td>87</td>
<td>Livens Projectile</td>
<td>Water and metal salts</td>
</tr>
<tr>
<td>147</td>
<td>4.7in Projectile</td>
<td>Gun Cotton and Hydrocarbons (Probable Incendiary)</td>
</tr>
<tr>
<td>67</td>
<td>75mm Projectile</td>
<td>Thiodiglycol (TDG)</td>
</tr>
<tr>
<td>90</td>
<td>75mm Projectile</td>
<td>Mustard (60% purity)</td>
</tr>
<tr>
<td>113</td>
<td>75mm Projectile</td>
<td>Coffee colored liquid, some TDG</td>
</tr>
<tr>
<td>142</td>
<td>75mm Projectile</td>
<td>TDG</td>
</tr>
</tbody>
</table>

2. POC is Mr. Kenneth R. Boyd, 584-2933.

CHARLES B KENISON
Colonel, MS
Director, Risk Management
ENVIRONMENTAL
After Action Report

2 Feb 93

1. Purpose:

a. Introduction and Background.

 (1) The CBDA environmental consultant first learned of the Spring Valley action on Wednesday, 6 Jan 93. During the evening hours of Thursday, 7 Jan 93, the CBDA environmental consultant was directed by the Dir, Risk Management, CBDA to report to the site on Friday, 8 Jan 93.

 (2) The CBDA environmental consultant responded to the site with a gas mask and copies of federal and Maryland hazardous waste regulations. Additional materials were brought the following week and secured on-site.

 (3) While on site, the CBDA environmental consultant served on the Special Staff and reported to COL Charles Kenison, Dir, Special Staff. The normal work location was the control center located at 5015 Warren Street.

 b. Objectives. The following were the goals and objectives of the environmental section of the special staff:

 (1) To coordinate environmental regulatory requirements with affected federal, state, and local regulators.

 (2) To ensure regulatory requirements, such as emergency permits and notifications are met.

 (3) To execute environmental requirements associated with movement of commodities such as arrangement for non-agent hazardous waste disposal, manifesting of rounds, etc.

2. Operational Summary:

 a. General. Submitted EPA Form 8700-12 Notification of Hazardous Waste Activity

 b. Liquid Filled/Suspect Agent Filled Rounds.

 (1) Coordinated with Pine Bluff Arsenal Environmental Office to obtain requirements for Arkansas hazardous waste manifest.
(2) Determined EPA hazardous waste codes which may apply to rounds given list of possible fills.

(3) Obtained emergency transporter ID number from D.C. for Tech Escort Unit to transport hazardous waste.

(4) Prepared and processed hazardous waste manifest for three shipments to Pine Bluff Arsenal.

c. Solid Filled/Suspect HE Rounds

(1) Prepared information for emergency permit application and submitted to Ft. A.P. Hill who submitted the application to the State of Virginia.

(2) Coordinated information for manifest with environmental coordinator at Ft. A.P. Hill and experts at Va Dept of Waste Management.

(3) Prepared manifests and land ban certification for two shipments to Ft AP Hill.

(4) Submitted written information to VA for permit modification.

(5) Prepared after-action reports to VA following detonations at FT AP Hill.

d. Sample Rounds to ERDEC

(2) Coordinated fact sheet with APG and State of Maryland for approval of action.

(3) Provided information to staff personnel at ERDEC and guidance for review of SOP.

(4) Coordinated transfer of data on fill of rounds to MDE

(5) Provided disposition instructions for contents of rounds.

(6) Arranged site visit for MDE officials to foster continued support of efforts and request permission to ship additional rounds.

e. Miscellaneous Waste Disposal
(1) Made arrangements with the APGSA chemical waste disposal COR to have waste decon solution, scrap metal, disposal PPE, and contaminated soil disposed of under the existing contract at APG.

(2) Provided information for characterization of the waste streams.

(3) Served as on-site POC when wastes were removed.

 a. Lessons Learned and Unresolved Problems: (Please see the attached appendices which discuss lessons and problems in detail.)

 b. Conclusion. This Service Response Force involved a lot of dedicated experts working long, hard hours to remove a threat of harm and to ensure the well being of the Spring Valley residents, the surrounding population, and the environment. The teamwork was tremendous. Accomplishments of monumental proportions were made in just four weeks. Environmentally, all the necessary permits, identification numbers, and approvals were obtained to allow the rounds to be transported and stored, analyzed, or destroyed in full compliance with the applicable environmental regulations. Under "normal" circumstances, it would have taken years to obtain the permits and approvals. Most of the regulators and environmental points of contact at other installations who were involved in this action were fully cooperative and also worked very hard to help us.

4. Appendices:
 A. Generator Information.
 B. Disposition of Suspect Agent Rounds.
 C. Disposition of Solid Filled, Suspect HE Rounds
 D. Samples taken to ERDEC
 E. Disposal of Miscellaneous Waste
 F. Soil Sampling Plan to Verify Termination of the Emergency Response Phase.
 G. Visit by MDE Officials
 H. Lessons Learned.
 I. List of Equipment
 J. Points of Contact.

42
APPENDIX A - GENERATOR INFORMATION
Operation Safe Removal

Please print or type with ELITE type (12 characters per inch) in the unshaded areas only.

EPA Notification of Regulated Waste Activity

United States Environmental Protection Agency

<table>
<thead>
<tr>
<th>Institution's EPA ID Number (list 1 of 1 in the appropriate box)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
</tr>
</tbody>
</table>

OPERATION SAFE REMOVAL

Name of Installation (Include company and specific site name):

Location of Installation (Physical address or P.O. Box or Route Number):

Street:

City or Town:

State:

ZIP Code:

Street (Continued):

City or Town:

State:

ZIP Code:

Installation Address:

City or P.O. Box:

State:

ZIP Code:

Contact Address:

City or P.O. Box:

State:

ZIP Code:

Ownership (See Instructions):

Name of Installation's Legal Owner:

Address:

City or Town:

State:

ZIP Code:

Phone Number:

EPA Form 8700-12 (Rev. 9-22) Previous edition is obsolete.
VIII. Type of Regulated Waste Activity

A. Hazardous Waste Activity

- [] Generator
- [] Transporter
- [] Disposal

- [] off-specification
- [] on-specification

- [] used oil fuel
- [] other

IX. Description of Regulated Wastes (Use additional sheets if necessary)

A. Characteristics of Nonlisted Hazardous Wastes

Mark 'X' in the boxes corresponding to the characteristics of nonlisted hazardous waste to ensure proper handling.

<table>
<thead>
<tr>
<th>Spills</th>
<th>Contains</th>
<th>Reactive</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>[X]</td>
<td>[X]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Listed Hazardous Wastes

(See 40 CFR 261.31-33. See instructions if you need to list more than 12 waste codes.)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>004</td>
<td>006</td>
<td>008</td>
<td>007</td>
<td>011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Other Wastes

(Use or other wastes requiring a handler to have an I.D. number. See instructions.)

X. Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations.

Signature:

[Signature]

Name and Official Title (type or print):

[Name and Title]

Date Signed:

22 Jan 93

X. Comments

Note: Mail completed form to the appropriate EPA Regional or State Office. (See Section III of the booklet for addresses.)

EPA Form 8700-12 (Rev. 8-92) Previous edition is obsolete.
APPENDIX B - DISPOSITION OF SUSPECT AGENT ROUNDS

OPERATION SAFE REMOVAL
Subject: Disposition of Suspect Agent Filled Rounds

1. Situation: Recovered rounds which are suspected to contain agent are shipped to Pine Bluff Arsenal for storage pending final disposal.

2. Environmental Regulatory Requirements:

a. Generator ID Number. An emergency generator identification number was issued verbally to Operation Safe Removal by the District of Columbia on 7 Jan 93. This action was requested by Kevin Koob, the Region III EPA on-scene coordinator. On 22 Jan 93, EPA Form 8700-12, Notification of Regulated Waste Activity, was submitted to the D.C. Government Hazardous Waste Management Branch, Environmental Regulation Administration as followup to the verbal request. (Note: Emergency Generator ID Number is DCP000001690)

b. Transporter ID Number. The suspect agent filled rounds were transported to Pine Bluff Arsenal via Army aircraft operated by Army pilots. A Technical Escort Unit (TEU) officer from Pine Bluff escorted each shipment. Since the hazardous waste manifest is an accountability document, the TEU was identified as the transporter on the manifest and the TEU escort officer signed the manifest. The District of Columbia authorized use of the generator ID number as the transporter number for TEU to ship hazardous waste from the site.

c. Treatment, Storage, Disposal Facility (TSDF). The decision was made that suspect agent filled rounds would be sent to Pine Bluff Arsenal (PBA) for storage pending disposal. An existing PBA Part A RCRA permit for storage of M55 rockets was modified to allow storage of suspect agent filled rounds from Operation Safe Removal. The permit modification was approved on 12 Jan.

d. Arkansas Transportation Permit. The State of Arkansas requires anyone who transports hazardous waste within the state to obtain a special permit. The permit, PC-1412, was issued to PBA on 11 Jan 93.

e. Manifest. Kevin Koob, EPA, advised that the On-Scene Coordinator or Deputy On-Scene Coordinator at CERCLA site normally signs manifests as the generator. For Operation Safe Removal, Mr. James Bacon, Deputy On-Scene Coordinator, was designated to sign the manifests as the generator.

3. Designation of Rounds. All liquid filled rounds and rounds in which the fill melted when heated were considered suspect agent filled and are shipped to PBA. Solid filled rounds which show a chlorine signature on the Portable Isotopic Neutron Spectroscopy (PINS) were considered suspect agent and are shipped to PBA.
MEMORANDUM FOR On-Scene Commander for Operation Safe Removal

SUBJECT: Permit Modification at Pine Bluff Arsenal

1. The State of Arkansas has telephonically notified Pine Bluff Arsenal that the letter approving the modified storage for liquid filled items being removed at the Spring Valley site will be prepared today, 12 January 1993.

2. The State authorized the labeling and manifest preparation. However, shipment should be held until the letter is signed.

3. Pine Bluff Arsenal also received a permit, 11 Jan 93, authorizing the transportation of hazardous waste in the State of Arkansas by air only. A copy of the permit was faxed to you on 11 Jan 93.

WENDELL L. FORTNER
Director/Environmental and Natural Resources Management

CF:
Colonel Jackson
January 11, 1993

U. S. Army
Pine Bluff Arsenal
10020 Kabrich Circle
ATTN: SMCPB-EM
Pine Bluff, AR 71602-9500

Dear Sir:

The attached permit, PC-1412, is hereby issued for the purpose of transportation of hazardous waste in the State of Arkansas.

This permit is issued subject to the provisions of Act 406 of 1979, as amended, the rules and regulations of this Department, and the terms and conditions as herein set forth.

Sincerely,

Vicky Prewett
Program Coordinator
Hazardous Waste Division

attachment

cc: Transportcr files
HAZARDOUS WASTE TRANSPORTATION PERMIT

Pollution Control Permit Number: PC-1412 Date: January 11, 1993
Arkansas Highway Police Permit Number: not applicable

TO: U. S. Army, Pine Bluff Arsenal
10020 Kabrich Circle, ATTN: SMCPB-EM
Pine Bluff, AR 71602-9500

This permit is issued for transportation of hazardous waste in the state of Arkansas as set forth in your application. This permit is issued subject to the provisions of Act 406 of 1979, as amended (Ark. Code Ann. 8-7-201 et seq.), the rules and regulations of this Department, and the following terms and conditions:

1. This permit shall automatically terminate on the anniversary date one (1) year after the date of issuance of this permit, unless terminated earlier by reason of noncompliance with the terms of this permit.

2. The vehicles and equipment used by permittee shall be operated by qualified personnel and maintained in good operating condition at all times.

3. Noncompliance with said Act 406 of 1979 and the regulations of this Department promulgated pursuant thereto is prohibited and will result in revocation of this permit and/or other appropriate enforcement action by the Department.

4. This permit is nontransferable and may be revoked or modified whenever it is necessary, in the opinion of the Department, to prevent or abate imminent hazard to the health of persons or to the environment.

5. Nothing herein contained shall be construed as releasing the permitted from any liability for damage to persons or property by reason of the maintenance or operation of the vehicles or equipment used by permittee in the transportation of hazardous waste.

6. This permit is issued in reliance upon the statements and representations made in the application and the plans and specifications and the Department has no responsibility for the adequacy or proper functioning of the vehicles and equipment described therein or used by permittee.

7. Condition: Air Transportation only.

Arkansas Department of Pollution Control and Ecology

by: [Signature]
Chief, Hazardous Waste Division
January 12, 1993

Mr. Wandal Fortner
Environmental Coordinator
Pine Bluff Arsenal
Pine Bluff, AR 71602-9500

RE: Part A Application
AR0213820707

Dear Mr. Fortner:

The Department received the Part A application, dated January 9, 1993, for the addition of the following waste codes to the interim status M55 storage area:

<table>
<thead>
<tr>
<th>Waste Code</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>P095</td>
<td>Phosgene</td>
</tr>
<tr>
<td>D002</td>
<td>Corrosive</td>
</tr>
<tr>
<td>D005</td>
<td>Barium</td>
</tr>
<tr>
<td>D006</td>
<td>Cadmium</td>
</tr>
<tr>
<td>D007</td>
<td>Chromium</td>
</tr>
<tr>
<td>D008</td>
<td>Lead</td>
</tr>
<tr>
<td>D009</td>
<td>Mercury</td>
</tr>
<tr>
<td>D010</td>
<td>Selenium</td>
</tr>
<tr>
<td>D011</td>
<td>Silver</td>
</tr>
</tbody>
</table>

The Department determined the Part A application to be administratively complete. If during the permit processing, it is determined by the Department that additional information is needed, PBA would be required to submit the additional information. The Department understands a permit application modifications will be received within ninety (90) days to address receipt of off site discarded ammunition (both conventional and chemical-filled).

Thank you for your cooperation and if you have any questions, please do not hesitate to call.

Sincerely,

Phillip Murphy
Inspection Engineer II, Hazardous Waste Division

PM: cw PBWEN.112

CC: Mike Bates, HWD
 Jerry Williams, HWD
 Cindy Harmon, HWD
 Lowell Seaton, EPA
<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Manifest Document Number</td>
<td>AR-611927</td>
</tr>
<tr>
<td>State Generator's ID</td>
<td>649900</td>
</tr>
<tr>
<td>US EPA ID Number</td>
<td>611927</td>
</tr>
<tr>
<td>Generator's Name and Mailing Address</td>
<td>Pine Bluff Arsenal</td>
</tr>
<tr>
<td>Designed Facility Name and Site Address</td>
<td>Pine Bluff, AR 72650-9560</td>
</tr>
<tr>
<td>11. US DOT Description (Including Proper Shipping Name, Hazard Class and ID Number)</td>
<td>WASTE AMMUNITION: TOXIC, IA, K, UN 0240</td>
</tr>
<tr>
<td>12. Container No.</td>
<td>10</td>
</tr>
<tr>
<td>13. Quantity</td>
<td>1981 P</td>
</tr>
<tr>
<td>14. Unit Wt/No</td>
<td>1</td>
</tr>
</tbody>
</table>

GENERATOR INITIAL COPY
STATE OF ARKANSAS
Department of Pollution Control and Ecology
P. O. Box 8913, Little Rock, Arkansas 72219-8913
Telephone 501-562-7444

Please print or type. (Form designed for use on elite 12-pitch typewriter)

3. Generator's Name and Mailing Address
 SERVICE RESPONSE FORCE OPERATIONS
 5015 WAKKEN ST
 WASHINGTON, D.C. 20016
 (202) 359-2400
 ATTN: AMSCB-CC

4. Generator's Permit No.
 1.221-722

5. Transporter 1 Company Name
 U.S. ARMY SPECIIAR CORD Unit

6. Transporter 1 US EPA ID Number
 D10144416

7. Transporter 2 Company Name
 PINE BLUFF ARSENAL
 1020 KABIRICH CIRCLE, ATTN: SMCPS-EM
 PINE BLUFF, AR 71602-9500

8. Transporter 2 US EPA ID Number
 PINE BLUFF ARSENAL
 1020 KABIRICH CIRCLE, ATTN: SMCPS-EM
 PINE BLUFF, AR 71602-9500

9. Designated Facility Name and Site Address
 PINE BLUFF ARSENAL
 1020 KABIRICH CIRCLE, ATTN: SMCPS-EM
 PINE BLUFF, AR 71602-9500

10. Designated Facility's US EPA ID Number
 PINE BLUFF ARSENAL
 1020 KABIRICH CIRCLE, ATTN: SMCPS-EM
 PINE BLUFF, AR 71602-9500

11. US DOT Description (Including Proper Shipping Name, Hazard Class, and ID Number)
 WASTE AMMUNITION, TOXIC, 1.2K, UN0020

12. Container
 CW

13. Total Quantity
 1.111

14. Unit Wt/Vol
 L

15. Special Handling Instructions and Additional Information
 GENERATOR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by proper shipping name and are classified, packed, marked, and labeled, and are in all respects in proper condition for transport by highway according to applicable international and national government regulations and Arkansas state regulations.
 If I am a large quantity generator, I certify that I have a program in place to reduce the volume and toxicity of waste generated to the degree I have determined to be economically practicable and that I have selected the practicable method of treatment, storage, or disposal currently available to me which minimizes the present and future threat to human health and the environment.
 If I am a small quantity generator, I have made a good faith effort to minimize my waste generation and select the best waste management method that is available to me and that I can afford.

16. EMERGENCY RESPONSE INFORMATION:
 HANDLING CODES FOR WASTES LISTED ABOVE
 P401, D401, D402, D403, D405, D406
 D001, D003, D009, D010, D011

17. Transporter 1 Acknowledgement of Receipt of Materials
 Printed/Typed Name: Signature: Month Day Year

18. Transporter 2 Acknowledgement of Receipt of Materials
 Printed/Typed Name: Signature: Month Day Year

19. Discrepancy Indication Space

20. Facility Owner or Operator: Certification of receipt of hazardous materials covered by this manifest except as noted in Item 19
 Printed/Typed Name: Signature: Month Day Year

EPA Form 8700-22 (Rev. 9-88) Previous edition is obsolete.

GENERATOR INITIAL COPY
UNIFORM HAZARDOUS WASTE MANIFEST

1. Generator's Name and Address:
- SERVICE RESPONSE FORCE - OPERATION SAFE REMOVAL
- 5010 JARRETT ST.
- WASHINGTON, D.C. 20061
- ATTN: HAZSCB-CG
- APC, MD 2100-5423

2. Page 1
- AR-611921
 - A. State Manifest Document Number
 - B. State Generator's ID

3. Transporter's ID:
- PC 4/129
 - C. State Transporter's ID
 - D. Transporter's Phone

4. Designated Facility Name and Site Address:
- PINE BLUFF ARSENAL
- 10020 KHURICH CIRCLE
- LITTLE ROCK, AR 72209
- FAX 870-230-5469

5. US DOT Description (Including Proper Shipping Name, Hazard Class, and ID Number):
- WASTE AMMUNITION, TOXIC, 1.2K, UN3020
- 12 Containers
- 13. Total Quantity: 144.4
- 14. Unit Weight: P

6. Additional Descriptions for Materials Listed Above:
- EMERGENCY RESPONSE INFORMATION:

7. Special Handling Instructions and Additional Information:
- This ammunition may contain any of the following chemical wastes:
 - UN3001: ZINC CHLORIDE AND METAL SALT
 - UN3020: BARREL, METAL, WITH BALLISTIC WASTE

8. Generator's Certification:
- I hereby declare that the contents of this consignment are fully and accurately described above by proper shipping name and are classified, packed, marked, and labeled, and are in all respects in proper condition for transport by highway according to applicable international and national government regulations and Arkansas state regulations.

9. Transporter's Certification:
- I certify that I have a program in place to reduce the volume and toxicity of waste generated to the degree I have determined to be economically practicable and that I have selected the practicable method of treatment, storage, or disposal currently available to me which minimizes the present and future threat to human health and the environment.

10. Discrepancy Indication Space:
- Printed/Typed Name
- Signature
- Month Day Year

EPA Form 8700-22 (Rev. 9-88) Previous edition is obsolete.

GENERATOR INITIAL COPY
APPENDIX C - DISPOSITION OF SOLID FILLED, SUSPECT HE/WP ROUNDS

OPERATION SAFE REMOVAL
Subject: Disposition of Solid Filled, Suspect HE Rounds

1. Situation: Recovered rounds which are suspected to HE are shipped to Ft. AP Hill for detonation on an existing demolition range.

2. Environmental Regulatory Requirements:
 a. Generator ID Number. An emergency generator identification number was issued verbally to Operation Safe Removal by the District of Columbia on 7 Jan 93. This action was requested by Kevin Koob, the Region III EPA on-scene coordinator. On 22 Jan 93, EPA Form 8700-12, Notification of Regulated Waste Activity, was submitted to the D.C. Government Hazardous Waste Management Branch, Environmental Regulation Administration as followup to the verbal request. (Note: Emergency Generator ID Number is DCP000001690)

 b. Transporter ID Number. The suspect HE rounds were transported to Ft. AP Hill via Army aircraft operated by Army pilots. Officers from the 67th EOD detachment stationed at Ft. McNair escorted each shipment. The 67th EOD already had a transporter identification number which allowed them to transport hazardous waste (id # DC8219921994).

 c. Manifest. Virginia uses a standard EPA Uniform Hazardous Waste Manifest, EPA Form 8700-22. The manifest was completed for the shipment of hazardous waste projectiles and ammunition to Ft AP Hill for treatment. The items were identified by the hazardous waste codes D001 (ignitable) and D003 (reactive).

 d. Treatment, Storage, Disposal Facility (TSDF). Ft AP Hill’s interim status (Part A) permit for open detonation of waste explosives expired on 12 Nov 92 and they did not submit an application for a Part B permit. An application for an emergency permit was submitted to the State of Virginia on 13 Jan 93. The emergency permit was issued by Va on 20 Jan 93 and amended on 27 Jan 93 (id # VA2210020416). The permit expired 17 Feb 93.

3. Permit Difficulties.
 a. OSR provided information to Ft AP Hill for the emergency permit application on 13 Jan 93. The FT AP Hill environmental coordinator submitted the application to Virginia later that day. The information in the application reflected the status of the munitions as known at that point.

 b. On Friday, 15 Jan 93, Va issued verbal interim approval of the application and an id number for use over the weekend, if necessary. No detonations were conducted for the next week due to higher priority actions and the desire to pack and ship all HE munitions at one time.
c. On Monday, 25 Jan 93, OSR contacted Ft. AP Hill who subsequently contacted VA requesting permission to sample 8 rounds to gain data to verify the PINS. Later, the decision was made to abandon the plan to try to get a sample and just to detonate 8 rounds and perform air and soil sampling to verify the absence of any chemical agent. VA regulators were concerned about our evaluation of the rounds and determined that a permit modification was required.

d. We provided information to VA explaining how the determination was made. On 27 Jan 93, VA issued a permit modification allowing us to detonate 8 rounds and requiring us to perform soil sampling after the detonation. The modification suspended the permit immediately upon completion of the detonation pending the state's review of the sampling data.

e. The detonation of 8 rounds was successfully completed on 27 Jan 93. Soil sampling data was provided to the state on 29 Jan 93. Later that day, they granted approval for treatment of the remaining items with certain restrictions.

f. The detonation of the remaining 90 rounds was performed successfully on 30 Jan 93.
Ms. Terry Banks
Department of the Army, Headquarters
U. S. Army Garrison, Fort A. P. Hill
APKA-FHE-E
Bowling Green, Virginia 22427-5000

Re: Temporary Emergency Permit

Dear Ms. Banks:

Enclosed please find a copy of the TEMPORARY EMERGENCY PERMIT TO TREAT HAZARDOUS WASTES issued to Fort A. P. Hill on January 15, 1992. The permit covers the treatment of the hazardous wastes designated in the permit.

Please be reminded that a copy of the report as described in the permit under the heading "Reporting" must be submitted within forty-five (45) days of the permit expiration or termination. The Department has determined that the permit application fee shall be waived.

Also enclosed is a Notification of Hazardous Waste Activity Form (8700-12). Please complete and submit this form to Stephen Turner of the Department for the above treatment action.

If you have any questions concerning this matter, please call me at (804) 786-6004.

Sincerely,

Garwin W. Eng
Environmental Engineer Senior
Office of Compliance and Enforcement

cc: Stephen Turner, VDWM

Enclosures
HAZARDOUS WASTE MANAGEMENT PROGRAM

TEMPORARY EMERGENCY PERMIT

TO TREAT HAZARDOUS WASTES

EPA Identification Number: VAP000007432

Permit Issuance Date: January 20, 1993

Permit Expiration Date: Completion of action described below or February 17, 1993

Issued by:

Department of Waste Management
Office of Compliance and Enforcement
11th Floor, Monroe Building
101 North 14th Street
Richmond, Virginia 23219

Authority:

Commonwealth of Virginia Hazardous Waste Management Regulations (VHWMR) §11.9. promulgated under the authority of Chapter 14, Title 10.1, Code of Virginia.

Name and Address of Permit Applicant:

Department of the Army
Headquarters, U. S. Army Garrison, Ft. A. P. Hill
Bowling Green, Virginia 22427-5000
EPA ID Number: VA2210020416

Name and Address of Generator:

Operation Safe Removal - Spring Valley Munitions Recovery
5015 Warren Street
Washington, D.C. 20016

Location of Waste:
511 52nd Court, N.W.
Washington, D.C.
EPA ID Number: DCP000001690

Name, Location, and EPA ID Number of Facility:

Department of the Army
Headquarters, U. S. Army Garrison, Ft. A. P. Hill
Bowling Green, Virginia 22427-5000
EPA ID Number: VA2210020416
Action Authorized:

Treatment of the waste described below will be by open detonation at Demo Site 77 in the Upper Zion Impact Area at the Facility (see Attachment I). The waste must be disposed of as quickly as possible to protect human health and the environment. The Facility is permitted to treat only the waste described below during the period specified by this Temporary Emergency Permit.

Description of Waste:

The wastes consist of old military munitions that are believed to have been buried during the 1910-1920 time frame. The munitions were unearthed January 5, 1993, from the Generator site. Based on available information, the munitions are thought to contain either explosive or white phosphorous material. Additional evaluation of the rounds will be conducted to confirm contents prior to shipment to the treatment Facility for destruction. The rounds recovered as of 6:00 p.m. on January 12, 1993 are as follows:

1 - 75 mm, fused
6 - 3" Stokes, fused
1 - 151 mm, unfused
19 - 75 mm, unfused
5 - grenades, unfused
2 - 4.7", unfused
3 - 4.7", (confirmed HE), unfused
2 - burster tubes

Excavation is continuing and additional rounds are expected to be found during the term of this permit. Such additional rounds that are similar in size and fill material as those described above are included within the scope of this permit. The Facility will provide descriptions of any additional wastes found at the Generator site prior to treatment at the Facility.

Permit’s Termination:

This permit may be terminated by the Department of Waste Management at any time without process if the determination is made that termination is appropriate to protect human health and the environment.

Permittee Standards with which Compliance is Required:

Effective Immediately:
VHWMR Part IX, Section 9.15.
VHWMR Part X, Sections 10.1., 10.2., and 10.3.
VHWMR Parts XI and XII
All residuals from treatment and contaminated soils must be managed as hazardous waste in accordance with VHWMR Part VI.

Procedure:

Although the treatment will be performed at Fort A. P. Hill, the treatment will be performed by the 67th Ordnance Detachment (EOD), U. S. Army, Fort McNair, Washington D.C. 20319-5050. The procedures contained in Attachment II of this permit must be followed during and after the treatment. If treatment results in any visible debris, it will be collected and removed for disposal in accordance with VHWMR Part VI.

Reporting:

Within 45 days of permit expiration or termination, the permittee shall submit to the Department a written report detailing the times, pertinent events, sampling and analytical data, and results of the permitted activity.

Reason for Issuance:

On January 5, 1993, a construction crew working a backhoe at the Generator site uncovered several munitions items. The Generator site had been used during WWI by the Research Division of the Chemical Warfare Service. Currently, the Army is taking action to expeditiously and safely remove the munitions and to assure proper disposition. Munitions will be recovered and evaluated on site to determine their sizes and contents. They are being stored on the Generator site pending transport by the 67th Ordnance Detachment (EOD), Fort McNair (Virginia H.W. Transporter # DC82100210049) to the Facility. Due to the location of the Generator site and the importance of removing the materials from the site as quickly as possible for disposal, the Director of the Department of Waste Management has determined that expedient action to protect human health and the environment is necessary.

Public Comment:

The Department of Waste Management solicits comments on the issuance of this permit. Written comments may be sent to, and copies of the permit may be obtained from, Connie M. Hill, Virginia Department of Waste Management, at the address provided on the first page of this permit. Although comments will not have an effect on the issuance of this permit, comments will be reviewed with respect to future emergency permits.
Emergency Occurrence:

In the event of an emergency occurrence outside the scope of this permit, contact Mr. John Ely at (804) 785-5764.

Date 1/20/93

William L. Woodfin, Jr.
Director
Department of Waste Management

Site Location

FIGURE B-1
ATTACHMENT II

DEPARTMENT OF THE ARMY
67th Ordnance Detachment (EOD)
FT Lesley J. McNair, Washington D.C. 20319

MEMORANDUM FOR Unit Personnel

SUBJECT: Standard Operating Procedures (Emergency Destruction Operation)

1. The purpose of this SOP is to provide unit and support personnel with the necessary safety guidelines for the destruction of items recovered during Operation Spring Valley.

2. REFERENCES:
 a. TM 9-1300-206
 b. TM 9-1300
 c. TM 60A-1-1-31
 d. FM 5-250
 e. TM 60A-1-1-22

3. RESPONSIBILITIES:
 a. Senior EOD Team Leader is responsible for:
 (1) Supervising all aspects of the Demolition operation at the Demo site.
 (2) Insuring that personnel receive an Explosive Safety briefing before operation commences.
 b. EOD Personnel: Are responsible for observing all safety standards, requirements, cautions as stated in this SOP, and in addition they will:
 (1) Report to the Senior EOD Team Leader any unsafe condition, equipment, or material.
 (2) Warn others who are endangered by known hazards or who fail to comply with safety precautions.
 c. Support Personnel: Are responsible for following all directions given by EOD personnel. And will not leave the Demo area without checking out through the Senior EOD Team Leader present.

4. DEMOLITION OPERATION:
 a. Prior to commencement of the operation a safety briefing will be held.
 b. Upon completion of the briefing, the Senior EOD team Leader and support personnel will ensure that the Demo area is adequately prepared.
SUBJECT: Standard Operating Procedure (Emergency Destruction Operation)

c. The Demo operation will utilize existing Demo holes on Range 77, FT A.P. Hill. Each Demolition shot will be a minimum of 25 feet apart. There will be no more than seven (7) personnel down range at any time (including the NCOIC).

d. Safety Observer will be at least a minimum of 750 meters from the Demo site and will maintain visual contact and radio communications with the work party.

e. Communications will be maintained with the NCOIC and the Safety Observer at all times. The Safety Observer will maintain FM communications with Range Control, Freq. 32.00, during the entire operation.

f. Medical personnel will remain in the safe area and will respond to the directions of the Safety Observer.

5. EMERGENCY PROCEDURES:

a. In the event of an accident down range all operations will cease, and all tools and equipment will not be moved or removed from the site.

b. The Safety Observer will immediately notify Range Control that there has been an accident.

c. The Safety Observer will attempt to assess the situation from his location. He will also attempt to establish radio communications with the NCOIC. The Safety Observer will not allow anyone down range until the situation has been assessed and there is no scattered or burning High Explosives down range.

d. Medical personnel will be prepared to assist wounded personnel at the direction of the safety observer, and will not leave the safe area unless told to do so.

e. Personnel down range will evacuate to the safe area by means of the road and check out through the NCOIC or the Safety Observer.

John J. Deyhle
CEN T. DURAZAK
CPT, OD
Commanding
ATTACHMENT 1

I, the undersigned, have read and will comply with the Emergency Destruction Operation SOP.
Operation Safe Removal
Spring Valley Munitions Recovery

INFORMATION PAPER

1. Situation. There is a need to verify the absence of agent before shipment of HE and WP munitions to Ft. A.P. Hill for disposal. It is believed that the current screening effort is highly effective at assuring the absence of agent, but it is desired to check several HE and WP munitions to be absolutely sure.

2. Background. The Cdr, Tech Escort Unit is continuing recovery and evaluation of rounds at Spring Valley. The fill in some items can be determined with a relatively high degree of certainty based on the type of round, its appearance, and x-rays. A new, state-of-the-art technology known as Portable Isotopic Neutron Spectroscopy (PINS) is being used to further define the fill in other rounds. Approval is being sought to sample some rounds to verify information provided by the PINS.

3. Classification of Rounds.

 a. Initial evaluation. Recovered rounds are initially separated into two classes, liquid filled and solid filled.

 b. Liquid. Liquid filled rounds are considered to be potential chemical agent and are shipped to Pine Bluff Arsenal.

 c. Solid. Solid filled rounds may contain a variety of fills and additional work is performed to narrow down the list of possible fills.

 i. Unknown solid filled rounds are warmed to a temperature where two chemical agents, mustard and bromobenzylcyanide, would melt. If the contents of such a round becomes liquid, the round is then reclassified as liquid filled, potentially agent.

 ii. A representative sample of the remaining solid filled rounds is evaluated using the PINS. The objective of this evaluation is to separate rounds containing HE or WP from solid filled rounds containing other materials such as adamsite, lewisite, and chloroacetophenone. The PINS can readily detect chlorine atoms. Agent related solids including adamsite, lewisite, and chloroacetophenone from the HE timeframe contain chlorine. If chlorine is detected by the PINS, the round will be considered potential agent and sent to Pine Bluff.
Operation Safe Removal
Spring Valley Munitions Recovery

iii. Plans are to attempt to obtain a sample of the fill in rounds identified by the PINS as not containing chlorine to confirm the absence of agent. The proposed action is to take such rounds to Ft. A.P. Hill and attempt to open a small hole using a shape charge. If this is successful, a sample will be taken and analyzed to confirm the absence of agent. If the round contains HE, it is possible that the shape charge will result in a high order detonation, resulting in complete destruction of the round. If this occurs, soil samples will be analyzed and the results compared to baseline data to confirm the absence of agent in the round. After confirmation, additional rounds in this class will be added to the group intended for destruction at Ft. AP Hill.

4. Disposition of Rounds.
 a. Current plans are to send rounds which can be safely transported and which are known or suspected to contain chemical agent to Pine Bluff Arsenal for storage pending disposal. This includes liquid filled rounds, solids that melt when warmed, and solids that are shown by the PINS to contain chlorine.

 b. Rounds which can be safely transported and definitively identified as white phosphorus (WP) or high explosive (HE) will be open detonated at Ft. AP Hill.

 c. Unknown solid filled rounds which are later confirmed to be free of agent through PINS analysis and testing of a random sample will be open detonated at Ft. AP Hill.

5. The POC is Terry Mann. Phone at Spring Valley is 1-800-331-1238, Special Staff.
Operation Safe Removal
Spring Valley Munitions Recovery

Supplemental Information for the Permit for Destruction of HE and WP Rounds at Ft. AP Hill

1. Situation. There is a need to dispose of rounds determined to be HE and WP filled which were recovered from the munitions recovery site at Spring Valley. It is believed that the current screening effort is highly effective at assuring the absence of agent.

2. Background. The Cdr., Tech Escort Unit is continuing recovery and evaluation of rounds at Spring Valley. The fill in many items can be determined with a very high degree of certainty based on the type of round, its appearance, x-rays, and a new, state-of-the-art technology known as Portable Isotopic Neutron Spectroscopy (PINS). Approval is being sought to treat (destroy) rounds determined to be HE or WP.

3. Classification of Rounds. This section describes the logic which leads to the determination that rounds proposed to be sent to Ft. AP Hill are HE or WP filled.

 a. Initial evaluation. Recovered rounds are initially separated into two classes, liquid filled and solid filled.

 b. Liquid. Liquid filled rounds are considered to be potential chemical agent and are shipped to Pine Bluff Arsenal.

 c. Solid. Solid filled rounds may contain a variety of fills and additional work is performed to narrow down the list of possible fills. The list of possible fills was determined based on the chemicals known to be in existence during the WWI timeframe and in use by the Army at Camp American University. A historian on site at the Spring Valley has research available records to obtain this information.

 i. Solid filled rounds are warmed to a temperature where two chemical agents, mustard and bromobenzylcyanide, would melt. If the contents of such a round becomes liquid, the round is then reclassified as liquid filled, potentially agent.

 ii. The remaining solid filled rounds are evaluated using the PINS. The objective of this evaluation is to separate rounds containing HE or WP from solid filled rounds containing other materials such as adamsite, lewisite, and chloroacetophenone. The PINS can readily detect chlorine atoms. Agent related solids including adamsite, lewisite, and chloroacetophenone from the WWI timeframe contain chlorine. If chlorine is detected by the PINS,
Operation Safe Removal
Spring Valley Munitions Recovery

the round will be considered potential agent and will not be sent to Ft. AP Hill, but will be sent to Pine Bluff Arsenal with the liquid filled rounds.

iii. Plans are to destroy the solid filled rounds with no chlorine signature at the demolition range at Ft AP Hill. The 67th EOD detachment will destroy the rounds in a manner which will totally consume the fill.

iv. In the highly unlikely event the round contained a military unique chemical, the detonation will destroy the molecules of the fill. The Army will conduct soil sampling of the area after the detonation. If the results show statistically higher levels of contaminants in the soil, the contamination will be defined and cleaned up.

4. Details about Rounds to AP Hill

a. Plans are to transport all HE and WP rounds to Ft. AP Hill via Army helicopter. Decon and monitoring teams will accompany the shipment.

b. The detonation will be performed by personnel of the 67th EOD. After the detonation, the monitoring team will monitor the area using an M18 kit. In the highly unlikely event anything is detected, the decon team will decon the area and re-monitor. When the monitoring is negative, the soil samples will be taken for analysis.

c. Rounds proposed to be sent on 26 Jan are 8 ea 75 mm projectiles. If detonation of the above 8 is conventional HE and WP as fully expected, additional rounds will be identified for shipment to Ft AP Hill later in the week.

GEORGE E. FRIEL
BG, USA
Commander,
Service Response Force
Operation Safe Removal
Spring Valley Munitions Recovery

Supplemental Information (2) for the Permit for Destruction of HE and WP Rounds at Ft. AP Hill

1. Historical Search. In addition to the procedural screening steps referred to in the memorandum sent earlier today, it is appropriate to discuss the historical search which ruled out the possibility of any organophosphorous or dimethyl sulfide compounds in WWI rounds. Fortunately, such technology did not emerge until WWII or beyond.

2. Destruction/Dispersion. Explosive ordnance techniques assure sufficient temperature, over 3,000 degrees K, to guarantee molecular destruction of any chemical agent. Given the 2 mile buffer zone between the detonation site and the public domain, dispersion would guarantee no risk to the public.

3. Emergency Decontamination. In the highly unlikely event of agent contamination resulting from the detonation, emergency ordnance disposal personnel with special training and special equipment will be on hand as part of the disposal effort. They will accompany the munitions from Spring Valley to Ft. AP Hill.

4. Safety of Personnel on Site. All operators are EOD certified. Operations will be performed in accordance with Safety approved SOPs for demolition procedures. Implicit in those procedures are the calculations of standoff distances for the amount and configuration of explosive used to assure safety of personnel on site. Every individual participating will have a protective mask.

5. Hopefully the above will verify the precautions we will take to protect the people and environment of Virginia.

GEORGE E. FRIEL
BG, USA
Commander,
Service Response Force

Official:

CHARLES E. Kenison
COL, MS
Dir, Special Staff
Ms. Turry Banks
Department of the Army, Headquarters
U.S. Army Garrison, Fort A. P. Hill
AFCO-PHE-E
Bolling Green, Virginia 22477-5000

Re: Temporary Emergency Permit

Dear Ms. Banks:

As you know, a TEMPORARY EMERGENCY PERMIT TO TREAT HAZARDOUS WASTE was issued to Fort A. P. Hill on January 20, 1993. However, the representatives of Operation Safe Removal have advised that the conditions under which that permit was issued have changed. After reviewing of the information provided in the January 25 and 26, 1993, facsimile transmittals, the Department has modified the emergency permit to accord with the telephone conversations of these dates.

The modified pages to be inserted into the permit are enclosed. Should you have any questions, please call Garwin E. Eng of my staff at (804) 786-6004.

Sincerely,

[Signature]

John E. Ely
Office Director
Office of Compliance and Enforcement

Enclosures

CC: Garwin W. Eng, VDWM
 Jack Schubert, VDAPC

JPF/gwe
Permittee Standards with which Compliance is Required:

Effective Immediately:
VHWMR Part IX, Section 9.15.
VHWMR Part X, Sections 10.1., 10.2., and 10.3.
VHWMR Parts XI and XII

All residuals from treatment and contaminated soils must be managed as hazardous waste in accordance with VHWMR Part VI.

Procedure:

Although the treatment will be performed at Fort A. P. Hill, the treatment will be performed by the 57th Ordnance Detachment (EOD), U. S. Army, Fort McNair, Washington D.C. 20319-5050. The procedures contained in Attachment II of this permit must be followed during and after the treatment. If treatment results in any visible debris, it will be collected and removed for disposal in accordance with VHWMR Part VI.

Reporting:

Within 45 days of permit expiration or termination, the permittee shall submit to the Department a written report detailing the times, pertinent events, sampling and analytical data, and results of the permitted activity.

(See Special Conditions for additional reporting requirements)

Reason for Issuance:

On January 5, 1993, a construction crew working a backhoe at the Generator site uncovered several munitions items. The Generator site had been used during WW II by the Research Division of the Chemical Warfare Service. Currently, the Army is taking action to expeditiously and safely remove the munitions and to assure proper disposition. Munitions will be recovered and evaluated on site to determine their sites and contents. They are being stored on the generator site pending transfer to the 57th Ordnance Detachment (EOD) Fort McNair (Virginia H.W. Transporter # DC82100210004) to the facility. Due to the location of the Generator site and the importance of removing the materials from the site as quickly as possible for disposal, the Director of the Department of Waste Management has determined that expedient action to protect human health and the environment is necessary.
Special Conditions:

An initial shipment of eight 75 mm projectile rounds will be treated. The area will be monitored using an M18 kit. The Department must be verbally notified at least one hour prior to treatment and immediately after treatment of the initial shipment. The notification after treatment must also include a preliminary report of the M18 monitoring results.

According to the Generator, it has been determined with a high degree of confidence that the fill materials of the initial shipment are explosives. However, a contingency plan for detection and decontamination has been provided in the event that the fill materials are chemical weapons.

Within forty-eight (48) hours of treatment of the initial shipment, a written report documenting the treatment (including all sampling and analytical results) must be provided to the Department. Following treatment of the initial shipment, authorization for treatment of the remainder of the wastes described above (see Description of Wastes) is temporarily suspended. Approval for treatment of the remainder of the wastes will be considered after receipt and review of the written report.

Public Comment:

The Department of Waste Management solicits comments on the issuance of this permit. Written comments may be sent to, and copies of the permit may be obtained from, Carwin W. Eng, Virginia Department of Waste Management, at the address provided on the first page of this permit. Although comments will not have an effect on the issuance of this permit, comments will be reviewed with respect to future emergency permits.

Modified January 27, 1993
Operation Safe Removal
Soil Sampling Plan for Ft. A.P. Hill OD Range

1. Situation.

 a. World War I munitions are being recovered from a site in Spring Valley, NW Washington, DC. They are being evaluated by various means in an attempt to identify the potential fill. Disposition of rounds is determined based on the potential fill.

 b. Rounds identified as containing HE or WP will be detonated at Ft. AP Hill.

2. Purpose. Soil sampling is being performed to provide data to confirm the absence of any residual contamination from the detonation of rounds determined to be HE or WP.

3. Sample Management.

 a. Sampling Pattern.

 (1) Location. The location for placement of the rounds will be determined by 67th EOD personnel and will be marked with stakes. Samples will be taken from the center point and from North, East, South, and West points on concentric circles surrounding this center point as shown in figure 1.

 (2) Number. A total of 4 samples will be taken; one from the center point and composites from circles 10, 20, and 30 feet from the center. Samples on a given circle will be combined into a composite sample.

 (3) Frequency. Background samples will be taken once prior to the round detonation operation. Followup samples will be taken once after the detonation.

 b. Sample Collection.

 (1) Volume/Containerization. Soil samples shall be collected initially in 32 ounce glass jars from which they shall be then transferred to a plastic bag for mixing to assure homogeneity, from which they shall be transferred to two 8 ounce glass jars (which are teflon sealed) and two 40 ml VOA vials (which are teflon sealed) for transport to laboratories.
Operation Safe Removal
Soil Sampling Plan for Ft A.P. Hill OD Range

(2) Preservatives. Samples require no special preservatives.

(3) Identification. Samples shall be identified and labelled as shown in table 1.

c. Sample Shipment. Samples will be sent to the Edgewood Research, Development, and Engineering Center and the U.S. Army Environmental Hygiene Agency for analysis. Split samples will also be sent to an EPA contract lab for verification of the Army analysis.

4. Analytical Management. The constituents measured by each laboratory shall be as follows:

a. Edgewood RD&E Center
 1. Extractable arsenic
 2. Total arsenic

b. U.S. Army Environmental Hygiene Agency
 1. Choroacetophenone
 2. Cyanogen chloride
 3. Chloropicrin
 4. Phosgene
 5. Arsenic
 6. Mercury
 7. Lead
 8. Chromium
 9. Semivolatiles (BNA)
 10. Other total metals

c. Verification by EPA Contract Lab
 1. BNA (semivolatiles)
 2. Total Metals

5. Data Evaluation. Levels of analytes shall be compared to the mean background concentrations using a one-tailed t test at the 95% confidence interval in accordance with the EPA guidance provided in Soil Sampling Quality Assurance User's Guide, 2nd ed., EPA 600/8-89/046.
Operation Safe Removal
Soil Sampling Plan for Ft A.P. Hill OD Range

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>COMPOSITE OF</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP1</td>
<td>-</td>
</tr>
<tr>
<td>AP2</td>
<td>AP2A + AP2B + AP2C + AP2D</td>
</tr>
<tr>
<td>AP3</td>
<td>AP3A + AP3B + AP3C + AP3D</td>
</tr>
<tr>
<td>AP4</td>
<td>AP4A + AP4B + AP4C + AP4D</td>
</tr>
<tr>
<td>AP5</td>
<td>AP5A + AP5B + AP5C + AP5D</td>
</tr>
<tr>
<td>AP6</td>
<td>AP6A + AP6B + AP6C + AP6D</td>
</tr>
</tbody>
</table>
Operation Safe Removal
Soil Sampling Plan for Ft A.P. Hill OD Range

GEORGE E. FRIEL
BG, USA
Commander.
Service Response Force

Official:

[Signature]
CHARLES B. Kenison
COL, MS
Dir, Special Staff

Approved:

[Signature]
Terry A. Stilman
Federal On Scene Coordinator
EPA Region III
MEMORANDUM FOR RECORD

27 January 1993

SUBJECT: A.P. Hill Demolition Operations AAR

1. On 27 January, 1993, eight 75mm projectiles were taken to Range 77 and destroyed by detonation.

2. The sequence of events is as follows:

 a. The demolition and sampling team arrived at Range 77 at approximately 1310 and downloaded all equipment.

 b. I briefed personnel present on the operation and proceeded to direct all unnecessary personnel to the safe area approximately 850 meters upwind of the demolition pit.

 c. The EPA personnel began taking additional background soil samples while we prepared the demolition site. CTF personnel were also setting up air monitors approximately 50 meters downwind of the demolition pit.

 d. Once all sampling personnel were finished, we began to prepare the projectiles for demolition. Explosives used are as follows:

 150 ft. - Detonating Cord
 5 ea - Non-Electric Blasting Caps
 2 ea - Electric Blasting Caps
 52 ea - Demolition Blocks M112 (C-4)

 e. When the explosives were primed for detonation, the demolition team moved back to the safe area and received clearance from Range Control to detonate the charges. The time of detonation was 1428 hrs.

 f. The explosion was characteristic of a normal high explosive detonation. The debris cloud was normal and no unusual smoke or debris was seen.

 g. SSG Martin and I proceeded down range to check the shot. We approached from upwind and performed gross level checks utilizing the M18A1 chemical detector kit. Tests 2, 4, 5, and 7 were done. All results were negative. I certified the site clear and allowed for the sampling personnel to proceed down range to retrieve samples.

 h. The results of the air samples taken by CTF personnel were
negative for any agent released in the air after the detonation. Thus, the rounds were assumed to be loaded with high explosives.

1. No scrap or residue was found after detonation.

j. Once all sampling was complete, we departed enroute back to Spring Valley.

3. The operation was safe, efficient, and successful.

4. Demolition personnel were as follows:

 OIC - 2LT Weber (USATEU)
 NCOIC - SSG Ouellette (67th EOD)
 Tech - SSG Martin (USATEU)
 Tech - SSG Simmons (67th EOD)
 Tech - SGT J. Johnson (USATEU)
 Tech - SGT Provost (67th EOD)
 Tech - SPC Depold (67th EOD)

5. POC is the undersigned at (202)282-0559 (TOC).

 Martin J. Weber
 2LT, OD
 TEO
OPERATION SAFE REMOVAL

27 Jan 93

Subject: Detonation at Ft AP Hill

1. At approx 1550 hrs, Terry Banks, the Environmental Coordinator from Ft. AP Hill called to report on the detonation of 8 rounds that occurred today. She said that everything went great. Everyone who was familiar with EOD operations reported that it looked just like an HE detonation. There was no sign of any unusual residue after the detonation.

2. She had notified the state of the action both 1 hour before and immediately after the action, as they had requested. They were satisfied with her report and will await our final report within 48 hours.

[Signature]
OPERATION SAFE REMOVAL

Subject: Sampling After Detonation of 8 Rounds at Ft AP Hill

1. 2LT Weber, TEU, performed monitoring using the M18 kit after the detonation. Results were negative. Phil Rice, CBDA, drew air samples using DAAMS tubes. Analyses are being performed on site at Spring Valley and will be available on 28 Jan.

2. Soil samples that were taken by the EPA contractor, Jackie Hom, were sent to ERDEC and AEHA in Edgewood for analysis. We hope results will be available the morning of Friday, 29 Jan.

3. As soon as the soil sampling report is completed and assuming the results show no significant increase in soil contaminants after the detonation, we plan to add a cover letter requesting permission to detonate the remaining solid filled/no-chlorine rounds and fax it concurrently to Steve Frazier and GM Tribble.
SPRING VALLEY SOIL SAMPLES

ANALYSIS RESULTS

FOR

MUSTARD (HD) AND ARSENIC

January 28, 1993

<table>
<thead>
<tr>
<th>EPA SAMPLE NUMBER</th>
<th>MUSTARD PPM</th>
<th>EXTRACTABLE ARSENIC PPM</th>
<th>TOTAL ARSENIC PPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP-1</td>
<td>N.D.</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>AP-2</td>
<td>N.D.</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>AP-3</td>
<td>N.D.</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>AP-4</td>
<td>N.D.</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>AP-5</td>
<td>N.D.</td>
<td>0.550 ppm</td>
<td>0.700 ppm</td>
</tr>
<tr>
<td>AP-1B</td>
<td>N.D.</td>
<td>0.500 ppm</td>
<td>0.750 ppm</td>
</tr>
<tr>
<td>AP-2B</td>
<td>N.D.</td>
<td>0.500 ppm</td>
<td>0.700 ppm</td>
</tr>
<tr>
<td>AP-3B</td>
<td>N.D.</td>
<td>0.500 ppm</td>
<td>0.500 ppm</td>
</tr>
<tr>
<td>AP-4B</td>
<td>N.D.</td>
<td>0.450 ppm</td>
<td>0.500 ppm</td>
</tr>
<tr>
<td>AP-5B</td>
<td>N.D.</td>
<td>0.500 ppm</td>
<td>0.650 ppm</td>
</tr>
</tbody>
</table>

* Results unavailable until 2:00 PM January 29, 1993
FAX will be sent 2:00 PM January 29, 1993
John E. Ely
Director
Office of Compliance and Enforcement
Virginia Department of Waste Management
101 North 14th Street
Richmond, VA 23219

Dear Mr. Ely,

This letter provides information required by the modification dated 27 Jan 93 to the Temporary Emergency Permit to Treat Hazardous Waste issued to Ft. A.P. Hill on 20 Jan 93.

Enclosure 1 includes a Memorandum for Record prepared by the officer in charge of the detonation of eight 75 mm projectiles on 27 Jan 93. It provides the results of monitoring performed immediately after the detonation. Gross level monitoring at the soil surface for cyanogen chloride (test 2), mustard (test 4), hydrogen cyanide (test 5), and phosgene (test 7) using the M18A1 chemical detector kit was performed after the detonation. The results were negative. Low level air monitoring for mustard using Depot Area Agent Monitoring System (DAAMS) tubes was performed during and after the detonation. The results were negative.

Enclosure 2 confirms the absence of risk from mustard, lewisite, and adamsite. Data from the Edgewood Chemical & Biological Defense Agency's laboratory shows no detection of mustard and very low concentrations of arsenic which assures the absence of significant amounts of lewisite and adamsite which are arsenicals.

Enclosure 3 confirms the absence of risk from other chemical warfare agents. Data from the Army Environmental Hygiene Agency's laboratory show no detection of chloroacetophenone or chloropicrin. The laboratory was also unable to detect cyanogen chloride or phosgene.

The original permit application dated 13 Jan 93 explained that excavation of the pit was continuing and additional rounds were expected to be recovered. The excavation was completed and the pit was declared ordnance free the afternoon of 27 Jan 93. Evaluation and classification of the rounds by the process previously explained to you was completed on 28 Jan 93. We determined that there are 90 HE/WP rounds (based on solid fill, no chlorine) currently on site at Spring Valley. A list of the types of rounds is included in enclosure 4.
The on-site monitoring and soil sampling data confirm our determination that the non-chlorine solid filled rounds contain no toxic chemical agents but contain HE or WP.

We respectfully request authorization to treat the remaining HE/HP rounds at Ft. AP Hill under the terms of the emergency permit.

GEORGE E. FRIEL
BG, USA
Commander,
Service Response Force
MEMORANDUM FOR RECORD

27 January 1993

SUBJECT: A.P. Hill Demolition Operations AAR

1. On 27 January, 1993, eight 75mm projectiles were taken to Range 77 and destroyed by detonation.

2. The sequence of events is as follows:

 a. The demolition and sampling team arrived at Range 77 at approximately 1310 and downloaded all equipment.

 b. I briefed personnel present on the operation and proceeded to direct all unnecessary personnel to the safe area approximately 850 meters upwind of the demolition pit.

 c. The EPA personnel began taking additional background soil samples while we prepared the demolition site. CTF personnel were also setting up air monitors approximately 50 meters downwind of the demolition pit.

 d. Once all sampling personnel were finished, we began to prepare the projectiles for demolition. Explosives used are as follows:

 150 ft. - Detonating Cord
 5 ea - Non-Electric Blasting Caps
 2 ea - Electric Blasting Caps
 52 ea - Demolition Blocks M112 (C-4)

 e. When the explosives were primed for detonation, the demolition team moved back to the safe area and received clearance from Range Control to detonate the charges. The time of detonation was 1428 hrs.

 f. The explosion was characteristic of a normal high explosive detonation. The debris cloud was normal and no unusual smoke or debris was seen.

 g. SSG Martin and I proceeded down range to check the shot. We approached from upwind and performed gross level checks utilizing the M18A1 chemical detector kit. Tests 2, 4, 5, and 7 were done. All results were negative. I certified the site clear and allowed for the sampling personnel to proceed down range to retrieve samples.

 h. The results of the air samples taken by CTF personnel were
negative for any agent released in the air after the detonation. Thus, the rounds were assumed to be loaded with high explosives.

i. No scrap or residue was found after detonation.

j. Once all sampling was complete, we departed enroute back to Spring Valley.

3. The operation was safe, efficient, and successful.

4. Demolition personnel were as follows:

 OIC - 2LT Weber (USATEU)
 NCOIC - SSG Ouellette (67th EOD)
 Tech - SSG Martin (USATEU)
 Tech - SSG Simmons (67th EOD)
 Tech - SGT J. Johnson (USATEU)
 Tech - SGT Provost (67th EOD)
 Tech - SPC Depold (67th EOD)

5. POC is the undersigned at (202)282-0559 (TOC).

 [Signature]

 Martin J. Weber
 2LT, OD
 TEO

 85
SPRING VALLEY SOIL SAMPLES

ANALYSIS RESULTS

FOR

MUSTARD (HD) AND ARSENIC

January 28, 1993

<table>
<thead>
<tr>
<th>EPA SAMPLE NUMBER</th>
<th>MUSTARD PPM</th>
<th>EXTRACTABLE ARSENIC PPM</th>
<th>TOTAL ARSENIC PPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP-1</td>
<td>N.D.</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>AP-2</td>
<td>N.D.</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>AP-3</td>
<td>N.D.</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>AP-4</td>
<td>N.D.</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>AP-5</td>
<td>N.D.</td>
<td>0.550 ppm</td>
<td>0.700 ppm</td>
</tr>
<tr>
<td>AP-1B</td>
<td>N.D.</td>
<td>0.500 ppm</td>
<td>0.750 ppm</td>
</tr>
<tr>
<td>AP-2B</td>
<td>N.D.</td>
<td>0.500 ppm</td>
<td>0.700 ppm</td>
</tr>
<tr>
<td>AP-3B</td>
<td>N.D.</td>
<td>0.500 ppm</td>
<td>0.500 ppm</td>
</tr>
<tr>
<td>AP-4B</td>
<td>N.D.</td>
<td>0.450 ppm</td>
<td>0.500 ppm</td>
</tr>
<tr>
<td>AP-5B</td>
<td>N.D.</td>
<td>0.500 ppm</td>
<td>0.650 ppm</td>
</tr>
</tbody>
</table>

* Results unavailable until 2:00 PM January 29, 1993
FAX will be sent 2:00 PM January 29, 1993
United States Army Environmental Hygiene Agency
Organic Environmental Chemistry Division
Chromatographic Analysis Branch
Report of Analysis

Date Received: 27 JAN 93
Date Extracted: 28 JAN 93
Date Analyzed: 28 JAN 93
Quality Control Number: AP 3027
Procedure: OECD SOP #109.1

SAMPLE RESULTS
parameter and units μg/g

<table>
<thead>
<tr>
<th>AQAD NUMBER</th>
<th>FIELD NUMBER</th>
<th>2,6-DNT</th>
<th>2,4-DNT</th>
<th>2,4,6-TNT</th>
<th>RDX</th>
<th>Tetryl</th>
<th>HMX</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1879</td>
<td>AP1B</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>C1880</td>
<td>AP2B</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
<td>2.1</td>
</tr>
<tr>
<td>C1881</td>
<td>AP3B</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>C1882</td>
<td>AP4B</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>C1883</td>
<td>AP5B</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>C1884</td>
<td>AP5</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
</tr>
</tbody>
</table>

COMMENTS
All analyses were performed by gas chromatograph with electron capture detection.

ANALYST(S) REVIEWED BY:
DAJ, JRS
(DO,

DATE RESULTS REPORTED:

87

End 3
<table>
<thead>
<tr>
<th>SAMPLE NO</th>
<th>RADIUS (FT)</th>
<th>CHLORACETOPHENONE</th>
<th>CYANOCYANIDE</th>
<th>CHLORIDE</th>
<th>PHOSGENE</th>
<th>ARSENIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(ALL UNITS MG/KG)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRE-DETONATION SAMPLES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP1</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2.4</td>
</tr>
<tr>
<td>AP2</td>
<td>10</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1.6</td>
</tr>
<tr>
<td>AP3</td>
<td>20</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1.7</td>
</tr>
<tr>
<td>AP4</td>
<td>30</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1.6</td>
</tr>
<tr>
<td>AP5</td>
<td>50</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1.2</td>
</tr>
<tr>
<td>MEAN</td>
<td></td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1.7</td>
</tr>
<tr>
<td>VAR</td>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.2</td>
</tr>
<tr>
<td>POST-DETONATION SAMPLES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP1B</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2.0</td>
</tr>
<tr>
<td>AP2B</td>
<td>10</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1.6</td>
</tr>
<tr>
<td>AP3B</td>
<td>20</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1.4</td>
</tr>
<tr>
<td>AP4B</td>
<td>30</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1.6</td>
</tr>
<tr>
<td>AP5B</td>
<td>50</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1.9</td>
</tr>
<tr>
<td>MEAN</td>
<td></td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1.7</td>
</tr>
<tr>
<td>VAR</td>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.3</td>
</tr>
<tr>
<td>DETECTION LEVEL</td>
<td></td>
<td>3.83</td>
<td>10.00</td>
<td>3.83</td>
<td>10.88</td>
<td>1.0</td>
</tr>
<tr>
<td>EXCEEDS PRE-DETONATION?</td>
<td></td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td></td>
</tr>
</tbody>
</table>
Enclosure 4 - List of Types or Rounds

<table>
<thead>
<tr>
<th>Type</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 mm</td>
<td>52</td>
</tr>
<tr>
<td>3" Stokes</td>
<td>7</td>
</tr>
<tr>
<td>WP Igniter</td>
<td>20</td>
</tr>
<tr>
<td>Components</td>
<td>3</td>
</tr>
<tr>
<td>Livens</td>
<td>4</td>
</tr>
<tr>
<td>3" Projectile</td>
<td>3</td>
</tr>
<tr>
<td>Smoke Pot</td>
<td>1</td>
</tr>
</tbody>
</table>

Total: 90
TRANSMISSION REPORT

THIS DOCUMENT WAS CONFIRMED
(REduced SAMPLE ABOVE - SEE DETAILS BELOW)

** COUNT **
TOTAL PAGES SCANNED : 2
TOTAL PAGES CONFIRMED : 2

*** SEND ***

<table>
<thead>
<tr>
<th>No.</th>
<th>REMOTE STATION</th>
<th>START TIME</th>
<th>DURATION</th>
<th>#PAGES</th>
<th>MODE</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1451</td>
<td>1-29-93</td>
<td>5:57PM</td>
<td>1 1/8"</td>
<td>2/2</td>
<td>completed</td>
</tr>
</tbody>
</table>

TOTAL 0:01 '18" 2

NOTE:
No. : OPERATION NUMBER 48 : 4800BPS SELECTED EC : ERROR CORRECT G2 : G2 COMMUNICATION
PD : POLLED BY REMOTE SF : STORE & FORWARD R1 : RELAY INITIATE RS : RELAY STATION
MB : SEND TO MAILBOX PG : POLLING A REMOTE VP : MULTI-POLLING RM : RECEIVE TO MEMORY

90

FROM:

OPERATION SAFE REMOVAL
OPERATIONS CENTER

Fax #: (202)282-0728
Phone #: (202)282-0634/0642

FROM:
COL Kenison
Spring Valley, DC

TO:
Mr John Elg
Richmond, VA

Classification: Unclassified
Precedence: Urgent
No. Pages: 2
Date: 3/18/93
Month: 3
Year: 93
Releaser's Signature: [Signature]

We will comply with your request.
Attached is the supplementary info you need.

Regd,
COL Kenison

We are transmitting the remaining documents.
Rounds to be Destroyed
at
Ft AP Hill

75 mm. All 52 rounds contain high explosive.

3" Stokes. All 7 rounds contain high explosive.

WP Igniter. All 20 igniters contain white phosphorus.

Components. All 3 are bursters containing high explosive.

Livens. All 4 have been weighed, x-rayed, pin'ed, heated, and carefully examined such that we are sure the only component is high explosive.

3" Projectile. All 3 contain high explosive.

Smoke Pot. The smoke pot contains a burster with high explosive.
MEMORANDUM FOR RECORD

30 January 1993

SUBJECT: A.P. Hill Demolition Operations AAR

1. On 30 January, 1993, ninety munitions were taken to Range 77 and destroyed by detonation.

2. The sequence of events is as follows:

 a. Upon arrival at Range 77, all equipment and personnel were downloaded and a briefing of the operation was given to all personnel.

 b. While the demolition site was being prepared, the EPA personnel were laying out their sampling plan. Once their work was complete, the unnecessary personnel were directed to the safe area approximately 850 meters upwind of the demolition pits.

 c. I set up the air monitoring equipment approximately 25 meters downwind of the demolition pits.

 d. Once the site preparations were made, the munitions were prepared for disposal. Explosives used are as follows:

 1000 ft. - Detonating Cord
 37 ea - Non-Electric Blasting Caps
 16 ea - Electric Blasting Caps
 571 ea - Demolition Blocks M112 (C-4)

 e. When the explosives were ready for priming, we called for clearance from the State of Virginia and Range Control to prime and detonate the charges. Five sequential shots were used utilizing the MK 122 Remote Firing Device. The composition and time of detonation for each shot is as follows:

 #1 - 7 ea 3" Stokes
 3 ea 3" Projectile
 3 ea HE Components

 1335:00 hrs

 #2 - 4 ea Livens Projectile
 1 ea Smoke Pot

 1336:05 hrs

 #3 - 26 ea 75mm Projectile

 1336:55 hrs

 #4 - 26 ea 75mm Projectile

 1337:40 hrs
SUBJECT: A.P. Hill Demolition Operations AAR 30 January 1993

#5 - 20 ea Igniters 1338:15 hrs

f. Shots #2 and #4 were characteristic of normal high explosive detonations. The debris clouds were normal and no unusual smoke or debris were seen. Shot #1 had a debris cloud that appeared to be either white phosphorous or a smoke compound. It was difficult to distinguish from the firing point. Shot #3 appeared to contain some white phosphorous projectiles based upon the cloud and the lingering phosphorous smell after the shots were cleared. Shot #5 appeared to be white phosphorous residue.

g. SGT J. Johnson and I proceeded down range to check the shots. We approached from upwind and performed gross level checks on each shot hole utilizing the M18A1 chemical detector kit. Tests 2, 4, 5, and 7 were performed. All results were negative. I certified the site clear and allowed for the sampling personnel to proceed down range to retrieve samples.

h. The results of the air samples taken are not yet complete. They are being submitted to the appropriate personnel for analysis. They will be directed to provide the results to the proper authorities upon completion.

i. No scrap or residue was found after detonation.

j. Once all sampling was complete, we departed enroute back to Spring Valley.

3. The operation was safe, efficient, and successful.

4. Demolition personnel were as follows:

 OIC - 2LT Weber (USATEU)
 NCOIC - SSG Ouellette (67th EOD)
 Tech - SSG Martin (USATEU)
 Tech - SSG Simmons (67th EOD)
 Tech - SGT J. Johnson (USATEU)
 Tech - SGT Provost (67th EOD)
 Tech - SPC Depold (67th EOD)

5. POC is 2LT Weber at DSN 584-2526/2561 (HHD, USATEU).

[Signature]
William T. Batt
LTC, CM
Commanding

93
February 1, 1993

John E. Ely
Director
Office of Compliance and Enforcement
Virginia Department of Waste Management
101 North 14th Street
Richmond, VA 23219

Dear Mr. Ely,

This letter provides information regarding the detonation of 90 rounds at Ft. AP Hill on 20 Jan 93 in accordance with the Temporary Emergency Permit to Treat Hazardous Waste issued to Ft. A.P. Hill on 20 Jan 93 and amended on 27 Jan 93.

Enclosure 1 includes a Memorandum for Record prepared by the officer in charge of the detonation. As stated the memo, five separate shots were used. Shots 2 and 4 were characteristic of high explosive detonations. Shots 3 and 5 appeared to be white phosphorus. Shot 1 appeared to the EOD personnel to contain white phosphorus or another smoke material. All rounds in this shot passed the screening criteria established for detonation; solid filled with no chlorine signature. Although there may have been a smoke material in this shot, the smoke fills used during the WWI timeframe which could possibly have been in the rounds would not result in any toxic residue when detonated.

The memo also provides the results of monitoring performed immediately after the detonation. Gross level monitoring at the soil surface for cyanogen chloride (test 2), mustard (test 4), hydrogen cyanide (test 5), and phosgene (test 7) using the M18A1 chemical detector kit was performed after the detonation. The results were negative. Low level air monitoring for mustard using Depot Area Agent Monitoring System (DAAMS) tubes was performed during and after the detonation. The DAAMS tubes were analyzed at the Edgewood RD&E Center and the results were negative.
The emergency phase on the Spring Valley munitions recovery project has ended. You played a key role in allowing proper disposition of the recovered rounds and assuring the safety of the local population. I thank you for your assistance and cooperation.

GEORGE E. FRIEL
BG, USA
Commander,
Service Response Force

OFFICIAL:

CHARLES B. KENISON
COL, MS
Dir, Special Staff
MEMORANDUM FOR RECORD

30 January 1993

SUBJECT: A.P. Hill Demolition Operations AAR

1. On 30 January, 1993, ninety munitions were taken to Range 77 and destroyed by detonation.

2. The sequence of events is as follows:

 a. Upon arrival at Range 77, all equipment and personnel were downloaded and a briefing of the operation was given to all personnel.

 b. While the demolition site was being prepared, the EPA personnel were laying out their sampling plan. Once their work was complete, the unnecessary personnel were directed to the safe area approximately 850 meters upwind of the demolition pits.

 c. I set up the air monitoring equipment approximately 25 meters downwind of the demolition pits.

 d. Once the site preparations were made, the munitions were prepared for disposal. Explosives used are as follows:

 1000 ft. - Detonating Cord
 37 ea - Non-Electric Blasting Caps
 16 ea - Electric Blasting Caps
 571 ea - Demolition Blocks M112 (C-4)

 e. When the explosives were ready for priming, we called for clearance from the State of Virginia and Range Control to prime and detonate the charges. Five sequential shots were used utilizing the MK 122 Remote Firing Device. The composition and time of detonation for each shot is as follows:

 #1 - 7 ea 3" Stokes
 3 ea 3" Projectile
 3 ea HE Components
 1335:00 hrs

 #2 - 4 ea Livens Projectile
 1 ea Smoke Pot
 1336:05 hrs

 #3 - 26 ea 75mm Projectile
 1336:55 hrs

 #4 - 26 ea 75mm Projectile
 1337:40 hrs
SUBJECT: A.P. Hill Demolition Operations AAR 30 January 1993

#5 - 20 ea Igniters 1338:15 hrs

f. Shots #2 and #4 were characteristic of normal high explosive detonations. The debris clouds were normal and no unusual smoke or debris were seen. Shot #1 had a debris cloud that appeared to be either white phosphorous or a smoke compound. It was difficult to distinguish from the firing point. Shot #3 appeared to contain some white phosphorous projectiles based upon the cloud and the lingering phosphorous smell after the shots were cleared. Shot #5 appeared to be white phosphorous residue.

g. SGT J. Johnson and I proceeded down range to check the shots. We approached from upwind and performed gross level checks on each shot hole utilizing the M18A1 chemical detector kit. Tests 2, 4, 5, and 7 were performed. All results were negative. I certified the site clear and allowed for the sampling personnel to proceed down range to retrieve samples.

h. The results of the air samples taken are not yet complete. They are being submitted to the appropriate personnel for analysis. They will be directed to provide the results to the proper authorities upon completion.

i. No scrap or residue was found after detonation.

j. Once all sampling was complete, we departed enroute back to Spring Valley.

3. The operation was safe, efficient, and successful.

4. Demolition personnel were as follows:

OIC - 2LT Weber (USATEU)
NCOIC - SSG Ouellette (67th EOD)
Tech - SSG Martin (USATEU)
Tech - SSG Simmons (67th EOD)
Tech - SGT J. Johnson (USATEU)
Tech - SGT Provost (67th EOD)
Tech - SFC Depold (67th EOD)

5. POC is 2LT Weber at DSN 584-2526/2561 (HHD, USATEU).

William T. Batt
LTC, CM
Commanding
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator's Name and Mailing Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERVICE RESPONSE FORCE - OPERATION SAFE REMOVAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5015 WABASH ST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WASHINGTON, D.C. 20016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generator's Phone</td>
<td>(301) 334-1230</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTNY: IAM568-CG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MD-21010-5423</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transporter 1 Company Name</td>
<td>Left-hand EOD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transporter 2 Company Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Designated Facility Name and Site Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORT A.P. HILL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTNY: AKA-PHE-F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOWLING GREEN, VA 22117</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W4-221-00-00-20-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(804) 633-8255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US DOT Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WASTE PROJECTILE, CLASS 1.1F, UN0167</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>001 CR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.28 P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handling Codes for Waste Listed Above</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional Descriptions for Materials Listed Above</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Handling Instructions and Additional Information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Generator's Certificate:
I hereby declare that the contents of this container are fully and accurately described above by proper shipping name, and are classified,
packed, marked, and labeled, and are in all respects proper container for transport by carrier.

If I am a large quantity generator, I certify that I have a program in place to reduce the volume and toxicity of waste generated to the degree I have determined to be
economically practicable, and that I have selected the practicable method of treatment, storage or disposal currently available to me which minimizes the present and future
threat to human health and the environment. OR, if I am a small quantity generator, I have made a good faith effort to minimize my waste generation and select the best
waste management method that is available to me and that I can afford.

Printed/Typewritten Name:
JAMES L. BACON

Month Day Year:
10/12/93

Transporter 1 Acknowledgement of Receipt of Materials

Transporter 2 Acknowledgement of Receipt of Materials

Discrepancy Indication Space

Facility Owner or Operator: Certification of receipt of hazardous materials covered by this manifest except as noted in item 19

Printed/Typewritten Name:

Month Day Year:

LAND DISPOSAL RESTRICTION NOTIFICATION/CERTIFICATION
(A separate form is required for each approved waste)

Generator Name: Service Response Force - CDR Safe Room
Approval Code: NONE
Generator EPA ID Number: DEP 0001 1090 Manifest Number: <CPOO1>

This form is submitted in accordance with the regulations published by EPA in CFR 268, which govern the land disposal of certain untreated hazardous wastes. In accordance with the waste analysis and record keeping requirements specified in 40 CFR 268.1. I have marked the appropriate box below which indicates how my waste must be managed to conform to the land disposal restrictions. The applicable treatment standards for the 77 solvent and California Listed wastes is based on the back of this form. Treatment standards for all other waste codes and/or categories can be found in 40 CFR 268 regulations, section 268.41, 268.42, and/or 268.43.

This waste is a Non-Wastewater unless this box is checked indicating wastewater.

<table>
<thead>
<tr>
<th>EPA Waste Code</th>
<th>Constituent of concern</th>
<th>Treatment Standard Reference and/or Treatment & Letter</th>
<th>BOAT Treatment Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>methylene chloride</td>
<td>261.21.3(3)(2)</td>
<td>K</td>
</tr>
<tr>
<td>2003</td>
<td>methylene chloride</td>
<td>261.22.3(3)(6)(9)</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. Restricted Waste Requires Treatment

I am the generator of an untreated waste identified above which must be treated to the appropriate treatment standard set forth in 40 CFR 268 Subpart D.

B. Restricted Waste Treated to Performance Standards

The waste identified above has been treated in compliance with the applicable performance standards specified in 40 CFR 268 Subpart D. The treatment residuals were tested and have been found to meet the performance standards specified in 40 CFR Subpart D 268.41 or 268.42.

"I certify under penalty of law that I have personally examined and am familiar with the treatment technology and operation of the process used to support the certification that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the treatment process has been operated and maintained properly so as to comply with the performance levels specified in 40 CFR 268. Subpart D and all applicable provisions set forth in 40 CFR 268.32 or RCPA section 300.4 without dilution of the prohibited waste. I am aware that there are significant penalties for submitting a false certification, including the possibility of a fine and imprisonment."

C. Restricted Waste Treated by Specified Technology

"I certify under penalty of law that the waste has been treated in accordance with the requirements of 40 CFR 268.42. I am aware that there are significant penalties for submitting a false certification, including the possibility of a fine and imprisonment."

D. Restricted Waste Meets Treatment Standards Without Prior Treatment

The waste identified above naturally meets the performance standards of 40 CFR 268 Subpart D or 268.32 without any treatment being performed.

"I certify under penalty of law that I have personally examined and am familiar with the waste analysis and testing of the waste to support the certification that the waste complies with the treatment standards specified in 40 CFR Part 268 Subpart D. I believe that the information I submitted is true, accurate, and complete. I am aware that there are significant penalties for submitting a false certification, including the possibility of a fine and imprisonment."

E. Restricted Waste Subject to a Variance

The waste identified is not banned from land disposal in units meeting applicable technology standards since it is subject to a national capacity variance, a treatability variance, or a case-by-case extension which will expire date indicated above.

F. I certify under penalty of law that I have personally examined and am familiar with the waste and that the lab pack contains only the wastes specified in Appendix IV to Part 268 or solid wastes not subject to regulations under 40 CFR Part 268. I am aware that there are significant penalties for submitting a false certification, including the possibility of a fine and imprisonment.

G. I certify under penalty of law that I have personally examined and am familiar with the waste through analysis and testing of the waste and that the lab pack contains only organic waste as specified in Appendix IV to Part 268 or solid waste not subject to regulations under 40 CFR Part 268. I am aware that there are significant penalties for submitting a false certification, including the possibility of a fine and imprisonment.

Signature: James R. Busch
Dep On Scene Coordinator
UNIFORM HAZARDOUS WASTE MANIFEST

<table>
<thead>
<tr>
<th>1. Generator's US EPA ID No</th>
<th>2. Page 1 of 1</th>
<th>Information in the shaded areas is not required by Federal law.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.C.0000001,69,050,000,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Generator's Name and Mailing Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE RESPONSE FORCE-OPERATION, SAFE REMOVAL</td>
</tr>
<tr>
<td>5015 WAREEN ST.</td>
</tr>
<tr>
<td>WASHINGTON, D.C. 20016</td>
</tr>
</tbody>
</table>

| 4. Generator's Phone (202) 222-2445 |

<table>
<thead>
<tr>
<th>5. Transporter 1 Company Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOD</td>
</tr>
</tbody>
</table>

| 6. US EPA ID Number 3-21.00.00.10.0.04 |

<table>
<thead>
<tr>
<th>7. Transporter 2 Company Name</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8. US EPA ID Number</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9. Designated Facility Name and Site Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORT APHILL</td>
</tr>
<tr>
<td>ATTN: RFPA-FRE-F</td>
</tr>
<tr>
<td>BOWLING GREEN, VA. 22427</td>
</tr>
<tr>
<td>304-433-2755</td>
</tr>
</tbody>
</table>

| 10. US EPA ID Number 3-221.00.00.4-0.1.0.6 |

<table>
<thead>
<tr>
<th>11. US DOT Description (Including Proper Shipping Name, Hazard Class, and ID Number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. WASTE PROJECTILE, UN0167, CLASS 1.1F</td>
</tr>
<tr>
<td>01.7 CWT: 1.357</td>
</tr>
<tr>
<td>b. AMMUNITION, SMOKE, WHITE PHOSPHOROUS, 1.2H</td>
</tr>
<tr>
<td>0.02 DM: 0.370</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Additional Descriptions for Materials Listed Above</th>
</tr>
</thead>
</table>

| 16. GENERATOR'S CERTIFICATION: I hereby declare that the contents of this container are fully and accurately described above. |

<table>
<thead>
<tr>
<th>Printed/Typed Name</th>
<th>Signature</th>
<th>Month Day Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAMES L. BACON</td>
<td></td>
<td>10/13/93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Transporter 1 Acknowledgment of Receipt of Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printed/Typed Name</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Transporter 2 Acknowledgment of Receipt of Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printed/Typed Name</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. Discrepancy Indication Space</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>20. Facility Owner or Operator: Certification of receipt of hazardous materials covered by this manifest except as noted in Item 19.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printed/Typed Name</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

GENERATOR'S COPY

100
LAND DISPOSAL RESTRICTION NOTIFICATION/CERTIFICATION

This form is submitted in accordance with the regulations published by EPA in CFR 268, which govern the land disposal of certain untreated hazardous wastes. In accordance with the waste analysis and record keeping requirements specified in 40 CFR 268.1, I have marked the appropriate box below which indicates how my waste must be managed to conform to the land disposal restrictions. The applicable treatment standards for the "F" Series and California Listed waste is based on the back of this form. Treatment standards for all other waste codes and categories can be found in 40 CFR 268 regulations, section 268.41, 268.43, and 268.43.

This waste is a Non-Wastewater unless this box is checked indicating wastewater.

<table>
<thead>
<tr>
<th>EPA Waste Code</th>
<th>Category/Subcategory and/or Constituent of concern</th>
<th>Treatment Standard Reference and/or Treatment & Letter</th>
<th>Variance Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECID</td>
<td>IGNITABLE EXPLOSIVE, PYROGENIC EXPLOSIVE</td>
<td>261.211 (072)</td>
<td></td>
</tr>
<tr>
<td>Dec 063</td>
<td>IGNITABLE EXPLOSIVE, PYROGENIC EXPLOSIVE</td>
<td>261.211 (072)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. Restricted Waste Requires Treatment

I am the generator of an untreated waste identified above which must be treated to the appropriate treatment standard set forth in 40 CFR 268 Subpart D.

B. Restricted Waste Treated to Performance Standards

The waste identified above has been treated in compliance with the applicable performance standards specified in 40 CFR 268 Subpart D. The treatment residues were tested and have been found to meet the performance standard specified in 40 CFR Part 268.41 or 268.43.

C. Restricted Waste Treated by Specified Technology

"I certify under penalty of law that I have personally examined and am familiar with the treatment technology and operation of the process used to support this certification and that, based on the scrutiny of those individuals immediately responsible for obtaining this information, I believe that the treatment process has been conducted and maintained properly so as to comply with the performance levels specified in 40 CFR 268 Subpart D and all applicable provisions set forth in 40 CFR 268.35 or RCRA section 3004(d) without dilution of the prohibited waste. I am aware that there are significant penalties for submitting a false certification, including the possibility of fine and imprisonment."

D. Restricted Waste Meets Treatment Standards Without Prior Treatment

The waste identified above naturally meets the performance standards of 40 CFR 268 Subpart D or 40 CFR 268.35 without any treatment being performed.

E. Restricted Waste Subject to a Variance

The waste identified is not banned from land disposal in units meeting minimum technology standards since it is subject to a national capacity variance, a treatability variance, or a case-by-case extension which will expire date indicated above.

F. I certify under penalty of law that I have personally examined and am familiar with the waste and that the lab pack contains only the wastes specified in Appendix VI to part 268 or solid waste not subject to regulation under 40 CFR part 268. I am aware that there are significant penalties for submitting a false certification, including the possibility of fine or imprisonment.

G. I certify under penalty of law that I have personally examined and am familiar with the waste through analysis and testing or through knowledge of the waste and that the lab pack contains only organic waste specified in Appendix VI to Part 268 or solid waste not subject to regulation under 40 CFR part 268. I am aware that there are significant penalties for submitting a false certification, including the possibility of fine or imprisonment.

Signature: James L. Flaugher
Date: 1/30/93

101
APPENDIX D - SAMPLE ROUNDS TAKEN TO ERDEC FOR DRILLING, SAMPLING, AND ANALYSIS

OPERATION SAFE REMOVAL
Subject: Sample Rounds Taken to ERDEC for Drilling, Sampling, and Analysis

1. Situation: The SRF needed to take a representative sample of recovered rounds to ERDEC for drilling, sampling, and analysis. The purpose was to gain information on the possible fills for the community and the Phase II commander and for validation of the PINS data.

2. Environmental Regulatory Requirements:
 a. On 14 Jan, Maryland Department of the Environment (MDE) officials were requested to allow the shipment of a limited number of rounds representative of the total recovered to ERDEC for drilling, sampling, and analysis. They initially displayed reluctance and requested detailed information about the reason for the request and the specific plans for the rounds. An information paper was prepared and sent on 14 Jan. Friday, 15 Jan was a state holiday and one person was designated to work the issue. Late in the day, approval had still not been granted and the POC was not in his office. The SRF Commander requested intervention by Mr. D. Walker who contacted MDE officials. At approximately 2000 hrs, approval was finally granted to ship three rounds on 16 Jan 93.

 b. MDE Officials determined that the action was excluded from hazardous waste regulations under the exemption for samples (COMAR26.13.02.04D). Accordingly, a hazardous waste manifest was not required and other hazardous waste storage and shipment requirements did not apply.

 c. The following week, the need to ship additional rounds to ERDEC for sampling became apparent. In order to provide information to the MDE officials to foster their continued support of actions requiring interaction with and/or approval by MDE, a visit to the site was arranged on 25 Jan.

 d. Mr. Butch Dye visited the site and gave interim approval to ship 5 additional rounds to ERDEC. The shipment was scheduled for 29 Jan. At the last minute, an additional round was added to the list to go to ERDEC and Mr. Dye granted final approval for shipment of 6 rounds.
From the:

OPERATION SAFE REMOVAL

OPERATIONS CENTER

Fax #: (202)282-0728
Phone #: (202)282-0634/0642

<table>
<thead>
<tr>
<th>Classification</th>
<th>Precedence</th>
<th>No. Pages (Incl. Header)</th>
<th>Date-Time</th>
<th>Month</th>
<th>Year</th>
<th>Releaser's Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td></td>
<td>7</td>
<td>151735</td>
<td>Jan</td>
<td>93</td>
<td>J. Miller</td>
</tr>
</tbody>
</table>

REMARKS

MR. Collins - Understood this is not the ordinary way but I'm dealing with some tough issues with DHHS, OSHA & EPA. To make sure we protect our workers & the public at Spring Valley, Wash DC. I need contents of munitions ASAP.

Must fly these munitions Saturday to get my answers. Please help & approve tonight.

[Signature]
OPERATION SAFE REMOVAL

1. The U.S. Army is presently involved in an assessment and removal of buried munitions located in a northwest Washington D.C. development known as "Spring Valley". The location is densely populated and the burial site is located amidst publicly owned housing. Once the imminent hazard is removed, the site will be turned over to the Army Corps of Engineers for further evaluation and possible remediation.

2. The munitions found so far appear to be of two general types: solid-filled and liquid-filled. Historical documentation indicates that of the known fills of these types of munitions, the solid fill was either a high explosive, a lacrimator, or an incendiary. Those containing a liquid, however, are not easily categorized. Suspected fills of these munitions are such that normal non-destructive testing is inconclusive in rendering positive identification.

3. In order to positively identify the contents of the munitions and provide information essential to site remediation, a representative sample of these munitions must be drilled, sampled and analyzed. This information is of great interest to the D.C. government, the local population, and the Corps of Engineers.

4. The Army has carried out drill and assessment operations many times in the past as part of a continuing effort to track the purity of its chemical stockpile. These assessments, however, are no longer performed due to the imminent disposal of the stockpile. As the Army's Center for Chemical Excellence at Edgewood Research Development and Engineering Center (ERDEC) in Edgewood, Maryland performs assessments of all types of chemical samples and material. The unique facilities located at ERDEC also make possible the assessing of chemical filled munitions in a safe manner. These facilities are equipped and prepared to perform the evaluation of the rounds at the present time. No other Army installation could support this action in a timely fashion. Although they could eventually develop the capability, the time delay would be unacceptable.

5. In order to perform the assessment, the following will occur:

1) A representative sample of each caliber of liquid-filled munition will be selected. Selection criteria consists of visual identification and X-ray examination to ascertain explosive content.

2) The selected munitions will then be overpacked in approved, sealed shipping containers and loaded on a UH1H rotary wing aircraft for transport to ERDEC (see attached map).

3) Upon arrival at ERDEC, the munitions will be transported from Weide Army Airfield to an approved surety operating location.
Upon arriving, the munitions will be subjected to a Portable Isotopic Neutron Spectroscopy (PINS), a non-invasive detector. Use of this equipment on these rounds will add to the development of this emerging technology.

4) Once the evaluation by the PINS is completed, the munitions will be placed in a freezer and chilled overnight to approximately 0 degrees F.

5) After a minimum of 10 hours of 0 degrees F, one munition will be moved to the drilling site. The overpack will be removed and the munition will be placed in the drilling apparatus.

6) A sample of the contents will be drawn and sent to an ERDEC lab for analysis. The remaining contents will be transferred into DOT approved bottles.

7) Disposition of the empty munitions will be determined based on the analysis of the contents and will be coordinated with MDE in advance.

8) Disposition of the contents will be determined based on the results of the analysis and will be coordinated with MDE in advance.

It is anticipated that once the rounds are received, they will be refrigerated overnight then they will be evaluated by the PINS, sampled, and analyzed within the next 5 days. Determination of waste disposition will be coordinated soon after results are received.

GEORGE E. FATEL
BG, USA
On-Site Coordinator
OPERATION SAFE REMOVAL
Subject: Rounds to be Sent to ERDEC on 29 Jan 93

1. We have tentatively identified 5 rounds to be sent to ERDEC on Friday, 29 Jan 93 for drilling, sampling, and analysis. They are:

<table>
<thead>
<tr>
<th>Round Number</th>
<th>Type</th>
<th>Fill State</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>75mm</td>
<td>liquid when heated</td>
</tr>
<tr>
<td>90</td>
<td>75mm</td>
<td>liquid</td>
</tr>
<tr>
<td>87</td>
<td>livers</td>
<td>liquid</td>
</tr>
<tr>
<td>113</td>
<td>75mm</td>
<td>liquid when heated</td>
</tr>
<tr>
<td>142</td>
<td>75mm</td>
<td>liquid when heated</td>
</tr>
</tbody>
</table>

2. Rounds 87 and 142 have been shown to be free of explosives. Evaluation of the other three rounds is continuing. Only rounds certified by the Cdr, TEU to be free of explosives will be shipped. Any of these rounds which cannot be certified free of explosives will not be sent to ERDEC.

3. The rounds will be transported to APG on an Army helicopter operated by Army pilots. The helicopter is scheduled to depart Spring Valley with the rounds at 1330 hr and to arrive at Weide Airfield in the Edgewood Area of APG at 1430 hrs.

4. The drilling operation will be performed in the CTF in the same manner as the previous drilling operation.

Teresa M Mann

107
OPERATION SAFE REMOVAL

Subject: Shipment of Rounds to ERDEC, 29 Jan 93

1. Reference Telephone Conversation with Butch Dye, MDE, 1650 hrs., Thur, 28 Jan 93.

2. Mr. Dye grants final approval for the shipment of up to 5 rounds to ERDEC on 29 Jan 93. He requests a phone call prior to the shipment to confirm the number of rounds. I will call him.

Teresa M. Mann
OPERATION SAFE REMOVAL
Subject: Rounds to be Sent to ERDEC on 29 Jan 93

1. We identified 6 sample rounds which were sent to ERDEC on Friday, 29 Jan 93 for drilling, sampling, and analysis. They are:

<table>
<thead>
<tr>
<th>Round Number</th>
<th>Type</th>
<th>Fill State</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>75mm</td>
<td>liquid when heated</td>
</tr>
<tr>
<td>90</td>
<td>75mm</td>
<td>liquid</td>
</tr>
<tr>
<td>87</td>
<td>livens</td>
<td>liquid</td>
</tr>
<tr>
<td>113</td>
<td>75mm</td>
<td>liquid when heated</td>
</tr>
<tr>
<td>142</td>
<td>75mm</td>
<td>liquid when heated</td>
</tr>
<tr>
<td>147</td>
<td>4.7"</td>
<td>small amount of liquid</td>
</tr>
</tbody>
</table>

2. All rounds were certified by the Cdr, TEU to be free of explosives.

3. The rounds were transported to APG on an Army helicopter operated by Army pilots. The helicopter departed Spring Valley with the rounds at 1230 hr and arrived at Weide Airfield in the Edgewood Area of APG at 1325 hrs.

4. The drilling operation will be performed in the CTF in the same manner as the previous drilling operation.
OPERATION SAFE REMOVAL

Subject: Sixth Round to ERDEC

29 Jan 93

1. Reference two telephone conversations with Butch Dye, MDE at 1023 hrs and 1028 hrs on Friday, 29 Jan 92.

2. Mr. Dye approved my request to allow a 6th round, a 4.7" mortar, to be sent to ERDEC today with the shipment of the 5 rounds previously approved for shipment. Mr. Dye requested a memo showing the new list of rounds going to ERDEC.

[Signature]
APPENDIX E - DISPOSAL OF MISCELLANEOUS WASTE

OPERATION SAFE REMOVAL
PLAN FOR DISPOSAL OF MISCELLANEOUS WASTES

1. Spent Decon Solutions

a. Bleach was used to decon equipment and personnel that were in the recovery site. Potential contaminants of concern which may have been deconned with this solution are lewisite and mustard. This SPENT DECON SOLUTION will be tested for the presence of arsenic and the pH will be measured. It will then be disposed of by a chemical waste contractor, Chemical Waste Management, Inc., under an existing contract with Aberdeen Proving Ground.

b. If the arsenic level is below the RCRA TCLP limit of 5 ppm and the pH is less than 12.5, it will be disposed of as non-hazardous industrial wastewater. If the arsenic level is above the RCRA TCLP limit of 5 ppm or the pH is greater than or equal to 12.5, it will be disposed of by the contractor as hazardous waste with the appropriate hazardous waste codes.

2. Disposable PPE.

a. Disposable personal protective equipment was worn by workers in the recovery site. Potential contaminants of concern are lewisite and mustard. Gaseous materials are not of concern because they are not expected to remain on the PPE even if they come in contact with it. After use, the disposable PPE will be bagged, warmed to 70 degrees, and air space monitored (bubbled) for mustard and lewisite.

b. If the monitoring meets the requirements for 3X, the disposable PPE will be disposed of by a chemical waste contractor, Chemical Waste Management, under an existing contract with Aberdeen Proving Ground. If the monitoring does not meet the requirements for 3X, the disposable PPE will be chemically decontaminated, rinsed, dried, rebagged, warmed, and remonitored. Spent decon solution will be managed as in #1 above. Procedures in #2 will be repeated until the PPE is certified 3X.

3. Reusable PPE.

a. Reusable personal protective equipment was used by workers in the recovery site. Potential contaminants of concern are lewisite and mustard. The reusable PPE will be bagged, warmed to 70 degrees, and air space monitored (bubbled) for mustard and lewisite.

b. If the monitoring meets the requirements for 3X, the reusable PPE will be issued for reuse. If the monitoring does not meet the requirement for 3X, the reusable PPE will be chemically
decontaminated, rinsed, dried, rebagged, warmed, and remonitored. Spent decon solution will be managed as in #1 above. Procedures in #3 will be repeated until the PPE is certified 3X. If deemed necessary, PPE may be disposed of by the chemical waste contractor once it is certified to the 3X level.

4. Large Equipment.

Various pieces of large equipment including a backhoe, vehicles, tents, etc were present beyond the hotline. Of these, only the backhoe was in the immediate vicinity of the pit and in contact with the dirt in the pit. Air monitoring of the entire area has shown no contamination. Therefore, the vehicles other than the backhoe are known not to be contaminated. Additional investigation will be conducted on the status of the backhoe. Samples of the dirt on the backhoe will be taken and analyzed for lewisite and mustard. Soil samples from the pit are also being analyzed for lewisite and mustard.

If all samples of soil from the pit and the backhoe are within acceptable limits, the backhoe itself was not contaminated and it will be released to the owner.
1. Spent Decon Solutions. Bleach was determined to be free of arsenic and was disposed of by a chemical waste contractor, Chemical Waste Management, Inc, under an existing contract with Aberdeen Proving Ground.

2. Disposable PPE. In all cases, the monitoring meet the requirements for 3X and the disposable PPE was disposed of by a chemical waste contractor, Chemical Waste Management, under an existing contract with Aberdeen Proving Ground.

3. Reusable PPE. In all cases, the monitoring meets the requirements for 3X and the reusable PPE will be issued for reuse.

4. Large Equipment. Samples of the dirt on the backhoe and all air monitoring samples were free of Lewisite and mustard and all equipment was released for reuse.
Chemical Waste Management, Inc. BC 8907
WASTE PROFILE

Check here if this is a Recertification

LOCATION OF ORIGINAL

ERAL / EML

MAD

GENERAL INFORMATION
1. GENERATOR NAME: OPERATION SAFE REMOVAL / U.S. ARMY
 Generator USEPA ID: DCP000001690
2. Generator Address: 36600811
 Generator E-mail: Same
 CHEMICAL AND BIOLOGICAL DEFENSE AGENCY
 CHEMICAL WASTE MANAGEMENT
 P.O. BOX 96
 WASHINGTON, D.C. 20006
 SEALEDON, VA 22547
3. Technical Contact/Phone: TERRY VANN (202) 282-0728
4. Alternate Contact/Phone: DAVID MARTIN (703) 775 9000

PROPERTIES AND COMPOSITION
5. Process Generating Waste: DISCHARGING OF ARMY SHELLS DURING WORLD WAR I AT TEST SITE
6. Waste Name: EMPTY DISCHARGED BOTTOM HALF OF U.S. ARMY SHELLS, SCRAP METAL, AND DEBRIS

7A. Is this a USEPA hazardous waste (40 CFR Part 261)? Yes [X] No []
 B. Identify ALL USEPA listed and characteristic waste code numbers (D,F,K,P,V): D004, D008, D011

State Waste Codes:

B. Single Layer [] Multi-layer []
C. Free liquid range 0 to 0 %

9A. pH Range: to or Not applicable [X] B. Strong Odor: describe NA

11. CHEMICAL COMPOSITION: List ALL constituents (including inorganic organics) present in any concentration and forward available analysis:

 Constituents
 Range Units

 SCRAP METAL
 DEBRIS (SOIL, ROCK, PLASTIC)
 WOOD

 NOTE: MATERIAL IN SHELL CASING WAS HISTORICALLY MANUFACTURED WITH LEAD AND SILVER.
 ALSO THE AGENT THAT WAS IN THE SHELLS CONTAINED A TRACE AMOUNT OF ARSENIC.
 THEREFORE THE ARMY REQUESTS THE CODES OF D004, D008, D011.

 TOTAL COMPOSITION MUST EQUAL OR EXCEED 100%

12. OTHER: PCBs if yes, concentration ppm, PCBs regulated by 40 CFR 781 [X] Pyrophoric [] Explosive [] Radiactive []
 Benzene if yes, concentration ppm. Shock Sensitive [X] Oxidizer [] Carcinogenic [] Infectious [] Other:

13. If the waste is subject to the land ban and meets the treatment standards, check here, and supply analytical results where applicable:

SHIPPING INFORMATION
14. PACKAGING: Bulk Solid [X] Bulk Liquid [] Drum [] Type/Size: Other [] ROLL OFFS
15. ANTICIPATED ANNUAL VOLUME: MAXIMUM OR 3 Units ROLL OFFS. Shipping Frequency: ONE TIME ONLY

SAMPLING INFORMATION
16a. Sample source (drum, lagoon, pond, tank, etc.): NO SAMPLE REQUIRED DUE TO THE MATERIAL BEING DEBRIS

 Date Sampled: Signature:
 Sampler's Name/Company:

16b. Generator's Agent Supervising Sampling: [] No sample required (See Instructions.)

GENERATOR'S CERTIFICATION
I hereby certify that all information submitted in this and all attached documents contains true and accurate descriptions of this waste. Any sample submitted is representative of the material as defined in 40 CFR 261. I authorize CWM to obtain a sample from any waste and usage for purposes of recertification.

Signature: TERESA M. MANN
Printed or typed Name and Title: Environ Consultant
Date: 12/30/93
GENERATOR'S CERTIFICATION

I hereby certify on behalf of **OPERATION SAFE REMOVAL, U.S. Army** (Company Name), (hereinafter for convenience called "Generator"), by my signature and as a duly authorized representative of Generator, that the attached is an analysis of and information regarding waste originating from the Generator's facility located at ____________________________ (Location).

I further certify that the attached analysis and information is provided in compliance with ADEM Administrative Code Rules 335-14-3-.08, and that Chemical Waste Management has been duly authorized by the Generator to submit the attached information, and this certification where appropriate, in behalf of the Generator and in compliance with the aforementioned regulation.

I further certify, under penalty of law, that this document and all attachments were prepared under my authorization, direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment for knowing violations.

The Generator understands that any approval by the Department of Environmental Management for disposal of any waste described by the submitted information shall not relieve the Generator from liability for compliance with all other applicable statutes and regulations regarding the management of hazardous wastes.

(Signature For Generator)

By: ____________________________
(Print or type name)

Its: ____________________________
(Title of individual whose signature appears above)

Date: 12 Jan 93
(Date on which this document is executed)
<table>
<thead>
<tr>
<th>3. Generator's Name and Mailing Address</th>
<th>NY B 449844 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Response Force-Operation Safe Removal</td>
<td>SAME</td>
</tr>
<tr>
<td>5015 Warren st. Washington, DC 20016</td>
<td>SAME</td>
</tr>
<tr>
<td>4. Generator's Phone</td>
<td>SAME</td>
</tr>
<tr>
<td>5. Transporter 1 (Company Name)</td>
<td>SAME</td>
</tr>
<tr>
<td>6. US EPA ID Number</td>
<td>SAME</td>
</tr>
<tr>
<td>7. Transporter 2 (Company Name)</td>
<td>SAME</td>
</tr>
<tr>
<td>8. US EPA ID Number</td>
<td>SAME</td>
</tr>
<tr>
<td>9. Designated Facility Name and Site Address</td>
<td>SAME</td>
</tr>
<tr>
<td>10. US EPA ID Number</td>
<td>SAME</td>
</tr>
<tr>
<td>11. US DOT Description (Including Proper Shipping Name, Hazard Class and ID Number)</td>
<td>SAME</td>
</tr>
<tr>
<td>a. EQ HAZARDOUS WASTE CDL, O.C. CM-E</td>
<td>Y</td>
</tr>
<tr>
<td>b.</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td></td>
</tr>
<tr>
<td>12. Containers</td>
<td></td>
</tr>
<tr>
<td>13. Total Quantity</td>
<td></td>
</tr>
<tr>
<td>14. Unit Weight</td>
<td></td>
</tr>
<tr>
<td>L. Waste No.</td>
<td></td>
</tr>
<tr>
<td>a. EQ WASTE CDL, O.C. CM-E</td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td></td>
</tr>
<tr>
<td>K. Handling Code for Wastes Listed Above</td>
<td>L</td>
</tr>
<tr>
<td>15. Special Handling Instructions and Additional Information</td>
<td></td>
</tr>
<tr>
<td>a. EQ WASTE CDL, O.C. CM-E</td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td></td>
</tr>
<tr>
<td>16. GENERATOR'S CERTIFICATION:</td>
<td></td>
</tr>
<tr>
<td>a. The contents of this container are fully and accurately described above by proper shipping name and are</td>
<td></td>
</tr>
<tr>
<td>classified packed, marked and labeled and are in all respects in proper condition for</td>
<td></td>
</tr>
<tr>
<td>transportation by highway in accordance with the applicable regulations and statutes of</td>
<td></td>
</tr>
<tr>
<td>the states and regulatory agencies</td>
<td></td>
</tr>
<tr>
<td>b. I declare that I am a small generator and have made a good faith effort to minimize my waste and select the</td>
<td></td>
</tr>
<tr>
<td>best waste management methods that is available to me and that I can afford</td>
<td></td>
</tr>
<tr>
<td>Printed/Typed Name</td>
<td></td>
</tr>
<tr>
<td>Printed/Typed Name</td>
<td></td>
</tr>
<tr>
<td>Printed/Typed Name</td>
<td></td>
</tr>
<tr>
<td>17. Transporter 1. Acknowledgment or Receipt of Materials</td>
<td></td>
</tr>
<tr>
<td>Printed/Typed Name</td>
<td></td>
</tr>
<tr>
<td>18. Transporter 2. Acknowledgment or Receipt of Materials</td>
<td></td>
</tr>
<tr>
<td>Printed/Typed Name</td>
<td></td>
</tr>
<tr>
<td>19. Discrepancy Indication Space</td>
<td></td>
</tr>
<tr>
<td>Facility Owner or Operator Certification of correctness of hazardous materials covered by this manifest except as noted in Item 19</td>
<td></td>
</tr>
<tr>
<td>Printed/Typed Name</td>
<td></td>
</tr>
<tr>
<td>Printed/Typed Name</td>
<td></td>
</tr>
<tr>
<td>Printed/Typed Name</td>
<td></td>
</tr>
</tbody>
</table>
I. Is this waste a non-wastewater or a wastewater? (See 40 CFR 268.2) Check ONE \(\square \) Non-Wastewater \(\square \) Wastewater

2. If this waste is subject to any California List restrictions enter the letter from below (either A, B1, or B2) next to each restriction that is applicable:

A. HOCs, B. PCBs, C. Acid, D. Metals, E. Cyanides.

3. Identify ALL USEPA hazardous waste codes that apply to this waste shipment, as defined by 40 CFR 261. For each waste code, identify the corresponding subdivision, or check NONE if the waste code has no subdivision. Also check which treatment standards apply. Spent solvent and California List treatment standards are listed on the back of this form. If F039, multi-source leachate applies, those standards must be attached by the generator.

<table>
<thead>
<tr>
<th>REF</th>
<th>US EPA HAZARDOUS WASTE CODE(S)</th>
<th>SUBDIVISION</th>
<th>APPLICABLE TREATMENT STANDARDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D004</td>
<td>None</td>
<td>268.41(a), 268.43(a), 268.42(a)</td>
</tr>
<tr>
<td>2</td>
<td>D008</td>
<td>None</td>
<td>268.41(a), 268.43(a), 268.42(a)</td>
</tr>
<tr>
<td>3</td>
<td>D011</td>
<td>None</td>
<td>268.41(a), 268.43(a), 268.42(a)</td>
</tr>
</tbody>
</table>

To list additional USEPA waste code(s) and subcategory(s), use the supplemental sheet provided (CWM-2001-B) and check here: \(\square \)

HOW MUST THE WASTE BE MANAGED? In column 7 above, enter the letter (A, B1, B2, B3, C, or D) below that describes how the waste must be managed to comply with the land disposal regulations (40 CFR 268.7). Please understand that if you enter the letter B1, B2, B3, or D, you are making the appropriate certification as provided below:

A. RESTRICTED WASTE REQUIRES TREATMENT
This waste must be treated to the applicable treatment standards set forth in 40 CFR Part 268 Subpart D, 268.32, or RCRA Section 3004(d).

B.1 RESTRICTED WASTE TREATED TO PERFORMANCE STANDARDS
“I certify under penalty of law that I have personally examined and am familiar with the treatment technology and operation of the treatment process used to support this certification and that, based upon my inquiry of those individuals immediately responsible for obtaining this information, I believe that the treatment process has been operated and maintained properly so as to comply with the performance levels specified in 40 CFR part 268 Subpart D and all applicable prohibitions set forth in 40 CFR 268.32 or RCRA Section 3004(d) without impermissible dilution of the prohibited waste. I am aware that there are significant penalties for submitting a false certification, including the possibility of a fine and imprisonment.”

B.2 RESTRICTED WASTES FOR WHICH THE TREATMENT STANDARD IS EXPRESSED AS A SPECIFIED TECHNOLOGY (AND THE WASTE HAS BEEN TREATED BY THAT TECHNOLOGY)
“I certify under penalty of law that the waste has been treated in accordance with the requirements of 40 CFR 268.42. I am aware that there are significant penalties for submitting a false certification, including the possibility of a fine and imprisonment.”

B.3 GOOD FAITH ANALYTICAL CERTIFICATION - FOR INCINERATED ORGANICS
“I certify under penalty of law that I have personally examined and am familiar with the treatment technology and operation of the treatment process used to support this certification and that, based upon my inquiry of those individuals immediately responsible for obtaining this information, I believe that the nonwaste organic constituents have been treated by incineration in units operated in accordance with 40 CFR Part 264 Subpart O or Part 265 Subpart O, or by combustion in fuel substitution units operating in accordance with applicable technical requirements, and I have been unable to detect the nonwaste organic constituents despite having used best good faith efforts to analyze for such constituents. I am aware that there are significant penalties for submitting a false certification, including the possibility of a fine and imprisonment.”

C. RESTRICTED WASTE SUBJECT TO A VARIANCE
This waste is subject to a national capacity variance, a treatability variance, or a case-by-case extension. Enter the effective date of prohibition in column 7 above.

D. RESTRICTED WASTE CAN BE LAND DISPOSED WITHOUT FURTHER TREATMENT
“I have determined that this waste meets all applicable treatment standards set forth in 40 CFR Part 268 Subpart D, and all applicable prohibition levels set forth in Section 268.32 or RCRA Section 3004(d), and therefore, can be land disposed without further treatment. A copy of all applicable treatment standards and specified treatment methods is maintained at the treatment, storage and disposal facility named above. I certify under penalty of law that I have personally examined and am familiar with the waste through analysis and testing or through knowledge of the waste to support this certification that the waste complies with the treatment and disposal standards specified in 40 CFR Part 268 Subpart D and all applicable prohibitions set forth in 40 CFR 268.32 or RCRA section 3004(d). I believe that the treatment methods specified in 40 CFR Part 268 Subpart D and applicable prohibitions set forth in 40 CFR 268.32 or RCRA section 3004(d) are not applicable to this waste. I am aware that there are significant penalties for submitting false certification, including the possibility of a fine and imprisonment.”

E. WASTE IS NOT CURRENTLY SUBJECT TO PART 268 RESTRICTIONS
This waste is a newly identified waste that is not currently subject to any 40 CFR Part 268 restrictions.

I hereby certify that all information submitted in this and all associated documents is complete and accurate to the best of my knowledge and information.

[Signature]

Title

[Date]
UNIFORM HAZARDOUS WASTE MANIFEST

<table>
<thead>
<tr>
<th>1. Generator's U.S. EPA No</th>
<th>Manifest Document No</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCP11000000011900303223</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Page of Information in the shaded areas is not required by Federal Law</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Generator's Name and Mailing Address</th>
<th>4. Generator's Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVICE RESPONSE FUEL OPERATION SAFE REMOVAL</td>
<td>202-531-3336</td>
</tr>
<tr>
<td>5015 WARREN ST. WASHINGTON DC 2001</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Transporter 1 (Company Name)</th>
<th>6. US EPA ID Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEMICAL WASTE MANAGEMENT INC.</td>
<td>E1228452</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Transporter 2 (Company Name)</th>
<th>8. US EPA ID Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. Designated Facility Name and Site Address</th>
<th>10. US EPA ID Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUM CHEMICAL SERVICES INC.</td>
<td>E1228452</td>
</tr>
<tr>
<td>1550 PALMER RD</td>
<td></td>
</tr>
<tr>
<td>MODEL CITY, NY 14107</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Type</td>
<td>Quantity</td>
<td>Vol/Vol</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. US DOT Description (Including Proper Shipping Name, Hazard Class and ID Number)</th>
<th>EPA</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. QUE HAZARDOUS WASTE SOLID, N.O.S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORM-E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAG185(Debris w/lead, arsenic, silver)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXI KM XXXX X7 Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Special Handling Instructions and Additional Information</th>
<th>16. Generator's Certification</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.O. # 32, PACIFIC # 63332, BILL PRINCE: ATT: MIKE CICER</td>
<td>I hereby declare that the contents</td>
</tr>
<tr>
<td></td>
<td>of the consignment are fully and</td>
</tr>
<tr>
<td></td>
<td>accurately described above by the</td>
</tr>
<tr>
<td></td>
<td>proper shipping name and are</td>
</tr>
<tr>
<td></td>
<td>classified, packed, marked, and</td>
</tr>
<tr>
<td></td>
<td>labeled and are in all respects</td>
</tr>
<tr>
<td></td>
<td>in proper condition for transport</td>
</tr>
<tr>
<td></td>
<td>by highway according to applicable</td>
</tr>
<tr>
<td></td>
<td>international and national</td>
</tr>
<tr>
<td></td>
<td>government regulations and state</td>
</tr>
<tr>
<td></td>
<td>laws and regulations.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINTED/TYPE NAME: EARL ROY</td>
<td>PRINTED/TYPE NAME: EARL ROY</td>
</tr>
<tr>
<td>SIGNATURE:</td>
<td>SIGNATURE:</td>
</tr>
<tr>
<td>Mo. Da. Year:</td>
<td>Mo. Da. Year:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. Discrepancy Indication Space</th>
<th>Item C: ADD (IL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTUAL QUANT. READ: 4540 P</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. Facility Owner's Signature</th>
<th>EPA Form 8700-22 (Rev. 9-58) Previous editions are obsolete</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. F. BROWN Sr</td>
<td>COPY 5 - Generator-marked by TSD facility</td>
</tr>
</tbody>
</table>
1. Is this waste a non-wastewater or a wastewater? (See 40 CFR 268.2) Check ONE: □ Non-Wastewater □ Wastewater

2. If this waste is subject to any California List restrictions enter the letter from below (either A, B1, or B2) next to each restriction that is applicable:
 □ HOCs, □ PCBs, □ Acid, □ Metals, □ Cyanides.

Identify: ALL USEPA hazardous waste codes that apply to this waste shipment, as defined by 40 CFR 261. For each waste code, identify the corresponding subdivision, or check NONE if the waste code has no subdivision. Also check which treatment standards apply. Spent solvent and California List treatment standards are listed on the back of this form. If PDS, multi-source leachate applies, those standards must be attached by the generator.

4. USEPA HAZARDOUS WASTE CODE(S)

To list additional USEPA waste code(s) and subcategory(s), use the supplemental sheet provided (CWM-2001-B) and check here: □

HOW MUST THE WASTE BE MANAGED? In Column 7 above, enter the letter (A, B1, B2, B3, C, or D) below that describes how the waste must be managed to comply with the land disposal regulations (40 CFR 268.7). Please understand that if you enter the letter B1, B2, B3, or D, you are making the appropriate certification as provided below.

A. RESTRICTED WASTE REQUIRES TREATMENT
 This waste must be treated to the applicable treatment standards set forth in 40 CFR Part 268 Subpart D, 268.32, or RCRA Section 3004(d).

B.1 RESTRICTED WASTE TREATED TO PERFORMANCE STANDARDS
 "I certify under penalty of law that I have personally examined and am familiar with the treatment technology and operation of the treatment process used to support this certification and that, based upon my inquiry of those individuals immediately responsible for obtaining this information, I believe that the treatment process has been operated and maintained properly so as to comply with the performance levels specified in 40 CFR part 268 Subpart D and all applicable prohibitions set forth in 40 CFR 268.32 or RCRA Section 3004(d) without impermissible dilution of the prohibited waste. I am aware that there are significant penalties for submitting a false certification, including the possibility of a fine and imprisonment."

B.2 RESTRICTED WASTES FOR WHICH THE TREATMENT STANDARD IS EXPRESSED AS A SPECIFIED TECHNOLOGY (AND THE WASTE HAS BEEN TREATED BY THAT TECHNOLOGY)
 "I certify under penalty of law that the waste has been treated in accordance with the requirements of 40 CFR 268.42. I am aware that there are significant penalties for submitting a false certification, including the possibility of a fine and imprisonment."

B.3 GOOD FAITH ANALYTICAL CERTIFICATION - FOR INCINERATED ORGANICS
 "I certify under penalty of law that I have personally examined and am familiar with the treatment technology and operation of the treatment process used to support this certification and that, based upon my inquiry of those individuals immediately responsible for obtaining this information, I believe that the non-wastewater organic constituents have been treated by incineration in units operated in accordance with 40 CFR Part 264 Subpart O or Part 262 Subpart O, or by combustion in fuel substitution units operating in accordance with applicable technical requirements, and I have been unable to detect the non-wastewater organic constituents despite having used best good faith efforts to analyze for such constituents. I am aware that there are significant penalties for submitting a false certification, including the possibility of a fine and imprisonment."

C. RESTRICTED WASTE SUBJECT TO A VARIANCE
 This waste is subject to a national capacity variance, a treatability variance, or a case-by-case extension. Enter the effective date of prohibition in column 7 above.

D. RESTRICTED WASTE CAN BE LAND DISPOSED WITHOUT FURTHER TREATMENT
 "I have determined that this waste meets all applicable treatment standards set forth in 40 CFR Part 268 Subpart D, and all applicable prohibition levels set forth in Section 268.32 or RCRA Section 3004(d), and therefore, can be land disposed without further treatment. A copy of all applicable treatment standards and specified treatment methods is maintained at the treatment, storage and disposal facility named above. I certify under penalty of law that I have personally examined and am familiar with the waste through analysis and testing or through knowledge of the waste to support this certification that the waste complies with the treatment standards specified in 40 CFR Part 268 Subpart D and all applicable prohibitions set forth in 40 CFR 268.32 or RCRA section 3004(d). I believe that the information I submitted is true, accurate and complete. I am aware that there are significant penalties for submitting false certification, including the possibility of a fine and imprisonment."

E. WASTE IS NOT CURRENTLY SUBJECT TO PART 268 RESTRICTIONS
 This waste is a newly identified waste that is not currently subject to any 40 CFR Part 268 restrictions.

I hereby certify that all information submitted in this and all associated documents is complete and accurate, to the best of my knowledge and information.

Signature: ____________________________ Title: ____________________________ Date: ____________

119
Uniform Hazardous Waste Manifest

Generator's Information
- **US EPA ID No.:** DEP 00000169 O
- **Manifest Document No.:** 0001690
- **Generator's Name:** Chemical Waste Management, Inc.
- **Transporter 1 Company Name:** Mobile Axe
- **Transporter 2 Company Name:** Trade Waste Incineration

Description of Hazardous Waste
- **Material Description:** Non-Regulated Material
- **Hazard Class:** None (PPE & DEPART)

Additional Descriptions for Materials Listed Above
- **Material:** Decolonizing Solution (bleach)

Special Handling Instructions and Additional Information
- **Special Handling:** None required

Emergency Response
- **Emergency Contact:** (202) 639-2622

Generator's Certification
- **Date:** 02.01.19

Facility Owner or Operator Certification
- **Date:** 02.01.19

Signature
- **Printed/Typed Name:** James Bacon
- **Signature:** [Signature]
- **Printed/Typed Name:** Brenda L. Hemings
- **Signature:** [Signature]

Facility Address
- **Address:** 505 Warren St., Washington, DC 20016
- **Transporter's Phone:** 202-775-3288

HDWV (Hazardous Waste Volumes)
- **Type:** Cubic Yards
- **Total Quantity:** 1

Notes
- **Copy:** TSD Mail to Generator Copy

The Agency is authorized to require, pursuant to Illinois Revised Statutes, Chapter 111, Section 71, that the information be submitted to the Agency. Failure to provide the information may result in a civil penalty against the person, firm, or corporation of $25.00 per day of violation. Non-compliance may also result in criminal penalties of up to $10,000 per day of violation.
1. Situation. Earlier today it was thought that a drum of heavy metal contaminated soil was inadvertently shipped back to Edgewood Area, APG during demobilization at Spring Valley. After investigating the situation, we determined that there was no drum of contaminated soil. A very small amount of contaminated soil was recovered from the pit and sent to the lab as a sample for analysis. The surrounding soil was free of contamination.

2. Discussion.

a. During excavation in the munitions pit, TEU personnel discovered an area of bright orange soil which they initially thought was TNT contamination. They removed the discolored soil, placed it in a jar, and performed preliminary analysis on sample using the Viking. Results indicated the contamination was not agent but could be TNT. The sample was then sent to the ERDEC lab for further analysis.

b. At the ERDEC lab, the sample was analyzed and found to contain no TNT. It did, however, contain relatively high levels of total extractable metals.

c. There was a 55 gallon drum near the excavation pit which held a bag of soil later determined to be completely free of contamination. This drum was incorrectly identified to the Special Staff as a drum of possible TNT contaminated soil. We pursued plans for disposal of the "drum of contaminated soil" unaware of the fact that such a drum did not exist. The only such soil was the sample that had been sent for analysis.

d. Chem Waste Mgmt and the APG COR arrived on 1 Feb 93 to remove chemical waste including the fictitious drum of contaminated soil. At approx 1050 hrs, the APG COR and the on-site environmental consultant visited the site to view the waste and were unable to locate the drum of contaminated soil. Concerned that waste may have been inadvertently transported back to Edgewood, they immediately contacted APGSA. The actual events which lead to this misunderstanding were uncovered upon talking to personnel at the analytical lab and personnel at TEU who actually removed the single jar full of contaminated soil.

3. Conclusion.

a. There was a drum (empty)

b. There was contaminated soil (in a jar)

c. There was NOT a drum of contaminated soil.

[Signature]
Pig # 10 was delivered by TEU to E3300 at 1530 hours, 22 January 1993. Sample
#1 was a "bright orange dirt from around a 75mm at NE corner of pit 50" deep.
Analysis of solvent extracts of the soil by nuclear magnetic resonance (NMR),
direct inlet/mass spectrometry, gas chromatography/mass spectrometry (GC/MS) and
liquid chromatography (LC) identified only hydrocarbons typical of soil
background. Elemental analysis showed unusually high levels of several metals.
Arsenic analysis has not yet been performed. The elemental data available is:

<table>
<thead>
<tr>
<th>Element</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>20,500</td>
</tr>
<tr>
<td>Barium</td>
<td>180</td>
</tr>
<tr>
<td>Cadmium</td>
<td>19</td>
</tr>
<tr>
<td>Calcium</td>
<td>90</td>
</tr>
<tr>
<td>Copper</td>
<td>114</td>
</tr>
<tr>
<td>Iron</td>
<td>96,200</td>
</tr>
<tr>
<td>Lead</td>
<td>3,520</td>
</tr>
<tr>
<td>Magnesium</td>
<td>92</td>
</tr>
<tr>
<td>Manganese</td>
<td>137</td>
</tr>
<tr>
<td>Potassium</td>
<td>11,200</td>
</tr>
<tr>
<td>Sodium</td>
<td>3,540</td>
</tr>
<tr>
<td>Sulfur</td>
<td>6,360</td>
</tr>
<tr>
<td>Vanadium</td>
<td>32</td>
</tr>
<tr>
<td>Zinc</td>
<td>32</td>
</tr>
</tbody>
</table>
APPENDIX F - SOIL SAMPLING PLAN TO VERIFY TERMINATION OF THE EMERGENCY RESPONSE PHASE
Operation Safe Removal

1. SITUATION. Immediately after approval of the verification plan, action began on the sampling plan which was necessary to support

2. DISCUSSION.

a. **Action Officer.** Although this action would normally be handled by the environmental consultant, that person was busily involved in coordinating the permits and transportation plans associated with disposal of liquid-filled/solid-filled munitions. Therefore, this soil sampling plan was actually prepared by the director of the special staff.

b. **Approval:** The plan was coordinated with the Emergency Response Team of EPA's Region III. After receiving EPA approval, the Verification Plan and the Sampling Plan were sent to the Department of Health and Human Services and the Army Operations Center for their use, as appropriate.

c. **Implementation:** Sample collection began immediately after arrival onsite. Because of analytical sophistication, laboratory turn-around times exceeded 48 hours.

 (1) **Daily Feedback:** After a brief delay, results were received daily from both ERDEC and AEHA. Results were very low or not detectable which instilled confidence in the people who were working in the pit.

 (2) **Emergency Phase Termination:** Even though all the soil data was not yet available at termination of the emergency phase, it was possible to show that analytical results over the duration of the excavation were consistently low (or none) which served as the basis for verifying the safety of the pit and pile.

 (3) **Remediation Phase Data:** When analytical work on the soil samples is done, copies of the final report will be provided to the Baltimore District of the Corps of Engineers for their use in making decisions concerning remediation removals.

COL Charles B. Kenison
OPERATION SAFE REMOVAL
Special Staff
27 Jan 93
OPERATION "SAFE REMOVAL"
Soil Sampling Plan

1. SITUATION.

 a. On 5 January 1993, while digging the trench to make the
 sewerage connection to a home under construction, a commercial real
 estate developer discovered a cache of potentially hazardous
 explosive and chemical munitions at a formerly used defense site
 located in the Spring Valley subdivision of Washington, DC.

 b. Before the termination of the Emergency Response Phase, it
 is important to assure that the soil excavated from the pit during
 recovery operations does not pose an imminent threat to the
 residents of Spring Valley.

2. PURPOSE.

 a. The primary purpose of this sampling plan is to
 develop sufficient analytical data to:

 (1) Assure the safety of soil removed from the pit

 (2) Assure that potential contamination has not been
 spread beyond the pit and the pile inadvertently during the
 recovery operation.

 (3) Determine the naturally occurring background levels
 of metals in the soil to assure perspective during subsequent
 interpretation of data.

 b. Another important purpose of this sampling plan is to
 develop trust and confidence in the data by:

 (1) Having EPA oversee sample collection to assure
 the absence of bias.

 (2) Having EPA analyze split samples for total metals
 and BNA (semivoltiles) and other site-related contaminants, at
 their discretion, to assure analytical accuracy.
3. SAMPLE MANAGEMENT.

a. Sampling Pattern.

 (1) Locations.

 (a) Primary Locations. In order to assure the safety of soil removed from the pit, samples shall be collected from the following:

 1. Munitions pit (walls and floor)
 2. Soil pile (sides and top)

 (b) Lateral Locations. In order to assure that potential contamination has not been spread beyond the pit and pile, samples shall be collected from two heavily used locations and from several nearby water sources:

 1. X-Ray tent
 2. Decon tent
 3. Surface streams
 4. Dalecarlia reservoir
 5. Nearby monitoring well

 (c) Background Locations. In order to determine the background levels of naturally occurring metals in the soil, samples, from both surface and depth, shall be collected from the following locations:

 1. Open areas astride 52d Place
 2. Open areas near the reservoir

 (2) Frequencies. Some samples shall be collected daily; others shall be collected weekly; still others shall be collected once. Specific frequencies are as follows:

 (a) Munitions Pit. Samples shall be collected once per day immediately after first entry monitoring has verified the safety of the site each morning.

 (b) Soil Pile. Samples shall be collected once per day immediately after first entry monitoring has verified the safety of the site each morning.

 (c) X-Ray Tent. Samples shall be collected once per week at the discretion of EPA representatives.
(d) **Decon Tent.** Samples shall be collected once per week at the discretion of EPA representatives.

(e) **Surface Streams.** Samples shall be collected once from each of the nearby streams at the discretion of EPA representatives.

(f) **Surface Reservoir.** Samples shall be collected once from the nearby surface reservoir at the discretion of EPA representative.

(g) **Monitoring Well.** Samples shall be collected once from a nearby monitoring well at the discretion of EPA representatives.

(h) **Open Areas near 52d Place.** Samples shall be collected as directed by the EPA representatives.

(i) **Open area near the reservoir.** Samples shall be collected as directed by the EPA representatives.

(3) **Number.** Recognizing that the primary purpose of sampling is to assure the safety of the soil removed from the pit, a total of at least 14 samples shall be collected from the pit and pile. To assure the absence of spread, at least 5 samples shall be collected from the vicinities of the X-Ray and Decon Tents. In addition, at least 5 samples shall be taken from the various water sources in the immediate area. To assure adequate background data, at least 12 samples shall be collected from the various background sampling locations. The totals are as follows:

<table>
<thead>
<tr>
<th>Location</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Munitions Pit.</td>
<td>2/day X 10 days...</td>
</tr>
<tr>
<td>Soil Pit.</td>
<td>2/day X 10 days...</td>
</tr>
<tr>
<td>X-Ray Tent.</td>
<td>1/week X 3 weeks...</td>
</tr>
<tr>
<td>Decon Tent.</td>
<td>1/week X 3 weeks...</td>
</tr>
<tr>
<td>Surface Streams.</td>
<td>2 samples..........</td>
</tr>
<tr>
<td>Reservoir.</td>
<td>1 sample..........</td>
</tr>
<tr>
<td>Monitoring Well.</td>
<td>1 sample..........</td>
</tr>
<tr>
<td>Near 52d Place.</td>
<td>9 samples..........</td>
</tr>
<tr>
<td>Near Reservoir.</td>
<td>1 sample..........</td>
</tr>
</tbody>
</table>

At least...60
(4) **Type.** The specific type of sample varies with the media to be sampled as follows:

(a) **Soil Samples.** All shall be composite samples.

(b) **Water Samples.** All shall be grab samples.

b. **Sample Collection.**

(1) **Volume/Containerization.**

(a) **Soil samples.** Soil samples shall be collected initially in 32 ounce glass jars, from which they shall be then transferred to a plastic bag for mixing to assure homogeneity, from which they shall be then transferred to two 8 ounce glass jars (which are teflon sealed) and two 40ml VOA vials (which are teflon sealed) for transport to laboratories.

(b) **Water samples.** Each water sample shall be collected in two 1 liter plastic bottles plus two 80 ounce amber glass bottles.

(2) **Preservatives.**

(a) **Soil samples.** Samples require no special preservatives, but shall be iced until shipped.

(b) **Water samples.** Water samples in the 1 liter bottles shall be preserved with Nitric acid. Preservatives are not required in the amber jars. However, they shall be iced until shipped.

(3) **Identification.**

(a) **Soil samples.** A unique identification number shall be assigned to each sample by the EPA representatives.

(b) **Water samples.** A unique identification number shall be assigned to each sample by the EPA representatives.
c. Sample Shipment

(1) Safety.

(a) Army Samples. Soil samples shall first be sent to Edgewood Research, Development, and Engineering Center (ERDEC) on Aberdeen Proving Ground, MD, for analysis of air space (above the soil in the container) to protect laboratory workers by assuring the absence of mustard agent. After verification of safety, the samples shall be forwarded to the ERDEC laboratory and to the Army Environmental Hygiene Agency laboratory which is also located on Aberdeen Proving Ground.

(b) EPA Samples. Soil samples destined for EPA laboratories shall be held until the air space has been verified by ERDEC, and then shipped to the EPA contract laboratory.

(2) Custody. All chain of custody documentation shall be secured to the inside lid of the cooler. Custody seals may be placed across the lid closure, as appropriate.

d. Sample Processing

(1) Splitting.

a. Soil samples. Soil samples shall be split immediately after collection, thereby permitting concurrent analysis by the EPA contract laboratory, ERDEC, and USAEHA.

b. Water samples. Water samples had already been collected prior to the preparation of this plan and, therefore, were processed by the EPA contract laboratory only. Subsequent water samples shall be split to permit concurrent processing by Army laboratories.
4. ANALYTICAL MANAGEMENT.

a. Constituents.

(1) Soil Samples. The constituents measured by each laboratory shall be as follows:

(a) EPA Contract Lab

1. BNA (semivolatiles) (see Appendix A)
2. Total metals (see Appendix B)
3. Other site-related contaminates

(b) Edgewood Research Development EngineeringCtr

1. Mustard
2. Extractable Arsenic
3. Total arsenic

(c) U.S. Army Environmental Hygiene Agency

1. Chloroacetophenone
2. Cyanogen chloride
3. Chloropicrin
4. Phosgene
5. Arsenic
6. Mercury
7. Lead
8. Chromium
9. Semivolatiles (BNA)
10. Other Total Metals
11. Explosive Compounds

(2) Water Samples. The constituents measured by the EPA contract laboratory are as follows:

(a) EPA Contract Lab

1. BNA (see Appendix A) (EPA Method 8250/70)
2. Total Metals (see Appendix B) (CLP Method)
b. Quality Assurance

(1) Certification.

(a) EPA Laboratory, Roy F. Weston, has been contracted by the Environmental Protection Agency and meets their quality assurance prerequisites.

(b) Edgewood Research, Development and Engineering Center is recognized as one of the best laboratories for analyzing mustard, lewisite, and adamsite.

(c) U.S. Army Environmental Hygiene Agency has been accredited/certified by:

- American Industrial Hygiene Association
- American Association for Laboratory Accreditation
- National Institute of Standards and Technology/
 National Voluntary Laboratory Accreditation Program

States of:
- Alabama
- Arizona
- California
- Delaware
- Georgia
- Idaho
- Iowa
- Kansas
- Maine
- Michigan
- New Hampshire
- New Jersey
- New Mexico
- Pennsylvania
- Rhode Island
- Tennessee
- Utah
- Virginia
- Washington

Environmental Protection Agency:

- Region III Philadelphia, PA
- Region V Chicago, IL
- Region VI Dallas, TX
- Region VII Kansas City, MO
- EPA Environmental Monitoring Soils Laboratory, Las Vegas, Nevada

Other Activities:

- Participation in NIST/NAVLAP's Soil Measurement Proficiency Program
(2) **Split Samples.** Soil samples shall be split by EPA representatives after collection to permit corroboration of results.

(3) **Laboratory Practice.** All laboratories shall continue to perform QA/QC procedures in accordance with good laboratory practice.

c. **Data Evaluation.**

(1) **Comparison with Criteria.** Concentrations of arsenic, mercury, lead, and chromium in the soil from the pit and pile shall be compared to the verification of emergency recovery phase termination criteria using a comparison of the pit/pile sample mean concentration with the established above criteria using a one-tailed t test at the 95% confidence interval in accordance with the EPA guidance provided in *Soil Sampling Quality Assurance User’s Guide, 2nd*, EPA 600/8-89/046.

(2) **Comparison with Background.** In the event that the site soil arsenic or other metal concentrations exceed the emergency response phase termination criteria, the pit/pile mean concentrations shall be compared to the mean background concentrations using a one-tailed t test at the 95% confidence interval in accordance with the above reference.

GEORGE E. FRIEL
BG, USA
Commander
Service Response Force

OFFICIAL:

CHARLES B. KENISON
COL, MS
Director, Special Staff

APPROVED:

TERRY A. STILMAN
Federal On-Scene Coordinator
EPA Region III
<table>
<thead>
<tr>
<th>BASE NEUTRAL ACID EXTRACTABLES (BNA) OR SEMI VOLATILES</th>
<th>BASE NEUTRAL ACID EXTRACTABLES (BNA) OR SEMI VOLATILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOL OR CLP LIST</td>
<td>PRIORITY POLLUTANT LIST</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PHENOL</th>
<th>9-NITROANILINE</th>
<th>PHENOL</th>
<th>9-NITROANILINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-CHLOROETHYL Ether</td>
<td>ACENAPHTHYNE</td>
<td>2-CHLOROETHYL Ether</td>
<td>ACENAPHTHYNE</td>
</tr>
<tr>
<td>1,2-DICHLOROBENZENE</td>
<td>4-NITROPHENOL</td>
<td>1,2-DICHLOROBENZENE</td>
<td>4-NITROPHENOL</td>
</tr>
<tr>
<td>1,4-DICHLOROBENZENE</td>
<td>DIBENZOFURAN</td>
<td>1,4-DICHLOROBENZENE</td>
<td>NITROBENZENEM</td>
</tr>
<tr>
<td>1,2-DICHLOROBENZENE</td>
<td>DIBENZOFURAN</td>
<td>1,2-DICHLOROBENZENE</td>
<td>NITROBENZENEM</td>
</tr>
<tr>
<td>2-METHYLPHENOL</td>
<td>4-CHLOOROPHENYL-PHENYLETHYLER</td>
<td>2-METHYLPHENOL</td>
<td>DIETHYLPHTHALATE</td>
</tr>
<tr>
<td>2,3-DICHLOROPROPYLETHYLER</td>
<td>FLUORENE</td>
<td>2,3-DICHLOROPROPYLETHYLER</td>
<td>FLUORENE</td>
</tr>
<tr>
<td>NITROBENZENE</td>
<td>4-NITROANILINE</td>
<td>NITROBENZENE</td>
<td>4-NITROANILINE</td>
</tr>
<tr>
<td>2,4-DIMETHYLPHENOL</td>
<td>4-NITROPHENOL</td>
<td>2,4-DIMETHYLPHENOL</td>
<td>4-NITROPHENOL</td>
</tr>
<tr>
<td>4-NITROPHENOL</td>
<td>4-NITROPHENOL</td>
<td>4-NITROPHENOL</td>
<td>4-NITROPHENOL</td>
</tr>
<tr>
<td>2,4-DIMETHYLPHENOL</td>
<td>2,4-DIMETHYLPHENOL</td>
<td>2,4-DIMETHYLPHENOL</td>
<td>2,4-DIMETHYLPHENOL</td>
</tr>
<tr>
<td>BENZENIC ACID</td>
<td>PHEMNAPHTHYNE</td>
<td>BENZENIC ACID</td>
<td>PHEMNAPHTHYNE</td>
</tr>
<tr>
<td>2,4-DICHLOROETHYLMETHANE</td>
<td>DI-H-BUTYLPHTHALATE</td>
<td>2,4-DICHLOROETHYLMETHANE</td>
<td>DI-H-BUTYLPHTHALATE</td>
</tr>
<tr>
<td>1,2,4-TRICHLOROBENZENE</td>
<td>PYRENE</td>
<td>1,2,4-TRICHLOROBENZENE</td>
<td>PYRENE</td>
</tr>
<tr>
<td>NAPHTHALEN</td>
<td>BUTYLBENZPYLTHALATE</td>
<td>NAPHTHALEN</td>
<td>BUTYLBENZPYLTHALATE</td>
</tr>
<tr>
<td>4-CHLOROANILINE</td>
<td>BUTYLBENZPYLTHALATE</td>
<td>4-CHLOROANILINE</td>
<td>BUTYLBENZPYLTHALATE</td>
</tr>
<tr>
<td>HEXACHLOROBUTADIENE</td>
<td>3,3-DICHLOROBENZENE</td>
<td>HEXACHLOROBUTADIENE</td>
<td>3,3-DICHLOROBENZENE</td>
</tr>
<tr>
<td>4-CHLORO-3-METHYLPHTHALATE</td>
<td>2-METHYLPHTHALATE</td>
<td>4-CHLORO-3-METHYLPHTHALATE</td>
<td>2-METHYLPHTHALATE</td>
</tr>
<tr>
<td>2,4-DICHLOROBENZENE</td>
<td>DI-H-BUTYLPHTHALATE</td>
<td>2,4-DICHLOROBENZENE</td>
<td>DI-H-BUTYLPHTHALATE</td>
</tr>
<tr>
<td>2,4-ETHYLPHENOL</td>
<td>2-CHLORONAPHTHYNE</td>
<td>2,4-ETHYLPHENOL</td>
<td>2-CHLORONAPHTHYNE</td>
</tr>
<tr>
<td>2,3-DICHLOROPHENOL</td>
<td>ACENAPHTHYNE</td>
<td>2,3-DICHLOROPHENOL</td>
<td>ACENAPHTHYNE</td>
</tr>
<tr>
<td>3-HEXYLPHTHALATE</td>
<td>INDENOL2,3-CDPYRENE</td>
<td>3-HEXYLPHTHALATE</td>
<td>INDENOL2,3-CDPYRENE</td>
</tr>
<tr>
<td>ACENAPHTHYNE</td>
<td>DIETHYLPHTHALATE</td>
<td>ACENAPHTHYNE</td>
<td>DIETHYLPHTHALATE</td>
</tr>
<tr>
<td>2,4-DINITROTOULUENE</td>
<td>BENZOFUROPHENINE</td>
<td>2,4-DINITROTOULUENE</td>
<td>BENZOFUROPHENINE</td>
</tr>
<tr>
<td>AROMAIC ACID</td>
<td>BENZOFUROPHENINE</td>
<td>AROMAIC ACID</td>
<td>BENZOFUROPHENINE</td>
</tr>
<tr>
<td>TOL</td>
<td>DIETHYLPHTHALATE</td>
<td>TOL</td>
<td>DIETHYLPHTHALATE</td>
</tr>
<tr>
<td>CLP</td>
<td>DIETHYLPHTHALATE</td>
<td>CLP</td>
<td>DIETHYLPHTHALATE</td>
</tr>
<tr>
<td>Aluminum</td>
<td>Antimony</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic *</td>
<td>Arsenic *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium *</td>
<td>Beryllium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>Cadmium *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium *</td>
<td>Chromium *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>Copper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium *</td>
<td>Lead *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>Mercury *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>Nickel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Selenium *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead *</td>
<td>Silver *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>Thallium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>Zinc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CLP = Contract Laboratory Program
HSL = Hazardous Substance List
PP = Priority Pollutant
SDWA = Safe Drinking Water Act

* Denotes TCLP
SPRING VALLEY SITE
Pit and Pile Samples
SPRING VALLEY SITE

Background Samples
APPENDIX G – VISIT BY MARYLAND DEPARTMENT OF THE ENVIRONMENT (MDE) OFFICIALS
Operation Safe Removal

1. Visitors:
Butch Dye MDE
Rick Collins MDE
Jack Roth APGSA
Bob Silcox APGSA
Darrell Palmer USACMDA

2. Schedule: Visit is scheduled for Monday, 25 Jan
Estimated time of arrival by helicopter is 10:45

11:00 - 11:45 (estimated) - brief in control center
11:45 - 12:15 (estimated) - visit site (NOTE: request permission for MDE rep to be escorted beyond the hotline during TEU lunch break. Others in party will remain behind the hotline)
12:30 Visitors depart site

3. Purpose: The main purpose for the visit is to provide information to the MDE officials in order to foster their continued support of actions requiring interaction with and/or approval by MDE. Mr. Palmer is included because he has served as the primary liaison between Operation Safe Removal and the MDE during the last 2 weeks. Mr. Silcox and Mr. Roth are included as representatives of the Commander, APG who holds the hazardous waste permit at APG.

4. Briefings:

COL Read
 - Overview of Site History
 - Events of 5-11 Jan
 - Brief Description of Current Operations
 - Status of Found Rounds
 - Projection for Future Operations

Dr. Gus McCaffrey
 - Brief discussion on PINS technology

Tim Blades
 - Discussion of Sampling On-Site
 - Discussion of Previous Action Drilling, Sampling and Analyzing 3 Rounds at Edgewood

Mr. Bacon
 - Request to Transport Additional Rounds to ERDEC
Operation Safe Removal

25 Jan 93

Subject: Visit by MDE Officials/Approval to Ship Rounds to ERDEC

1. Visitors:

Butch Dye
John Fairbank
Jack Roth
Bob Silcox
Darrell Palmer

MDE
MDE
APGSA
APGSA
USACMDA

2. Visitors arrived at approx 1035 hrs on Monday, 25 Jan. They were briefed on the operation by COL Read, Mr. Bacon, Dr. McCaffrey, and Tim Blades. Butch Dye was escorted to the site by Tim Blades. The others remained behind the hotline.

3. MDE visitors were requested to approve shipment of approximately 5 additional rounds to ERDEC for drilling, sampling, and analysis. At the conclusion of the visit, Mr. Dye indicated that may ship additional rounds to ERDEC within the limits explained in the briefing and previously agreed to:

- up to 5 rounds
- non-explosively configured
- air transportation
- operation conducted in the CTF
- MDE notified of results and plans for disposition

In addition, he asked that we notify him before making such a shipment. He left his home phone number and pager number to facilitate the notification.

Teresa M. Mann
APPENDIX H - LESSONS LEARNED

OPERATION SAFE REMOVAL
Subject: Lessons Learned

1. Disposition of Unsafe Rounds.
 a. Issue, Deficiency, or Problem: We do not have a location where a round determined to be unsafe for transport could be treated.
 b. Resolution/Recommendation: Identify proposed procedures and locations for dealing with serious emergency situations such as rounds that are not safe to store or not safe to transport. Make local environmental authorities aware that such a situation may occur.

2. Planning for Disposition of All Possible Fills.
 a. Issue, Deficiency, or Problem. Specific: The emergency permit for detonation of rounds at FT AP Hill is limited to two types of rounds, HE and WP. Upon final review of the list of rounds, two additional types of rounds were recommended by the Cdr, TEU for open detonation: possible smoke filled and nearly empty chemical filled.
 b. Discussion. The permit application included only two fills which were initially identified as candidates for demolition - WP and HE. It may have been easier to request more fills earlier and remove unnecessary ones than to try to add fills later. Regulators are very strict about limiting activities to those listed on the permit only.
 c. Resolution/Recommendation. Recommend identifying all possible fills early in the event, discussing the situation with potentially involved environmental regulators early in the event, and attempting to obtain required environmental permits to allow disposition of all possible fills. Effective communication between TEU and environmental representatives on site early and throughout the event is essential to assure problems are not encountered later.
Appendix I

List of Equipment

Equipment to be Brought to SRF:

Gas Mask
Laptop computer with WordPerfect
Printer
ERDEC Phone Book
Copy of Federal Hazardous Waste Regs (40 CFR 261 et seq)
APPENDIX J - POINTS OF CONTACT
Operation Safe Removal

Phase I Environmental POCs - On Site

Terry Mann
Environmental Coordinator, ERDEC
ATTN: SCBRD-ODR-E
APG, MD 21010-5423
(410) 671-4614

Dan Wenz
ATTN: SCBRD-ODR-E
APG, MD 21010-5423
(410) 671-2221

ROLE: Assisted the environmental coordinator in preparing hazardous waste manifests for shipments to PBA and Ft AP Hill and in arranging for disposal of miscellaneous wastes by Chem Waste Management.

Phase I Environmental POCs - Off Site

Wendell Fortner
Environmental Coordinator
Pine Bluff Arsenal
10020 Kabrich Circle, ATTN: SMCPB-EM
Pine Bluff, AR 71602-9500
(501) 540-2819

ROLE: Interfaced with Arkansas regulators to secure a permit modification for storage of suspect agent rounds and a permit for transportation of hazardous waste in Arkansas. Provided manifest forms and information for preparation of hazardous waste manifests for items sent to PBA.

Philip Vick
Pine Bluff Arsenal
10020 Kabrich Circle, ATTN: SMCPB-EM
Pine Bluff, AR 71602-9500
(501) 540-2810

ROLE: Same as above.
Terry Banks
Environmental Coordinator
U.S. Army Garrison, Ft A.P. Hill
ATTN: AFKA-FHE-E
Bowling Green, Va 22427-5000
(804) 633-8255

ROLE: Interfaced with Virginia regulators to secure a permit for open detonation of suspect HE/WP rounds. Served as environmental liaison at FT AP Hill for detonation actions. Observed detonations and provided reports to regulators.

Garwin W. Eng
Environmental Engineer Senior
Office of Compliance and Enforcement
Virginia Department of Waste Management
101 North 14th Street
Richmond, VA 23219
(804) 786-6004

ROLE: Served as point of contact at Virginia Department of Waste Management for open detonation permit and amendment. Reviewed information submitted with the application and recommended action to higher authorities.

Steve Frazier
Virginia Department of Waste Management
101 North 14th Street
Richmond, VA 23219
(804) 225-2708

ROLE: Due to background in explosives, served as POC at Virginia Dept of Waste Management for questions/issues dealing with explosives. Provided guidance on proper shipping name for hazardous waste manifests.

Mr. Ghirmay Berhe
Hazardous Waste Management Branch
Government of D.C.
Environmental Regulation Administration
2100 Martin Luther King, Jr Ave, SE
Washington, DC 20020
(202) 404-1167

ROLE: Issued generator id number and temporary transportation id number verbally and sent followup paperwork.
Darrell Palmer
USACMDA
(410) 671-4199

ROLE: Served as primary POC with State of Maryland Department of the Environment.

Ken Stachiw
Chief, Environmental Quality Div
Cdr, APG
ATTN: STEAP-SH-EW
APG, MD 21005
(410) 278-5773

ROLE: As APG Environmental Coordinator, served as APG POC for request to bring sample rounds to APG for analysis.

Jack Roth
Executive Officer, APGSA
APG, MD 21005
(410) 278-4005

ROLE: Assisted in interface with MDE officials to gain approval to bring sample rounds to APG for analysis.

Ed Sims
Cdr, USAAPGSA
ATTN: STEAP-SH-EW
APG, MD 21005
(410) 671-2157

ROLE: As COR on the Chem Waste Management contract, made all contractual arrangements for disposal of scrap metal, spent decon solution, and disposable PPE.

Harold (Butch) Dye
Maryland Department of the Environment
Broening Hwy
Baltimore, MD
(410) 529-9127

ROLE: MDE Official who approved shipment of 9 rounds to ERDEC for drilling, sampling, and analysis.
1. PURPOSE:

a. Introduction and Background.

(1) Legal support was provided to the SRF by LTC Michael K. Millard, Deputy Staff Judge Advocate, and LTC Warren G. Foote, Assistant Staff Judge Advocate, Office Of the Chief Counsel and Staff Judge Advocate, U.S. Army Test and Evaluation Command.

(2) LTC's Millard and Foote had provided legal support and advice for previous legal support for USACBDA, SRF, and CSEPP exercises. They were activated for Operation Safe Removal after coordination with USACBDA, AMC, and TECOM.

(3) LTC Millard was given an initial heads up for activation on 6 Jan 93, and early coordination and planning for legal support was begun on that day. Activation for the project was confirmed on 8 Jan 93, two days before departure on 10 Jan 93.

(4) Neither attorneys had a protective mask before activation. Each officer was issued a protective mask after arrival to the on-site operations center.

(5) LTC Millard served as the SRF Legal Advisor; LTC Foote served as the SRF Environmental Attorney.

(6) After reporting on-site, the legal section was assigned to the Special Staff Section, under COL Kenison.

(7) As the SRF Legal Adviser, LTC Millard provided legal advice and support to the SRF Commander and Staff on a broad range of issues, to include administrative law, acquisition law, tort liability and claims, finance and funding issues, tax exemption status, security and posse comitatus. LTC Foote provided legal advice and support primarily on environmental issues, but also on posse comitatus., commander's exposure to liability, and tort liability. Both lawyers were frequently used to accomplish staff actions not purely related to legal matters. A Legal Issues List is attached as Enclosure 1.
(8) LTC's Millard and Foote reported to HQ, USACBDA on 9 January, 1993. They departed for the site, with the bulk of the SRF Staff, from HQ, USACBDA, on 1300 hours, 10 January 1993, and arrived at the site on about 1530 hours.

(9) The normal onset work location was in the Special Staff Section, Operations Center, SRF, in Spring Valley, Washington, D.C..

(14) Government provided transportation was used for travel to and from the work-site to the hotel. Some meetings we attended required government travel to the nearest Metro Station, from where we took trains to the Department of Justice or the OTJAG Environmental Law Division.

(15) Equipment that was necessary include:

(a) Telephone. A dedicated phone for the legal section was received on about 14 January. This also allowed the legal section to use LEXIS computer research service via the modem on the portable computer.

(b) A portable computer with printer was brought to the work-site by LTC Millard on 10 January, and remained on-site throughout the operation. The computer, a Zenith Data Systems 286 laptop was considered too heavy to bring back and forth each day. Both the computer and printer (an ALPS ASP100) were considered too slow.

(c) A long work table was received on 10 January, with 3 chairs.

(d) Access to the FAX in the Operations Center was of critical importance, as coordination required both sending and receiving telefax communications.

(16) An additional computer and faster printer would have facilitated the delivery of legal services to the SRF, but is not a mission essential requirement. A larger support staff could also have provided typing support to the various staff elements. Support organizations were relied upon to provide chemical protective gear.
(17) Previous experience with CSEPP exercises and familiarity with chemical surety regulations as well as administrative and environmental law were invaluable preparation. Participation in an exercise geared towards recovery and site remediation would have provided valuable training with directly applicable lessons learned.

(18) No other legal advisors were needed on site. Many other Judge Advocates and other lawyers in the Washington, D.C. area provided valuable telephonic assistance and made site visits, as necessary. Had this operation been conducted at a more remote site, an acquisition law specialist (as well as a contracting officer with sufficient warrant to provide direct contracting support) would have been a valuable addition to the team. If a decision had been made to operate around the clock, an additional lawyer would have been necessary to man the night shift.

(19) LTC's Millard and Foote were deactivated on 26 January 1993. They left the site on 23 January, with LTC Foote returning on 25 January for the day, and with LTC Millard remaining in telephonic contact at his home office.

b. Objectives.

(1) Provide legal advice and assistance to the Commander, SRF, and staff.

(2) Organize and supervise the performance of the legal element at the SRF site.

(3) Coordinate the operations to process requests for reimbursement of local resident evacuation expenses and claims with the U.S. Army Claims Service, MDW Office of the Staff Judge Advocate, the Army Environmental Law Division, and the Office of Chief Counsel Baltimore District, and Office of General Counsel, Corps of Engineers.

(4) Establish channels for coordination of technically complex legal matters with higher headquarters and the principal legal advisors of other participating Federal departments and agencies, to include DAJA-IO (International and Operations Law Division); JALS-EL (Environmental Law Division); HQ, TECOM Office of the Chief Counsel and Staff Judge Advocate; AMC Office of Command Counsel; Office of Staff Judge Advocate Military Traffic Management Command, Corps of Engineers Office of Chief Counsel; the Department of Justice (DOJ), Torts Branch, and the DOJ Criminal Division; EPA Region III Office of Counsel; and the Army Claims Service.
(5) Establish liaison with the Corporate Counsel for the District of Columbia, as well as the U.S. Bureau for Alcohol, Tobacco and Firearms, the Secret Service, the Federal Bureau of Investigation, and the District of Columbia fire and police department and the District of Columbia's Office of Emergency Preparedness.

(6) Provide legal coordination and assistance to other military, Federal, and local officials upon request.

(7) Review operational and safety plans to ensure they are sufficient to meet legal requirements. Particular emphasis was placed on issues concerning environmental compliance, security, posse comitatus, and documentation of facts for use in potential claims, litigation or possible criminal investigation.

2. OPERATIONAL SUMMARY:

a. Initial TEU Phase (5 - 6 Jan 93)

(1) Activation. The TECOM Office of Chief Counsel and Staff Judge Advocate was given a heads up on 6 Jan 93 that it may be tasked to provide legal support for the Spring Valley Operation if a Service Response Force were to be activated.

(2) Response. The Initial Response Force (IRF) legal support was provided by the Office of the Staff Judge Advocate, Military District of Washington. That office telephonically coordinated with CC/SJA TECOM on 7 and 8 Jan 93 to ensure SRF legal advisors were appraised of potential legal issues.

b. SRF Phase (7 Jan - 2 Feb 93)

(1) Activation. LTC Millard and LTC Foote attended staff meetings at HQ, USACBDA, on Saturday, 9 Jan 93, and arrived on-site on 10 January.

(2) Coordination. Legal coordination was made with the other staff elements of the SRF, as well as legal staffs in HQ, AMC, the Environmental Law Division (JALS-EL), the Army Claims Service, the International and Operational Law Division, the SJA for MTMC (Military Traffic Management Command), the SJA for the Military District of Washington, the Office of Corporate Counsel for the District of Columbia, and the Dept. of Justice.
(10) Legal affairs. Initial efforts focused on posse comitatus related issues, characterization of the recovered munitions as hazardous waste, pursuant to RCRA, and establishing a procedure to process possible claims, as well as determining which command or agency would process claims requests. It took some time early in the operation for the staff to adjust to the presence of legal advisors, and to sort out their role. As the operation progressed, the legal section drafted an declaration of emergency for the Mayor, continued to work on claims and tort, and CERCLA liability issues, reviewed safety and operational plans, drafted the action memorandum which is required by the National Contingency Plan, which was filed with the EPA, worked a variety of environmental law issues, requests for reimbursement by the District of Columbia and the EPA, tax exemption status, TDY limits, and a variety of fiscal and contract law questions.

(11) LTC Millard and LTC Foote were deactivated on 28 January. LTC Foote returned to the site on 1 February.

3. OBSERVATIONS AND RECOMMENDATIONS:
 a. Lessons Learned (see Appendix).
 b. Unresolved Problems.

 1) The District of Columbia may still seek "reimbursement" for expenses incurred during the Operation in excess of what is authorized by 40 C.F.R. 310.05.

 2) Emergency permits were obtained, with difficulty, to transport, store, and treat the munitions as hazardous waste from the States of Virginia and Arkansas, as well as coordinating the shipment of samples to Maryland for testing and analysis. The Army needs permitted facilities and transport for hazardous waste to handle future recoveries of non-stockpile chemical munitions.

 3) Reimbursement procedures were implemented by the Corps of Engineers for those voluntarily evacuated. It remains to be determined whether there will be subsequent claims filed with the Army, and whether there will litigation which joins the Army as a defendant.

c. Conclusion. A wide variety of legal issues were resolved on-site by the two Army lawyers. Integrating the lawyers into the SRF staff on-site helped the lawyers understand the problems first hand, and facilitated the timely and responsive delivery of legal services. The legal affairs team made an important contribution to accomplishing the mission.

MICHAEL K. MILLARD
LTC, JA

WARREN G. FOOTE
LTC, JA

151
Lesson Learned -- Transport and Storage of Recovered Munitions

1. ISSUE: The Army must resolve the systematic problem of establishing transport and storage standard procedures and adequate permitted facilities to

2. DISCUSSION:

 a. Underground disposal of munitions and related material from 1917 to 1919 in the vicinity of American University by the Research Division of the Chemical Warfare Service has resulted in extended emergency removal and restoration efforts.

 b. Munitions recovered from the burial pit were properly characterized as hazardous waste, in accordance with RCRA. There can be little doubt that munitions buried in 1919 are inherently waste-like material that have entered the waste stream. Nevertheless, due to political considerations, the State of Arkansas tried to persuade Army representatives at Pine Bluff not to seek a hazardous waste permit. Although a hazardous waste permit was ultimately granted to store the munitions as hazardous waste at the Arsenal, the message from the State seemed to be that this time may be the last time such shipments will be allowed. This state of affairs will drive the operators to seek to rationalize a way not to characterize recovered munitions, even when buried, as hazardous waste. This "fix" will delay finding a long term solution, and expose operators and transporters to criminal liability.

 c. The EPA has granted regulatory authority to the states under RCRA to manage hazardous waste. Receipt and storage of hazardous waste for ultimate incineration is not a politically acceptable outcome for any state.

 d. The EPA's emergency coordinator suggested that the EPA could withdraw state authority to regulate munitions which are hazardous waste if it was confronted with the problem. Right now, the EPA does not perceive that there is a problem.

 e. The Army should decide upon a standard procedure on how to transport and store recovered chemical and other munitions which could be characterized as hazardous waste. Coordination of the procedure should be coordinated with USACBDA; USACMDA; HQ, AMC; HQ, TECOM (Office of the Chief Counsel); the Environmental Law Division (JALS-EL); and the Office of the Army General Counsel.

 f. Once a procedure is established, the Army could attempt to effect a change in the law through Mr. Walker's office (Deputy Assistant Secretary of the Army for Installations, Logistics, and the
Environment), establishing a federal regulation that will allow the transport and storage of chemical non-stockpile material without the need for state approval.

3. CONCLUSION: A proposed standard procedure for the transport and storage of recovered chemical non-stockpile material should be staffed for final approval by Mr. Walker, with the recommendation that his office forward the procedure to the EPA for approval and implementation.

[Signature]

WARREN G. FOOTE
LTC, JA
Special Staff (Legal)
OPERATION SAFE REMOVAL
Spring Valley Munitions Removal
Legal Issues List

1. Can the Army feed non DOD personnel who are part of the Federal Response Force Coordinator/Service Response Force Commander's emergency response force?

2. What are the legal implications of the Army providing a statement describing the emergency situation, where the statement will be used by the resident for insurance purposes?

3. What are the legal implications of the size, shape, distance, direction, and duration of the hazardous safety zone created around the munitions site?

4. Who has, and what is the legal authority to evacuate residents from the area around the munitions site?

5. What is the legal recourse if residents fail to voluntarily evacuate?

6. Does the Army incur increased liability if removal work continues despite refusal of all residents to voluntarily evacuate from the hazard zone (and an accident occurs)?

7. Who is responsible for paying the incidental expenses of residents resulting from evacuation during removal operations?

8. What are the applicable transportation requirements of the Department of Transportation and the Department of Defense related to the air transportation of liquid and high explosive filled commodities?

9. What are the legal implications of using the local developer's front-end loader to remove top soil above and around the munitions site? What if the equipment is later contaminated? Alternatives?

10. What are the legal requirements and procedures to obtain emergency permits from Arkansas, Maryland, and Virginia to transport, store, and dispose munitions and other material removed the site?

11. What information should be provided to the SRF Commander concerning potential Army liability so he can be better prepared to address concerns of local residents?

12. Who will be responsible for processing liability claims arising out of this incident?

13. What are the procedures to affect an emergency contract with a technical expert needed by Technical Escort Unit to help evaluate and assist with removal operations?
14. Is Transportation Plan legally sufficient?

15. Is Hazardous Risk assessment legally sufficient?

16. What is the legal status of the developer's equipment (backhoe, etc.) left on site, and can it/should it be released back to the contractor?

17. Should the spent decon solution and discarded outer equipment be treated as hazardous waste?

18. What are the disposal standards for spent decon solution, personal clothing and equipment, and heavy equipment used on the site?

19. Is the health hazard fact sheet prepared by the SRF Surgeon legally sufficient?

20. What is the propriety/advisability of providing information about chemicals discovered at the site to the developer's attorney?

21. What is the potential for toxic tort liability arising from operation?

22. How will traditional claims be processed?

23. Is the Operation Safe Removal Operation Plan legally sufficient?

24. What are the legal/regulatory requirements for packaging materials for commodities to be shipped from the site?

25. What coordination is required before shipment of high explosive and liquid filled munitions?

26. Are plans for an alternative SRF site/EOC legally sufficient?

26. What are the requirements and constraints concerning release of information to residents, press, and other interested parties?

27. What are the legal implications and requirements for shipping 3 "sloshing" munitions to APG, MD, for test and analysis?

28. Under what circumstances may the SRF surgeon provide medical assistance to non-DOD civilians in the evacuation area?

29. What are the legal implications of using military investigators to question a civilian who reportedly found a munition (possibly from the site) and brought it to Montgomery County, MD?
30. What are the legal implications of coordination with private attorneys representing local residents and the developer?

31. What are the legal requirements for advising the National Response Center of a release or threat of chemical release? What information should be provided to the NRC during Operation Safe Removal to ensure compliance with 40 CFR 302(6)?

32. What is the legal significance of signs, found during excavations at the site, which indicate the presence of poison gas? How should the signs be preserved as evidence?

33. What are the legal implications of obtaining a list of names, addresses, and telephone numbers of evacuated residents of Spring Valley?

34. What limitations [Posse Comitatus Act] and guidelines are applicable for the use of military forces to provide protection and security around the site? Provide emergency evacuation assistance in the event of an accidental explosion or release?

35. What RCRA requirements must be complied with to transfer, store, and dispose of materials recovered from the Spring Valley site?

36. What coordination should be affected with the District of Columbia Office of Emergency Preparedness and Corporation Counsel?

37. How should non-DOD government agencies seek reimbursement for expenses incurred during Operation Safe Removal? Should local agencies be provided with a copy of 40 C.F.R. 310 concerning EPA claims for exceptional response costs associated with hazardous substances releases?

38. What is the legal significance of a state agreeing to allow materials to enter as "samples," but not as "hazardous materials?"

39. Do any community advisory press releases contain matters which would inappropriately raise any liability issues?

40. Are Phase I operations within the emergency exceptions of AR 200-2 such that EA's and EIS's are not required?

41. Does CERCLA cleanup require NEPA integration?

42. Do OSHA requirements apply to DOD emergency actions? Are military unique operations and work places exempt from OSHA requirements? Which safety requirements apply?

43. Is the emergency evacuation community advisory legally sufficient?
44. Does 40 C.F.R. 300.800, concerning selection of response action, apply to emergency removal actions like Operation Safe Removal?

45. What should be recommended to the Corps of Engineers concerning policy, procedures, and guidelines for reimbursement of reasonable evacuation expenses?

46. What are the legal implications of a National Defense Area? Should an NDA be established on the site of Operation Safe Removal?

47. What should be the contents of a letter from the SRF Commander to the D.C. Mayor to formally request the declaration of a community emergency? What will be the effects of such a declaration? What should the declaration state? Is it appropriate for the declaration from D.C. to tie parameters and end of the emergency evacuation to decisions of the SRF commander?

48. What is the legal basis for the appointment of the Army (DOD) as the "lead agency" for the emergency response under CERCLA?

49. What is the legal significance of tailoring the SRF to less than that called for in the National Contingency Plan (NCP)?

50. Under CERCLA and other guidelines, of what should the administrative record consist?

51. How does the SRF close out Phase I? Who will certify and verify that the site is clean? How?

52. How do we identify and define the environmental status of buried munitions? Are the hazardous waste, hazardous substances, etc.?

53. Is the document created to record the decision for a response action under 40 C.F.R. 300.800 legally sufficient?

54. What is the legal significance of plastic (clearly not from original 1918-1919 burial) being found at the site of the buried munitions? How should the plastic be preserved as evidence, and how should its finding be documented?

55. Should the SRF forces be exempt from D.C. hotel taxes? How should the exemption be documented?

56. What are the procedures for removing the TDY cap so that SRF members will not incur unreimbursed expenses? What else can be done to ensure SRF responders do not depart with unreimbursed expenses associated with the emergency deployment?
57. What legal problems are associated with cracking munitions at the destruction site at A.P. Hill, VA, to learn the contents, and then destroying in place [all non-intrusive examinations reflect the munitions do not contain chemicals]?

58. How should gifts to the SRF be treated? What are the rules for acceptance of gifts?

59. Can Army Chaplains be used to counsel Spring Valley residents?

60. What information should be provided through technical legal channels to OTJAC, MDW, Environmental Law Division, and U.S. Army Claims Service?

61. What is the potential for Army tort liability?

62. Who are the potential responsible parties under CERCLA?

63. What concerns should the SRF Commander have in addressing the public about the possibility of Army liability/responsibility?

64. What is the legal significance of how priorities of work are established for Phase II?

65. What is the exposure of the SRF Commander to personal liability?

66. What Federal statutes prohibit possession of explosives?

67. What Federal agency has law enforcement jurisdiction over explosives? To which Federal and local agencies should the SRF report evidence that the developer's employees may have removed or secreted potential explosives?

68. May the SRF Commander offer an amnesty turn-in program for munitions recovered by construction workers and residents? Is coordination with DOJ or D.C. agencies required?

69. How can the Army fix the long term problem of establishing environmental permits for transportation and storage for removed munitions which are hazardous waste?

70. May PINS (the Portable Isotopic Neutron Spectroscopy) be stored on site? Is the leased building serving as the SRF CP considered "government property" for storage purposes?
71. What is DERP (Defense Environmental Restoration Program) and DERA (Defense Environmental Restoration Account) and how do SRF costs get applied to those funds?

72. May the E/A receive reimbursement for costs incurred for split soil sample analysis done at the Army’s request?

73. What type of clauses should be included in a release, signed by residents, to limit Army liability while enabling the Corps of Engineers to “sweep” parcels of land as part of Phase II?

74. What should be done by SRF cleanup and transition forces to best limit claims arising out of direct damage to property used by emergency response forces?

75. What documents are required to be included in the administrative record that form the basis for the selection of the response action under the National Contingency Plan.

WARREN G. FOOTE
LTC, JA
SRF Environmental Law Advisor

MICHAEL K. MILLARD
LTC, JA
SRF Legal Advisor
Transport Requirements for Hazardous Waste

1. ISSUE: What are the transport requirements for air transport of hazardous waste.

2. DISCUSSION: Transport of hazardous waste requirements.
 a. RCRA is implemented by federal regulation, and includes the following requirements:

 1) Hazardous waste must have an EPA identification number prior to transport, 40 C.F.R. 263.11. In addition, Army Reg. 50-6, chapter 4, specifies packaging and labeling requirements, assignment of technical escort and security personnel, and transportation by military aircraft. Other notification requirements of Army Reg. 50-6, para. 4-2a, do not apply in an emergency.

 2) Hazardous waste must be accompanied by a manifest before it can be accepted from a generator for transport. The transporter must sign and date the manifest acknowledging acceptance of the hazardous waste, 40 C.F.R. 262.20, 49 C.F.R. 172.205 (DOT).

 3) The generator must designate on the manifest one facility which is permitted to handle the waste described on the manifest, 40 C.F.R. 262.20(b).

 4) Hazardous waste may only be transported to a storage or disposal facility that has an EPA or state permit for that type of waste. A temporary emergency permit to a non-permitted facility may be issued. This permit may be oral or written and is valid for no longer than 90 days. The permit must clearly specify the hazardous waste to be received and the manner and location of their treatment, storage, and disposal, 40 C.F.R. 270.61.

 5) The transporter must keep a copy of the signed manifest, 40 C.F.R. 263.22.

 6) In the event of a discharge of hazardous waste during transport, certain immediate actions are required, to include notice to the National Response Center. Immediate removal may be authorized if necessary to protect human health or the environment,
Transport Requirements for Hazardous Waste

40 C.F.R. 263.30 and 49 C.F.R. 171.3(d) (DOT).

7) The EPA has expressly adopted certain regulations of the Dept. of Transportation (DOT) governing the transportation of hazardous materiel, 40 C.F.R. 263.10.

b. DOT regulatory requirements:

1) Hazardous materiel may be transported by air if it is packaged, marked, labeled, classified, described and certified on a shipping paper and otherwise in a condition for shipment as required by DOT Technical Instructions, 49 C.F.R. 171.11. For any waste that exhibits an EPA characteristic of ignitability (White Phosphorus), reactivity, corrosivity, or toxicity (Lexusite), the letters EPA followed by the appropriate description is required, 49 C.F.R. 171.11(d)(1)(i)(C).

2) In the event of an incident during transport of hazardous materiels, certain reporting requirements must be met, 49 C.F.R. 171.15.

3) The hazardous waste manifest satisfies the requirement for DOT shipping papers, as described in 49 C.F.R. 172.200 -.203. This has been coordinated with Evans Scranton, DOT inspector, (717) 346-4949, and Kevin Koob, EPA On Scene Coordinator, EPA Region III, (215) 597-9355.

4) The air transporter must certify that the contents of the shipment are accurately described, classified, packed, marked, labeled, and in proper condition for air carriage, 49 C.F.R. 172.204(c).

CONCLUSION: Recovered chemical munitions should be transported and stored as permitted hazardous waste.

WARREN G. FOOTE
LTC, JA
AMSTE-JA
Special Staff (Legal)
MEMORANDUM FOR Program Manager for Chemical Demilitarization,
Environmental & Monitoring Division, ATTN:
SFIL-CME-N (MAJ DeWitt) Aberdeen Proving Ground,
Edgewood Area, MD 21020-5401

SUBJECT: NEPA Requirements for Spring Valley Remediation

1. This responds to your request for legal guidance concerning NEPA
requirements for the Phase I emergency response at Spring Valley,
Washington D.C., and the Phase II remedial investigation/feasibility
study and cleanup conducted by the Baltimore District of the Corps of
Engineers. I conclude that NEPA documentation is not required for
either Phase I or Phase II operations at Spring Valley.

2. Phase I emergency response activities do not require
environmental analysis pursuant to NEPA. Paragraph 2-3b, Army Reg.
200-2 provides that in an emergency, the Army may take immediate
actions that have environmental impacts for the purpose of protecting
life or property. The actions conducted by the Service Response
Force in Phase I fall within this exception.

3. The Defense Environmental Restoration Program (DERP) provides
centralized management for the cleanup of DOD hazardous waste sites
consistent with the provisions of the Comprehensive Environmental
Response, Compensation and Liability Act (CERCLA). DERP applies to
Phase II operations at Spring Valley. All the requirements of NEPA
are met in the CERCLA process, which is the functional equivalent of
NEPA. No separate documentation for NEPA compliance is required
while conducting the Phase II investigation/study and cleanup
response at Spring Valley. Certain features of NEPA will be included
in the remedial investigation/feasibility study. The management of
this process, however, falls within the responsibility of the
Baltimore District Engineer.

WARREN G. FOOTE
LTC, JA
Assistant Staff Judge Advocate

21 January 1993
Commanders' Potential for Personal Liability

1. ISSUE: Is the SRF Commander or the Commander of Technical Escort exposed to personal liability by not following OSHA standards and Army safety policies regarding protective clothing.

2. DISCUSSION:

 a. OSHA regulations are not enforceable against the Army by the Dept. of Labor. See 29 C.F.R. 1910.2(c), which excludes the United States from its definition of "employer."

 b. Executive Order 12190 of February 26, 1980, directs the head of each agency to operate an occupational safety and health program in accordance with the requirements of the Executive Order. This Order does not apply to "military personnel and uniquely military equipment, systems, and operations."

 c. Army Reg. 365-10 states: "Commanders will apply OSHA and other non-DA regulatory or consensus safeguards and health standards to military-unique equipment, systems, operations, or workplaces, in whole or in part, insofar as practicable."

 d. As a general rule, government officers who perform discretionary functions within the scope of their duty are not exposed to personal liability. This extends to a commander's decision as to the level of protective equipment soldiers and employees should use during operations. Decisions which are outside the scope of duty, or grossly or willfully negligent subject the culpable party to personal liability.

3. CONCLUSION: OSHA standards provide a guide for establishing employee safety standards in environmental remediation, but these standards are not enforceable against the Army. Although Army safety regulations provide specific guidance and apply OSHA safety standards, commanders have the discretion to specify the appropriate protective measures that are to be taken. The exercise of this inherently discretionary function does not expose commanders to personal liability.

WARREN G. FOOTE
LTC, JA
AMSTE-JA
Special Staff (Legal)
1. Name: LTC Warren G. Foote
2. Agency: AMSTE-JA
3. Section: Special Staff (Legal)
4. Report:
 a. Issue: May the Portable Isotopic Neutron Spectroscopy Chemical Assay System (PINS) be stored on-site?
 b. Discussion:

1) The use, possession and transfer of nuclear by-product materiel is prohibited by statute unless a license has been granted by the Nuclear Regulatory Agency (NRC), 42 U.S.C. Section 2111. There are, however, certain exemptions to the licensing requirement that may apply in accordance with NRC regulations.

2) Prime contractors of the Dept. of Energy (DOE) are specifically exempted from the licensing requirements for most purposes, see 10 C.F.R. 30.12. Idaho National Engineering Laboratory (EG&G) is a DOE prime contractor.

3) The DOE exemption applies to the "performance of work for the Department [DOE] at a United States Government-owned or controlled site...." 10 C.F.R. 30.12. PINS, a by-product materiel, is the subject of a memorandum of agreement between the Army and DOE to allow its use to determine the content of recovered munitions. The use of the PINS at the Service Response Force (SRF) site is in accordance with the memorandum of agreement and, therefore, meets the requirement for the exemption.

4) The second part of the regulatory test, which requires the performance of work at a "Government-owned or controlled site," needs further analysis. The terms "Government owned or controlled" do not appear to be defined, therefore, rules of reasonable interpretation apply. The PINS is being used at the SRF site inside a house leased by the Army. This meets the "Government owned or controlled" requirement. This conclusion is shared by Mr. Larry Spilker, Chief Counsel of EG&G, (208) 526-1655, who informed me that by-product materiel is frequently used in Government leased buildings, and meets the regulatory exemption.

c. Resolution: The licensing exemption applies. The PINS may be used and stored at the SRF site in the Army leased building.
SPRING VALLEY EVACUATION
Recommended Reimbursement Procedures

SITUATION: The Corps of Engineers was tasked with establishing procedures and guidelines for reimbursement of reasonable expenses incurred by Spring Valley residents evacuated from their homes during removal operations. Delay in the preparation and publicizing of reimbursement guidelines created a public relations problem and a potential financial burden on residents who do not know in advance what expenditures will be reimbursable.

DISCUSSION: Recommendations (Enclosed) were prepared to assist the Corps of Engineers action officers in arriving at appropriate reimbursement guidelines.

MICHAEL K. MILLARD, LTC, JA
Operation Safe Removal
Special Staff - Legal
23 January 1993
SPRING VALLEY EVACUATION
Recommendations for Reimbursement Procedures

1. Reimbursement Policy.

 a. As a matter of policy, the U. S. Army Corps of Engineers should adopt a generous interpretation and application of Mr. Walker's decision for the reimbursement of "reasonable expenses incurred by Spring Valley residents evacuated from their homes during removal activities." Every effort should be made to reimburse for all expenses directly and reasonably resulting from the evacuation to ensure that no affected resident will be forced to suffer an uncompensated loss.

 b. Reasonableness and flexibility should be the watchwords in evaluating each request for reimbursement. Evaluators should avoid hard and fast rules and limitations concerning maximum allowable expenses. The facts and circumstances of each case should be carefully considered and independently evaluated. What may appear to be a reasonable application in one situation may not be reasonable in all situations.

2. Persons eligible to request reimbursement.

 a. Local area residents should be advised in advance who is eligible to submit a request for reimbursement under this program. The SRF is compiling a list of addresses which are believed to have been in the zone of evacuation during Operation Safe Removal.

 b. Because a precise accounting of persons evacuated by officials of the District of Columbia was not established during the first few days of Operation Safe Removal, a procedure should be established for local area residents who do not reside at one of the listed addresses to submit evidence to establish they were in fact evacuated and may be eligible for the reimbursement benefits.

 c. Each person residing in an evacuated residence should have an independent right to request reimbursement. However, for ease of adjudication, family units should be encouraged to consolidate their requests for reimbursement.

 d. Persons away from their homes during periods of evacuation for reasons independent of the evacuation (for example, persons away on business trips or attending a resident college) should not be eligible for reimbursement for those expenses not directly caused by the evacuation.

 e. Procedures should recognize that requests for reimbursement can be submitted by an agent (under a power of attorney), legal representative, spouse, or, for children, parent or guardian of an eligible person.
3. **Timeliness of request for reimbursement.** Residents should be advised in advance of the deadline for submitting requests for reimbursement. A deadline of at least 30 days from the last day of evacuation may be reasonable; however, requests for exception based on unusual circumstances should be entertained.

4. **Form of request for reimbursement.** To facilitate submitting a request for reimbursement, a form should be provided to all eligible persons. The request form should have space to set forth:
 a. the name or names of the persons requesting reimbursement.
 b. the address of the evacuated residence.
 c. the dates and times the residence was evacuated.
 d. a narrative description of the basis for the request for reimbursement, including an description of any unusual expenses (other than meals, lodging, and local transportation), and an explanation of why the requestor believes the unusual expenses were caused by the evacuation and are reasonable.
 e. an itemized list of expenses for which reimbursement is requested, including both descriptions and amounts.
 f. the total of all expenses for which reimbursement is requested.

5. **Substantiation.**

 a. Because affected residents were not given in advance established guidelines for submitting requests for reimbursement, adjudicators should be very flexible as to the amount of evidence required to substantiate expenses.

 b. If available, for each expense in excess of $100.00, residents should be asked to provide a copy of a paid bill, receipt, cancelled check, credit card receipt, or similar documentary evidence to confirm the value of the expenditure. If direct documentary evidence of such expenditures are not available, residents should endeavor to provide a statement with sufficient specificity to allow adjudicators to substantiate the validity and reasonableness of the reimbursement requested.

 c. Prompt adjudication and payment is essential to maintain the good will of the local residents. For requests for reimbursement in a total amount of less than $1,000.00, expedited procedures should be established.

6. **Advance payment procedures.** In order to alleviate personal hardship and financial inconvenience experienced by the evacuated residents, emergency partial payment and advance payment procedures should be developed and immediately implemented.
7. Appeal procedures. Procedures should be developed to allow requests for reconsideration or appeals for any administrative determination of allowable reimbursement expenses which the affected person deems to be insufficient.

Michael K. Millard
MICHAEL K. MILLARD
LTC, JA
SRF Legal Advisor
National Defense Area

1. ISSUE: What is a National Defense Area (NDA) and is establishment of a NDA appropriate for Operation Safe Removal?

2. DISCUSSION:

 a. A NDA is an area established by a DOD official on non-Federal lands located within the United States, its possessions, or its territories for the purpose of safeguarding classified defense information or protecting DOD equipment or materiel. Establishment of a NDA temporarily places such non-Federal lands under the effective control of DOD and results only from an emergency event. The senior DOD representative at the scene will define the boundary, mark it with a physical barrier and post warning signs, 50 Fed. Reg. 46542.

 b. The landowner's consent and cooperation will be obtained whenever possible; however, military necessity will dictate the final decision regarding location, shape and size of the NDA. JCS Pub. 1.

 c. Under Army regulation, the On-Scene Commander has the authority to declare a NDA.

 d. A NDA has no basis for existing after classified materiel or government property is removed. The size of a NDA is limited to the immediate area where the classified materiel or government property to be protected is located.

 e. Establishment of a NDA gives the On-Scene Commander the authority to apprehend or detain civilians who intrude into the NDA.

 f. Although establishment of a NDA is often short-lived, it may constitute a takings which could result in compensation to the landowner for the amount of time the NDA is in existence.

3. CONCLUSION: The authority to declare a NDA at the munition removal site is highly questionable. The munitions, having been abandoned during World War I, are not necessarily the property of the U.S. Government. Any classified materiel on or near the site has been brought to the site in response to emergency operations and fall outside the scope of establishing a NDA. In addition, the limits of the NDA must be restricted to the immediate area surrounding the munition pit, and may not extend beyond that discrete area to include the 300 meter safety zone.

WARREN G. FOOTE
LTC, JA
AMSTE-JA
Special Staff (Legal)
Army as the Lead Agency

1. ISSUE: What is the authority for the Army to function as the lead agency for Operation Safe Removal?

2. DISCUSSION:

 a. The National Contingency Plan (NCP) provides for the efficient and coordinated response to releases of hazardous substances into the environment and establishes procedures for undertaking response actions under CERCLA.

 b. "Lead agency" means the agency that provides the On-Scene Coordinator/Remedial Project Manager to plan and implement the response action under the NCP.

 c. For releases from any DOD facility or vessel, DOD executes lead agency responsibility for the response. 40 C.F.R. 300.120(b) and DA Pam 50-6, para. 2-12c.(1)(b) (1991).

 d. DOD will be the removal response authority with respect to incidents involving DOD military weapons and munitions or weapons and munitions under the jurisdiction, custody, or control of DOD, 40 C.F.R. 300.120(c) (National Contingency Plan).

 e. The munition removal site was used during World War I by the Research Division of the Chemical Warfare Service (1917-1919) to test and develop chemical warfare materiel. Munitions recovered at the site include Levins projectiles (World War I era mortar round), 75mm artillery projectiles, 3 inch Stokes mortar rounds, 4.7 inch projectiles and grenades. All these items, although abandoned at the site, retain their identity as military weapons. Subsequently, DOD has assumed custody and control of the munitions.

 f. BG Friel was designated by HQDA as Service Response Commander/On Scene Coordinator on 7 January 1993.

3. CONCLUSION: There is sound legal authority for the Army to function as the lead agency for Operation Safe Removal.

WARREN G. FOOTE
LTC, JA
AMSTE-JA
Special Staff (Legal)
Administrative Record

1. ISSUE: Does 40 C.F.R. 300.800, which requires the lead agency to establish an administrative record to document the selection of a response action, apply to the SRF for Operation Safe Removal?

2. DISCUSSION:

 a. 40 C.F.R. 300.800(a) states: "The lead agency shall establish an administrative record that contains the documents that form the basis for the selection of a response action. The lead agency shall compile and maintain the administrative record in accordance with this subpart."

 b. 40 C.F.R. 300.800(b) states in part: "...the lead agency shall compile and maintain the administrative record for the selection of a response action...to ensure that the administrative record includes all documents that form the basis for the selection of the response action."

 c. Although the requirements set forth above expressly apply to CERCLA response actions, it also applies to the SRF Phase I response. 40 C.F.R. 300.800(e) states: "For those response actions not included in paragraph (d) of this section, the lead agency shall comply with this subpart to the extent practicable." [Underline added].

 d. The practical implications of compliance with the above stated portion of the National Contingency Plan includes:

 1) Compiling and maintaining an administrative record which includes all documents that form the basis for the selection of the response action.

 2) Including in the administrative record the decision documents and those records containing factual information, data and analysis that may form the basis for the selection of a response action.

 3) Making the administrative record file available for public inspection.
e. The EPA Coordinator has provided this office with copies of decision memoranda pertaining to CERCLA removal actions which provide guidance as to format and content.

3. CONCLUSION: To the extent practicable, the SRF is required to prepare an administrative record that forms the basis for the selection of a response action pursuant to the National Contingency Plan.

WARREN G. FOOTE
LTC, JA
AMSTE-JA
Special Staff (Legal)
SPRING VALLEY EVACUATION
Chaplain Services

SITUATION: The SRF Staff has inquired about the advisability of using military chaplains to minister and counsel local area residents during Operation Safe Removal.

DISCUSSION: An information paper (enclosed) was prepared to inform the SRF Staff of appropriate Chaplain services.

MICHAEL K. MILLARD, LTC, JA
Operation Safe Removal
Special Staff - Legal
26 January 1993
Chaplain Services

1. ISSUE: May military chaplains counsel and minister to the needs of civilian residents of Spring Valley, Washington, D.C., in conjunction with Operation Safe Removal?

2. DISCUSSION:

 b. The Establishment Clause of the U.S. Constitution prohibits government sponsorship of religion.

 c. The current Chaplain Corps policy is to avoid even the appearance of an Establishment Clause violation (AR 165-1, para. 2-3a).

 d. In reference memorandum, the Office of The Judge Advocate General, after a careful review of applicable Supreme Court and Federal case law, determined that use of military chaplains to minister to the spiritual needs of civilian disaster victims is Constitutionally prohibited. While secular counseling and other secular services for civilian victims was not specifically prohibited by the Constitution, such activities could create the appearance of a violation, would place Chaplains in the untenable situation of having to adhere to strict separation of their spiritual and secular roles, and could result "in litigation and court-mandated restriction on the chaplaincy of an unpredictable scope."

3. CONCLUSION: It is not appropriate for military Chaplains, in their official capacity, to provide spiritual or secular counseling for the civilian residents of Spring Valley. Should a need exist, District of Columbia officials should be asked to provide or arrange for such services for their citizens. Military chaplains may provide secular counseling for SRF emergency response forces, military and civilian, located on site and participating in Operation Safe Removal.

Michael K. Millard
LTC, JA
SRF Legal Advisor

174
CASH AWARDS FOR DEPT. OF ARMY CIVILIANS

1. ISSUE: May Dept. of Army civilian employees receive reimbursement for extraordinary expenses incurred while on TDY for Operation Safe Removal?

2. DISCUSSION:

 a. There is no mechanism to provide direct reimbursement for extraordinary expenses incurred while on TDY. The law and regulations authorizing the reimbursement of traveler's expenses while on TDY is limited to the expense of actual transportation as well as certain specified expenses at the TDY station.

 b. The fact that an employee incurs additional personal expenses at their home station because of official travel is not a sufficient basis for shifting the expense to the government. (Excerpt from the Civilian Personnel Law Manual, 2d Edition, 1989, citing a GAO opinion).

 c. There is a creative solution for the dilemma posed above. Commanders have discretion to make cash awards to recognize meritorious personal effort, act or service within or outside assigned job responsibilities. The Special Act or Service Award is particularly appropriate to recognize short periods of superior performance accomplished: "(c) At the conclusion of a successful special project assignment." Para. 4-1, Army Reg. 672-20 (1 June 1982).

1) Nominations should be submitted by a supervisor or official with direct knowledge of the act or service within 30 days after the act or service.

2) DA Form 1256 will be used to submit recommendations for this award.

3) DA Form 2442 (Commendation Certificate) may be given with cash.

4) Major commanders may approve cash awards (individual and group) up to and including $10,000. Approval authority may be delegated to subordinate commands or activities. Para. 4-3, Army Reg. 672-20.

5) Telephonic coordination also reveals that funds should be approved by a work order and fund cite. If the recipient does not work for the awarding commander, the cash award must be approved by the commander's CPO and provided to the recipient's CPO where the check is processed.
3. CONCLUSION: Monetary awards may be given to all Dept. of Army civilians who participated in Operation Safe Removal to recognize their meritorious personal effort at the conclusion of this special assignment. The availability of funding, however, may impose a pragmatic constraint.

WARREN C. FOOTE
LTC, JA
AMSTE-JA
Special Staff (Legal)
SURGEON
MEDICAL
After Action Report
Operation Safe Removal

1. PURPOSE:

 a. Introduction and Background.

 (1) Service Response Force Surgeon.

 (2) Notification. Alerted on 9 January 1993 by
 Director, Occupational and Environmental Health that he had been
 tasked to provide a SRF surgeon.

 (3) Time to departure. Approximately 24 hours.

 (4) Protective mask. A protective mask (M17A2) has
 been issued at the Edgewood Area of Aberdeen Proving Ground.

 (6) Supervisor. The director, special staff, COL
 Kenison.

 (7) Medical support. Tasked with providing staff
 support and on-site medical support to SRF.

 (8) Time of arrival. Arrived at Spring Valley at
 about 1530 for a tour of area.

 (9) Work location. Special staff office in EOC.
 Also, maintained a sickcall area in TEU operations center.

 (14) Transportation on-site. Utilized the TEU bus to
 travel to and from the site due to necessity to provide sickcall
 to this unit twice daily.

 (15) Equipment requirements. Environmentally
 controlled work area, desk/table, chair, telephone, office
 supplies and coffee. General support also includes a laser
 printer and copier.

 (16) Unavailable equipment. Sufficient number of
 printers. Health care supplies due to operation not being
 conducted on a military installation.

 (17) Preparation for the mission. Prior identification
 as the physician designated "on-call" for this type of mission
 would facilitate being prepared with references, supplies and
 "POR".

2 February 1993
(18) Required personnel not present. A medical service corps officer is designated in the CSRFCERP. The administrative assistance would be a valuable asset in a larger operation and definitely if there are casualties.

(19) Deactivation. 2 February 1993

(20) Additional comments.

b. Objectives. The following were the goals and objectives of the SRF surgeon.

(1) Serve as the point of contact for all actions related to health and medical aspects of Operation Safe Removal.

(2) Liaison with the army point of contact at the AOC for the military district of Washington D.C. Required support was requested through this POC.

(2) Establish contact with local EMS to coordinate emergency and routine evacuation.

(3) Establish contact with Walter Reed Army Medical Center Emergency Department to ensure they have been alerted and are prepared to receive chemical casualties.

(4) Advise the Director for Special Staff of the need for additional support to provide for health and medical care for personnel involved in the operation.

(5) Assist local medical providers, as necessary, in management of chemical casualties.

(6) Provide sickcall twice daily and as needed to keep the maximum number of personnel on-site.

(7) Keep ATSDR (CDC) informed of situation.

(8) Keep the Director for Special Staff informed of casualties and sickcall status.

(9) Review the medical support plan initiated by civil authorities.

(10) Establish contact with the senior civilian medical person responsible for medical support prior to arrival of SRF.
MEDICAL After Action Report
Operation Safe Removal

(11) Determine local civilian medical treatment facility capabilities.

(12) Identify additional medical and decontamination support required to support the maximum credible event.

(13) Assess the current medical situation and advise the Director of Special Staff.

(14) Determine adequacy of TEUs ability to decontaminate chemical casualties.

(15) Keep the Director of the Special Staff appraised of the medical situation and any changes that occur.

(16) Consult with Safety, Environmental, and Operations personnel, as appropriate.

(17) Consult with USAMRIID experts in biological weapons, as appropriate.

(18) Arrange for resupply of medical equipment and expendable items.

(19) Consult with USAEHA concerning worker and civilian exposure to low levels of chemical agents and hydrolysis products.

2. OPERATIONAL SUMMARY:

a. Developed a detailed medical support plan (Appendix I).

b. Distributed a Medical Alert (information paper) as a preventive measure (Appendix II).

c. Produced an information paper on the hazards of known chemical agents (Appendix III).

d. Identified hydrolysis products of the primary agents of concern (Appendix IV).
3. OBSERVATIONS AND RECOMMENDATIONS:

a. Lessons Learned and Unresolved Problems.

(1) Medical evacuation support at this site was readily available. The EMS capability to move casualties by ground and air ambulance would probably have been adequate even for the MCE. In addition to Walter Reed Army Medical Center there are numerous large civilian hospitals are located in the NW Washington D.C. area within minutes of the Spring Valley subdivision. Future operations not on or near a military installation will probably not have the evacuation and clinical assets readily available. Both may require that ambulance support and a treatment facility be moved to the site.

(2) Medical resupply of sickcall items was done through the health clinic at Edgewood. A list of supplies was telephonically relayed to that facility and the courier from TEU picked them up on the next trip to Edgewood. This was adequate due to the proximity of the supporting facility. At a more remote site the plan would be more elaborate and tied into the field medical facility indicated in the above paragraph.

(3) EMS personnel doing screening require to be supervised to ensure procedures are not varied. Blood pressure may dramatically increase while donning protective clothing and for a brief time afterward. Vital signs should be taken prior to "dressing out" to cross the hotline.

(4) Food Service:

(a) The caterer supplying food for lunch and dinner to the headquarters building departed the area ninety minutes after setting up the serving line leaving the food in place for personnel arriving late. The sterno canisters were extinguished after about two hours and the food left on the serving line until the next meal (about three hours after lunch and fourteen hours after the dinner meal). Stringent follow-up was required to ensure the food was not consumed late when there was a possibility of developing foodborne illness.

(b) The Red Cross food vendor maintained the food prior to being served in an exemplary manner. The eating area (a GP medium tent) was generally kept clean. Only occasionally was there foodstuff found on the ground inside the tent. This became more frequent toward the end of the operation.
(5) Decontamination was provided by TEU and adequate to support the operation. Their workers are well trained and have had considerable experience decontaminating their personnel as they egress across the hotline. Litters were available for transporting casualties through the decontamination process. Their decon line was relatively fixed and appeared to lack the flexibility to be moved should the direction of the wind change at a time when the line was to be used. An alternate line was not observed. A platoon from the 101st Chemical Company was present to assist as needed. The level of training for either of these units in decontaminating a casualty was not assessed.

(6) The personnel assigned to TEU are highly motivated and aggressive in pursuing their mission. However, there were a few civilian personnel that appeared to lack the physical conditioning to excel in strenuous tasks requiring full protective clothing and a respirator. Considering the mission of this unit it could prove disastrous to have personnel unable to respond to an emergent situation due to a lack of physical endurance.

b. Conclusion.

The medical plan and assets on-site were adequate to support Operation Safe Removal. The Washington D.C. EMS personnel performed very well and had the available personnel and vehicles to respond to either the MPE or MCE had that been necessary. The medical facilities were numerous and capable of receiving multiple casualties. Overall, medical support was both available and capable of providing expert health care.
MEDICAL After Action Report
Operation Safe Removal

4. APPENDICES:

I Medical Support Plan
II Medical Alert
III Information Paper
IV Hydrolysis Products
V Points of Contact
VI Chronology of Work
VII References
VIII Medical Log

ROBERT M. GUM
MAJ, MC
SRF Surgeon
ANNEX M (MEDICAL OPERATIONS) TO SAFE REMOVAL OPERATIONS PLAN

1. ON-SITE MEDICAL SUPPORT

a. SRF Surgeon

(1) The special staff officer responsible for medical support at the site and coordination for evacuation and medical treatment at the nearest appropriate medical facility. Prepare medical assets to accommodate the most probable event.

(2) Responsible for identifying and coordinating additional decontamination and medical support required to support the maximum credible event.

(3) Respond to any required information concerning the medical management of chemical casualties.

(4) The most probable event (MPE) fluctuates with the type of munitions that is uncovered at any given moment. The most probable event would involve the EOD personnel at one of the three areas where they are actively uncovering, packaging, x-raying or otherwise manipulating munitions. The MPE is estimated to involve nine individuals.

(5) The maximum credible event (MCE) could involve civilian inhabitants in the surrounding area. However, the munitions are predominantly mortar rounds and livens projectiles with a short effective bursting radius. Chemical munitions could pose a threat for workers in the immediate area, however, the vapor plume traveling downwind would dissipate with distance. Cool damp conditions will significantly reduce the hazard of chemical agents.

b. Fire Department Surgeon

(1) Dr. Robert Bass is the director of the EMS Bureau of the Washington D. C. Fire Department. He was primarily responsible for coordination and arranging for medical support on-site prior to the activation of the Service Response Force.

(2) He can be reached by beeper at telephone number 539-5152.

c. EMS Personnel

(1) A total of four personnel are available to provide evacuation and treatment.

(2) One supervisor (EMS control) is located on-site.
d. Accident Response

(1) EMS

(a) One ambulance will be positioned on-site at 52d Court and the EMS personnel will conduct screening of personnel prior to beginning of each shift.

(b) One ambulance will be positioned on-site on Warren Street on stand-by.

(2) A total of 21 to 26 EMS ambulance units are available from the Washington D.C. EMS system.

e. Sick-call procedures

(1) Limited sick-call will be available on-site.

(a) Military sickcall will be conducted at 0730 and when TEU outbriefs at the TEU command post.

(b) The SRF surgeon will see personnel in the special staff area as needed throughout the day.

(c) In case of an emergency during non-duty hours the SRF surgeon is located in room 611 at the Embassy Suites phone number 362-9300.

(2) Medical needs requiring further treatment will be referred to local medical facilities.

2. SPECIAL RESPONSE

a. Decontamination

(1) EOD will provide decontamination of personnel and casualties as needed per their SOP.

(2) Decontamination of a casualty(s) at the supporting medical facility may be limited to a thorough wash with soap and water if a 0.5% hypochlorite solution is not available.

b. Treatment of chemical casualties

(1) Treatment of chemical casualties will be conducted IAW with FM 8-285.

(2) The SRF surgeon will coordinate special treatment requirements with the fire department physician and supporting medical facilities.
3. MEDICAL EVACUATION PLAN

a. On-Site ambulances

(1) The ambulance located in a protected area near the hot line will be the first ambulance to respond to an injury.

(2) The second ambulance will respond only if called for by the EMS controller or authorized person.

b. The requirement for additional ambulance support will be determined by the senior medical officer present and requested through the EMS controller.

c. Air Evacuation is available by the U.S. Park Police through the EMS communication control system.

4. SUPPORTING MEDICAL FACILITIES

a. The primary medical facility for military personnel is Walter Reed Army Medical Center.

b. Civilian Personnel:

(1) The designated trauma center is Georgetown University Hospital. In addition this facility is the eye trauma center.

(2) George Washington Hospital has hyperbaric capability and designated to receive chemical casualties.

(3) Additional hospitals that have been coordinated with to provide support include:

Sibley Hospital for minor trauma.

Washington Hospital Center for burns.

National Childrens’ Medical Center for pediatric treatment.

(4) Coordination with civilian medical facilities has been done by Dr. Bass.

5. MEDICAL AUGMENTATION

a. Decontamination augmentation will be provided by Walter Reed Army Medical Center.
b. The Medical Chemical Advisory Team from USAMRICD is on-call for technical and medical consultation. A team is available for deployment to the site if required.

6. MEDICAL SUPPORT 16 – 20 JANUARY 1993

a. Concept of Operations.

(1) Recovery operations will cease at the close of business 15 January 1993. Activities on 16 January will be limited to equipment maintenance and general cleaning of the area of operations.

(2) About 20 military personnel will be on-site to support the security mission. These personnel will work with the D.C. police.

b. Emergency Medical Support.

(1) The EMS system can be accessed through either a police radio or by dialing 911 on a commercial telephone. Their response time from the nearest fire station is less than five minutes.

(2) Military personnel will be transported to Walter Reed Army Medical Center. The EMS personnel may elect to utilize another facility if the situation requires immediate care.

c. Routine Medical Care.

(1) Non-urgent medical care will also be at Walter Reed Army Medical Center emergency department.

(2) A map of this area to include Walter Reed Army Medical Center is attached.
1. SOUTHEAST COMMUNITY
 574-6541-46-47
 574-6545 (TELEMISTRY)

2. CHILDRENS
 745-5433

3. COLUMBIA
 293-4444

4. MED-STAR
 877-7234 - 7235

5. HOWARD UNIVERSITY
 865-1131-32-41-42

6. D.C. GENERAL
 675-7518 OR 7101
 675-7020 (CHG. NURSE)

7. GEORGETOWN UNIVERSITY
 784-2118 (ER)
 784-3800 (SECURITY)

8. GEORGE WASHINGTON UNIVERSITY
 994-3884

9. HADLEY
 574-5750-51

10. PROVIDENCE
 269-7001 (ER)
 269-7093 (DESK)

11. SIBLEY
 537-4080 (ER)

12. WASHINGTON HOSPITAL CENTER
 877-5515 (ER)
 877-6512

13. WALTER REED
 576-1199

15. VETERANS
 745-8000
 EXT. 8357
 8358
 8359

16. P.G. GENERAL HOSPITAL
 (301) 641-2630
 618-3750

16. WASHINGTON ADVENTIST HOSPITAL
 891-5070 (ER)
 891-5040 (OB)

MONTGOMERY COUNTY FIRE
(301) 217-4644

PRINCE GEORGE'S FIRE
(301) 499-6400

EKitEHSDA CHEVY CHASE RESCUE SQUAD
(301) 657-0077

POISON CONTROL
625-3333

187
MEDICAL ALERT

1. Some of the personnel involved in Operation Safe Removal are in their ninth work day. At this point certain health issues have become apparent. Small group leaders are in an opportune position to identify personnel that are at risk for unnecessary injury or illness. The following are health issues that both the individual and the unit leaders need to bear in mind.

 a. WATER INTAKE. Thirst is a poor indicator of an individual’s need for water, particularly in a cool damp environment. A dehydrated individual will experience headache and dizziness, and a decreased ability to make appropriate decisions, increasing the possibility of an accident. The unit commanders/leaders must ensure that all personnel have ready access to potable water (coffee adds to dehydration). The appropriate quantity of water can be judged by the color of the urine. Normal urine is light yellow to clear. Dark yellow urine is an indicator of dehydration.

 b. FOOT CARE. Many individuals have been wearing rubber boots due to the wet weather. This promotes the development of immersion foot. Should it be necessary to continue to wear rubber boots changing socks frequently and using foot powder is recommended. Other types of cold injury can be avoided by frequent warming and bringing problems to the attention of supervisors.

 c. EXTENDED WORKING HOURS. Working long hours for several consecutive days without a break will become evident in an individual’s behavior and ability to function effectively. A change in an individual’s attitude may indicate that person requires rotation from a critical position to one with more latitude or less stress.

 d. MEDICATIONS. Personnel taking medications routinely should ensure that they have sufficient quantities available to last through the operation.

 e. NAILS. There are nails lying throughout the area. A few have found their way into chair seats and other unlikely places. These should be disposed of appropriately.

2. Military sickcall is at 0730 and when TEU outbriefs at the COB each day in the TEU Cmd Post. In case of an emergency during non-duty hours the SRF surgeon is located in room 425 at the Embassy Suites phone number 362-9300.

3. Civilian EMS personnel are on-site and prepared to respond to emergencies.

ROBERT M. CUM
MAJ, MC
SRF Surgeon

190
INFORMATION PAPER
CHEMICAL AGENTS IDENTIFIED IN THE SPRING VALLEY AREA

The purpose of this information paper is to address medical issues concerning the acute effects of the chemical agents identified in the Spring Valley residential area. The chemical agents discovered at this site were apparently deposited there during the World War I time frame. The mention of chemical warfare agents commonly instills immediate fear of an insidious threat. However, a better understanding of the agents present in Spring Valley will serve to alleviate some anxiety the homeowners in the area must surely be feeling.

Chemical agents are typically packaged in shells or canisters. The munitions identified in the Spring Valley area have been levins canisters, mortars and small hand held devices. This fact limits the amount of chemical agent present and the area that could be affected should one of the shells not be intact. Working with small chemical munitions makes the task safer for the military personnel and reduces the risk for residents.

Chemical munitions were designed and produced with several objectives in mind. Typically, the term chemical warfare agents invokes visions of massive numbers of casualties with little hope of survival. This is not true of several of these chemicals. These were developed with the intent of producing casualties that would become ill or injured to the point that they require transportation to a medical treatment facility. This would cause not only a reduction in the fighting strength but require important support personnel to assist the casualties. At least two of the agents identified at the Spring Valley area are of this type. Adamsite is termed a vomiting agent because when inhaled or ingested in sufficient amounts it results in the individual becoming ill and incapable of performing routine tasks. Lesser exposures cause irritation to the eyes with tearing, sneezing and coughing. Recovery from exposure to adamsite is spontaneous and requires only supportive care. Lewisite is a second agent that is typically not lethal as a vapor. The action of this agent is to cause pain and blisters that would render a soldier ineffective. Exposure to lewisite causes immediate burning of the eyes and skin, throat irritation, and complicating respiratory illness in large doses. If lewisite is ingested diarrhea, nausea and vomiting may result. Personnel exposed to lewisite will require medical attention but only those exposed to large amounts of the agent will be in any danger.

Phosgene is an agent that does not fit the above category. Exposure to a sufficient amount of this agent can cause severe respiratory illness. The more serious effects are preceded by coughing and choking and should alert the individual that he or she needs to seek medical attention. Fortunately, phosgene is nonpersistence and dissipates very rapidly. The quantity of agent
present in the munitions found in this area would be a hazard only for those in the immediate area for a brief period.

White phosphorus is not a chemical warfare agent but classified as an incendiary agent it burns readily giving off a white smoke and is used as a marker for various purposes. Skin contact with this compound results in immediate burning. This will continue so long as the white phosphorus is in contact with oxygen. Medical treatment will be required to remove the white phosphorus and treat the burn injury.

The cool damp weather has been an important factor in the safe removal of these agents. The chemical properties of these compounds make them less volatile under these conditions and therefore less hazardous.

ROBERT M. GUM, D.O., M.P.H.
Major, Medical Corps
Service Response Force Surgeon
Hydrolysis products of suspected agents in the Spring Valley Residential area.

- **Lewiste**
 HCl
 Chlorovinylarsenous oxide
 (a mildly toxic & blistering compound)

- **Phosgene**
 HCl
 CO₂

- **Mustard**
 HCl
 Thiodiglycol

- **Adamsite**
 HCl
 Diphenylarsenious acid

Above information taken from: Compton, J.A.F., Military Chemical and Biological Agents, September 1987
OPERATION SAFE REMOVAL
Medical Contacts - Off Site

MAJ Robert M. Gum, MC
Service Response Force Surgeon
Program Manager, Occupational and Environmental Medicine
U.S. Army Environmental Hygiene Agency
Aberdeen Proving Ground, MD 21010
(410) 671-2714

Pentagon Army Operations Center
MAJ Gunn
(703) 756-8187/96

COL Gary Hurst, MC
Commander
U.S. Army Medical Research Institute of Chemical Defense
Aberdeen Proving Ground, MD 21010
(410) 671-3276

LTC Holly Doyne, MC
Occupational Medicine Consultant
Office of The Surgeon General
Falls Church, VA
756-0125/0133

LTC David Wilder
Chief, Occupational and Environmental Medicine
U.S. Army Environmental Hygiene Agency
Aberdeen Proving Ground, MD 21010
(410) 671-2714

COL Zeligs
Emergency Department
Walter Reed Army Medical Center

Chief Supervisor EMS
673-3360/3362

Edgewood Area Health Clinic
Aberdeen Proving Ground, MD
(410) 671-3726

Mr Rabb
Center for Disease Control
(404) 488-7100
LTC Samiljan
Forest Glenn Section
Walter Reed Army Medical Center
(301) 427-5161

Dr. Robert Bass, MD
EMS Supervisor
Washington, D.C.
beeper - 539-5152
Chronology of Medical Improvements with Operation Safe Removal

The following is a chronology of the continual medical improvements that have been made during operation Safe Removal

11 Jan -- Developed a Draft Medical Operations Plan. Following an evaluation of the number of personnel, most probable event and medical assets on-site a draft medical operations plan was produced.

-- Observed EMS Personnel Screening TEU. The D.C. Fire Department EMS personnel had started a screening program that included blood pressure, heart rate, respiratory rate and ECG monitoring. The ECG monitoring was discontinued.

-- Established Initial Contact with Medical Operations at AOC. After several phone calls the medical point of contact for Operation Safe Removal was identified and initial requests for medical support were made.

-- Adjustment of Medical Supplies for EMS. Medical vehicles were equipped for trauma. There was a need to adjust supplies to support a chemical casualty.

12 Jan -- Information Paper. Prepared an information paper on anticipated chemical agents of era.

-- AEHA Support. Established contact with AEHA Waste Disposal Engineering Division and Toxicology to determine acceptable soil levels of chemical agents.

13 Jan -- Information Paper. Reviewed and corrected information on chemical agents for PAO.

-- ATSDR. Contacted ATSDR at Mr. Bacon’s direction and was referred to CDC Emergency Preparedness Office. Spoke to their POC and briefed him on Operation Safe Removal.

-- Medical Resupply. Arranged for TEU courier to stop at the Edgewood Health Clinic to pick-up supplies periodically as required.

14 Jan -- Medical Alert. Wrote a medical alert addressing a preventive strategy for avoiding health problems.
15 Jan --Hydrolysis Products. Determined the hydrolysis products for the agents of concern.

16 Jan --Storage of PINS Device. Arranged to store the radiological source for PINS device at Forest Glenn section of Walter Reed Army Medical Center.
MEDICAL REFERENCES
Service Response Force

Army Regulations
AR 40-13 Medical Support - Nuclear/Chemical Accident/Incident, 1 Feb 1985
AR 50-6 Chemical Surety Program, 12 Nov 1986
AR 385-40 Accident Reporting and Records, 1 Oct 1988

DA PAM
DA PAM 50-6 Service Response Force

Field Manuals
AM 3-9 Military Chemistry and Chemical Compounds
FM 3-21 Chemical Accident Contamination Control
FM 8-285 Treatment of Chemical Agent Casualties and Conventional Military Chemical Injuries, Feb 1990

HSC Regulations
HSC Reg 40-14 Medical Support - Nuclear and Chemical Personnel Reliability Programs
HSC Reg 40-14 Medical Support - Nuclear and Chemical Personnel Reliability Programs, 4 Oct 1984
HSC Suppl 1 to AR 50-6 Chemical Surety, 10 Feb 1988

USAHA Technical Guides
USAHA TG 124 Occupational Health Program Manual, March 1982

AMC Regulations
AMC Reg 385-131 Safety Regulation for Chemical Agents H, HD, HT, GB, and VX
AMC CSRFCERP Chemical Service Response Force Commander’s Emergency Response Plan
Oak Ridge National Laboratory

ORNL-6628 Reentry Planning: The Technical Basis for Offsite Recovery Following Warfare Agent Contamination, April 1990

Testbooks

Compton, J.A.F.; Military Chemical and Biological Agents, The Telford Press, 1987
OPERATION SAFE REMOVAL
SRF SURGEON LOG

9 January 1993
1200 Notified by LTC Deeter that I was designated as SRF Surgeon for above operation in the Spring Valley area in NW D.C.
1510 Met with COL Kenison who briefly described the situation

10 January 1993
1230 Met again with COL Kenison and briefed in more detail
1300 Departed for D.C. in FOV
1600 Traveled to site with group by bus to observe site
1810 Established that Dr. Robert Bass is the physician for the EMS system in this area. He will be available in a.m.

11 January 1993
0747 Special Staff Meeting:
1. 0900 site visit
2. Key meetings
 1800 - BGs meeting with homeowners
 2000 - Staff meeting (BG)
 0800 - Sp Staff meeting (COL K)
 1700 - Sp Staff meeting (COL K)
3. An action journal will be kept by Stacey Miller. Be sure that all incoming or outgoing taskers get a #.
4. Keep a journal to submit Fri
5. Telephone # to call into the EOC is 282-0634
6. Local residents live in surrounding hotels
7. Operation Safe Removal is current name for the operation.
8. Movement of the various types of rounds described
9. Timelines for the week described
10. Group taskers passed out
11. Individual taskers passed
 Medical - Medical plan by 1200, written by COB
11 January 1993 (cont.)

0850 Observed EOD personnel dressing out and medical screening by EMS personnel. Screening consists of cursory medical history, BP, HR, RR and rhythm. The rhythm was discontinued. EOD is wearing VonBlucher protective undergarments. LTC Batt will provide me a copy of the CDPRP roster.

0900 Telephone contact established with Dr. Bass. His beeper # is 539-5152

1007 Pig #1 was positive for lewisite

1130 Medical annex to oplan (1st draft) reviewed by Mr. Zervas (EMS coordinator) without significant changes recommended

1214 Called MAJ Madsen to give him an update

1300 Prepared a medical situation map

1350 Received a msg that LTC Coleman from the AOC wants to discuss BG Friel’s desire for back-up medical support (693-4827/4826)

1401 LTC Coleman referred me to MAJ Gunn at OTSG (703-756-8197/85)

1440 Reached MAJ Gunn after several attempts. WRAMC and MRICD will be tasked to be on-call

1545 BG Friel wants an information paper on symptoms and diagnosis of L, DM, CG

1600 Info paper submitted. COL Read said the BG needs bullets prepared to glance at during a press conference

1615 Bullets submitted

1700 Called to site to evaluate 1SG who identified a drop amount of unknown liquid coming out of the nose of a round. The drop readily evaporated. The 1SG was wearing a mask at the time and the personnel behind him, in open air unmasked, did not notice odor or sensation. They were not complaining of anything and their vital signs were normal. My assessment was that an exposure did not occur.

1800 Recommended that EMS personnel acquire vaseline gauze to treat WP.
12 January 1993

0800 Toured site area and took pictures
0850 Reviewed med annex to oplan
0915 Returned Pitt Tomlinson’s call
1115 Special staff transportation meeting
1200 Tasked by COL Kenison to prepare an info paper on the health effects of L, DM, CG
1232 Called COL Hurst and requested support in the above task
1355 OSHA soil levels

<table>
<thead>
<tr>
<th>Element</th>
<th>Concentration (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>4.2</td>
</tr>
<tr>
<td>HD</td>
<td>0.06</td>
</tr>
<tr>
<td>DM</td>
<td>10.4</td>
</tr>
<tr>
<td>AC</td>
<td>6.3</td>
</tr>
<tr>
<td>CG</td>
<td>8.3</td>
</tr>
<tr>
<td>CK</td>
<td>12.5</td>
</tr>
<tr>
<td>As</td>
<td>4.2</td>
</tr>
<tr>
<td>Chloropicrin</td>
<td>14.0</td>
</tr>
</tbody>
</table>

1630 Received FAXs from Dr. Hackley
1645 Special staff discussion of equipment on-site (dirty side of hotline). From health standpoint a thorough washing would suffice to release equipment.

13 January 1993

0745 On-site
0800 Special staff meeting

Mrs Bryson and Mr Davis are heads of homeowners group
get after action report started

LESONS LEARNED
SITUATION:
LESSON:

Review operations plan for COL Kenison

Info paper to PAO
13 January 1993 (cont.)

0900 COL Kenison's Op Plan typed
 Info paper submitted to PAO with changes
 Called LTC Wilder to confirm arsenic is a confirmed
 human carcinogen and not on a suspected list

 Read through info from Dr Hackley last night. Will
 call him for additional sources ASAP

0936 Called Dr Hackley and he will have information on low
 levels of DM, L, CG pertaining to health effects
 summarized and FAXd to me

1005 Coordinate with decon platoon from 101st chem co.

1027 Arsenic is a known human carcinogen

1110 Discussed the need for an ambulance to standby at
 Andrews AFB. COL Kenison agrees that their support is
 sufficient - make no special medical requests

1130 Received a copy of CDPRP from SFC Robinson, TEU

1215 Spoke with Dr Kamperman at EA Clinic. He will put
 together a sickcall push package and TEU will pick it
 up this p.m. (clinic # 671-3726)

1230 EMS coordinator reported that 15 personnel came from
 the pit are and reported they were sick

1240 NCO and safety individual stated that 15 or so
 personnel changed shift and needed to be screened.

Only
 one (1) was not feeling well. I will change buses
so I
 can ride in and out with TEU to conduct a formal
sickcall with this unit twice daily

1438 Called AEHA to discuss exposure numbers taken from
 construction criteria and applied to a residential
 scenario
 The new # for Lewisite is 30 mcg/m/day --> 0.0625 mg/g
 of soil

1545 Mr Bacon wants me to contact ATSDR and insure they are
 informed of the operation at Spring Valley

1547 ATSDR (404) 639-6070 or 330-9543 referred to a Mr
 Maurice West at (404) 639-6070 as my POC
13 January 1993 (cont.)

1623 At about 1500 I evaluated an individual that had lacerated his head carrying a projectile. EMS personnel treated the wound. My concern was for his status prior to his injury (i.e. did his health status lead to the injury)

1703 Mr Rabb (404) 488-7100 is POC at CDC for ATSDR and is available for information and if an offsite incident occurs they will be interested. Need to call them Fri for an update

1728 Get copy of PELs

1808 Need chapstick for personnel

14 January 1993

0700 Departed hotel with TEU

0730 Conducted sickcall for TEU. 1 SSG sent to Edgewood Clinic by courier to be further evaluated for sore throat and chest congestion (Rule out pneumonia). A second soldier returned to rear by LTC Batt

0945 Ed Eitzen needs document

1100 MAJ Mott from transportation section arranged with MAJ Gunn, AOC, for Redstone and Pinebluff to provide emergency response. COL Kenison will call LTC Coleman to arrange for a response along route of aircraft

1131 LTC Doyne, OTSG, unable to answer phone

1135 Notified Edgewood TMC that courier will pick-up some chapstick today

1210 Received call from MAJ Gunn. It will be necessary for aircraft carrying munition to notify airfield and airfield will notify medical authorities that they have responsibility to respond to an emergency

1355 Gave a copy of medical alert to LTC Batt and six copies to SGM for distribution to NCOs. Will give another to COL Read

1800 Town meeting - need to arrange medical support for guard force that is to stay behind for 5 days (weekend and inauguration)
14 January 1993 (cont.)

1850 COL Kenison agreed to present the medical alerts to the commanders 1900 meeting

15 January 1993

0800 Conducted sickcall for TEU: for sore throat

Called TMC to request additional supplies and spoke to new NCOIC. He suggested we get medical support nearby. OIC will call me at Ops Ctr. Medical resupply requested:

- Robitussin DM
- Chlorphenarimine
- Moleskin
- Throat lozenges
- Chapstick
- Thermometers

0835 30-40 active duty personnel will be on-site over the 5 day break. Need to arrange health care support and get the information to them. Also, need to get water into the EOC.

0846 Spoke to clinic OIC and he will provide support as needed

0924 Called ICD to ask LTC Dolzine about health hazards of thiodiglycol. He is out today. Dr. Jacobowski will call with information.

1005 Called COL O'Donnell about POC for medical support over next 5 days. Referred to COL Zeligs 576-1199/3927.

1200 Thiodiglycol LD₅₀ 3000 - 6000 mg/kg. Adverse health effects include headache, nausea and vomiting

1303 Thiodiglycol CAS 111-48-8

1305 Talked to Colleen about LD₅₀ for thiodiglycol and she agreed with the above numbers. Phone number for AEHA toxicology is 671-3627
15 January 1993 (cont.)

1440 Hydrolysis products:

- L - HCl
 Chlorovinylarsenous oxide (a mildly toxic and blistering compound)
- CG - HCl
 CO₂
- HD - HCl
 Thiodiglycol
- DM - HCl
 Diphenylarsenous acid

1525 Received medical supplies from Edgewood

1545 Spoke with Mr. Weeks and LTC Broadwater about information requested on hydrolysis products - John Resta is to send FAX today

1935 Need to call at 0800 if we need an ambulance for helicopter landing. POC is chief supervisor 673-3360/2.

1700 Late entry: General toxicological information is about to be faxed but as expected it is not as specific as data on agents.

2100 FAX not received from AEHA

SICKCALL SUMMARY FOR WEEK ONE: An average of six individuals were seen on a daily basis (total of 24) with only one NCO being returned to APG for a more complete evaluation to rule out pneumonia (he was transported by TEU scheduled courier). The primary complaints were: URI and sore throat. A few individuals complained of headache.

16 January 1993

0755 Called EMS and requested an ambulance be dispatched to site for today.

0845 Ambulance onsite
0900 Observed , on request, for a rash.
S: States itching stated on head and neck and rash developed about 12 hours ago. Denies difficult breathing or additional symptoms. Taking amoxicillin and entex for an ear infection. Stopped both meds last night. Also, states she worked with fiberglass insulation yesterday, but, has done that previously without a problem.
O: No apparent distress other than itching. Redness and swelling of volar surfaces of wrists (left > right). Further exam deferred.
A: Allergic dermatitis probably secondary to amoxicillin
P: See private physician this a.m.. Prefer she travel with a friend

0924 Soldiers to be seen at TEU Ops Ctr

0930 101st Chem Co seen for sore throat
101st Chem Co eval for asthma attack last
p.m. - referred to WRAMC for eval and prescription

1051 Gave med plan for weekend medical support to Ken Boyd to pass/announce during security inbrief

1300 Passed weekend med plan to CPT Ross, OIC of security force
1340 Released

1500 Arrived Jarrettsville. Odometer reading: 142340

20 January 1993

1100 Met COL Kenison at cleaners on EA. No knowledge of a meeting at this time

1250 Notified that orders are ready. See Gwen Liedig in room 167, bldg 1

21 January 1993

0500 Departed Jarrettsville for Spring Valley
0700 Arrive Spring Valley
0715 At TEU Op Ctr for sickcall
0800 At EOC to set-up area
MAJ Motz needs an area to store 2 PINS that have a radiological hazard. He wants to know if WRAMC might have that capability.

Unable to reach MAJ Gunn

Talked to two contractor personnel for Phase II and advised them of current medical support. Suggested they rely on EMS for evac. Also, gave them a list of available medical facilities, directions to USUHS, and copied portions of map identifying hospitals

Talked to MAJ Gunn. Requested he notify WRAMC that we are operational at present. Also, see if we can store the PINS overnight in nuclear medicine.

At about 1000 I requested Dave Mukai research health effects of Californium 252

LTC from WRAMC called to discuss radiation storage

LTC Camiljan, Forest Glenn (301-427-5161) is POC at WRAMC for storing PINS after hours. He will arrange for storage over weekend and at night. Gunn did ask if there is any DOE facility nearby

MAJ Mott says the arrangements for the PINS has been completed at WRAMC

LT Hart from AEHA will FAX info on Californium 252 today

Evaluated soldier from TEU for dust in eyes. RTD after eye wash by EMS

Went to TEU Ops for sickcall but they had already closed the site

Three personnel seen for sickcall today

Staff meeting 89 rds as of today

Evaluated for small laceratin to forehead in his room - minor laceration without sequelae

22 January 1993

Bussed to area

Safety briefing and sickcall

1 soldier with bursted blood vessel in left eye -
0800 4 star visit

0805 Special Staff meeting: medical objectives for today
Call ATSDR
Arrange lab at WRAMC
Cancel ACLS

Hotline # to EOC 282-2773

0810 Talked to Mr Blades about arsenic levels identified.
They have been very low (well within PEL)

0920 transported to WRAMC with differential dx:
1. Viral Syndrome
2. R/O Mononucleosis
3. R/O Meningitis

1000 Called WRAMC ER to alert physician of pending arrival

1215 Treated for superficial laceration of left index finger. No evidence of agent exposure.

1615 Spoke with Dr. Folmin about . He is waiting for results of spinal tap.

1755 ER doc has ruled out all suspicions

1845 Talked to Les Caudill about and he agrees that it doesn’t sound like a bio agent exposure

1900 Expessed my concern about TEU wearing only dust masks instead of respirators while they dig. Safety is working this issue.

2030 Evaluated in his room, he appears well with some residual headache
23 January 1993

0640 Ate breakfast with. Will have him remain in room today and call to check on him.

0715 Sickcall: one person for throat losenges

1015 Called. He was sleeping and feels a bit better now

1030 Talked to Mr Lewis, EMS coordinator, to request a minimum of one medic unit and one basic unit be physically located on this site and that I am to be notified of any changes in medical support prior to changes being implemented in the future.

1145 Dr Bass came with some concern about having a second unit on-site. There are a number of demonstrations going on in town and he may need to pull the basic unit.

1210 Basic unit is on-site.

1400 Evaluated a Dugway soldier for headache and indigestion. He will stay on clean side of hotline today.

1415 Briefed LTC Batt and CPT Brasseur on possibility of common source for cause of two personnel with headache. Doubt a chemical agent, but, will research and get back to them.

1605 Called again. Decreased headache. Will check on him this evening.

1700 Special Staff Meeting

1730 Sickcall in TEU Ops Ctr - need to enforce water intake

1900 Saw in his room. Doing better with stable vital signs.
24 January 1993

0700 Sickcall onsite - none

0730 In EOC

0745 Called by EMS to evaluate a soldier with an irregular pulse

0750 Assessed with irregular supraventricular rhythm evident on ECG strip. Referred to WRAMC for evaluation

0815 Reviewed screening record for personnel going down-range. Large number of personnel with hypertension and increased pulse rate.

0830 Briefed LTC Batt on above findings.

0835 Requested a list of all personnel that works for TEU by place of work by this afternoon

0900 Briefed BG Friel and COL Kenison on concerns about number of personnel with increased blood pressure and pulse

0905 Will develop a method of tracking BP. Will also be on-site to observe procedures of EMS personnel in screening and double check vital signs as needed.

0915 Briefed George (safety) on BP problem and my continued concern for personnel working in most hazardous areas without respiratory protection more than a dust mask

1000 Called ER doc and requested he get an arsenic level on Turn around time is 1-2 weeks.

1020 Called by SFC Robinson concerning an individual soldier with chest pain

1025 observed in changing tent in no apparent distress. Evaluation indicates musculoskeletal pain. Will monitor q15min in ambulance before making a determination on status.

1200 Released to duty with the diagnosis of musculoskeletal pain

1430 Unable to identify specific cause for the number of hypertensive personnel. Suspect anxiety and long hours could be playing the dominant role
24 January 1993 (cont.)

1600 Talked to ER doc at WRAMC who suggested tension may be responsible for increased BPs. He is ER doc with strong toxicology background

1715 Looked at BPs recorded by EMS personnel. is 192/118. Evacuated him to WRAMC by government vehicle.

1745 Called ER and alerted physician about . Was just told that has had one or more heart attacks.

25 January 1993

0650 Bussed to area - present for duty. ER doc deferred evaluation last night

0700 Observed EMS personnel doing vital sign checks. Had TEU personnel relax a few minutes before or after donning coveralls, etc. Also, sent one EMS team to warm-up tents down the hill with same instructions.

0800 Cursory evaluation of BPs indicates they are more normal today.

1000 Called hospital for . His mother is critical and on a ventilator. Hosp POC is RN Rachs (606) 275-6630

1040 COL Kenison tasked me to have a psychiatrist and chaplain onsite to support residents from 1200 to 1600 daily.

1055 Spoke with Jim Wittcomb at AOC. He asked if we needed a psychiatrist or psychologist? Also, wants to know where the request is coming from. [Good questions I should have asked - stop the knee jerk response to taskers!!!]

1110 Several BPs in EOC are within normal limits

1220 COL Kenison OKd a psychologist and Mr. Boyd is pursuing a chaplain

1330 Called AOC and requested a psychologist

1530 Talked to LTC Millard about legal aspect of having a military psychologist and chaplain. Neither are authorized to support civilian support.
25 January 1993

1650 Talked to AOC and put request for psychologist on hold until I get confirmation thru COL Kenison that BG has dropped request. At present only 5 people spend the entire day and the city has one supervisor, a crises intevener (in the afternoon) and a minister that will start coming by this week.

1700 Described the city's commitment of social resources and recommended that we drop the Army request for the same. He concurred.

1705 Cancelled above request for army social types.

26 January 1993

0700 Bussed to area

0715 BP checks and sickcall. BP 150/110. Recommended he be returned to EA for follow-up on uncontrolled hypertension.

1004 Lt Roberts DCPD requested a letter stating background readings and health status of personnel in area on 12 Jan.

1200 Prepared letter and checked numbers and times with TEU (CPT Brasseur) Talked to George and Sheldon about air monitoring. They were doing breathing zone monitoring for HD.

1430 Talked to MAJ Thompson and requested he see that the food line in the basement be closed 30 minutes after the caterer leaves to avoid personnel eating the food when it can be contaminated and produce food poisoning.

- The Red Cross truck serving food has been clean and food maintained appropriately throughout the operation.

1630 Updated Mr Rabb, CDC, on status of Operation Safe Removal

1700 Special Staff meeting

1730 Screening and sickcall
27 January 1993

0700 Bussed to area
0715 Sickcall, BPs much more normal with new procedures
0800 Gave letter to police dept for Mr Bacon and COL Read's review
0830 COL Read wants the para on monitoring expanded
1040 1000 Friday meeting
 Develop a POC list
 Develop a document discussing constant improvement of medical support
1150 Called NCOICat TMC and requested throat losenges, cough syrup and chapstick
1155 Article on Khat given to MSG (Pharm & Tox 1992 Vol 70 pgs 77-86)
1300 Checked BPs recorded by EMS - acceptable
1730 Sickcall: 2 sorethroats, 1 sinus congestion, 1 head pain
1830 Departed Area

28 January 1993

0700 Departed Hotel
0715 Briefed EMS personnel. Sickcall - 1 rash, 1 cold sores, 1 muscle strain
1000 Received medical supplies from EA
1100 Drafted a letter to LTC Blough and attached a health risk assessment
1730 Sickcall and screening
 -2 sorethroats
 -1 URI
1745 Envelope for LTC Blough went by courier to EA. Will follow-up in a.m. to ensure he received it
29 January 1993

0700 Departed hotel
0730 Sickcall
 - 1 chest congestion with cough
 - 1 rash
 - 1 sore throat
0800 Messline cleared
1200 After action draft completed
1510 LTC Blough received my note and HRA
1520 Talked to MSG Scott about medical support for security personnel for this weekend. I will inform him about medical support at WRAMC and civilian ambulance support.
1536 Spoke with CPT Everett, OIC of security force from Ft McNair, concerning medical support for his personnel over the weekend. Instructions posted in my area below medical sign.
1700 LTC Batt made Red Cross presentation.
1730 1LT Sanford promoted in pit to CPT
1800 Noone for sickcall

30 January 1993

0730 Departed for Spring Valley in POV
0800 Noone for sickcall
0815 Ambulance on-site. Will dismiss as soon as helicopters depart with rounds.
0930 Notified hotel that I will be returning Sunday
1 February 1993

0730 Departed hotel
0745 Very few personnel in TEU area
0940 COL Kenison wants 5 copies of med op plan
1000 Sent soldier to ER for laceration with full thickness skin flap
1340 FAXd Kanjarpane's OER to Diane
1400 Attended briefing for Dr Leffingwell
1500 Departed for hotel

2 February 1993

0750 Departed hotel after checking out
0815 Arrived Spring Valley
0900 Alerted MDW NCO (E-7), SFC Robinson and MAJ Thompson that they need to watch personnel for cold injury
SAFETY

After Action Report

3 February 1993

1. PURPOSE:

a. **Introduction and Background:**

(1) **Service Response Force Safety Officer.**

(2) **Notification.** Alerted on 7 Jan 1993 by the CBDA Risk Manager of the need to respond to the Spring Valley Site 8 Jan 93. Added Explosive Safety expert to team on 11 Jan 93.

(3) **Time to departure.** Approximately 10 hours.

(4) **Protective Mask.** Protective masks are issued to safety personnel within the Edgewood RDEC Safety Office.

(6) **Supervisor.** The Director Special Staff, Colonel Kenison.

(7) **Safety support.** Tasked with providing staff safety and occupational health support to SRF Commander.

(8) **Time of arrival.** Arrived at Spring Valley on at 1100 hrs on 8 Jan 93.

(9) **Work location.** Special staff office in Emergency Operations Center.

(14) **Transportation on-site.** Government transportation was used for travel to and from the site.

(15) **Equipment requirements.** Environmentally controlled work area, desk/table, one chair per person, telephone, laptop computer with printer, software (wordperfect, procomm), office supplies, warm clothes and safety and occupational health regulations/policies.

(16) **Unavailable equipment.**

(17) **Preparation for the mission.** An emergency situation of this nature is difficult to prepare for. Time is really needed to get money, orders and the necessary clothes for the environment.
(18) **Required personnel not present.** In addition to the Explosive Safety expert mentioned above, the Edgewood RDEC Radiation Protection Officer arrived on-site 21-22 Jan 93 to assist in the set-up of the PINS and to perform a radiation protection survey of EOD X-ray operations. Additionally, future operations of this nature should have an industrial hygienist available on-site to establish occupational health parameters and sampling strategies.

(19) **Deactivation.** SRF deactivated 3 Feb 93.

b. **Objectives.** The following were the goals and objectives of the SRF Safety Officers.

(1) Serve to provide safety and occupational health guidance to the SRF and TEU Commanders on methods to reduce the risk of injury to operating personnel.

(2) Provide interim hazard classification documentation required to ensure the safe transportation of munitions.

(3) Serve as a liaison with AMC, DA and DOD Safety personnel to answer questions operational safety concerns and to seek relief from regulations, if necessary.

(4) Provide chemical hazard information (i.e. Material Safety Data Sheets (MSDSs)) to the on-site commander for his use in educating workers and establishing proper levels of safety.

2. **OPERATIONAL SUMMARY:**

a. Developed an initial risk assessment prior to operations (11 Jan 93).

b. Revised risk assessment to include hazards associated with both chemical and explosive materials. (23 Jan 93)

c. Continually provided guidance on methods to improve both the monitoring and protective clothing levels for all facets of this operation.

d. Developed a chronology of safety improvements that evolved out of risk assessment development.

e. Produced a listing of safety and health concerns associated with chemicals used at American University.

3. OBSERVATIONS AND RECOMMENDATIONS:

a. Lessons Learned and Unresolved Problems. The safety and occupational health lessons learned and unresolved problems associated with this operation are contained in appendix VII.

b. Conclusion. The mode of operation for this effort was continual improvement. As the chronology contained in Appendix VIII shows, significant safety improvements were made on a daily basis. The major role safety served in this operation, was to assess the risk and provide on-site commanders with the necessary information to make key risk decisions. Additionally, this effort showed the value of the safety resources within the Edgewood RDEC Safety Office. An enormous amount of effort went into the development of risk assessments/interim hazard classifications and researching safety and health information pertaining to the potential chemicals used at the American University.

4. APPENDICES:

I. Initial Risk Assessment
II. Revised Risk Assessment
III. Chronology of Safety Improvements to the Site
IV. SRF Commander Safety Rules of Engagement
V. Listing of Safety and Health Concerns Associated with Chemicals Used at American University.
VI. Interim Hazard Classifications for Transportation
VII. Lessons Learned
VIII. Chronology of Work
IX. List of Equipment to be Provided by SRF
X. List of Personal Equipment/References to be Brought by the Safety Consultant.

XI. Key Personnel Contacts

George Collins
SRF Safety

Greg Mason
SRF Safety
APPENDIX I
INITIAL RISK ASSESSMENT

MEMORANDUM FOR RECORD

SUBJECT: Risk Assessment for Safe Removal of Chemical Filled Unexploded Ordnance at the American University Chemical Warfare Center Site

1. REFERENCES.

2. PURPOSE. The purpose of this assessment is to detail the chemical risk associated with performing safe removal of found munitions at the subject location in Washington, D.C. This document will show that using a combination of protective clothing and area monitoring will be adequate to ensure that personnel will not be exposed to chemical hazards that could cause injury while performing operations under TEU SOP # TU-0000-M-013.

3. OPERATION DESCRIPTION.

 a. The Technical Escort Unit (TEU) has been given the task to expeditiously and safely remove found munitions to another site for proper disposition. The concept of operation is threefold. The land was used during World War I as a site for the development of chemical warfare materiel.

 c. Any number of possibilities can be encountered by the TEU response team. Some of these follow:

 (1) munition has visible liquid contamination and test positive.

 (2) munition is a slosher with no visible or detectable contamination.

 (3) munition is a slosher with no visible contamination, but tests positive for vapor contamination.
(4) Munition has all the characteristics of a chemical filled round, but neither sloshes nor tests positive.

(5) Munition is unidentified with no visible signs of leakage.

(6) Munition has a conventional fill.

d. For possibilities (1) thru (5) the munition is placed in a 6 mil plastic bag to allow vapors to collect for future monitoring. Possibilities (1) is left as is and possibility (6) is either transported to the safe storage site.

2. GENERAL SAFETY ANALYSIS. The potential chemical agent hazards associated with this operation stem from exposure to the mustard, phosgene, cyanogen chloride, lewisite and chloropicrin. Mustard is a vesicant or blister agent. Vesicants act on the eyes, lungs, and skin; and burn and blister the skin or any other parts of the body they touch. They damage the respiratory tract when inhaled and cause vomiting and diarrhea when absorbed. Some vesicants have a faint odor, others are odorless. They are often insidious in action and there is little or no pain at the time of exposure. Thus, in some cases, sign of injury may not be apparent for several hours. Of particular importance is the fact that mustard has been declared to be a known human carcinogen and therefore must be handled IAW the strict standards for the use of these substances as well as those pertaining to surety materials.

Lewisite is a blister agent. Lewisite acts similarly to mustard with the exception of the fact that skin exposure results in instant pain. Lewisite is rapidly hydrolyzed in the vapor state.

Phosgene (CG) choking agent. Phosgene acts on the nose, throat, and particularly the lungs. In extreme cases membranes swell, lungs become filled with liquid, and death results from lack of oxygen. The rate of action can be delayed for more than 3 hours.

Cyanogen chloride (CK) blood agent. These agents are absorbed into the body primarily by breathing. They affect body functions through action on the enzyme, cytochrome oxidase, thus preventing the normal use of oxygen by the cells and causes rapid damage to body tissues.

Chloropicrin (PS) tear producing agent. Tear producing agents can cause transient casualties. It is a powerful lachrymatory agent and is an irritant to the respiratory tract. At higher concentrations it is irritating to the skin. The effects of exposure are cumulative and long lasting. It may cause the effect of the central nervous system for weeks.
3. HAZARD ANALYSIS.

A. Possible Scenario. In hypothesizing the ways in which TEU personnel could be exposed to a chemical agent hazard, the scenario that is most likely is a worker uncovering a leaking munition. It is possible that when TEU personnel walk up to a excavation pit which contains exposed rounds, a round could be leaking. It is more likely however that workers could encounter a chemical exposure when either digging in the soil around the site or when handling rounds. After contact with the agent, the operation would cease and the exposed personnel would be removed from the site. Upon finding suspect chemical filled rounds, gross level checks (M18A2 and/or CAM) are made. If the round is suspected of containing chemical agent, it is wrapped in plastic and carried to a safe area.

C. Risk Assessment.

a. There are three possible routes of exposure to agent during this operation: vapor to skin, liquid to skin, and inhalation of vapor. If personnel performed this operation WITHOUT protective clothing and a release of chemical agent were to occur, injury would be likely. Since an exposure to any chemical agent would be detrimental to this operation, this has a hazard severity of catastrophic. The probability of exposure of personnel to the skin by vapor is reasonably probable since the workers skin would be exposed to the air. The probability of vapor exposure through inhalation is frequent because if there is a spill, the probability of a worker inhaling chemical agent vapors is high. The routes of exposure therefore have the following risk assessment codes:

1. Vapor to skin: IV-B, negligible-probable.
2. Liquid to skin: IV-D, negligible-remote.

b. In order to reduce or eliminate the hazard to personnel, the following are choices of corrective actions in order of preference:
1. Eliminate the worker from the operations through engineering controls.

2. Monitor the operation with real-time monitors.

3. Dress the operator in protective clothing and equipment.

c. The option of engineering controls is presently impossible. The site is not conducive to erecting these controls. The option of monitoring is an option, but not one that is going to prevent exposure as real time breathing zone monitoring technology at the real time no effects level breathing zone monitoring for phosgene, CK, Chloropicrin. The only option left is to perform the operations in protective clothing and equipment.

d. Three choices of protective clothing were considered: modified TAP level A, level C (mask without apron) and level D (no mask). If modified level A were worn by operators, the severity would remain the same (catastrophic). The reason for this is that personnel are being sent into the hazard area. The probability of exposure would be reduced to improbable since the SCBA will eliminate the inhalation hazard. Because the risk of skin exposure is extremely improbable, the use of rubber is unnecessary.

e. If Level C (without rubber apron and with tyvek) were worn, the severity would remain the same (cat.). Again the M17 mask would provide the necessary protection from the inhalation hazard.

g. If Level D were worn, the severity and probability of inhalation from the chemical agent listed would not be reduced from the original risk assessment (I-A).
clothing may change according to the situation encountered. Those situations are:

1. munition has visible liquid contamination and tests positive. (Mod Level A will be worn)

2. munition is a slasher with no visible contamination but tests positive for vapor contamination (Mod Level A will be worn)

3. munition is a slasher with no visible or detectable contamination (Level C will be worn)

4. munition has all the characteristics of a chemical round but neither sloshes nor tests positive (Level C to be worn)

5. munition is unidentified with no visible signs of leakage (Level C to be worn)

6. munition has a conventional fill (Level D to be worn)
h. Based on the above information, the probability of vapor and liquid exposure to the operator can not be reduced unless adequate (M17/M9) respiratory protection is worn when handling/assessing suspected chemical filled UXO or entering the pits/trenches. Based on the information above involving the air concentrations that would be encountered, the M17 mask would reduce the probability of inhalation of vapor to improbable.

j. The resulting RAC, after corrective actions (protective clothing) are as follows:

b. MOD Level A:
 1. Vapor (skin): IV-E (negligible-improbable)
 2. Vapor (inhalation): I-E (cat-improbable)
 3. Liquid (skin): IV-E

b. Level C (without apron)
 1. Vapor (skin): IV-B
 2. Liq (skin): IV-D
 3. Vapor (inhal): I-E

c. Level D
 1. Vap (skin): IV B
 2. Liq (skin): IV D
 3. Vapor (inhal): I B

C. CONCLUSION. The risk of inhalation exposure to the chemical agents listed above to personnel during this operation can be reduced similarly by using MOD Level A or Level C. The decision to be made on whether or not to wear a mask during intrusion of the soil by TEU work party is the major issue with this risk assessment. The risk of each option is as follows:

(1) Soil intrusion with mask: I-E-3 Risk of injury is improbable.

(2) Soil Intrusion without mask is: I-B-1 Risk of injury if a leaking munition is found is probable.

Once a munition is uncovered, an initial assessment has been made the following potential scenarios would then take place. Since the situations at the site will vary the level of protective
Based on the above risk analysis the undersigned agree to:

- Have workers wear Level C (with mask and Tyvek) during soil intrusion.

- Have workers wear Level D (without mask) during soil intrusion.

- As an added precaution, workers will provide for additional decon of gloves and boots during the operation. Protective outer clothing will be completely changed out after each exit from the site.

Submitted:

William T. Batt
LTC, CM
Commander, TEU

Approved:

George R. Friel
BG, USA
Commander, SRF
APPENDIX II
REVISED RISK ASSESSMENT

DECISION. Based on the risk assessment, dated 23 Jan 93, the following safety precautions are directed to be implemented:

ENGINEERING CONTROLS

<table>
<thead>
<tr>
<th>DATE IMPLEMENTED</th>
<th>CDR INITIALS</th>
<th>Provide local exhaust for the pit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 JAN 93</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PERSONAL PROTECTIVE CLOTHING IN PIT

<table>
<thead>
<tr>
<th>Date</th>
<th>Level Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 JAN 93</td>
<td>Level C with Saranex/Tyvek in Assessment Area</td>
</tr>
</tbody>
</table>
| 6 JAN 93 | Level D with Saranex/Tyvek for working in high area during routine excavation operations, Level C and Level D to be worn when handling suspect chemical munitions.

MONITORING

12 JAN 93 The RTAP be used for first entry monitoring for mustard and background real-time low-level monitoring for mustard in the pit. Additionally, the following monitoring should occur:

12 JAN 93 (1) Background low-level (bubblers) monitoring for lewisite.

12 JAN 93 (2) Breathing zone sampling for mustard using DAAMS tubes.

24 JAN 93 (3) Continuous background sampling for phosgene in the pit.
The RTAP be used for first entry monitoring for mustard and background real-time low-level monitoring for mustard in the pit. Additionally, the following monitoring should occur:

12 Jan 93 (1) Background low-level (bubblers) monitoring for lewisite.

12 Jan 93 (2) Breathing zone sampling for mustard using DAAMS tubes.

12 Jan 93 The RTAP be used for first entry monitoring for mustard and background real-time low-level monitoring for mustard in the pit. Additionally, the following monitoring should occur:

12 Jan 93 (1) Background low-level (bubblers) monitoring for lewisite.

12 Jan 93 The RTAP be used for first entry monitoring for mustard and background real-time low-level monitoring for mustard in the pit.

WORK ZONES

Establish the pit as a special work zone for increased level of respiratory protection.

Establish hot line/EPOD operating hours.

Do not establish the pit as a special work zone for increased level of protection.

Directed:

William T. Batt
LTC, CM
Commander, TEU

Approved:

George R. Friel
BG, USA,
Commander, SRF
MEMORANDUM FOR RECORD

SUBJECT: Revised Risk Assessment for Safe Removal of Chemical Filled Unexploded Ordnance at the American University Chemical Warfare Center Site (Operation Safe Removal)

1. REFERENCES.

c. AMCR 385-100, Safety Manual, 1 Aug 85.

d. FM 3-9, Potential Military Chemical/Biological Agents and Compounds, 12 Dec 90.

e. American University Data Base

g. AR 385-64, Ammunition and Explosive Safety Program

h. TM 9-1300-214, Military Explosive chemical Compounds

i. TM 5-1300

2. PURPOSE. The purpose of this assessment is to update the 11 Jan 93 risk assessment developed in support of Operation Safe Removal. During the past ten days, enormous efforts have been made to continually review both the protective clothing and monitoring equipment on-site for this operation. The overall impact has been a reduction in the risk of chemical related injury. The safety and health of the soldiers and civilians charged with this mission is priority one. As with the 11 Jan 93 risk assessment, this update will show that the combination of protective clothing and area monitoring will provide the SRF Commander with options to minimize the risk of injury while performing operations under TEU SOP # TU-0000-M-013.

3. OPERATION DESCRIPTION.

a. The Technical Escort Unit (TEU) has been given the task
AMSCB-CO (385 (A))
SUBJECT: Revised Risk Assessment for Safe Removal of Chemical Filled Unexploded Ordnance at the American University Chemical Warfare Center Site (Operation Safe Removal)

to expeditiously and safely recover, package, and remove exposed potentially explosive or chemically hazardous munitions or debris. This site was used during World War I as a site for the development of chemical warfare materiel.

b. The TEU continues to work under SOP NO: TU-0000-M-013, SOP For Explosive Ordnance Disposal (EOD) Response, 17 July 1992. To prevent personnel exposure a combination of protective clothing and general area/personal breathing zone monitoring is already being employed.

c. The range of potential chemical related munitions possibilities is defined in the 11 Jan 93 risk assessment and has not changed.

4. GENERAL SAFETY ANALYSIS.

a. The potential chemical hazards associated with this operation are numerous. At this point, the primary chemicals of concern are those traditionally used as fills for munitions. The chemicals of concern include mustard (H), lewisite (L), phosgene (CG), adamsite (DM), bromobenzylcyanide (CA), titanium tetrachloride (FM), chlorine (CL), bromoacetone (BA), cyanogen chloride (CK), sulfur trioxide-chlorosulfonic acid mixture (FS), chloropicrin (PS), fuming sulfuric acid and chloropicrin mixed with stannic acid (NC). The potential explosive hazards are 2,4,6 - Trinitrotoluene and Amatol.

b. Mustard (H). H is a vesicant or blister agent. Vesicants act on the eyes, lungs, and skin; and burn and blister the skin or any other parts of the body they touch. They damage the respiratory tract when inhaled and cause vomiting, diarrhea and a reduction in white blood cell count when absorbed. Some vesicants have a faint odor, others are odorless. They are often insidious in action and there is little or no pain at the time of exposure. Thus, in some cases, sign of injury may not be apparent for several hours. Of particular importance is the fact that mustard is a known human carcinogen and therefore must be handled IAW the strict standards for the use of these substances as well as those pertaining to surety materials. The freezing point of mustard is 58 degrees F.

c. Phosgene (CG). Below 47 degrees F, or under pressure in munitions, CG is a colorless liquid. It boils at 47 degrees and has the odor of fresh-cut hay. When inhaled, it irritates the lungs and causes pulmonary edema. The first symptoms noted in a strong concentration are: pronounced and almost uncontrollable
coughing, together with a choking sensation, a feeling of tightness in the chest, occasional vomiting, headache, and lacrimation. The danger, however, lies in the fact that low concentrations that are not particularly irritating may, after an interval of several hours, produce serious respiratory symptoms and even death. Symptoms appearing after a time interval are difficulty in breathing, rapid pulse, weakness, coughing with watery expectoration, and cyanosis. (ref. 1c)

d. Chloropicrin (PS). PS is a pungent, colorless, oily liquid. It is very volatile and is usable during any season to produce incapacitating or lethal concentrations. PS is a powerful irritant whose vapors cause nose and throat irritation, coughing, and vomiting. As an eye irritant, it produces immediate burning, pain, and tearing. Even in very limited concentrations, PS causes the eyelids to close. In high concentrations, PS damages the lungs, causing pulmonary edema. In liquid form it causes severe burns on the skin that generally result in blisters and skin lesions. PS decomposes into chlorine gas and nitrogen oxide near open fires, producing additional toxic vapors. The freezing point of PS is -91 degrees F. (ref 1d)

e. Lewisite (L). L is an arsenical vesicant. It is a liquid with an odor of germaniums or very little odor when pure. It produces effects similar to mustard. One main difference is that L produces immediate pain. Liquid L causes immediate burning sensation in the eyes and possible permanent loss of sight. It has about the same blistering action on the skin as does H, even though the lethal dosage for L is much higher. Skin exposure to L produces immediate pain and reddening of the skin starts in 30 minutes. Blistering will be well developed in 12-13 hours. Skin burns are deeper from L exposure than from H. When inhaled in high concentrations, lewisite may be fatal in as short a time as 10 minutes. The freezing point of L is between -18 and -0.1 degrees C depending on the purity. (ref 1d)

f. Cyanogen Chloride (CK). CK is a blood agent. It is a colorless, highly volatile liquid with a pungent, biting odor that will go unnoticed because CK is highly irritating to the eyes and mucous membranes. CK irritates the respiratory tract similar to phosgene; fluid may accumulate in the lungs much faster than in phosgene poisoning. CK is highly irritating to the eyes and mucous membranes. CK is a lethal agents due to interference with the use of oxygen by the body tissues. High concentrations may degrade the filter of protective masks and reduce the masks protective capabilities. The boiling point of
AMSCB-CO (385 (A))
SUBJECT: Revised Risk Assessment for Safe Removal of Chemical Filled Unexploded Ordnance at the American University Chemical Warfare Center Site (Operation Safe removal)

CK is 55 degrees F. It will polymerize to form the solid cyanuric chloride which is corrosive. Impurities promote polymerization which could become explosive. (ref 1b)

g. Bromobenzylcyanide (CA). CA is a tear-producing compound. It produces a burning sensation of the mucous membranes and severe irritation and tearing in the eyes with acute pain in the forehead. It is a yellow solid or liquid, depending on temperature and purity. CA was the most powerful tear-producing agent used in World War I. (ref 1f)

h. Bromoacetone (BA). BA is a tear-producing compound. It is a colorless liquid. The boiling point is 135 degrees C (275 degrees F). It is a lachrymator and a vesicant as a liquid. It forms blisters which heal rapidly but are very painful. (ref 1e)

i. NC (Mixture of PS and Stannic Acid). Same effects as chloropicrin (PS).

j. Titanium tetrachloride (FM). FM is a heavy colorless liquid acid-type agent with a pungent odor. It can be readily detected by the large quantity of smoke produced when it leaks. It is used solely to produce smoke and has slight toxic effects; however, protective masks are required. Liquid FM will cause acid burns to the skin. Large quantities of smoke produce a choking sensation and causes difficulty in breathing, thus a protective mask is required for the comfort of the worker. Heavy concentrations in enclosed places can result in serious injury. The liquid can be removed with large quantities of water. In extremely heavy concentrations, canisters of protective masks may become clogged to such an extent as to render breathing difficult. If this occurs, mask or canisters must be exchanged for others in serviceable condition. Spillage can be removed by washing with large quantities of water. The freezing point of FM is -11 degrees F. (ref 1c)

k. Sulfur trioxide-chlorosulfonylic acid mixture (FS). This is a heavy liquid acid-type agent which fumes strongly in air and decomposes above 154 degrees F. It has an acrid odor. It is used solely as a smoke-producing agent. Exposure to heavy concentrations may cause severe irritation to the skin, eyes and respiratory tract. Inhalation of concentrated fumes causes coughing and strangulation, a feeling of constriction around the chest, burning of the nose and throat and hoarseness. When the mixture comes in contact with moisture, it forms hydrochloric acid and sulfuric acid. These acids are very corrosive to metals and fabrics. If FS is applied directly to the skin, a burning
sensation is felt at once and an acid burn follows. Any FS mixture on the skin or clothing should be thoroughly wiped off with a dry cloth and the contaminated area flushed with large amounts of water. FS mixture is nonflammable, but may cause fires if spilled on flammable material, particularly under damp conditions. Spillage can be removed by washing with large quantities of water. Small quantities of water added to FS reacts violently. (ref 1c)

1. Adamsite (DM). DM is a vomiting compound. It produces strong pepper-like irritation in the upper respiratory tract, with irritation to the eyes and tearing. It causes violent uncontrollable sneezing; cough; nausea; vomiting; and a general feeling of bodily discomfort. DM is a solid (light yellow to green crystals). It produces its effects by inhalation or by direct action on the eyes. (ref 1d)

m. Fuming Sulfuric acid. Material is extremely destructive to tissue of the mucous membranes and upper respiratory tract, eyes and skin. Inhalation may be fatal as a result of spasm, inflammation and pulmonary edema. Reacts violently with water. (ref MSDS)

n. 2,4,6 Trinitrotoluene. Historical files show that Trinitrotoluene (TNT) was the standard fill for both the payloads and bursters in most of the candidate rounds. Although 50/50 amatol was also used as a fill for 75mm MK III HE projectiles, the quantity (1.61 lbs) was less than the TNT fill (1.66 lbs). Because amatol 50/50 is a little less impact and initiation sensitive than TNT, and only a little less stable than TNT, assumptions made about TNT munitions are accepted for Amatol 50/50 fill munitions. TNT is a yellow, crystalline compound with a molecular weight of 227.13, melting point of 80 to 81 degree C, and boiling point of 345 degree C. At ordinary temperatures TNT is essential nonvolatile. TNT is one of the least sensitive of military explosives. Impact tests yield high values relative to other military explosives. TNT has high minimum detonating charge values from initiation by primary explosives. The presence of only 7% moisture prevents detonation by a 6# blasting cap. TNT is not classified as dangerous with respect to electric sparks. When ignited in free air, TNT dust burns completely without detonation. TNT shows no deterioration after 20 years of magazine storage. Therefore, it must be considered stable and does not deteriorate over time. TNT require relatively high external stimuli to initiate detonation. An intact explosive train (detonation wave) is essential for initiation.
AMSCB-CO (385 (A))
SUBJECT: Revised Risk Assessment for Safe Removal of Chemical Filled Unexploded Ordnance at the American University Chemical Warfare Center Site (Operation Safe removal)

 e. To support safe chemical operations, safety zones of 10 meter (around the immediate pit), 150 feet (the hot line), and 300 meters (civilian evacuation zone) have been established. Each zone serves to control access and limit the potential exposure population.

5. HAZARD ANALYSIS.

a. Risk Assessment Codes. The risk assessment codes used in this document were taken from AR 385-10. A description of these codes is attached as enclosure 1.

b. Possible Chemical Scenario. As with the 11 Jan 93 risk assessment, the most likely exposure to the above chemicals is going to occur when TEU personnel are either digging in the soil around the site or when handling the munitions. Upon finding suspect chemical filled rounds, gross level checks (M18A2 and/or CAM) are made, the round is thoroughly examined, placed in plastic, X-rayed and finally placed in shipment containers for transport. In the event there is contact with a chemical agent or the detection of a chemical agent with monitoring devices, the operation would cease and the exposed personnel would be safely removed from the site to receive appropriate medical attention.

c. Chemical Risk Assessment. In defining the risk of exposure to the above listed potential chemical fills, one must look at possible routes of entry into the body and then determine the manner best suited to reduce potential exposure. The possible chemical agent hazards to be considered for this operation are: vapor to skin, liquid to skin, and inhalation of vapor.

 (1) Dermal route of entry.

 (a) Mustard and adamsite. The low temperatures at the site (averaging below freezing) significantly reduce the liquid and vapor to skin hazards for mustard and adamsite. Both of these compounds will be solid at current temperatures.

 (b) CG, FS, NC, and BA. The toxicological literature has not shown passage into the body through the skin to constitute a significant hazard with these chemicals.

 (c) Lewisite, fuming sulfuric acid, FS, and FM. The major dermal chemical hazards at this point are Lewisite, fuming sulfuric acid, FS, and FM. Lewisite at these temperatures could remain as a liquid and could permeate readily through most protective clothing and to the skin. Likewise fuming sulfuric
AMSCB-CO (385 (A))

SUBJECT: Revised Risk Assessment for Safe Removal of Chemical Filled Unexploded Ordnance at the American University Chemical Warfare Center Site (Operation Safe removal)

acid, FS, FM and their degradation products, pose a significant acid hazard to the skin.

(d) In summary, the risk of chemical injury through dermal contact (either vapor or liquid) without protection is II-B, critical-probable.

(2) Respiratory route of entry.

(a) The overwhelming concern at this point of the operation is vapor inhalation from Lewisite, Phosgene, FS, CK, FM and NC. Calculations developed by Mr. Mike Myirski (enclosure 2) show that even a small release of a chemical agent like Lewisite will produce an area 10 meters in diameter that is above the Surgeon General's Airborne Emission Level (AEL).

(b) It is clear from the above scenario that the probability of vapor exposure through inhalation is probable because if there is a chemical agent release before it is visibly detected, the probability of a worker inhaling chemical agent vapors is high. Therefore the risk of respiratory contact with chemical agent vapors (i.e. Lewisite, Phosgene) without protection is I-B, catastrophic-probable.

(3) Reduction of the risk. The 11 Jan 93 risk assessment described three methods to reduce the risk of chemical agent injury. This assessment will recount the three and add a fourth. The methods follow:

(a) Engineering Controls. This concept is to reduce risk by containing or ventilating the hazard. The option of engineering controls is presently very limited at the Spring Valley site. The only viable engineering control available at this time is to provide a local exhaust system for the pit. This would eliminate many of the potential chemical vapor hazards in the pit. Unfortunately, this method will not remove all vapor hazards and would not negate the need for respiratory protection if a leaking round is encountered.

(c) Protective Clothing. This concept is to reduce risk by providing protective clothing and equipment to isolate the worker from the hazard. The options are as follows:

(1) Modified Level A. This ensemble is a M3 butyl rubber suit, boots, gloves, air hose sleeve with a M30 hood and Self-Contained Breathing Apparatus (SCBA). This ensemble is not a positive pressure system, but provides total
AMSCB-CO (385 (A))

SUBJECT: Revised Risk Assessment for Safe Removal of Chemical Filled Unexploded Ordnance at the American University Chemical Warfare Center Site (Operation Safe removal)

body contact protection agent chemical agents. This ensemble is approved for Immediately Dangerous to Life and Health (IDLH) and is the DA Safety recommended (AR 385-61) level of protection for work in unknown environments to include work with suspect mustard and lewisite contamination. With the above level of protection, the risk of dermal chemical injury is II-E, critical and improbable. The respiratory chemical injury risk is I-E, catastrophic-improbable.

(1.2) Level A. This ensemble is a M3 butyl rubber suit, boots, gloves, hood with a M9 military mask. This ensemble is not a positive pressure system and is not approved for IDLH environments. It does however provide total body contact and respiratory protection against a wide range of chemical agents. With the above level of protection, the risk of dermal chemical injury is II-E, critical and improbable. The respiratory chemical injury risk is I-D, catastrophic-remote.

(1.3) Level B. This ensemble is a M3 butyl rubber suit, boots, gloves, apron and a M9 or M17 military mask. This ensemble provides dermal splash protection to the hands, arms, and front of body and feet. It provides respiratory protection against a wide range of chemical agents. With the above level of protection, the risk of dermal chemical injury is II-D, critical and remote. The respiratory chemical injury risk is I-D, catastrophic-remote.

(1.4) Level C. This ensemble consists of gloves, boots and the M9 or M17 military mask. This level provides dermal protection for the hands and feet. TEU has modified this level by adding Saranex/Tyvek chemical resistant body suits for additional dermal protection. It provides respiratory protection against a wide range of chemical agents. With Level C (with Saranex/Tyvek suit) the risk of dermal chemical injury is II-D, critical and remote. The respiratory chemical injury risk is I-D, catastrophic-remote.

(1.5) Level D. This ensemble consists of butyl gloves and boots with coveralls. A M9/M17 military mask is slung for emergency egress. This level provides dermal protection for the hands and feet. It provides no respiratory protection against chemical agents. TEU has modified this level by adding Saranex/Tyvek chemical resistant body suits for additional dermal protection. Level D (with Saranex/Tyvek suit) generates the following risk of dermal chemical injury is II-D, critical and remote. The respiratory chemical injury risk is I-B, catastrophic-probable.
AMSCB-CO (365 (A))
SUBJECT: Revised Risk Assessment for Safe Removal of Chemical Filled Unexploded Ordnance at the American University Chemical Warfare Center Site (Operation Safe removal)

(b) Monitoring. This concept is to reduce risk by monitoring the air to provide warning of hazards. The options are as follows:

(1.1) First Entry Monitoring (FEM) of the pit is possible for mustard with the Real Time Analysis Platform (RTAP). The RTAP combines a gas chromatograph with an automatic continuous environmental monitoring system that collects compounds on a solid sorbent trap, thermally desorbs them into a capillary gas chromatography column, and detects the compound with a flame photometric detector. It is a low level monitor designed to respond to 0.003 mg/m3 for mustard in less than 15 minutes with alarm capability. Unfortunately, this method is good for one chemical agent, mustard, and has a 15 minute delay in response. This would not negate the need for respiratory protection if a round had been leaking before first entry.

(1.2) The RTAP also has the capability to provide continuous low-level real-time monitoring for mustard in the pit and to provide an on-site screening analytical capability (mustard and lewisite) for other samples (soil and air) from around the site. Unfortunately, this method is limited in the chemicals it can search for and has at least a 15 minute delay in response. This would not negate the need for respiratory protection if a leaking round is encountered.

(1.3) Another form of monitoring involves breathing zone sampling using Depot Area Air Monitoring (DAAMS) tubes. This method will document exposure to mustard, but unfortunately will not prevent exposure. These samples could be analyzed daily and will provide a low-level historical account of worker exposure.

(1.4) In the event TEU personnel suspect contamination with cyanogen chloride, phosgene, sulfuric acid, arsine or chloropicrin, Draeger detection tubes are available to provide area monitoring. This assessment can be made with the use of commercially available detection tubes for the materials. However, due to the target chemicals high volatility, effective capture of representative samples of suspect liquid is not assured. Unfortunately, this level of monitoring will not serve to prevent exposure, but will be used to document the presence of targeted chemical hazards in the area.

(d) Administrative Work Zones. The concept is to reduce overall risk by reducing the number of people at risk or by establishing different protective requirements from one zone
AMSBC-O (385 (A))
SUBJECT: Revised Risk Assessment for Safe Removal of Chemical Filled Unexploded Ordnance at the American University Chemical Warfare Center Site (Operation Safe removal)

to another. The calculations shown as enclosure 2 show a realistic Lewis inhalation hazard within a 10 meter area around the pit in the event a spill were to occur. The work zone approach would create an area that could be marked off which would require all workers entering the area of concern to be an increased level of respiratory (i.e. SCBA/M17 mask) and dermal (i.e. butyl rubber suit) protection. This would reduce the risk of injury regardless of the chemical agents encountered. Workers outside this area would remain in Level D (mask slung) unless an emergency situation (i.e. leaking munitions) were encountered. This method will reduce the number of workers required to wear protective clothing by establishing levels of protection based on work location.

d. Explosive Risk Assessment.

1. Explosive Scenarios. Detonation of either a HE round, or of the TNT mixed in the soil are the possible two scenarios. Because of TNT stability, relatively high external stimulation initiation requirements, and total desensitizing to initiation by 7% moisture, detonation of loose TNT found mixed in the soil is not a credible scenario.

2. The remaining scenario is credible. Although the probability is low, a round could detonate during any of the following handling scenarios: during initial uncovering/excavation and handling within the pit; during assessment (identification) procedures; during packing; or shipment.

3. To date, 3" stokes HE mortars, 3" WP Stokes Mortars, 75mm HE Projectiles, 75mm WP Stokes Mortar, and WP initiators are the likely identities of the recovered conventional munitions. Of these, the 3" stokes HE mortar has the largest HE (2.5 lbs) and WP (1.6 lbs) payloads. The potential smoke and other solid fills would not generate detonation waves, and any resulting deflagration would be less hazardous than an HE detonation.

(a) The maximum amount of explosive contained in any explosive component of currently identified possible chemical rounds (3" stokes mortar, 75mm projectile, and Levins projectile) is 100 grams.

(b) The rounds are handled one at a time. Therefore, any incident/detonation during handling or assessment would only involve one round.
(c) Military fuzes have safety and arming devices. Unless these devices are damaged, removed (safety pins), missing (bore safe pins), or other indications that the round may have been fired, these rounds should not be armed. Some fuzes require stimuli close to normal functioning forces (set back) to arm undamaged fuzes. Range duds should have been detonated in place upon discovery in 1919 and not disposed of in the pit. Therefore, while remote there is a probability that armed fuzed munitions will be found during excavation activities. TEU personnel are EOD trained to identified and determine if fuzes are armed. They have specific instruction and techniques for handling armed munitions. Due to this training and the nature of TNT, there is only a remote probability that a round would detonate during assessment and handling. Due to the difficulty of initiation of TNT, the probability of round detonating should be significantly reduced for unfuzed HE rounds.

(d) Due to TNT's stability, lack of relative sensitivity, and difficulty of initiation, the greatest hazard will exist during any handling prior to determining is the fuze is armed and functional.

(e) Bursters installed in WP rounds would not create the overpressure that the HE rounds would produce. Any actions taken to protect personnel against the effects of a HE detonation would also protect personnel from the effects of initiation of a WP round.

(f) The detonation of a fuzed 3" Stokes HE mortar (highest HE fill of candidate rounds) during initial handling within the pit would be the maximum credible event. This scenario would also produce the probable maximum fragmentation hazard array and expose the most personnel.

4. Explosive Hazard Analysis.

(a) The accepted amount of overpressure that the human body can withstand and not suffer damage is 2.3 psi. Eardrums will rupture at 3.4 psi and lungs will rupture at 5.4 psi.

(b) Engineering controls are not a viable option at the site. There is no known portable remote control equipment which could perform the excavation and initial handling. Standard substantial dividing walls or barricades are not available or viable option to obtain. Pallets of bricks are
AMSCB-CO (385 (A))

SUBJECT: Revised Risk Assessment for Safe Removal of Chemical Filled Unexploded Ordnance at the American University Chemical Warfare Center Site (Operation Safe removal)

available on site and could be positioned to act as shields around explosive storage location. These barricades should be effective in preventing low level fragments from striking the storage containers in the event of an explosion at another on site location. It is improbable that these makeshift barricades would contain the effects of a detonation within the storage container. The bricks would likely become secondary fragments. However, it is also improbable that stored rounds will spontaneous detonation without an external stimulus based on the characteristics of TNT.

(c) Administrative controls are a effective means of limiting both the number of personnel exposed to the hazard and the severity of the hazard. Only the minimum number of personnel are allowed down range due to the potential explosive and chemical threat.

(d) Personnel protective clothing would provide only marginal additional protection. Flack jackets and military helmets would provide a measure of protection from fragments. However, the head would still be significantly exposed. The jacket should provide additional protection to most vital organs. However, neither provides protection from the expected overpressure which would be generated close to a high order detonation.

(e) Risk from found HE rounds. The primary hazard from the detonation would be the resulting overpressure. Separation of all but essential personnel from the explosives provides the best protection. Personnel exposed to 2.3 psi would not experience any harmful effect. Inhabited building distance (IHB) ensures that unprotected personnel are not subject to overpressure above 2.3 psi as the result of an unintentional HE detonation. Required IHB separation distance is determined by the equation \(d = 40w^{1/3} \). Therefore, 58 feet is the minimum separation distance to unrelated personnel which would provide minimum protection from overpressure from the maximum credible event. For the expected quantity of HE (less than 100 lbs) that will be recovered during excavation, the regulatory default fragmentation safety distance (670') will protect personnel from both primary and secondary fragments. Nonessential personnel are required to evacuation from a 984' clear zone daily before operations can begin. Therefore, the risk of exposure of nonessential personnel (i.e., civilians) to harmful overpressure or fragments is assessed as I-E catastrophic - improbable.

(f) Assessment of chemical munitions explosive
AMSCB-CO (385 (A))

SUBJECT: Revised Risk Assessment for Safe Removal of Chemical Filled Unexploded Ordnance at the American University Chemical Warfare Center Site (Operation Safe removal)

risk. Detonation of 100 grams of TNT would produce predicted overpressures of 270 psi and 3.4 psi at 1.5 feet and 7.6 feet, respectively. This occurrence would be lethal to personnel handling the munitions, and as a minimum, rupture the ear drums of personnel within 7.6 foot radius. Primary and secondary fragment are also likely, but the overpressure is the far greater hazard to handlers. Risk assessed for operators in the immediate vicinity (with in 1.5 feet) if a chemical round detonate is I-A Catastrophic - frequent. At IHB distance (26 feet) predicted overpressures should be reduced to 2.3 psi and fragmentation would become the major risk. The walls of the pit should provide a measure of protection from low flying fragment. Therefore, the risk assessment for operators outside of the pit (a minimum of 30 feet from the detonation) is I - D Catastrophic - remote

(g) Assessment of maximum credible event. Detonation of a HE round would have the same results for personnel in the immediate area as a chemical round, but would increase to ear rupture zone to approximately 54' and IHB distance (2.3 psi) to 58 feet.

(h) Intraline separation distance prevents the detonation wave from initiating other rounds in the area. The formula \(d = 18W^{1/3} \) will provide safe separation distance between the operations explosive locations. The maximum credible event's net explosive weight (NEW) (2.5 lbs) would require a minimum of 26 feet between the pit, assessment, and storage locations to prevent propagation between explosive sites. Current separation between these site exceed this requirement. Risk of propagation is assessed as I - E catastrophic - improbable.

(i) Risk from primary and secondary fragmentation to civilian personnel. A fragmentation hazard is also associated with the HE and Chemical rounds. The DOD default separation distance to protect personnel from hazardous primary fragments resulting from an unplanned detonation of 100 lbs or less of HE is 670 feet for thin skin munitions. The established civilian evacuation zone is 300 meters which exceeds separation requirements. Risk to the civilian population from primary fragmentation is assessed as I - E catastrophic - improbable. Placement of makeshift barricades should restrict and limit the array of random fragments within the immediate area. Houses under construction and standing finished housed should also limit the distribution of low level fragments. Risk to operational personnel outside of the pit is assessed as I - D catastrophic - remote.
AMSCB-CO (385 (A))

SUBJECT: Revised Risk Assessment for Safe Removal of Chemical Filled Unexploded Ordnance at the American University Chemical Warfare Center Site (Operation Safe Removal)

6. SRF SAFETY RECOMMENDATION. In an effort to minimize the number of hazards to the least number of people for the least amount of time, SRF Safety recommends the following:

a. With respect to engineering controls, recommend the local exhaust ventilation system for the pit be installed.

b. With respect to protective clothing, we have considered the TEU Commander's concern with respect to potential increased risk to personnel during handling of possibly armed/fuzed munitions due to a loss of visual acuity while wearing a mask. These concerns were weighed against the fact that TEU personnel are EOD certified while wearing the protective mask. Based on this assessment we have determined that the presence of a significant risk of chemical exposure requires the use of Level C with Saranex/Tyvek suit. This level of protection is contingent upon aggressive monitoring in the pit. If monitoring indicates the area exceeds established AELs, the level of protection would have to be reassessed.

c. With respect to monitoring, recommend the RTAP be used for first entry monitoring for mustard and background real-time low-level monitoring for mustard in the pit. Additionally, the following monitoring should occur:

 (1) Background low-level (bubblers) monitoring for lewisite.

 (2) Breathing zone sampling for mustard using DAAMS tubes.

 (3) Continuous background sampling for phosgene in the pit.

d. With respect to work areas, recommend three work zones be developed as follows: operating pit, hot line, and public exclusion area.

George Collins Greg Mason
SRF Safety SRF Safety
<table>
<thead>
<tr>
<th>HAZARD SEVERITY DESCRIPTIONS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>CATASTROPHIC</td>
</tr>
<tr>
<td>CRITICAL</td>
</tr>
<tr>
<td>MARGINAL</td>
</tr>
<tr>
<td>NEGLIGIBLE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HAZARD PROBABILITY DESCRIPTIONS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>FREQUENT</td>
</tr>
<tr>
<td>PROBABLE</td>
</tr>
<tr>
<td>OCCASIONAL</td>
</tr>
<tr>
<td>REMOTE</td>
</tr>
<tr>
<td>IMPROBABLE</td>
</tr>
</tbody>
</table>
Potential Airborne Exposure to Lewisite and Mustard During Operation Safe Removal

1. This analysis considers the potential unearthing of liquid Lewisite (L) and mustard (H) during excavation of the chemical munitions disposal pit. It compares the expected airborne vapor concentration from computer models to the accepted exposure limit of 0.003 mg/m3 (both agents).

2. A matrix approach is employed using a range of potential liquid agent amounts, windspeeds, and temperatures. The expected windspeeds for Operation Safe Removal range from calm to 20 mph and the temperatures from 15-55 F. As a first cut, four different agent amounts were assumed: 1, 4, 8, and 16 fluid ounces.

3. Note: H freezes at about 58 F (14.5 C). Since its freezing temperature is greater than the expected maximum temperature, agent H would not be expected to produce any vapor challenge during excavation. However, it still presents a potential contact hazard.

4. In using the D2PC model to determine both evaporation rates and downwind dispersion of the evaporating agent, it was determined that very little liquid agent is required to produce an AEL concentration close to the source. For instance, only one fluid ounce of Lewisite (56 grams) exposed to air for five minutes at 15 F is required to produce an AEL at a downwind distance of 20 meters. Model results estimate that as little as 1/4 ounce (14 grams) produces a hazard distance to 10 m.

5. Since the 15 F temperature will likely be exceeded and larger amounts of liquid agent than 1/4 ounce may be uncovered in the pit, airborne concentrations which exceed the AEL for Lewisite could be expected for virtually all weather conditions during Operation Safe Removal.

6. This analysis assumes the purity of the agent to be 100%, probably a very conservative assumption given the age of the material. Field concentrations and hazard distances would be lower.

7. It is recommended that Tech Escort strongly consider the use of protective vapor masks during excavation of the pit to prevent potential exposure to Lewisite vapor.

Michael Myirski
Hazard Analysis

246
APPENDIX III
CHRONOLOGY OF SAFETY IMPROVEMENTS TO THE SITE

Chronology of Safety Improvements with Operation Safe Removal

The following is a chronology of the continual safety improvements that have been made during Operation Safe Removal through 24 Jan 93.

5 Jan -- Established Emergency Personal Decontamination Station (EPDS). The TEU arrived on site and after initial assessment established an EPDS to safely process personnel into and out of the potentially contaminated area. In support of this EPDS, the police, ambulance and city fire fighters/HAZMAT teams also arrived on-site.

-- EOD Personal Protective Clothing (PPC) Established. TEU personnel did initial assessment of the site in EOD responder ensemble (BDUs, gloves and mask slung).

6 Jan -- Upgraded PPC to Level D. TEU personnel upgraded PPC on the second day to include explosive coveralls (Level D).

7 Jan -- Upgraded PPC to Include Saranex Chemical Suit. TEU personnel upgraded PPC on the third day to include a Saranex full body chemical suit (upgraded Level D).

8 Jan -- TEU SOP Arrives On-site. TEU has SOP for Explosive Ordnance Disposal Response arrive on-site. This SOP describes responsibilities, procedures, a concept of operation, and equipment for TEU's response to reported/found unexploded ordnance, and is designed so that EOD personnel take maximum precautions to ensure safety and health.

-- CBDA Safety Representative Arrives On-site. The CBDA Safety Representative arrives on-site and begins initial safety assessment of operations. Contacts made with AMC and DA Safety on levels of protection and monitoring requirements.

11 Jan -- TEU Safety Officer Arrives On-site. Mr Sheldon Orr, TEU Safety Officer arrived on-site and began making general safety assessments of operations.

-- Upgraded PPC to Include Booties. TEU personnel added booties as a requirement to go beyond the hot line.

-- Initial Chemical Risk Assessment Completed. The initial Chemical Risk Assessment was completed 11 Jan 93. This assessment recommended an increase in monitoring given the fact that the TEU Commander selected Level D protection (mask slung).
-- PDS Expanded to Personnel Decontamination Station.
In an effort to provide additional safety and comfort, a heated
decon/clothing change area and full Personnel Decontamination
Station (PDS) was setup.

-- SRF Surgeon Arrives On-site. The SRF Surgeon arrived
on-site to provide medical support for the operations at Spring
Valley.

12 Jan -- Addition of Real-Time Monitoring for Mustard. A Real
Time Analysis Platform (RTAP) was positioned at the site to monitor
the air and provide early warning if mustard vapor were present in
the pit.

-- Addition of Monitoring for CK and Phosgene. Detection
equipment for cyanogen chloride and phosgene was obtained from AEHA
and positioned on-site for use, if necessary.

-- Addition of Soil Sampling in the Pit. A sampling
program was initiated to take daily samples from the pit to
evaluate the threat of chemical agents in the soil.

-- Addition of Approved MSDSs at the Site. Approved
Material Safety Data Sheets (MSDSs) for mustard, lewisite, and
phosgene arrived on-site and were provided to the TEU Safety
Officer for dissemination to the workers.

13 Jan -- Addition of Breathing Zone Monitoring. As an added
safety precaution, workers closest to potential sources were
equipped with breathing zone (Depot Area Air Monitoring System
(DAAMS)) monitoring for mustard.

-- Addition of Low Level Monitoring for Mustard and
Arsenicals. Low-level monitoring (with bubblers) for mustard and
total arsenicals was added to the excavation pit as a means to
detect chemical agent releases above established Airborne Emission
Limits (AELs).

14 Jan -- Addition of a "Heating Box". The TEU brought a heating
box to the site to raise the temperature of potential chemical
agent filled items. This rise in temperature would permit the
certify the absence of chemical agent contamination and to
establish the nature of the munition fill.

15 Jan -- Additional Monitoring of Munition Assessment Area. Low-
level area monitoring for mustard began in the munition assessment
tent today.
21 Jan -- Addition of the Portable Isotopic Neutron Source. The PINS arrived on site to make assessments of munitions. The PINS can detect chlorine, sulfur and nitrogen. Since most WWI chemical agents contained chlorine, this device can be used to differentiate between chemical agent fills and high explosives.

--- Additional Monitoring Equipment Arrives. As an additional measure of safety, additional detection tubes for CK, phosgene and sulfuric acid and two automatic pumps were added to the site monitoring scheme.

--- Addition of Local Exhaust Ventilation System. As an added safety measure, a local exhaust ventilation system was added to the pit. This system provides localized removal of contamination from the pit area.

22 Jan -- Established Transient Limitation. As an added safety measure, the TEU Commander established a five transient person limit beyond the PDS. This was designed to minimize casualties in the event of a mishap.

--- Eyewash Stations Brought to the Site. A portable eyewash station was set up next to the pit.

23 Jan -- Additional Eyewash Stations Brought to the Site. Portable eyewash stations were added to the munition assessment station and the packaging area.

24 Jan -- Continual Monitoring Added to the Site. As an added safety measure, continuous area monitoring for phosgene, oxygen levels and lower explosive levels began.

--- Revised Risk Assessment Completed. A revised risk assessment, considering both chemical agent and explosive safety, was completed.

--- Added Chemical/Explosive Safety Restrictions. As a result of the revised risk assessment, the TEU Commander directs the following:

--- Personnel in the munition assessment area to wear protective masks (Level C)

--- Establishment of a 5 meter overpressure hazard zone around the munition assessment area.

--- Repositioning of conex containers containing explosive rounds.

--- Sandbagging of conex containers to provide blast protection.

249
-- Removal of all brick material/construction debris from the site to eliminate the secondary fragmentation hazard.
APPENDIX IV
SRF COMMANDER SAFETY RULES OF ENGAGEMENT

DEPARTMENT OF THE ARMY
U.S. ARMY CHEMICAL AND BIOLOGICAL DEFENSE AGENCY
ABERDEEN PROVING GROUND, MARYLAND 21010-5423

MEMORANDUM FOR OPERATION SAFE REMOVAL STAFF

SUBJECT: SRF at the Spring Valley Recovery Site (Operation Safe Removal), Commander’s Policy (Rules of Engagement)

27 Jan 93

1. CARDINAL PRINCIPLE — MINIMIZE. The guiding principle is to minimize potential exposure by limiting the minimal number of personnel, for a minimum time, to the minimum amount of explosive or toxic chemical hazards within operational constraints. At no time will personnel or environmental safety be compromised for operational expediency. All other guidelines will be based on and adhere to this principle.

2. ESTABLISH ZONES. Upon arrival on site, the establishment of exclusion zones (i.e., site, hot line, and public exclusion area) based on the best available meteorological data and probable munitions involved will be the 1st priority of the initial responding unit.

3. PRESUME THE WORST. During all contact with any suspect munitions and or intact container, it will be assumed that the explosive and/or toxic chemical hazard is still viable until proven otherwise by accepted, proven visual identification, monitoring, or assessment procedures. All operations will be IAW Standing Operational Procedures, either oral or written, which are based on and IAW the policies and procedures taught by the Naval School, Explosive Ordnance Disposal (EOD), Indian Head, MD, appropriate T.M. 60 series publications, and/or DA FAM 385-61. Personnel protective clothing and equipment will be provided and used to ensure personnel are provided the maximum appropriate protection possible. Only EOD certified personnel will handle munitions and make the initial determination. All operational personnel will have a protective mask immediately available at all times when inside the evacuation zone.

4. COORDINATE AND PLAN ACTIONS. Communication will be maintained at all times between the senior EOD operator at the excavation site, TEU Commander, and the SRF Operations Officer. On-site SRF elements will coordinate among themselves and with local, state, and other federal agencies prior to taking any action which may have an adverse impact or requires their approval.
5. EXPAND MONITORING. Monitoring for suspect target chemical fills will start immediately using the best available methods. Every effort will be made to upgrade on-site monitoring techniques and equipment ASAP. Samples will be taken and transported to off-site resources (i.e., ERDEC laboratories) to verify and/or quantify monitoring data. Redundancy of resources and assessment capabilities will be established whenever practical.

6. PROVIDE MEDICAL SUPPORT. Adequate medical support will be on-site to initially evaluate, provide emergency treatment, and evacuate personnel as needed. The on-site medical officer will coordinate with local medical authorities to establish all off-site support that he deems necessary to ensure optimum care for medical emergencies and routine medical care.

7. CONTINUOUS IMPROVEMENT. Operational procedures, monitoring procedures and equipment, protective clothing, safety assessments, environmental evaluations, and medical support will be continually reviewed, scrutinized, and updated as new equipment, facts, monitoring data, or weather conditions become available. Cost will not be the determining factor in any safety related decisions.

8. The proponent for this policy is the SRF Safety Staff.

[Signature]

GEORGE E. FRIEL
Brigadier General, U.S. Army
On-Site Coordinator
APPENDIX V
LISTING OF SAFETY AND HEALTH CONCERNS ASSOCIATED
WITH CHEMICALS USED AT AMERICAN UNIVERSITY

CHEMICALS KNOWN
TO BE USED BY
AMERICAN UNIVERSITY

PREPARED BY: EDGECWOOD RDEC
SAFETY OFFICE
25 JANUARY 1993
CODES USED AT AMERICAN UNIVERSITY AND EDGEOOD ARSENAL
1918-1919

BV Diphenylcyanansine (DC) Br

Colorless crystals, garlic-almond odor, soluble in organic solvents, insoluble in H2O; hydrolyzes slowly; eye & nose irritation; sneezing, coughing; rapidly detoxified in the body; vomiting agent; BP: 290°C; MP: 31.5°C; PV: 8.8;
PV: 4.7(10)^{-5} mm Hg @ 20°C

bp: 46°C; colorless liquid; extremely flammable; vapor/mist is irritating to eyes, mucous membranes, & upper respiratory tract; causes skin irritation.

Ethyl bromoacetate G- (US):

bp: 159°C; Fp: 118°F; colorless to light yellow liquid; combustible; incompatible with acids, bases, oxidizing agents, and reducing agents; harmful if swallowed, inhaled, or absorbed through skin; causes burns; symptoms: burning sensation, coughing, wheezing, laryngitis, shortness of breath, headache, nausea & vomiting

Ethyl chloroformate G-:

bp: 93°C; Fp: 36°F; colorless liquid; flammable; vapor may travel considerable distance to source of ignition and flash back; can react with rust from corroded equipment; may be fatal if inhaled, swallowed, or absorbed through skin; causes burns; symptoms - same as above (Ethyl Bromoacetate). In case of contact, wash with copious amounts of water.

Ethyl chlorosulfonate sulvinite Br (CAS# 625-01-4)

Highly irritant and lachrymatory, fuming, oily liquid with pungent odor; emits highly toxic fumes on heating or on contact with water or acids; BP: 151-154°C; decomp 93-95°C; insoluble in water.
Ethyl dichlorocarsine G-319 (CY) (CAS# 598-14-1)

Fruity odor; liquid, soluble in organic solvents, rapidly hydrolyzed by H2O; stable in steel; attacks brass, rubber, plastics; BP: 156 C; MP: -64 C; PV: 2.09mm @ 20C; Volatility 6500 mg/m3 @ 0° C; TWA: 0.2mg/m3.

Ethylene chlorohydrin Hydrox Br

bp: 129°; Fp: 140°F; vapor or mist is irritating to eyes, mucous membranes, and upper respiratory tract; exposure can cause nausea, headache, vomiting, damage to liver and kidneys and readily absorbed through skin. Keep away from heat, sparks or open flame; protect from moisture. 5ppm=16 mg/m3; ceiling 1ppm=3mg/m3

Ethyl iodoacetate G-40 (MD, shipping code, SK, (KSK)

bp: 179°; Fp: 170°F; light-yellow to brown-red liquid; combustible; highly toxic; severe lachrymator; extremely destructive to tissue of mucous membranes, upper respiratory tract, eyes, skin.

Ethyl iodoacetate and HGN (15) AK Br

bp: 179-180°; FP: 170°F; light-yellow to brown-red liquid; highly toxic, corrosive; combustible; severe lachrymator; causes burns; light and moisture sensitive; material is extremely destructive to tissue of mucous membranes and upper respiratory tract, eyes & skin; symptoms -- burning sensation, coughing; shortness of breath, headache, nausea.

Ethyl isocyanide G-232 (CAS# 624-79-3)

Liquid, potentially explosive, polymerizes on heating at 100-160°; BP: 78-79 C.
Ethyl isothiocyanate G214

bp: 130-132°; Fp: 90°F; colorless liquid; highly toxic; corrosive; lachrymator; keep away from heat, sparks, and open flame; flammable liquid; vapor may travel considerable distance to source of ignition and flash back; destructive to tissue of mucous membranes, upper respiratory tract, eyes, skin; may cause allergic reaction; in case of contact immediately wash with copious amounts of water for 15 min.

Ethyl sulfide G-232

bp: 90-92°; Fp: 15°F; colorless liquid; irritant; stench; extremely flammable; forms explosive mixtures in air; vapor/mist is irritating to eyes, mucous membranes and upper respiratory tract; causes skin irritation; exposure causes nausea, headache and vomiting.

Ethyl trichloroacetate G-283

bp: 168°; Fp: 149°F; colorless liquid; combustible liquid; corrosive; destructive to tissue of mucous membranes, upper respiratory tract, eyes, and skin; symptoms -- burning sensation, coughing, wheezing, shortness of breath, headache, nausea, vomiting.

F code (Flaming Liquids):

F-4 phosphine Ph₃ (CAS# 7803-51-2)

bp: -87.5°; PEL: 0.3ppm=0.4mg/m³; TWA=0.3ppm=0.4mg/m³; STEL=1ppm=1mg/m³; colorless gas; flammable gas; poison gas; poison by inhalation; chief effects are central nervous system, depression and lung irritation; inhalation can cause coma and convulsions leading to death in 48 hours.

F-10 Sulfuric acid

TWA=1mg/m³; Fp-none; Viscous colorless liquid; poison, corrosive, strong oxidizer; contact with other material may cause fire, harmful if inhaled or absorbed through skin; causes burns.
Forric chloride L-25

Black crystalline powder; corrosive; irritating dust; hygroscopic; causes severe eye irritation; destructive to tissue of mucous membranes; upper respiratory tract, eyes, & skin.

FM Titanium tetrachloride Br (S-28, fumigerite)

bp: 277°F, MP: -13°F, vd: 6.6; colorless to light yellow liquid-vinegar like odor; poison-do not breath vapors; reactivity: vigorous, exothermic reaction with water forming corrosive fumes of hydrogen chloride.

Formol Collians Fr

Colorless, pungent liquid (formaldehyde solution) with 10-15° methanol.

Formol and ammonia Collongiane Fr

Mixture of formaldehyde and ammonia.

Fumigerite Titanium tetrachloride Fr (S-28, FM) (CAS#7550-45-0)

MP: 24°; BP: 136°. Soluble in cold water, alcohol, decom by hot water; irritant to eyes and resp tract; used to produce smoke with ammonia.

Fumite White phosphorus (in grenades) Br (I-25)

WP is a yellowish, wax-like substance; MP: 100°F; spontaneously ignites when exposed to air; fumes are toxic; intensely poisonous when taken internally.
G Code (Gasses):

G-4 Acrolein (Papite)

bp: 53°C; Mp: -87°C; vd: 1.94; auto ignition temp 428°F; colorless liquid; extremely flammable; vapor may travel considerable distance to ignition source and flash back; LEL: 2.8%; UEL: 31%.

G-7 Arsine (Yellow star, formerly)

Colorless gas; mild garlic odor; not stable in uncoated metal containers. Vd: 2.69; liquid density 1.34 @20°C; mP: -116; BP: -62.5°C; vp: 11,100 @ 20°C; TWA: 0.05ppm - 0.2mg/m3.

G-10 Arsenic trichloride (BR marsite)

Liquid, colorless, unpleasant odor; not flammable; poisonous vapors; reacts with water to generate hydrogen chloride; corrodes metal; Boiling point 266.4°F; Freezing 9°F.

G-13 Bromoacetone (MD5 shipping code, Y2 Dow Cml Co)

Colorless liquid when pure; turns violet rapidly; pungent odor; toxic fumes under fire conditions; combustible liquid; boiling point 117°C; melting point -36.5°C; flash point 113°F 45°C.

G-16 Xylyl bromide. (MD2 shipping code, xylyl products"
Dow Chemical Co. Code)

bp: 212-215; Lachrymator

G-19 Chloroform

Carcinogen; colorless liquid; noncombustible toxic fumes emitted during fire containment; boiling point 61°C; melting point -63°C; vapor density 4.1; vapor pressure 160mm @ 20°C. TWA 2ppm=9.78mg/m3.
G-22 Chloroacetone (tonite)

Appearance and odor - amber to black liquid; boiling point 120 °C; melting point -44.5°C; specific gravity; 1.162, flash point 82 F.

G-25 Chloropicrin (MD₄ shipping code, 3-1 manufacturers' code, PS, acuinites)

Shock detonation; colorless liquid with very irritating odor (if it can be smelled it may be exceeding the exposure limit); fatal if inhaled; explosive when exposed to heat, shock or friction; poison - do not breath; odor threshold 1.1 ppm; boiling point 233°F; melting point -83°F; vapor pressure: 20 mm @ 20 C; vapor density 5.7. TWA 0.1ppm= 0.7mg/m³.

G-28 Chlorine (D-31, S-10, Red Star, borthollite)

Greenish-yellow gas; decomposition produces hydrogen chloride gas; highly toxic, corrosive; boiling point -34 C; melting point -101°C; vapor density 2.48; vapor pressure 4800 mm @ 20°C; 7000 mm @21.2°C; TWA 0.5ppm=1.5 mg/m³; STEL 0.3ppm=0.3mg/m³.

G-31 Carbon monoxide

Toxic by inhalation; keep away from source of ignition; colorless, odorless compressed gas; flammable; vapor poisonous if inhaled; boiling point 312.7 F; no flash point. TWA 35ppm=40 mg/m³; ceiling 200ppm=229mg/m³.

G-34 Mustard gas (MD₇ shipping code, MO, Edgewood Code, HS, yperite)

Vesicant; blister agent; carcinogen; damage to respiratory tract when inhaled and cause vomiting and diarrhea when absorbed. FP: 58°F.
G-37 Methyl sulfate (Methyl hydrogen sulfate, sulfuric acid monomethyl ester) (MD₆ shipping code) (CAS# 75-93-4)

Oil, used in sulphonations; MP < -30°C; D: 1.45-1.47 @15°C; soluble in water.

G-40 Ethyl iodoacetate (MD₄ shipping code, SK, ESK)

Dense, colorless liquid; bp 179°C; d 1.80; VP 0.54 mm @ 20°C; VD 7.4; react with water or steam to produce toxic/corrosive fumes; when heated to decomposition or on contact with acid or acid fumes it emits highly toxic fumes.

G-43 Hydrocyanic acid (AC, forostite)

(when in solution) Deadly poison; when heated to decomp; it emits toxic fumes of CN very dangerous storage hazard when unstablized. DOT classification – Forbidden.

G-49 Trichloromethyl chloroformate (SF, surpalite, superpalite, pallite) (CAS# 503-38-8)

Oily liquid, giving toxic, asphyxiating vapor. Used in WWI as poison gas; BP 128°C; D: 1.65 at 14°C; emits toxic/corrosive fumes on heating or contact with water.

G-52 Phosgene (MD₈ shipping code, L-3 manufacturers code, CG, collongite)

Colorless, poison gas/volatile liquid; odor of new mown hay or green corn; MP -118°C; BP 8.3°C; d: 1.37 @20°C; vp 1180 mm @ 20°C; vd 3.4; slightly soluble in water; very soluble in benzene and acetic acid; decomp slightly in water.
G-55 Perchloromethylmercaptan (YH 11 Dow Chemical Co Code) (CAS# 594-42-3)

ACGIH TLV-TWA 0.1ppm; OSHA STD-TWA 0.1ppm; 0.76mg/m3; yellow liquid; highly toxic, corrosive, lachrymator, protect from moisture; may decompose on exposure to moist air or water; may be fatal if swallowed or absorbed through skin; BP 146-148°C; PV 2.3mm (20°C); FP none; VD 6.4

G-58 Benzyl chloride (CAS# 100-44-7)

OSHA STD-AIR: TWA 1ppm=5mg/m3; ACGIH TLV: TWA 1 ppm; colorless liquid; may be fatal if inhaled; extremely destructive to tissue; carcinogen; incompatible with oxidizing agents, aluminum, brass and may decompose on exposure to moist air/water; highly toxic and corrosive; mutagen; combustible liquid; MP -43°C; BP 177-181°C; PV 10.3mm (60°C); FP 165°F (73°C).

G-61 Ethyl bromoacetate (US)

Colorless to straw-colored liquid; BP 158.8°C; FP <-20°C; flash point 118°F; d: 1.514 @ 13/4°C; vd 5.8; insoluble in water; misc in alcohol and ether.

G-67 Cyanogen bromide (CB)

Colorless needles; MP: 52°C; BP: 61.6°C; D: 2.015 @ 20/4°C; VP: 100 mm @ 22.6°C; when heated to decomposition, it emits toxic fumes of CN and BR; possibly unstable.

G-73 Phenylcarbarylamine chloride

Pale yellow liquid, onion-like odor; bp 208-210°C; insoluble in water; soluble in chloroform, carbon tetrachloride and other organics; strong irritant, lachrymator, lung injurant.

261
G-76 Diphenylchloroarsine (DA) (CAS# 712-48-1)

Colorless crystals, garlic-almond odor; soluble in organic solvents; insoluble in water; eye and nose irritation; sneezing, coughing, severe headache, acute chest pain; nausea and vomiting; rapidly detoxified in body; corrosive to iron and steel; BP 290°C; MP 31°C; PV 8.8; PV 4.7(10)^{-5} mm @ 20°C.

G-79 Ethyl chloroformate

Colorless liquid, decomp in water; MP -80.6°C; BP 94°C; FP 35.6°F; D: 1.138 @ 20/4°C; vd 3.74, auto ign temp 932°F; misc in alcohol, benzene, ether, chloroform; corrosive; dangerous fire hazard when exposed to flame/heat; can react vigorously with oxidizing materials; reacts with water, steam to produce toxic/corrosive fumes.

G-85 Diiodoacetylene

Explosive; sensitive to impact, crushing, or heating to 84°C; when heated to decomposition, it emits toxic fumes of I.

G-91 Oxalyl chloride

Colorless, fuming liquid; penetrating odor; MP -12°C; BP 63-64°C; D 1.488 @ 13/4°C, poison, violently decomposed by water/alcohol; explodes on contact with dimethyl sulfoxide; forms shock-sensitive explosive mixtures with potassium or with K-NA alloy; will react with water/steam to produce toxic/corrosive fumes.

G-94 Bromoacetyl bromide (CAS# 598-21-0)

Colorless liquid; harmful in swallowed, inhaled or absorbed through skin; causes burns; inhalation may be fatal; do not allow water to enter container because of violent reaction; incompatible with strong oxidizing agents, alcohols, strong bases; BP 147-150°C; PV 3.8 mm (25°C); FP none.
G-100 Thiophosgene (TP)

 Reddish liquid; BP: 73.5°; D: 1.5085 @ 15°; decomp in water, alcohol; soluble in ether.

G-103 Dichloropropyl sulfide

 Ambiguous nomenclature; could be one of several compounds, range of acute from non-skin effects to highly vesicant.

G-106 Acetyl fluoride

 Bp: 20.8°; when heated emits toxic fumes of fluoride; poison by inhalation.

G-112 Chloroacetic anhydride

 Harmful if swallowed; absorbed through skin etc; inhalation may be fatal; symptoms are burning sensation, coughing; BP: 120°, white crystalline powder, emits toxic fumes when heated.

G-115 Methyl selenide

 Liquid; BP: -58°; when heated emits toxic fumes of selenium.

G-118 Cacodyl chloride (chlorodimethylarsine) (CAS# 557-89-1)

 Highly toxic; flammable; BP 109°.

G-121 Cacodyl bromide (bromodimethylarsine) (CAS# 676-71-1)

 Highly toxic yellow oil; BP: 130°; D: 1.905 at 23°.
G-124 Phenyl carbylamine

Extremely destructive to mucous membranes/resp tract, eyes, etc; symptoms include coughing, wheezing, nausea, vomiting, colorless liquid; BP -103°C.

G-127 Methyl isocyanide

Colorless liquid with no real odor that causes tears; causes irritation of eyes, throat, nose and lungs; symptoms include irritation of eye, nose, throat, chest pain etc; BP: 39°C; VP 348 mm @20°C; TWA 0.02ppm=0.05 mg/m3.

G-133 Titanium tetrachloride; cyanogen chloride

Titanium tetrachloride is a colorless to light yellow, fumes in moist air, when heated emits toxic fumes; highly irritating to skin, eyes, etc, emits HCl on contact with H2O; BP: 136°F. Cyanogen chloride is a colorless liquid or gas, BP: 13.1°F; up 1010 mm at 20°C; poison, highly Dangerous fumes; reacts with water to form toxic substances.

G-139 Arsenic trifluorido

colorless liquid; BP: 51°C; VP: 100mm @13°C; poison by inhalation, when heated it emits toxic fumes of fluoride and arsenic.

G-145 Nickel carbonyl

BP 43°C; oxidizes in air, explodes at 60°F; carcinogen; highly toxic; colorless, volatile liquid or needles; poisonous; avoid contact with acids; emits toxic fumes; dangerous when heated.
G-148 Sulfur trioxide (S-97)

Maybe fatal if swallowed, inhaled, or absorbed; BP: 44.7°C; extremely destructive towards tissue, eyes, skin; VP: 280mm @ 25°C; symptoms include burning, coughing, wheezing; looks like needles or polymer.

G-151 Methyl chlorsulfonate

Colorless liquid; pungent odor; BP: 135°C; poison irritant to skin; will react with water/acids to produce toxic fumes; poison to skin, eyes, mucous membranes.

G-154 Bromoacetone (80-84), Chloroacetone (20-16) (BC, martonite)

Tear-producing compound; colorless liquid; BP: 135°C (275°F); lachrymator; vesicant.

G-157 Diazomethane

Causes severe irritation of eyes, nose throat; yellow gas or liquid under pressure symptoms may be delayed; BP: 23°C, vapor density: 1.4; exposure may cause headache, cough, wheezing.

G-160 Allyl isocyanide (butenenitrile) (CAS# 109-75-1)

Liquid with odor of onions; moderately toxic; emits toxic fumes when heated to decomposition; MP: -87°C; BP: 119°C; D 0.834 at 20°C.

G-166 Trichloroacetonitrile

Harmful if swallowed, inhaled etc, extremely destructive towards tissue, inhalation may be fatal, symptoms include coughing, wheezing, burning sensation; colorless liquid; BP: 83°C; VP: 58mm @ 20°C.
G-169 Benzoyl fluoride

Yellow liquid, BP: 159-161°C; FP: 120°F; corrosive, severe lachrymator; moisture-sensitive; combustible liquid; container explosion may occur under fire conditions; extremely destructive to mucous membrane and upper respiratory tract, eyes & skin; causes burns.

G-172 Benzyl bromide (Cyclite, lachrymogene)

Colorless to pale-yellow liquid; BP: 198-199°C; FP: 188°F; corrosive, lachrymator; light-sensitive stench; combustible; keep away from heat and open flame; material is extremely destructive to mucous membranes and upper respiratory tract, eyes, & skin; causes burns.

G-175 Bromomethyl ether

Bromomethyl octyl ether - colorless liquid; FP: 227°F; possible carcinogen; irritant; lachrymator; vapor/mist irritating to eyes, mucous membranes, upper respiratory tract, skin.

G-178 Cyanogen chloride (CC, mauguinite)

Gas, can be odorless; BP: 12.8°C; VP: 1000 mm HG @ 28°C; severe irritant and lachrymator; causes choking and slow breathing rate; rapid acting chemical agent; highly irritating to eyes & mucous membranes; will break or penetrate a protective mask canister/filter element.

G-181 Arsenic trioxide (D-25, S-88)

AKA Arsenic(III) oxide - white powder; highly toxic; carcinogen; keep away LD50 from combustible materials; heat, sparks; open flame; may be fatal if inhaled, swallowed or absorbed through skin.
G-184 Sodium cyanide (D-16, S-91)

White powder with chunks, VP: 1.0mm (817°C); highly toxic; severe eye irritant; hygroscopic; solution – severe eye irritant; skin irritant; becomes combustible if hydrogen cyanide gas is evolved when in contact with acids.

G-187 Ethyl Bromoacetone, misnomer for Ethyl Bromoacetate, G-61

Colorless to light-yellow liquid; BP: 159°C; FP: 118°F, VP: 2.6mm 25°C) Corrosive; lachrymator; combustible; avoid prolonged/repeated exposure; extremely destructive to mucous membranes, upper respiratory tract, eyes, & skin; causes burns.

G-190 Methyl chloroformate

Colorless liquid; FP: 64°F; BP: 70-72°C; flammable liquid; corrosive; lachrymator; highly toxic; extremely destructive to tissue of mucous membranes & upper respiratory tract, eyes and skin.

G-193 Chloroacetonitril

Colorless liquid; BP: 124-125°C; FP: 118°F; vp: 8.0mm (20°C); highly toxic; lachrymator; irritant; combustible; can react with H2O, steam, or acids releasing highly toxic fumes of hydrogen cyanide; vapor/mist irritating to eyes, mucous membranes, and upper respiratory tract.

G-196 Chlorinated acetone and turpentine

Chloroacetone – amber to black liquid; BP: 120°C; FP: 82°F; poison; corrosive; vesicant; lachrymator; light sensitive; flammable liquid; extremely destructive to mucous membranes and upper respiratory tract, eyes, and skin.
G-199 Hydrofluoric acid

Colorless liquid, poison, corrosive; avoid prolonged/repeated exposure; extremely destructive to mucous membranes and upper respiratory tract, eyes, skin; solutions less than 2% may cause burns; will penetrate skin and attack underlying tissue/bones; VP: 776.0°mm (20°C).

G-202 Chloromethyl ether

Chloromethyl methyl ether - colorless liquid; BP: 55-57°; VP: 260 mm 20°C); FP: 60°F; highly toxic; lachrymator; irritant; carcinogen; flammable; vapor/mist irritating to eyes, respiratory tract, mucous membranes, skin irritant.

G-205 Acetyl cyanide

AKA pyruvonitrile; FP: 58°F; BP: 92-93°; flammable liquid.

G-208 Mercury ethyl (ethylmercuric chloride) (CAS# 107-27-7)

MP: 192°; sublimes easily, highly toxic, causes skin burns; absorbed through skin.

G-220 Allyl isothiocyanate

Yellow liquid, BP: 150°; FP: 115°F; highly toxic; severe lachrymator, vesicant; carcinogen; moisture-sensitive; combustible; extremely destructive to tissue of mucous membranes and upper respiratory tract, eyes and skin.

G-226 Methyl bromoacetate

Colorless liquid, corrosive; extremely destructive to tissue of mucous membranes and upper respiratory tract; lachrymator. BP: 51-52°/15mm; FP: 145°F.
G-229 Allyl alcohol

Colorless liquid; BP: 96-98°C; FP: 72°F; highly toxic; corrosive; lachrymator; flammable liquid; extremely destructive to tissues of mucous membranes and upper respiratory tract, eyes, and skin; VP: 17.2 mm (20°C).

G-232 Ethyl isocyanide (Ethylisocyanate)

Colorless liquid; BP: 60°C; VP: 13.0 mm (22.8°C); FP: 20°F; highly toxic; irritant; severe lachrymator; moisture-sensitive; flammable liquid; avoid prolonged/repeated exposure; extremely destructive to mucous membranes; respiratory tract, eyes and skin.

G-235 Dichloromethyl ether

Experimental tumorigen; when heated to composition, it emits toxic fumes of CI.

G-238 Trichlorohydrin (2,2,2-trichloroethanol) (CAS#115-20-8)

White moist solid; incompatible with strong acids, strong oxidizing agents; strong reducing agents, acid chlorides, acid anhydrides; protect from moisture; reacts violently with strong bases; decomp products: toxic fumes of carbon monoxide, carbon dioxide, hydrogen chloride gas; MP 17.8°C; BP: 151°C; FP: >230°F.

G-241 Benzyl iodide (CAS# 620-05-3)

Colorless or pale yellow needles; irritant; MP: 24.5°C; BP: 93°C.

G-244 Dichloromethyl sulfide (CAS# 3592-44-7)

Liquid; decomposes by hot water; BP: 156°C; D: 1.407 at 20°C.
G-250 Thiophene

Clear colorless liquid; aromatic odor similar to benzene; D: 1.0573 @ 25/4°C; MP: 38.3°C; BP 84.4°C; FP 21.2°F; VP: 40 mm @ 12.5°C; VD: 2.9; insoluble in water; misc with most organic solvents; may be heated to 850°C without decomposition; very dangerous fire hazard when exposed to heat/flame; explosive reaction with N-nitrosoacetanilide; violent or explosive reaction with nitric acid; incompatible with oxidizing materials.

G-253 Acetonitrile

Colorless liquid, aromatic odor; MP: -45°C; BP: 81.1°C; FP 42°F; D: 0.7868 @ 20/20°C; vD: 1.42; vp: 100 mm @27°C; autoign temp 975°C; dangerous fire hazard when exposed to heat/flame/oxidizers; explosion hazard, when heated to decomposition, it emits highly toxic fumes; potentially explosive reaction with anhydride perchlorates and nitrogenfluorine compounds; exothermic reaction with sulfuric acid will react with water, steam, acids to produce toxic/flammable vapors; incompatible with oleum, chlorosulfonic acid, perchlorates, nitrating agents, indium, dinitrogen tetroxide, n-fluro compounds.

G-256 Hydrogen selenide (CAS# 7783-07-5)

TWA 0.2 mg/m3

G-259 Chloromethyl ethyl ether

FP: <-2.2°C; very dangerous fire and explosion hazard when exposed to heat/flame.

G-262 Aluminum selenide (CAS# 1302-82-5)

Yellow-light brown color; unstable in air; decomp in water/acid.
G-265 Dimethylarsine

Colorless liquid; bp: 36°; D: 1.213 @ 29/4°; vd: 3.65;
ignites spontaneously in air; more toxic than its oxidation
products; reacts vigorously with oxidizing agents; emits
toxic fumes of arsine when heated to composition.

G-268 Cacodyl

Dangerous fire hazard by spontaneous chemical reaction;
ignites spontaneously in dry air; can react vigorously with
oxidizing materials.

G-271 Phenyl isothiocyanate (CAS# 103-72-0)

Colorless liquid; causes burns; lung irritation;
incompatible with water; alcohol, strong bases, amines,
acids, strong oxidizing agents and heat; corrosive,
lachrymator; toxic; moisture sensitive; combustible;
MP: 21°; BP: 221°; FP: 190°F (87°C).

G-274 Phenylhydrazine

Yellow, monoclinic crystals or oil; mp: 19.6°;
bp: 243.5°/decomp; fp: 192°F; D: 1.0978 @ 20/4°;
vp: 1 mm @ 71.8°; vd: 3.7; slightly soluble in hot water;
misc in alcohol, chloroform, ether, benzene; flammable when
exposed to heat, flame, oxidizers, violent reaction with
2-phenylamino-3-phenyloyazirane; reacts with perchloryl
fluoride to form explosive product; vigorous reaction with
lead oxide; dangerous when heated.

G-280 Benzotrichloride (trichloromethyl benzene)(CAS#98-07-7)

Liquid; toxic; irritant; MP: -5°C; BP: 220°C; D: 1.37 at
20°C.
G-283 Ethyl trichloroacetate (CAS# 515-84-4)

Colorless liquid; incompatibility with strong bases and oxidizing agents; decom to CO, CO₂ and hydrogen chloride gas; corrosive, combustible liquid; BP: 168°; FP: 149°F (65°C).

G-286 Chlorobenzene (CAS# 108-90-7)

ACGIH TLV-TWA 75ppm; OSHA STD-AIR 75 ppm; colorless liquid; suspect carcinogen; harmful if swallowed/absorbed; incompatible with oxidizing agents; decom to hydrogen chloride gas & CO, CO₂; flammable liquid; vapor may travel to source of ignition; MP: -45°; BP: 132°; PV: 11.8mm (25°C); FP: 75°F (23°C); UEL 7.1; LEL 1.3.

G-289 Chromyl chloride (I-55, MG)

Powerful oxidant; ignites or explodes on contact with non-metal halides, non-metal hydrides, flowers of sulfur, moist phosphorus, sodium azide, organic solvents; urea; violent reaction with water; incandescent reaction on contact with ammonia.

G-292 Ethyl sulfide

Liquid, garlic-like odor; MP: 102°; bp: 92-93°; d: 0.837 @ 20/4°; vd: 3.22; fp: 14°F; very dangerous fire hazard when exposed to heat, flame, sparks. Can react vigorously with oxidizers; reacts with steam, acids, acid fumes to produce toxic and flammable vapors.

G-295 Bromobenzene (CAS# 108-86-1)

Colorless liquid, irritant; incompatible with strong oxidizing agents; combustible; keep away from heat and open flame; MP: -31°; BP: 156°; PV: 4.0mm(25°C); FP: 124°F (51°C); VD: 5.41.
G-298 Trichloroacetyl chloride

Corrosive; when heated to decomp, it emits toxic fumes of Cl.

G-301 Phenyl isocyanate

Liquid, acrid odor; MP: -30°; bp: 158-168°; d: 1.1 @ 20°; vp: 1 mm @ 10.6°; fp: 132°; decomp in water; very soluble in ether; flammable when exposed to heat/flame; can react vigorously with oxidizing materials; will explode when stirred.

G-307 Crotonaldehyde

Colorless liquid, flammable, vapor may travel to source of ignition to flash back; decomposition products carbon monoxide, carbon dioxide; fp: 48°F; violent polymerization may occur at temperatures; BP: 104°C; MP: -76°C; VP: 2.41; VP: 32mm @ 20 C; 145 mm @ 55 C.

G-310 o-Chloronitrobenzene

Yellow crystalline solid; highly toxic; irritant; lower explosive limit 1.4%; upper expl limit 8.7%; BP: 246°C; MP: 33°C to 36°C; VD: 5.4; VP: .04 mm @25°C; .11 mm @ 37.7°C.

G-313 Methyl dichloroarsine (G-358, peceite) (CAS# 593-89-5)

Liquid, odorless, soluble in organic solvents, slightly soluble in water; rapidly hydrolyzed and detoxified; immediate eye and nose irritation; lung injury; some skin injury; BP 133°C; MP 55°C; PV 5.5; volatility 74900 mg/m3; PV 2.17mm @ 20°C.
G-322 DM (Adamsite) (CAS# 578-94-9)

Vomiting agent; bright yellow crystals; highly irritant; toxic; emits highly toxic fumes when heated; used as sensory irritant; used as war gas and riot control agent; MP: 186°C; insoluble in water.

G-325 Methyl chloroacetate

Colorless liquid; corrosive, lachrymator, toxic; lower expl limit 7.5%; upper expl limit 18.5%; BP: 130°C; MP: -33°C; VD: 3.8; VP: 5.25mm @ 20°C; 10mm @ 25°C.

G-337 Bromobenzylcyanide (CA, canide)

White powder; teratogen, sensitizer, neurological hazard, possible mutagen, irritant; MP: 197°C to 198°C.

G-349 Phenyl dichlorocarsine (MA)

Bp: 495°F; Fp: 3.9°F; colorless to yellow liquid; weak unpleasant odor; liquid causes severe burns to eyes and skin; vapor irritates eyes; poisonous gasses are produced when heated.

G-352 Allylamine

Bp 53°C; FP: -20°F; colorless liquid; extremely flammable; highly toxic; corrosive lachrymator; destructive to tissue of mucous membranes, upper respiratory tract, eyes and skin.

G-355 Dichloroethyl disulfide (EA5957) (CAS# 1002-41-1)

Colorless liquid; garlic-like odor; severe skin injury; consistent with exposure to HD.
G-361 Chloroacetophenone (Grandite)

bp: 237-247 °C, fp: 59 °C; FP: 244 °C; pale straw-colored liquid or white crystals, fragrant non-persistent odor; irritant; lachrymator; military poison; dangerous; when heated to decomp; emits toxic fumes, will react with water or steam to produce toxic and corrosive fumes.

Green star chloropicrin (65) and hydrogen sulfide (36) Br, shell

bp: -60.4 °C; colorless; flammable gas; offensive odor; irritant; asphyxiant.

H.A. (2,2',4,4',6,6'-hexanitrodiphenylamine)

A mixture of diphenylchloroarsine 56, ground charcoal 19 and hexanitrodiphenylamine 25 used for producing a toxic smoke; gold moist powder; incompatible with strong oxidizing agents and bases; decomp to CO, CO₂ and nitrogen oxides; irritant; may explode when heated (capable of a dust explosion); flammable solid; MP: 243-244 °C (Dec); FP: 85 °F (29 °C).

Hexachloroethane S-64

Rhombic, triclinic or cubic crystals, colorless, camphor-like odor; mp: 186.6 °C; D: 2.091; VP: 1 mm @ 32.7; BP: 186.8 °C; soluble in alcohol, benzene, chloroform, ether, oils; insoluble in water; slightly explosive by spontaneous chemical reaction; dehalogenation by reaction with alkalies, metals, etc., will produce spontaneous explosive chloracetylenes. When heated to decomposition, it emits highly toxic fumes of CI and phosgene.

Hillite Magnesium carbonate leves and capsacin Br

Solid, irritant, ingredient in commercial CS products.
Homoartonite

A substance similar to "bromketone" but containing a small proportion of chloro derivatives; it is made by treating methyl ethyl keton (2-butane) with bromide, sodium chlorate and sulfuric acid. It is a lachrymator comparable with martonite.

Hoolamite.

A carbon monoxide absorbent.

Hoolamite I

consists of granulated pumice impregnated with iodine pentoxide and 28% oleum. Hoolamite II is a mixture of about two-thirds hoolamite I and one-third more active material (richer oleum and treated with a small amount of iodine). The code name for hoolamite is A-49 or HL

Hopcalite.

A carbon monoxide absorbent consisting of specially prepared magnesium dioxide and one or more of several other oxides. Hopcalite I, the first preparation actually used, contains cobaltic oxide, copper oxide and a small amount of silver oxide. Code, HC.

Hopkinsite.

A variety of hopcalito. Hopkinsite I contains, in addition to magnesium dioxide, silver oxide or carbonate; in hopkinsite II, cupric oxide partially replaces the silver; in hopkinsite III the silver is entirely replaced by cupric oxide. Hopkinsite is also called frazarite.
DATA FOR THE FOLLOWING CHEMICALS
KNOWN TO BE USED AT AMERICAN UNIVERSITY
IS UNAVAILABLE AT THIS TIME

Ethyl dibromoacetate G- (CAS# 617-33-4)

F-7 diposphine P_2H_4 (CAS# 13445-50-6)

Flash Mixture I-7

Fraissite An aromatic hydrocarbon B 150-200°C and benzyl iodide $D_{20} 1.142$ Fr

Frazerite Hopkinite

Forestite Hydrocyanic acid — According to one document a mixture of ECN and chloroform but this is not official). (G-43), AC

G-46 chloromethyl chloroformate (cipalite, palite) (CAS# 2212-8-62-7)

G-64 Ethyl dicromoacetate

G-70 "Bromacetone" (G-136)

G-82 Isoallylamine (CAS# 43691-072 and 4427-28-5)

G-97 Methylnitrosourethan (N-Nitroso-n-methylurethane) (CAS# 615-53-2)

G-109 chloroacetyl fluoride (CAS# 359-14-8)

G-130 tolyl isocyanides (mixed) (CAS# 10468-64-1 ortho; 20600-54-8 meta; 7175-47-5 para; 28064-79-1 unspec)
G-136 "Bromacetone" (G-70)

G-142 Trichloroacetyl cyanide (CAS# 14752-58-0)

G-163 Chlorinated carbon disulfide

G-185

G-186

G-211 Cacodyl cyanide (CC in some C.C.P. reports)

G-217 Phenylcarbylamine (unofficial)

G-247 Tetrachloromethyl sulfide (CAS# 1454-96-2 & 51174-93-7)

G-316 o-Tolyl isocyanide

G-319 Ethyldchloroarsine (CY)

G-328 Acetyl thiocyanate (CAS# 69626-81-9)

G-334 Cadmium methyl

G-340 Chlorodiethyl sulfide

G-343 "Bromxylyl cyanide"

G-346 Kendallite, RCN, HCL

G-358 Methyldichlorarsine (G-313)

Grandite Chloroacetophenone Fr
Halo wax S-61

HC Hopcalite

HL Hoolamite (A-49)
MEMORANDUM FOR Commander, U.S. Army Technical Escort Unit,
ATTN: SMCTE-CO, Aberdeen Proving Ground, MD 21010-5423

SUBJECT: Interim Hazard Classification (ERDEC No. 93-06) for 75 millimeter, Chemical Projectile

1. The following interim hazard classification has been issued for the subject item:

 a. DOD Hazard Class/Div/SGC: 1.2K
 b. DOT Hazard Class: 1.2K
 c. DOT Label: Explosive 1.2K, Poison
 d. UN Serial Number: 0020
 e. DOT/UN Proper Shipping Name: AMMUNITION, TOXIC
 f. DOT Container Marking: AMMUNITION, TOXIC
 UN 0020
 PN 1360-SV-1
 g. Net Explosive Weight: 0.03545 kg
 (0.0782 pounds)
 h. Net Propellant/Pyrotechnic Weight: 0.0
 i. Net Explosive Weight for QD Determination: 0.03545 kg
 (0.0782 pounds)

3. The above interim hazard classification is valid until 13 March 1993 or until you obtain a final hazard classification, whichever occurs first.
SCBRD-ODR-S

SUBJECT: Interim Hazard Classification (ERDEC No. 93-06) for 75 millimeter, Chemical Projectile

4. The above hazard classification has been issued in accordance with the procedures of TB 700-2 and authorized by 49 CFR 173.56(b)(2)(1). Each motor vehicle used to transport the above item must carry a copy of this hazard classification.

MANUEL LOPEZ
Safety Manager

CF:
Chairman, DOD Explosives Safety Board, ATTN: DDESB-KT, Hoffman Bldg 1, 2461 Eisenhower Avenue, Alexandria, VA 22331-0600
Director, U.S. Army Technical Center for Explosives Safety, ATTN: SMCAC-EST, Savanna, IL 61074-9639
MEMORANDUM FOR Commander, U.S. Army Technical Escort Unit,
ATTN: SMCTE-CO, Aberdeen Proving Ground,
MD 21010-5423

SUBJECT: Interim Hazard Classification (ERDEC No. 93-07) for Liveens Chemical Projectile

1. The following interim hazard classification has been issued for the subject item:

 a. DOD Hazard Class/Div/SCG: 1.2K
 b. DOT Hazard Class: 1.2K
 c. DOT Label: Explosive 1.2K, Poison
 d. UN Serial Number: 0020
 e. DOT/UN Proper Shipping Name: AMMUNITION, TOXIC
 f. DOT Container Marking: AMMUNITION, TOXIC
 UN 0020
 PN 1360-SV-2
 g. Net Explosive Weight: 0.095 kg
 (0.2094 pounds)
 h. Net Propellant/Pyrotechnic Weight: 0.0
 i. Net Explosive Weight for QD Determination: 0.095 kg
 (0.2094 pounds)

3. The above interim hazard classification is valid until 13 March 1993 or until you obtain a final hazard classification, whichever occurs first.
SCBRD-ODR-S
SUBJECT: Interim Hazard Classification (ERDEC No. 93-07) for
Livens Chemical Projectile

4. The above hazard classification has been issued in accordance
with the procedures of TB 700-2 and authorized by 49 CFR
173.56(b)(2)(i). Each motor vehicle used to transport the above
item must carry a copy of this hazard classification.

MANUEL LOPEZ
Safety Manager

CF:
Chairman, DOD Explosives Safety Board, ATTN: DDESB-KT, Hoffman
Bldg 1, 2461 Eisenhower Avenue, Alexandria, VA 22331-0600
Director, U.S. Army Technical Center for Explosives Safety,
ATTN: SMCAC-EST, Savannah, IL 61074-9639
MEMORANDUM FOR Commander, U.S. Army Technical Escort Unit,
ATTN: SMCTE-CO, Aberdeen Proving Ground,
MD 21010-5423

SUBJECT: Interim Hazard Classification (ERDEC No. 93-08) for
4.7 Inch, Gun Projectile, Chemical

1. The following interim hazard classification has been issued
for the subject item:

a. DOD Hazard Class/Div/SCG: 1.2K
b. DOT Hazard Class: 1.2K
c. DOT Label: Explosive 1.2K, Poison
d. UN Serial Number: 0020
e. DOT/UN Proper Shipping Name: AMMUNITION, TOXIC
f. DOT Container Marking: AMMUNITION, TOXIC
 UN 0020
 PN 1360-SV-3
g. Net Explosive Weight: 0.10 kg
 (0.2205 pounds)
h. Net Propellant/Pyrotechnic
 Weight: 0.0
i. Net Explosive Weight for QD
 Determination: 0.10 kg
 (0.2205 pounds)

2. Subject item must be packaged in accordance with 49 CFR
173.62, packing method E-102 (Docket No HM 181A, dated 21 Dec
90).

3. The above interim hazard classification is valid until 13
March 1993 or until you obtain a final hazard classification,
whichever occurs first.
SCBRD-ODR-S
SUBJECT: Interim Hazard Classification (ERDEC No. 93-08) for 4.7 Inch, Gun Projectile, Chemical

4. The above hazard classification has been issued in accordance with the procedures of TB 700-2 and authorized by 49 CFR 173.56(b)(2)(i). Each motor vehicle used to transport the above item must carry a copy of this hazard classification.

MANUEL LOPEZ
Safety Manager

CF:
Chairman, DOD Explosives Safety Board, ATTN: DDES5-MT, Hoffman Bldg 1, 2461 Eisenhower Avenue, Alexandria, VA 22331-0600
Director, U.S. Army Technical Center for Explosives Safety, ATTN: SMCC-EST, Savanna, IL 61074-9639
MEMORANDUM FOR Commander, U.S. Army Technical Escort Unit,
ATTN: SMCTE-CO, Aberdeen Proving Ground,
MD 21010-5423

SUBJECT: Interim Hazard Classification (ERDEC No. 93-09) for
3.0 Inch, Stokes Trench Mortar, HE, Projectile

1. The following interim hazard classification has been issued
for the subject item:

 a. DOD Hazard Class/Div/SCG: 1.1F
 b. DOT Hazard Class: 1.1F
 c. DOT Label: Explosive 1.1F
 d. UN Serial Number: 0167
 e. DOT/UN Proper Shipping Name: PROJECTILES
 f. DOT Container Marking: PROJECTILES
 UN 0167
 PN 1315-SV-A
 g. Net Explosive Weight: 1.134 kg
 (2.50 pounds)
 h. Net Propellant/Pyrotechnic Weight: 0.0
 i. Net Explosive Weight for QD Determination: 1.134 kg
 (2.50 pounds)

2. Subject item must be packaged in accordance with 49 CFR
173.62, packing method E-106 (Docket No HM 181A, dated 21 Dec
90).

3. The above interim hazard classification is valid until 13
March 1993 or until you obtain a final hazard classification,
whichever occurs first.
SUBJECT: Interim Hazard Classification (ERDEC No. 93-09) for 3.0 Inch, Stokes Trench Mortar, HE, Projectile

4. The above hazard classification has been issued in accordance with the procedures of TB 700-2 and authorized by 49 CFR 173.56(b)(2)(i). Each motor vehicle used to transport the above item must carry a copy of this hazard classification.

MANUEL LOPEZ
Safety Manager

CF:
Chairman, DOD Explosives Safety Board, ATTN: DDESBB-KT, Hoffman Bldg 1, 2461 Eisenhower Avenue, Alexandria, VA 22331-0600
Director, U.S. Army Technical Center for Explosives Safety, ATTN: SMCAC-EST, Savannah, IL 61074-9639
MEMORANDUM FOR Commander, U.S. Army Technical Escort Unit,
ATTN: SMCTE-CO, Aberdeen Proving Ground,
MD 21010-5423

SUBJECT: Interim Hazard Classification (ERDEC No. 93-10) for
3.0 Inch, Stokes Trench Mortar, Smoke Projectile

1. The following interim hazard classification has been issued
for the subject item:

 a. DOD Hazard Class/Div/SCG: 1.2H
 b. DOT Hazard Class: 1.2H
 c. DOT Label: Explosive 1.2H
 d. UN Serial Number: 0245
 e. DOT/UN Proper Shipping Name: AMMUNITION, SMOKE,
 WHITE PHOSPHORUS
 f. DOT Container Marking: AMMUNITION, SMOKE,
 WHITE PHOSPHORUS
 UN 0245
 PN 1315-SV-B
 g. Net Explosive Weight: 1.234 kg
 (2.72 pounds)
 h. Net Propellant/Pyrotechnic
 Weight: 0.0
 i. Net Explosive Weight for QD
 Determination: 1.234 kg
 (2.72 pounds)

2. Subject item must be packaged in accordance with 49 CFR
173.62, packing method E-102 (Docket No HM 181A, dated 21 Dec
90).

3. The above interim hazard classification is valid until 13
March 1993 or until you obtain a final hazard classification,
whichever occurs first.
SCBRD-ODR-S
SUBJECT: Interim Hazard Classification (ERDEC No. 93-10) for
3.0 Inch, Stokes Trench Mortar, Smoke Projectile

4. The above hazard classification has been issued in accordance
with the procedures of TB 700-2 and authorized by 49 CFR
173.56(b)(2)(i). Each motor vehicle used to transport the above
item must carry a copy of this hazard classification.

MANUEL LOPEZ
Safety Manager

CF:
Chairman, DOD Explosives Safety Board, ATTN: DDESB-KT, Hoffman
Bldg 1, 2461 Eisenhower Avenue, Alexandria, VA 22331-0600
Director, U.S. Army Technical Center for Explosives Safety,
ATTN: SMCAC-EST, Savanna, IL 61074-9639
MEMORANDUM FOR Commander, U.S. Army Technical Escort Unit, ATTN: SMCTE-CO, Aberdeen Proving Ground, MD 21010-5423

SUBJECT: Interim Hazard Classification (ERDEC No. 93-11) for 75 millimeter, MK III, HE, Projectile

1. The following interim hazard classification has been issued for the subject item:

 a. DOD Hazard Class/Div/SCG: 1.1F
 b. DOT Hazard Class: 1.1F
 c. DOT Label: Explosive 1.1F
 d. UN Serial Number: 0167
 e. DOT/UN Proper Shipping Name: PROJECTILES
 f. DOT Container Marking:
 UN 0167
 PN 1315-SV-C
 g. Net Explosive Weight: 0.753 kg
 (1.66 pounds)
 h. Net Propellant/Pyrotechnic Weight: 0.0
 i. Net Explosive Weight for QD Determination: 0.753 kg
 (1.66 pounds)

3. The above interim hazard classification is valid until 13 March 1993 or until you obtain a final hazard classification, whichever occurs first.
SCBRD-ODR-S
SUBJECT: Interim Hazard Classification (ERDEC No. 93-11) for 75 millimeter, MK III, HE, Projectile

4. The above hazard classification has been issued in accordance with the procedures of TB 700-2 and authorized by 49 CFR 173.56(b)(2)(i). Each motor vehicle used to transport the above item must carry a copy of this hazard classification.

MANUEL LOPEZ
Safety Manager

CF:
Chairman, DOD Explosives Safety Board, ATTN: DDES-B-KT, Hoffman Bldg 1, 2461 Eisenhower Avenue, Alexandria, VA 22331-0600
Director, U.S. Army Technical Center for Explosives Safety, ATTN: SMCAC-EST, Savanna, IL 61074-9639
MEMORANDUM FOR Commander, U.S. Army Technical Escort Unit,
ATTN: SMCTE-CO, Aberdeen Proving Ground,
MD 21010-5423

SUBJECT: Interim Hazard Classification (ERDEC No. 93-12) for White Phosphorus Igniter

1. The following interim hazard classification has been issued for the subject item:

 a. DOD Hazard Class/Div/SCG: 1.2H
 b. DOT Hazard Class: 1.2H
 c. DOT Label: Explosive 1.2H
 d. UN Serial Number: 0245
 e. DOT/UN Proper Shipping Name: AMMUNITION, SMOKE, WHITE PHOSPHORUS
 f. DOT Container Marking: AMMUNITION, SMOKE, WHITE PHOSPHORUS
 UN 0245
 PN 1315-SV-D
 g. Net Explosive Weight: 0.504 kg
 (1.11 pounds)
 h. Net Propellant/Pyrotechnic Weight: 0.0
 i. Net Explosive Weight for QD Determination: 0.504 kg
 (1.11 pounds)

3. The above interim hazard classification is valid until 13 March 1993 or until you obtain a final hazard classification, whichever occurs first.
SCBRD-ODR-5

SUBJECT: Interim Hazard Classification (ERDEC No. 93-12) for White Phosphorus Grenade

4. The above hazard classification has been issued in accordance with the procedures of TB 700-2 and authorized by 49 CFR 173.56(b)(2)(i). Each motor vehicle used to transport the above item must carry a copy of this hazard classification.

CAROL A. EASON
Safety Engineer

CF:
Chairman, DOD Explosives Safety Board, ATTN: DDESB-KT, Hoffman Bldg 1, 2461 Eisenhower Avenue, Alexandria, VA 22331-0600
Director, U.S. Army Technical Center for Explosives Safety, ATTN: SMCAC-EST, Savannah, IL 61074-9639
MEMORANDUM FOR Commander, U.S. Army Technical Escort Unit,
ATTN: SMCTE-CO, Aberdeen Proving Ground,
MD 21010-5423

SUBJECT: Interim Hazard Classification (ERDEC No. 93-14) for 75 millimeter, Common Shrapnel, MK I

1. The following interim hazard classification has been issued for the subject item:

 a. DOD Hazard Class/Div/SCG: 1.1F
 b. DOT Hazard Class: 1.1F
 c. DOT Label: Explosive 1.1F
 d. UN Serial Number: 0167
 e. DOT/UN Proper Shipping Name: PROJECTILES
 f. DOT Container Marking: PROJECTILES
 UN 0167
 PN 1315-SV-E
 g. Net Explosive Weight: 0.082 kg (0.18 pounds)
 h. Net Propellant/Pyrotechnic Weight: 0.0
 i. Net Explosive Weight for QD Determination: 0.082 kg (0.18 pounds)

3. The above interim hazard classification is valid until 13 March 1993 or until you obtain a final hazard classification, whichever occurs first.
SCBRD-ODR-S
SUBJECT: Interim Hazard Classification (ERDEC No. 93-14) for 75 millimeter, Common Shrapnel, MK I

4. The above hazard classification has been issued in accordance with the procedures of TB 700-2 and authorized by 49 CFR 173.56(b)(2)(i). Each motor vehicle used to transport the above item must carry a copy of this hazard classification.

[Signature]
CAROL A. EASON
Safety Engineer

CP:
Chairman, DOD Explosives Safety Board, ATTN: DDESB-KT, Hoffman Bldg 1, 2461 Eisenhower Avenue, Alexandria, VA 22331-0600
Director, U.S. Army Technical Center for Explosives Safety, ATTN: SMCAC-EST, Savannah, IL 31074-9639

296
MEMORANDUM FOR Commander, U.S. Army Technical Escort Unit,
ATTN: SMCTE-CO, Aberdeen Proving Ground,
MD 21010-5423

SUBJECT: Interim Hazard Classification (ERDEC No. 93-15) for
75 millimeter, Common Steel Shell, MK I (Incendiary)

1. The following interim hazard classification has been issued
for the subject item:
 a. DOD Hazard Class/Div/SCG: 1.1F
 b. DOT Hazard Class: 1.1F
 c. DOT Label: Explosive 1.1F
 d. UN Serial Number: 0167
 e. DOT/UN Proper Shipping Name: PROJECTILES
 f. DOT Container Marking: PROJECTILES
 UN 0167
 PN 1315-SV-F
 g. Net Explosive Weight: 0.454 kg
 (1.00 pounds)
 h. Net Propellant/Pyrotechnic
 Weight: 0.0
 i. Net Explosive Weight for QD
 Determination: 0.454 kg
 (1.00 pounds)

2. Subject item must be packaged in accordance with 49 CFR
173.62, packing method E-106 (Docket No HM 181A, dated 21 Dec
90).

3. The above interim hazard classification is valid until 13
March 1993 or until you obtain a final hazard classification,
whichever occurs first.
SUBJECT: Interim Hazard Classification (ERDEC No. 93-15) for 75 millimeter, Common Steel Shell, MK I (Incendiary)

4. The above hazard classification has been issued in accordance with the procedures of TB 700-2 and authorized by 49 CFR 173.56(b)(2)(i). Each motor vehicle used to transport the above item must carry a copy of this hazard classification.

CAROL M. EASON
Safety Engineer

CF:
Chairman, DOD Explosives Safety Board, ATTN: DDESB-KT, Hoffman Bldg 1, 2461 Eisenhower Avenue, Alexandria, VA 22331-0600
Director, U.S. Army Technical Center for Explosives Safety, ATTN: SMCAC-EST, Savannah, IL 61074-9639
MEMORANDUM FOR Commander, U.S. Army Technical Escort Unit,
ATTN: SMCTE-CO, Aberdeen Proving Ground,
MD 21010-5423

SUBJECT: Interim Hazard Classification (ERDEC No. 93-16) for
3 Inch Stokes, Trench Burning, Smoke, Projectile

1. The following interim hazard classification has been issued
for the subject item:
 a. DOD Hazard Class/Div/SCG: 1.1G
 b. DOT Hazard Class: 1.1G
 c. DOT Label: Explosive 1.1G
 d. UN Serial Number: 0428
 e. DOT/UN Proper Shipping Name: ARTICLES, PYROTECHNIC
 f. DOT Container Marking: ARTICLES, PYROTECHNIC
 UN 0428
 PN 1315-SV-G
 g. Net Explosive Weight: 1.814 kg
 (4.00 pounds)
 h. Net Propellant/Pyrotechnic
 Weight: 0.0
 i. Net Explosive Weight for QD
 Determination: 1.814 kg
 (4.00 pounds)

2. Subject item must be packaged in accordance with 49 CFR
173.62, packing method E-109 (Docket No HM 181A, dated 21 Dec
90).

3. The above interim hazard classification is valid until 13
March 1993 or until you obtain a final hazard classification,
whichever occurs first.
4. The above hazard classification has been issued in accordance with the procedures of TB 700-2 and authorized by 49 CFR 173.56(b)(2)(i). Each motor vehicle used to transport the above item must carry a copy of this hazard classification.

CAROL A. EASON
Safety Engineer

CF:
Chairman, DOD Explosives Safety Board, ATTN: DDESBS-KT, Hoffman Bldg 1, 2461 Eisenhower Avenue, Alexandria, VA 22331-0600
Director, U.S. Army Technical Center for Explosives Safety, ATTN: SMCAC-EST, Savanna, IL 61074-9639
MEMORANDUM FOR Commander, U.S. Army Technical Escort Unit,
ATTN: SMCTE-CO, Aberdeen Proving Ground,
ND 21010-5423

SUBJECT: Interim Hazard Classification (ERDEC No. 93-17) for
3 Inch Steel Shell, HE

1. The following interim hazard classification has been issued
for the subject item:

 a. DOD Hazard Class/Div/SCG: 1.1F
 b. DOT Hazard Class: 1.1F
 c. DOT Label: Explosive 1.1F
 d. UN Serial Number: 0167
 e. DOT/UN Proper Shipping Name: PROJECTILES
 f. DOT Container Marking: PROJECTILES
 UN 0167
 PN 1315-SV-H
 g. Net Explosive Weight: 0.372 kg
 (0.82 pounds)
 h. Net Propellant/Pyrotechnic
 Weight: 0.0
 i. Net Explosive Weight for QD
 Determination: 0.372 kg
 (0.82 pounds)

2. Subject item must be packaged in accordance with 49 CFR
173.62, packing method E-106 (Docket No HM 181A, dated 21 Dec
90).

3. The above interim hazard classification is valid until 13
March 1993 or until you obtain a final hazard classification,
whichever occurs first.
SCBRD-ODR-S
SUBJECT: Interim Hazard Classification (ERDEC No. 93-17) for 3 Inch Steel Shell, HE

4. The above hazard classification has been issued in accordance with the procedures of TB 700-2 and authorized by 49 CFR 173.56(b)(2)(i). Each motor vehicle used to transport the above item must carry a copy of this hazard classification.

[Signature]
CAROL A. HASON
Safety Engineer

CF:
Chairman, DOD Explosives Safety Board, ATTN: DDES-B-KT, Hoffman Bldg 1, 2461 Eisenhower Avenue, Alexandria, VA 22331-0600
Director, U.S. Army Technical Center for Explosives Safety, ATTN: SMCAC-EST, Savannah, IL 61074-9639
MEMORANDUM FOR Commander, U.S. Army Technical Escort Unit,
ATTN: SMCTE-CO, Aberdeen Proving Ground,
MD 21010-5423

SUBJECT: Interim Hazard Classification (ERDEC No. 93-18) for
75 millimeter, Experimental Smoke, Projectile

1. The following interim hazard classification has been issued
for the subject item:
 a. DOD Hazard Class/Div/SCG: 1.2G
 b. DOT Hazard Class: 1.2G
 c. DOT Label: Explosive 1.2G,
 Corrosive
 d. UN Serial Number: 0015
 e. DOT/UN Proper Shipping Name: AMMUNITION, SMOKE
 f. DOT Container Marking: AMMUNITION, SMOKE
 UN 0015
 PN 1360-SV-4
 g. Net Explosive Weight: 0.091 kg
 (0.20 pounds)
 h. Net Propellant/Pyrotechnic
 Weight: 0.0
 i. Net Explosive Weight for QD
 Determination: 0.091 kg
 (0.20 pounds)

2. Subject item must be packaged in accordance with 49 CFR
 173.62, packing method E-102 (Docket No HM 181A, dated 21 Dec
 90).

3. The above interim hazard classification is valid until 13
 March 1993 or until you obtain a final hazard classification,
 whichever occurs first.
SCBRD-ODR-S
SUBJECT: Interim Hazard Classification (ERDEC No. 93-18) for 75 millimeter, Experimental Smoke, Projectile

4. The above hazard classification has been issued in accordance with the procedures of TB 700-2 and authorized by 49 CFR 173.56(b)(2)(i). Each motor vehicle used to transport the above item must carry a copy of this hazard classification.

[Signature]
CAROL A. EASON
Safety Engineer

CF:
Chairman, DOD Explosives Safety Board, ATTN: DDES-ES, Hoffman Bldg 1, 2461 Eisenhower Avenue, Alexandria, VA 22331-0600
Director, U.S. Army Technical Center for Explosives Safety, ATTN: SMCAC-EST, Savanna, IL 61074-9639
MEMORANDUM FOR Commander, U.S. Army Technical Escort Unit,
ATTN: SMCTE-CO, Aberdeen Proving Ground,
MD 21010-5423

SUBJECT: Interim Hazard Classification (ERDEC No. 93-19) for
75 millimeter, Common Steel Shell, MK I

1. The following interim hazard classification has been issued
for the subject item:

 a. DOD Hazard Class/Div/SCG: 1.2G

 b. DOT Hazard Class: 1.2G

 c. DOT Label: Explosive 1.2G

 d. UN Serial Number: 0018

 e. DOT/UN Proper Shipping Name: AMMUNITION,
 TEAR-PRODUCING

 f. DOT Container Marking: AMMUNITION,
 TEAR-PRODUCING
 UN 0018
 PN 1360-SV-5

 g. Net Explosive Weight: 0.762 kg
 (1.68 pounds)

 h. Net Propellant/Pyrotechnic
 Weight: 0.0

 i. Net Explosive Weight for QD
 Determination: 0.762 kg
 (1.68 pounds)

2. Subject item must be packaged in accordance with 49 CFR
173.62, packing method E-102 (Docket No HM 181A, dated 21 Dec
90).

3. The above interim hazard classification is valid until 13
March 1993 or until you obtain a final hazard classification,
whichever occurs first.
SCBRD-ODR-S
SUBJECT: Interim Hazard Classification (ERDEC No. 93-19) for
75 millimeter, Common Steel Shell, MK I

4. The above hazard classification has been issued in accordance
with the procedures of TB 700-2 and authorized by 49 CFR
173.56(b)(2)(i). Each motor vehicle used to transport the above
item must carry a copy of this hazard classification.

CAROL A. KASON
Safety Engineer

CF:
Chairman, DOD Explosives Safety Board, ATTN: DDES-KT, Hoffman
Bldg 1, 2461 Eisenhower Avenue, Alexandria, VA 22331-0600
Director, U.S. Army Technical Center for Explosives Safety,
ATTN: SMCAC-EST, Savanna, IL 61074-9639
MEMORANDUM FOR Commander, U.S. Army Technical Escort Unit,
ATTN: SMCTE-CO, Aberdeen Proving Ground,
MD 21010-5423

SUBJECT: Interim Hazard Classification (ERDEC No. 93-20) for Livens Projectile

1. The following interim hazard classification has been issued for the subject item:

 a. DOD Hazard Class/Div/BCG: 1.1F
 b. DOT Hazard Class: 1.1F
 c. DOT Label: Explosive 1.1F
 d. UN Serial Number: 0167
 e. DOT/UN Proper Shipping Name: PROJECTILES
 f. DOT Container Marking: PROJECTILES UN 0167 PN 1315-SV-J
 g. Net Explosive Weight: 0.095 kg (0.2094 pounds)
 h. Net Propellant/Fyrotechnic Weight: 0.0
 i. Net Explosive Weight for QD Determination: 0.095 kg (0.2094 pounds)

3. The above interim hazard classification is valid until 13 March 1993 or until you obtain a final hazard classification, whichever occurs first.
Interim Hazard Classification (ERDEC No. 93-20) for Projectile

above hazard classification has been issued in accordance with procedures of TB 700-2 and authorized by 49 CFR 173.21. Each motor vehicle used to transport the above hazard must carry a copy of this hazard classification.

CAROL A. EASON
Safety Engineer

DOD Explosives Safety Board, ATTN: DDESB-KT, Hoffman
2461 Eisenhower Avenue, Alexandria, VA 22331-0600
U.S. Army Technical Center for Explosives Safety,
MCAC-EST, Savannah, IL 31074-9639
APPENDIX VII
LESSONS LEARNED

Rules of Engagement

Situation: When I arrived on site, 11 Jan 93, the SRF did not have in place safety rules of engagement.

Discussion: The Commander's "rules of engagement" was not documented and distributed throughout the SRF. These guidelines are useful for alerting personnel and ensuring they understand the mission priorities and guiding principles. It ensures the commander's wishes are known yet, empowers personnel to be innovated and solve problems at the lowest level while keeping the command group informed.

Recommendation: Establish and publish the commander's rules of engagement earlier.

Gregory Mason
Operation Safe Removal
Special Staff
27 Jan 93
LESSONS LEARNED

Department of Transportation Classification

Situation: Recovered unknown munitions must be transported off-site IAW DOT regulations.

Discussion: DOT regulation do not have a classification for unserviceable recovered suspect chemical agent filled munitions. DOT classification requirements are very specific about testing requirements prior to permitting the transport of hazardous material. Obsolete munitions do not have a valid hazard classification. Interim hazard classifications were issued to permit shipment of the munitions. This classification is actually for research quantities only.

Recommendation: Future efforts should be directed to obtaining special classifications (i.e., Ammunition, Recovered, Explosive; Ammunition, Recovered, Chemical; Ammunition, Recovered, Pyrotechnic) to eliminate the necessity of having to use the DOT experimental explosive section to effect the shipments.

Gregory Mason
Operation Safe Removal
Special Staff
27 Jan 93
LESSONS LEARNED

Reporting of Monitoring Data

Situation: When I arrived on site on 11 Jan 93 monitoring data was being reported as ppm, mg/μm³, and mg/g of dirt.

Discussion: The use of the different units to report reference data and monitoring results lead to initial delay and confusion in relating monitoring data to regulatory and health guidelines. Many permission exposure limits and Times weight average were given in mg/m³, while EPA deals in ppm and ERDEC reports their findings in ppm.

Recommendation: Future efforts should either establish which units all data should be reported in, or report in both units.

Gregory Mason
Operation Safe Removal
Special Staff
27 Jan 93
LESSONS LEARNED

Deployment of Resources

Situation: When I arrived on-site on 11 Jan 93 two assessment areas were not separated by the required intraline separation distance.

Discussion: To prevent propagation between explosive locations in the event of an explosive accident, the regulatory default distance (intraline) should be between each explosive location. Due to the site space limitation the minimum distance could not be maintained.

Resolution: A temporary fix was to employ brick left on site by the contractor as barricades between locations. These bricks were a possible secondary fragmentation hazards in case of an detonation. The problem was resolved by replacing the bricks with sand bags.

Recommendation: Ensure minimum intraline separation distances for low levels of explosive (less than 100 lbs) are established and maintained during deployment.

Gregory Mason
Operation Safe Removal
Special Staff
27 Jan 93
LESSONS LEARNED

Situation: When I reported on site, 11 Jan 93, MSDS were not available for all the known chemical surety agents.

Discussion: Most of TEU's responses are for suspect surety munitions. To properly assess the risk to TEU and civilian personnel, the TEU commander needs to know all pertinent data about the possible treats (i.e., health effects, TLV, PEL, etc) quickly.

Recommendation: TEU include MSDSs for all surety agents within their response kits.

Gregory Mason
Operation Safe Removal
Special Staff
27 Jan 93
LESSONS LEARNED

Quick Reference Data Sheets

Situation: When I reported on site, 11 Jan 93, MSDSs or data was not available for all the known chemical ex-surety agents.

Discussion: Most of TEU's responses are for suspect chemical munitions. To properly assess the risk to TEU and civilian personnel, the TEU commander needs to know all pertinent data about the possible treats (i.e., health effects, TLV, PEL, etc). MSDS are supposed to be manufacture specific, are cluttered with a lot of interesting but extraneous data, and therefore should not be distributed.

Recommendation: Prepare quick reference data sheets for all ex-surety agents fills for inclusion within their response kits library.

Gregory Mason
Operation Safe Removal
Special Staff
27 Jan 93
LESSONS LEARNED

Risk Management

Situation: The discussion maker had no bases for comparison of different types of risks.

Discussion: Much time was spent after development of the risk assessment discussing the relative risk of performing explosive munitions hazard assessment without 100% visual acuity vs the risk of the inhalation hazard associated with working unmasked. Was the inhalation hazard present greater than the risk of accidental explosion caused by decreased visual acuity resulting from wearing the protective mask during actual digging handling operations? A small lost of acuity could be a greater risk to the operator when handling suspect, armed, fuzed munitions than the chemical threat for specific conditions encountered. The temperature for the entire operation was below the freezing point for the main chemical surety treat.

Recommendation: Development of personnel protection decision tree based on risk assessments would provide the on-site commander initial minimum guidance for safe work practices.

Gregory Mason
Operation Safe Removal
Special Staff
27 Jan 93
LESSONS LEARNED

Weight Given Random vs Bias Sample Results

Situation: Analytical results of specific suspect material "bias samples" (i.e., contains of a bottle; isolated clump of odd looking material; non-typical items) were used as the bases for early decisions to determine the most credible treat.

Discussion: Using bias sampling data as a bases for making decisions may have produced an inaccurate assessment of the work environment in the excavation area. While the bias sample data may be useful during the initial risk assessment, random sample results should be given greater weight as the operation proceeds. The details of bias sample taking (i.e., from a intact bottle) must be known to the decision maker so that he can give it the proper weight in the decision making process.

Recommendation: Make it a matter of policy that all bias sample results are reported separate from random sample results. Only results higher or approaching (within 2 orders of magnitude) either health or environmental action levels should be reported as positive.

Gregory Mason
Operation Safe Removal
Special Staff
27 Jan 93
LESSONS LEARNED

Qualitative vs Quantitative Risk Assessments

Situation: Army risk assessment are traditionally qualitative, while federal EPA are quantitative.

Discussion: Assessment was based on the general risk of exposure to a acute hazard (was it toxicity; recommended respiratory protection based on TWA). Assessments do not weight risk IAW EPA assessments techniques to assign a numerical number of an event occurring (i.e., probability of 1/1,000,000 of getting cancer) which the discussion maker could use to base his choices. Use of this technique would provide for a smoother transition and provide continuity for into phase II.

Recommendation: Develop primary default numbers for expected future operations (1. expected inhalation exposure for digging; standing around; at hotline; etc; 2. expected dermal exposure for different protective clothing levels), for quick incorporation into future SRF site risk assessments.

Gregory Mason
Operation Safe Removal
Special Staff
27 Jan 93
LESSONS LEARNED

Hot Line Discipline

Situation: Non TEU personnel became lacks during the later stages of the Operation.

Discussion: The TEU Commander and his officers did a excellence job of incorporating safety into their daily pre-operational briefing and operations. However, personnel not under the direct control of the TEU Commander were entering behind the hot line to perform needed functions and entered unauthorized areas.

Recommendation: Publication of the on-site Commander’s policy should eliminate reoccurrences of this situation.

Gregory Mason
Operation Safe Removal
Special Staff
27 Jan 93
LESSONS LEARNED

Hot Line Mobility

Situation: The hot line is intended to be mobile so that it can remain upwind in case of a wind shift in the event of an accident.

Discussion: Due to the large number of personnel it was required to be able to serve, and the length of the operations, the "hot line" was not and could not be moved to a upwind position. This inability to adjust would have eliminated it's capacity to serve it's function if the wind was from the south at the time of an accident. A resource that is not functional when needed is not a resource. TEU may have to respond to similar large recovery action, and it would be useful during response actions at APG-EA.

Recommendation: Provide TEU with a mobile four wheel drive custom van designed to contain and isolate the required decontamination stations.

Gregory Mason
Operation Safe Removal
Special Staff
27 Jan 93
LESSONS LEARNED

On-site Showers Capability

Situation: There were no on-site facilities for the excavation workers to shower.

Discussion: There is a regulatory requirement for chemical agent worker performing operations in which there is a possibility that they may have been exposed to any concentration of chemical agent to shower before leaving the site. This requirement is to limit possible low level exposure which would not produce acute symptoms yet over a period of time may produce symptoms of chronic exposure. It also helps to limit possible spread of contaminants. Due to the low temperature (30-56° F) and lack of capability, the hot line decontamination shower was not a viable optimum.

Recommendation: Provide TEU with a mobile four wheel drive custom van/truck designed as a mobile clean area change/locker room. The vehicle must be able to provide heat and air conditioning and provide both hot and cold running water. Water recycling abilities are also required because TEU can not leave waste on site or return it to APG-EA.

Gregory Mason
Operation Safe Removal
Special Staff
27 Jan 93
LESSONS LEARNED

On-site Detonation

Situation: Finding suspect fused armed munitions on-site that are unsafe to move.

Discussion: Although no munitions were found which fell into this category and discussions were held on site, the problem of having to destroy a chemical round in the middle of an large urban area should be addressed and researched to provide additional information to future on-site commanders.

Recommendation: A discussion tree should be prepared based on quantitative risk assessments that address both explosive and health risk associated with the destruction of chemical munitions on-site. This document should be reviewed and concurred on by the surgeon general, DA legal, and federal EPA. Decision as to when to detonate it, length of time to wait for better weather condition (days, months, weeks,) on-site security, permitted activities near by pending detonation, ordering of methods of destruction should be addressed.

Gregory Mason
Operation Safe Removal
Special Staff
27 Jan 93
LESSONS LEARNED

Fragmentation Hazard

Situation: After the departure of the chemical hazard, PINS testing, and packaging of HE rounds was still required.

Discussion: The commander wished to allow the home owner back into their houses ASAP. Using formulas from both TM 5-1300 and AR 385-64, a credible overpressure hazard zone was established based on the actual quantity of explosive present which would ensure the safety of the civilian population. However, only the regulatory default value (670’ for 100 lbs or less) was available to base any fragmentation hazard decisions on. Long term evacuations has high visibility in urban areas. The ability to make better assumption would have increased the safety officers ability to provide a informed decision to the commander.

Recommendation: Develop a formula or chart which provides additional fragmentation separation distance default values for specific munitions or fill weights. Delineate actions (sandbagging area) which would reduce default values and what are acceptable reductions.

Gregory Mason
Operation Safe Removal
Special Staff
27 Jan 93
Decontamination Facility Improvements

Situation: TEU had to construct decontamination facilities in a field expedient manner.

Discussion: There are commercially available decontamination trailers that could be used by TEU for this type of operation. A trailer would much easier to set-up and would provide instant decon/shower capability on site. With the set-up at Spring Valley, the only shower capability would take place in the event of contamination. At that point point, casualties would be stripped and hosed down. A trailer would significantly improve conditions.

George Collins
Operation Safe Removal
Special Staff
28 Jan 93
Safety Officer On-site

Situation: TEU did not have a their safety officer on site until 10 Jan 93.

Discussion: TEU did not have their safety officer on-site until requested by the CBDA Safety representative. During this operation, the safety officer provided extremely valuable assistance on a daily basis and was instrumental in implementing an outstanding monitoring program for the site. His presence should always be part of any TEU deployment of this nature.

George Collins
Operation Safe Removal
Special Staff
24 Jan 93
Risk Assessment Completion Prior to Operations

Situation: TEU did not have a detailed risk assessment available before starting Operation Safe Removal.

Discussion: When I arrived at the site, 8 Jan 93, had not yet completed a risk assessment for this type of operation. Future efforts should be focused on doing risk assessments for every potential phase of an operation (i.e. munition removal, X-ray, decon, monitoring) of this magnitude. The risk assessments developed for this Operation Safe Removal should be updated and used as a starting point for future operations.

George Collins
Operation Safe Removal
Special Staff
24 Jan 93
SOPs On-site

Situation: TEU did not have a copy of their SOPs on site until 8 Jan 93.

Discussion: TEU did not have a copy of their SOP regarding recovery of unexploded ordnance on-site until requested by the CBDA Safety representative on 8 Jan 93. All applicable SOPs and regulations should be a part of what TEU brings to an operation of this nature. If this information is made available to all operators, their is a reduction in likelihood of deviation from these SOPs.

George Collins
Operation Safe Removal
Special Staff
24 Jan 93
Level of Protective Clothing

Situation: TEU made several improvements in the level of protective clothing being used for this operation.

Discussion: Through much analysis and discussion, TEU made improvements in the level of protective clothing worn for this operation. The level finally arrived at for this operation should be starting point for any further similar operation. As each site will have its own inherent hazards, on-site risk assessments will always be needed to define the risk and recommend levels of protective clothing.

George Collins
Operation Safe Removal
Special Staff
27 Jan 93
Monitoring Support

Situation: TEU did not have the right level of monitoring equipment for this operation when they arrived on site 5 Jan 93.

Discussion: When the TEU arrived on-site their total monitoring capability included the M18A1, the CAM and the Viking analyzer. This equipment was not adequate to accurately monitor to low levels the array of chemicals potentially found at this site. During the operation, Edgewood RDEC, AEHA and the Corps of Engineers has provided on-site, lent, or given a wide range of monitoring equipment to support the operation. TEU should have the capability within the unit. Examples of equipment required:

a. Real Time Analysis Platform
b. Continuous oxygen and Lower Explosive Level sensing meters
c. Carbon Monoxide monitors
d. A wide array of Draeger detector tubes with associated pumps and sampling lines.

George Collins
Operation Safe Removal
Special Staff
27 Jan 93
APPENDIX VIII
CHRONOLOGY OF WORK

OPERATION SAFE REMOVAL

SAFETY JOURNAL - GEORGE COLLINS & GREG MASON

1 JAN 93

0745 KICK OFF MTG W/ KENISON

a. SCHEDULE OF DAILY MTGS

0800 - KENISON MTG W/ STAFF
1700 - KENISON MTG W/ STAFF
1800 - BL FRIEL MTG W/ PUBLIC

b. ACTION JOURNAL BEING KEPT BY STACY

c. STAFF PHONE # 282-2445 / CALL IN # 282-04

d. CONCEPT OF OPERATION SAFE REMOVAL (SPRING VALLEY MUNITIONS RECOVERY)

1) LIQUID FILL MOVE BY AIR LAW DOT RULES - TCU WILL ESCORT TO ANDREWS THEN PBA

2) EXPLOSIVE FILL MOVED BY AIR LAW DOT RULES

 EOD ESCORT TO FT. BELVAIN

3) SCRAP METAL MOVE BY TRUCK LAW WASTE, WEAR RULES BY HAZ. WASTE CONTRACTOR TO

 APPROVED LANDFILL / APO's (CTA)

e. DETAILED TIMELINES DISCUSSED, PLAN IS TO CLEAR SITE BY FRIDAY

f. TODAY’S TASKS FOR SAFETY:

 DEVELOP RISK ASSESSMENT FOR DPC+ & AGENT CHEMICAL HAZARD - BY NOON

0845 CONTACTED T. BLADES TO GET ARRIVAL TIME ON RTAP - WILL LEAVE AT 1200

PER DISCUSSION - MINICAM WILL NOT BE USED.

ACAMS + HP ARE EQUIPMENT OF CHOICE.
1230 - Completed Risk Assessment. Made determinat that if a leaking round is found, it is probable that serious injury will occur. Risk Assessment given to Lt. Col. Batt. His decision is to continue operations without mask worn.

1400 - Risk Assessment with Lt. Col. Batt's signature provided to BG Friel.

1600 - Contacted AEHA on getting in sampling equipment for CK, Phosgene, Chloropicrin. Will call back.

1700 - Received call from Col. Evenden (AEHA) was given POC John Resta. Can have equipment by noon 12 Jan 93.

12 Jan 93

0800 - Performed explosive safety evaluation of site. RTAP set up to monitor Lewisite in hole & bubble monitor for Mustard.

0945 - AEHA arrived at site. Brought sampling equipment for CK, Phosgene. Ordered additional tubes/pumps to include Chloropicrin. TEL was instructed on use and tubes were placed on site. Additionally breathing zone sampling.
WITH DAMNS TUBES, MUSTARD IS THE TARGET AGENT.

1330 ORDERED 100 COPIES OF PHOSGENE, LEWISITE AND MUSTARD FOR PAO.

1400 MET TO DISCUSS DISPOSITION OF DECONMED MATERIALS. TERRI MANN WAS ASKED TO DRAW UP PROPOSAL FOR RECORD OF DECISION.

1430 MET TO DISCUSS DISPOSITION OF SOIL SAMPLES. ALL WILL BE SCREENED FOR MUSTARD/LEWISITE BOTH BY AERIAL SPACE AND SOIL EXTRACTION. SPLIT SAMPLES WILL BE ANALYZED AS FOLLOWS:

ERDEC: MUSTARD, LEWISITE

AEHA: CYANIDE, PHOSGENE, CHLOROPACRIN, FIC TOTAL METALS, SEMI VOLATILES

EPA: TOTAL METALS, SEMI VOLATILES

AEHA POC IS JOHN RESTIS:

DISCUSSED ORDERING GP SMALL + HEATER C/W K. BO WILL BE USED BY TEC TO MONITOR POC F.E. TO XXX. EXPECT TO HAVE BY 0900 13 JAN 93.
13 Jan 93

0800 Col K. MTG
- Established journal format for "Lessons Learned"
- Format: Title in caps
 Situation:
 Lesson:
- Goal today: Get one load out.
- Look at scrap metal monitoring status.

0930 Contacted PHEA to resolve numerous questions regarding soil sample analysis.

1030 Worked numerous safety related transportation issues. Contacted Andrews AFB Safety to get understanding of their problems. Main concerns: overpack leakage and explosive compatibility by the end of day (and many calls) issues were resolved.

1200 Spent most of afternoon obtaining info to develop interim hazard classification for the material to be shipped. Those completed include chemical projectiles: 75mm, LIVINS, 4.7
4:30 discussed with DA Safety the results of risk assessment, PPE, monitoring and shipment given ok.

5:30 discussed certification by Mcinerney at ERDEC.

14 Jan 93

8:15 verified GP small + stove arrived on site for monitoring bagged clothing.

9:30 provided 3 additional interim hazard classifications to the transportation team. A TEU for 3.0" and 75mm HE Pru. + 3" stock.

10:30 contacted AEMA to firm up what they are to look for in EOD analysis. Established G. Lattin as POC for Chemical Agent Screen.

Ken Williams (671-2208) is AEMA POC.

10:45 G. Mason + Sheldon one pre-oped loading of helicopter with forklift.

16:00 produce list of possible fills for blares. T. prepare for drilling ops at CTF.
1300 PROVIDE SITE SPECIFIC INFO ON 3 ROUNDS TO BE DRILLED/SAMPLED TO ERDEC SAFETY. USED TO ASSIST IN PREPARATION OF SOPs/FACILITIES.

1430 COORDINATED W/ 4TH COL BATT ON HEATING BOX OPERATIONS FOR "3X" ROUNDS. ESTABLISHED REQUIREMENT TO WEAR MASC WHEN OPENING BOX.

ALL DAY - MONITORED LOADING BOX OPERATIONS FROM EXPLOSIVE SAFETY STANDPOINT.

1530 RAY FAIE (DA SAFETY) ARRIVED.

1530 SPOKE TO RAY FAIE ON ADDITIONAL SAFETY QUESTIONS FOR BRIEF HE WAS TO ATTEND W/ MR. WALKER.

1600 SPOKE TO FRANK MARTIN (ERDEC) ABOUT PREPARING CHAMBER TO DRILL EXP.

CONFIGURED ROUNDS.

5 JAN 93

0900 TALK TO SHEADON ORR (TEL) ON REQUIREMENT TO REPORT EXPOSURE IF T.BLUNES SAMPLING IS CONFIRMED FOR CHEMICAL AGENTS.
RAY FATE (DA SAFETY) AND COMPANY ARRIVED ON SITE. SAFETY CONSIDERATIONS WERE BRIEFED. A TOUR OF SITE WAS PROVIDED. QUESTIONS ANSWERED. DISCUSSION ON T. BLADES DRILLING ROUND AT CTF OCCURRED. DECISION MADE TO INVITE DDES (DR. MAURITS) TO CTF AT 0700 ON 16 JAN 93.

1200 CONTACTED DR. MAURITS AND DISCUSSED CTF ISSUES. AGREED TO MEET 16 JAN 93.

1200 PROVIDED SAFETY INFO ON BROMO ACETON TO T. BLADES IN PREPARATION OF DRILLING OPERATION.

3:15 MET LTC BATT AND BG FRIEL ON RISK ASSESSMENT. PROVIDED ASSESSMENT ON SIGNIFICANT RISK WE FACE BY NOT WEARING MARK. BOTH LTC BATT AND BG FRIEL SIGNED RISK ASSESSMENT AND WENT WITH LEVEL D MARK SLUNG. BG FRIEL DIRECTED AN UPDATE OF RISK ASSESSMENT WITH NEW MONITORING/PROTECTIVE CLOTHING CONSIDERATIONS. ECD 21 JAN 93.
0700 - 1030. Met with DDES (DR. MAURITZ). Did tour of site and explained safety and occupational health provisions for the operation. Reviewed risk assessment to date. Comments/concerns were added to documents. Site safety concerns (i.e. bricks as barricades, CK polymerization, CO detectors) were passed to SHELDON ORR, TEU.

1300. Portable isotopic neutron source (PINS) showed up on site today. Ray Mastnak did radiation evaluation of both PINS and TEU x-ray set-up. Both PINS and the TEU x-ray are properly set-up and present no radiological hazard to personnel. A perimeter line was set up approximately 25 feet from the neutron source. Radio levels at the perimeter line are within the range of normal background radiation.

1400. Continued work on risk assessment for establishment of prot. clothing and equipment and monitoring for TEU.

1500. AEHA automatic detection tube pumps and additional detector tubes
ARRIVED ON SITE. THIS PROVIDES TEAM WITH ADDITIONAL MONITORING CAPABILITY, EQUIPMENT.

Provided:
- 2 Automatic Detector Pumps: S/N: ADN.0144, S/N: ADN.0145
- 2 Battery Chargers

02 Jan 93

0800 CONTINUED WORK ON RISK ASSESSMENT FOR TEU. ADDED DEU OF EXPLOSIVE RISK ASSESSMENT AS RECOMMENDED BY TEU.

1300 PERFORMED RADIATION SURVEY OF PINS.

23 Jan 93

All Day CONTINUED WORK ON RISK ASSESSMENT

1500 PROVIDED FOLDER OF MSDSs FOR TEU REVIEW UNDER PROVISIONS OF OSHA RIGHT TO KNOW.
ALSO DISCUSSED RISK ASSESSMENT ISSUES TO MAKE FINAL MODIFICATIONS.
TOURED PIT AREA W/ CO-BAIT.
24 Jan 93

Worked Risk Assessment. Provided Completed Assessment To Team Safety At 1030.

25 Jan 93

Completed 8 Additional Interim Hazard Classifications For Shipment Of Rounds. They Included:

Completed Draft "Rules Of Engagement" For CG Signature.

Met w/ Team Safety On Shipment Of Radiation Badges To ERDEC For Analysis

Developed And Staffed w/ Team Staff A Chronology Of Safety Improvements For The Site.
During Staff Mtg w/ CG, CG made it clear that no burstered munitions would go to the Chemical Transfer Facility. All munitions to be drilled will be certified free of explosives.

26 Jan 93

Began preparing after action report and lessons learned.

LT discussed risk assessment with Col Batt.

Completed chronology of safety improvement to the site.

27 Jan 93

Obtained LTC Batt's SIG on risk assessment. Submitted to Bn Friel for approval.

28 Jan 93

Worked explosive quantity distance issues with LTC Batt on clearing area for Friday evacuation of population.
Blank
Appendix IX

List of Equipment to be Provided by SRF

1. Environmentally controlled work area
2. Desk and table
3. One chair per person assigned to the team.
4. Telephone with access to electronic mail.
5. Office supplies (i.e. file folders, file folder holders, pens, spiral notebooks,
6. Laser printer access
7. Copier with automatic feed
8. FAX machine
Appendix X

List of Personal Equipment/References to be Brought by Safety Consultant

Personal Equipment

1. Laptop computer with printer
2. Software (i.e. Wordperfect, Procomm)
3. Office Supplies (i.e. spiral notebook, file folders etc.)
4. Safety Equipment (i.e. Hearing Protection, Safety Shoes, Protective Mask, Protective Eyewear)
5. Warm Clothes!!

References

1. OSHA 1910 and 1960
2. AR 385-61 and DA PAM 385-61
3. AMCR 385-100
4. Chemical Agent Material Safety Data Sheets
5. Risk Assessment Code Descriptions (MIL-STD-882B)
6. DA PAM 40-173
7. DA PAM 40-8
8. AR 385-64
9. TMs 5-1300, 9-1300-214
10. SB 742-1
11. AMCR 385-21
12. 49 CFR (Transportation)
13. DA Safety Personnel Phone Book
Appendix XI
Key Personnel Contacts

1. Carol Eason - Edgewood RDEC Safety - Interim Hazard Classifications - (410) 671-6889

2. Ray Mastnjak - Edgewood RDEC Safety - Radiation Protection - (410) 671-2471

3. John Resta - AEHA - Soil/Air Monitoring Equipment - (410) 671-3651

4. John Rankin - AMC Safety - (703) 274-9475

5. Ken Williams - AEHA - Lab Analysis - (410) 671-2208

6. Dr. Bill Maurits - DODESB Chemical Safety - (703) 325-0891/8624

7. Ray Fatz - DA Safety - (703) 695-7291

9. George Collins - ERDEC Safety - Chemical Safety - (410) 671-4412

10. Elaine Sander - ERDEC Safety - Chemical History - (410) 671-2546

11. Jef Franchere - ERDEC Safety - Risk Assessment - (410) 671-2528
MEMORANDUM FOR DIRECTOR, OPERATIONS

SUBJECT: SRC Reuse Policy/Procedures

1. Reference. Memorandum, PM SRC, 24 Jan 93, Subject: SAB

2. The SRF safety Office concurs with the SRC Program Manager’s assessment and criteria.

3. The point of contact for this action is Greg Mason, ERDEC, DSN 584-2415/4411.

GREGORY O. MASON
SRF Safety Officer
MEMORANDUM FOR DIRECTOR, OPERATIONS

SUBJECT: SRC Reuse Policy/Procedures

1. The single sound containers (SRC-155, SRC-8-inch, SRCX & SRCXX) are approved for reuse when the following criteria has been observed:

 a. All SRC's shall be decontaminated after use.

 b. Draft DA Pam 385-61 shall provide the guidance for establishing the decontamination levels and record keeping of such decontamination (i.e. DD Form 2271).

 c. Each container decontaminated for reuse shall have a copy of DD Form 2271 forwarded to Commander, ERDEC, ATTN: SCBRD-ENE (J. McNerney), Aberdeen Proving Ground, MD 21010-5423, with the following data:

 (1) DD Form 2271 tab number.

 (2) Container serial number.

 (3) Date of decontamination.

 (4) Container status (3x, 5x).

 d. Used gasket material shall be removed from the SRC, prior to decontamination, and discarded in accordance with local requirements.

 e. New gasket material shall be installed at the time of reuse.

 f. All containers designated for reuse, shall be shipped to Commander, U.S. Army Technical Escort Unit, ATTN: Sharon Hoffman, Aberdeen Proving Ground, MD 21010-5423, for evaluation, leak testing and re-certification.

2. The point of contact for this action is the undersigned, ERDEC/SCBRF-ENE-SSP, DSN 584-3605/3357.

[Signature]

JOHN MCNERNEY
SRC Program Manager