U. S. Army Aviation Epidemiology Data Register:
Trends in the Age Distribution
of Army Aviators Stratified
by Gender and Component,
1986 to 1992

By
Samuel G. Shannon
and
Kevin T. Mason

Aircrew Protection Division

19941223 049

October 1994

Approved for public release; distribution unlimited.

United States Army Aeromedical Research Laboratory
Fort Rucker, Alabama 36362-0577
Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Reviewed:

Kevin T. Mason
KEVIN T. MASON
LTC, MC, MFS
Director, Aircrew Protection Division

Released for publication:

Roger W. Wiley, O.D., Ph.D.
Chairman, Scientific Review Committee

Dennis F. Shanahan
Colonel, MC, MFS
Commanding
REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADE SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release, distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
USAARL Report No. 95-2

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
U.S. Army Aeromedical Research Laboratory

6b. OFFICE SYMBOL (if applicable)
SGRD-UAD

7a. NAME OF MONITORING ORGANIZATION
U.S. Army Medical Research and Materiel Command

7b. ADDRESS (City, State, and ZIP Code)
Fort Detrick
Frederick, MD 21702-5012

8a. NAME OF FUNDING/SPONSORING ORGANIZATION

8b. OFFICE SYMBOL (if applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

10. SOURCE OF FUNDING NUMBERS

PROGRAM ELEMENT NO.
62787A

PROJECT NO.
0162787A87S

TASK NO.
HC

WORK UNIT ACCESSION NO.
144

11. TITLE (Include Security Classification)
U.S. Army Aviation Epidemiology Data Register: Trends in the age distribution of Army aviators stratified by gender and component, 1986 to 1992

12. PERSONAL AUTHOR(S)
Samuel G. Shannon, and Kevin T. Mason

13a. TYPE OF REPORT
Final

13b. TIME COVERED
FROM __________ TO __________

14. DATE OF REPORT (Year, Month, Day)
1994 October

15. PAGE COUNT
12

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

<table>
<thead>
<tr>
<th>FIELD</th>
<th>GROUP</th>
<th>SUB-GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>02</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>04</td>
<td></td>
</tr>
</tbody>
</table>

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
database, epidemiology, aviator, age

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
The Aviation Epidemiology Data Register was queried to analyze the age distribution of Army aviators for the period 1986 through 1992. Detailed reference tables were published separately. This report summarizes the findings extracted from the reference tables and subjects data to statistical analysis.

There has been a significant aging of the Army aviator population from 1986 through 1992, whatever the component of service. Most of the aging effect is seen in the cohort of aviators age 40 and older. This trend is due likely to a marching cohort of Vietnam-era aviators who are approaching military retirement age. Female aviators are significantly younger than their male peers. This finding is due likely to the recent recruitment of women into Army aviation during the 1980's. A bimodal curve exists in the age distribution of Army aviators. This finding is due likely to trends in Army force structure during the Vietnam War build up, followed by post-Vietnam force reduction, and followed by 1980's cold war build up. Now the Army is undertaking another force reduction in this decade.

(Continued on next page)
Aeromedical planners need to be aware of Army aviator force structure changes and age distribution plans. Aging aviators have unique preventive medicine and disease detection needs not required in younger populations. Each component has different capabilities in responding to the health care needs of Army aviators. Increasing numbers of older aviators might overburden some Army aviation health care systems. Fortunately, the trend in Army aviator aging is decelerating.
Table of contents

List of tables ... 1

List of figures .. 2

Military relevance 3

Aviation Epidemiology Data Register 3

Methods .. 3

Results .. 4

Discussion .. 6

Conclusions ... 7

References ... 8

Appendix A. Tables for serial changes in the age distribution of male Army aviators 9

List of tables

Table

1. Distribution of Army aviators by calendar year, component, and gender 4

2. Age quartiles by component in 1989 ... 5

3. Observed proportion of male Army aviators age 40 or older by component and calendar year .. 6
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Gender-specific difference in Army aviator ages, 1989</td>
<td>5</td>
</tr>
<tr>
<td>A-1. Serial changes in the age distribution of male, active duty aviators, 1986 to 1992</td>
<td>10</td>
</tr>
<tr>
<td>A-2. Serial changes in the age distribution of male, USAR aviators, 1986 to 1992</td>
<td>11</td>
</tr>
</tbody>
</table>
Military relevance

A Department of Defense report on selected manpower statistics for fiscal years 1980 through 1989 showed the median age of male active duty service members increased by 2 years. The data was not stratified by occupation or branch of service (Department of Defense, 1989). Age is a common confounding variable in many Aviation Epidemiology Data Register (AEDR) studies. Therefore, monitoring trends in the age distribution of Army aviators is an essential requirement that supports our chronic disease and injury studies.

The study of cardiovascular diseases among Army aviators is of current interest to AEDR researchers. These conditions are a major cause of morbidity and mortality in aviators and the general population. These conditions are associated, in part, with increasing age. A 2-year shift in Army aviator age, as noted above in the general Army population, might alter significantly the risk for developing age related conditions among aviators.

As an example of the potential effect, we reported that 14.6 percent of active duty aviators were 40 to 45 years old in 1988 (Schrimsher and Shannon, 1993). The cardiovascular disease mortality rate for white males, age 40 to 45, is 47 per 100,000 per year (U.S. Department of Health and Human Services, 1991). If we assume these rates are valid for aviators, we estimate that there would be 0.812 deaths per year among aviators due to cardiovascular disease in this age group. If the aviator population was only 2 years younger, only 8.6 percent of the population would be 40 to 45 years old, resulting in 0.485 cardiovascular deaths per year. These data show that significant differences in cardiovascular disease mortality could result from slight shifts in the age distribution of a population.

Aviation Epidemiology Data Register

We extracted data from the AEDR. The AEDR is maintained jointly by the U.S. Army Aeromedical Center and U.S. Army Aeromedical Research Laboratory, Fort Rucker, Alabama. This was directed by the Army Surgeon General according to Army Regulation 40-501, Medical fitness standards, Chapter 6 (Department of the Army, 1994). Army aviators undergo an annual flying duty medical examination (FDME). USAAMC reviews all FDMEs centrally at Fort Rucker. Contract personnel (Prime Technology, Incorporated) extract demographic, occupational, and medical information from each FDME using a standardized protocol. In 1992, the AEDR contained over 300,000 records representing more than 78,000 individuals.

Methods

Selection criteria for AEDR records were Class 2 (aviator) with examination date between January 1, 1986, and December 31, 1992. In the U.S. Army, the term "aviator" refers to pilots only, and does not include navigators or weapon systems officers. After extracting the data, we sorted the file by examination date and Social Security number (SSN), retaining only the last record for each
SSN during each calendar year. The final database, after deleting multiple records for any SSN in a calendar year, contained 149,348 records.

Age was computed based on the difference between date of birth and date of examination for each completed FDME. The records were stratified by age, calendar year, component of U.S. Army service, and gender. Compiled, detailed reference tables for each calendar year were published separately (Mason and Shannon, 1994a). Components of service included active duty, Army Reserve, to include Individual Ready Reserve (USAR), Army National Guard (ARNG), and civilian pilots flying Army aircraft (CIV). We counted civilians who were serving also in the USAR or ARNG as being in their USAR or ARNG component, rather than being in the civilian component. Analyses were computed using SAS® PROC FREQ (SAS Institute, 1994).

Results

About 58 percent of any calendar year's cohort of aviators were on active duty, 28 percent were in the ARNG, 11 percent were in the USAR, and 3 percent were in civilian service. Table 1 provides a breakdown of the records by military component and gender for each of the 7 calendar years in the study.

Table 1.
Distribution of Army aviators by calendar year, component, and gender.

<table>
<thead>
<tr>
<th>Calendar year</th>
<th>Active duty</th>
<th>USAR</th>
<th>ARNG</th>
<th>CIV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>1986</td>
<td>12169</td>
<td>204</td>
<td>1693</td>
<td>22</td>
</tr>
<tr>
<td>1987</td>
<td>13054</td>
<td>323</td>
<td>2674</td>
<td>61</td>
</tr>
<tr>
<td>1988</td>
<td>12380</td>
<td>321</td>
<td>2751</td>
<td>82</td>
</tr>
<tr>
<td>1989</td>
<td>12187</td>
<td>327</td>
<td>2570</td>
<td>77</td>
</tr>
<tr>
<td>1990</td>
<td>12074</td>
<td>319</td>
<td>2473</td>
<td>69</td>
</tr>
<tr>
<td>1991</td>
<td>12439</td>
<td>330</td>
<td>2003</td>
<td>66</td>
</tr>
<tr>
<td>1992</td>
<td>11116</td>
<td>306</td>
<td>1779</td>
<td>62</td>
</tr>
</tbody>
</table>
In the mid year of the study, 1989, the ages of Army aviators ranged from 18 to 67. Table 2 shows the first through third age quartiles stratified by component. USAR, ARNG, and civilian aviators were older than active duty aviators. ARNG and civilian aviators were older than active duty and USAR aviators. Civilian aviators were older than active duty, USAR, and ARNG aviators. Figure 1 shows male aviators were significantly older than female aviators (Kolmogorov test statistic, one-tailed, p<0.001).

Table 2.
Age quartiles by component in 1989.

<table>
<thead>
<tr>
<th>Age quartile</th>
<th>Active duty</th>
<th>USAR</th>
<th>ARNG</th>
<th>CIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>First (25th percentile)</td>
<td>28</td>
<td>30</td>
<td>31</td>
<td>40</td>
</tr>
<tr>
<td>Second (50th percentile)</td>
<td>32</td>
<td>37</td>
<td>39</td>
<td>45</td>
</tr>
<tr>
<td>Third (75th percentile)</td>
<td>39</td>
<td>42</td>
<td>43</td>
<td>50</td>
</tr>
</tbody>
</table>

Figure 1. Gender-specific difference in Army aviator ages, 1989.
Table 3 shows the observed proportion of male Army aviators who were age 40 or older by component and calendar year. Each component had a significant increase in the proportion of male aviators age 40 and older from calendar year 1986 through 1990 (comparison of proportions with continuity correction, one-tailed, p<0.001). The trend decelerated for military male aviators from 1990 through 1992. For civilian aviators, the trend continued through 1992. In contrast, the active Army as a whole had only 8 percent of the population age 40 or older in 1988 (Department of Defense, 1989).

Table 3.

Observed proportion of male Army aviators age 40 or older by component and calendar year.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>14.48%</td>
<td>19.24%</td>
<td>20.67%</td>
<td>20.09%</td>
</tr>
<tr>
<td>duty</td>
<td>±0.63%*</td>
<td>±0.69%</td>
<td>±0.72%</td>
<td>±0.75%</td>
</tr>
<tr>
<td>USAR</td>
<td>22.45%</td>
<td>34.13%</td>
<td>43.47%</td>
<td>43.11%</td>
</tr>
<tr>
<td>ARNG</td>
<td>±1.99%</td>
<td>±1.77%</td>
<td>±1.95%</td>
<td>±2.30%</td>
</tr>
<tr>
<td>CIV</td>
<td>31.39%</td>
<td>43.09%</td>
<td>48.88%</td>
<td>45.73%</td>
</tr>
<tr>
<td></td>
<td>±1.34%</td>
<td>±1.24%</td>
<td>±1.25%</td>
<td>±1.29%</td>
</tr>
<tr>
<td></td>
<td>60.47%</td>
<td>75.15%</td>
<td>80.17%</td>
<td>86.16%</td>
</tr>
<tr>
<td></td>
<td>±4.62%</td>
<td>±3.25%</td>
<td>±2.97%</td>
<td>±2.89%</td>
</tr>
</tbody>
</table>

* This is the 95 percent, two-tailed, confidence interval of the proportion.

As shown in Figure A-1, the age distribution of active duty males in 1986 had two peaks, one at age 27, and a second at age 39. By 1988, the second peak in the age distribution was shorter and had shifted to the right by 2 years. This trend continued in 1990, but the second peak was nearly eliminated by 1992. From 1986 through 1990, the area under the second peak increased. This was caused by the increase in the number of Army aviators over age 39. Figures A-2 and A-3 show similar trends in the male USAR and ARNG aviator cohorts, with the exception that the second peak is preserved into 1992 than the active duty cohort. The marching cohort effect is most prominent in the second peak of Figure A-3 for male ARNG aviators.

Discussion

This study confirms several of our suspicions about proportions and trends in age distribution of Army aviators. First, female Army aviators are significantly younger than their male peers. The Army did not train female aviators until 1973. It was not until the mid-1980s that they entered the Army aviator work force in greater numbers. A majority of the female cohort has not been in Army
aviation service long enough to reach retirement age. Complicating this finding is that we have confirmed female aviators are at increased risk for attrition from aviation service after their initial service obligation (Shannon, Mason, and Harper, 1994; Mason, Shannon, and Harper, 1994).

Second, civilian aviators are older than ARNG aviators, who are older than USAR aviators. Active duty aviators are the youngest. Many aviators who leave active duty before retirement transition to the USAR and ARNG work force. They serve as "weekend warriors" or as state-employed cadre in military service in a stable cohort of peer aviators, living in the same communities. Many fly in their local reserve component units until age 60. Of the career active duty aviators, some transition to flying for the Army in a civilian capacity after retirement from active duty. Several of these civilians have flown Army aircraft up to the age of 72.

Third, male Army aviators are significantly older in 1992 than in 1986 in all components of aviation service. Much of the aging effect occurs in the marching cohort documented by this study, that is, in the group older than age 40. This trend may explain the increasing rates of aeromedical boards, increasing rates of diabetes mellitus, impaired glucose tolerance, refractive error, and herniated nucleus pulposus observed during the study period (Mason, 1990; Mason and Shannon, 1994b; Mason, Shannon, and Schrimsher, 1993; Mason, 1994).

This study unveils a bimodal curve in the age distribution of male Army aviators. The second, right-hand peak in the age distribution curves is the result of a marching cohort of Vietnam-era trained aviators. The trough between the first and second peaks is likely the result of post-Vietnam war force reductions that occurred in the mid-1970s into the early-1980s. A decade from now, another marching cohort of military aviators may emerge from the Cold War military build up of the 1980s, followed by a trough generated by the post-Cold War force reduction of the 1990s.

Conclusions

There has been a significant aging of the Army aviator population from 1986 through 1992, whatever the component of service. Most of the aging effect is seen in the cohort of aviators age 40 and older. This trend is due likely to a marching cohort of Vietnam-era aviators who are approaching military retirement age. Female aviators are significantly younger than their male peers. This finding is due likely to the recent recruitment of women into Army aviation during the 1980s. A bimodal curve exists in the age distribution of Army aviators. This finding is due likely to trends in Army force structure during the Vietnam War buildup, followed by post-Vietnam force reduction, and followed by 1980s Cold War buildup. Now the Army is undertaking another force reduction in this decade.

Aeromedical planners need to be aware of Army aviator force structure changes and age distribution plans. Aging aviators have unique preventive medicine and disease detection needs not required in younger populations. Each component has different capabilities in responding to the health care needs of Army aviators. Increasing numbers of older aviators might over burden some Army aviation health care systems. Fortunately, the trend in Army aviator aging is decelerating.
References

Appendix A.

Tables for serial changes in age distribution of male Army aviators.
Figure A-1. Serial changes in the age distribution of male, active duty aviators, 1986 to 1992.
Figure A-2. Serial changes in the age distribution of male USAR aviators, 1988 to 1992.
Figure A-3. Serial changes in age distribution of male, ARNG aviators, 1988 to 1992.
Initial distribution

Commander, U.S. Army Natick Research, Development and Engineering Center
ATTN: SATNC-MIL (Documents Librarian)
Natick, MA 01760-5040

Executive Director, U.S. Army Human Research and Engineering Directorate
ATTN: Technical Library
Aberdeen Proving Ground, MD 21005

Chairman
National Transportation Safety Board
800 Independence Avenue, S.W.
Washington, DC 20594

Commander
Man-Machine Integration System
Code 602
Naval Air Development Center
Warminster, PA 18974

Commander
10th Medical Laboratory
ATTN: Audiologist
APO New York 09180

Commander
Naval Air Development Center
ATTN: Code 602-B
Warminster, PA 18974

Naval Air Development Center
Technical Information Division
Technical Support Detachment
Warminster, PA 18974

Commanding Officer
Armstrong Laboratory
Wright-Patterson
Air Force Base, OH 45433-6573

Commanding Officer, Naval Medical Research and Development Command
National Naval Medical Center
Bethesda, MD 20814-5044

Director
Army Audiology and Speech Center
Walter Reed Army Medical Center
Washington, DC 20307-5001

Deputy Director, Defense Research and Engineering
ATTN: Military Assistant
for Medical and Life Sciences
Washington, DC 20301-3080

Commander/Director
U.S. Army Combat Surveillance and Target Acquisition Lab
ATTN: SFAE-IEW-JS
Fort Monmouth, NJ 07703-5305

Commander
Institute of Environmental Medicine
Natick, MA 01760

Director
Federal Aviation Administration
FAA Technical Center
Atlantic City, NJ 08405

Library
Naval Submarine Medical Research Lab
Box 900, Naval Sub Base
Groton, CT 06349-5900

Director
Walter Reed Army Institute of Research
Washington, DC 20307-5100
Commander, U.S. Army Test and Evaluation Command
Directorate for Test and Evaluation
ATTN: AMSTE-TA-M (Human Factors Group)
Aberdeen Proving Ground, MD 21005-5055

Naval Air Systems Command
Technical Air Library 950D
Room 278, Jefferson Plaza II
Department of the Navy
Washington, DC 20361

Director
U.S. Army Ballistic Research Laboratory
ATTN: DRXBR-OD-ST Tech Reports
Aberdeen Proving Ground, MD 21005

Commander
U.S. Army Medical Research Institute of Chemical Defense
ATTN: SGRD-UV-AO
Aberdeen Proving Ground, MD 21010-5425

Commander
USAMRMC
ATTN: SGRD-RMS
Fort Detrick, Frederick, MD 21702-5012

HQ DA (DASG-PSP-O)
5109 Leesburg Pike
Falls Church, VA 22041-3258

Harry Diamond Laboratories
ATTN: Technical Information Branch
2800 Powder Mill Road
Adelphi, MD 20783-1197

U.S. Army Materiel Systems Analysis Agency
ATTN: AMXSY-PA (Reports Processing)
Aberdeen Proving Ground
MD 21005-5071

U.S. Army Ordnance Center and School Library
Simpson Hall, Building 3071
Aberdeen Proving Ground, MD 21005

U.S. Army Environmental Hygiene Agency
ATTN: HSHB-MO-A
Aberdeen Proving Ground, MD 21010

Technical Library Chemical Research and Development Center
Aberdeen Proving Ground, MD 21010-5423

Commander
U.S. Army Medical Research Institute of Infectious Disease
ATTN: SGRD-UIZ-C
Fort Detrick, Frederick, MD 21702

Director, Biological Sciences Division
Office of Naval Research
600 North Quincy Street
Arlington, VA 22217

Commandant
U.S. Army Aviation Logistics School ATTN: ATSQ-TDN
Fort Eustis, VA 23604

Headquarters (ATMD)
U.S. Army Training and Doctrine Command
ATTN: ATBO-M
Fort Monroe, VA 23651

14
IAF Liaison Officer for Safety
USAF Safety Agency/SEFF
9750 Avenue G, SE
Kirtland Air Force Base
NM 87117-5671

Naval Aerospace Medical
Institute Library
Building 1953, Code 03L
Pensacola, FL 32508-5600

Command Surgeon
HQ USCENTCOM (CCSG)
U.S. Central Command
MacDill Air Force Base, FL 33608

Director
Directorate of Combat Developments
ATTN: ATZQ-CD
Building 515
Fort Rucker, AL 36362

U.S. Air Force Institute
of Technology (AFIT/LDEE)
Building 640, Area B
Wright-Patterson
Air Force Base, OH 45433

Henry L. Taylor
Director, Institute of Aviation
University of Illinois-Willard Airport
Savoy, IL 61874

Chief, National Guard Bureau
ATTN: NGB-ARS
Arlington Hall Station
111 South George Mason Drive
Arlington, VA 22204-1382

AAMRL/HEX
Wright-Patterson
Air Force Base, OH 45433

Commander
U.S. Army Aviation and Troop Command
ATTN: AMSAT-R-ES
4300 Goodfellow Boulevard
St. Louis, MO 63120-1798

U.S. Army Aviation and Troop Command
Library and Information Center Branch
ATTN: AMSAV-DIL
4300 Goodfellow Boulevard
St. Louis, MO 63120

Federal Aviation Administration
Civil Aeromedical Institute
Library AAM-400A
P.O. Box 25082
Oklahoma City, OK 73125

Commander
U.S. Army Medical Department
and School
ATTN: Library
Fort Sam Houston, TX 78234

Commander
U.S. Army Institute of Surgical Research
ATTN: SGRD-USM
Fort Sam Houston, TX 78234-6200

Air University Library
(AUL/LSE)
Maxwell Air Force Base, AL 36112

Product Manager
Aviation Life Support Equipment
ATTN: SFAE-AV-LSE
4300 Goodfellow Boulevard
St. Louis, MO 63120-1798
Commander
U.S. Army Health Services Command
ATTN: HSOP-SO
Fort Sam Houston, TX 78234-6000

U. S. Army Research Institute
Aviation R&D Activity
ATTN: PERI-IR
Fort Rucker, AL 36362

Commander
U.S. Army Safety Center
Fort Rucker, AL 36362

U.S. Army Aircraft Development
Test Activity
ATTN: STEBG-MP-P
Cairns Army Air Field
Fort Rucker, AL 36362

Commander
USAMRMC
ATTN: SGRD-PLC (COL R. Gifford)
Fort Detrick, Frederick, MD 21702

TRADOC Aviation LO
Unit 21551, Box A-209-A
APO AE 09777

Netherlands Army Liaison Office
Building 602
Fort Rucker, AL 36362

British Army Liaison Office
Building 602
Fort Rucker, AL 36362

Italian Army Liaison Office
Building 602
Fort Rucker, AL 36362

Directorate of Training Development
Building 502
Fort Rucker, AL 36362

Chief
USAHEL/USAAVNC Field Office
P. O. Box 716
Fort Rucker, AL 36362-5349

Commander, U.S. Army Aviation Center
and Fort Rucker
ATTN: ATZQ-CG
Fort Rucker, AL 36362

Chief
Test & Evaluation Coordinating Board
Cairns Army Air Field
Fort Rucker, AL 36362

Canadian Army Liaison Office
Building 602
Fort Rucker, AL 36362

German Army Liaison Office
Building 602
Fort Rucker, AL 36362

French Army Liaison Office
USAAVNC (Building 602)
Fort Rucker, AL 36362-5021

Australian Army Liaison Office
Building 602
Fort Rucker, AL 36362

Dr. Garrison Rapmund
6 Burning Tree Court
Bethesda, MD 20817

Commandant, Royal Air Force
Institute of Aviation Medicine
Farnborough, Hampshire GU14 6SZ UK
Defense Technical Information
Cameron Station, Building 5
Alexandra, VA 22304-6145

Commander, U.S. Army Foreign Science and Technology Center
AIFRTA (Davis)
220 7th Street, NE
Charlottesville, VA 22901-5396

Commander
Applied Technology Laboratory
USARTL-ATCOM
ATTN: Library, Building 401
Fort Eustis, VA 23604

Commander, U.S. Air Force Development Test Center
101 West D Avenue, Suite 117
Eglin Air Force Base, FL 32542-5495

Aviation Medicine Clinic
TMC #22, SAAF
Fort Bragg, NC 28305

Dr. H. Dix Christensen
Bio-Medical Science Building, Room 753
Post Office Box 26901
Oklahoma City, OK 73190

Commander, U.S. Army Missile Command
Redstone Scientific Information Center
ATTN: AMSMI-RD-CS-R
/ILL Documents
Redstone Arsenal, AL 35898

Aerospace Medicine Team
HQ ACC/SGST3
162 Dodd Boulevard, Suite 100
Langley Air Force Base,
VA 23665-1995

U.S. Army Research and Technology Laboratories (AVSCOM)
Propulsion Laboratory MS 302-2
NASA Lewis Research Center
Cleveland, OH 44135

Commander
USAMRMC
ATTN: SGRD-ZC (COL John F. Glenn)
Fort Detrick, Frederick, MD 21702-5012

Dr. Eugene S. Channing
166 Baughman's Lane
Frederick, MD 21702-4083

U.S. Army Medical Department and School
USAMRDALC Liaison
ATTN: HSMC-FR
Fort Sam Houston, TX 78234

NVESD
AMSEL-RD-NV-ASID-PST
(Attn: Trang Bui)
10221 Burbeck Road
Fort Belvoir, VA 22060-5806

CA Av Med
HQ DAAC
Middle Wallop
Stockbridge, Hants S020 8DY UK

Dr. Christine Schlichting
Behavioral Sciences Department
Box 900, NAVUBASE NOLON
Groton, CT 06349-5900

Commander
Aviation Applied Technology Directorate
ATTN: AMSAT-R-TV
Fort Eustis, VA 23604-5577