A CORRELATIONAL STUDY OF THE
SEI'S CAPABILITY MATURITY MODEL AND
SOFTWARE DEVELOPMENT PERFORMANCE
IN DOD CONTRACTS

THESIS

Robert M. Flowe, Captain, USAF
James B. Thordahl, Captain, USAF

AFIT/GSS/LAR/94D-2

This document has been approved
for public release and sale; its
distribution is unlimited.

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY
AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio
A CORRELATIONAL STUDY OF THE
SEI'S CAPABILITY MATURITY MODEL AND
SOFTWARE DEVELOPMENT PERFORMANCE
IN DOD CONTRACTS

THESIS
Robert M. Flowe, Captain, USAF
James B. Thordahl, Captain, USAF

AFIT/GSS/LAR/94D-2

Approved for public release; distribution unlimited
The opinions and conclusions in this paper are those of the authors and are not intended to represent the official position of the DOD, USAF, or any other government agency.
A CORRELATIONAL STUDY
OF THE SEI'S
CAPABILITY MATURITY MODEL
AND SOFTWARE DEVELOPMENT PERFORMANCE
IN DOD CONTRACTS

THESIS

Presented to the Faculty of the Graduate School of Logistics and Acquisition Management of The Air Force Institute of Technology
AETC
In Partial Fulfillment of the Requirements for the Degree of
Master of Science In Software Systems Management

Robert M. Flowe, B.S. James B. Thordahl, B.S.
Captain, USAF Captain, USAF

December 1994

Approved for public release; distribution unlimited
Preface

We chose to investigate the correlation between software process maturity, as measured by the Capability Maturity Model (CMM), and software project success in response to a proposed policy requiring bidders on all Air Force software contracts to be rated CMM Level 3. This policy, promulgated by the Office of the Secretary of the Air Force (SAF/AQK), was proposed despite the absence of substantial quantitative data supporting the presumption that higher rated contractors are necessarily more successful in terms of cost and schedule performance than lower rated contractors. Our goal was to explore the nature of the correlation in an empirical manner, to provide a degree of rigor in the analysis of the presumed correlation between rating and performance. We hope the results of our research further the understanding of the use of the CMM as a means to assess the general likelihood of a contractor’s software project success, and provide the software acquisition manager with another tool in the ongoing battle against late, over-budget software.

We would like to thank our thesis advisors: Dr. Freda Stohrer for her technical writing expertise and ongoing enthusiasm, and Lt Col Pat Lawlis for keeping us on track and providing a real-world software perspective. We would also like to thank Professor Dan Reynolds for his guidance in proper use of nonparametric statistical analysis methods, and for sharing with us his commitment to knowledge. Thanks also to Dr. David Christensen for his guidance in the area of cost analysis and the C/SCSC.

For their unstinting support and detailed knowledge, we thank the personnel of the ESC and ASC cost libraries, in particular, Mary Dutra and Sandra McCardle. Without their support, we would have been lost in a sea of data.

Though they must remain anonymous, we extend special thanks to the many organizations that participated in our research. These busy people gave of their time and
knowledge to provide us with the critical information necessary to derive understanding
from our data. Many of them encouraged us by expressing interest in our study,
reinforcing our commitment to our audience—the project managers of the Air Force.

For inspiring us to undertake this research, and providing us with valuable
guidance, we thank Captain Brian Hermann, and Captain Raymond Lewis, Jr., whose
research provided the impetus for our thesis.

Finally, we thank our wives and families. Without their understanding and
patience, this research would not have been possible.

Captain Robert M. Flowe

Captain James B. Thordahl
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>x</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xiii</td>
</tr>
<tr>
<td>List of Acronyms</td>
<td>xv</td>
</tr>
<tr>
<td>Abstract</td>
<td>xvi</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1 General Issue</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2 Specific Problem</td>
<td>1-2</td>
</tr>
<tr>
<td>1.3 Research Objectives</td>
<td>1-3</td>
</tr>
<tr>
<td>1.4 Scope/Limitations</td>
<td>1-3</td>
</tr>
<tr>
<td>1.5 Overview</td>
<td>1-4</td>
</tr>
<tr>
<td>2. Literature Review</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 The Software Development Process</td>
<td>2-2</td>
</tr>
<tr>
<td>2.3 Software Development Process Models</td>
<td>2-2</td>
</tr>
<tr>
<td>2.3.1 The Waterfall Model</td>
<td>2-3</td>
</tr>
<tr>
<td>2.3.2 The Spiral Model</td>
<td>2-4</td>
</tr>
<tr>
<td>2.3.3 Prototyping</td>
<td>2-5</td>
</tr>
<tr>
<td>2.4 Software Development Process Maturity</td>
<td>2-7</td>
</tr>
<tr>
<td>2.5 The Capability Maturity Model</td>
<td>2-8</td>
</tr>
<tr>
<td>2.5.1 Process Maturity Measurement</td>
<td>2-11</td>
</tr>
<tr>
<td>2.5.2 Applications of the CMM (SPA and SCE)</td>
<td>2-12</td>
</tr>
<tr>
<td>2.5.3 Limitations of the CMM and its Application</td>
<td>2-13</td>
</tr>
<tr>
<td>2.5.4 Other Capability Assessment Methods</td>
<td>2-16</td>
</tr>
<tr>
<td>2.6 Project Success</td>
<td>2-17</td>
</tr>
<tr>
<td>2.6.1 Measures of Cost and Schedule Performance</td>
<td>2-18</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.6.2 The Effect of Process Maturity on Performance</td>
<td>2-19</td>
</tr>
<tr>
<td>2.6.3 Measures of Quality</td>
<td>2-22</td>
</tr>
<tr>
<td>2.7 Anecdotal Evidence</td>
<td>2-23</td>
</tr>
<tr>
<td>2.7.1 Raytheon</td>
<td>2-23</td>
</tr>
<tr>
<td>2.7.2 Hughes</td>
<td>2-24</td>
</tr>
<tr>
<td>2.8 Correlational Evidence</td>
<td>2-25</td>
</tr>
<tr>
<td>2.9 Summary</td>
<td>2-25</td>
</tr>
<tr>
<td>3. Methodology</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1 Overview</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2 Exploratory Phase</td>
<td>3-1</td>
</tr>
<tr>
<td>3.3 Research Design Phase</td>
<td>3-2</td>
</tr>
<tr>
<td>3.3.1 Selection Criteria for Sample</td>
<td>3-4</td>
</tr>
<tr>
<td>3.3.2 Quantitative Measures</td>
<td>3-5</td>
</tr>
<tr>
<td>3.4 Data Gathering Phase</td>
<td>3-6</td>
</tr>
<tr>
<td>3.4.1 Software Development Project Identification</td>
<td>3-8</td>
</tr>
<tr>
<td>3.4.2 Contractor Rating Verification</td>
<td>3-9</td>
</tr>
<tr>
<td>3.4.3 Rating-to-Project Relevance</td>
<td>3-11</td>
</tr>
<tr>
<td>3.4.4 Collection of Success Indicators</td>
<td>3-12</td>
</tr>
<tr>
<td>3.4.5 Moderating Data</td>
<td>3-13</td>
</tr>
<tr>
<td>3.5 Data Analysis Phase</td>
<td>3-16</td>
</tr>
<tr>
<td>3.6 Methodological Difficulties</td>
<td>3-21</td>
</tr>
<tr>
<td>3.7 Consistency of Moderating Variables</td>
<td>3-22</td>
</tr>
<tr>
<td>3.8 Summary</td>
<td>3-24</td>
</tr>
<tr>
<td>4. Results</td>
<td>4-1</td>
</tr>
<tr>
<td>4.1 Overview</td>
<td>4-1</td>
</tr>
<tr>
<td>4.2 Concepts and Definitions</td>
<td>4-1</td>
</tr>
<tr>
<td>4.3 Data Reduction</td>
<td>4-4</td>
</tr>
<tr>
<td>4.3.1 Conforming the Database</td>
<td>4-6</td>
</tr>
</tbody>
</table>
4.3.2 The Nature of the Complete Dataset ... 4-8

4.4 Derivation of Performance Indices and Derived Moderators.................................... 4-11

4.5 Coding of Moderators .. 4-12

4.6 Summary ... 4-14

5. Analysis ... 5-1

5.1 Overview ... 5-1

5.2 Analysis of the Complete Data Set ... 5-4

5.2.1 Analysis of Moderators Relating to CMM Rating .. 5-17

5.2.1.1 Analysis of the Moderator “Rating Relevance” .. 5-19

5.2.1.2 Analysis of the Moderator “Rating Type” .. 5-23

5.2.2 Analysis of Moderators Relating to Cost and Schedule Performance 5-27

5.2.2.1 Analysis of the Moderator “Baseline Volatility” .. 5-27

5.2.2.2 Analysis of the Moderator “Contract Type” ... 5-31

5.2.2.3 Analysis of the Moderator “Percent Complete” ... 5-33

5.2.2.4 Analysis of the Moderator “Application Type” .. 5-37

5.2.2.5 Analysis of the Moderator “Language” .. 5-39

5.2.2.6 Analysis of the Moderator “Size” .. 5-41

5.3 Summary ... 5-44

6. Conclusion .. 6-1

6.1 Overview ... 6-1

6.2 The Existence and Nature of Correlation Between Rating and Performance 6-1

6.2.1 The Nature of the Correlation between Rating and Cost Performance 6-2

6.2.2 The Nature of the Correlation between Rating and Schedule Performance 6-3

6.3 Recommendations for Further Research ... 6-5

6.4 Conclusion .. 6-7
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Data Collection Form</td>
<td>A-1</td>
</tr>
<tr>
<td>B</td>
<td>Gross Dataset</td>
<td>B-1</td>
</tr>
<tr>
<td>C</td>
<td>Data Supporting the Analysis of the Complete Data Set</td>
<td>C-1</td>
</tr>
<tr>
<td></td>
<td>1. Scatter Plots of CPI and SPI</td>
<td>C-2</td>
</tr>
<tr>
<td></td>
<td>2. Histogram of the frequency density for each rating level</td>
<td>C-3</td>
</tr>
<tr>
<td></td>
<td>3. Wilk-Shapiro evaluation of normality at each level</td>
<td>C-6</td>
</tr>
<tr>
<td></td>
<td>4. Box and Whiskers Plots of CPI and SPI</td>
<td>C-9</td>
</tr>
<tr>
<td></td>
<td>5. Kruskal-Wallis Tests, and Multiple Comparison Tests</td>
<td>C-10</td>
</tr>
<tr>
<td></td>
<td>6. Descriptive Statistics of the Complete Data Set</td>
<td>C-11</td>
</tr>
<tr>
<td>D</td>
<td>Data Supporting the Analysis of the Moderator “Rating Relevance”</td>
<td>D-1</td>
</tr>
<tr>
<td></td>
<td>1. Scatter Plots of CPI and SPI</td>
<td>D-2</td>
</tr>
<tr>
<td></td>
<td>2. Box and Whisker Plots of CPI and SPI</td>
<td>D-3</td>
</tr>
<tr>
<td></td>
<td>3. Kruskal-Wallis and Multiple Comparison Tests</td>
<td>D-4</td>
</tr>
<tr>
<td></td>
<td>4. Descriptive Statistics</td>
<td>D-5</td>
</tr>
<tr>
<td></td>
<td>5. Multiple Comparison Calculations for High and Very High Rating Relevance</td>
<td>D-6</td>
</tr>
<tr>
<td>E</td>
<td>Data Supporting the Analysis of Moderator “Rating Type”</td>
<td>E-1</td>
</tr>
<tr>
<td></td>
<td>1. Scatter Plots of CPI and SPI</td>
<td>E-2</td>
</tr>
<tr>
<td></td>
<td>2. Box and Whisker Plots of CPI and SPI</td>
<td>E-4</td>
</tr>
<tr>
<td></td>
<td>3. Kruskal-Wallis and Multiple Comparison Tests</td>
<td>E-6</td>
</tr>
<tr>
<td></td>
<td>4. Descriptive Statistics</td>
<td>E-8</td>
</tr>
<tr>
<td></td>
<td>5. Multiple Comparison Calculations for Rating Type - SPA</td>
<td>E-9</td>
</tr>
<tr>
<td></td>
<td>6. Multiple Comparison Calculations for Rating Type - SCE</td>
<td>E-10</td>
</tr>
<tr>
<td>F</td>
<td>Data Supporting the Analysis of Moderator “Baseline Volatility”</td>
<td>F-1</td>
</tr>
<tr>
<td></td>
<td>1. Scatter Plots of CPI and SPI</td>
<td>F-2</td>
</tr>
<tr>
<td></td>
<td>2. Box and Whisker Plots of CPI and SPI</td>
<td>F-4</td>
</tr>
<tr>
<td></td>
<td>3. Kruskal-Wallis and Multiple Comparison Tests</td>
<td>F-6</td>
</tr>
<tr>
<td></td>
<td>4. Descriptive Statistics</td>
<td>F-8</td>
</tr>
<tr>
<td></td>
<td>5. Multiple Comparison Calculations for Less Than 15% Change in Baseline</td>
<td>F-9</td>
</tr>
<tr>
<td></td>
<td>6. Multiple Comparison Calculations for Greater Than 15% Change in Baseline</td>
<td>F-10</td>
</tr>
<tr>
<td>G</td>
<td>Data Supporting the Analysis of Moderator “Contract Type”</td>
<td>G-1</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>The Waterfall Model</td>
<td>2-4</td>
</tr>
<tr>
<td>2-2</td>
<td>The Spiral Model</td>
<td>2-5</td>
</tr>
<tr>
<td>2-3</td>
<td>The Effect of Process Maturity on Performance</td>
<td>2-21</td>
</tr>
<tr>
<td>3-1</td>
<td>Data Gathering Flow Chart</td>
<td>3-7</td>
</tr>
<tr>
<td>4-1</td>
<td>Origin of Data Points</td>
<td>4-3</td>
</tr>
<tr>
<td>5-1</td>
<td>Flow of Analysis</td>
<td>5-2</td>
</tr>
<tr>
<td>5-2</td>
<td>Scatter Plot of CPI vs Rating—Complete Data Set</td>
<td>5-4</td>
</tr>
<tr>
<td>5-3</td>
<td>Scatter Plot of SPI vs Rating—Complete Data Set</td>
<td>5-5</td>
</tr>
<tr>
<td>5-4</td>
<td>Histogram of the Distribution of CPI at Rating Level Three</td>
<td>5-6</td>
</tr>
<tr>
<td>5-5</td>
<td>Box and Whiskers Plot of CPI vs Rating—Complete Data Set</td>
<td>5-8</td>
</tr>
<tr>
<td>5-6</td>
<td>Box and Whiskers Plot of SPI vs Rating—Complete Data Set</td>
<td>5-10</td>
</tr>
<tr>
<td>5-7</td>
<td>Scatter Plots of CPI for the Complete Data Set and High & Very High Rating Relevance</td>
<td>5-19</td>
</tr>
<tr>
<td>5-8</td>
<td>Scatter Plots of SPI for Complete Data Set and High & Very High Rating Relevance</td>
<td>5-20</td>
</tr>
<tr>
<td>5-9</td>
<td>Box and Whisker plots of CPI and SPI for High/Very High Rating Relevance</td>
<td>5-20</td>
</tr>
<tr>
<td>5-10</td>
<td>CPI Performance of SPA Rated Organizations</td>
<td>5-23</td>
</tr>
<tr>
<td>5-11</td>
<td>CPI Performance of SPA-Rated Organizations</td>
<td>5-25</td>
</tr>
<tr>
<td>5-12</td>
<td>CPI Performance of SCE-Rated Organizations</td>
<td>5-26</td>
</tr>
<tr>
<td>5-13</td>
<td>Comparison of CPI trends for moderator “Baseline Volatility”</td>
<td>5-29</td>
</tr>
<tr>
<td>5-14</td>
<td>Comparison of SPI trends for moderator “Baseline Volatility”</td>
<td>5-29</td>
</tr>
<tr>
<td>5-15</td>
<td>Scatter Plots of SPI versus Rating for Contract Percent Complete</td>
<td>5-35</td>
</tr>
<tr>
<td>5-16</td>
<td>Box & Whisker Plots of SPI versus Rating for Contract Percent Complete</td>
<td>5-35</td>
</tr>
<tr>
<td>5-17</td>
<td>Box & Whisker Plots of SPI versus Rating for Contract Percent Complete</td>
<td>5-36</td>
</tr>
<tr>
<td>5-18</td>
<td>Scatter Plot of CPI versus Rating for Real-Time Applications</td>
<td>5-37</td>
</tr>
<tr>
<td>5-19</td>
<td>Box Whisker Plot of CPI vs Rating for Information Systems Applications</td>
<td>5-38</td>
</tr>
<tr>
<td>5-20</td>
<td>Scatter Plot of CPI versus Rating for Applications Less than 100K LOC</td>
<td>5-42</td>
</tr>
<tr>
<td>C-1</td>
<td>Scatter Plot of CPI versus Rating for the Complete Data Set</td>
<td>C-2</td>
</tr>
<tr>
<td>C-2</td>
<td>Scatter Plot of SPI versus Rating for the Complete Data Set</td>
<td>C-2</td>
</tr>
<tr>
<td>C-3</td>
<td>Histogram of CPI at Rating Level One for the Complete Data Set</td>
<td>C-3</td>
</tr>
<tr>
<td>C-4</td>
<td>Histogram for SPI at Rating Level One for the Complete Data Set</td>
<td>C-3</td>
</tr>
<tr>
<td>C-5</td>
<td>Histogram for CPI at Rating Level Two for the Complete Data Set</td>
<td>C-4</td>
</tr>
<tr>
<td>C-6</td>
<td>Histogram for SPI at Rating Level Two for the Complete Data Set</td>
<td>C-4</td>
</tr>
<tr>
<td>C-7</td>
<td>Histogram for CPI at Rating Level Three for the Complete Data Set</td>
<td>C-5</td>
</tr>
<tr>
<td>C-8</td>
<td>Histogram for SPI at Rating Level Three for the Complete Data Set</td>
<td>C-5</td>
</tr>
<tr>
<td>C-9</td>
<td>Wilk-Shapiro Plot for CPI at Rating Level One for the Complete Data Set</td>
<td>C-6</td>
</tr>
<tr>
<td>C-10</td>
<td>Wilk-Shapiro Plot for SPI at Rating Level One for the Complete Data Set</td>
<td>C-6</td>
</tr>
<tr>
<td>C-11</td>
<td>Wilk-Shapiro Plot for CPI at Rating Level Two for the Complete Data Set</td>
<td>C-7</td>
</tr>
<tr>
<td>C-12</td>
<td>Wilk-Shapiro Plot for SPI at Rating Level Two for the Complete Data Set</td>
<td>C-7</td>
</tr>
<tr>
<td>C-13</td>
<td>Wilk-Shapiro Plot for CPI at Rating Level Three for the Complete Data Set</td>
<td>C-8</td>
</tr>
<tr>
<td>C-14</td>
<td>Wilk-Shapiro Plot for SPI at Rating Level Three for the Complete Data Set</td>
<td>C-8</td>
</tr>
<tr>
<td>C-15</td>
<td>Box and Whiskers Plot for CPI for the Complete Data Set</td>
<td>C-9</td>
</tr>
<tr>
<td>C-16</td>
<td>Box and Whiskers Plot for SPI for the Complete Data Set</td>
<td>C-9</td>
</tr>
<tr>
<td>C-17</td>
<td>Calculations for Multiple Comparison Test for the Complete Data Set</td>
<td>C-9</td>
</tr>
<tr>
<td>D-1</td>
<td>Scatter Plot of CPI versus Rating for High and Very High Rating Relevance</td>
<td>D-2</td>
</tr>
<tr>
<td>D-2</td>
<td>Scatter Plot of SPI versus Rating for High and Very High Rating Relevance</td>
<td>D-2</td>
</tr>
<tr>
<td>D-3</td>
<td>Box and Whisker Plot of CPI versus Rating for High and Very High Rating Relevance</td>
<td>D-3</td>
</tr>
<tr>
<td>D-4</td>
<td>Box and Whisker Plot of SPI versus Rating for High and Very High Rating Relevance</td>
<td>D-3</td>
</tr>
<tr>
<td>D-5</td>
<td>Calculations for Multiple Comparison Test for High and Very High Rating Relevance</td>
<td>D-6</td>
</tr>
<tr>
<td>E-1</td>
<td>Scatter Plot of CPI versus Rating for Software Process Assessment (SPA)</td>
<td>E-2</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3-1</td>
<td>Moderators</td>
<td>3-15</td>
</tr>
<tr>
<td>Table 4-1</td>
<td>Comparison of the Gross and Complete Datasets</td>
<td>4-8</td>
</tr>
<tr>
<td>Table 4-2</td>
<td>Characteristics of the Complete Dataset—Count by Moderator</td>
<td>4-10</td>
</tr>
<tr>
<td>Table 4-3</td>
<td>Moderating Variables and their Stratification Schemes</td>
<td>4-13</td>
</tr>
<tr>
<td>Table 5-1</td>
<td>Wilk-Shapiro Normality Test Results for the Complete Data Set</td>
<td>5-7</td>
</tr>
<tr>
<td>Table 5-2</td>
<td>Kruskal-Wallis Test For the Complete Data Set—CPI</td>
<td>5-11</td>
</tr>
<tr>
<td>Table 5-3</td>
<td>Kruskal-Wallis Test For the Complete Data Set: SPI</td>
<td>5-12</td>
</tr>
<tr>
<td>Table 5-4</td>
<td>Multiple Comparison Matrix for CPI</td>
<td>5-13</td>
</tr>
<tr>
<td>Table 5-5</td>
<td>Multiple Comparison Matrix for SPI</td>
<td>5-14</td>
</tr>
<tr>
<td>Table 5-6</td>
<td>Descriptive Statistics for the Complete Data Set</td>
<td>5-15</td>
</tr>
<tr>
<td>Table 5-7</td>
<td>Multiple Comparison Matrix for SPI—High and Very High Rating Relevance</td>
<td>5-21</td>
</tr>
<tr>
<td>Table 5-8</td>
<td>Multiple Comparison Matrix for CPI—High and Very High Rating Relevance</td>
<td>5-21</td>
</tr>
<tr>
<td>Table 5-9</td>
<td>Multiple Comparison Matrix for CPI for SPA</td>
<td>5-24</td>
</tr>
<tr>
<td>Table 5-10</td>
<td>Comparison of Mean Performance for Cost-type and Fixed-type Contracts</td>
<td>5-32</td>
</tr>
<tr>
<td>Table 5-11</td>
<td>Multiple Comparison Matrix for CPI for Real-Time Applications</td>
<td>5-38</td>
</tr>
<tr>
<td>Table 5-12</td>
<td>Comparison of Mean Performance for Ada and Non-Ada Applications</td>
<td>5-40</td>
</tr>
<tr>
<td>Table 5-13</td>
<td>Comparison of Mean CPI for Applications Less than and Greater than 100K LOC</td>
<td>5-43</td>
</tr>
<tr>
<td>Table 5-14</td>
<td>Summary of Nonparametric Analysis of Variance Results</td>
<td>5-44</td>
</tr>
<tr>
<td>Table C-1</td>
<td>Kruskal-Wallis for CPI for the Complete Data Set</td>
<td>C-10</td>
</tr>
<tr>
<td>Table C-2</td>
<td>Multiple Comparison Matrix for CPI for the Complete Data Set</td>
<td>C-10</td>
</tr>
<tr>
<td>Table C-3</td>
<td>Kruskal-Wallis for SPI for the Complete Data Set</td>
<td>C-10</td>
</tr>
<tr>
<td>Table C-4</td>
<td>Multiple Comparison Matrix for SPI for the Complete Data Set</td>
<td>C-10</td>
</tr>
<tr>
<td>Table C-5</td>
<td>Descriptive Statistics for the Complete Data Set</td>
<td>C-11</td>
</tr>
<tr>
<td>Table D-1</td>
<td>Kruskal-Wallis for CPI for High and Very High Rating Relevance</td>
<td>D-4</td>
</tr>
<tr>
<td>Table D-2</td>
<td>Multiple Comparison Matrix for CPI for High and Very High Rating Relevance</td>
<td>D-4</td>
</tr>
<tr>
<td>Table D-3</td>
<td>Kruskal-Wallis for SPI for High and Very High Rating Relevance</td>
<td>D-4</td>
</tr>
<tr>
<td>Table D-4</td>
<td>Multiple Comparison Matrix for SPI for High and Very High Rating Relevance</td>
<td>D-4</td>
</tr>
<tr>
<td>Table D-5</td>
<td>Descriptive Statistics for High and Very High Rating Relevance</td>
<td>D-5</td>
</tr>
<tr>
<td>Table E-1</td>
<td>Kruskal-Wallis for CPI for Software Process Assessment (SPA)</td>
<td>E-6</td>
</tr>
<tr>
<td>Table E-2</td>
<td>Multiple Comparison Matrix for CPI for Software Process Assessment (SPA)</td>
<td>E-6</td>
</tr>
<tr>
<td>Table E-3</td>
<td>Kruskal-Wallis for SPI for Software Process Assessment (SPA)</td>
<td>E-6</td>
</tr>
<tr>
<td>Table E-4</td>
<td>Multiple Comparison Matrix for SPI for Software Process Assessment (SPA)</td>
<td>E-6</td>
</tr>
<tr>
<td>Table E-5</td>
<td>Kruskal-Wallis for CPI for Software Capability Evaluation (SCE)</td>
<td>E-7</td>
</tr>
<tr>
<td>Table E-6</td>
<td>Multiple Comparison Matrix for CPI for Software Capability Evaluation (SCE)</td>
<td>E-7</td>
</tr>
<tr>
<td>Table E-7</td>
<td>Kruskal-Wallis for SPI for Software Capability Evaluation (SCE)</td>
<td>E-7</td>
</tr>
<tr>
<td>Table E-8</td>
<td>Multiple Comparison Matrix for SPI for Software Capability Evaluation (SCE)</td>
<td>E-7</td>
</tr>
<tr>
<td>Table E-9</td>
<td>Descriptive Statistics for Software Process Assessment (SPA)</td>
<td>E-8</td>
</tr>
<tr>
<td>Table E-10</td>
<td>Descriptive Statistics for Software Capability Evaluation (SCE)</td>
<td>E-8</td>
</tr>
<tr>
<td>Table F-1</td>
<td>Kruskal-Wallis for CPI for Less than 15% Change in Baseline</td>
<td>F-6</td>
</tr>
<tr>
<td>Table F-2</td>
<td>Multiple Comparison Matrix for CPI for Less than 15% Change in Baseline</td>
<td>F-6</td>
</tr>
<tr>
<td>Table F-3</td>
<td>Kruskal-Wallis for SPI for Less than 15% Change in Baseline</td>
<td>F-6</td>
</tr>
<tr>
<td>Table F-4</td>
<td>Multiple Comparison Matrix for SPI for Less than 15% Change in Baseline</td>
<td>F-6</td>
</tr>
<tr>
<td>Table F-5</td>
<td>Kruskal-Wallis for CPI for Greater than 15% Change in Baseline</td>
<td>F-7</td>
</tr>
<tr>
<td>Table F-6</td>
<td>Multiple Comparison Matrix for CPI for Greater than 15% Change in Baseline</td>
<td>F-7</td>
</tr>
<tr>
<td>Table F-7</td>
<td>Kruskal-Wallis for SPI for Greater than 15% Change in Baseline</td>
<td>F-7</td>
</tr>
<tr>
<td>Table F-8</td>
<td>Multiple Comparison Matrix for SPI for Greater than 15% Change in Baseline</td>
<td>F-7</td>
</tr>
</tbody>
</table>
List of Acronyms

ACWP ... Actual Cost of Work Performed
AFB ... Air Force Base
AFMC ... Air Force Materiel Command
AOV ... Analysis of Variance
ASC ... Aeronautical Systems Center
BAC ... Budget at Complete; Budget at Completion
BCWP ... Budgeted Cost of Work Performed
BCWS ... Budgeted Cost of Work Scheduled
CMM ... Capability Maturity Model
CPI ... Cost Performance Index
CPFF ... Cost Plus Fixed Fee
CPIF ... Cost Plus Incentive Fee
CPR ... Cost Performance Report
CWBS ... Contract Work Breakdown Structure
C/SCSC .. Cost/Schedule Control Systems Criteria
DoD ... Department of Defense
DSI ... Delivered Source Instructions
ECP ... Engineering Change Proposal
ESC ... Electronic Systems Center
FP ... Fixed Price [Contract]
HOL ... High Order Language
KSLOC .. Thousand Source Lines of Code
K-W ... Kruskal-Wallis
LOC ... Lines of Code
LRE ... Latest Revised Estimate
RDT&E .. Research, Development, Test and Evaluation
REVIC .. Revised, Enhanced Version of Intermediate COCOMO
RFP ... Request for Proposal
SCE ... Software Capability Evaluation
SDCCCR Software Development Capability/Capacity Review
SDCE ... Software Development Capability Evaluation
SEI ... Software Engineering Institute
SLOC ... Source Lines of Code
SPA ... Software Process Assessment
SPI ... Schedule Performance Index
SPO ... Systems Program Office
WBS ... Work Breakdown Structure
Abstract

The Software Engineering Institute's (SEI's) Capability Maturity Model (CMM) is widely used to measure an organization's software development process maturity. The Department of Defense (DoD) has adopted this model with the belief that a more mature software development process will result in a more successful software project. Although there is a growing body of anecdotal evidence supporting this presumed correlation, there is currently no empirical evidence. Thus, the goal of our research was to determine the nature of the correlation, if any, between software process maturity and software project success, where process maturity is based on a CMM rating and success is based on the parameters of cost and schedule. To investigate this correlation we identified software unique projects, obtained CMM rating information on the contractor, collected cost and schedule data from a time frame representative of the rating, and interviewed project personnel to collect project context information. Using plots of cost and schedule performance versus rating level and nonparametric statistical techniques we found that, within our dataset, a correlation does exist between software development process maturity and project performance. The nature of this correlation appears to be improved cost and schedule performance with higher software process maturity.
A CORRELATIONAL STUDY OF THE SEI'S Capability Maturity Model AND SOFTWARE DEVELOPMENT PERFORMANCE IN DOD CONTRACTS

1. Introduction

1.1 General Issue

The Department of Defense (DoD) is profoundly dependent upon computer software—a critical element of virtually every weapon system the DoD operates. DoD's reliance on software-intensive systems is increasing dramatically as the DoD tries to maximize the effectiveness of systems procured with the dwindling acquisition budget. Unfortunately, the trend in software-intensive procurements has been late, over-budget systems which fall short of customers' requirements. No single root cause has been identified for these programmatic failures, though resolving this dilemma is a high priority within the DoD.

In 1986, the DoD founded the Software Engineering Institute (SEI) as a center of excellence to address the problems that plague the procurement of DoD software. Key among its accomplishments is SEI's elaboration of a software development paradigm which holds that the quality of the software product is directly related to the maturity of the software development process. This concept is encapsulated in the SEI's Capability Maturity Model (CMM). The model characterizes an organization's process maturity based on several key characteristics, such as project management, configuration management, training, software quality assurance, and automation. This process of maturity assessment is formalized in standard protocols, which can be used by an organization to determine its own process maturity, or to assess the process maturity of
another organization. The level of process maturity is expressed by a numerical rating, which runs from 1 (lowest process maturity) to 5 (highest process maturity). Organizations which have the highest process maturity are considered most likely to produce the highest-quality software.

The SEI's CMM has been widely accepted as a significant step toward solving the problems plaguing the development of DoD software (Mosemann, 1992:4). By applying the process maturity assessment protocols to a potential software developer, the government obtains an assessment of the developer's capability to produce quality software. Procurement risk is thus reduced, and the probability of obtaining the desired software within the constraints of schedule and budget are increased. The key assumption is that there is a significant positive correlation between SEI CMM rating and the success of the software development.

1.2 Specific Problem

Very little empirical research has been performed to establish a correlation between CMM rating and the success of software product development in terms of cost, schedule, and product quality (Hersh, 1993:12). However, there is a small but growing body of anecdotal evidence supporting the correlation between the SEI's CMM rating, process maturity, and some measures of software development success (Dion, 1993:28-32; Humphrey, Snyder, and Willis, 1991:11). These reports are generally self-reported assessments by DoD software development contractors. Although these reports show improvement in bottom-line issues such as return on investment, they do not generally address the issue of whether the DoD's interests are served by such process improvements. Notwithstanding these success stories, the lack of empirical evidence has prompted one critic to claim that "... it appears unlikely that such ratings have any
meaningful correlation to the actual abilities of organizations to produce high quality software on time and within budget" (Bollinger, 1991:26).

1.3 Research Objectives

The purpose of our research is to establish the nature of the correlation, if any, between an organization's software development process maturity, as expressed by the SEI's CMM rating, and the success of the products the organization produces. For the purposes of our research, success is defined as the degree to which the project meets requirements, expressed in terms of cost performance, schedule performance, and quality parameters.

1.4 Scope/Limitations

We chose a research methodology which provided the greatest opportunity for meaningful information within our time and resource constraints. This limited our study to those organizations which met the following criteria:

a. Developed software for the DoD.

b. Were rated according to the SEI CMM protocols.

c. Tracked cost, schedule, and quality data in a standard format.

d. Reported relevant data to the DoD.

The above operational constraints led us to select DoD contractor organizations which provide software for Air Force Systems Program Offices (SPOs), where the desired cost, schedule and quality data were reported to the Air Force as part of the terms of the contract and in accordance with standard methods.
1.5 Overview

Our research establishes the nature of the relationship, between the SEI's CMM rating and software development success in selected DoD contractor organizations. Our intent is to provide the DoD software acquisition manager with a valid basis for important software acquisition and management decisions relating to contractor software development capabilities. We do this by providing insight into how well CMM ratings correlate to successful product development. This correlation was investigated by collecting data on a number of DoD contractors who had been rated by the CMM protocols, and the software products these organizations have developed while this rating has been in effect. We focus on cost, schedule, and quality performance exhibited during these sample projects. We also explore possible moderating variables (such as project size, application type, language, maturity assessment method, etc.) which could influence the correlation. These moderators may substantially affect the outcome of the software development, and thus should be taken into account. Acknowledging the limitations of our research, we hope to begin a continuing effort to validate the SEI's model and thus provide the software acquisition manager a reliable indicator for software development success.
2. Literature Review

2.1 Introduction

The Department of Defense is concerned about software success (within the procurement realm), and software effectiveness (within the operational realm) given its dependence upon software-driven systems, and the dwindling monetary resources to acquire and maintain them. As a result, the DoD has placed increasing importance on the improvement of the software development process. In the following discussion, the concept of software development process maturity will be discussed. It is important to distinguish between the concept of the software development process, and the maturity of this process. The term maturity in this case refers to the degree of refinement and sophistication of the software development process.

First, the software development process will be introduced. Several software development process models used to characterize the software development process will be described as well. Next, the concept of software development process maturity will be introduced. The SEI, and the CMM it developed to characterize software development process maturity will then be described, followed by applications and limitations of the model. Measurement of software development process maturity is then outlined. Some of the current concepts surrounding the measurement of project success based on cost/schedule and quality measures will then be introduced, along with a discussion of using cost and schedule parameters to assess process maturity. Following this, some
noteworthy case histories will be presented, wherein the application of the CMM paradigm resulted in significant process improvements. Limitations of the CMM will also be discussed. Finally, the latest information regarding correlations between process maturity and product effectiveness/success will be outlined.

2.2 *The Software Development Process*

A distinction must be made between the concept of the *software development process* and the concept of *software development process maturity*. This section describes the concept of the software development process. Simply stated, a software process is the set of methods, tools, and practices used to produce software products (Humphrey, 1989:3). The software development process, in general, is the process by which abstract requirements, or user needs are transformed into concrete software products. The software development process can be characterized by one of several popular models.

2.3 *Software Development Process Models*

Software development process models are symbolic constructs used to describe the process of transforming the abstract software requirements to concrete code. "Just as a software program defines a process that a computer must follow to achieve a result,
software process models define the process a software engineer must follow" (Lai, 1993:16).

Several models have been developed to describe the software development process. Below are some of the more prominent software models currently in use.

2.3.1 The Waterfall Model

The Waterfall model, described by Royce in 1970 is still the best known and most widely used framework for the software development process (Humphrey, 1989:249). It has "...become the basis for most software acquisition standards in government and industry" (Boehm, 1988:63). The Waterfall model is featured in the DoD standard for software development, DoD-STD-2167A (DoD, 1988:10). The foundation of the waterfall is the sequential series of steps that translate abstract software requirements into a software product (Figure 2-1).
2.3.2 The Spiral Model

The Spiral model was proposed by Boehm in 1988, "...based on experience with various refinements of the Waterfall model as applied to large government software projects" (Boehm, 1988:64). The Spiral model (Figure 2-2) superimposes iterative risk identification and mitigation activities (such as risk analysis and prototyping) over the sequential software development steps of the Waterfall model.
2.3.3 Prototyping

A software prototype implements part of the presumed software requirements to learn more about actual requirements or about alternative designs that could satisfy the requirements (Davis, 1992:71). Prototyping can be used in several ways, either as an element of a software development process model (as with the Spiral model), or as a software development process model in its own right (as with Evolutionary and Operational Prototyping described below).
Throwaway Prototyping: In Throwaway Prototyping, the prototype is built as quickly as possible, typically without great attention to quality and standards, in order to get immediate feedback from the user. This helps to understand and elaborate ill-defined user requirements. This "quick and dirty" solution is not suitable for long-term or operational use, and thus must be "thrown away." The information gained from the user is then used to write the requirements specification for the follow-on system, which will subsequently be built in a more quality conscious manner.

Evolutionary Prototyping: Evolutionary Prototyping is a more quality-intensive approach wherein the prototype implements requirements that are well-understood, and confirmed. The prototype is used to identify unknown requirements. These requirements, when identified, are rolled into the software requirements specification. The system is then redesigned, recoded, and retested. The evolutionary development process is repeated indefinitely, with new prototypes, new requirements, and an evolving design.

Operational Prototyping: Operational Prototyping is a synthesis of evolutionary and throwaway prototyping, and is used in situations where neither approach alone would be appropriate. A typical operational prototype approach involves developing and fielding a quality-intensive system (conforms to standards--fully tested and documented) which incorporates basic, well-understood requirements, and constitutes the "baseline" design. At the user's site, prototype enhancements are generated in near-real-time, by prototypers interacting directly with users. These prototype enhancements are made in response to user input, either identifying new requirements, or refining poorly understood
requirements. If these changes are found by the user to be effective, the requirements are incorporated into the design baseline. The prototype enhancement is thrown away when the new baseline is established. This process can continue indefinitely, with each successive enhancement adding new, user-driven capability.

2.4 Software Development Process Maturity

The concept of software development process maturity is used as a means of characterizing an organization's implementation of the software development process. Thus it is less dependent upon the software development process model (e.g. waterfall model, spiral model, etc.) than it is upon the particular organization with respect to how the organization implements and manages the model. For example, an organization may use a waterfall software development process model, the implementation of which may be either mature or immature, depending upon how the organization chooses to manage the process. The process maturity is a reflection of the organization itself, at a level more profound than the particular software development model to which the organization subscribes. A definition of software process maturity is "the extent to which a specific process is explicitly defined, managed, measured, controlled, and effective. Maturity implies a potential for growth in capability and indicates both the richness of an organization's software process and the consistency with which it is applied in projects throughout the organization" (Paulk, Curtis, Chrissis, and Weber, 1993:20).
The concept of process maturity evolved from the failure of software development process models to address the problems of late, over-budget, low quality software. Initially it was thought that by formalizing the software development process using these models, the problems of poor software would be resolved. It became clear that the formalization of software development models was not sufficient to create quality software. Consideration for how an organization uses a model is also necessary. To this end, the SEI was established by the DoD to introduce improved software development methods into general practice (Humphrey, Kitson, and Kasse, 1989:1).

2.5 The Capability Maturity Model

"In November 1986, the SEI, with assistance from Mitre Corp., began developing a process-maturity framework that would help developers improve their software process" (Paulk, Curtis, Chrissis, and Weber, 1993:18).

The framework developed by the SEI is based on two premises: "[First,] the process of producing and evolving software products can be defined, managed, measured, and progressively improved and [second] the quality of a software product is largely governed by the quality of the process used to create and maintain it" (Humphrey, Kitson, and Kasse, 1989:5). This process maturity framework is articulated in the SEI's CMM. The intent of the CMM is to provide a framework for characterizing a software development organization's process maturity. In his book Managing the Software
Process, Watts Humphrey details the five levels of process maturity contained in the CMM, the major points of which are summarized below.

Level 1--Initial - The initial process level could properly be called ad hoc, and is often chaotic. An initial-level organization often operates without formalized procedures, cost estimates, and project plans. Tools are neither well integrated with the process nor uniformly applied. Change control is lax, and there is little senior management exposure or understanding of the problems and issues. Organizations at the initial level can improve their performance by instituting basic project controls. The most important are project management, management oversight, quality assurance, and change control.

Level 2--Repeatable - The repeatable process provides control over the way the organization establishes its plans and commitments. This provides an improvement over the initial level, achieving a degree of statistical control through learning to make and meet their estimates and plans. The key actions required to advance from the Repeatable to the Defined process are to establish a process group, establish a development process architecture, and introduce a family of software engineering methods and technologies.

Level 3--Defined - The Defined process establishes the foundation for examining the process and deciding how to make improvements, thus opening the door for major and continuing progress. The qualitative nature of the Defined process, however, prevents the organization from measuring how much is accomplished, or how effective the process is. Key steps to advance from Defined to Managed are (1) to establish a minimum basic set of process measurements to identify the quality and cost parameters for each process step, (2) to establish a process database for cost and yield data, (3) to
provide sufficient process resources to gather and maintain this process data, and to advise project members on its use, and (4) to assess the relative quality of each product and inform management where quality targets are not being met.

Level 4--Managed - the Managed process gathers the process data and makes informed decisions about the process. One of the biggest challenges to the Managed process is the cost of gathering data. Key steps for advancing from the Managed to the Optimizing process are (1) the support of automatic gathering of process data, to improve the accuracy and quality of the data, and (2) the use of process data to both analyze and modify the process to prevent problems.

Level 5--Optimizing - The transition from the Managed process to the Optimizing process represents a paradigm shift. Whereas the data collection and analysis for the Managed process was focused toward facilitating product improvements, with the Optimizing process, the data is collected and used to tune the process itself. With an Optimizing process, the organization now has the means to identify the weakest elements of the process and fix them. At this point, data is available to justify the application of technology to various critical tasks, and numerical evidence is available on the effectiveness with which the process has been applied (Humphrey, 1989:6-12).

According to Humphrey, the above levels were selected because they:

- represent the actual historical phases of a software organization's evolution,
- represent an achievable measure of improvement from the prior level,
- suggest interim improvement goals and progress measures, and
- identify a set of improvement priorities (Humphrey, 1989:5).
Thus, the characteristics of the above maturity levels enable the CMM to be used not only as a tool to assess an organization's current process maturity, but also to recommend avenues by which the process can be improved.

2.5.1 Process Maturity Measurement

The CMM consists of a hierarchical structure that allows an assessment team to evaluate an organization's process maturity. At the top are the five individual *maturity levels* describing how the organization is expected to function. With the exception of Level 1, the five maturity levels are decomposed into *key process areas* which indicate where an organization should focus to improve its process. For example, the key process areas at Level 2 focus on establishing basic project-management controls and include Requirements Management, Software Project Planning, Software Project Tracking and Oversight, Software Subcontract Management, Software Quality Assurance, and Software Configuration Management (Paulk, Curtis, Chrissis, and Weber, 1993:25).

Each key process area is composed of *key practices* that must be followed to satisfy the goals of the key process area. "Key practices describe the infrastructure and activities that contribute most to the effective implementation and institutionalization of the key process areas" (Paulk, Curtis, Chrissis, and Weber, 1993:26). Key practices can be viewed as the working definitions of the key process areas (Honour Werth, 1993:12).

At the heart of the assessment though, is the *maturity questionnaire*. The maturity questionnaire consists of questions that enable the assessment team to identify the
presence or absence of key practices and determine whether the goals of the key process area are being satisfied. "Questions are not open-ended, but are intended to obtain a quantified result from following answers: yes, no, don't know, and not applicable" (Honour Werth, 1993:12). These initial responses serve as the basis for a more detailed open-ended question process between the assessment team and key members of the organization being evaluated.

The result of a process maturity assessment is the assignment of a maturity level rating. The assessment team uses the responses from both the personal interviews and the maturity questionnaire along with results of document reviews to determine if an organization is meeting the goals of specific key process areas. In order to attain a particular maturity level rating, such as Level 2, the organization must meet the goal of each Level 2 key process area identified in the CMM.

2.5.2 Applications of the CMM (SPA and SCE)

A process maturity model is merely of academic interest unless it can be meaningfully applied to real-world organizations. Thus, "the operational elaboration of the CMM is designed to support the many ways it will be used[,] four of which are[:]

- Assessment teams will use it to identify strengths and weaknesses in an organization.
- Evaluation teams will use it to identify the risks of selecting among contractors and to monitor contracts.
• Upper management will use it to understand activities necessary to launch a process-improvement program in their organization.

• Technical staff and process-improvement groups will use it as a guide to help them define and improve their organization's process" (Paulk, Curtis, Chrissis, and Weber, 1993:24).

The operational elaboration of the CMM is expressed by two distinct assessment methods, the first of which is the Software Process Assessment (SPA). A SPA is used by an organization to determine its own process maturity, gain insight into its development capability, and prioritize management actions for transition to the next maturity level. The second method is the Software Capability Evaluation (SCE). A SCE is an independent evaluation of an organization's process maturity to gain insight into its ability to produce domain specific software. A SCE is initiated and funded by the Government, and is used as a criterion during contract award (Besselman, Byrnes, Lin, Paulk and Puranik, 1993:6-7).

2.5.3 Limitations of the CMM and its Application

The CMM has been widely used as a framework for process assessment and improvement as well as a tool for bidder maturity assessment in Government procurement projects. However, the model is not without its limitations. As this model has been put into practice it has become evident to the SEI that a SPA and a SCE may not result in the same maturity level rating, because of differences in the motivation for the
use of each rating method. As previously stated, a SPA is an internal assessment while a SCE is an external audit. This contrast in application leads to dissimilar approaches to certain aspects of the assessment or evaluation, including the selection of projects, the investigative methods used, and the level of familiarity with the development organization (Besselman, Byrnes, Lin, Paulk and Puranik, 1993:24).

Project Selection: A SPA is intended to characterize the organization's software development process maturity as a whole. As a result, projects are selected on their overall representativeness of the organization and may come from multiple software application domains. In contrast, a SCE is performed for the purpose of identifying an organization's software development capability with regards to a particular Government procurement. Project are thus selected for evaluation based on their similarity to the anticipated procurement.

Investigative Methods: A SPA utilizes one-on-one interviews and group discussions to determine the process maturity level of the organization under consideration. This is done in order to promote an organization's awareness of their maturity level while also encouraging an atmosphere of process improvement within the organization. A SCE, on the other hand, utilizes one-on-many interviews and relies heavily on document reviews to objectively determine the process maturity level of an organization. A SCE is not as much concerned with process improvement as it is the objective determination of an organization's software development capability.

Familiarity with Development Organization: A SPA is often conducted by personnel from within the organization who are trained in the CMM methodology. As a
result, the assessment team is usually very familiar with the organization and may make assumptions about how things work rather than rigorously following the CMM methodology to reach their findings. In contrast, a SCE is conducted by individuals outside the organization who have little, if any, familiarity with processes used within the organization under consideration. Accordingly, the assessment team must be more thorough in their search for objective evidence of process maturity.

The above differences in the conduct of a SPA versus a SCE has led the SEI to say, "By far the most important lesson learned confirmed what we suspected: comparing the results of evaluations to assessments is like comparing apples to oranges, especially when viewed through the maturity-level lens" (Besselman, Byrnes, Lin, Paulk and Puranik, 1993:24).

Another criticism of the CMM is its failure to adequately discriminate between maturity levels. To progress from a lower to a higher maturity rating, *all* the characteristics of the higher level must be met. For example, an organization may exhibit some of the characteristics of a Level 3 process, but the failure to meet all of the requirements of a Level 3 results in a Level 2 rating (Bollinger, 1991:31). As a result, some organizations have informally identified their process maturity in terms of intermediate ratings, such as 1.8 or 2.5. This may reflect the desire by organizations to justify the amount of time and effort invested in the software development process--to show some degree of improvement in their process maturity. Bollinger also states that "...while the SEI process maturity model is clearly intended to help design-intensive
organizations become better at developing software, in reality it appears to strongly favor maintenance processes with relatively narrow product definitions" (Bollinger, 1991:27).

In response to perceived limitations of the CMM, and in particular, the SCE as a capability assessment tool, Air Force Materiel Command (AFMC) undertook the development of their own process capability assessment tool. AFMC's perception is that the CMM does not adequately address the systems engineering aspect of software development and is focused on organizational versus program-specific capabilities (ASC, 1993:12). Despite these concerns and the emergence of process maturity model variants, the CMM is still widely regarded as a useful model of organizational software development process maturity.

2.5.4 Other Capability Assessment Methods

The CMM's SCE and SPA are not the only process maturity assessment methods currently in use within the DoD. In 1983, the Aeronautical Systems Center began using the Software Development Capability/Capacity Review (SDCCR) as a tool to "assess an offeror's specific capability and capacity to develop software required on a particular weapons system program as defined in the [Request for Proposal] RFP" (ASC, 1992:1). Unlike the CMM SCE, which is also used for source selection, ASC's SDCCR does not assign a maturity rating, but rather, produces a written report which is incorporated into the final source selection. This report evaluates eight major areas including management approach, management tools, engineering development process, personnel resources, Ada
personnel resources, Ada technology, flight critical software, artificial intelligence
technology, and complex hardware development (ASC, 1992:9).

Due to perceived shortcomings of both the SCE and the SDCCR, AFMC recently
developed a new assessment method, the Software Development Capability Evaluation
(SDCE). The SDCE is primarily based on the CMM and the SDCCR and is also used
during source selection to determine the strengths, weaknesses, and risks of offerors. It is
organized into six functional areas: Program Management, Software Engineering,
Systems Engineering, Quality Management and Product Control, Organizational
Resources and Program Support, and Program Specific Technologies (AFMC, 1993:3).
Unlike either the SCE or the SDCCR, the SDCE recognizes the increasing importance of
software engineering in the total systems engineering process.

The SDCE has been approved for use on a few AFMC pilot programs after which
the results will be assessed and its applicability for AFMC-wide use will be determined.

2.6 Project Success

What constitutes project success in the software realm? In the general
management realm, the parameters of cost, schedule, and quality figure prominently in
the descriptions of project success: A project is usually considered successful when it
satisfies project objectives expressed in terms of the three critical parameters of time,
cost, and performance; but may include other criteria as well, such as end-item quality
(Nicholas, 1990:472). In the software realm, "...the requisites are accurate measures of
software cost, schedule, and quality" (Mosemann, 1994:3). In recent years, the parameter of quality has taken on particular importance. "Product quality should be the focus of all process improvement" (Hersh, 1993:12). "We believe the 1990's will be the quality era in which software quality is quantified and brought to the center of the development process" (Basili and Musa, 1991:91). Thus appropriate measures of software product success appear to be the same as those for any other product: cost, schedule, and quality.

2.6.1 Measures of Cost and Schedule Performance

In order to measure cost and schedule performance, two steps must be followed. First, one must set a performance baseline, and second, one must compare this baseline with actual performance. In project management, the projected rate of funds expenditure (the baseline) is expressed in the Budgeted Cost of Work Scheduled (BCWS). The BCWS can be expressed as the planned expenditure of funds over time, based on the completion of the planned work packages. The Budgeted Cost of Work Performed (BCWP) represents the earned value of the work performed, and is an estimate of the work completed (expressed in dollars). The difference between the BCWS and the BCWP is the schedule variance, expressed in dollars, and represents the amount of work which was scheduled, but not performed. The ratio of BCWP to BCWS defines the degree to which a project is ahead of or behind schedule, and is called the Schedule Performance Index (SPI). A SPI of less than 1.00 implies that for every dollar of work scheduled, less than one dollar has been earned—a schedule overrun. A SPI of more than

2-18
1.00 implies that for each dollar of work scheduled, more than one dollar of work has been earned—a schedule underrun. A SPI of 1.00 implies an “on target” condition. A third variable used to measure cost performance, is the Actual Cost of Work Performed (ACWP). ACWP is the sum of funds actually expended in the accomplishment of the planned work tasks. Cost Variance is the difference between what the project was expected to cost (BCWP), and what the project actually cost (ACWP). Deviations in the actual versus planned cost can be expressed in the ratio of BCWP to ACWP, and is called the Cost Performance Index (CPI). Similar to SPI, a CPI of less than 1.00 implies that for every dollar of value earned, more than one dollar was actually spent—a cost overrun. A CPI of more than 1.00 implies that for every dollar of value earned, less than one dollar was spent—a cost underrun. A CPI of 1.00 implies an “on target” condition. The indices of CPI and SPI defined above are the standard cost/schedule performance measures for both government and industry (Nicholas, 1990:376-389).

2.6.2 The Effect of Process Maturity on Performance

The value of the performance index CPI indicates whether a project is underbudget, overbudget, or on target. Similarly, the value of the performance index SPI indicates whether a project is ahead of schedule, behind schedule, or on target. Given that the goal of any project is to meet the target budget and schedule, an organization's success can be measured by evaluating the CPI and SPI of a particular project. The closer the CPI and SPI are to a value of 1.00, the more successful the project can be considered,
at least in terms of cost and schedule. Thus, it is reasonable to expect that as an organization's process matures, its success or ability to consistently meet target budgets and schedules will increase.

The concept of increasing process maturity resulting in better and more predictable cost and schedule performance can be applied to the CMM's five software process maturity levels (Paulk, Curtis, Chrissis, and Weber, 1993:23). Paulk et al. describe a positive relationship between process maturity and performance. As an organization matures from Level 1 to Level 5, the difference between target results and actual results decreases (i.e., CPI and SPI move closer to 1.00), and the variability of the actual results about the target decreases (i.e., performance becomes more predictable). Graphically, the relationship between maturity and performance can be thought of as a probability distribution whose central tendency at Level 1 is somewhere below the target and whose distribution exhibits a high variance (Figure 2-3). At Level 2, the central tendency of the distribution is now on or very near the target, but the distribution still exhibits a high degree of variance. At Level 3, the central tendency of the distribution is the same as the target, and the variance of the distribution is less than at Level 2. At Levels 4 and 5, the central tendency remains the target and the variance continues to decrease as an organization strives to optimize its process.
Figure 2-3 The Effect of Process Maturity on Performance
2.6.3 Measures of Quality

Quality is very difficult to define, much less measure quantitatively. According to Weinberg, "Quality is conforming to some person's requirements...for each person, the same product will generally have different quality...what is adequate quality to one person will be inadequate quality to another" (Weinberg, 1992:5,6). Many measures of quality have been proposed: defect rate, cost, early completion, ease of use, and user satisfaction are but a subset of common quality measures.

"Although defect rates are common measures of quality, quality is not a single idea, but a multidimensional concept" (Basili and Musa, 1991:91). Therefore, no one measure, or limited subset of measures, is globally embraced as the *sine qua non* of product quality measurement. "But whatever the criteria, it is clear that the number of problems and defects associated with a software product varies inversely with perceived quality" (Carleton, Park, and Goethert, 1993:30). Without a universally accepted measure of quality, organizations measure the quality of their product using metrics they perceive as most meaningful. Defect rate, though imperfect as a measure of quality, is relatively easy to measure, is intuitively related to product quality, and thus is not an unreasonable metric for assessing software product quality.
2.7 Anecdotal Evidence

There is accumulating anecdotal evidence supporting the use of the SEI's software process maturity framework as a means to process improvement. These success stories paint an intriguing picture of dramatic improvement and return on investment due to increases in process maturity.

2.7.1 Raytheon

In 1988, Raytheon performed a self-assessment of their Software Systems Laboratory (SSL) division using the SEI's process maturity framework. The SSL rated itself a Level 1. Based on these results, Raytheon initiated a software process improvement program to address the areas of the self assessment that were identified as needing improvement, including policy and procedures, training, tools and methods, and process database (metrics) (Dion, 1993:29).

Between 1988 and 1993, Raytheon invested nearly $1 million per year towards process improvement. This investment moved the SSL from a Level 1 to a Level 3 SEI maturity level. More importantly though, Raytheon estimates that during this period rework costs as a percentage of total development cost has decreased from 41 percent to 11 percent, resulting in an estimated savings of $15.8 million (Dion, 1993:32). In addition, the process improvement initiative has resulted in a two-fold increase in productivity and a $7.70 return on every dollar invested (Dion, 1993:28).
2.7.2 Hughes

In 1987, the Software Engineering Division (SED) of Hughes Aircraft in Fullerton, CA, paid the SEI $45,000 to undergo a software process assessment. The SEI found Hughes SED to be a SEI Level 2, and made the following recommendations:

- establish quantitative process management,
- establish a technical group to be the focus for process improvement,
- review software training requirements,
- insure the SED is involved in the specification development of all new software projects, and
- apply consistent and uniform review practices to the software development process (Humphrey, Snyder, and Willis, 1991:13).

Hughes agreed with these recommendations and implemented an action plan that expended 78 man months of effort over the next two years and cost approximately $400,000.

In 1990, Hughes SED underwent a second assessment which placed the organization at a strong Level 3. As a result of their process improvement efforts, Hughes experienced improved working conditions, higher employee morale, and better cost and schedule performance. The improvement in cost performance was measured by an increase in the CPI from .94 to .97, which translates into an estimated annual savings of about $2 million (Humphrey, Snyder, and Willis, 1991:22).
2.8 Correlational Evidence

Although there exists a growing body of anecdotal evidence that suggests a higher maturity rating results in more successful products, there is currently no established statistical correlation between these two. This lack of statistical correlation is not due to a lack of interest in such correlation: "We're finding that there's not much data out there by which we can measure process-improvement activities" (Hersh, 1993:12); "...[CMM ratings] for organizations are so riddled with statistical and methodological problems that it appears unlikely that such ratings have any meaningful correlation to the actual abilities of the organizations to produce high-quality software on time and within budget" (Bollinger and McGowan, 1991:26).

2.9 Summary

The DoD is serious about improving the current state of the software engineering practice. According to Deputy Assistant Secretary of the Air Force, Lloyd K. Mosemann II: "The Pentagon wants:

- Predictable cost.
- Predictable schedule.
- Predictable performance.
- Predictable support and sustainment.

In other words, predictable quality!" (Mosemann, 1992:2).
To this end, the SEI's process maturity framework and the CMM have been identified as a means to achieve these goals. This is promulgated in a proposed policy requiring bidders on all Air Force software contracts to have been assessed at an SEI Level 3 or higher by 1998 (Mosemann, 1992:4). This policy will dramatically influence corporate decisions among DoD contractors, and will fundamentally alter the process by which the Air Force contracts for software. Given that this policy is unsupported by empirical evidence, we believe it is valuable to apply a rigorous research methodology to investigate the presumed correlation upon which this policy depends.
3. Methodology

3.1 Overview

Our research involved the collection of secondary, historic data from DoD software development contracts. These data consist of (1) pre-established contractor process maturity ratings (as defined by the SEI's CMM), and (2) cost, schedule, and quality data provided as contract deliverable data. This data was then used to determine if a correlation exists between a contractor's software development process maturity rating and overall software project success. Additionally, moderating data was gathered to enable sample stratification, to gain insight into factors affecting the correlation. Success, for the purposes of our research, is defined by cost, schedule, and quality performance.

Our research methodology consists of four phases: an exploratory phase, a research design phase, a data-gathering phase, and a data analysis phase. These are discussed below.

3.2 Exploratory Phase

The exploratory phase of our research involved review of the relevant literature and discussions with several DoD experts in the field of software development/management. The purpose of this phase was to (1) understand the CMM, how it evolved, and the manner in which it is currently being used; (2) assess the
limitations of the CMM, and identify alternative models which are proposed or are currently in use; (3) establish the current state of quantitative analysis supporting the correlation between process maturity and product success; (4) identify the appropriate measures for defining software project success and; (5) determine if quantitative data is available, of such quantity/quality to allow analysis by statistical methods. Items (1) through (4) were addressed in the previous chapter. Item (5) is addressed in Chapter 4.

3.3 Research Design Phase

The goal of the research design phase was to establish a research design which answers the research question "does a correlation exist between process maturity rating and software project success?" The CMM has gained acceptance because of the intuitive and anecdotally-supported understanding that a more mature software development process will, as a matter of course, produce better software. To validate this presumed correlation, it would be meaningful to analyze the historical record and determine if the presumed correlation is statistically confirmed.

In order to establish a correlation having statistical validity, a large body of data must be gathered. This amount of data exists in an historical context. There is a wealth of secondary, historical data, generated as a by-product of the DoD software procurement process. This data is in a relatively consistent format (often mandated by government standards), and was available to us via the procuring organization.

By gathering historical contract data, we have taken advantage of several notable characteristics which may not apply to other forms of secondary data. These
characteristics are validity, relevance, and reliability. The validity of contract data is defined by the degree to which it adequately describes contractor performance. Project managers define project success in terms of cost, schedule, and quality, as reported by contract data. Thus cost, schedule, and quality data are relevant and valid from the project manager's perspective. The reliability of contract data is enhanced because the collection, content, and reporting are governed by DoD guidelines, and because the same criteria for cost and schedule measurement and reporting are mandated across all contracts. These guidelines and criteria, known formally as Cost/Schedule Control Systems Criteria (C/SCSC), establish a generally consistent format across all government procurements, thus allowing comparison of data from different contractors and different contracts.

Contract data is not perfectly homogeneous and perfectly consistent, however. As the designation indicates, C/SCSC is a set of criteria for cost/schedule progress measurement and reporting. It does not impose a "standard" cost and schedule control system, but rather, defines a set of minimum standards for the cost and schedule management systems used by government contractors (Christensen, 1993:7). Thus, variations can be expected between contractors' reporting systems which may not be fully accounted for in our methodology. Some of these variations will manifest themselves in the cost and schedule performance indices, where others may not. Part of our analysis includes evaluation of outliers, and analysis of clusters to determine if some confounding effect, not captured by our initial methodology, is at work.
3.3.1 Selection Criteria for Sample

An important criterion for sample selection was that the contractor had been rated using the SEI’s CMM. The CMM has been in existence since 1987. During this time, it has been applied to DoD software contractors on a limited basis. Therefore, the population of contractors which have been rated is relatively small. The available data set was further restricted by the following criteria:

1. Contractors must have produced software for the DoD within the same timeframe as the SEI rating (for the purposes of this study, from six months prior to six months after the rating is established).
2. Above procurements must have reported cost/schedule data per C/SCSC.
3. Costs must have been reported in sufficient detail as to identify software-specific efforts.

We recognized software quality data, unlike cost and schedule data, is not collected in a consistent format, specified by government-imposed criteria. Therefore, we did not reject potential respondents based upon the absence of consistent quality data.

The Cost Libraries at ASC and Electronic Systems Center (ESC) provided an excellent means to rapidly identify potential data points. At the Cost Libraries, we could quickly identify those programs which met constraints two and three above. Since cost performance reports (CPRs) are required for contracts which comply with C/SCSC, we were able to quickly identify programs which met criterion two (C/SCSC reporting) by searching through the library of CPRs. By identifying software-specific work breakdown structure (WBS) elements during
this search, we also identified those programs which met criterion three (software specificity). Thus, the Cost Libraries enabled us to restrict our direct inquiries of the program offices solely to the matter of SEI rating and criterion one (temporal association).

During our consultation with experts, we were exposed to general pessimism that we could obtain a data set of sufficient size upon which to perform valid analysis. According to the consensus, relatively few contractors were rated, and of those, few could be expected to report software development costs to sufficient detail as to be distinguishable from non-software efforts. As we report in Chapter 4, our net data yield did not conform to the consensus. We found sufficient data for this study.

3.3.2 Quantitative Measures

An objective of our research was to gather indicators of software project success. As previously established, cost, schedule, and quality are generally accepted as measures of success. Accepted Government and industry-wide standard measures of cost and schedule performance are the cost performance index (CPI) and the schedule performance index (SPI). These indices are reported in the CPR, and are defined as follows (see section 2.3.1 for further detail on how these measures are derived):

\[
\text{CPI} = \frac{\text{BCWP}}{\text{ACWP}}
\]

\[
\text{SPI} = \frac{\text{BCWP}}{\text{BCWS}}
\]

where: ACWP = Actual Cost of Work Performed.
BCWP = Budgeted Cost of Work Performed.

BCWS = Budgeted Cost of Work Scheduled.

Quality measures are not as universally-accepted as those for cost and schedule. One measure, software defect rate, is typically gathered to monitor software development progress during the coding and test phases. Defect rate is defined in terms of the number of software defects or errors per quantity of code generated, typically expressed in errors per thousands of source lines of code (KSLOC). Different organizations may define the terms "error", and "source lines of code" differently. Furthermore, this data may or may not be formally reported to the government, and the format may vary. In some cases, the data was reported and tracked at the Defense Plant Representative Office, and only extraordinary variances from the established norms or targets were reported to the program office. For our research, we gathered quality data in varying formats. However, for many of the sample programs, data on product quality was not available, or was in such a format that was difficult to legitimately normalize. Thus, we drew our project success conclusions solely upon the basis of cost/schedule information.

3.4 Data Gathering Phase

The following are the general steps we used to collect data. We started with a representative sample of contractor organizations, collecting data on relevant projects, both from the appropriate cost library, and from the program office. The steps can be summarized as follows:
- Identify contracts which report software development costs as a discrete contract work breakdown structure (CWBS) element.
- For each contract identified, establish whether the contractor has been rated per the CMM methodology.
- Collect cost/schedule information for timeframes relevant to the ratings.
- Collect moderating data which may be used to characterize the software development project--to enable sample stratification.

The steps are depicted in figure 3-1.
The steps in figure 3-1 are elaborated in the subsequent sections. It is significant to note that the linear nature of the data collection activity is representative of the logical flow of the data identification and collection process. Efficient data identification and collection required that, throughout the process, multiple candidate programs would be in various stages of the data identification and collection pipeline at any given time.

3.4.1 Software Development Project Identification

Programs which track cost and schedule progress per the C/SCSC criteria are required to archive historical cost performance reports (CPRs) at the Cost Library for their product division. This represents a rich resource for cost/schedule information, which can be efficiently scanned for programs which meet the cost reporting criteria established above. By reviewing archive data we were able to identify contracts which report software development costs as a discrete contract work breakdown structure (CWBS) element.

At the ASC library, we searched the catalog of current programs alphabetically, pulling the CPRs for each program which reported within the 1987-present timeframe. Prior to 1987, the programs would not have been rated by the CMM methodology. Examining the CPRs, we quickly determined, by the titles of the contract work breakdown structure, if software costs were reported as
distinct elements. If a CWBS dictionary was available, we checked the dictionary
definition to verify the element was exclusively software. We noted those
programs with software-distinct CWBS elements, logging the program name, the
contract number, and the numbers and titles of the CWBS elements that appeared
to be software-related.

Our methodology was somewhat different at the ESC library, since the
data had to be gathered during the course of a two-day temporary duty visit. We
obtained a list of candidate programs from a point of contact (to remain
anonymous) at ESC. With this list, we searched the database at the ESC Cost
Library to identify which of these programs reported software costs as distinct
WBS elements. From that point, the identification of candidates was the same as
that employed at ASC.

3.4.2 Contractor Rating Verification

For each contract which reported software development costs as discrete
CWBS elements, we contacted the responsible systems program office (SPO).
The purpose of contacting program personnel is twofold: first, permission to
gather data for research purposes must be obtained. Second, the program
personnel must provide valid SEI rating information, including the date of the
rating, the method by which the rating was obtained, and other relevant program
information which would provide additional insight into the program (moderating variables).

We traced the system program office through the contract number identified on each CPR, and eventually got in contact with the appropriate program personnel. The process of finding the appropriate knowledgeable personnel, and getting into contact with them to obtain rating information and moderating information was the most challenging aspect of the data gathering phase. The first problem was finding the right person. Since our data involved technical, programmatic, and cost information, we had to find the technical project officer for software development, as well as the program control person. To reach these people, we often had to convince the program director to allow us to talk about program issues with their personnel. Many programs are very sensitive to disclosing their cost and schedule performance to alien agencies. In many cases, we had to dispel concerns about disclosing potentially inflammatory information about the program, and went to great lengths to assure their program anonymity.

Some project managers did not know of the CMM, or their contractor’s ratings, while some were very familiar. In most cases, we obtained rating information directly from the project manager, although in some cases the project manager had to contact the contractor to get CMM rating information. In several cases, we had to contact the government’s SETA (Scientific, Engineering, and Technical Assistance) contractor for project information. In one case, with the project manager’s authorization, we contacted
a rated contractor directly. It is important to note that we did not attempt to independently verify the rating information provided by the program personnel.

3.4.3 Rating-to-Project Relevance

For each project, the validity of the correlation between the CMM rating and project cost/schedule performance depends upon whether the project under consideration was used in the CMM rating process. This associative relevance was deemed a necessary moderator to account for the degree of association the rating had with the project under consideration. Four scenarios define the four degrees of rating-to-project relevance:

1. Very High Rating-to-Project Relevance--the project under consideration was itself rated using the CMM rating process. Thus the organization’s rating is based solely upon the project under consideration.

2. High Rating-to-Project Relevance--the project under consideration was one project of several used in obtaining the CMM rating for the organization.

3. Medium Rating-to-Project Relevance--the project under consideration was not used to establish the CMM rating, but the organization or personnel which participated in the project were also responsible for projects evaluated in the CMM rating of interest.

4. Low Rating-to-Project Relevance--neither the project, nor the personnel responsible for the project under consideration were used to obtain the organization’s CMM rating. In this case, the rating for the contractor as a
whole is considered to apply to the organization responsible for the project under consideration.

We recognized that programs with medium and low rating-to-project relevance may adversely affect the validity of the correlation between rating and performance. At the outset, our concern for the scarcity of data militated against eliminating medium and low relevance projects from consideration. Instead, characterizing the relevance of the data enabled sample stratification which enabled us to account for any relevance-related effects.

3.4.4 Collection of Success Indicators

For each contractor identified as having been rated per the SEI CMM methodology, whose program tracks software development costs by discrete CWBS elements, and whose rating date(s) has been identified, we were then able to gather CPI and SPI data relevant to the rating timeframe. As previously stated, CPI and SPI are derived from cost and schedule data, available in CPRs maintained in the ASC and ESC Cost Libraries. To get data that is representative of the contractor's performance which contributed to the CMM rating, we gathered cumulative cost/schedule data from three and six months prior to and after the rating date. By taking the difference between the cumulative cost/schedule data collected six months after the rating and six months prior to the rating, we were able to calculate performance indices that are representative of a twelve month period of performance. This temporal linkage should provide good
correlation between the CMM evaluation and contractor cost/schedule performance, while also providing, to some degree, attenuation of any month-to-month variability in the performance indices. Note that cost/schedule data was collected at three and six month intervals prior to and after the rating in order to provide insight into the behavior of the cost/schedule data over the period of interest. However, performance index calculations were derived from the data taken at six months prior to and after the rating date, giving a 12-month "snapshot" of cost/schedule performance.

Quality metrics, the third success indicator, is not reported in the CPRs, and had to be collected during the project manager interview. Until recently, there has been no formal policy directing the standardized measurement and reporting of quality metrics (Mosemann, 1994:3). We acknowledged that there would likely be a variety of quality metrics reported, and we attempted to obtain some common criteria, such as Defects per Standard Line of Code or Defects per Module. However, there was no consistency to the quality data, and normalization was not possible. Thus the success determination was derived from cost and schedule data alone.

3.4.5 Moderating Data

Although cost and schedule data are intended to characterize projects success, other moderating factors may affect cost and schedule performance. In the course of our literature review and exploratory phase, we identified several factors which may influence project success.
We conducted personal interviews with program and technical managers of each project using a standardized data collection form to guide the interviews and record data pertaining to the moderating variables. During the course of the interviews, some moderators had to be deleted because, in our view, they provided too close a link to the project, and thus would compromise the anonymity of the respondents. Acquisition category was such a moderator. We felt that a reasonably knowledgeable reader could deduce the identity of a respondent by comparing the acquisition category, application type and year of rating. We felt that these three data in combination could uniquely identify a respondent. The final set of moderators used in the analysis is given in table 3-1.
<table>
<thead>
<tr>
<th>Moderating Variable</th>
<th>Description</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating Type</td>
<td>SPA (internal) SPA (external), SCE</td>
<td>Method of rating determination is believed to affect rating level.</td>
</tr>
<tr>
<td>Rating Relevance</td>
<td>Low, Med, High, Very High</td>
<td>Relevance of rating could affect reliability of rating</td>
</tr>
<tr>
<td>Acquisition Phase</td>
<td>RDT&E, Production, O&M</td>
<td>Different phases of acquisition may affect cost/schedule.</td>
</tr>
<tr>
<td>Contract Type</td>
<td>Fixed Price; Cost Plus; Incentive/Award Fee</td>
<td>Different contract/fee arrangements may affect cost/schedule.</td>
</tr>
<tr>
<td>Software Lifecycle</td>
<td>Requirements; Design; Code; Test Support</td>
<td>Different phases of software lifecycle may affect cost/schedule.</td>
</tr>
<tr>
<td>Language</td>
<td>Ada, Fortran, Jovial, C++, Other</td>
<td>Programming Language used may affect cost/schedule.</td>
</tr>
<tr>
<td>Language Percentage</td>
<td>Percentage of project coded in dominant language</td>
<td>Programming Language used may affect cost/schedule.</td>
</tr>
<tr>
<td>Application Type</td>
<td>Avionics, Command & Control, Database, Simulation, Other</td>
<td>Different application types may affect cost/schedule.</td>
</tr>
<tr>
<td>Project Budget</td>
<td>Budget at Completion</td>
<td>Monetary size of project may affect cost/schedule.</td>
</tr>
<tr>
<td>Budget Volatility</td>
<td>Low, Medium, High</td>
<td>Uncertainty/reduction in funding may affect cost/schedule.</td>
</tr>
<tr>
<td>Size</td>
<td>Lines of Code (LOC)</td>
<td>Size of program may affect cost/schedule.</td>
</tr>
<tr>
<td>Percentage New Code</td>
<td>Percentage New/Modified Code</td>
<td>Percentage of new/modified versus reused/lifted software may affect cost/schedule</td>
</tr>
<tr>
<td>Requirements Volatility</td>
<td>Low, Medium, High</td>
<td>Uncertainty/changes in project requirements may affect cost/schedule</td>
</tr>
<tr>
<td>Rebaselining</td>
<td>Rebaseline during period of interest? Yes/No</td>
<td>Changes in program baseline may affect cost/schedule data</td>
</tr>
<tr>
<td>Quality Standards</td>
<td>On contract? Yes/No</td>
<td>Quality standards on contract may influence procurement</td>
</tr>
<tr>
<td>Quality Parameters</td>
<td>Reported to Program Office? Yes/No</td>
<td>Quality parameters reported to the program office may influence procurement</td>
</tr>
<tr>
<td>Program Activity</td>
<td>>.01 of budget expended over 12 month period</td>
<td>Programs with little activity may skew CPI and SPI numbers</td>
</tr>
<tr>
<td>Percent Complete</td>
<td><25% BAC expended</td>
<td>Stability of CPI and level of SPI are affected by the percentage complete</td>
</tr>
<tr>
<td></td>
<td>25% to 75% BAC expended</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>75% BAC expended</td>
<td></td>
</tr>
<tr>
<td>Baseline Volatility</td>
<td><80% Change in BAC</td>
<td>Stability of the program baseline may affect cost/schedule data</td>
</tr>
<tr>
<td></td>
<td>>80% Change in BAC</td>
<td></td>
</tr>
</tbody>
</table>

3-15
3.5 Data Analysis Phase

CMM rating data is at best ordinal in nature. Hence, statistical analysis techniques such as multiple linear regression, which require interval or ratio data, cannot be rigorously applied. However, a combination of descriptive and non-parametric techniques are adequate to establish the presence or absence of a statistically significant correlation of software development process maturity and software product success. Moderating variables were used to stratify the sample to obtain insight into the factors affecting the correlation of the CMM ratings with cost and schedule data. The results of the analysis is presented in Chapter 5.

Some of the tools to be used in the course of the analysis include:

- Scatter Plot of the dataset: CPI and SPI versus Rating
- Histogram of the frequency density for each rating level
- Box and Whiskers plot of the dataset
- Wilk-Shapiro evaluation of normality at each level
- Kruskal-Wallis Test
- Multiple Comparison Test
- Descriptive Statistics

The first three techniques help visualize the relationship between the rating and performance indices while the latter four provide quantitative results allowing objective comparisons. The graphical techniques for nonparametric analysis are common and relatively intuitive. The Kruskal-Wallis nonparametric analysis of
variance and the multiple comparison test are less familiar, and are explained below.

The Kruskal-Wallis Test is a nonparametric analysis of variance that tests the null hypothesis that samples subjected to different treatments (i.e. CMM ratings) actually belong to the same population and therefore would have the same median performance index. The alternate hypothesis would suggest that performance indices at the different CMM rating levels are in fact distinct populations. The rejection of the null hypothesis thus would suggest that there is a difference in the median performance of organizations at different maturity levels.

In order to test the null hypothesis, the sum of the ranks R_j for each sample must be obtained. This is done by ranking N, the total number of observations from 1 (the smallest performance index) to N (the largest performance index) and summing the ranks within a sample. When the null hypothesis is true, all observations come from the same population and we expect the ranks to be equally likely distributed between the samples. If, however, the null hypothesis is false, then some samples will consist mostly of observations having small ranks (lower performance indices), while others will consist mostly of observations having large ranks (higher performance indices). The sum of the ranks R_j for each sample can then be used to calculate the Kruskal-Wallis H test statistic according to “Equation (1)” below.
Kruskal-Wallis H Test Statistic

\[
H = 12 \frac{\sum_{j=1}^{k} \left(R_j - \frac{n_j(N+1)}{2} \right)^2}{N(N+1)}
\]

where

\(k \) = number of samples

\(R_j \) = sum of the ranks in the jth sample

\(n_j \) = number of observations in the jth sample

\(N \) = total number of observations

By referring the value of \(H \) to the chi-square distribution, a P-value can be found and used to accept or reject the null hypothesis. The P-value is the probability that the distributions appear to be distinct when, in fact, they are not. For our analysis, we used the statistical analysis software package, Statistix 4.0, to calculate the Kruskal-Wallis test statistic. This test was performed at a significance level of .05, meaning conclusions can be drawn with a 95% level of confidence.

The Kruskal-Wallis Test can only determine if at least two of the samples are from different distributions. In order to determine if there is a statistically significant difference in more than one pair of samples and which samples differ from which others, a multiple comparison test is required. Using the multiple comparison inequality, "Equation (2)" below,
Multiple Comparison Inequality

\[
|\bar{R}_i - \bar{R}_j| \leq z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}
\]

(2)

where

\(\bar{R}_i, \bar{R}_j = \) mean rank of the ith and jth sample

\(n_i, n_j = \) number of observations in the ith and jth sample

\(N = \) total number of observations

\(z = 1.834\) at a level of significance of .20

we compare the difference in mean ranks for two samples, where the mean rank, \(\bar{R}_j\), is simply the sum \(R_j\) of the ranks in that sample divided by \(n_j\), the number of observations in that sample; that is, \(\bar{R}_j = R_j / n_j\). If the absolute value of the difference of the mean ranks between two samples is less than the right-hand side of "Equation (2)," then the null hypothesis is true and there is no significant difference in the samples under consideration. However, if the absolute value of the difference of the mean ranks is greater than the right-hand side of "Equation (2)," then the null hypothesis is false and there is a significant difference in the two samples.

The multiple comparison test was performed at a level of significance of 0.2 which implies a 80% level of confidence in the result. It is important to note that the overall level of significance used in multiple comparisons are frequently larger than those
ordinarily used in an inference involving a single comparison. The level of significance
chosen for our analysis is consistent with the values recommended (0.15 to 0.25) for this
type of nonparametric analysis technique (Gibbons, 1976:182).
3.6 Methodological Difficulties

Our research methodology is based upon the collection and analysis of historical data. This methodological approach requires the availability and consistency of data. Our focus on cost and schedule data provided by standard means helped reduce the potential error in our primary data set. However, the same standards could not be applied to the moderating data obtained to characterize the software projects from which the cost/schedule data were derived. The lack of standards for these moderating variables may have affected both the consistency and the validity of these moderators.

A degree of subjectivity, and researcher bias was unavoidable. Researcher bias was introduced primarily by our selection of moderators. Since it was impossible to fully characterize the software development environment for each respondent, we were forced to select a relatively small set of moderators we felt would provide the most meaningful information. We selected these moderators based on our literature search, discussions with experts, and educational experience. Lacking the resources to perform in-depth case studies of all respondents, we were compelled to rely upon the insight our moderators provided to characterize the context in which the cost, schedule, and rating data were derived. This bias effect introduced by moderators was combined with the subjectivity of the respondents in providing the values attributed to the moderator variables. In most cases, our respondents relied on their best judgement when responding to our moderator-related inquiries. Although the interviewees were qualified to provide this insight, there is no guarantee that they provided accurate or complete information.
A significant compromise to our initial methodology arose when project quality data failed on both the consistency and availability criteria. We found that the data to enable an analysis of the quality characteristics of the software projects was sparse, and of widely varying format. We felt the data would have provided no meaningful comparisons at any quantitative level, and was thus simply reduced to bi-level moderators.

3.7 Consistency of Moderating Variables.

Some of the moderating variables we intended to collect proved difficult to reliably obtain. For example, respondents in some cases failed to distinguish between “new” and “modified” code. Thus we had to modify our moderator to accommodate this lack of distinction. The moderator “Percent New/Modified Code” enabled us to distinguish between code which required significant design and engineering, and code which was reused or “lifted”.

With regard to language distinction, some respondents didn’t distinguish between the amount of code written in a variety of higher order languages. For example, if a project consisted of the languages Ada, Fortran, and Assembly, the program may have only reported the amounts of code in terms of “HOL” (higher-order language) and Assembly. Thus, in some cases we were unable to identify the code as being predominantly one language.

The moderator project size should only be used to distinguish projects whose size differs by an order of magnitude. Different definitions of lines of code (DSI vs. KSLOC)
combined with different languages/combinations of languages seriously degraded the absolute accuracy of the program size data collected. In using this moderator we chose to stratify on the arbitrary, but commonly recognized breakpoint of 100,000 lines of code, separating the data set into roughly balanced subsets.

The distinction between application types was subjective. In many cases, a particular project encompassed various application types, and it was left to the program personnel interviewed to characterize the project into a type which best fit the project. Due to the subjectivity of the application types, we chose to stratify on the gross distinction between “real-time” and “information system” applications. This was to capture the relative complexity of these broad categories.

Some moderators could not be gathered with consistency, due to an inherently subjective nature. For example, the moderator “requirements volatility”, used to characterize the degree to which the requirements changed during the course of the project, was strictly based on the expert opinion of the program personnel interviewed. Lacking an objective baseline or comparator, the interviewees’ perceptions may have varied widely from one program to another. Thus we were unable to derive significant conclusions from this moderator.
3.8 Summary

The objective of this thesis was to determine if a correlation between SEI CMM rating and software product success exists. This objective was met in a four-phase manner: (1) Exploratory Phase, (2) Research Design, (3) Data Gathering Phase, and (4) Analysis Phase.
4. Results

4.1 Overview

This chapter discusses the results of the data gathering, explains the process of identifying and eliminating erroneous data points from the database, and describes the nature of the resulting database. In the process, we discuss some key concepts and definitions pertaining to the data, the process of reducing and conforming the data, the derivation and coding of performance indices and derived moderators, the nature of the dataset, and finally, a description of the final database to be analyzed.

4.2 Concepts and Definitions

For the purposes of this discussion, a “data point” is defined as an instance, or set of circumstances where, for a given software development project, rating data and cost data exist, and are mutually relevant. This is the set of circumstances whereby

1. the software development project reports cost and schedule data per the guidelines of C/SCSC
2. the organization conducting the software development project has been rated in accordance with the SEI CMM guidelines
3. The cost and schedule data are representative of the rating timeframe, and
4. The rating is generally representative of the project for which cost and schedule data are reported.

Based on the above definition, it is clear that multiple data points may arise from a particular organization, program, or project. In general, an individual organization may have multiple programs which fall within our sampling criteria. Additionally, each program may have one or more projects which meet the sampling criteria, meaning that the cost and schedule data were reported for software-unique work packages or projects. Finally, each individual project may have been in progress during multiple rating periods, and thus would provide cost and schedule data relevant to each rating period.

An example of this is shown in figure 4-1, for an organization (DoD contractor) which has been rated twice and has two programs (Government contracts A and B), one of which has three individual software projects (WBS elements), the other only one. Note that these Government contracts have different periods of performance: Projects one through three of Program A were in effect for two rating periods, whereas Project one of Program B was in effect for the last rating period only. In this scenario, this one organization would have provided seven discrete data points.
Figure 4-1 Origin of Data Points

Each data point can be represented by two ordered pairs of rating and performance index, and plotted on a coordinate system. Note that we calculate both the SPI and CPI, so each data point will be characterized by both indices.

Each data point is also characterized by other parameters which lend context to the data point. These parameters are called moderating variables, and may provide insight into the factors that influence the correlation between the performance indices and the ratings.
4.3 Data Reduction

Based on the requirements and constraints set out by the research design and methodology, as well as the opinions of the experts we interviewed during the exploratory and design phases, we expected a small sample of data points. The unexpectedly large number of data points made the automation of the data analysis a requirement. Therefore, considerable effort was invested to reduce the data to a database-compatible format, so that efficient analyses could be performed. The data were collected using a standardized data collection form shown at Appendix A. The data collection forms underwent some modifications during the course of the inquiry, as a result of our evolving understanding of which moderators were actually significant, and which moderators could be reliably obtained from the personnel interviewed. The final set of moderators was provided in Table 3-1 of Chapter 3.

The data collection form was designed so that program identification information could be disassociated from the rest of the data to ensure anonymity of the data source. After the data collection forms were completed, the program identification information was separated and secured. Only the researchers and their faculty advisors have access to the correlation matrix which links these programs to their data points. The format of the data collection form was determined prior to the decision to automate the data analysis. Thus the correlation between the data collection form and the database is not exact.
The completed data collection forms were transcribed into a database (Microsoft Access version 2.0). The database was constructed in a flat file format, with each database record representing an individual data point, comprised of identifying code, rating information, cost/schedule information, and moderating characteristics. Each record (data point) in the database consists of fifty-one fields, broken up as follows:

1. Three fields of primary key identifiers. Each data point is uniquely identified by a three-character alphanumeric designator, which identifies the program, rating in sequence, and the WBS element in sequence. This coding scheme allows unique identification of the data point without divulging the identity of the contractor or the contract.

2. One comment field for WBS description. This description is generic, to describe the sort of task the WBS represents, but not to identify the program.

3. Five fields of rating information pertaining to every WBS in a given rating period, including a comment field for comments relating to the rating.

4. Three fields for moderating data related to the program (of which the individual WBS is a part). Moderator fields span rating and WBS domains, and include a comment field for comments relating to the program.

5. Fourteen fields of project-related moderating information. These data relate to the specific WBS (project) being evaluated, and include a comment field for program manager comments relevant to the analysis.

6. Twenty-four fields of WBS-element-specific cost and schedule information. These include the cost/schedule parameters, BCWS, BCWP, and ACWP. Also
recorded are the dates of the data, the budget at completion (BAC) and the latest revised estimate (LRE) for the WBS. These data are used to calculate the SPI and CPI, as well as other moderating data, such as percentage of project completion, and degree of project activity.

7. One field for investigator comments. This provided us with a way to characterize the data point in terms of its relevance to the analysis.

The above descriptions characterize the database. The contents of the database is provided at Appendix B. Appendix B also contains data on derived moderators and performance indices derived from the database.

4.3.1 Conforming the Database.

Although 63 data points were originally collected, only 52 were used in the analysis. We excluded 11 of the data points on the basis of a lack of contract effort during the period of interest. The reason for this exclusion is that the non-cumulative performance indices we measured become extremely unstable at low levels of contract effort (recall that performance was measured over the 12 month period surrounding the rating date, and therefore were non-cumulative). The instability is due to the fact that if little effort is expended on the contract, actual costs (ACWP) during the time period are small, causing CPI to be extremely sensitive to relatively minor variations in earned value taken (BCWP). Likewise, if little work over the period is planned per the baseline (BCWS), small fluctuations in earned value taken (BCWP) can result in large fluctuations in SPI.
Thus, at low levels of contract activity, SPI and CPI become more sensitive to random “noise” in the accounting system than to real variations in contractor performance.

Screening for contract activity on a given project was accomplished by calculating a ratio of contract activity during the twelve month period (twelve-month change in the parameter) relative to total activity to date (cumulative value of the parameter). This ratio was calculated for the three parameters, BCWS, BCWP, and ACWP. If any one of these parameters exhibited an activity level of less than 1%, it was excluded from the dataset.

The resulting dataset is referred to in the research as the “Complete Dataset.” The Complete Dataset is to be distinguished from the “Gross Dataset” which encompasses all data taken, regardless of project activity over the period of interest. The Gross Dataset is provided at Appendix B. Those datapoints excluded for whatever reason are flagged with an appropriate comment in the “Investigator Comment” field of the data form. The Complete Dataset is the set from which all subsequent analysis within this study was performed. The comparison of both datasets is presented in Table 4-1.
Table 4- 1

Comparison of the Gross and Complete Datasets

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Gross Dataset</th>
<th>Complete Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Count</td>
<td>Count</td>
</tr>
<tr>
<td>Number of Contractors</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Number of Programs (Contracts)</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Number of Projects (WBS Elements)</td>
<td>33</td>
<td>31</td>
</tr>
<tr>
<td>Number of Data Points</td>
<td>63</td>
<td>52</td>
</tr>
<tr>
<td>Number of Data Points from ESC</td>
<td>45</td>
<td>35</td>
</tr>
<tr>
<td>Number of Data Points from ASC</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>Average Number of Data Points per Program at ESC</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Average Number of Data Points per Program at ASC</td>
<td>2.0</td>
<td>2.1</td>
</tr>
<tr>
<td>Average Number of Data Points per Program</td>
<td>4.8</td>
<td>4.0</td>
</tr>
<tr>
<td>Average Number of Data Points per Project</td>
<td>1.9</td>
<td>1.7</td>
</tr>
<tr>
<td>Average Number of Ratings per Contractor</td>
<td>1.9</td>
<td>1.9</td>
</tr>
</tbody>
</table>

4.3.2 The Nature of the Complete Dataset

In order to obtain the clearest picture of the nature of the relationship between the performance indices and rating, the dataset had to be large enough to be statistically significant, and representative of the relevant population.
The size of the dataset is critically important for any statistical analysis to be valid. If we had been able to collect only five or six data points at one or two rating levels, the validity of our correlational analysis would be highly suspect. Fortunately, the mass of historical data was sufficiently large, and we were able to net 52 individual data points over three rating levels (17 at Level 1, 18 at Level 2, and 17 at Level 3). To improve the likelihood that the data were representative of the relevant population, we collected data from two product centers, the ASC, at Wright-Patterson AFB, OH, and the ESC, at Hanscom AFB, MA. Since we are most interested in software-intensive programs, these two product centers are reasonable candidates to provide samples of our relevant population. Since we expected only a few programs to fit within our sampling criteria, we did not conduct extensive analysis to ensure a representative population. Our goal at the outset was to collect everything which met our sampling criteria, and evaluate the nature of the sample after collection.

We obtained approximately twice as many data points from ESC as from ASC, even though we evaluated fewer programs at ESC. We found that on average, ASC had fewer software specific projects per program than did ESC, not surprising given the nature of the work performed at ASC and ESC. At ASC, software is typically a part of a subsystem on an aircraft-related program, whereas at ESC, software comprises proportionally more of their electronics-related programs.

Table 4-2 expresses some of the characteristics of the complete dataset. Although this sample is probably not truly representative of programs throughout the DoD, this

4-9
dataset is presented, for the purposes of this research, as a generally representative sample of the population of interest.

Table 4-2

Characteristics of the Complete Dataset--Count by Moderator

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Programs</td>
<td>52</td>
</tr>
<tr>
<td>Number of Projects Rated Level 1</td>
<td>17</td>
</tr>
<tr>
<td>Number of Projects Rated Level 2</td>
<td>18</td>
</tr>
<tr>
<td>Number of Projects Rated Level 3</td>
<td>17</td>
</tr>
<tr>
<td>Number of Projects with High-Very High Rating Relevance</td>
<td>40</td>
</tr>
<tr>
<td>Number of Projects with Med-Low Rating Relevance</td>
<td>12</td>
</tr>
<tr>
<td>Number of Projects Rated using a SPA</td>
<td>34</td>
</tr>
<tr>
<td>Number of Projects Rated using a SCE</td>
<td>18</td>
</tr>
<tr>
<td>Number of Projects with Less than 15% Baseline Volatility</td>
<td>38</td>
</tr>
<tr>
<td>Number of Projects with Greater than 15% Baseline Volatility</td>
<td>14</td>
</tr>
<tr>
<td>Number of Projects with Cost-type Contracts</td>
<td>17</td>
</tr>
<tr>
<td>Number of Projects with Fixed Price-type Contracts</td>
<td>21</td>
</tr>
<tr>
<td>Number of Projects less than 80% Complete</td>
<td>21</td>
</tr>
<tr>
<td>Number of Projects greater than 80% Complete</td>
<td>31</td>
</tr>
<tr>
<td>Number of Projects Implementing Real-time Applications</td>
<td>25</td>
</tr>
<tr>
<td>Number of Projects Implementing Information System Applications</td>
<td>26</td>
</tr>
<tr>
<td>Number of Projects Implemented in Ada</td>
<td>24</td>
</tr>
<tr>
<td>Number of Projects Implemented in Non-Ada</td>
<td>19</td>
</tr>
<tr>
<td>Number of Projects less than 100K LOC</td>
<td>21</td>
</tr>
<tr>
<td>Number of Projects greater than 100K LOC</td>
<td>17</td>
</tr>
</tbody>
</table>
4.4 Derivation of Performance Indices and Derived Moderators

Cost performance Index (CPI) and Schedule Performance Index (SPI) are derived from the cost/schedule data obtained from the cost performance reports. Derived moderators are moderators which result from combinations of the parameters ACWP, BCWP, BCWS, BAC, and LRE, already present in the set of cost/schedule data. These derived moderators include:

1. Baseline Volatility--the ratio of the change in the BAC during the twelve-month period to the BAC at the beginning of the period
2. BCWS Activity--the ratio of the change in BCWS during the twelve month period to the total BCWS at the end of the period
3. BCWP Activity--the ratio of the change in BCWP during the twelve month period to the total BCWP at the end of the period
4. ACWP Activity--the ratio of the change in ACWP during the twelve month period to the total ACWP at the end of the period
5. Percent Complete--the ratio of BCWP at the end of the period to the BAC at the end of the period

Performance indices, as well as derived moderators, were not incorporated into the database itself for reasons of limiting the database size. Instead they are calculated by means of queries executed on the dataset. The output of a query on a dataset is another dataset which contains the results of the query operations. In our case, our queries
calculated the performance indices and other derived moderators. It is this output which we analyzed, the results of which are found in chapter five--Analysis.

4.5 Coding of Moderators

Moderating variables which are not categorical in nature had to be coded in order to be efficiently analyzed. For example, the moderator "Size" had to be resolved into the levels "Small," and "Large" based on some coding scheme. We analyzed only a small subset of the moderators we collected and coded. We coded all moderators regardless of whether they were incorporated into the current analysis, to facilitate future analysis of this dataset. The stratification and coding schemes are outlined in Table 4-3.
<table>
<thead>
<tr>
<th>Moderating Variable</th>
<th>Range, Levels</th>
<th>Stratification/Coding Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating Type</td>
<td>SPA (Int), SPA (Ext) SCE</td>
<td>SPA: Software process assessment.</td>
</tr>
</tbody>
</table>
<pre><code> | SCE: Software Capability Evaluation. |
</code></pre>
<p>| Rating Relevance | Low, Med, High, Very High | High/Very High: Projects were used to obtain the organization rating. |
| Post-Production: Production, Support, Post Release Support. |
| Contract Type | Firm Fixed Price, Fixed Price Incentive Firm Tgt, | Fixed Price: Includes FFP, FPIF, FPAF |
| Fixed Price Award Fee, Cost Plus; Incentive/Award Fee |
| Other: Includes programs that transitioned from one contract type to another during the course of the evaluation. |
| Software Lifecycle | Req’tments, Design; Code; Test; Support | Early: Requirements, Design. |
| Late: Code, Test, Support. |
| Language % | 45% to 100% | Bi-level: 100% vs Less than 100%. |
| Application Type | Avionics, Command & Control, Database, Simulation, | Real Time: Includes Avionics, Simulation, Command and Control Information System: Includes database, other. |
| Other. |
| Budget | Budget at Completion; Latest Revised Estimate | Low: Below Average Budget. |
| High: Above Average Budget. |
| Budget Volatility | Low, Medium, High | Low; Med, High: Based on Program personnel assessment. |
| Size | Source Lines of Code (SLOC) | Small: < 100 K LOC. |
| Large: > 100 K LOC. |
| New/Modified Code | Percentage New/Modified Code | High: > 90% New/Modified code. |
| Low: < 90% New/Modified code. |
| Requirements Volatility | Low, Medium, High | Low; Med, High: Based on Program personnel assessment. |
| Rebaselining | Yes/No | Yes/No: Based on Program personnel assessment. |
| Quality Standards | Yes/No | Yes: Quality standards are on contract. |
| No: Quality standards are not on contract. |
| Quality Parameters | Yes/No | Yes: Quality metrics reported to program office. |
| No: Metrics not reported to program office. |
| Program Activity (derived moderator) | > .01 of budget expended over 12 month period | < 0.01 of budget expended over 12 month period, the data point was excluded. |
| ≥ 0.01 of budget expended: include data point. |
| Percent Complete (derived moderator) | < 80% complete | < 80% complete. |
| > 80% complete. |
| Baseline Volatility (derived moderator) | % change in BAC over 12 month period | Low: Change in BAC < 15% during period. |
| High: Change in BAC > 15% during period. |</p>
4.6 Summary

The results of our research design and data collection methodology provided a dataset which is sufficiently large and generally representative of the population of interest. In the following chapters, this dataset is analyzed and conclusions are drawn regarding the nature of the correlation between CMM rating and project success.
5. Analysis

5.1 Overview

Our analysis phase consisted primarily of obtaining information about the distribution of the performance indices SPI and CPI at three of the five levels of SEI CMM maturity rating. This was done in order to ascertain the nature of the correlation, if any, between performance indices and CMM rating levels. In addition, various filters and sorts were applied to the dataset to discern the effect of moderators on the SPI/CPI - rating correlation. The results of the analyses are presented as scatter plots and box & whiskers plots to show central tendency and variation. Nonparametric analysis of variance was applied to refine the analysis and to support the conclusion derived therefrom.

In this chapter, the data analysis and the results of that analysis are presented according to the hierarchy shown in figure 5-1. The analysis is performed on what we call the “complete dataset.” The complete dataset, is derived from the gross dataset by purging questionable low-activity data points. The complete dataset was first evaluated in toto, then filtered by moderators relating to the CMM rating, and by moderators relating to cost and schedule performance. The moderators relating to CMM rating which are of greatest interest are “Rating Relevance,” which relates to the associative relevance of the performance indices to the rating, and “Rating Type” which relates to the method used to obtain the rating. The moderators relating to cost and schedule performance of
most interest can be loosely grouped into those moderators which relate to programmatic issues such as “Baseline Volatility,” “Contract Type,” and “Percent Complete,” and those moderators which relate to technical issues such as “Application Type,” “Programming Language,” and “Project Size.”

Figure 5-1 Flow of Analysis

Analyses are presented in separate “Cases” which correspond to the Data Analysis Flow Diagram in figure 5-1. In each Case, the effect of each moderator was analyzed by filtering the complete dataset using the coding scheme developed for the moderating variable. The resulting set of data points was subjected to the following analytical tools:
1. **Scatter Plot of the dataset: CPI and SPI versus Rating** -- provides a means for visual inspection of the relationship between the variables.

2. **Box and Whiskers plot of the dataset** -- provides a pictorial summary of the datasets’ more prominent features, including center, spread, extent and nature of any departure from symmetry, and any outliers (Devore, 1982:27).

3. **Kruskal-Wallis nonparametric analysis of variance** -- quantitatively establishes whether there is a difference in the performance index medians among the CMM ratings.

4. **Multiple Comparison Test** -- quantitatively establishes which of the performance index distributions associated with each rating are statistically distinct from the other distributions.

5. **Descriptive statistics** -- displays the mean, median, and standard deviation of the performance indices at each level of CMM rating.

In addition to the above, the following tools were applied to the complete dataset, to establish the degree of normality of the sample.

6. **Histogram of the frequency density for each rating level** -- provides an indication of the nature of the distribution, its central tendency, and skew.

7. **Wilk-Shapiro evaluation of normality at each level** -- quantitatively indicates the degree of normality of the CPI and SPI indices at each CMM rating.
5.2 Analysis of the Complete Dataset

Scatter Plot of the Dataset: One of the most efficient ways to get a sense of the correlation between independent and dependent variables is to create a scatter plot, where the treatments (in our case, ratings) are plotted along the abscissa, and the response (in our case, the performance indices, CPI and SPI) are plotted along the ordinate.

![Scatter Plot of CPI vs RATING](image)

Figure 5-2 Scatter Plot of CPI vs Rating—Complete Dataset

The characteristics that are immediately apparent about the relationship between Cost Performance Index and rating in figure 5-2 is that CPI generally increases with increasing rating. Note that the majority of Level 1 CPI data points are below a CPI of 1.00. This shows that most Level 1 projects in our dataset exhibit a cost performance generally lower than planned, resulting in a cost overrun during the 12-month period surrounding the rating. With increasing rating, the number of data points above a CPI of
1.00 increases. This suggests a trend toward improving cost performance among Level 2 and three contractors. That there appears to be a clustering of data points around a CPI of 1.00, particularly at a rating of Level 3, suggests that more “mature” contractors are able to more consistently keep their costs in line with their budgets.

The characteristic that is immediately apparent about the relationship between Schedule Performance Index and rating in figure 5-3 is the marked decrease in the variation of SPI at rating levels above Level 1. This indicates that more “mature” contractors are better able to maintain their schedules than Level 1 contractors. Also note that at rating Level 3, the number of data points above an SPI of 1.00 appears to be proportionally greater than at Level 1 or Level 2. This indicates that the most mature contractors may tend to post schedule underruns.

Figure 5-3 Scatter Plot of SPI vs Rating—Complete Dataset
Histogram of the Complete Dataset: The histogram of the distribution of the performance indices at each level describes the nature of the distribution of performance indices at each rating level. The histogram indicates immediately the central tendency, the "shape" and "spread" of the data.

Figure 5-4 Histogram of the Distribution of CPI at Rating Level 3

For both CPI and SPI, the performance indices at each level of CMM rating demonstrate a general "mounded shape" characteristic, similar to that shown above in figure 5-4. The shape of the distribution is significant in subsequent analyses of variance. The Kruskal-Wallis nonparametric analysis of variance assumes a chi-squared distribution, which is mound shaped, and originates at a value of zero. The histograms
suggest that this assumption is not inappropriate for the dataset. The complete set of histograms showing the frequency density for each performance index at each level of CMM rating for the complete dataset is provided at Appendix C.

Wilk-Shapiro Normality Test: The Wilk-Shapiro test both visually and numerically articulates the degree to which the data approximate a normal distribution. The normal distribution and the chi-squared distributions are intimately related (Devore 1982:162). The normal distribution, as with the chi-squared distribution, are both related to the behavior of natural phenomena, and are frequently used in the analysis of categorical data, and of human and economic behaviors (Devore 1982). Table 5-1 gives a summary of the Wilk-Shapiro normality test statistic for the complete dataset. The closer the statistic comes to a value of 1.00, the more approximately normal the distribution of the performance index at the given rating level is. Customarily, distributions with Wilk-Shapiro values above 0.8 can be considered relatively normal. Given the interrelatedness of the normal and chi-squared distributions, and the Wilk-Shapiro results shown in table 5-1, the assumption of either a normal or a chi-squared distribution of the data is not inappropriate.

<table>
<thead>
<tr>
<th></th>
<th>Rating Level 1</th>
<th>Rating Level 2</th>
<th>Rating Level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPI</td>
<td>0.8439</td>
<td>0.9245</td>
<td>0.8105</td>
</tr>
<tr>
<td>SPI</td>
<td>0.8806</td>
<td>0.8958</td>
<td>0.9525</td>
</tr>
</tbody>
</table>

The complete set of Wilk-Shapiro plots are presented in Appendix C.

5-7
Box and Whiskers Plot of the Complete Dataset: Even more than the scatter plot, the box and whiskers plot succinctly presents important aspects of the data—particularly central tendency, spread, and outliers—enabling rapid assessment of the nature of the correlation.

![Box and Whiskers Plot of CPI vs Rating—Complete Dataset]

Figure 5-5 Box and Whiskers Plot of CPI vs Rating—Complete Dataset

Figure 5-5 clearly shows the increasing central tendency of CPI with increasing rating level. The horizontal bar runs through the chart at approximately a CPI of 1.00. The box for each rating level encloses the middle half of the data points, and is bisected by a line which indicates the median of the data points. Note that the median of the Level 1 CPI is below a CPI of 1.00, and the median of Level 3 CPI is above 1.00, emphasizing the trend observed in the scatter plot. Note also the spread of the data (indicated by the length of the box) is smaller at Level 3 than at Level 1 and Level 2—lending credence to the
observations made of the scatter plot, that the most mature organizations meet their cost plans with greater certainty. The whiskers (vertical lines emanating from the ends of the boxes) indicate the range of “typical” data values—longer whiskers are indications of greater overall sample variance. The box and whisker plots also show “outliers”—extreme values in the dataset, which may be anomalies. Possible outliers are indicated by asterisks, probable outliers are indicated by circles. (Analytical Software 1992:97-98).

The reader should bear in mind that outliers may significantly affect the value of statistics such as mean and variance. We attempted to mitigate the effect of outliers by using the sample median as the statistic of central tendency. The sample median is less sensitive to outliers (Devore 1991:18).

This box-and-whiskers plot of SPI versus rating (Figure 5-6) shows that the central tendency of SPI at all rating levels hovers closer to an SPI of 1.00 than did the CPI. Note also the spread of the data (indicated by the length of the boxes and whiskers) is generally narrower than that observed for CPI. The conclusion that this observation suggests is that SPI is less sensitive to rating level than is CPI.

In contrast to the observations made of the SPI scatter plots (Figure 5-3), the distinct decrease in variation of SPI from rating Level 1 to 2 and 3 is less evident in the box and whiskers plots. This decrease may indicate that the large variation observed in the SPI scatter plot for Level 1 contractors is more an effect of outliers than any significant difference in the data distributions.
Figure 5- 6 Box and Whiskers Plot of SPI vs Rating--Complete Dataset

Kruskal-Wallis nonparametric analysis of variance: As explained in the chapter on methodology, the purpose of the Kruskal-Wallis one-way nonparametric analysis of variance is to determine if a set of data grouped by treatment (in our case, rating) is all of one distribution, or is made up of distinct distributions. The consequence of such an analysis is to determine if the various treatments (ratings) actually have a significant “effect” on the dependent variable (in our case, CPI and SPI); in which case, the different ratings will result in distinct distributions of SPI and CPI. Such a test will show if there is a significant difference in performance between, say, a Level 1 organization and a Level 3 organization. The Kruskal-Wallis test assumes a null hypothesis of no significant difference between the distributions of the three treatments (rating levels). The test then calculates the probability that this null hypothesis is correct--that there is in fact no
statistically significant distinction between the distributions at the three rating levels. The P-value is the numerical expression of the probability that the null hypothesis is correct. If the P-value is below the critical value established by the confidence level of the test (in our case, for a 95% confidence level, the critical value is 0.05), then the null hypothesis must be rejected in favor of the alternate hypothesis--namely, that the distributions are actually distinct.

For the distribution of CPI for the complete dataset, the P-value of 0.016 is below the significance level of 0.05 (Table 5-2), which indicates there is a statistically significant distinction in CPI between at least two of the three rating levels. Given that there is a distinction between median CPIs of at least two of the three rating levels, a multiple comparison was run to determine which rating levels differ, and how each stacks up relative to the others.

| Table 5-2 |
| Kruskal-Wallis Test For the Complete Dataset--CPI |

<table>
<thead>
<tr>
<th>MEAN</th>
<th>SAMPLE</th>
<th>RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RANK</td>
<td>SIZE</td>
</tr>
<tr>
<td>1</td>
<td>18.3</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>28.2</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>32.9</td>
<td>17</td>
</tr>
<tr>
<td>TOTAL</td>
<td>26.5</td>
<td>52</td>
</tr>
</tbody>
</table>

| KRUSKAL-WALLIS STATISTIC | 8.2319 |
P-VALUE, USING CHI-SQUARED APPROXIMATION | 0.0163 |
For the distribution of SPI for the complete dataset, the P-value of 0.017 is below the significance level of 0.05 (Table 5-3), which indicates there is a statistically significant distinction in CPI between at least two of the three rating levels. Given there is a distinction between the SPIs of at least two of the three rating levels, a multiple comparison was also performed.

Table 5-3:

Kruskal-Wallis Test For the Complete Dataset: SPI

<table>
<thead>
<tr>
<th>Rating</th>
<th>Rank</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.2</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>20.8</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>34.9</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>26.5</td>
<td>52</td>
</tr>
</tbody>
</table>

Kruskal-Wallis Statistic 8.1238

P-Value, Using Chi-Squared Approximation 0.0172

Multiple Comparison Test: Once having established a statistically significant difference between the medians of at least two of the three groups (using Kruskal-Wallis), a test of simultaneous multiple comparison was then performed to identify which samples differed from the others. We established the direction of the difference by noting the relative magnitude of the sample mean ranks.

The multiple comparison matrix (Tables 5-4 and 5-5) displays the results of a three-way comparison between the three rating levels, articulating the significance of the differences between means of the ranks (calculated by the Kruskal-Wallis test) for each rating level. The numbers of the matrix are calculated by subtracting the absolute value of the difference between the mean of the ranks for each rating, and the right-hand-side of
the multiple comparison inequality (the calculations supporting the multiple comparison matrices are provided at Appendix C).

A positive value in any matrix cell indicates there is a statistically significant distinction between the performance indices of the pair under comparison (confidence level of 80%). A negative value indicates there is no significant difference between the distributions of the performance indices of the pair of ratings. In the case where a significant difference is found, the relative magnitude of the median rank determines which rating has the greater median performance index.

In the case of the CPI for the complete dataset (Table 5-4), there is a significant distinction between the cost performance of level 1 organizations and level 2 organizations, and an even greater distinction between the cost performance of level 1 organizations and level 3 organizations. However, there is no significant distinction between the cost performance of level 2 and 3 organizations. This conclusion is intuitively consistent with the observations made of the box and whisker plots, and scatter plots above, but are lent statistical validity by the application of these simple, but powerful tests.

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>18.3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>28.2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>32.9</td>
<td></td>
</tr>
</tbody>
</table>

K-W Statistic of 8.2319, P=0.0163
Note: Shaded cells denote significant difference in sample mean ranks.
Similar to the above discussion for the multiple comparison test of the CPI data, the three-way analysis of the SPI data (Table 5-5) yields interesting conclusions about the nature of the correlation between the ratings and their respective performance indices. These tests indicate that Level 3 organizations outperform Level 1 and Level 2 organizations in terms of schedule performance.

Table 5-5: Multiple Comparison Matrix for SPI

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
<td>24.2</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>20.8</td>
<td>-6.0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>34.9</td>
<td>1.167</td>
<td>4.7</td>
<td></td>
</tr>
</tbody>
</table>

K-W Statistic of 8.1238, P=0.0172
Note: Shaded cells denote significant difference in sample mean ranks.

The combination of the Kruskal-Wallis and the multiple comparison tests confirm that there is indeed a statistically significant distinction between some levels of CMM rating and the indices of project success (CPI and SPI). By statistically significant, we mean that the Kruskal-Wallis statistic identified the difference of medians to a confidence level of 95%, and the multiple comparison test determined the relative rank to a confidence level of 80%.
Descriptive Statistics for the Complete Dataset: The Descriptive statistics for the complete dataset are provided in table 5-6 below. The statistics, when combined with the analyses above, clarify the nature of the correlation between CMM Rating and the performance indices CPI and SPI.

Table 5-6:

<table>
<thead>
<tr>
<th>Rating=1</th>
<th>Rating=1</th>
<th>Rating=2</th>
<th>Rating=2</th>
<th>Rating=3</th>
<th>Rating=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>CPI</td>
<td>SPI</td>
<td>CPI</td>
<td>SPI</td>
<td>CPI</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Mean</td>
<td>0.7909</td>
<td>0.9816</td>
<td>1.0685</td>
<td>0.9562</td>
<td>1.1537</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.2639</td>
<td>0.3366</td>
<td>0.4502</td>
<td>0.0915</td>
<td>0.4165</td>
</tr>
<tr>
<td>Min</td>
<td>0.2019</td>
<td>0.3028</td>
<td>0.3496</td>
<td>0.6978</td>
<td>0.5808</td>
</tr>
<tr>
<td>Median</td>
<td>0.8493</td>
<td>1.0000</td>
<td>0.9365</td>
<td>0.9727</td>
<td>1.0498</td>
</tr>
<tr>
<td>Max</td>
<td>1.0788</td>
<td>1.8676</td>
<td>2.0506</td>
<td>1.0774</td>
<td>2.1602</td>
</tr>
</tbody>
</table>

With regard to cost performance, we see an increasing median CPI between Level 1 and Level 3. However, the multiple comparison test indicates there is a significant distinction only between Level 1 and Level 2, and between Level 1 and 3. The distinction between the medians of Levels 2 and 3 are not significant to an 80% confidence level. The same pattern of increasing central tendency is observed with the means of the CPI for the three rating levels.

The variation of CPI data (expressed by the standard deviation) from level to level shows no trend of improvement (reduction) with increasing rating level, contrary to the scatter plot which shows a tighter grouping of the data points at Level 3. This increase in variation may be due to the presence of several outliers, as depicted in the box-and-whiskers plots.
With regard to SPI, there appears to be little difference between the means and medians at the various rating levels. This lack of apparent difference shows how the Kruskal-Wallis and multiple comparison tests can provide insight that would otherwise be absent. These tests show significant difference between Level 1 and Level 3, and between Level 2 and Level 3 SPI. These tests indicate that Level 3 organizations may outperform Level 1 and Level 2 organizations in terms of schedule performance.
5.2.1 Analysis of Moderators Relating to CMM Rating.

During the course of a statistical analysis, one must identify an “independent variable,” and a “dependent variable.” We designated the rating levels as the “independent variable,” or “treatment,” and the performance indices as the “dependent variable,” or “response,” as if this were an experiment, and we were observing the effect on the performance index as we varied the rating level. In actual fact, we were not conducting an experiment and did not have any more control over the “treatment” than we did the “response,” so it is not inappropriate to discuss the factors influencing the “treatments” or the CMM rating levels, and observe how these factors may affect the correlation between the ratings and performance indices.

The first factor we suspected would have an important moderating effect had to do with the associative relevance of the performance data to the CMM ratings. We called the moderator “rating relevance.” At the simplistic level, the logic goes like this: The CMM rating refers to the organization, the organization conducts the program, the project is part of the program, and the cost data describe performance on the project. Thus the rating and the performance data are mutually relevant. The flaw in this logic is that the organization may have several discrete sub-organizations, each of which may have different processes and procedures. It is conceivable that the different sub-organizations may have different levels of process maturity. The CMM rating process evaluates only a subset of all the work an organization does, and bases its conclusions in part on those sample projects. Given that not every project performed by the organization is closely associated with (and therefore representative of) the rating, it is reasonable to characterize
the degree of association between the project being evaluated and the CMM rating of interest. This moderator thus helps capture the degree to which a project is representative of the maturity of an organization at the time it is rated.

The second moderator of interest is the rating method. We found, during the course of our literature review, that the different methods of determining the maturity of the software development process within an organization may result in different ratings. To explore how this dichotomy affected our dataset, we stratified our sample on the rating method: SCE versus SPA. Note that the SPA is an assessment conducted for the subject organization, with a focus toward process assessment and improvement. There were two sub-categories of SPA which we became aware of during the course of the data collection. One type of SPA, which we called “internal” was performed by the organization itself, often with specially-trained teams performing the assessment. The other type of SPA, “external,” was conducted by a paid outside organization, either a contractor, or the SEI itself. These two subtypes are identified within the dataset, but were not taken into account for the following analysis. The SCE, on the other hand, is done by the government, to evaluate the suitability of the organization to perform on a contract.
5.2.1.1 Analysis of the Moderator "Rating Relevance"

The moderator "Rating Relevance" is the first of the two rating-related moderators we considered. This moderator relates to the degree of association between the project evaluated and the rating of the organization.

The striking characteristic of the CPI and SPI for high and very-high relevance data points, is that the behavior is quite similar to that which was observed for the complete dataset, except that the outliers for CPI Level 3 (Figure 5-7), and SPI Level 2 (Figure 5-8) are gone. The trend of performance indices observed for the highly-relevant dataset strengthens the observation made earlier for the complete dataset; namely, that for CPI, the Level 1 data have a high variance, and are almost exclusively below a CPI of 1.00, the Level 2 data have a high variance, but are centered on a CPI of 1.00, and the Level 3 data are centered on 1.00, but have a relatively low variance.

![Figure 5-7 Scatter Plots of CPI for the Complete Dataset and High & Very High Rating Relevance](image)

5-19
Figure 5-8 Scatter Plots of SPI for Complete Dataset and High & Very High Rating Relevance

This phenomenon for the trend of increasing central tendency (median) and decreasing variance in CPI is vividly illustrated by the box and whisker plots of the high-relevance dataset (Figure 5-9).

Figure 5-9 Box and Whisker plots of CPI and SPI for High/Very High Rating Relevance
Note that SPI shows no significant trend in the data (Figure 5-9). For both the complete dataset and the high-relevance dataset, SPI tends to remain at a value of 1.00. This is borne out by the Kruskal-Wallis and multiple comparison tests, which show no statistically significant difference in the distributions of SPI at rating Level 1 through Level 3 (Table 5-7).

Table 5-7

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td>21.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>16.8</td>
<td>-3.267</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>24.3</td>
<td>-5.839</td>
<td>-1.011</td>
<td>--</td>
</tr>
</tbody>
</table>

K-W Statistic of 2.7738, $P=0.2498$

On the other hand, the Kruskal-Wallis and multiple comparison tests clearly indicate that for CPI, the high-relevance dataset shows significant distinction in the distributions for Level 1 and Level 2, and Level 1 and Level 3. As with the complete dataset, the high-relevance CPI shows no significant distinction in the distributions between Level 2 and Level 3 (Table 5-8).

Table 5-8:

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td>13.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>24.7</td>
<td>3.733</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>24.4</td>
<td>2.761</td>
<td>-8.211</td>
<td>--</td>
</tr>
</tbody>
</table>

K-W Statistic of 8.8692, $P=0.0119$

For the complete dataset, we were able to observe a trend in CPI versus rating level. This correlation showed overall decreasing variance and a sample median trend toward a CPI of 1.00 between CMM rating Level 1 and Level 3. This trend was more
clearly evident for the high and very high rating relevance dataset. Recall that high and very high rating relevance means that the projects from which we collected our data had been used to obtain their organizations' rating. Thus for those projects which have the highest associative relevance to the rating, the observed trend is more firmly established.

Significantly, the apparent correlation between SPI and CMM rating observed at the complete dataset level disappeared with the high-relevance dataset. This phenomenon suggests that perhaps the initial observations indicate a stronger relationship than may actually exist. The disparity between the observed behavior of the complete dataset and the high relevance dataset begs further analysis with other moderators to identify the conditions which affect SPI performance.

The complete set of analytical plots and tables for the moderator "Rating Relevance" is at Appendix D.
5.2.1.2 *Analysis of the Moderator “Rating Type”*

The moderator “Rating Type” was the second rating-related moderator we considered. This moderator is of interest because of the acknowledged difference in the results of the two rating methods, SPA and SCE (Bessleman, Byrnes, Lin, Paulk and Puranik, 1993:24). The SPA, which is primarily used for self-assessment, comprises the bulk of the data we collected. The SCE, which is performed by the government in the context of a source selection comprises only 18 of our 52 total data points. Thus the statistical significance of any correlation in the SCE data may be tenuous. The SPA data for CPI appear to fall along the general trend observed for the complete dataset with regard to the decreasing variance from Level 1 to Level 3, and the central tendency converging upon CPI of 1.00 over the rating range (Figure 5-10).

![Scatter Plot of CPI vs RATING](image)

Figure 5-10 CPI Performance of SPA Rated Organizations
However, the Kruskal-Wallis and multiple comparison tests for distinct distributions show no significant differences between any of the CPI rating distributions (Table 5-9). The lack of significant distinction between rating levels for this moderator indicates that the convergence phenomenon apparent in the plots may not be a statistically significant trend.

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>12.8</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>18.0</td>
<td>-3.712</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>19.0</td>
<td>-2.712</td>
<td>-5.903</td>
<td></td>
</tr>
</tbody>
</table>

K-W Statistic of 1.6706, P=0.4337

Thus the analysis for the significance of rating type on the correlation between performance indices and rating levels is inconclusive. In order to improve the validity of the analysis, the sample of SCE data points must be larger, and the distribution of data points between SPA and SCE must be more balanced.

Although a gross trend between rating level and performance was not made any clearer by stratifying on rating type, some interesting observations can still be made. It is perhaps significant that of our SPA-rated data points, only 6 out of 34 (17 percent) are rated at Level 1. For our SCE-rated data points the proportion of Level 1’s is 11 out of 18 (61 percent). This may reveal something about the character of the SPA versus the SCE. Specifically, the distribution of rating levels between SPA and SCE rated organizations suggests that the SPA may rate low-maturity organizations inappropriately high, and the SCE may rate high maturity organizations inappropriately low. The
difference in the intent and approach to SCEs and SPAs may also contribute to this concern.

Our data do not support this concern, however. With regard to the SPA, there are indeed proportionally more Level 3 organizations. But if the SPA inappropriately overrated these organizations, we would expect either a lower central tendency (CPI less than 1.00), or a wider variance. Such is not the case. We see that the SPA-rated Level 3 organizations are clustered around a CPI of 1.00, with little variance (Figure 5-11). This suggests that at least with regard to Level 2 and Level 3 organizations, the SPA does not inappropriately over-rate organizational maturity.

Figure 5-11 CPI Performance of SPA-Rated Organizations
With regard to the SCE, there are proportionally more Level 1 rated organizations. If the SCE-rated Level 1 organizations were in fact Level 2 organizations, inappropriately under-rated at Level 1, we would not expect to see a trend in CPI below 1.00, as we do (Figure 5-12). This suggests that, at least with regard to Level 1 and Level 2 organizations, the SCE does not inappropriately under-rate organizational maturity.

![Figure 5-12 CPI Performance of SCE-Rated Organizations](image)

The complete set of analytical plots and tables for the moderator “Rating Type” is at Appendix E.
5.2.2 Analysis of Moderators Relating to Cost and Schedule Performance.

As the moderators relating to CMM rating may have influenced the nature and/or degree of the correlation between CMM rating and performance, so too may the moderators of cost and schedule performance have influenced the nature and/or degree of correlation between rating and performance. Conceptually, we have distinguished between those moderators which are of programmatic significance and those of more technical significance. Factors of a programmatic nature, such as “Baseline Volatility,” “Contract Type,” and “Percent Complete” reflect the structure of the Government/contractor relationship and the forces that act upon that relationship, as the program progresses through the acquisition cycle. The technical moderators, such as “Application Type,” “Language,” and “Project Size” attempt to capture the essential qualities of program size and complexity, which may influence the overall difficulty of the program, and thus the contractor’s success in its execution.

5.2.2.1 Analysis of the Moderator “Baseline Volatility”

A correlation between rating and performance could be affected by the relative changes in the baseline of a project. These changes in baseline can take many forms: an increase/decrease in the scope of work (Engineering Change Proposals, Technical Change Proposals, etc.), transfer of tasks from one WBS element to another, reallocation of management reserve, or a formal reprogramming (negotiating an over-target baseline). The causes of these changes in baseline can vary from redirection on behalf of the government to inadequate initial budgeting by the contractor. It is possible that a change
in the baseline, regardless of the type, could affect the link between contractor performance and the performance indices of interest. In addition to concerns of cost growth and schedule delay triggered by such changes, the Government is concerned that any rebaseline may provide an opportunity for the contractor to obscure unfavorable cost and schedule variances from the baseline (Christensen 1994).

To address this concern, we examined the proportional change in the budget-at-complete (BAC) over the period of interest, i.e., we calculated the change in total budget over the 12 month period as a percentage of the budget at the beginning of the period. This rate of change of the budget is indicative of rebaselining, whatever the source, whether it is due to reallocation of work, ECPs, or reprogramming. We arbitrarily selected a change in budget of plus or minus fifteen percent as the stratification level in our analysis.

The effect of this moderator is significant in that programs which show a high degree of baseline volatility exhibit no statistically significant difference in cost and schedule performance, whereas programs which show a relatively low degree of baseline volatility demonstrate the same general increase in performance as was observed in the complete dataset case. This distinct difference in performance trends between these two levels of baseline volatility are clearly seen in figures 5-13 and 5-14.
Substantiating the observation of distinct performance trends are the results of the Kruskal-Wallis and multiple comparison tests. In the case of those programs with baseline volatility less than fifteen percent, there is a statistically significant difference in the distributions of Level 1 and Level 3 cost and schedule performance indices.
However, for those programs exhibiting a baseline volatility greater than fifteen percent, there is no statistically significant difference between any of the levels (Appendix F).

The complete set of analytical plots and tables for the moderator “Baseline Volatility” is at Appendix F.
5.2.2.2 *Analysis of the Moderator “Contract Type”*

The type of contract used to procure systems fundamentally influences the relationship between the Government and the contractor. For example, a fixed-price contract tends to place the monetary risk on the contractor, while a cost-type contract shifts most of the monetary risk to the Government (Nicholas 1990:497). The apportionment of risk between the parties affects how the task is proposed, costed, structured, performed, and tracked. Such a profound environmental moderator may have an effect on the correlation between performance and rating.

Though the scatter plots of the data show no obvious distinction between the cost-type and fixed-price type contracts (Appendix G), the descriptive statistics (Appendix G) appear to show a consistently higher mean CPI for fixed-price contracts at each level than for cost contracts. In other words, the fixed-type contracts show a CPI trend which is “shifted upward” in comparison to the cost-type CPI data (Table 5-10). This “shift” may be due to the fact that on a fixed-price contract, the contractor increases profit when it underruns the cost baseline. This upward-shift in performance for fixed-price contracts is also observed for SPI, and (except for level 1) is as prominent as with CPI. It is possible the fixed price contracts provided incentives for beating the baseline schedule, which might account for the shift, however our dataset did not include this level of detail. Thus it is not evident from the data that contract incentives were the cause of the shift.
Table 5-10:
Comparison of Mean Performance for Cost-type and Fixed-type Contracts

<table>
<thead>
<tr>
<th></th>
<th>Rating=1</th>
<th>Rating=1</th>
<th>Rating=2</th>
<th>Rating=2</th>
<th>Rating=3</th>
<th>Rating=3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CPI</td>
<td>SPI</td>
<td>CPI</td>
<td>SPI</td>
<td>CPI</td>
<td>SPI</td>
</tr>
<tr>
<td>Cost Contracts</td>
<td>N</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>0.6191</td>
<td>0.9608</td>
<td>0.9316</td>
<td>0.8905</td>
<td>1.1001</td>
</tr>
<tr>
<td>Fixed-Price</td>
<td>N</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Contracts</td>
<td>Mean</td>
<td>0.8284</td>
<td>0.9433</td>
<td>1.1081</td>
<td>0.9611</td>
<td>1.2139</td>
</tr>
</tbody>
</table>

The complete set of analytical plots and tables for the moderator “Contract Type” is at Appendix G.
5.2.2.3 *Analysis of the Moderator “Percent Complete”*

In our review of the literature, we found that proximity to completion has a significant effect on the dynamics of the cumulative performance indices. For example, cumulative SPI, by definition, is driven to 1.00 at program completion while cumulative CPI has been shown to be stable from the 20% completion point, where “stability” is defined as CPI range being less than 0.2. The dynamics of the cumulative performance indices have been well noted in the literature, and are a fundamental element in the art of estimating at-complete costs (Christensen and Heise 1993:7-15) In our research, however, we are taking a 12-month slice of these performance indices. We acknowledge these “snapshot” indices will not be as stable as the cumulative indices. Nevertheless, it was important that our research capture the degree to which the dynamics of the cumulative indices affected our non-cumulative indices.

For SPI, as stated above, the nature of the index is such that at program completion, it is identically equal to 1.00. That is, at the completion of the contract, all budgeted work packages are complete, and earned value has been taken. For contractors which have fallen behind schedule during the course of the contract, and have demonstrated a cumulative SPI below 1.00, one would expect disproportionately high non-cumulative SPI over the latter stages of contract performance, in order for cumulative SPI to equal 1.00 at contract completion. In our analysis, we define program percent complete as the percentage of earned value taken relative to total budget. Therefore, the concept of program completion is not linked to a chronological schedule (i.e., completion
date), but to the amount of work done relative to the amount of work required by the contract.

For our dataset, we chose 80 percent complete as the point about which we stratified the sample. This was done to distinguish between the performance over the bulk of the contract and the performance near program completion. As it turned out, nearly 60 percent of our sample is composed of contracts within the latter 20 percent of contract performance. Thus, any dynamics related to the latter stages of contract performance may affect the correlation between the ratings and the performance for the overall sample. For example, if non-cumulative SPI is artificially biased upward at the latter stages of contract performance, perhaps that effect swamps any maturity-related effect on SPI that may have been observable in a more representative sample.

This hypothesis is given credence by the SPI scatter and box/whisker plots (Figures 5-15 and 5-16), respectively, which for contracts less than 80 percent complete, show a maturity-related trend not unlike that observed for CPI in the overall dataset--whereas for contracts over 80 percent complete that trend is practically reversed. At less than 80 percent complete Level 1 projects are almost all below a SPI of 1.00 while at greater than 80 percent complete Level 1 projects are almost all above a SPI of 1.00. This is in contrast to SPI at rating Levels 2 and 3, which appear to remain relatively stable over the course of the contract.
Figure 5-15 Scatter Plots of SPI versus Rating for Contract Percent Complete

Figure 5-16 Box & Whisker Plots of SPI versus Rating for Contract Percent Complete

5-35
With regard to CPI, the data suggest that the performance of less-mature contractors tends to be worse in the last 20 percent of contract performance, while the performance of more mature contractors tends to be better in the last 20 percent of contract performance (Figure 5-17).

![Box & Whisker Plots of SPI versus Rating for Contract Percent Complete](image)

Figure 5-17 Box & Whisker Plots of SPI versus Rating for Contract Percent Complete

The complete set of analytical plots and tables for the moderator "Percent Complete" is at Appendix H.
5.2.2.4 Analysis of the Moderator “Application Type”

Application type is a gross predictor of project complexity. The categories selected, real-time applications versus information systems applications, capture the distinction between the highly complex avionics, flight control, simulation, and command and control applications and the usually less-demanding database and catalog applications.

Our dataset shows that of the real-time applications, nearly half (12 out of 25) are associated with Level 3 contractors. The cost performance of these projects are distinctly above a CPI of 1.00, with a mean of 1.259. This is in contrast to the performance of less mature contractors, who implement real-time applications with mean CPIs of 0.77 (Level 2), and 0.72 (Level 1). The difference in performance at these levels is shown in the scatter plot of CPI versus Rating (Fig 5-18), and is substantiated by the multiple comparison test (Table 5-11). These results would suggest that the more complex applications are being implemented with apparent success by mature software development organizations.

Figure 5-18 Scatter Plot of CPI versus Rating for Real-Time Applications

5-37
Table 5-11
Multiple Comparison Matrix for CPI for Real-Time Applications

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>8.7</td>
<td>1</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>8.9</td>
<td>-7.31</td>
<td>2.451</td>
<td>2.58</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>17.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

K-W Statistic of 8.9519, P=0.0114

In contrast to the real-time applications, only 5 of the 26 information systems projects are implemented by Level 3 organizations. The remainder are approximately evenly distributed between Level 1 and Level 2. For information systems applications, the data suggest that increased maturity does translate into substantially better cost performance from Level 1 to Level 2, but the variation of the Level 2 data is high relative to Level 1 data (Figure 5-19). The scarcity of data points at Level 3 precludes definitive analysis of the performance at that level. The complete set of analytical plots and tables for moderator “Application Type” is provided at Appendix I.

![Information Systems Applications: CPI](image)

Figure 5-19 Box Whisker Plot of CPI vs Rating for Information Systems Applications

5-38
5.2.2.5 *Analysis of the Moderator "Language"

Ada, as the official "standard" higher order language (HOL) of the DoD, is mandated for all new software development programs. This requirement to use Ada may impose difficulties on software development contractors if they have little experience with Ada, or if Ada is not their preferred language. On the other hand Ada is a powerful language which imposes rigorous discipline in the development process, and thus may provide benefits in the testing and integration phases of development. Thus it is important to determine if such a significant program characteristic has any effect on the correlation between rating and performance.

The general trend of the cost performance indices with respect to rating for Ada applications is not unlike the trend observed for those applications of a real-time type. Specifically, the less mature organizations show CPI levels below 1.00 (mean CPI for Level 1 is 0.727, for Level 2 is 0.765), the Level 3 organizations have a mean CPI of 1.038. This similarity between Ada applications and real-time applications is not surprising, given that the majority of the real-time applications in our dataset are coded in Ada.

In comparing the performance between Ada and Non-Ada applications, we found that Level 1 and Level 2 organizations' mean CPIs and SPIs are lower using Ada than with languages other than Ada --the numbers show the same effect for Level 3 organizations, but the non-Ada sample size is too small for meaningful comparison (Table 5-12). Note, no test for significance was performed on the Ada/Non-Ada mean
performance indices, so the reader is cautioned not to infer a statistically significant performance difference between Ada and Non-Ada projects at Levels 1 and 2.

Table 5-12
Comparison of Mean Performance for Ada and Non-Ada Applications

<table>
<thead>
<tr>
<th></th>
<th>Rating=1 CPI</th>
<th>Rating=1 SPI</th>
<th>Rating=2 CPI</th>
<th>Rating=2 SPI</th>
<th>Rating=3 CPI</th>
<th>Rating=3 SPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ada Applications</td>
<td>N 8</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Mean</td>
<td>0.7270</td>
<td>0.9501</td>
<td>0.7648</td>
<td>0.8496</td>
<td>1.0375</td>
<td>1.1012</td>
</tr>
<tr>
<td>Non-Ada Applications</td>
<td>N 6</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mean</td>
<td>0.8224</td>
<td>1.0175</td>
<td>1.2126</td>
<td>0.9823</td>
<td>1.7365</td>
<td>1.1664</td>
</tr>
</tbody>
</table>

This negative impact of Ada on the performance of less-mature organizations is perhaps due to the structured nature of Ada, which, in turn, demands structure of the organization. As a result, Ada may work better for those organizations with more mature processes. Less mature organizations may find that the discipline required to program in Ada imposes rigor that is incompatible with their chaotic software development paradigm.

The complete set of analytical plots and tables for the moderator “Language” is provided at Appendix J.
5.2.2.6 Analysis of the Moderator "Size"

Project size is the key driver in nearly all software cost estimation models, including REVIC (Revised Enhanced Version of Intermediate COCOMO), SEER-Software Estimation Model, and PRICE-S. Thus, project size is a necessary moderator to evaluate, in terms of its effect upon the rating/performance correlation. Given the lack of uniformity in the definition of software project size (we gathered data in the form of KSLOC, DSI, Equivalent DSI, and DSI converted from bytes), we can at best only give approximate size distinctions. Thus, we chose to stratify our sample on the relatively common size categories: "Greater than 100K LOC" and "Less than 100K LOC." This level of distinction is fairly common in the literature when distinguishing between relatively large programs and relatively small programs. As stated above, with the questionable consistency of our size data, any finer distinction would be misleading. Projects which have no size associated with them, such as management or testing WBSs, were excluded from the analysis.
For programs generally smaller than 100K LOC, the trend in the data is consistent with the trend observed for the complete dataset (Figure 5-20).

![Scatter Plot of CPI vs RATING](image)

Figure 5-20 Scatter Plot of CPI versus Rating for Applications Less than 100K LOC

However, unlike the correlation observed with the complete dataset, there is a statistically significant distinction between CPI at Level 1 and Level 2 only. This lack of distinction between CPI at Level 3 and CPI at the other levels may be a result of the smaller sample size for the moderated data. For programs greater than 100K LOC, our data show no statistically significant correlation between rating level and CPI or SPI (Appendix K).
The effect of application size on mean CPI varies with rating level. For Level 1 and 2 organizations, the larger programs tend to have lower mean CPIs than the smaller programs (Table 5-13). The size of the application does not appear to have an effect on the mean CPI for Level 3 organizations, suggesting larger applications tax the abilities of less mature organizations to a greater extent than they tax the abilities of more mature organizations.

<table>
<thead>
<tr>
<th>Applications</th>
<th>Rating=1 CPI</th>
<th>Rating=2 CPI</th>
<th>Rating=3 CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 100 K LOC</td>
<td>N 8</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Mean</td>
<td>0.8113</td>
<td>1.3524</td>
<td>1.1245</td>
</tr>
<tr>
<td>> 100 K LOC</td>
<td>N 8</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Mean</td>
<td>0.6875</td>
<td>0.6801</td>
<td>1.1659</td>
</tr>
</tbody>
</table>

It is interesting to note that the more mature organizations in our dataset are developing the smaller programs (9 out of 21 projects with fewer than 100K LOC (43%) are developed by Level 3 organizations, while only 5 out of 17 projects with more than 100K LOC (29%) are developed by Level 3 organizations). This preponderance of small projects associated with mature organizations may be driven by complexity. In the case of avionics or flight controls, the smaller programs can be the most complex, and thus may represent challenging software development programs for mature contractors.

The complete set of analytical plots and tables for the moderator “Size” is at Appendix K.
5.3 *Summary*

The analysis of the dataset yielded interesting insights into the nature and existence of correlation between rating level and performance. Table 5-14 summarizes the results of the Kruskal-Wallis and multiple comparison tests. These tests, powerful though they are, are neither necessary nor sufficient for the existence or absence of a correlation to be declared. Instead, they provide a degree of insight into the dataset not available solely through graphical and qualitative analysis.

<table>
<thead>
<tr>
<th>Analysis Case</th>
<th>Significant Difference in Levels?</th>
<th>Number of Different Pairs</th>
<th>Significant Difference in Levels?</th>
<th>Number of Different Pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPI</td>
<td>Yes</td>
<td>2</td>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td>Complete Dataset</td>
<td>Yes</td>
<td>2</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Rating Type - SPA</td>
<td>No</td>
<td>-</td>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td>Rating Type - SCE</td>
<td>Yes</td>
<td>1</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Baseline Volatility - Less than 15%</td>
<td>Yes</td>
<td>1</td>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td>Baseline Volatility - Greater than 15%</td>
<td>No</td>
<td>-</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Contract Type - Cost</td>
<td>Yes</td>
<td>1</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Contract Type - Fixed Price</td>
<td>No</td>
<td>-</td>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td>Percent Complete - less than 80% Complete</td>
<td>No</td>
<td>-</td>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td>Percent Complete - greater than 80% Complete</td>
<td>Yes</td>
<td>2</td>
<td>* Yes</td>
<td>1</td>
</tr>
<tr>
<td>Application Type - Real-time</td>
<td>Yes</td>
<td>2</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Application Type - Information System</td>
<td>Yes</td>
<td>1</td>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td>Language - Ada</td>
<td>Yes</td>
<td>2</td>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td>Language - Non-Ada</td>
<td>Yes</td>
<td>2</td>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td>Size - less than 100K LOC</td>
<td>Yes</td>
<td>1</td>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td>Size - greater than 100K LOC</td>
<td>No</td>
<td>-</td>
<td>No</td>
<td>-</td>
</tr>
</tbody>
</table>

Higher rating levels have higher mean rank of performance unless otherwise specified
* Rating level 1 showed higher SPI performance than level 2
6. Conclusion

6.1 Overview

The purpose of our research was to determine the nature of the correlation, if any, between an organization's CMM rating and the success of the organization's software development efforts. Consequently, the conclusions derived from our research should be discussed in terms of both the existence and the nature of the correlation. Moderating variables which aided in the identification and description of any relationships between rating level and performance are incorporated into the discussion. Finally, we recommend further useful work in this area.

6.2 The Existence and Nature of Correlation Between Rating and Performance

Our research leads us to conclude that a correlation exists between performance and software process maturity. We observed improved cost and schedule performance with increasing process maturity. Specifically, the least mature organizations were likely to have difficulty adhering to cost and schedule baselines. In contrast, the more mature organizations were likely to have on-baseline cost and schedule performance. We also observed that certain moderators strongly affected this correlation.

In terms of identifying the existence of a correlation, our null hypothesis was that there was no correlation. If this hypothesis were correct, we would expect to have
observed no discernible trend in either the central tendency, or the variation of the sample from rating Level 1 through Level 3.

The results of our evaluation have compelled us to reject the null hypothesis in favor of the alternate hypothesis; that there is a correlation between CMM rating and performance, as represented by CPI and SPI. This conclusion is reached by the confluence of qualitative (graphical) analysis and nonparametric statistical techniques.

Although the complete dataset provided the initial indications of the correlation, the striking correlation appeared only when several moderating conditions were applied to the dataset. Specifically, the correlation between rating level and CPI was more clear with the “Rating Relevance” moderator accounted for. The correlation between rating level and SPI was evident only with the “Percent Complete” moderator accounted for.

6.2.1 The Nature of the Correlation between Rating and Cost Performance

For the complete dataset, we saw the first hint of a trend in the central tendency of CPI, specifically between Level 1 and Level 3, where the median performance increased from a CPI below 1.00, to a CPI at or very near 1.00. However, we observed no significant change in variance of CPI between Level 1 and Level 3.

When we applied the moderator “Rating Relevance,” (which establishes the associative relevance between an organization’s rating and the project from which the cost/schedule data were collected) the correlation between rating level and CPI became very evident. We observed trends both in central tendency and variation across the rating levels. The trend observed was high variation with central tendency below a CPI of 1.00
for Level 1; high variation and central tendency near a CPI of 1.00 for Level 2; low variation and central tendency near a CPI of 1.00 for Level 3. Additionally, the multiple comparison test showed significant distributions between Levels 1 and 2, and between Levels 1 and 3. Thus, the trend in CPI with increasing organization maturity is a CPI generally approaching 1.00, with generally decreasing variation.

6.2.2 The Nature of the Correlation between Rating and Schedule Performance

Within the complete dataset, the variation in schedule performance appears fairly constant between Level 2 and Level 3, and is markedly less than the variation in SPI at Level 1. Thus, a trend in variation with rating level is shown only between Level 1 organizations and the rest. It appears that once an organization matures beyond Level 1, variation in SPI is relatively insensitive to maturity.

Unlike the trend observed in variation, we observed no clear trend in the central tendency of SPI within the complete data set. At all rating levels, the SPI remains close to 1.00. However, when the moderator “Percent Complete” was taken into account, an intriguing correlation between rating level and central tendency of SPI manifested itself.

We noted that for projects less than 80% complete, the performance of Level 1 organizations was consistently below a SPI of 1.00. For projects greater than 80% complete, this Level 1 behavior was reversed—Level 1 organizations posted SPIs generally greater than 1.00. For Level 2 and Level 3 organizations, we observed little change in the central tendency of SPI with increasing rating level for both “young” projects (less than 80% complete), and “old” projects (greater than 80% complete).
The Level 1 SPI behavior for "young" versus "old" projects may explain why the behavior of SPI relative to rating level was not apparent for the complete dataset or other moderator groups. For Level 1 organizations, most projects less than 80% complete exhibited a SPI under 1.00; most projects greater than 80% complete exhibited a SPI over 1.00. These two groups offset each other, such that the complete data set showed the median SPI of exactly 1.00. That the "young" Level 1 projects showed schedule overruns (SPI less than 1.00), and the "old" Level 1 projects showed schedule underruns (SPI greater than 1.00) has more to do with the way SPI is calculated than any performance improvement in these organizations. Specifically, by definition, cumulative SPI is forced to 1.00 at contract completion. In order for programs which fall behind schedule early in the contract (cumulative SPI less than 1.00) to achieve this, the non-cumulative SPI late in the contract is forced above 1.00.

In other words, we observed a similar converging behavior in SPI as we did in CPI, but only in projects which are less than 80% complete--before the nature of cumulative SPI "artificially" increased performance at the end of the projects. This effect masked the central tendency behavior of SPI in the overall data set, and is the result of the sample having disproportionately more "old" projects than "young" ones.

In summary, our research leads us to conclude that a CMM Level 1 contractor is likely to have difficulty adhering to cost and schedule baselines. In contrast, a CMM Level 3 contractor is likely to have on-baseline cost and schedule performance. We also conclude that certain moderators strongly affect the observed correlation.
6.3 Recommendations for Further Research

Further analysis of the database developed for this research should be performed. We were able to examine only eight of the moderators collected/derived. We found that other means of "slicing" the data provided interesting and valuable insight into the relationships at work in the complex process the data represents. With further examination, this database, limited and flawed though it is, will reveal more knowledge about the process of software acquisition and the maturity of software development organizations.

Further work should be done to broaden the database. Of the shortcomings of our research, the most significant has to do with the representativeness of our sample. Our sample was biased toward programs at the end of program completion. We feel sure this had the effect of hiding the behavior of the SPI with respect to rating level, and may have had other effects we were unaware of. An effort should be made to collect more data from organizations rated by the SCE method. Of course, as more organizations achieve higher levels of CMM maturity, they should be added to the database. Additionally, the distribution of data points between ESC and ASC may have introduced unintended bias. Further work should be performed to incorporate data from other product centers or relevant organizations.

As the database grows, there may evolve a statistically significant sample of organizations rated multiple times, such that longitudinal studies may be performed. It would be illuminating to track SPI and CPI over time as programs achieve higher levels
of maturity. Additionally, a larger database would enable simultaneous application of multiple moderators. This is not feasible for the dataset as it currently exists. Multiple applications of moderators tend to reduce the number of data points below the number where meaningful conclusions can be drawn.

The depth of the database could also be improved. Each data point could itself be the subject of an intensive case study. Our superficial treatment of moderators could only grossly characterize the dynamics peculiar to the project. If each project were to be studied in-depth, more discerning moderators could be obtained, as could more complete data for the existing moderators.

Finally, it would be valuable for future researchers to attempt to fit a distribution to the data, to develop a predictive model for contract performance based on rating level. The software development community at large may well be interested in the probability and confidence level of a certain CPI and SPI outcome given a rating level.
6.4 Conclusion

The aim of our research was to determine the nature of a correlation between the CMM rating and software development success. Though success is difficult to measure directly, by using the surrogates of cost and schedule performance, we were able to show correlation between CMM rating and the cost and schedule performance of a generally representative sample of historical software development contracts. If we were to apply this knowledge to current software development programs, we see that the CMM rating is a useful means of assessing the general likelihood of a contractor meeting the contract cost and schedule baselines.
Appendix A: Data Collection Form

This appendix contains an example of the data collection form used to guide the collection of data from the cost libraries and the program personnel interviews. The data collection form was designed so that program identification information could be disassociated from the rest of the data to ensure anonymity of the data source. After the data collection forms were completed, the program identification information was separated and secured. Only the researchers and their faculty advisors have access to the correlation matrix which links these programs to their data points.
DATA COLLECTION FORM

**********WARNING**********
• THIS INFORMATION IS PRIVILEGED, ACADEMIC RESEARCH DATA. INFORMATION CONTAINED ON THIS COVER SHEET, AND ASSOCIATED DATA CANNOT BE RELEASED PUBLICLY WITHOUT EXPRESS WRITTEN CONSENT OF THE RESEARCHERS.
• THIS COVER SHEET MUST BE DISASSOCIATED WITH RELATED DATA PRIOR TO PUBLIC RELEASE.
• THIS DOCUMENT AND ASSOCIATED DATA CONTAIN NO CLASSIFIED, PROPRIETARY, OR CONFIDENTIAL MATERIAL.

DATA IDENTIFICATION TAG: _________

ORGANIZATION NAME: LOCATION: MAIL CODE:

POC NAME(S): PHONE: EMAIL:

CONTRACTOR NAME: LOCATION:

DIVISION: PROJECT NAME:

CONTRACT NUMBER: DATA ACCESSION NUMBER:

WBS INFORMATION:
WBS 1--LEVEL: WBS NUMBER WBS TITLE:
WBS 2--LEVEL: WBS NUMBER: WBS TITLE:
WBS 3--LEVEL: WBS NUMBER: WBS TITLE:
WBS 4--LEVEL: WBS NUMBER: WBS TITLE:
WBS 5--LEVEL: WBS NUMBER: WBS TITLE:
WBS 6--LEVEL: WBS NUMBER: WBS TITLE:
WBS 7--LEVEL: WBS NUMBER: WBS TITLE:
WBS 8--LEVEL: WBS NUMBER: WBS TITLE:
WBS 9--LEVEL: WBS NUMBER: WBS TITLE:
WBS 10--LEVEL: WBS NUMBER: WBS TITLE:

COMMENTS:
DATA IDENTIFICATION TAG:

INSTRUCTIONS: DO NOT PUT PROGRAM-UNIQUE OR CONTRACT IDENTIFICATION DATA ON THIS FORM. THE LINKAGE TO THE PROGRAM MUST BE MAINTAINED SOLELY THROUGH THE DATA IDENTIFICATION TAG.

WBS DESCRIPTIONS:
WBS 1 DESCRIPTION:

WBS 2 DESCRIPTION:

WBS 3 DESCRIPTION:

WBS 4 DESCRIPTION:

WBS 5 DESCRIPTION:

WBS 6 DESCRIPTION:

WBS 7 DESCRIPTION:

WBS 8 DESCRIPTION:

WBS 9 DESCRIPTION:

WBS 10 DESCRIPTION:

CMM DATA:
FIRST RATING: DATE OF RATING: RATING METHOD: RATING RELEVANCE:

COMMENTS:

SECOND RATING: DATE OF RATING: RATING METHOD: RATING RELEVANCE:

COMMENTS:

THIRD RATING: DATE OF RATING: RATING METHOD: RATING RELEVANCE:

COMMENTS:
DATA IDENTIFICATION TAG:

INSTRUCTIONS: DO NOT PUT PROGRAM-UNIQUE OR CONTRACT IDENTIFICATION DATA ON THIS FORM. THE LINKAGE TO THE PROGRAM MUST BE MAINTAINED SOLELY THROUGH THE DATA IDENTIFICATION TAG.

MODERATING VARIABLE INFORMATION

PROGRAM:
ACQUISITION PHASE: ACAT LEVEL:

CONTRACT TYPE:

COMMENTS:

PROJECT:
LANGUAGE, LANGUAGE PERCENTAGE:

SOFTWARE LIFECYCLE POINT:

APPLICATION TYPE:

BUDGET:

BUDGET VOLATILITY:

PROJECT SIZE (LINES OF CODE, FUNCTION POINTS, ETC):

NEW vs REENGINEERED:

REQUIREMENTS VOLATILITY:

PROJECT TEAM INTEGRATION (PRIME/SUB):

OTHER SIGNIFICANT MODERATING PROJECT CONDITIONS:
DATA IDENTIFICATION TAG:
INSTRUCTIONS: DO NOT PUT PROGRAM-UNIQUE OR CONTRACT IDENTIFICATION DATA ON THIS FORM. THE LINKAGE TO THE PROGRAM MUST BE MAINTAINED SOLELY THROUGH THE DATA IDENTIFICATION TAG.

MODERATING VARIABLE INFORMATION
COST DATA:
REBASELINING:

COST REPORTING ANOMALIES:

OTHER SIGNIFICANT MODERATING COST CONDITIONS:

QUALITY DATA:
QUALITY STANDARDS ON CONTRACT

QUALITY PARAMETERS TRACKED

OTHER SIGNIFICANT MODERATING QUALITY CONDITIONS:

PROGRAM MANAGER COMMENTS:
DATA IDENTIFICATION TAG:

INSTRUCTIONS: DO NOT PUT PROGRAM-UNIQUE OR CONTRACT IDENTIFICATION DATA ON THIS FORM. THE LINKAGE TO THE PROGRAM MUST BE MAINTAINED SOLELY THROUGH THE DATA IDENTIFICATION TAG.

WBS 1:

-6 MONTH CUMULATIVE
BCWS:
BCWP:
ACWP:
BUDGET:

RATING

+/- 6 MONTH
ΔBCWS =
ΔBCWP =
ΔACWP =
ΔBUDGET =
CPI =
SPI =

+6 MONTH CUMULATIVE
BCWS:
BCWP:
ACWP:
BUDGET:

-3 MONTH CUMULATIVE
BCWS:
BCWP:
ACWP:
BUDGET:

+/- 3 MONTH
ΔBCWS =
ΔBCWP =
ΔACWP =
ΔBUDGET =
CPI =
SPI =

+3 MONTH CUMULATIVE
BCWS:
BCWP:
ACWP:
BUDGET:

WBS 2:

-6 MONTH CUMULATIVE
BCWS:
BCWP:
ACWP:
BUDGET:

RATING

+/- 6 MONTH
ΔBCWS =
ΔBCWP =
ΔACWP =
ΔBUDGET =
CPI =
SPI =

+6 MONTH CUMULATIVE
BCWS:
BCWP:
ACWP:
BUDGET:

-3 MONTH CUMULATIVE
BCWS:
BCWP:
ACWP:
BUDGET:

+/- 3 MONTH
ΔBCWS =
ΔBCWP =
ΔACWP =
ΔBUDGET =
CPI =
SPI =

+3 MONTH CUMULATIVE
BCWS:
BCWP:
ACWP:
BUDGET:
Appendix B: Gross Dataset

This appendix provides the gross dataset which was derived from the data collection forms. This database was constructed using Microsoft Access version 2.0. The database was constructed in a flat file format, with each database record representing an individual data point, comprised of identifying code, rating information, cost/schedule information, and moderating characteristics. The data is presented in a “form” format, with each record (data point) represented by a separate page. Each field in the form corresponds to a field in the database with the exception of the dependent variables and derived moderators which were calculated from the dataset.
Gross Data Set

Data Identification

Program Tag: A RatingTag: A Project Tag (WBS#): 1

Project Description: Operational mission software planning, requirements analysis, change review/assessment, review/approval requirements specifications

Rating Information

Rating Date: 10/15/93 Rating: 3 Rating Type: SPA (EXT) Rating Relevance: Med

Moderating Variables

Acquisition Phase: Support/Upgrade Contract Type: CPI

Program Comments:

S/W Lifecycle: Requirements Language: Ada Language %: 100.00%

Application: Avionics Project Budget: 16608000 Budget Volatility: Low

Size: 156800 % New/Modified Code: 100.00% Requirements Volatility: Unk

Cost Accounting Anomalies: Variances may be influenced by letter contract prior to periods of interest

Program Manager Comments: Size was converted from bytes to DSI

Cost Data

Six Months Prior to Rating Three Months Prior to Rating Three Months After Rating Six Months After Rating

<table>
<thead>
<tr>
<th>Date</th>
<th>BCWS</th>
<th>BCWS</th>
<th>BCWS</th>
<th>BCWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/30/93</td>
<td>3110</td>
<td>3612</td>
<td>4427</td>
<td>4635</td>
</tr>
<tr>
<td>6/30/93</td>
<td>2715</td>
<td>3139</td>
<td>4040</td>
<td>4797</td>
</tr>
<tr>
<td>7/30/93</td>
<td>4096</td>
<td>5313</td>
<td>5827</td>
<td>7681</td>
</tr>
<tr>
<td>8/30/93</td>
<td>16782</td>
<td>16782</td>
<td>16633</td>
<td>16608</td>
</tr>
<tr>
<td>LRE:</td>
<td>15031</td>
<td>16168</td>
<td>15541</td>
<td>16698</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: -0.0104 LRE Volatility Index: 0.0416 Percent Complete: 0.2888

BCWS Activity: 0.32902 BCWP Activity: 0.43402 ACWP Activity: 0.46674

Dependent Variables

Schedule Performance Index: 1.365246 Cost Performance Index: 0.58075

Investigator Comments:
Data Identification

Program Tag: A RatingTag: A Project Tag (WBS#): 2

Project Description: Planning and integration of operational mission software

Rating Information

Rating Date: 10/15/93 Rating: 3 Rating Type: SPA (EXT) Rating Relevance: Med

Moderating Variables

Acquisition Phase: Support/Upgrade Contract Type: CPI

Program Comments:

S/W Lifecycle: Integration Language: Ada Language %: 100.00%

Application: Avionics Project Budget: 5186000 Budget Volatility: Low

Size: 0 % New/Modified Code: 0.00% Requirements Volatility: Unk

Rebaselining: Yes Quality Stds On Contract: ☑ Quality Params Tracked: ☑

Cost Accounting Anomalies: Variances may be influenced by letter contract prior to periods of interest--check for rebaselining

Program Manager Comments: BCWS decreased

Cost Data

<table>
<thead>
<tr>
<th></th>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>5/30/93</td>
<td>8/30/93</td>
<td>1/30/94</td>
<td>4/30/94</td>
</tr>
<tr>
<td>BCWS:</td>
<td>191</td>
<td>365</td>
<td>318</td>
<td>365</td>
</tr>
<tr>
<td>BCWP:</td>
<td>155</td>
<td>239</td>
<td>320</td>
<td>367</td>
</tr>
<tr>
<td>ACWP:</td>
<td>101</td>
<td>160</td>
<td>186</td>
<td>225</td>
</tr>
<tr>
<td>Budget:</td>
<td>5902</td>
<td>5902</td>
<td>5865</td>
<td>5186</td>
</tr>
<tr>
<td>LRE:</td>
<td>6231</td>
<td>6281</td>
<td>5644</td>
<td>5564</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: -0.1213 LRE Volatility Index: -0.107 Percent Complete: 0.0708

BCWS Activity: 0.47671 BCWP Activity: 0.57766 ACWP Activity: 0.55111

Dependent Variables

Schedule Performance Index: 1.218391 Cost Performance Index: 1.70968

Investigator Comments:
Data Identification

Program Tag: A RatingTag: A Project Tag (WBS#): 3

Project Description: Planning, design, implementation and test of operating system

Rating Information

Rating Date: 10/15/93 Rating: 3 Rating Type: SPA (EXT) Rating Relevance: Med

Rating Comment:

Moderating Variables

Acquisition Phase: Support/Upgrade Contract Type: CPI

Program Comments:

S/W Lifecycle: Multiple Language: Ada Language %: 87.00%

Application: Avionics Project Budget: 4201000 Budget Volatility: Low

Size: 16300 % New/Modified Code: 100.00% Requirements Volatility: Unk

Rebasing: No Quality Stds On Contract: ☑ Quality Params Tracked: ☑

Cost Accounting Anomalies: Variances may be influenced by letter contract prior to periods of interest

Program Manager Comments:

Cost Data

<table>
<thead>
<tr>
<th></th>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>5/30/93</td>
<td>8/30/93</td>
<td>1/30/94</td>
<td>4/30/94</td>
</tr>
<tr>
<td>BCWS</td>
<td>1500</td>
<td>1881</td>
<td>2428</td>
<td>2778</td>
</tr>
<tr>
<td>BCWP</td>
<td>1224</td>
<td>1764</td>
<td>2269</td>
<td>2776</td>
</tr>
<tr>
<td>ACWP</td>
<td>1427</td>
<td>1763</td>
<td>2244</td>
<td>2674</td>
</tr>
<tr>
<td>Budget</td>
<td>5355</td>
<td>5355</td>
<td>5320</td>
<td>4201</td>
</tr>
<tr>
<td>LRE</td>
<td>5140</td>
<td>5143</td>
<td>4820</td>
<td>4066</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: -0.2155 LRE Volatility Index: -0.209 Percent Complete: 0.6808

BCWS Activity: 0.46004 BCWP Activity: 0.55908 ACWP Activity: 0.46634

Dependent Variables

Schedule Performance Index: 1.214397 Cost Performance Index: 1.24459

Investigator Comments:
Data Identification

Project Description: Analyze, design, and code software for software simulation system component

Rating Information

Rating Date: 1/15/94 Rating: 3 Rating Type: SPA (EXT) Rating Relevance: High

Rating Comment:

Moderating Variables

Acquisition Phase: EMD Contract Type: CPAF

Program Comments: May have incentive fee on contract--did not show up in CPR

S/W Lifecycle: Code/Test Language: Ada Language %: 100.00%

Application: Simulation Project Budget: 4300000 Budget Volatility: Med

Size: 46746 % New/Modified Code: 100.00% Requirements Volatility: High

Resubaselines: No Quality Stds On Contract: ✓ Quality Params Tracked: ✓

Cost Accounting Anomalies: Resubaselines occurred immediately prior to timeframe of interest. May see repercussions.

Program Manager Comments: The government may be responsible for 50% of the problems in cost/schedule variances. Contractor has done a "competent job".

Cost Data

<table>
<thead>
<tr>
<th></th>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>Date:</td>
<td>Date:</td>
<td>Date:</td>
<td>Date:</td>
</tr>
<tr>
<td>BCWS:</td>
<td>8/30/93</td>
<td>11/30/93</td>
<td>3/30/94</td>
<td>7/30/94</td>
</tr>
<tr>
<td>BCWS:</td>
<td>2807</td>
<td>3016</td>
<td>3524</td>
<td>3823</td>
</tr>
<tr>
<td>BCWP:</td>
<td>2794</td>
<td>2985</td>
<td>3349</td>
<td>3763</td>
</tr>
<tr>
<td>ACWP:</td>
<td>2829</td>
<td>2959</td>
<td>3353</td>
<td>3765</td>
</tr>
<tr>
<td>Budget:</td>
<td>2807</td>
<td>4019</td>
<td>4007</td>
<td>4300</td>
</tr>
<tr>
<td>LRE:</td>
<td>2829</td>
<td>4049</td>
<td>4044</td>
<td>4305</td>
</tr>
</tbody>
</table>

Derived Moderators

<table>
<thead>
<tr>
<th></th>
<th>BCWS Activity: 0.26576</th>
<th>BCWP Activity: 0.25751</th>
<th>ACWP Activity: 0.24861</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget Volatility Index: 0.53188</td>
<td>LRE Volatility Index: 0.5217</td>
<td>Percent Complete: 0.8751</td>
<td></td>
</tr>
<tr>
<td>BCWS Activity: 0.26576</td>
<td>BCWP Activity: 0.25751</td>
<td>ACWP Activity: 0.24861</td>
<td></td>
</tr>
</tbody>
</table>

Dependent Variables

<table>
<thead>
<tr>
<th></th>
<th>Schedule Performance Index: 0.953740</th>
<th>Cost Performance Index: 1.03526</th>
</tr>
</thead>
</table>

Investigator Comments:
Data Identification

Program Tag: B RatingTag: B Project Tag (WBS#): 2

Project Description: Analyze, design, and code software for software simulation system component

Rating Information

Rating Date: 1/15/94 Rating: 3 Rating Type: SPA (EXT) Rating Relevance: High

Rating Comment:

Moderating Variables

Acquisition Phase: EMD Contract Type: CPAF

Program Comments: May have incentive fee on contract—did not show up in CPR

S/W Lifecycle: Code/Test Language: Ada Language %: 100.00%

Application: Simulation Project Budget: 3341000 Budget Volatility: Med

Size: 22712 % New/Modified Code: 100.00% Requirements Volatility: High

Rebaselining: No Quality Stds On Contract: ☒ Quality Params Tracked: ☒

Cost Accounting Anomalies: Rebaselining occurred immediately prior to timeframe of interest. May see repercussions.

Program Manager Comments: The government may be responsible for 50% of the problems ie cost/schedule variances. Contractor has done a "competent job".

Cost Data

<table>
<thead>
<tr>
<th></th>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>8/30/93</td>
<td>11/30/93</td>
<td>3/30/94</td>
<td>7/30/94</td>
</tr>
<tr>
<td>BCWS:</td>
<td>2517</td>
<td>2688</td>
<td>3048</td>
<td>3302</td>
</tr>
<tr>
<td>BCWP:</td>
<td>2496</td>
<td>2739</td>
<td>3028</td>
<td>3300</td>
</tr>
<tr>
<td>ACWP:</td>
<td>2568</td>
<td>2855</td>
<td>3119</td>
<td>3292</td>
</tr>
<tr>
<td>Budget:</td>
<td>2534</td>
<td>3077</td>
<td>3078</td>
<td>3341</td>
</tr>
<tr>
<td>LRE:</td>
<td>2597</td>
<td>3146</td>
<td>3214</td>
<td>3365</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0.31847 LRE Volatility Index: 0.2957 Percent Complete: 0.9877

BCWS Activity: 0.23773 BCWP Activity: 0.24364 ACWP Activity: 0.21993

Dependent Variables

Schedule Performance Index: 1.024204 Cost Performance Index: 1.1105

Investigator Comments:
Data Identification

Program Tag: B RatingTag: B Project Tag (WBS#): 3

Project Description: Analyze, design, and code software for software simulation system component

Rating Information

Rating Date: 1/15/94 Rating: 3 Rating Type: SPA (EXT) Rating Relevance: High

Moderating Variables

Acquisition Phase: EMD Contract Type: CPAF

Program Comments: May have incentive fee on contract—did not show up in CPR

S/W Lifecycle: Code/Test Language: Ada Language %: 100.00%

Application: Simulation Project Budget: 2365000 Budget Volatility: Med

Size: 138837 % New/Modified Code: 100.00% Requirements Volatility: High

Cost Accounting Anomalies: Rebaselining occurred immediately prior to timeframe of interest. May see repercussions.

Program Manager Comments: The government may be responsible for 50% of the problems ie cost/schedule variances. Contractor has done a "competent job".

Cost Data

Six Months Prior to Rating Three Months Prior to Rating Three Months After Rating Six Months After Rating

Date: 8/30/93 Date: 11/30/93 Date: 3/30/94 Date: 7/30/94

BCWS: 2039 BCWS: 2151 BCWS: 2194 BCWS: 2315

BCWP: 2036 BCWP: 2129 BCWP: 2183 BCWP: 2314

ACWP: 2075 ACWP: 2176 ACWP: 2276 ACWP: 2337

Budget: 2043 Budget: 2203 Budget: 2203 Budget: 2365

LRE: 2082 LRE: 2250 LRE: 2295 LRE: 2391

Derived Moderators

Budget Volatility Index: 0.15761 LRE Volatility Index: 0.1484 Percent Complete: 0.9784

BCWS Activity: 0.11922 BCWP Activity: 0.12014 ACWP Activity: 0.11211

Dependent Variables

Schedule Performance Index: 1.007246 Cost Performance Index: 1.06107

Investigator Comments:
Data Identification
Program Tag: B Rating Tag: B Project Tag (WBS#): 4
Project Description: Analyze, design, and code software for software simulation system component

Rating Information
Rating Date: 1/15/94 Rating: 3 Rating Type: SPA (EXT) Rating Relevance: High
Rating Comment:

Moderating Variables
Acquisition Phase: EMD Contract Type: CPAF
Program Comments: May have incentive fee on contract—did not show up in CPR
S/W Lifecycle: Code/Test Language: Ada Language %: 100.00%
Application: Simulation Project Budget: 8685000 Budget Volatility: High
Size: 10150 % New/Modified Code: 100.00% Requirements Volatility: High
Rebaselining: Yes Quality Stds On Contract: ☑ Quality Params Tracked: ☑
Cost Accounting Anomalies: In Sep 94, a reallocation of budget was detected. Prior to this, they were on budget and on schedule
Program Manager Comments: The government may be responsible for 50% of the problems ie cost/schedule variances. Contractor has done a "competent job".

Cost Data

<table>
<thead>
<tr>
<th></th>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>8/30/93</td>
<td>11/30/93</td>
<td>3/30/94</td>
<td>7/30/94</td>
</tr>
<tr>
<td>BCWS:</td>
<td>1656</td>
<td>1317</td>
<td>1442</td>
<td>1972</td>
</tr>
<tr>
<td>BCWP:</td>
<td>1660</td>
<td>1317</td>
<td>1431</td>
<td>1955</td>
</tr>
<tr>
<td>ACWP:</td>
<td>1670</td>
<td>1321</td>
<td>1418</td>
<td>1951</td>
</tr>
<tr>
<td>Budget:</td>
<td>1378</td>
<td>-60</td>
<td>2554</td>
<td>8685</td>
</tr>
<tr>
<td>LRE:</td>
<td>1393</td>
<td>-46</td>
<td>2573</td>
<td>10085</td>
</tr>
</tbody>
</table>

Derived Moderators
Budget Volatility Index: 5.30261 LRE Volatility Index: 6.2398 Percent Complete: 0.2251
BCWS Activity: 0.16024 BCWP Activity: 0.1509 ACWP Activity: 0.14403

Dependent Variables
Schedule Performance Index: 0.933544 Cost Performance Index: 1.04982
Investigator Comments:
Data Identification

Program Tag: C RatingTag: A Project Tag (WBS#): 1
Project Description: Design, code, and test flight control software

Rating Information

Rating Date: 5/15/92 Rating: 2 Rating Type: SPA (EXT) Rating Relevance: High
Rating Comment:

Moderating Variables

Acquisition Phase: Production Contract Type: FPIF
Program Comments: 70/30 Share ratio
S/W Lifecycle: Release Language: Jovial Language %: 100.00%
Application: Avionics Project Budget: 3622000 Budget Volatility: None
Size: 31000 % New/Modified Code: 100.00%
Rebaselining: No Quality Stds On Contract: Yes Quality Params Tracked: Yes
Cost Accounting Anomalies: Minimal effort--Largely complete. May not be enough effort to be a valid data point
Program Manager Comments: Additional requirements & clarifications determined to be in or out of scope. Out-of-scope requirements added as ECPs

Cost Data

<table>
<thead>
<tr>
<th></th>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>11/30/91</td>
<td>2/28/92</td>
<td>7/30/92</td>
<td>11/30/92</td>
</tr>
<tr>
<td>BCWS</td>
<td>3532</td>
<td>3532</td>
<td>3538</td>
<td>3538</td>
</tr>
<tr>
<td>BCWP</td>
<td>3539</td>
<td>3539</td>
<td>3545</td>
<td>3545</td>
</tr>
<tr>
<td>ACWP</td>
<td>3705</td>
<td>3716</td>
<td>3716</td>
<td>3716</td>
</tr>
<tr>
<td>Budget</td>
<td>3615</td>
<td>3601</td>
<td>3617</td>
<td>3622</td>
</tr>
<tr>
<td>LRE</td>
<td>3705</td>
<td>3716</td>
<td>3716</td>
<td>3716</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0.00194 LRE Volatility Index: 0.003 Percent Complete: 0.9787
BCWS Activity: 0.0017 BCWP Activity: 0.00169 ACWP Activity: 0.00236

Dependent Variables

Schedule Performance Index: 1 Cost Performance Index: 0.54545
Investigator Comments:

Datapoint excluded from Complete Data Set due to low activity level.

B-9
Data Identification

Project Description: Define requirements for each CSCI, perform updates to legacy system

Rating Information

Rating Date: 5/15/91 Rating: 1 Rating Type: SPA (EXT) Rating Relevance: High
Rating Comment: Information provided by Contractor (no program office intermediary)

Moderating Variables

Acquisition Phase: EMD Contract Type: CPFF
Program Comments: Program was cancelled.
S/W Lifecycle: Test/Integration Language: Jovial Language %: 100.00%
Application: Other Project Budget: 6282000 Budget Volatility: Low
Size: 150000 % New/Modified Code: 60.00% Requirements Volatility: High
Rebaselining: No Quality Stds On Contract: [x] Quality Params Tracked: [x]
Cost Accounting Anomalies:
Program Manager Comments: Program was "overcome by events" and was thus cancelled.

Cost Data

<table>
<thead>
<tr>
<th></th>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>12/30/90</td>
<td>3/30/91</td>
<td>9/30/91</td>
<td>11/30/91</td>
</tr>
<tr>
<td>BCWS: 3823</td>
<td>BCWS: 4197</td>
<td>BCWS: 4868</td>
<td>BCWS: 5109</td>
<td></td>
</tr>
<tr>
<td>BCWP: 3639</td>
<td>BCWP: 4114</td>
<td>BCWP: 4750</td>
<td>BCWP: 4997</td>
<td></td>
</tr>
<tr>
<td>ACWP: 4581</td>
<td>ACWP: 5269</td>
<td>ACWP: 5958</td>
<td>ACWP: 6179</td>
<td></td>
</tr>
<tr>
<td>Budget: 4445</td>
<td>Budget: 4850</td>
<td>Budget: 5000</td>
<td>Budget: 6282</td>
<td></td>
</tr>
<tr>
<td>LRE: 5359</td>
<td>LRE: 6135</td>
<td>LRE: 6275</td>
<td>LRE: 7562</td>
<td></td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0.41327 LRE Volatility Index: 0.4111 Percent Complete: 0.7954
BCWS Activity: 0.25171 BCWP Activity: 0.27176 ACWP Activity: 0.25862

Dependent Variables

Schedule Performance Index: 1.055988 Cost Performance Index: 0.84981

Investigator Comments:
Data Identification

Project Description: Design, code, test, and integration of software for flight control system

Rating Information

Rating Date: 5/15/92 Rating: 2 Rating Type: SPA (EXT) Rating Relevance: Med

Rating Comment:

Moderating Variables

Acquisition Phase: EMD Contract Type: CPAF

Program Comments: "Cost plus some base fee plus any incentive (sic) fees awarded"

S/W Lifecycle: Multiple-Early Language: Ada Language %: 100.00%

Application: Avionics Project Budget: 316251000 Budget Volatility: Low

Size: 70000 % New/Modified Code: 100.00% Requirements Volatility: Low

Rebaselining: No Quality Stds On Contract: ☑ Quality Params Tracked: ☑

Cost Accounting Anomalies:

Program Manager Comments: Personnel highly experienced in application domain.

Cost Data

<table>
<thead>
<tr>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 12/30/91</td>
<td>Date: 3/30/92</td>
<td>Date: 8/30/92</td>
</tr>
<tr>
<td>BCWS: 0</td>
<td>BCWS: 8175</td>
<td>BCWS: 21673</td>
</tr>
<tr>
<td>BCWP: 0</td>
<td>BCWP: 7418</td>
<td>BCWP: 18553</td>
</tr>
<tr>
<td>ACWP: 0</td>
<td>ACWP: 7425</td>
<td>ACWP: 19140</td>
</tr>
<tr>
<td>Budget: 316251</td>
<td>Budget: 0</td>
<td>Budget: 0</td>
</tr>
<tr>
<td>LRE: 316251</td>
<td>LRE: 0</td>
<td>LRE: 0</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0 LRE Volatility Index: 0 Percent Complete: 0.0832

BCWS Activity: 1 BCWP Activity: 1 ACWP Activity: 1

Dependent Variables

Schedule Performance Index: 0.896258 Cost Performance Index: 0.92732

Investigator Comments:
Data Identification

Program Tag: E RatingTag: A Project Tag (WBS#): 2

Project Description: Design, code, test, and integration of low-level hardware/software routines for client

Rating Information

Rating Date: 5/15/92 Rating: 2 Rating Type: SPA (EXT) Rating Relevance: Med

Rating Comment:

Moderating Variables

Acquisition Phase: EMD Contract Type: CPAF

Program Comments:

S/W Lifecycle: Multiple-Early Language: Ada Language %: 75.00%

Application: Avionics Project Budget: 45545000 Budget Volatility: Low

Size: 15000 % New/Modified Code: 100.00% Requirements Volatility: Med

Cost Accounting Anomalies:

Program Manager Comments: Personnel highly experienced in application domain.

Cost Data

<table>
<thead>
<tr>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 12/30/91</td>
<td>Date: 3/30/92</td>
<td>Date: 8/30/92</td>
<td>Date: 11/30/92</td>
</tr>
<tr>
<td>BCWS: 0</td>
<td>BCWS: 7238</td>
<td>BCWS: 13302</td>
<td>BCWS: 13756</td>
</tr>
<tr>
<td>BCWP: 0</td>
<td>BCWP: 7516</td>
<td>BCWP: 12763</td>
<td>BCWP: 11531</td>
</tr>
<tr>
<td>ACWP: 0</td>
<td>ACWP: 6796</td>
<td>ACWP: 11835</td>
<td>ACWP: 12193</td>
</tr>
<tr>
<td>Budget: 48634</td>
<td>Budget: 0</td>
<td>Budget: 0</td>
<td>Budget: 45545</td>
</tr>
<tr>
<td>LRE: 48634</td>
<td>LRE: 0</td>
<td>LRE: 0</td>
<td>LRE: 45545</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: -0.0635 LRE Volatility Index: -0.064 Percent Complete: 0.2532

BCWS Activity: 1 BCWP Activity: 1 ACWP Activity: 1

Dependent Variables

Schedule Performance Index: 0.838252 Cost Performance Index: 0.94571

Investigator Comments:

B-12
Data Identification

Program Tag: E RatingTag: G Project Tag (WBS#): 1

Project Description: Design, code, test, and integration of software for flight control system

Rating Information

Rating Date: 10/15/93 Rating: 3 Rating Type: SPA (EXT) Rating Relevance: High

Rating Comment:

Moderating Variables

Acquisition Phase: EMD Contract Type: CPAF

Program Comments:

S/W Lifecycle: Multiple Language: Ada Language %: 100.00%

Application: Avionics Project Budget: 262222000 Budget Volatility: High

Size: 70000 % New/Modified Code: 100.00% Requirements Volatility: Low

Cost Accounting Anomalies: Rephased during this period

Program Manager Comments: Personnel highly experienced in application domain.

Cost Data

<table>
<thead>
<tr>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 5/30/93</td>
<td>Date: 8/30/93</td>
<td>Date: 1/30/94</td>
<td>Date: 4/30/94</td>
</tr>
<tr>
<td>BCWS: 46194</td>
<td>BCWS: 54897</td>
<td>BCWS: 69751</td>
<td>BCWS: 79080</td>
</tr>
<tr>
<td>BCWP: 43675</td>
<td>BCWP: 52012</td>
<td>BCWP: 68831</td>
<td>BCWP: 77422</td>
</tr>
<tr>
<td>ACWP: 43806</td>
<td>ACWP: 51350</td>
<td>ACWP: 64021</td>
<td>ACWP: 73745</td>
</tr>
<tr>
<td>Budget: 300751</td>
<td>Budget: 0</td>
<td>Budget: 0</td>
<td>Budget: 262222</td>
</tr>
<tr>
<td>LRE: 300751</td>
<td>LRE: 0</td>
<td>LRE: 0</td>
<td>LRE: 250617</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: -0.1281 LRE Volatility Index: -0.167 Percent Complete: 0.2953

BCWS Activity: 0.41586 BCWP Activity: 0.43588 ACWP Activity: 0.40598

Dependent Variables

Schedule Performance Index: 1.026181 Cost Performance Index: 1.12719

Investigator Comments:

Note decrease in Budget and LRE during this 12 month period.
Data Identification

Program Tag: E Rating Tag: B Project Tag (WBS#): 2

Project Description: Design, code, test, and integration of low-level hardware/software routines for client

Rating Information

Rating Date: 10/15/93 Rating: 3 Rating Type: SPA (EXT) Rating Relevance: High

Rating Comment:

Moderating Variables

Acquisition Phase: EMD Contract Type: CPAF

Program Comments:

S/W Lifecycle: Multiple Language: Ada Language %: 75.00%

Application: Avionics Project Budget: 87704000 Budget Volatility: High

Size: 15000 % New/Modified Code: 100.00% Requirements Volatility: Med

Rebasing: Yes Quality Stds On Contract: ✓ Quality Params Tracked: ✓

Cost Accounting Anomalies: Rephased during this period

Program Manager Comments: Personnel highly experienced in application domain.

Cost Data

<table>
<thead>
<tr>
<th></th>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>5/30/93</td>
<td>8/30/93</td>
<td>1/30/94</td>
<td>4/30/94</td>
</tr>
<tr>
<td>BCWS:</td>
<td>20629</td>
<td>25284</td>
<td>33814</td>
<td>38988</td>
</tr>
<tr>
<td>BCWP:</td>
<td>20043</td>
<td>25515</td>
<td>32271</td>
<td>38160</td>
</tr>
<tr>
<td>ACWP:</td>
<td>21518</td>
<td>26902</td>
<td>34756</td>
<td>39963</td>
</tr>
<tr>
<td>Budget:</td>
<td>61045</td>
<td>0</td>
<td>0</td>
<td>87704</td>
</tr>
<tr>
<td>LRE:</td>
<td>61045</td>
<td>0</td>
<td>0</td>
<td>88890</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0.43671 LRE Volatility Index: 0.4561 Percent Complete: 0.43561

BCWS Activity: 0.47089 BCWP Activity: 0.47476 ACWP Activity: 0.46155

Dependent Variables

Schedule Performance Index: 0.986818 Cost Performance Index: 0.98222

Investigator Comments:

Note decrease in Budget and LRE during this 12 month period.
Data Identification

Program Tag: F RatingTag: A Project Tag (WBS#): 1

Project Description: Design, develop, code, test, and install 2 Flight Programs, 2 Ground Programs

Rating Information

Rating Date: 11/15/92 Rating: 2 Rating Type: SPA (EXT) Rating Relevance: High

Rating Comment:

Moderating Variables

Acquisition Phase: EMD Contract Type: FPIF

Program Comments:

S/W Lifecycle: Code/Test Language: Ada Language %: 55.60%

Application: Avionics Project Budget: 12457000 Budget Volatility: Low

Size: 180000 % New/Modified Code: 100.00% Requirements Volatility: Low

Rebaselining: No Quality Stds On Contract: Quality Params Tracked:

Cost Accounting Anomalies: Over-target baseline in 1989

Program Manager Comments: Software is in the "top 10" budget drivers, and is a key issue on the program. Subsystems well defined, but there have been integration challenges.

Cost Data

<table>
<thead>
<tr>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 5/30/92</td>
<td>Date: 8/30/92</td>
<td>Date: 1/30/93</td>
<td>Date: 4/30/93</td>
</tr>
<tr>
<td>BCWS: 11122</td>
<td>BCWS: 11179</td>
<td>BCWS: 11381</td>
<td>BCWS: 11739</td>
</tr>
<tr>
<td>BCWP: 10387</td>
<td>BCWP: 10449</td>
<td>BCWP: 10598</td>
<td>BCWP: 10983</td>
</tr>
<tr>
<td>ACWP: 16937</td>
<td>ACWP: 17431</td>
<td>ACWP: 17975</td>
<td>ACWP: 18480</td>
</tr>
<tr>
<td>Budget: 11231</td>
<td>Budget: 11231</td>
<td>Budget: 11381</td>
<td>Budget: 12457</td>
</tr>
<tr>
<td>LRE: 17715</td>
<td>LRE: 18275</td>
<td>LRE: 18260</td>
<td>LRE: 19542</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0.10916 LRE Volatility Index: 0.1031 Percent Complete: 0.8817

BCWS Activity: 0.05256 BCWP Activity: 0.06427 ACWP Activity: 0.0835

Dependent Variables

Schedule Performance Index: 0.965984 Cost Performance Index: 0.38628

Investigator Comments:
Data Identification

Program Tag: G RatingTag: A Project Tag (WBS#): 1

Project Description: Software engineering efforts to define, develop, and test system software

Rating Information

Rating Date: 12/15/90 Rating: 1 Rating Type: SPA (INT) Rating Relevance: Very High

Rating Comment:

Moderating Variables

Acquisition Phase: EMD Contract Type: FPIF

Program Comments:

S/W Lifecycle: Multiple Language: Fortran Language %: 81.00%

Application: Command & Co Project Budget: 22788000 Budget Volatility: Low

Size: 430000 % New/Modified Code: 81.00% Requirements Volatility: High

Cost Accounting Anomalies: Stop work orders, change in direction, etc may affect performance indices

Program Manager Comments: Thinks contractor is a level 2. "Contractor is not as good as some, but better than most"

Cost Data

<table>
<thead>
<tr>
<th></th>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 6/30/90</td>
<td>BCWS: 21589</td>
<td>BCWS: 22208</td>
<td>BCWS: 22775</td>
<td>BCWS: 22775</td>
</tr>
<tr>
<td></td>
<td>BCWP: 20433</td>
<td>BCWP: 21754</td>
<td>BCWP: 22665</td>
<td>BCWP: 22648</td>
</tr>
<tr>
<td></td>
<td>ACWP: 61144</td>
<td>ACWP: 64402</td>
<td>ACWP: 69137</td>
<td>ACWP: 72116</td>
</tr>
<tr>
<td></td>
<td>Budget: 22775</td>
<td>Budget: 22775</td>
<td>Budget: 22788</td>
<td>Budget: 22788</td>
</tr>
<tr>
<td></td>
<td>LRE: 66623</td>
<td>LRE: 68767</td>
<td>LRE: 78000</td>
<td>LRE: 77549</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0.00057 LRE Volatility Index: 0.164 Percent Complete: 0.9939

BCWS Activity: 0.06207 BCWP Activity: 0.09780 ACWP Activity: 0.15214

Dependent Variables

Schedule Performance Index: 1.867622 Cost Performance Index: 0.20188

Investigator Comments:
Data Identification

Program Tag: G
Rating Tag: G
Project Tag (WBS#): 1

Project Description: Software engineering efforts to define, develop, and test system software

Rating Information

Rating Date: 11/15/92
Rating: 2
Rating Type: SPA (EXT)
Rating Relevance: Very High

Rating Comment:

Moderating Variables

Acquisition Phase: EMD
Contract Type: FPIF

Program Comments:

S/W Lifecycle: Multiple
Language: Fortran
Language %: 81.00%

Application: Command & Co
Project Budget: 82378000
Budget Volatility: Low

Size: 430000
% New/Modified Code: 81.00%
Requirements Volatility: High

Rebasing: No
Quality Stds On Contract: ☑
Quality Params Tracked: ☑

Cost Accounting Anomalies: Stop work orders, change in direction, etc may affect performance indices

Program Manager Comments: Thinks contractor is a level 2 "Contractor is not as good as some, better than most"

Cost Data

<table>
<thead>
<tr>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 5/30/92</td>
<td>Date: 9/30/92</td>
<td>Date: 2/28/93</td>
<td>Date: 4/30/93</td>
</tr>
<tr>
<td>BCWS: 81331</td>
<td>BCWS: 82091</td>
<td>BCWS: 82377</td>
<td>BCWS: 82377</td>
</tr>
<tr>
<td>BCWP: 81248</td>
<td>BCWP: 82095</td>
<td>BCWP: 82375</td>
<td>BCWP: 82375</td>
</tr>
<tr>
<td>ACWP: 82324</td>
<td>ACWP: 83712</td>
<td>ACWP: 85117</td>
<td>ACWP: 85548</td>
</tr>
<tr>
<td>Budget: 81895</td>
<td>Budget: 82330</td>
<td>Budget: 82378</td>
<td>Budget: 82378</td>
</tr>
<tr>
<td>LRE: 82692</td>
<td>LRE: 86042</td>
<td>LRE: 85431</td>
<td>LRE: 86483</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0.0059
LRE Volatility Index: 0.0456
Percent Complete: 1

BCWS Activity: 0.0127
BCWP Activity: 0.01368
ACWP Activity: 0.03769

Dependent Variables

Schedule Performance Index: 1.077438
Cost Performance Index: 0.34957

Investigator Comments:

B-17
Data Identification

Program Tag: H Rating Tag: A Project Tag (WBS#): 1

Project Description: Design, code, test, and integration of software CPCIs

Rating Information

Rating Date: 11/15/92 Rating: 2 Rating Type: SPA (EXT) Rating Relevance: Very High

Rating Comment:

Moderating Variables

Acquisition Phase: EMD Contract Type: CPI

Program Comments:

S/W Lifecycle: Multiple Language: HOL Language %: 93.00%

Application: Command & Co Project Budget: 12860000 Budget Volatility: Low

Size: 357714 % New/Modified Code: 69.00% Requirements Volatility: Med

Cost Accounting Anomalies: Internal reallocated effort--"baseline rolling to the right"

Program Manager Comments: Highly concurrent effort. ECPs effectively doubled scope of the effort without stretching schedule--thus increased program schedule risk. Program Manager thinks contractor is level 2. "Not as good as some, but better than most".

Cost Data

<table>
<thead>
<tr>
<th></th>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 5/30/92</td>
<td>Date: 8/30/92</td>
<td>Date: 1/30/93</td>
<td>Date: 4/30/93</td>
<td></td>
</tr>
<tr>
<td>BCWS: 2863</td>
<td>BCWS: 4294</td>
<td>BCWS: 4879</td>
<td>BCWS: 6178</td>
<td></td>
</tr>
<tr>
<td>BCWP: 2652</td>
<td>BCWP: 3736</td>
<td>BCWP: 4879</td>
<td>BCWP: 6124</td>
<td></td>
</tr>
<tr>
<td>ACWP: 2334</td>
<td>ACWP: 3681</td>
<td>ACWP: 5251</td>
<td>ACWP: 6483</td>
<td></td>
</tr>
<tr>
<td>Budget: 16112</td>
<td>Budget: 16421</td>
<td>Budget: 11609</td>
<td>Budget: 12860</td>
<td></td>
</tr>
<tr>
<td>LRE: 16112</td>
<td>LRE: 16421</td>
<td>LRE: 11609</td>
<td>LRE: 12860</td>
<td></td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: -0.2018 LRE Volatility Index: -0.202 Percent Complete: 0.4762

BCWS Activity: 0.53658 BCWP Activity: 0.56695 ACWP Activity: 0.63998

Dependent Variables

Schedule Performance Index: 1.047360 Cost Performance Index: 0.83683

Investigator Comments:

B-18
Data Identification

Project Description: Software-Related management activities: Baselining, Software development planning, etc

Rating Information

Rating Date: 4/15/90 Rating: 3 Rating Type: SPA (EXT) Rating Relevance: High

Rating Comment: SEI conducted the rating

Moderating Variables

Acquisition Phase: Upgrade Contract Type: FPIf

Program Comments:

S/W Lifecycle: Multiple-Early Language: N/A Language %: 0.00%

Application: Database Project Budget: 3267000 Budget Volatility: Low

Size: 0 % New/Modified Code: 0.00% Requirements Volatility: Low

Rebaselining: Yes Quality Stds On Contract: ☒ Quality Params Tracked: ☒

Cost Accounting Anomalies: BCWS decreased in last 6 months of period

Program Manager Comments:

Cost Data

<table>
<thead>
<tr>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 10/30/89</td>
<td>Date: 1/30/90</td>
<td>Date: 6/30/90</td>
<td>Date: 9/30/90</td>
</tr>
<tr>
<td>BCWS: 2410</td>
<td>BCWS: 2602</td>
<td>BCWS: 2943</td>
<td>BCWS: 2825</td>
</tr>
<tr>
<td>BCWP: 2410</td>
<td>BCWP: 2602</td>
<td>BCWP: 2943</td>
<td>BCWP: 2825</td>
</tr>
<tr>
<td>ACWP: 2401</td>
<td>ACWP: 2528</td>
<td>ACWP: 2745</td>
<td>ACWP: 2830</td>
</tr>
<tr>
<td>Budget: 3083</td>
<td>Budget: 3083</td>
<td>Budget: 3083</td>
<td>Budget: 3267</td>
</tr>
<tr>
<td>LRE: 3153</td>
<td>LRE: 3161</td>
<td>LRE: 2953</td>
<td>LRE: 3267</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0.05968 LRE Volatility Index: 0.0362 Percent Complete: 0.8647

BCWS Activity: 0.14690 BCWP Activity: 0.14690 ACWP Activity: 0.15159

Dependent Variables

Schedule Performance Index: 1 Cost Performance Index: 0.96737

Investigator Comments:
Data Identification

Program Tag: 1 Rating Tag: A Project Tag (WBS#): 2

Project Description: Specification design and integration oversight tasks. Code and unit test of database architecture.

Rating Information

Rating Date: 4/15/90 Rating: 3 Rating Type: SPA (EXT) Rating Relevance: High

Rating Comment: SEI conducted the rating

Moderating Variables

Acquisition Phase: Upgrade Contract Type: FPIF

Program Comments:

S/W Lifecycle: Multiple Language: Ada Language %: 100.00%

Application: Database Project Budget: 4602000 Budget Volatility: Low

Size: 40000 % New/Modified Code: 15.00% Requirements Volatility: Low

Cost Accounting Anomalies: Rebaselining prior to this period does not affect this measurement

Program Manager Comments:

Cost Data

<table>
<thead>
<tr>
<th></th>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>11/30/89</td>
<td>2/23/89</td>
<td>5/31/89</td>
<td>8/31/89</td>
</tr>
<tr>
<td>BCWS</td>
<td>2244</td>
<td>2320</td>
<td>2568</td>
<td>2621</td>
</tr>
<tr>
<td>BCWP</td>
<td>2178</td>
<td>2220</td>
<td>2452</td>
<td>2620</td>
</tr>
<tr>
<td>ACWP</td>
<td>2169</td>
<td>2340</td>
<td>2582</td>
<td>2724</td>
</tr>
<tr>
<td>Budget</td>
<td>3084</td>
<td>3287</td>
<td>3132</td>
<td>4602</td>
</tr>
<tr>
<td>LRE</td>
<td>3137</td>
<td>3171</td>
<td>3330</td>
<td>4755</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0.49222 LRE Volatility Index: 0.5158 Percent Complete: 0.5693

BCWS Activity: 0.14384 BCWP Activity: 0.16870 ACWP Activity: 0.20374

Dependent Variables

Schedule Performance Index: 1.172414 Cost Performance Index: 0.7964

Investigator Comments:

B-20
Data Identification

Project Description: Subsystem test, test planning and integration

Rating Information

Rating Date: 4/15/90 Rating: 3 Rating Type: SPA (EXT) Rating Relevance: High

Rating Comment: SEI conducted the rating

Moderating Variables

Acquisition Phase: Upgrade Contract Type: FPIF

Program Comments:

S/W Lifecycle: Test Language: N/A Language %: 0.00%

Application: Database Project Budget: 14880000 Budget Volatility: Low

Size: 0 % New/Modified Code: 0.00% Requirements Volatility: Low

Rebaselining: No Quality Stds On Contract: ✔ Quality Params Tracked: ✔

Cost Accounting Anomalies:
Rebaselining prior to this period does not affect this measurement--increase in budget in later qtr.

Program Manager Comments:

Cost Data

<table>
<thead>
<tr>
<th></th>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>10/30/89</td>
<td>1/30/90</td>
<td>6/30/90</td>
<td>9/30/90</td>
</tr>
<tr>
<td>BCWS:</td>
<td>5189</td>
<td>5892</td>
<td>6881</td>
<td>6948</td>
</tr>
<tr>
<td>BCWP:</td>
<td>5038</td>
<td>5652</td>
<td>6739</td>
<td>6949</td>
</tr>
<tr>
<td>ACWP:</td>
<td>5029</td>
<td>5698</td>
<td>6635</td>
<td>6965</td>
</tr>
<tr>
<td>Budget:</td>
<td>10226</td>
<td>10234</td>
<td>10374</td>
<td>14880</td>
</tr>
<tr>
<td>LRE:</td>
<td>11023</td>
<td>10900</td>
<td>11006</td>
<td>15773</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0.45511 LRE Volatility Index: 0.4309 Percent Complete: 0.4670

BCWS Activity: 0.25317 BCWP Activity: 0.27500 ACWP Activity: 0.27827

Dependent Variables

Schedule Performance Index: 1.086413 Cost Performance Index: 0.98556

Investigator Comments:
Data Identification

Program Tag: [] Rating Tag: [A] Project Tag (WBS#): 4

Project Description: Design, code and unit test of CSCs

Rating Information

Rating Date: 4/15/90 Rating: 3 Rating Type: SPA (EXT) Rating Relevance: High

Rating Comment: SEI conducted the rating

Moderating Variables

Acquisition Phase: Upgrade Contract Type: FPFF

Program Comments:

S/W Lifecycle: Multiple Language: Ada Language %: 100.00%

Application: Database Project Budget: 1645300 Budget Volatility: Low

Size: 755800 % New/Modified Code: 78.00% Requirements Volatility: Low

Rebaselining: No Quality Stds On Contract: [x] Quality Params Tracked: [x]

Cost Accounting Anomalies: Budget increased in Sept

Program Manager Comments:

Cost Data

<table>
<thead>
<tr>
<th></th>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>10/30/89</td>
<td>1/30/90</td>
<td>6/30/90</td>
<td>9/30/90</td>
</tr>
<tr>
<td>BCWS:</td>
<td>6253</td>
<td>6871</td>
<td>7638</td>
<td>8821</td>
</tr>
<tr>
<td>BCWP:</td>
<td>6013</td>
<td>6496</td>
<td>7210</td>
<td>8817</td>
</tr>
<tr>
<td>ACWP:</td>
<td>6379</td>
<td>7245</td>
<td>8675</td>
<td>9300</td>
</tr>
<tr>
<td>Budget:</td>
<td>10443</td>
<td>10512</td>
<td>10512</td>
<td></td>
</tr>
<tr>
<td>LRE:</td>
<td>11216</td>
<td>11445</td>
<td>12147</td>
<td>17109</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0.57551 LRE Volatility Index: 0.5254 Percent Complete: 0.5359

BCWS Activity: 0.29112 BCWP Activity: 0.31802 ACWP Activity: 0.31409

Dependent Variables

Schedule Performance Index: 1.091900 Cost Performance Index: 0.95995

Investigator Comments:
Data Identification

Program Tag: [] Rating Tag: A Project Tag (WBS#): []

Project Description: Design, code and unit test of CSCIs

Rating Information

Rating Date: 4/15/90 Rating: 3 Rating Type: SPA (EXT) Rating Relevance: High

Rating Comment: SEI conducted the rating

Moderating Variables

Acquisition Phase: Upgrade Contract Type: FPIF

Program Comments:

S/W Lifecycle: Multiple Language: Ada Language %: 100.00%

Application: Database Project Budget: 3822000 Budget Volatility: Low

Size: 68000 % New/Modified Code: 68.00% Requirements Volatility: Low

Cost Accounting Anomalies: Budget increased in Sept

Program Manager Comments:

Cost Data

<table>
<thead>
<tr>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 10/30/89</td>
<td>Date: 1/30/90</td>
<td>Date: 6/30/90</td>
<td>Date: 9/30/90</td>
</tr>
<tr>
<td>BCWS: 2140</td>
<td>BCWS: 2254</td>
<td>BCWS: 2364</td>
<td>BCWS: 2362</td>
</tr>
<tr>
<td>BCWP: 2085</td>
<td>BCWP: 2225</td>
<td>BCWP: 2344</td>
<td>BCWP: 2356</td>
</tr>
<tr>
<td>ACWP: 2010</td>
<td>ACWP: 2167</td>
<td>ACWP: 2298</td>
<td>ACWP: 2352</td>
</tr>
<tr>
<td>Budget: 3056</td>
<td>Budget: 3077</td>
<td>Budget: 3077</td>
<td>Budget: 3822</td>
</tr>
<tr>
<td>LRE: 2983</td>
<td>LRE: 3032</td>
<td>LRE: 3095</td>
<td>LRE: 3822</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0.29056 LRE Volatility Index: 0.2813 Percent Complete: 0.8164

BCWS Activity: 0.09399 BCWP Activity: 0.11503 ACWP Activity: 0.14541

Dependent Variables

Schedule Performance Index: 1.220721 Cost Performance Index: 0.7924

Investigator Comments:
Data Identification

Project Description: Software-Related management activities: Baselining, Software development planning, etc

Rating Information

Rating Date: 10/15/91 Rating: 1 Rating Type: SCE Rating Relevance: High

Rating Comment:

Moderating Variables

Acquisition Phase: Upgrade Contract Type: Other

Program Comments: contract converted from FPI to FPI/CPFF during this period

S/W Lifecycle: Multiple-Early Language: N/A Language %: 0.00%

Application: Database Project Budget: 2521000 Budget Volatility: Low

Size: 0 % New/Modified Code: 0.00% Requirements Volatility: Med

Rebasing: No Quality Stds On Contract: Quality Params Tracked:

Cost Accounting Anomalies: Large decrease in budget and actuals. Moved work during this period (Aug 91)—indicated decrease in budget and actuals.

Program Manager Comments:

Cost Data

<table>
<thead>
<tr>
<th></th>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Date: 5/30/91</td>
<td>Date: 8/30/91</td>
<td>Date: 1/30/92</td>
<td>Date: 4/30/92</td>
</tr>
<tr>
<td>BCWS</td>
<td>3054</td>
<td>2237</td>
<td>2327</td>
<td>2368</td>
</tr>
<tr>
<td>BCWP</td>
<td>3054</td>
<td>2237</td>
<td>2327</td>
<td>2368</td>
</tr>
<tr>
<td>ACWP</td>
<td>3080</td>
<td>2275</td>
<td>2357</td>
<td>2492</td>
</tr>
<tr>
<td>Budget</td>
<td>3273</td>
<td>2387</td>
<td>2387</td>
<td>25211</td>
</tr>
<tr>
<td>LRE</td>
<td>3334</td>
<td>2438</td>
<td>2429</td>
<td>2693</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: -0.2298 LRE Volatility Index: -0.192 Percent Complete: 0.9393

BCWS Activity: -0.2897 BCWP Activity: -0.2897 ACWP Activity: -0.236

Dependent Variables

Schedule Performance Index: 1 Cost Performance Index: 1.16667

Investigator Comments:

INVALID DATA POINT Accumulated costs (ACWP, BCWP) moved from this project during the period of interest. Invalidates calculation of performance indices.

B-24
Data Identification

Program Tag: [] Rating Tag: [B] Project Tag (WBS#): [2]

Project Description: Specification design and integration oversight tasks. Code and unit test of database architecture

Rating Information

Rating Date: 10/15/91 Rating: [1] Rating Type: [SCE] Rating Relevance: [High]

Rating Comment:

Moderating Variables

Acquisition Phase: [Upgrade] Contract Type: [Other]

Program Comments: [contract converted from FPI to FPI/CPFF during this period]

S/W Lifecycle: [Multiple] Language: [Ada] Language %: [100.00%]

Application: [Database] Project Budget: [5015000] Budget Volatility: [Low]

Size: [45300] % New/Modified Code: [15.00%] Requirements Volatility: [Low]

Rebasing: [No] Quality Stds On Contract: [✓] Quality Params Tracked: [✓]

Cost Accounting Anomalies:

Program Manager Comments:

Cost Data

<table>
<thead>
<tr>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 5/30/91</td>
<td>Date: 8/30/91</td>
<td>Date: 1/30/92</td>
<td>Date: 4/30/92</td>
</tr>
<tr>
<td>BCWS: 3390</td>
<td>BCWS: 3724</td>
<td>BCWS: 4157</td>
<td>BCWS: 4466</td>
</tr>
<tr>
<td>BCWP: 3296</td>
<td>BCWP: 3646</td>
<td>BCWP: 4099</td>
<td>BCWP: 4322</td>
</tr>
<tr>
<td>ACWP: 3471</td>
<td>ACWP: 3840</td>
<td>ACWP: 4405</td>
<td>ACWP: 4679</td>
</tr>
<tr>
<td>Budget: 4632</td>
<td>Budget: 4674</td>
<td>Budget: 4674</td>
<td>Budget: 5015</td>
</tr>
<tr>
<td>LRE: 4890</td>
<td>LRE: 5314</td>
<td>LRE: 5343</td>
<td>LRE: 5560</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: [0.08269] LRE Volatility Index: [0.1370] Percent Complete: [0.8618]

BCWS Activity: [0.24093] BCWP Activity: [0.23739] ACWP Activity: [0.29817]

Dependent Variables

Schedule Performance Index: [0.953532] Cost Performance Index: [0.84934]

Investigator Comments:

B-25
Data Identification
Program Tag: [] Rating Tag: [] Project Tag (WBS#): [3]
Project Description: Subsystem test, test planning and integration

Rating Information
Rating Date: 10/15/91 Rating: 1 Rating Type: SCE Rating Relevance: High
Rating Comment:

Moderating Variables
Acquisition Phase: Upgrade Contract Type: Other
Program Comments:
S/W Lifecycle: Test Language: N/A Language %: 0.00%
Application: Database Project Budget: 15734000 Budget Volatility: Low
Size: 0 % New/Modified Code: 0.00% Requirements Volatility: Low
Rebasing: No Quality Stds On Contract: [x] Quality Params Tracked: [x]
Cost Accounting Anomalies:

Program Manager Comments:

Cost Data
Six Months Prior to Rating Three Months Prior to Rating Three Months After Rating Six Months After Rating
Date: 5/30/91 Date: 8/30/91 Date: 1/30/92 Date: 4/30/92
BCWS: 8723 BCWS: 9700 BCWS: 11369 BCWS: 12508
BCWP: 8678 BCWP: 9584 BCWP: 11205 BCWP: 12359
ACWP: 8544 ACWP: 9510 ACWP: 11360 ACWP: 12293
Budget: 15008 Budget: 15122 Budget: 15219 Budget: 15734
LRE: 15740 LRE: 16050 LRE: 15520 LRE: 15724

Derived Moderators
Budget Volatility Index: 0.04837 LRE Volatility Index: -0.001 Percent Complete: 0.7855
BCWS Activity: 0.30261 BCWP Activity: 0.29784 ACWP Activity: 0.30497

Dependent Variables
Schedule Performance Index: 0.972523 Cost Performance Index: 0.98186
Investigator Comments:

B-26
Data Identification

Program Tag: 1 RatingTag: 6 Project Tag (WBS#): 4

Project Description: Design, code and unit test of CSCIs

Rating Information

Rating Date: 10/15/91 Rating: L Rating Type: SCE Rating Relevance: High

Rating Comment:

Moderating Variables

Acqulation Phase: Upgrade Contract Type: Other

Program Comments: contract converted from FPI to FPI/CPFF during this period

S/W Lifecycle: Multiple Language: Ada Language %: 100.00%

Application: Database Project Budget: 17584000 Budget Volatility: Low

Size: 874300 % New/Modified Code: 78.00% Requirements Volatility: Low

Rebaselining: No Quality Stds On Contract: ✓ Quality Params Tracked: ❌

Cost Accounting Anomalies:

Program Manager Comments:

Cost Data

Six Months Prior to Rating Three Months Prior to Rating Three Months After Rating Six Months After Rating

Date: 5/30/91 Date: 8/30/91 Date: 1/30/92 Date: 4/30/92

BCWS: 11876 BCWS: 13065 BCWS: 14702 BCWS: 16106

BCWP: 11470 BCWP: 12646 BCWP: 14419 BCWP: 15757

ACWP: 12621 ACWP: 14055 ACWP: 16415 ACWP: 17765

Budget: 16444 Budget: 16604 Budget: 16663 Budget: 17584

LRE: 17667 LRE: 18632 LRE: 19066 LRE: 19889

Derived Moderators

Budget Volatility Index: 0.06933 LRE Volatility Index: 0.1284 Percent Complete: 0.8961

BCWS Activity: 0.26264 BCWP Activity: 0.27207 ACWP Activity: 0.28968

Dependent Variables

Schedule Performance Index: 1.013475 Cost Performance Index: 0.8334

Investigator Comments:
Data Identification

Program Tag: [] Rating Tag: [B] Project Tag (WBS#): [5]

Project Description: Design, code and unit test of CSCIs

Rating Information

Rating Date: 10/15/91 Rating: 1 Rating Type: SCE Rating Relevance: High

Rating Comment:

Moderating Variables

Acquisition Phase: Upgrade Contract Type: Other

Program Comments: contract converted from FPI to FPI/CPFF during this period

S/W Lifecycle: Multiple Language: Ada Language %: 100.00%

Application: Database Project Budget: 3953000 Budget Volatility: Low

Size: 78700 % New/Modified Code: 68.00% Requirements Volatility: Low

Rebaselining: No Quality Stds On Contract: [x] Quality Params Tracked: [x]

Cost Accounting Anomalies:

Program Manager Comments:

Cost Data

<table>
<thead>
<tr>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 5/30/91</td>
<td>Date: 8/30/91</td>
<td>Date: 1/30/92</td>
<td>Date: 4/30/92</td>
</tr>
<tr>
<td>BCWS: 3041</td>
<td>BCWS: 3354</td>
<td>BCWS: 3722</td>
<td>BCWS: 3848</td>
</tr>
<tr>
<td>BCWP: 3017</td>
<td>BCWP: 3261</td>
<td>BCWP: 3595</td>
<td>BCWP: 3810</td>
</tr>
<tr>
<td>ACWP: 2973</td>
<td>ACWP: 3223</td>
<td>ACWP: 3664</td>
<td>ACWP: 3946</td>
</tr>
<tr>
<td>Budget: 3964</td>
<td>Budget: 4014</td>
<td>Budget: 4023</td>
<td>Budget: 3953</td>
</tr>
<tr>
<td>LRE: 3981</td>
<td>LRE: 4055</td>
<td>LRE: 4097</td>
<td>LRE: 4118</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: -0.0028 LRE Volatility Index: 0.0344 Percent Complete: 0.9638

BCWS Activity: 0.20972 BCWP Activity: 0.20814 ACWP Activity: 0.24658

Dependent Variables

Schedule Performance Index: 0.982652 Cost Performance Index: 0.81501

Investigator Comments:
Data Identification

Program Tag: 7 RatingTag: B Project Tag (WBS#): 6

Project Description: Software maintenance. Design, code and unit test.

Rating Information

Rating Date: 10/15/91 Rating: 1 Rating Type: SCE Rating Relevance: High

Moderating Variables

Acquisition Phase: Upgrade Contract Type: Other

Program Comments: contract converted from FPI to FPI/CPFF during this period

S/W Lifecycle: Multiple-Late Language: Ada Language %: 100.00%

Application: Database Project Budget: 1871000 Budget Volatility: Low

Size: 0 % New/Modified Code: 0.00% Requirements Volatility: Low

Cost Accounting Anomalies:

Program Manager Comments:

Cost Data

<table>
<thead>
<tr>
<th></th>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>5/30/91</td>
<td>8/30/91</td>
<td>1/30/92</td>
<td>4/30/92</td>
</tr>
<tr>
<td>BCWS:</td>
<td>0</td>
<td>0</td>
<td>41</td>
<td>203</td>
</tr>
<tr>
<td>BCWP:</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>143</td>
</tr>
<tr>
<td>ACWP:</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>139</td>
</tr>
<tr>
<td>Budget:</td>
<td>1074</td>
<td>1074</td>
<td>1074</td>
<td>1871</td>
</tr>
<tr>
<td>LRE:</td>
<td>1289</td>
<td>1289</td>
<td>1283</td>
<td>2095</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0.74209 LRE Volatility Index: 0.6263 Percent Complete: 0.0764

BCWS Activity: 1 BCWP Activity: 1 ACWP Activity: 1

Dependent Variables

Schedule Performance Index: 0.704433 Cost Performance Index: 1.02878

Investigator Comments:

Values for minus 6 month and minus 3 month budget and LRE are from Oct 91 CPR, which reflects first indication of activity. This was done to avoid DIV 0 errors for derived moderators.
Data Identification

Program Tag: 1 Rating Tag: C Project Tag (WBS#): 1

Project Description: Software-Related management activities: Baselining, Software development planning, etc

Rating Information

Rating Date: 3/15/93 Rating: 1 Rating Type: SCE Rating Relevance: High

Rating Comment:

Moderating Variables

Acquisition Phase: Upgrade Contract Type: Other

Program Comments: contract FPI/CPFF

S/W Lifecycle: Multiple-Early Language: N/A Language %: 0.00%

Application: Project Budget: 2553000 Budget Volatility: Low

Size: 0 % New/Modified Code: 0.00% Requirements Volatility: Med

Rebaselining: No Quality Std On Contract: Quality Params Tracked:

Cost Accounting Anomalies: Effort is winding down

Program Manager Comments:

Cost Data

<table>
<thead>
<tr>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 9/30/92</td>
<td>Date: 12/30/92</td>
<td>Date: 5/30/93</td>
<td>Date: 8/30/93</td>
</tr>
<tr>
<td>BCWS: 2442</td>
<td>BCWS: 2481</td>
<td>BCWS: 2553</td>
<td>BCWS: 2553</td>
</tr>
<tr>
<td>BCWP: 2442</td>
<td>BCWP: 2481</td>
<td>BCWP: 2553</td>
<td>BCWP: 2553</td>
</tr>
<tr>
<td>ACWP: 2460</td>
<td>ACWP: 2508</td>
<td>ACWP: 2563</td>
<td>ACWP: 2587</td>
</tr>
<tr>
<td>Budget: 2558</td>
<td>Budget: 2558</td>
<td>Budget: 2553</td>
<td>Budget: 2553</td>
</tr>
<tr>
<td>LRE: 2625</td>
<td>LRE: 2595</td>
<td>LRE: 2601</td>
<td>LRE: 2687</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: -0.002 LRE Volatility Index: 0.0236 Percent Complete: 1

BCWS Activity: 0.04348 BCWP Activity: 0.04348 ACWP Activity: 0.04909

Dependent Variables

Schedule Performance Index: 1 Cost Performance Index: 0.87402

Investigator Comments:
Data Identification

Program Tag: [] Rating Tag: [] Project Tag (WBS#): []

Project Description: Specification design and integration oversight tasks. Code and unit test of database architecture

Rating Information

Rating Date: 3/15/93 Rating: [] Rating Type: [] Rating Relevance: []

Rating Comment:

Moderating Variables

Acquisition Phase: Upgrade Contract Type: Other

Program Comments: contract FPI/CPFF

S/W Lifecycle: Multiple Language: Ada Language %: 100.00%

Application: Database Project Budget: 5142000 Budget Volatility: Low

Size: 54900 % New/Modified Code: 15.00% Requirements Volatility: Low

Rebaselining: No Quality Stds On Contract: [] Quality Params Tracked: []

Cost Accounting Anomalies:

Program Manager Comments:

Cost Data

Six Months Prior to Rating

Date: 9/30/92 BCWS: 4753 BCWP: 4726 ACWP: 6041 Budget: 5156 LRE: 5682

Three Months Prior to Rating

Date: 12/30/92 BCWS: 4977 BCWP: 4975 ACWP: 5327 Budget: 5156 LRE: 5715

Three Months After Rating

Date: 5/30/93 BCWS: 5106 BCWP: 5100 ACWP: 5597 Budget: 5142 LRE: 5659

Six Months After Rating

Date: 8/30/93 BCWS: 6118 BCWP: 5105 ACWP: 5715 Budget: 5142 LRE: 5759

Derived Moderators

Budget Volatility Index: -0.0027 LRE Volatility Index: 0.0189 Percent Complete: 0.9928

BCWS Activity: 0.07132 BCWP Activity: 0.07424 ACWP Activity: 0.11794

Dependent Variables

Schedule Performance Index: 1.038356 Cost Performance Index: 0.56231

Investigator Comments:

B-31
Data Identification

Project Description: Subsystem test, test planning and integration

Rating Information

Rating Date: 3/15/93 Rating: 1 Rating Type: SCE Rating Relevance: High

Moderating Variables

Acquisition Phase: Upgrade Contract Type: Other

Program Comments: contract FPI/CPFF

S/W Lifecycle: Test Language: N/A Language %: 0.00%

Application: Database Project Budget: 15867000 Budget Volatility: Low

Size: 0 % New/Modified Code: 0.00% Requirements Volatility: Low

Cost Accounting Anomalies:

Program Manager Comments:

Cost Data

<table>
<thead>
<tr>
<th></th>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>9/30/92</td>
<td>12/30/92</td>
<td>5/30/93</td>
<td>8/30/93</td>
</tr>
<tr>
<td>BCWS:</td>
<td>14279</td>
<td>14761</td>
<td>15363</td>
<td>15730</td>
</tr>
<tr>
<td>BCWP:</td>
<td>14204</td>
<td>14654</td>
<td>15274</td>
<td>15668</td>
</tr>
<tr>
<td>ACWP:</td>
<td>13708</td>
<td>14388</td>
<td>15126</td>
<td>15455</td>
</tr>
<tr>
<td>Budget:</td>
<td>15958</td>
<td>15958</td>
<td>15867</td>
<td>15867</td>
</tr>
<tr>
<td>LRE:</td>
<td>15709</td>
<td>15647</td>
<td>15507</td>
<td>15627</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: -0.0057 LRE Volatility Index: -0.005 Percent Complete: 0.9875

BCWS Activity: 0.09224 BCWP Activity: 0.09344 ACWP Activity: 0.11304

Dependent Variables

Schedule Performance Index: 1.008959 Cost Performance Index: 0.83801

Investigator Comments:

B-32
Data Identification
Program Tag: [] RatingTag: [] Project Tag (WBS#): []
Project Description: Design, code and unit test of CSCIs

Rating Information
Rating Date: 3/15/93 Rating: 1 Rating Type: SCE Rating Relevance: High
Rating Comment:

Moderating Variables
Acquisition Phase: Upgrade Contract Type: Other
Program Comments: contract FPI/CPFF
S/W Lifecycle: Multiple Language: Ada Language %: 100.00%
Application: Database Project Budget: 18238000 Budget Volatility: Low
Size: 1086000 % New/Modified Code: 78.00% Requirements Volatility: Low
Rebaselining: No Quality Stds On Contract: ❌ Quality Params Tracked: ❌
Cost Accounting Anomalies:
Program Manager Comments:

Cost Data
Six Months Prior to Rating Three Months Prior to Rating Three Months After Rating Six Months After Rating
Date: 9/30/92 Date: 12/30/92 Date: 5/30/93 Date: 8/30/93
BCWS: 17495 BCWS: 17943 BCWS: 18220 BCWS: 18233
BCWP: 17225 BCWP: 17893 BCWP: 18181 BCWP: 18216
ACWP: 19613 ACWP: 20393 ACWP: 21156 ACWP: 21540
Budget: 18286 Budget: 18263 Budget: 18238 Budget: 18238
LRE: 20531 LRE: 20859 LRE: 21366 LRE: 21639

Derived Moderators
Budget Volatility Index: -0.0026 LRE Volatility Index: 0.054 Percent Complete: 0.9988
BCWS Activity: 0.04048 BCWP Activity: 0.05440 ACWP Activity: 0.08946

Dependent Variables
Schedule Performance Index: 1.342818 Cost Performance Index: 0.51427
Investigator Comments:

B-33
Data Identification

Program Tag: 1 RatingTag: C Project Tag (WBS#): 5

Project Description: Design, code and unit test of CSCIs

Rating Information

Rating Date: 3/15/93 Rating: 1 Rating Type: SCE Rating Relevance: High

Moderating Variables

Acquisition Phase: Upgrade Contract Type: Other

Program Comments: contract FPI/CPFF

S/W Lifecycle: Multiple Language: Ada Language %: 100.00%

Application: Database Project Budget: 3951000 Budget Volatility: Low

Size: 98000 % New/Modified Code: 68.00% Requirements Volatility: Low

Rebasing: No Quality Stds On Contract: ☑ Quality Params Tracked: ☑

Cost Accounting Anomalies:

Program Manager Comments:

Cost Data

<table>
<thead>
<tr>
<th>Date</th>
<th>BCWS</th>
<th>BCWS</th>
<th>BCWS</th>
<th>BCWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 9/30/92</td>
<td>3940</td>
<td>3952</td>
<td>3951</td>
<td>3951</td>
</tr>
<tr>
<td>12/30/92</td>
<td>3937</td>
<td>3952</td>
<td>3951</td>
<td>3951</td>
</tr>
<tr>
<td>5/30/93</td>
<td>4167</td>
<td>4238</td>
<td>4385</td>
<td>4436</td>
</tr>
<tr>
<td>8/30/93</td>
<td>4172</td>
<td>4273</td>
<td>4386</td>
<td>4436</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0 LRE Volatility Index: 0.0519 Percent Complete: 1

BCWS Activity: 0.00278 BCWP Activity: 0.00354 ACWP Activity: 0.08064

Dependent Variables

Schedule Performance Index: 1.272727 Cost Performance Index: 0.05204

Investigator Comments:

Data point excluded from Complete Data Set due to low activity level.
Data Identification

Program Tag: 1 Rating Tag: C Project Tag (WBS#): 6

Project Description: Software maintenance, design, code and unit test.

Rating Information

Rating Date: 3/15/93 Rating: 1 Rating Type: SCE Rating Relevance: High

Rating Comment:

Moderating Variables

Acquisition Phase: Upgrade Contract Type: Other

Program Comments: FPI/CPFF

S/W Lifecycle: Multiple-Late Language: Ada Language %: 100.00%

Application: Database Project Budget: 2521000 Budget Volatility: Low

Size: 0 % New/Modified Code: 0.00% Requirements Volatility: Low

Cost Accounting Anomalies:

Program Manager Comments:

Cost Data

<table>
<thead>
<tr>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 9/30/92</td>
<td>Date: 12/30/92</td>
<td>Date: 5/30/93</td>
<td>Date: 8/30/93</td>
</tr>
<tr>
<td>BCWS: 1193</td>
<td>BCWS: 1747</td>
<td>BCWS: 2138</td>
<td>BCWS: 2321</td>
</tr>
<tr>
<td>BCWP: 1079</td>
<td>BCWP: 1627</td>
<td>BCWP: 2033</td>
<td>BCWP: 2224</td>
</tr>
<tr>
<td>ACWP: 904</td>
<td>ACWP: 1334</td>
<td>ACWP: 1870</td>
<td>ACWP: 2076</td>
</tr>
<tr>
<td>Budget: 2319</td>
<td>Budget: 2342</td>
<td>Budget: 2521</td>
<td>Budget: 2521</td>
</tr>
<tr>
<td>LRE: 2657</td>
<td>LRE: 2562</td>
<td>LRE: 2604</td>
<td>LRE: 2603</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0.08711 LRE Volatility Index: -0.020 Percent Complete: 0.8822

BCWS Activity: 0.486 BCWP Activity: 0.51484 ACWP Activity: 0.56455

Dependent Variables

Schedule Performance Index: 1.015071 Cost Performance Index: 0.97696

Investigator Comments:

B-35
Data Identification

Program Tag: 4 RatingTag: A Project Tag (WBS#): 1

Project Description: Develop requirements, design, code, and test system software

Rating Information

Rating Date: 3/15/88 Rating: 1 Rating Type: SPA (INT) Rating Relevance: Med

Rating Comment: Government-sponsored contractor did an assessment to suggest possible process improvements

Moderating Variables

Acquisition Phase: EMD Contract Type: FPIF

Program Comments: Similar to previous efforts

S/W Lifecycle: Requirements Language: Jovial Language %: 100.00%

Application: Command & Co Project Budget: 7488000 Budget Volatility: Low

Size: 148000 % New/Modified Code: 100.00% Requirements Volatility: Low

Cost Accounting Anomalies: None

Program Manager Comments: Beat target sched. Had experience with previous similar project, but subcontracted the software development. Fell behind early in project, but instituted process improvement initiatives and got well. Size in DSI

Cost Data

Six Months Prior to Rating	Three Months Prior to Rating	Three Months After Rating	Six Months After Rating
Date: 4/30/88 | Date: 7/30/88 | Date: 12/30/88 | Date: 3/30/89
BCWS: | 0 | BCWS: | 0 | BCWS: | 100 | BCWS: | 675
BCWP: | 0 | BCWP: | 0 | BCWP: | 88 | BCWP: | 493
ACWP: | 0 | ACWP: | 0 | ACWP: | 80 | ACWP: | 486
Budget: 7488 | Budget: 7488 | Budget: 7488 | Budget: 7488
LRE: 7488 | LRE: 7488 | LRE: 7488 | LRE: 7492

Derived Moderators

Budget Volatility Index: 0 LRE Volatility Index: 0.0006 Percent Complete: 0.0658

BCWS Activity: 1 BCWP Activity: 1 ACWP Activity: 1

Dependent Variables

Schedule Performance Index: 0.730370 Cost Performance Index: 1.01440

Investigator Comments:
Values for minus 6 month and minus 3 month Budget and LRE are from Dec 88 CPR. This was done to avoid DIV 0 errors for derived moderators. Program initiated at time organization was rated. Data representative of 12 months after.
Data Identification

Program Tag: J RatingTag: A Project Tag (WBS#): 2

Project Description: Develop requirements, design, code, and test system software

Rating Information

Rating Date: 3/15/88 Rating: 1 Rating Type: SPA (INT) Rating Relevance: Med

Rating Comment: Government-sponsored contractor did an assessment to suggest possible process improvements

Moderating Variables

Acquisition Phase: EMD Contract Type: FPIF

Program Comments: Similar to previous efforts

S/W Lifecycle: Test/Integration Language: Jovial Language %: 100.00%

Application: Simulation Project Budget: 2557000 Budget Volatility: Low

Size: 42000 % New/Modified Code: 52.00% Requirements Volatility: Low

Rebaselining: No Quality Std's On Contract: Quality Params Tracked: x

Cost Accounting Anomalies:

Program Manager Comments: Beat target sched. Had experience with previous similar project, but subcontracted the software development. Fell behind early in project, but instituted process improvement initiatives and got well. Size in DSI

Cost Data

<table>
<thead>
<tr>
<th>Date</th>
<th>BCWS</th>
<th>BCWP</th>
<th>ACWP</th>
<th>Budget</th>
<th>LRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/30/88</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2557</td>
<td>2557</td>
</tr>
<tr>
<td>7/30/88</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2557</td>
<td>2557</td>
</tr>
<tr>
<td>12/30/88</td>
<td>89</td>
<td>19</td>
<td>20</td>
<td>2557</td>
<td>2557</td>
</tr>
<tr>
<td>3/30/89</td>
<td>360</td>
<td>109</td>
<td>107</td>
<td>2557</td>
<td>2557</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0 LRE Volatility Index: 0 Percent Complete: 0.0426

BCWS Activity: 1 BCWP Activity: 1 ACWP Activity: 1

Dependent Variables

Schedule Performance Index: 0.302778 Cost Performance Index: 1.01869

Investigator Comments:

Values for minus 6 month and minus 3 month Budget and LRE are from Dec 88 CPR. This was done to avoid DIV 0 errors for derived moderators. Program initiated at time organization was rated. Data representative of 12 months after rating.
Data Identification

Program Tag: J RatingTag: A Project Tag (WBS#): 3

Project Description: Develop requirements, design, code, and test system software

Rating Information

Rating Date: 3/15/88 Rating: 1 Rating Type: SPA (INT) Rating Relevance: Med

Rating Comment: Government-sponsored contractor did an assessment to suggest possible process improvements

Moderating Variables

Acquisition Phase: EMD Contract Type: FPIF

Program Comments: Similar to previous efforts

S/W Lifecycle: Requirements Language: Fortran Language %: 100.00%

Application: Command & Co Project Budget: 3283000 Budget Volatility: Low

Size: 141000 % New/Modified Code: 91.00% Requirements Volatility: Low

Cost Accounting Anomalies: Subcontracting plan did not materialize—thus more effort expended than budgeted

Program Manager Comments: Beat target sched. Had experience with previous similar project, but subcontracted the software development. Fell behind early in project, but instituted process improvement initiatives and got well. Size in DSI

Cost Data

<table>
<thead>
<tr>
<th></th>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>4/30/88</td>
<td>7/30/88</td>
<td>12/30/88</td>
<td>3/30/89</td>
</tr>
<tr>
<td>BCWS:</td>
<td>0</td>
<td>0</td>
<td>189</td>
<td>518</td>
</tr>
<tr>
<td>BCWP:</td>
<td>0</td>
<td>0</td>
<td>161</td>
<td>452</td>
</tr>
<tr>
<td>ACWP:</td>
<td>0</td>
<td>0</td>
<td>164</td>
<td>419</td>
</tr>
<tr>
<td>Budget:</td>
<td>3284</td>
<td>3284</td>
<td>3284</td>
<td>3284</td>
</tr>
<tr>
<td>LRE:</td>
<td>3284</td>
<td>3284</td>
<td>3284</td>
<td>3283</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0 LRE Volatility Index: -0.003 Percent Complete: 0.1376

BCWS Activity: 1 BCWP Activity: 1 ACWP Activity: 1

Dependent Variables

Schedule Performance Index: 0.872587 Cost Performance Index: 1.07876

Investigator Comments:

Values for minus 6 month and minus 3 month budget and LRE are from Dec 88 CPR. This was done to avoid DIV 0 errors for derived moderators. Program initiated at time organization was rated. Data representative of 12 months after rating
Data Identification

Program Tag: [] Rating Tag: [] Project Tag (WBS#): []

Project Description: Develop requirements, design, code, and test system software

Rating Information

Rating Date: 4/15/91 Rating: 3 Rating Type: SCE Rating Relevance: Med

Rating Comment:

Moderating Variables

Acquisition Phase: EMD Contract Type: FPFF

Program Comments: Similar to previous efforts

S/W Lifecycle: Test/Integration Language: Jovial Language %: 100.00%

Application: Command & Co Project Budget: 7998000

Budget Volatility: Low

Size: 148000 % New/Modified Code: 100.00% Requirements Volatility: Low

Rebaselining: No Quality Stds On Contract: Quality Params Tracked:

Cost Accounting Anomalies:

Program Manager Comments: Beat target sched. Size in DSI

Cost Data

<table>
<thead>
<tr>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 10/30/90</td>
<td>Date: 1/30/91</td>
<td>Date: 6/30/91</td>
<td>Date: 9/30/91</td>
</tr>
<tr>
<td>BCWS: 6521</td>
<td>BCWS: 7255</td>
<td>BCWS: 7928</td>
<td>BCWS: 7998</td>
</tr>
<tr>
<td>BCWP: 6671</td>
<td>BCWP: 7260</td>
<td>BCWP: 7853</td>
<td>BCWP: 8000</td>
</tr>
<tr>
<td>ACWP: 6952</td>
<td>ACWP: 7697</td>
<td>ACWP: 8198</td>
<td>ACWP: 8207</td>
</tr>
<tr>
<td>Budget: 7930</td>
<td>Budget: 7985</td>
<td>Budget: 7998</td>
<td>Budget: 7998</td>
</tr>
<tr>
<td>LRE: 7820</td>
<td>LRE: 7985</td>
<td>LRE: 8201</td>
<td>LRE: 8201</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0.000858 LRE Volatility Index: 0.0487 Percent Complete: 1.0003

BCWS Activity: 0.18467 BCWP Activity: 0.16613 ACWP Activity: 0.1517

Dependent Variables

Schedule Performance Index: 0.899797 Cost Performance Index: 1.06747

Investigator Comments:
Data Identification

Project Tag: [I] RatingTag: [B] Project Tag (WBS#): [2]

Project Description: Develop requirements, design, code, and test system software

Rating Information

Moderating Variables

Acquisition Phase: EMD Contract Type: FPIF

Program Comments: Similar to previous efforts

S/W Lifecycle: Test/Integration Language: Jovial Language %: [100.00%]

Application: Simulation Project Budget: [2654000] Budget Volatility: Low

Size: [42000] % New/Modified Code: [52.00%] Requirements Volatility: Low

Rebasing: No Quality Stds On Contract: [X] Quality Params Tracked: [X]

Cost Accounting Anomalies:

Program Manager Comments: Beat target sched. Size in DSI

Cost Data

<table>
<thead>
<tr>
<th></th>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>10/30/90</td>
<td>1/30/91</td>
<td>6/30/91</td>
<td>9/30/91</td>
</tr>
<tr>
<td>BCWS:</td>
<td>2315</td>
<td>2450</td>
<td>2628</td>
<td>2654</td>
</tr>
<tr>
<td>BCWP:</td>
<td>2217</td>
<td>2382</td>
<td>2628</td>
<td>2655</td>
</tr>
<tr>
<td>ACWP:</td>
<td>2015</td>
<td>2152</td>
<td>2235</td>
<td>2236</td>
</tr>
<tr>
<td>Budget:</td>
<td>2654</td>
<td>2654</td>
<td>2654</td>
<td>2654</td>
</tr>
<tr>
<td>LRE:</td>
<td>2563</td>
<td>2320</td>
<td>2235</td>
<td>2235</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: [0] LRE Volatility Index: [-0.128] Percent Complete: [1.0004]

BCWS Activity: [0.12773] BCWP Activity: [0.16497] ACWP Activity: [0.09884]

Dependent Variables

Schedule Performance Index: [1.292035] Cost Performance Index: [1.98190]

Investigator Comments:

B-40
Data Identification

Program Tag: J
Rating Tag: B
Project Tag (WBS#): 3

Project Description: Develop requirements, design, code, and test system software

Rating Information

Rating Date: 4/30/91
Rating: 3
Rating Type: SCE
Rating Relevance: Med

Rating Comment:

Moderating Variables

Acquisition Phase: EMD
Contract Type: FPFF

Program Comments: Similar to previous efforts

S/W Lifecycle: Test/Integration
Language: Fortran
Language %: 100.00%

Application: Command & Co
Project Budget: 3432000
Budget Volatility: Low

Size: 141000
% New/Modified Code: 91.00%
Requirements Volatility: Low

Rebaseline: No
Quality Standards On Contract: X
Quality Params Tracked: X

Cost Accounting Anomalies:

Program Manager Comments: Beat target sched. Size in DSI

Cost Data

<table>
<thead>
<tr>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 10/30/90</td>
<td>Date: 1/30/91</td>
<td>Date: 6/30/91</td>
<td>Date: 9/30/91</td>
</tr>
<tr>
<td>BCWS: 3009</td>
<td>BCWS: 3171</td>
<td>BCWS: 3400</td>
<td>BCWS: 3432</td>
</tr>
<tr>
<td>BCWP: 2880</td>
<td>BCWP: 3086</td>
<td>BCWP: 3406</td>
<td>BCWP: 3433</td>
</tr>
<tr>
<td>ACWP: 3252</td>
<td>ACWP: 3395</td>
<td>ACWP: 3506</td>
<td>ACWP: 3508</td>
</tr>
<tr>
<td>Budget: 3432</td>
<td>Budget: 3432</td>
<td>Budget: 3432</td>
<td>Budget: 3432</td>
</tr>
<tr>
<td>LRE: 3497</td>
<td>LRE: 3497</td>
<td>LRE: 3513</td>
<td>LRE: 3507</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0
LRE Volatility Index: 0.0029
Percent Complete: 1.0003

BCWS Activity: 0.12325
BCWP Activity: 0.16108
ACWP Activity: 0.07298

Dependent Variables

Schedule Performance Index: 1.307329
Cost Performance Index: 2.16016

Investigator Comments:

B-41
Data Identification

Program Tag: J RatingTag: C Project Tag (WBS#): 1

Project Description: Develop requirements, design, code, and test system software

Rating Information

Rating Date: 11/15/91 Rating: 3 Rating Type: SCE Rating Relevance: High

Rating Comment:

Moderating Variables

Acquisition Phase: EMD Contract Type: FPIF

Program Comments: Similar to previous efforts

S/W Lifecycle: Integration Language: Jovial Language %: 100.00%

Application: Command & Co Project Budget: 7998000 Budget Volatility: Low

Size: 148000 % New/Modified Code: 100.00% Requirements Volatility: Low

Rebasing: No Quality Stds On Contract: Quality Params Tracked:

Cost Accounting Anomalies: Very little effort over the period of interest--Actuals over period only .3% of actuals to date--will affect CPI

Program Manager Comments: Beat target sched. Size in DSI

Cost Data

<table>
<thead>
<tr>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 5/30/91</td>
<td>Date: 8/30/91</td>
<td>Date: 1/30/92</td>
<td>Date: 4/30/92</td>
</tr>
<tr>
<td>BCWS: 7852</td>
<td>BCWS: 7998</td>
<td>BCWS: 7998</td>
<td>BCWS: 7998</td>
</tr>
<tr>
<td>BCWP: 7769</td>
<td>BCWP: 7998</td>
<td>BCWP: 7997</td>
<td>BCWP: 7998</td>
</tr>
<tr>
<td>ACWP: 8171</td>
<td>ACWP: 8201</td>
<td>ACWP: 8195</td>
<td>ACWP: 8195</td>
</tr>
<tr>
<td>Budget: 7998</td>
<td>Budget: 7998</td>
<td>Budget: 7998</td>
<td>Budget: 7998</td>
</tr>
<tr>
<td>LRE: 8186</td>
<td>LRE: 8201</td>
<td>LRE: 8204</td>
<td>LRE: 8195</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0 LRE Volatility Index: 0.0011 Percent Complete: 1

BCWS Activity: 0.01825 BCWP Activity: 0.02863 ACWP Activity: 0.00293

Dependent Variables

Schedule Performance Index: 1.568483 Cost Performance Index: 9.54167

Investigator Comments:

Data point excluded from Complete Data Set due to low activity level.
Data Identification

Program Tag: J RatingTag: C Project Tag (WBS#): 2
Project Description: Develop requirements, design, code, and test system software

Rating Information

Rating Date: 11/15/91 Rating: 3 Rating Type: SCE Rating Relevance: High
Rating Comment:

Moderating Variables

Acquisition Phase: EMD Contract Type: FFIF
Program Comments: Similar to previous efforts
S/W Lifecycle: Integration Language: Jovial Language %: 100.00%
Application: Simulation Project Budget: 2654000 Budget Volatility:
Size: 0 % New/Modified Code: 52.00% Requirements Volatility: Low
Cost Accounting Anomalies: No effort for this WBS over the time period of interest--may affect performance indices
Program Manager Comments: Beat target sched. Size in DSI

Cost Data

<table>
<thead>
<tr>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 5/30/91</td>
<td>Date: 8/30/91</td>
<td>Date: 1/30/92</td>
<td>Date: 4/30/92</td>
</tr>
<tr>
<td>BCWS: 2605</td>
<td>BCWS: 2654</td>
<td>BCWS: 2654</td>
<td>BCWS: 2654</td>
</tr>
<tr>
<td>BCWP: 2605</td>
<td>BCWP: 2654</td>
<td>BCWP: 2654</td>
<td>BCWP: 2654</td>
</tr>
<tr>
<td>ACWP: 2233</td>
<td>ACWP: 2233</td>
<td>ACWP: 2233</td>
<td>ACWP: 2233</td>
</tr>
<tr>
<td>Budget: 2654</td>
<td>Budget: 2654</td>
<td>Budget: 2654</td>
<td>Budget: 2654</td>
</tr>
<tr>
<td>LRE: 2235</td>
<td>LRE: 2235</td>
<td>LRE: 2235</td>
<td>LRE: 2235</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0 LRE Volatility Index: -0.0059 Percent Complete: 1
BCWS Activity: 0.01846 BCWP Activity: 0.01846 ACWP Activity: 0

Dependent Variables

Schedule Performance Index: 1 Cost Performance Index: #Error
Investigator Comments:
Data point excluded from Complete Data Set due to low activity level.
Data Identification
Program Tag: 4 RatingTag: C Project Tag (WBS#): 3
Project Description: Develop requirements, design, code, and test system software

Rating Information
Rating Date: 11/15/91 Rating: 3 Rating Type: SCE Rating Relevance: High
Rating Comment:

Moderating Variables
Acquisition Phase: EMD Contract Type: FPIF
Program Comments: Similar to previous efforts
S/W Lifecycle: Integration Language: Fortran Language %: 100.00%
Application: Command & Co Project Budget: 3432000 Budget Volatility: Low
Size: 141000 % New/Modified Code: 91.00% Requirements Volatility: Low
Cost Accounting Anomalies: Little effort for this WBS over the time period of interest--may affect performance indices
Program Manager Comments: Beat target sched. Size in DSI

Cost Data
Six Months Prior to Rating Three Months Prior to Rating Three Months After Rating Six Months After Rating
Date: 5/30/91 Date: 8/30/91 Date: 1/30/92 Date: 4/30/92
BCWS: 3366 BCWS: 3432 BCWS: 3432 BCWS: 3432
BCWP: 3363 BCWP: 3432 BCWP: 3431 BCWP: 3432
ACWP: 3493 ACWP: 3507 ACWP: 3506 ACWP: 3506
Budget: 3432 Budget: 3432 Budget: 3432 Budget: 3432
LRE: 3613 LRE: 3507 LRE: 3507 LRE: 3506

Derived Moderators
Budget Volatility Index: 0 LRE Volatility Index: -0.002 Percent Complete: 1
BCWS Activity: 0.01923 BCWP Activity: 0.02010 ACWP Activity: 0.00371

Dependent Variables
Schedule Performance Index: 1.045455 Cost Performance Index: 5.30769

Investigator Comments:
Data point excluded from Complete Data Set due to low activity level.
Data Identification

Program Tag: K Rating Tag: A Project Tag (WBS#): 2

Project Description: Subsystem architecture, database administration, and software configuration management.

Rating Information

Rating Date: 12/15/89 Rating: 2 Rating Type: SPA (INT) Rating Relevance: High

Rating Comment:

Moderating Variables

Acquisition Phase: Support/Upgrade Contract Type: FPIF

Program Comments:

S/W Lifecycle: Multiple Language: N/A Language %: 0.00%

Application: Database Project Budget: 8451000 Budget Volatility: Low

Size: 0 % New/Modified Code: 0.00% Requirements Volatility: Low

Rebaselining: No Quality Stds On Contract: ☐ Quality Params Tracked: ☒

Cost Accounting Anomalies: No +/- three month data

Program Manager Comments:

Cost Data

Six Months Prior to Rating Three Months Prior to Rating Three Months After Rating Six Months After Rating

Date: 6/30/89 Date: 0 Date: 0 Date: 5/30/90

BCWS: 6767 BCWS: 0 BCWS: 0 BCWS: 7863
BCWP: 6755 BCWP: 0 BCWP: 0 BCWP: 7821
ACWP: 7060 ACWP: 0 ACWP: 0 ACWP: 8288
Budget: 7475 Budget: 0 Budget: 0 Budget: 8451
LRE: 7684 LRE: 0 LRE: 0 LRE: 8714

Derived Moderators

Budget Volatility Index: 0.13057 LRE Volatility Index: 0.1340 Percent Complete: 0.9265

BCWS Activity: 0.13939 BCWP Activity: 0.1363 ACWP Activity: 0.14817

Dependent Variables

Schedule Performance Index: 0.972628 Cost Performance Index: 0.86808

Investigator Comments:

No data for plus/minus three month.
Data Identification

Program Tag: K Rating Tag: A Project Tag (WBS#): 3
Project Description: Overall management of software development effort

Rating Information

Rating Date: 12/15/89 Rating: 2 Rating Type: SPA (INT) Rating Relevance: High
Rating Comment:

Moderating Variables

Acquisition Phase: Support/Upgrade Contract Type: FPIF
Program Comments:

S/W Lifecycle: Multiple Language: N/A Language %: 0.00%
Application: Database Project Budget: 3205000 Budget Volatility: Low
Size: 0 % New/Modified Code: 0.00% Requirements Volatility: Low
Cost Accounting Anomalies: No +/- three month data
Program Manager Comments:

Cost Data

<table>
<thead>
<tr>
<th></th>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>6/30/89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCWS</td>
<td>2025</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BCWP</td>
<td>2025</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ACWP</td>
<td>2071</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Budget</td>
<td>2237</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LRE</td>
<td>2334</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0.43272 LRE Volatility Index: 0.4367 Percent Complete: 0.8811
BCWS Activity: 0.28293 BCWP Activity: 0.28293 ACWP Activity: 0.24056

Dependent Variables

Schedule Performance Index: 0 Cost Performance Index: 1.21799
Investigator Comments:
No data for plus/minus three month.
Data Identification

Program Tag: K
Rating Tag: A
Project Tag (WBS #): 4
Project Description: Requirements, design, code, and test of system control CSCI

Rating Information

Rating Date: 12/15/89
Rating: 2
Rating Type: SPA (INT)
Rating Relevance: High

Moderating Variables

Acquisition Phase: Support/Upgrade
Contract Type: FPIL

Program Comments:

S/W Lifecycle: Multiple
Language: Fortran
Language %: 100.00%

Application: Database
Project Budget: 2440000
Budget Volatility: Low

Size: 22400
% New/Modified Code: 85.00%
Requirements Volatility: Low

Rebasing: No
Quality Stds On Contract:
Quality Params Tracked:

Cost Accounting Anomalies: No +/- three month data

Program Manager Comments:

Cost Data

<table>
<thead>
<tr>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 6/30/89</td>
<td>Date:</td>
<td>Date:</td>
<td>Date: 5/30/89</td>
</tr>
<tr>
<td>BCWS: 2158</td>
<td>BCWS:</td>
<td>BCWS: 0</td>
<td>BCWS: 2440</td>
</tr>
<tr>
<td>BCWP: 2160</td>
<td>BCWP: 0</td>
<td>BCWP: 0</td>
<td>BCWP: 2416</td>
</tr>
<tr>
<td>ACWP: 2158</td>
<td>ACWP: 0</td>
<td>ACWP: 0</td>
<td>ACWP: 2334</td>
</tr>
<tr>
<td>Budget: 2415</td>
<td>Budget: 0</td>
<td>Budget: 0</td>
<td>Budget: 2440</td>
</tr>
<tr>
<td>LRE: 2412</td>
<td>LRE: 0</td>
<td>LRE: 0</td>
<td>LRE: 2437</td>
</tr>
</tbody>
</table>

Derived Moderators

- **Budget Volatility Index:** 0.01035
- **LRE Volatility Index:** 0.0104
- **Percent Complete:** 0.9902

- **BCWS Activity:** 0.11557
- **BCWP Activity:** 0.10596
- **ACWP Activity:** 0.07541

Dependent Variables

- **Schedule Performance Index:** 0.907801
- **Cost Performance Index:** 1.45455

Investigator Comments:

No data for plus/minus three month.
Data Identification

Program Tag: K RatingTag: A Project Tag (WBS#): 5
Project Description: Requirements, design, code, and test of systems interface CSCI

Rating Information

Rating Date: 12/15/89 Rating: 2 Rating Type: SPA (INT) Rating Relevance: High

Moderating Variables

Acquisition Phase: Support/Upgrade Contract Type: FPIF
Program Comments:
S/W Lifecycle: Multiple Language: Fortran Language %: 100.00%
Application: Database Project Budget: 4238000 Budget Volatility: Low
Size: 43200 % New/Modified Code: 85.00% Requirements Volatility: Low
Rebaselining: No Quality Stds On Contract: ☑ Quality Params Tracked: ☑
Cost Accounting Anomalies: No +/- three month data
Program Manager Comments:

Cost Data

Six Months Prior to Rating Three Months Prior to Rating Three Months After Rating Six Months After Rating
Date: 6/30/89 Date: Date: Date: 5/30/90
BCWS: 2286 BCWS: 0 BCWS: 0 BCWS: 3268
BCWP: 2279 BCWP: 0 BCWP: 0 BCWP: 3167
ACWP: 2190 ACWP: 0 ACWP: 0 ACWP: 2989
Budget: 2581 Budget: 0 Budget: 0 Budget: 4238
LRE: 2515 LRE: 0 LRE: 0 LRE: 4169

Derived Moderators

Budget Volatility Index: 0.642 LRE Volatility Index: 0.6577 Percent Complete: 0.7473
BCWS Activity: 0.30049 BCWP Activity: 0.28039 ACWP Activity: 0.26731

Dependent Variables

Schedule Performance Index: 0.904277 Cost Performance Index: 1.11139
Investigator Comments:
No data for plus/minus three month.
Data Identification
Program Tag: 4 RatingTag: A Project Tag (WBS#): 6
Project Description: Requirements, design, code, and test of applications CSCI

Rating Information
Rating Date: 12/15/89 Rating: 2 Rating Type: SPA (INT) Rating Relevance: High
Rating Comment:

Moderating Variables
Acquisition Phase: Support/Upgrade Contract Type: PPIF
Program Comments:
S/W Lifecycle: Multiple Language: Fortran Language %: 100.00%
Application: Database Project Budget: 2683000 Budget Volatility: Low
Size: 73200 % New/Modified Code: 85.00% Requirements Volatility: Low
Rebaselining: No Quality Stdts On Contract: Quality Params Tracked: ☑
Cost Accounting Anomalies: No +/- three month data
Program Manager Comments:

Cost Data

<table>
<thead>
<tr>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 6/30/89</td>
<td>Date:</td>
<td>Date:</td>
<td>Date: 5/30/90</td>
</tr>
<tr>
<td>BCWS: 2424</td>
<td>BCWS:</td>
<td>BCWS:</td>
<td>BCWS: 2683</td>
</tr>
<tr>
<td>BCWP: 2418</td>
<td>BCWP:</td>
<td>BCWP:</td>
<td>BCWP: 2655</td>
</tr>
<tr>
<td>ACWP: 2510</td>
<td>ACWP:</td>
<td>ACWP:</td>
<td>ACWP: 2645</td>
</tr>
<tr>
<td>Budget: 2516</td>
<td>Budget:</td>
<td>Budget:</td>
<td>Budget: 2683</td>
</tr>
<tr>
<td>LRE: 2609</td>
<td>LRE:</td>
<td>LRE:</td>
<td>LRE: 2755</td>
</tr>
</tbody>
</table>

Derived Moderators
Budget Volatility Index: 0.06638 LRE Volatility Index: 0.056 Percent Complete: 0.9896
BCWS Activity: 0.09653 BCWP Activity: 0.08927 ACWP Activity: 0.05104

Dependent Variables
Schedule Performance Index: 0.915058 Cost Performance Index: 1.75556

Investigator Comments:
No data for plus/minus three month.

B-49
Data Identification
Program Tag: 9 Rating Tag: A Project Tag (WBS#): 7
Project Description: Requirements, design, code, and test of database maintenance CSCI

Rating Information
Rating Date: 12/15/89 Rating: 2 Rating Type: SPA (INT) Rating Relevance: High
Rating Comment:

Moderating Variables
Acquisition Phase: Support/Upgrade Contract Type: FPIF
Program Comments:
S/W Lifecycle: Multiple Language: Fortran Language %: 100.00%
Application: Database Project Budget: 2667000 Budget Volatility: Low
Size: 25700 % New/Modified Code: 85.00% Requirements Volatility: Low
Cost Accounting Anomalies: No +/- three month data
Program Manager Comments:

Cost Data
<table>
<thead>
<tr>
<th></th>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Date: 6/30/89</td>
<td>Date:</td>
<td>Date:</td>
<td>Date: 5/30/90</td>
</tr>
<tr>
<td>BCWS:</td>
<td>2486</td>
<td></td>
<td>BCWS: 0</td>
<td>BCWS: 2650</td>
</tr>
<tr>
<td>BCWP:</td>
<td>2488</td>
<td>BCWP: 0</td>
<td>BCWP: 0</td>
<td>BCWP: 2650</td>
</tr>
<tr>
<td>ACWP:</td>
<td>2787</td>
<td>ACWP: 0</td>
<td>ACWP: 0</td>
<td>ACWP: 2666</td>
</tr>
<tr>
<td>Budget:</td>
<td>2616</td>
<td>Budget: 0</td>
<td>Budget: 0</td>
<td>Budget: 2667</td>
</tr>
<tr>
<td>LRE:</td>
<td>2991</td>
<td>LRE: 0</td>
<td>LRE: 0</td>
<td>LRE: 2874</td>
</tr>
</tbody>
</table>

Derived Moderators
Budget Volatility Index: 0.0195 LRE Volatility Index: -0.039 Percent Complete: 0.9936
BCWS Activity: 0.06189 BCWP Activity: 0.06113 ACWP Activity: 0.02756

Dependent Variables
Schedule Performance Index: 0.987805 Cost Performance Index: 2.05063

Investigator Comments:
No data for plus/minus three month.
Data Identification

Program Tag: K RatingTag: A Project Tag (WBS#): 8
Project Description: Requirements, design, code, and test of database support CSCI

Rating Information

Rating Date: 12/15/89 Rating: 2 Rating Type: SPA (INT) Rating Relevance: High
Rating Comment:

Moderating Variables

Acquisition Phase: Support/Upgrade Contract Type: FPIF
Program Comments:

S/W Lifecycle: Multiple Language: Fortran Language %: 100.00%
Application: Database Project Budget: 1181000 Budget Volatility: Low
Size: 14200 % New/Modified Code: 85.00% Requirements Volatility: Low
Cost Accounting Anomalies: No +/- three month data
Program Manager Comments:

Cost Data

Six Months Prior to Rating Three Months Prior to Rating Three Months After Rating Six Months After Rating

Date: 6/30/89 Date: Date: Date: 5/30/90
BCWS: 1162 BCWS: 0 BCWS: 0 BCWS: 1175
BCWP: 1160 BCWP: 0 BCWP: 0 BCWP: 1175
ACWP: -1258 ACWP: 0 ACWP: 0 ACWP: 1266
Budget: 1162 Budget: 0 Budget: 0 Budget: 1181
LRE: 1262 LRE: 0 LRE: 0 LRE: 1277

Derived Moderators

Budget Volatility Index: 0.01635 LRE Volatility Index: 0.0119 Percent Complete: 0.9949
BCWS Activity: 0.01106 BCWP Activity: 0.01277 ACWP Activity: 0.00632

Dependent Variables

Schedule Performance Index: 1.153846 Cost Performance Index: 1.875

Investigator Comments:
Data point excluded from Complete Data Set due to low activity level. No data for plus/minus three months.
Data Identification

Program Tag: K Rating Tag: A Project Tag (WBS#): 9

Project Description: Software integration activities.

Rating Information

Rating Date: 12/15/89 Rating: 2 Rating Type: SPA (INT) Rating Relevance: High

Rating Comment:

Moderating Variables

Acquisition Phase: Support/Upgrade Contract Type: FPIF

Program Comments:

S/W Lifecycle: Test/integration Language: Fortran Language %: 100.00%

Application: Database Project Budget: 5821000 Budget Volatility: Low

Size: 0 % New/Modified Code: 0.00% Requirements Volatility: Low

Rebasing: No Quality Stds On Contract: Quality Stats Tracked:

Cost Accounting Anomalies: No +/- three month data

Program Manager Comments:

Cost Data

<table>
<thead>
<tr>
<th>Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 6/30/89</td>
<td>Date:</td>
<td>Date:</td>
<td>Date: 5/30/90</td>
</tr>
<tr>
<td>BCWS: 3009</td>
<td>BCWS: 0</td>
<td>BCWS: 0</td>
<td>BCWS: 4949</td>
</tr>
<tr>
<td>BCWP: 3002</td>
<td>BCWP: 0</td>
<td>BCWP: 0</td>
<td>BCWP: 4784</td>
</tr>
<tr>
<td>ACWP: 5287</td>
<td>ACWP: 0</td>
<td>ACWP: 0</td>
<td>ACWP: 7574</td>
</tr>
<tr>
<td>Budget: 5928</td>
<td>Budget: 0</td>
<td>Budget: 0</td>
<td>Budget: 5821</td>
</tr>
<tr>
<td>LRE: 7906</td>
<td>LRE: 0</td>
<td>LRE: 0</td>
<td>LRE: 8376</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: -0.0180 LRE Volatility Index: 0.0593 Percent Complete: 0.8219

BCWS Activity: 0.392 BCWP Activity: 0.37249 ACWP Activity: 0.30195

Dependent Variables

Schedule Performance Index: 0.918557 Cost Performance Index: 0.77919

Investigator Comments:

No data for plus/minus three month.
Data Identification

Program Tag: K RatingTag: B Project Tag (WBS#): 2

Project Description: Subsystem architecture, database administration, and software configuration management.

Rating Information

Rating Date: 9/15/90 Rating: 2 Rating Type: SCE Rating Relevance: High

Rating Comment:

Moderating Variables

Acquisition Phase: Contract Type:
Program Comments:

S/W Lifecycle: Multiple Language: N/A Language %: 0.00%
Application: Database Project Budget: 8586000 Budget Volatility: Low

Size: % New/Modified Code: 0.00% Requirements Volatility: Low
Cost Accounting Anomalies: No +/- three month data

Program Manager Comments:

Cost Data

<table>
<thead>
<tr>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 3/30/90</td>
<td>Date: 6/30/90</td>
<td>Date: 11/30/90</td>
<td>Date: 2/28/91</td>
</tr>
<tr>
<td>BCWS: 7675</td>
<td>BCWS: 0</td>
<td>BCWS:</td>
<td>BCWS: 8503</td>
</tr>
<tr>
<td>BCWP: 7647</td>
<td>BCWP: 0</td>
<td>BCWP:</td>
<td>BCWP: 8490</td>
</tr>
<tr>
<td>ACWP: 8078</td>
<td>ACWP: 0</td>
<td>ACWP:</td>
<td>ACWP: 9002</td>
</tr>
<tr>
<td>Budget: 8451</td>
<td>Budget: 0</td>
<td>Budget:</td>
<td>Budget: 8586</td>
</tr>
<tr>
<td>LRE: 8695</td>
<td>LRE: 0</td>
<td>LRE:</td>
<td>LRE: 9122</td>
</tr>
</tbody>
</table>

Derived Moderators

<table>
<thead>
<tr>
<th>Budget Volatility Index: 0.01597</th>
<th>LRE Volatility Index: 0.0491</th>
<th>Percent Complete: 0.9888</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCWS Activity: 0.09738</td>
<td>BCWP Activity: 0.09929</td>
<td>ACWP Activity: 0.10264</td>
</tr>
</tbody>
</table>

Dependent Variables

Schedule Performance Index: 1.018118 Cost Performance Index: 0.91234

Investigator Comments:

No data for plus/minus three month.
Data Identification

Program Tag: K Rating Tag: B Project Tag (WBS#): 3

Project Description: Overall management of software development effort

Rating Information

Rating Date: 9/15/90 Rating: 2 Rating Type: SCE Rating Relevance: High
Rating Comment:

Moderating Variables

Acquisition Phase: Contract Type: Program Comments:

Program Comments:

S/W Lifecycle: Multiple Language: N/A Language %: 0.00%
Application: Database Project Budget: 3239000 Budget Volatility: Low

Size: 0 % New/Modified Code: 0.00% Requirements Volatility: Low
Rebaselining: No Quality Stds On Contract: Quality Params Tracked: √
Cost Accounting Anomalies: No +/- three month data

Program Manager Comments:

Cost Data

<table>
<thead>
<tr>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 3/30/90</td>
<td>Date: 6/30/90</td>
<td>Date: 11/30/90</td>
<td>Date: 2/28/91</td>
</tr>
<tr>
<td>BCWS: 2679</td>
<td>BCWS: 0</td>
<td>BCWS: 0</td>
<td>BCWS: 3211</td>
</tr>
<tr>
<td>BCWP: 2679</td>
<td>BCWP: 0</td>
<td>BCWP: 0</td>
<td>BCWP: 3211</td>
</tr>
<tr>
<td>ACWP: 2609</td>
<td>ACWP: 0</td>
<td>ACWP: 0</td>
<td>ACWP: 3116</td>
</tr>
<tr>
<td>Budget: 3205</td>
<td>Budget: 0</td>
<td>Budget: 0</td>
<td>Budget: 3239</td>
</tr>
<tr>
<td>LRE: 3351</td>
<td>LRE: 0</td>
<td>LRE: 0</td>
<td>LRE: 3197</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0.01081 LRE Volatility Index: -0.046 Percent Complete: 0.9914
BCWS Activity: 0.16568 BCWP Activity: 0.16568 ACWP Activity: 0.16271

Dependent Variables

Schedule Performance Index: 1 Cost Performance Index: 1.04931

Investigator Comments:

No data for plus/minus three month.
Data Identification

Program Tag: K
RatingTag: B
Project Tag (WBS#): 4

Project Description: Requirements, design, code, and test of system control CSCI

Rating Information

Rating Date: 9/15/90
Rating: 2
Rating Type: SCE
Rating Relevance: High

Rating Comment:

Moderating Variables

Acquisition Phase: EMD
Contract Type: FPIF

Program Comments:

S/W Lifecycle: Multiple
Language: Fortran
Language %: 100.00%

Application: Database
Project Budget: 2440000
Budget Volatility: Low

Size: 22400
% New/Modified Code: 85.00%
Requirements Volatility: Low

Rebaselining: No
Quality Stds On Contract: No
Quality Params Tracked: Yes

Cost Accounting Anomalies: No effort. No +/- three month data

Program Manager Comments:

Cost Data

Six Months Prior to Rating

<table>
<thead>
<tr>
<th>Date</th>
<th>BCWS</th>
<th>BCWP</th>
<th>ACWP</th>
<th>Budget</th>
<th>LRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/30/90</td>
<td>2440</td>
<td>2416</td>
<td>2334</td>
<td>2440</td>
<td>2437</td>
</tr>
</tbody>
</table>

Three Months Prior to Rating

<table>
<thead>
<tr>
<th>Date</th>
<th>BCWS</th>
<th>BCWP</th>
<th>ACWP</th>
<th>Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/30/90</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Three Months After Rating

<table>
<thead>
<tr>
<th>Date</th>
<th>BCWS</th>
<th>BCWP</th>
<th>ACWP</th>
<th>Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/30/90</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Six Months After Rating

<table>
<thead>
<tr>
<th>Date</th>
<th>BCWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/28/91</td>
<td>2440</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0
LRE Volatility Index: -0.043
Percent Complete: 1

BCWS Activity: 0
BCWP Activity: 0.00984
ACWP Activity: 0

Dependent Variables

Schedule Performance Index: Error
Cost Performance Index: Error

Investigator Comments:

Data point excluded from Complete Data Set due to low activity level. No data for plus/minus three months.
Data Identification

Program Tag: K Rating Tag: B Project Tag (WBS#): 5
Project Description: Requirements, design, code, and test of systems interface CSCI

Rating Information

Rating Date: 9/15/90 Rating: 2 Rating Type: SCE Rating Relevance: High
Rating Comment:

Moderating Variables

Acquisition Phase: Contract Type:
Program Comments:
S/W Lifecycle: Multiple Language: Fortran Language %: 100.00%
Application: Database Project Budget: 4236000 Budget Volatility: Low
Size: 432000 % New/Modified Code: 85.00% Requirements Volatility: Low
Cost Accounting Anomalies: No +/- three month data
Program Manager Comments:

Cost Data

<table>
<thead>
<tr>
<th>Date</th>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCWS:</td>
<td>3083</td>
<td>BCWS: 0</td>
<td>BCWS: 0</td>
<td>BCWS: 4236</td>
</tr>
<tr>
<td>BCWP:</td>
<td>3019</td>
<td>BCWP: 0</td>
<td>BCWP: 0</td>
<td>BCWP: 4195</td>
</tr>
<tr>
<td>ACWP:</td>
<td>2875</td>
<td>ACWP: 0</td>
<td>ACWP: 0</td>
<td>ACWP: 3538</td>
</tr>
<tr>
<td>Budget:</td>
<td>4238</td>
<td>Budget: 0</td>
<td>Budget: 0</td>
<td>Budget: 4236</td>
</tr>
<tr>
<td>LRE:</td>
<td>4172</td>
<td>LRE: 0</td>
<td>LRE: 0</td>
<td>LRE: 3839</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: -0.0005 LRE Volatility Index: -0.08 Percent Complete: 0.9903
BCWS Activity: 0.27219 BCWP Activity: 0.28033 ACWP Activity: 0.18739

Dependent Variables

Schedule Performance Index: 1.019948 Cost Performance Index: 1.77376

Investigator Comments:
No data for plus/minus three month.
Data Identification

Project Description: Requirements, design, code, and test of applications CSCI

Rating Information

Rating Date: 9/15/90 Rating: 2 Rating Type: SCE Rating Relevance: High

Moderating Variables

Acquisition Phase: Contract Type:

Program Comments:

S/W Lifecycle: Multiple Language: Fortran Language %: 100.00%

Application: Database Project Budget: 2683000 Budget Volatility: Low

Size: 73200 % New/Modified Code: 85.00% Requirements Volatility: Low

Cost Accounting Anomalies: Negligible effort during this period. No +/- three month data

Program Manager Comments:

Cost Data

Six Months Prior to Rating Three Months Prior to Rating Three Months After Rating Six Months After Rating

Date: 3/30/90 Date: 6/30/90 Date: 11/30/90 Date: 2/28/91

BCWS: 2666 BCWS: 0 BCWS: 0 BCWS: 2683
BCWP: 2653 BCWP: 0 BCWP: 0 BCWP: 2667
ACWP: 2645 ACWP: 0 ACWP: 0 ACWP: 2649
Budget: 2683 Budget: 0 Budget: 0 Budget: 2683
LRE: 2755 LRE: 0 LRE: 0 LRE: 2667

Derived Moderators

Budget Volatility Index: 0 LRE Volatility Index: -0.032 Percent Complete: 0.9940

BCWS Activity: 0.00634 BCWP Activity: 0.00525 ACWP Activity: 0.00151

Dependent Variables

Schedule Performance Index: 0.823529 Cost Performance Index: 3.5

Investigator Comments:

Data point excluded from Complete Data Set due to low activity level. No data for plus/minus three months.
Data Identification

Program Tag: K **Rating Tag:** B **Project Tag (WBS#):** 7

Project Description: Requirements, design, code, and test of database maintenance CSCI

Rating Information

Rating Date: 9/15/90 **Rating:** 2 **Rating Type:** SCE **Rating Relevance:** High

Rating Comment:

Moderating Variables

Acquisition Phase:

Contract Type:

Program Comments:

S/W Lifecycle: Multiple **Language:** Fortran **Language %:** 100.00%

Application: Database **Project Budget:** 2666000 **Budget Volatility:** Low

Size: 25700 **% New/Modified Code:** 85.00% **Requirements Volatility:** Low

Rebaselining: No **Quality Stds On Contract:**

Quality Params Tracked: ✔

Cost Accounting Anomalies: Negligible effort during this period. No +/- three month data

Program Manager Comments:

Cost Data

<table>
<thead>
<tr>
<th></th>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>3/30/90</td>
<td>6/30/90</td>
<td>11/30/90</td>
<td>2/28/91</td>
</tr>
<tr>
<td>BCWS:</td>
<td>2650</td>
<td>0</td>
<td>0</td>
<td>2666</td>
</tr>
<tr>
<td>BCWP:</td>
<td>2650</td>
<td>0</td>
<td>0</td>
<td>2666</td>
</tr>
<tr>
<td>ACWP:</td>
<td>2866</td>
<td>0</td>
<td>0</td>
<td>2870</td>
</tr>
<tr>
<td>Budget:</td>
<td>2667</td>
<td>0</td>
<td>0</td>
<td>2666</td>
</tr>
<tr>
<td>LRE:</td>
<td>2874</td>
<td>0</td>
<td>0</td>
<td>2870</td>
</tr>
</tbody>
</table>

Derived Moderators

- **Budget Volatility Index:** -0.0004 **LRE Volatility Index:** -0.001 **Percent Complete:** 1

- **BCWS Activity:** 0.00600 **BCWP Activity:** 0.00600 **ACWP Activity:** 0.00139

Dependent Variables

Schedule Performance Index: 1 **Cost Performance Index:** 4

Investigator Comments: Data point excluded from Complete Data Set due to low activity level. No data for plus/minus three months.
Data Identification
Project Description: Requirements, design, code, and test of database support CSC

Rating Information
Rating Date: 9/15/90 Rating: 2 Rating Type: SCE Rating Relevance: High
Rating Comment:

Moderating Variables
Acquisition Phase: Contract Type:
Program Comments:
S/W Lifecycle: Multiple Language: Fortran Language %: 100.00%
Application: Database Project Budget: 1181000 Budget Volatility: Low
Size: 14200 % New/Modified Code: 85.00% Requirements Volatility: Low
Rebaselining: No Quality Stds On Contract: Quality Params Tracked: Yes
Cost Accounting Anomalies: Negligible effort during this period. No +/− three month data
Program Manager Comments:

Cost Data
Six Months Prior to Rating Three Months Prior to Rating Three Months After Rating Six Months After Rating
Date: 3/30/90 Date: 6/30/90 Date: 11/30/90 Date: 2/28/91
BCWS: 1175 BCWS: 0 BCWS: 0 BCWS: 1181
BCWP: 1175 BCWP: 0 BCWP: 0 BCWP: 1181
ACWP: 1266 ACWP: 0 ACWP: 0 ACWP: 1269
Budget: 1181 Budget: 0 Budget: 0 Budget: 1181
LRE: 1277 LRE: 0 LRE: 0 LRE: 1269

Derived Moderators
Budget Volatility Index: 0 LRE Volatility Index: −0.006 Percent Complete: 1
BCWS Activity: 0.00508 BCWP Activity: 0.00508 ACWP Activity: 0.00236

Dependent Variables
Schedule Performance Index: 1 Cost Performance Index: 2
Investigator Comments:
Data point excluded from Complete Data Set due to low activity level. No data for plus/minus three months.

B-59
Data Identification

Project Description: Software integration activities.

Rating Information

Rating Date: 9/15/90 Rating: 2 Rating Type: SCE Rating Relevance: High

Moderating Variables

Acquisition Phase: Contract Type:

Program Comments:

S/W Lifecycle: Test/Integration Language: Fortran Language %: 100.00%

Application: Database Project Budget: 6874000 Budget Volatility: Low

Size: 0 % New/Modified Code: 85.00% Requirements Volatility: Low

Rebaselining: No Quality Stds On Contract: Quality Params Tracked:

Cost Accounting Anomalies: No +/- three month data

Program Manager Comments:

Cost Data

Six Months Prior to Rating Three Months Prior to Rating Three Months After Rating Six Months After Rating

Date: 3/30/90 Date: 6/30/90 Date: 11/30/90 Date: 2/28/91

BCWS: 4564 BCWS: 0 BCWS: 0 BCWS: 6486
BCWP: 4426 BCWP: 0 BCWP: 0 BCWP: 6486
ACWP: 7084 ACWP: 0 ACWP: 0 ACWP: 9461
Budget: 5821 Budget: 0 Budget: 0 Budget: 8874
LRE: 7384 LRE: 0 LRE: 0 LRE: 10014

Derived Moderators

Budget Volatility Index: 0.1809 LRE Volatility Index: 0.3562 Percent Complete: 0.9436

BCWS Activity: 0.29633 BCWP Activity: 0.31761 ACWP Activity: 0.25124

Dependent Variables

Schedule Performance Index: 1.071800 Cost Performance Index: 0.86664

Investigator Comments:

No data for plus/minus three month.
Data Identification

Program Tag: L RatingTag: A Project Tag (WBS#): 1

Project Description: Generates all system design requirements (logic & algorithms) and software to support technology item being developed

Rating Information

Rating Date: 5/15/92 Rating: 2 Rating Type: SPA (EXT) Rating Relevance: Low

Rating Comment: Conducted in accordance with an SEI-licensed vendor agreement between *vendor* and SEI

Moderating Variables

Acquisition Phase: Concept Exploration Contract Type: CPI

Program Comments: 85% software, 15% hardware. Program partially terminated after technology demonstrated.

S/W Lifecycle: Multiple Language: Ada Language %: 100.00%

Application: Avionics Project Budget: 2726000 Budget Volatility: Low

Size: 76638 % New/Modified Code: 100.00% Requirements Volatility: Med

Rebasing: No Quality Stds On Contract: Quality Params Tracked:

Cost Accounting Anomalies: No agreement between Govt and Contractor on Estimate to Complete. Contractor may have tried to “get well” on options. Contractor may have taken earned value early.

Program Manager Comments: Requirements changes due to interfaces with associate contractor. Overruns covered by termination agreement. Language was early Ada (non-validated compiler). Contractor cited too much documentation as reason for overrun.

Cost Data

<table>
<thead>
<tr>
<th></th>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>12/30/91</td>
<td>3/30/92</td>
<td>8/30/92</td>
<td>11/30/92</td>
</tr>
<tr>
<td>BCWS</td>
<td>2248</td>
<td>2335</td>
<td>2716</td>
<td>2739</td>
</tr>
<tr>
<td>BCWP</td>
<td>2025</td>
<td>2203</td>
<td>2309</td>
<td>2369</td>
</tr>
<tr>
<td>ACWP</td>
<td>2937</td>
<td>3112</td>
<td>3296</td>
<td>3367</td>
</tr>
<tr>
<td>Budget</td>
<td>2718</td>
<td>2726</td>
<td>2726</td>
<td>2726</td>
</tr>
<tr>
<td>LRE</td>
<td>3222</td>
<td>3226</td>
<td>3226</td>
<td>3226</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0.00368 LRE Volatility Index: 0.0012 Percent Complete: 0.8690

BCWS Activity: 0.17999 BCWP Activity: 0.14521 ACWP Activity: 0.12771

Dependent Variables

Schedule Performance Index: 0.697769 Cost Performance Index: 0.8

Investigator Comments:
Data Identification

Program Tag: N RatingTag: A Project Tag (WBS#): 1

Project Description: Modify existing software for new configuration

Rating Information

Rating Date: 10/15/92 Rating: 2 Rating Type: SPA (INT) Rating Relevance: High

Rating Comment: Performed by a former SEI employee: "borderline"

Moderating Variables

Acquisition Phase: EMD Contract Type: CPI

Program Comments:

S/W Lifecycle: Multiple-Early Language: Fortran Language %: 90.00%

Application: Command & Co Project Budget: 2230000 Budget Volatility: Low

Size: 550000 New/Modified Code: 80.00% Requirements Volatility: Low

Cost Accounting Anomalies: Increasing baseline reflected through ECPs

Program Manager Comments:

Cost Data

<table>
<thead>
<tr>
<th>Six Months Prior to Rating</th>
<th>Three Months Prior to Rating</th>
<th>Three Months After Rating</th>
<th>Six Months After Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 5/30/92</td>
<td>Date: 8/30/92</td>
<td>Date: 1/30/93</td>
<td>Date: 4/30/93</td>
</tr>
<tr>
<td>BCWS: 0</td>
<td>BCWS: 530</td>
<td>BCWS: 1688</td>
<td>BCWS: 2138</td>
</tr>
<tr>
<td>BCWP: 0</td>
<td>BCWP: 375</td>
<td>BCWP: 1483</td>
<td>BCWP: 2080</td>
</tr>
<tr>
<td>ACWP: 0</td>
<td>ACWP: 300</td>
<td>ACWP: 1138</td>
<td>ACWP: 1812</td>
</tr>
<tr>
<td>Budget: 2227</td>
<td>Budget: 2227</td>
<td>Budget: 2226</td>
<td>Budget: 2230</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0.00135 LRE Volatility Index: -0.097 Percent Complete: 0.9327

BCWS Activity: 1 BCWP Activity: 1 ACWP Activity: 1

Dependent Variables

Schedule Performance Index: 0.972872 Cost Performance Index: 1.14790

Investigator Comments:

B-62
Data Identification

Project Description: Modify existing software for new configuration

Rating Information

Rating Date: 9/15/93 Rating: 1 Rating Type: SCE Rating Relevance: High
Rating Comment: Contractor stated rating of level 1 due to QA on another program. Rating information provided by contractor with Program Office permission.

Moderating Variables

Acquisition Phase: EMD Contract Type: CPI
Program Comments:
S/W Lifecycle: Test/Integration Language: Fortran Language %: 90.00%
Application: Command & Co Project Budget: 2268000 Budget Volatility: Low
Size: 550000 % New/Modified Code: 80.00% Requirements Volatility: Low
Rebaselining: No Quality Stds On Contract: ☐ Quality Params Tracked: ☐
Cost Accounting Anomalies: Increasing baseline reflected through ECPs
Program Manager Comments:

Cost Data

<table>
<thead>
<tr>
<th>Date</th>
<th>BCWS</th>
<th>BCWP</th>
<th>ACWP</th>
<th>Budget</th>
<th>LRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/30/93</td>
<td>2025</td>
<td>1947</td>
<td>1694</td>
<td>2230</td>
<td>2176</td>
</tr>
<tr>
<td>6/30/93</td>
<td>2199</td>
<td>2190</td>
<td>1862</td>
<td>2268</td>
<td>2076</td>
</tr>
<tr>
<td>11/30/93</td>
<td>2268</td>
<td>2257</td>
<td>1974</td>
<td>2268</td>
<td>1995</td>
</tr>
<tr>
<td>2/28/94</td>
<td>2268</td>
<td>2257</td>
<td>2098</td>
<td>2268</td>
<td>2222</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0.01704 LRE Volatility Index: 0.0211 Percent Complete: 0.9951
BCWS Activity: 0.10714 BCWP Activity: 0.13735 ACWP Activity: 0.19179

Dependent Variables

Schedule Performance Index: 1.275720 Cost Performance Index: 0.77114
Investigator Comments:
Data Identification

Program Tag: O Rating Tag: A Project Tag (WBS#): 1

Project Description: Design, code, test, integration of all software for entire system consisting of 3 major components

Rating Information

Rating Date: 2/15/94 Rating: 1 Rating Type: SPA (INT) Rating Relevance: High

Rating Comment:

Moderating Variables

Acquisition Phase: EMD Contract Type: CPAF

Program Comments:

S/W Lifecycle: Design/Code Language: Ada Language %: 100.00%

Application: Simulation Project Budget: 3153000 Budget Volatility: Low

Size: 130000 % New/Modified Code: 100.00% Requirements Volatility: Med

Cost Accounting Anomalies:

Program Manager Comments: Company does not have domain expertise. ECPs drivers of cost growth.

Cost Data

Six Months Prior to Rating

<table>
<thead>
<tr>
<th>Date</th>
<th>BCWS</th>
<th>BCWP</th>
<th>ACWP</th>
<th>Budget</th>
<th>LRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/30/93</td>
<td>1581</td>
<td>1431</td>
<td>2448</td>
<td>2889</td>
<td>4392</td>
</tr>
</tbody>
</table>

Three Months Prior to Rating

<table>
<thead>
<tr>
<th>Date</th>
<th>BCWS</th>
<th>BCWP</th>
<th>ACWP</th>
<th>Budget</th>
<th>LRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/30/93</td>
<td>1874</td>
<td>1609</td>
<td>3327</td>
<td>2900</td>
<td>5378</td>
</tr>
</tbody>
</table>

Three Months After Rating

<table>
<thead>
<tr>
<th>Date</th>
<th>BCWS</th>
<th>BCWP</th>
<th>ACWP</th>
<th>Budget</th>
<th>LRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/30/94</td>
<td>2767</td>
<td>2077</td>
<td>4725</td>
<td>2950</td>
<td>6703</td>
</tr>
<tr>
<td>7/30/94</td>
<td>2943</td>
<td>2192</td>
<td>5669</td>
<td>3153</td>
<td>6980</td>
</tr>
</tbody>
</table>

Derived Moderators

Budget Volatility Index: 0.09138 LRE Volatility Index: 0.5893 Percent Complete: 0.6952

BCWS Activity: 0.46959 BCWP Activity: 0.34717 ACWP Activity: 0.58818

Dependent Variables

Schedule Performance Index: 0.550651 Cost Performance Index: 0.23626

Investigator Comments:
Appendix C: Data Supporting the Analysis of the Complete Data Set

This appendix contains the complete set of plots, tables, and calculations supporting sections 5.2. The plots and the Kruskal-Wallis tables for nonparametric analysis of variance are from the Statistix 4.0 computer program. The multiple comparison calculations were performed using Mathcad 4.0. Note that we did not abridge the data as we transcribed it from these computer programs into the report, and thus the number of digits reported in each calculation are not necessarily significant.
1. *Scatter Plots of CPI and SPI*

![Scatter Plot of CPI vs RATING](image)

Figure C-1 Scatter Plot of CPI versus Rating for the Complete Data Set

![Scatter Plot of SPI vs RATING](image)

Figure C-2 Scatter Plot of SPI versus Rating for the Complete Data Set
2. Histogram of the frequency density for each rating level

Figure C-3 Histogram of CPI at Rating Level One for the Complete Data Set

Figure C-4 Histogram for SPI at Rating Level One for the Complete Data Set
Figure C-5 Histogram for CPI at Rating Level Two for the Complete Data Set

Figure C-6 Histogram for SPI at Rating Level Two for the Complete Data Set
Complete Data Set: CPI at Rating Level 3

Figure C-7 Histogram for CPI at Rating Level Three for the Complete Data Set

Complete Data Set: SPI at Rating Level 3

Figure C-8 Histogram for SPI at Rating Level Three for the Complete Data Set
3. Wilk-Shapiro evaluation of normality at each level

Figure C-9 Wilk-Shapiro Plot for CPI at Rating Level One for the Complete Data Set

Figure C-10 Wilk-Shapiro Plot for SPI at Rating Level One for the Complete Data Set
Figure C-11 Wilk-Shapiro Plot for CPI at Rating Level Two for the Complete Data Set

Figure C-12 Wilk-Shapiro Plot for SPI at Rating Level Two for the Complete Data Set
Figure C-13 Wilk-Shapiro Plot for CPI at Rating Level Three for the Complete Data Set

Figure C-14 Wilk-Shapiro Plot for SPI at Rating Level Three for the Complete Data Set
4. Box and Whiskers Plots of CPI and SPI

![Box and Whiskers Plot for CPI](image)

Figure C-15 Box and Whiskers Plot for CPI for the Complete Data Set

![Box and Whiskers Plot for SPI](image)

Figure C-16 Box and Whiskers Plot for SPI for the Complete Data Set
5. Kruskal-Wallis Tests, and Multiple Comparison Tests

Table C-1
Kruskal-Wallis for CPI for the Complete Data Set

<table>
<thead>
<tr>
<th>MEAN</th>
<th>SAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RATING</td>
<td>RANK</td>
</tr>
<tr>
<td>1</td>
<td>18.3</td>
</tr>
<tr>
<td>2</td>
<td>28.2</td>
</tr>
<tr>
<td>3</td>
<td>32.9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>26.5</td>
</tr>
</tbody>
</table>

Kruskal-Wallis Statistic: 8.2319
P-value, using Chi-squared Approximation: 0.0163

Table C-2
Multiple Comparison Matrix for CPI for the Complete Data Set

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
<td>18.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>28.2</td>
<td>0.5</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>32.9</td>
<td>5.067</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

K-W Statistic of 8.2319, P=0.0163

Table C-3
Kruskal-Wallis for SPI for the Complete Data Set

<table>
<thead>
<tr>
<th>MEAN</th>
<th>SAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RATING</td>
<td>RANK</td>
</tr>
<tr>
<td>1</td>
<td>24.2</td>
</tr>
<tr>
<td>2</td>
<td>20.8</td>
</tr>
<tr>
<td>3</td>
<td>34.9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>26.5</td>
</tr>
</tbody>
</table>

Kruskal-Wallis Statistic: 8.1238
P-value, using Chi-squared Approximation: 0.0172

Table C-4
Multiple Comparison Matrix for SPI for the Complete Data Set

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
<td>24.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>20.8</td>
<td>-6.0</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>34.9</td>
<td>1.167</td>
<td>4.7</td>
<td>--</td>
</tr>
</tbody>
</table>

K-W Statistic of 8.1238, P=0.0172
6. Descriptive Statistics of the Complete Data Set

<table>
<thead>
<tr>
<th></th>
<th>Rating=1 CPI</th>
<th>Rating=1 SPI</th>
<th>Rating=2 CPI</th>
<th>Rating=2 SPI</th>
<th>Rating=3 CPI</th>
<th>Rating=3 SPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Mean</td>
<td>0.7909</td>
<td>0.9816</td>
<td>1.0685</td>
<td>0.9562</td>
<td>1.1537</td>
<td>1.1059</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.2639</td>
<td>0.3366</td>
<td>0.4502</td>
<td>0.0915</td>
<td>0.4165</td>
<td>0.1433</td>
</tr>
<tr>
<td>Min</td>
<td>0.2019</td>
<td>0.3028</td>
<td>0.3496</td>
<td>0.6978</td>
<td>0.5808</td>
<td>0.8998</td>
</tr>
<tr>
<td>Median</td>
<td>0.8493</td>
<td>1.0000</td>
<td>0.9365</td>
<td>0.9727</td>
<td>1.0498</td>
<td>1.0864</td>
</tr>
<tr>
<td>Max</td>
<td>1.0788</td>
<td>1.8676</td>
<td>2.0506</td>
<td>1.0774</td>
<td>2.1602</td>
<td>1.3652</td>
</tr>
<tr>
<td>MAD</td>
<td>0.1325</td>
<td>0.0560</td>
<td>0.1661</td>
<td>0.0559</td>
<td>0.0825</td>
<td>0.1280</td>
</tr>
<tr>
<td>Skew</td>
<td>-1.1674</td>
<td>0.5698</td>
<td>0.6062</td>
<td>-1.1639</td>
<td>1.294</td>
<td>0.3124</td>
</tr>
</tbody>
</table>
7. Multiple Comparison Calculations for the Complete Data Set

The Kruskal-Wallis H Test Statistic

\[H = \frac{12}{N(N+1)} \sum_{j=1}^{k} \frac{n_j(N+1)}{2} \left(\frac{R_j}{N} - \frac{1}{2} \right)^2 \]

Multiple Comparison Inequality

\[|R_i - R_j| \leq z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_i} + \frac{1}{n_j} \right)} \]

where

- \(k \) = number of samples
- \(R_i, R_j \) = sum of the ranks in the ith and jth sample, respectively
- \(n_i, n_j \) = number of observations in the ith and jth sample, respectively
- \(N \) = total number of observations

Mean Rank of Ratings 1, 2, & 3 for CPI

\(R_{cpi} = (18.3 \ 28.2 \ 32.9) \)

Mean Rank of Ratings 1, 2, & 3 for SPI

\(R_{spi} = (24.2 \ 20.8 \ 34.9) \)

Number of Observations in Ratings 1, 2, & 3

\(n = (17 \ 18 \ 17) \)

Calculation of \(N \):

\(N = n_{1,1} + n_{1,2} + n_{1,3} \)

\(N = 52 \)

Critical \(z \) Value - Corresponds to a .2 level of significance and provides at least a 80\% level of confidence.

\(z = 1.834 \)

Multiple Comparisons - "which populations differ from which others"

- If the difference in mean rank (DMR) between 2 samples is greater than the right-hand side (RHS) of the multiple comparison inequality above, there is a statistically significant difference between the 2 samples.
- The direction of the significant difference is determined by noting for each pair which sample has the larger sample mean.

Comparision of Rating 1 and 2

\(\text{DMR}_{cpi} = |R_{cpi_{1,1}} - R_{cpi_{1,2}}| \)

\(\text{DMR}_{spi} = |R_{spi_{1,1}} - R_{spi_{1,2}}| \)

\(\text{DMR}_{cpi} = 9.9 \)

\(\text{DMR}_{spi} = 3.4 \)

\(\text{RHS} = z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,2}} \right)} \)

\(\text{RHS} = 9.4 \)

For CPI: \(\text{DMR}_{cpi} < \text{RHS} \)

CPI at Rating 2 > CPI at Rating 1

For SPI: \(\text{DMR}_{spi} < \text{RHS} \)

no significant difference

Comparision of Rating 2 and 3

\(\text{DMR}_{cpi} = |R_{cpi_{1,2}} - R_{cpi_{1,3}}| \)

\(\text{DMR}_{spi} = |R_{spi_{1,2}} - R_{spi_{1,3}}| \)

\(\text{DMR}_{cpi} = 4.7 \)

\(\text{DMR}_{spi} = 14.1 \)

\(\text{RHS} = z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,2}} + \frac{1}{n_{1,3}} \right)} \)

\(\text{RHS} = 9.4 \)

For CPI: \(\text{DMR}_{cpi} < \text{RHS} \)

no significant difference

For SPI: \(\text{DMR}_{spi} < \text{RHS} \)

SPI at Rating 3 > SPI at Rating 2

Comparision of Rating 1 and 3

\(\text{DMR}_{cpi} = |R_{cpi_{1,1}} - R_{cpi_{1,3}}| \)

\(\text{DMR}_{spi} = |R_{spi_{1,1}} - R_{spi_{1,3}}| \)

\(\text{DMR}_{cpi} = 14.6 \)

\(\text{DMR}_{spi} = 10.7 \)

\(\text{RHS} = z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,3}} \right)} \)

\(\text{RHS} = 9.533 \)

For CPI: \(\text{DMR}_{cpi} < \text{RHS} \)

CPI at Rating 3 > CPI at Rating 1

For SPI: \(\text{DMR}_{spi} < \text{RHS} \)

SPI at Rating 3 > SPI at Rating 1

Figure C-17 Calculations for Multiple Comparison Test for the Complete Data Set

C-12
Appendix D: Data Supporting the Analysis of the Moderator “Rating Relevance”

This appendix contains the complete set of plots, tables, and calculations supporting sections 5.2.1. The plots and the Kruskal-Wallis tables for nonparametric analysis of variance are from the Statistix 4.0 computer program. The multiple comparison calculations were performed using Mathcad 4.0. Note that we did not abridge the data as we transcribed it from these computer programs into the report, and thus the number of digits reported in each calculation are not necessarily significant.

For each project, the validity of the correlation between the CMM rating and project cost/schedule performance depends upon the associative relevance of project under consideration. Four scenarios define the four degrees of rating-to-project associative relevance:

1. Very High Rating-to-Project Relevance— the project under consideration was itself rated using the CMM rating process.

2. High Rating-to-Project Relevance— the project under consideration was one project of several used in obtaining the CMM rating for the organization.

3. Medium Rating-to-Project Relevance— the project was not used to establish the CMM rating, but the personnel which participated in the project were responsible for other projects which were evaluated in the CMM rating.

4. Low Rating-to-Project Relevance— neither the project, nor the personnel responsible for the project were used to obtain the organization’s CMM rating.
1. Scatter Plots of CPI and SPI

Figure D-1 Scatter Plot of CPI versus Rating for High and Very High Rating Relevance

Figure D-2 Scatter Plot of SPI versus Rating for High and Very High Rating Relevance
2. Box and Whisker Plots of CPI and SPI

Figure D-3 Box and Whisker Plot of CPI versus Rating for High and Very High Rating Relevance

Figure D-4 Box and Whisker Plot of SPI versus Rating for High and Very High Rating Relevance
3. *Kruskal-Wallis and Multiple Comparison Tests*

Table D-1

Kruskal-Wallis for CPI for High and Very High Rating Relevance

<table>
<thead>
<tr>
<th>RATING</th>
<th>MEAN SAMPLE</th>
<th>RANK</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.0</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>24.7</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>24.4</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>20.5</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

KRUSKAL-WALLIS STATISTIC: 8.8692
P-VALUE, USING CHI-SQUARED APPROXIMATION: 0.0119

Table D-2

Multiple Comparison Matrix for CPI for High and Very High Rating Relevance

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td>13.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>24.7</td>
<td>3.733</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>24.4</td>
<td>2.761</td>
<td>-8.211</td>
<td></td>
</tr>
</tbody>
</table>

K-W Statistic of 8.8692, P=0.0119

Table D-3

Kruskal-Wallis for SPI for High and Very High Rating Relevance

<table>
<thead>
<tr>
<th>RATING</th>
<th>MEAN SAMPLE</th>
<th>RANK</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.5</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>16.8</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>24.3</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>20.5</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

KRUSKAL-WALLIS STATISTIC: 2.7738
P-VALUE, USING CHI-SQUARED APPROXIMATION: 0.2498

Table D-4

Multiple Comparison Matrix for SPI for High and Very High Rating Relevance

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td>21.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>16.8</td>
<td>-3.267</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>24.3</td>
<td>-5.839</td>
<td>-1.011</td>
<td></td>
</tr>
</tbody>
</table>

K-W Statistic of 2.7738, P=0.2498
4. Descriptive Statistics

Table D-5
Descriptive Statistics for High and Very High Rating Relevance

<table>
<thead>
<tr>
<th></th>
<th>Rating=1 CPI</th>
<th>Rating=1 SPI</th>
<th>Rating=2 CPI</th>
<th>Rating=2 SPI</th>
<th>Rating=3 CPI</th>
<th>Rating=3 SPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Mean</td>
<td>0.7381</td>
<td>1.0558</td>
<td>1.1040</td>
<td>0.9853</td>
<td>0.9880</td>
<td>1.0457</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.2618</td>
<td>0.3039</td>
<td>0.4870</td>
<td>0.0568</td>
<td>0.1105</td>
<td>0.0891</td>
</tr>
<tr>
<td>Min</td>
<td>0.2019</td>
<td>0.5507</td>
<td>0.3496</td>
<td>0.9043</td>
<td>0.7924</td>
<td>0.9335</td>
</tr>
<tr>
<td>Median</td>
<td>0.8357</td>
<td>1.0112</td>
<td>1.0493</td>
<td>0.9878</td>
<td>0.9856</td>
<td>1.0242</td>
</tr>
<tr>
<td>Max</td>
<td>1.0288</td>
<td>1.8676</td>
<td>2.0506</td>
<td>1.0774</td>
<td>1.1272</td>
<td>1.2207</td>
</tr>
<tr>
<td>MAD</td>
<td>0.1029</td>
<td>0.0417</td>
<td>0.2125</td>
<td>0.0321</td>
<td>0.0643</td>
<td>0.0622</td>
</tr>
<tr>
<td>Skew</td>
<td>-1.0541</td>
<td>1.1223</td>
<td>0.3738</td>
<td>0.0396</td>
<td>-0.7217</td>
<td>0.7397</td>
</tr>
</tbody>
</table>
5. Multiple Comparison Calculations for High and Very High Rating Relevance

\[
\text{The Kruskal-Wallis H Test Statistic} \quad H = \frac{12}{N(N+1)} \sum_{j=1}^{k} \left[\frac{R_j - \frac{n_j(N+1)}{2}}{n_j} \right]^2 \\
\text{Multiple Comparison Inequality} \quad \left| R_i - R_j \right| \leq \sqrt{\frac{N(N+1)}{12 \left(\frac{1}{n_i} + \frac{1}{n_j} \right)}}
\]

where
\(k = \) number of samples
\(R_i, R_j = \) sum of the ranks in the ith and jth sample, respectively
\(n_i, n_j = \) number of observations in the ith and jth sample, respectively
\(N = \) total number of observations

<table>
<thead>
<tr>
<th>Mean Rank of Ratings 1, 2, & 3 for CPI</th>
<th>Mean Rank of Ratings 1, 2, & 3 for SPI</th>
<th>Number of Observations in Ratings 1, 2, & 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI : 13.0 24.7 24.4</td>
<td>SPI : 21.5 16.8 24.3</td>
<td>n : 14 15 11</td>
</tr>
</tbody>
</table>

Calculation of \(N \)
\[
N := n_{1,1} + n_{1,2} + n_{1,3} \quad N = 40
\]

Critical \(z \) Value - Corresponds to a .2 level of significance and provides at least a 80% level of confidence.
\(z = 1.834 \)

Multiple Comparisons - "which populations differ from which others"
- If the difference in mean rank (DMR) between 2 samples is greater than the right-hand side (RHS) of the multiple comparison inequality above, there is a statistically significant difference between the 2 samples.
- The direction of the significant difference is determined by noting for each pair which sample has the larger sample mean.

Comparison of Rating 1 and 2

\[
\begin{align*}
\text{DMR} & \text{ CPI} := |R_{\text{CPI}_{1,1}} - R_{\text{CPI}_{1,2}}| \quad \text{DMR} \text{ CPI} = 11.7 \\
\text{DMR} & \text{ SPI} := |R_{\text{SPI}_{1,1}} - R_{\text{SPI}_{1,2}}| \quad \text{DMR} \text{ SPI} = 4.7 \\
\text{RHS} & = z \sqrt{\frac{N(N+1)}{12 \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,2}} \right)}} \quad \text{RHS} = 7.967
\end{align*}
\]

- For CPI \(\text{DMR CPI} - \text{RHS} = 3.733 \) \(\Rightarrow \) CPI at Rating 2 > CPI at Rating 1
- For SPI \(\text{DMR SPI} - \text{RHS} = -3.267 \) \(\Leftrightarrow \) no significant difference

Comparison of Rating 2 and 3

\[
\begin{align*}
\text{DMR} & \text{ CPI} := |R_{\text{CPI}_{1,2}} - R_{\text{CPI}_{1,3}}| \quad \text{DMR} \text{ CPI} = 0.3 \\
\text{DMR} & \text{ SPI} := |R_{\text{SPI}_{1,2}} - R_{\text{SPI}_{1,3}}| \quad \text{DMR} \text{ SPI} = 7.5 \\
\text{RHS} & = z \sqrt{\frac{N(N+1)}{12 \left(\frac{1}{n_{1,2}} + \frac{1}{n_{1,3}} \right)}} \quad \text{RHS} = 8.511
\end{align*}
\]

- For CPI \(\text{DMR CPI} - \text{RHS} = -8.211 \) \(\Leftrightarrow \) no significant difference
- For SPI \(\text{DMR SPI} - \text{RHS} = 1.011 \) \(\Leftrightarrow \) no significant difference

Comparison of Rating 1 and 3

\[
\begin{align*}
\text{DMR} & \text{ CPI} := |R_{\text{CPI}_{1,1}} - R_{\text{CPI}_{1,3}}| \quad \text{DMR} \text{ CPI} = 11.4 \\
\text{DMR} & \text{ SPI} := |R_{\text{SPI}_{1,1}} - R_{\text{SPI}_{1,3}}| \quad \text{DMR} \text{ SPI} = 2.8 \\
\text{RHS} & = z \sqrt{\frac{N(N+1)}{12 \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,3}} \right)}} \quad \text{RHS} = 8.639
\end{align*}
\]

- For CPI \(\text{DMR CPI} - \text{RHS} = 2.761 \) \(\Rightarrow \) CPI at Rating 3 > CPI at Rating 1
- For SPI \(\text{DMR SPI} - \text{RHS} = 5.839 \) \(\Leftrightarrow \) no significant difference

Figure D-5 Calculations for Multiple Comparison Test for High and Very High Rating Relevance
Appendix E: Data Supporting the Analysis of Moderator "Rating Type"

This appendix contains the complete set of plots, tables, and calculations supporting sections 5.2.1. The plots and the Kruskal-Wallis tables for nonparametric analysis of variance are from the Statistix 4.0 computer program. The multiple comparison calculations were performed using Mathcad 4.0. Note that we did not abridge the data as we transcribed it from these computer programs into the report, and thus the number of digits reported in each calculation are not necessarily significant.

The moderator "Rating Type" is of interest because of the acknowledged difference in the results of the two rating methods, SPA and SCE (Bessleman, Byrnes, Lin, Paulk and Puranik, 1993:24). The SPA, which is primarily used for self-assessment, comprises the bulk of the data we collected. The SCE, which is performed by the government in the context of a source selection comprises only 18 of our 52 total data points.
1. Scatter Plots of CPI and SPI

Figure E-1 Scatter Plot of CPI versus Rating for Software Process Assessment (SPA)

Figure E-2 Scatter Plot of SPI versus Rating for Software Process Assessment (SPA)
Figure E-3 Scatter Plot of CPI versus Rating for Software Capability Evaluation (SCE)

Figure E-4 Scatter Plot of SPI versus Rating for Software Capability Evaluation (SCE)
2. Box and Whisker Plots of CPI and SPI

Figure E-5 Box and Whiskers Plot for CPI for Software Process Assessment (SPA)

Figure E-6 Box and Whiskers Plot for SPI for Software Process Assessment (SPA)
Figure E-7 Box and Whiskers Plot for CPI for Software Capability Evaluation (SCE)

Figure E-8 Box and Whiskers Plot for SPI for Software Capability Evaluation (SCE)
3. Kruskal-Wallis and Multiple Comparison Tests

Table E-1
Kruskal-Wallis for CPI for Software Process Assessment (SPA)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Mean</th>
<th>Sample</th>
<th>Rank</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.8</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18.0</td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>19.0</td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>17.5</td>
<td></td>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>

Kruskal-Wallis Statistic 1.6706
P-Value, using Chi-Squared Approximation 0.4337

Table E-2
Multiple Comparison Matrix for CPI for Software Process Assessment (SPA)

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>12.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>18.0</td>
<td></td>
<td>-3.712</td>
<td>-5.903</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>19.0</td>
<td></td>
<td>-2.712</td>
<td></td>
</tr>
</tbody>
</table>

K-W Statistic of 1.6706, P=0.4337

Table E-3
Kruskal-Wallis for SPI for Software Process Assessment (SPA)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Mean</th>
<th>Sample</th>
<th>Rank</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.0</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>13.3</td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>24.1</td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>17.5</td>
<td></td>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>

Kruskal-Wallis Statistic 10.5448
P-Value, using Chi-Squared Approximation 0.0051

Table E-4
Multiple Comparison Matrix for SPI for Software Process Assessment (SPA)

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>13.3</td>
<td></td>
<td>-7.612</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>24.1</td>
<td></td>
<td>3.188</td>
<td>3.897</td>
</tr>
</tbody>
</table>

K-W Statistic of 10.5448, P=0.0051
Table E-5
Kruskal-Wallis for CPI for Software Capability Evaluation (SCE)

<table>
<thead>
<tr>
<th>RATING</th>
<th>MEAN</th>
<th>SAMPLE</th>
<th>NONPARAMETRIC AOV FOR CPI BY RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RANK</td>
<td>SIZE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6.6</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12.0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>16.7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>9.5</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Kruskal-Wallis Statistic: 9.4487
P-Value, Using Chi-Squared Approximation: 0.0089

Table E-6
Multiple Comparison Matrix for CPI for Software Capability Evaluation (SCE)

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>6.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>12.0</td>
<td>-0.3173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>16.7</td>
<td>3.723</td>
<td>-2.778</td>
<td></td>
</tr>
</tbody>
</table>

K-W Statistic of 9.4487, P=0.0089

Table E-7
Kruskal-Wallis for SPI for Software Capability Evaluation (SCE)

<table>
<thead>
<tr>
<th>RATING</th>
<th>MEAN</th>
<th>SAMPLE</th>
<th>NONPARAMETRIC AOV FOR SPI BY RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RANK</td>
<td>SIZE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8.4</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10.9</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>11.7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>9.5</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Kruskal-Wallis Statistic: 1.2201
P-Value, Using Chi-Squared Approximation: 0.5433

Table E-8
Multiple Comparison Matrix for SPI for Software Capability Evaluation (SCE)

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>8.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>10.9</td>
<td>-3.217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>11.7</td>
<td>-3.077</td>
<td>-6.678</td>
<td></td>
</tr>
</tbody>
</table>

K-W Statistic of 1.2201, P=0.5433

E-7
4. Descriptive Statistics

Table E-9
Descriptive Statistics for Software Process Assessment (SPA)

<table>
<thead>
<tr>
<th></th>
<th>Rating=1 CPI</th>
<th>Rating=1 SPI</th>
<th>Rating=2 CPI</th>
<th>Rating=2 SPI</th>
<th>Rating=3 CPI</th>
<th>Rating=3 SPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>6</td>
<td>6</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Mean</td>
<td>0.7333</td>
<td>0.8967</td>
<td>1.0451</td>
<td>0.9359</td>
<td>1.0288</td>
<td>1.0929</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.4057</td>
<td>0.5420</td>
<td>0.4703</td>
<td>0.0933</td>
<td>0.2559</td>
<td>0.1267</td>
</tr>
<tr>
<td>Min</td>
<td>0.2019</td>
<td>0.3028</td>
<td>0.3496</td>
<td>0.6978</td>
<td>0.5808</td>
<td>0.9335</td>
</tr>
<tr>
<td>Median</td>
<td>0.9321</td>
<td>0.8015</td>
<td>0.9365</td>
<td>0.9423</td>
<td>1.0104</td>
<td>1.0563</td>
</tr>
<tr>
<td>Max</td>
<td>1.0788</td>
<td>1.8676</td>
<td>2.0506</td>
<td>1.0774</td>
<td>1.7097</td>
<td>1.3652</td>
</tr>
<tr>
<td>MAD</td>
<td>0.1166</td>
<td>0.2527</td>
<td>0.1931</td>
<td>0.0418</td>
<td>0.0754</td>
<td>0.0860</td>
</tr>
<tr>
<td>Skew</td>
<td>-0.6058</td>
<td>0.9136</td>
<td>0.5967</td>
<td>-0.9626</td>
<td>1.0047</td>
<td>0.6501</td>
</tr>
</tbody>
</table>

Table E-10
Descriptive Statistics for Software Capability Evaluation (SCE)

<table>
<thead>
<tr>
<th></th>
<th>Rating=1 CPI</th>
<th>Rating=1 SPI</th>
<th>Rating=2 CPI</th>
<th>Rating=2 SPI</th>
<th>Rating=3 CPI</th>
<th>Rating=3 SPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>11</td>
<td>11</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mean</td>
<td>0.8223</td>
<td>1.0280</td>
<td>1.1505</td>
<td>1.0275</td>
<td>1.7365</td>
<td>1.1664</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.1615</td>
<td>0.1666</td>
<td>0.4227</td>
<td>0.0309</td>
<td>0.5862</td>
<td>0.2310</td>
</tr>
<tr>
<td>Min</td>
<td>0.5143</td>
<td>0.7044</td>
<td>0.8666</td>
<td>1.0000</td>
<td>1.0675</td>
<td>0.8998</td>
</tr>
<tr>
<td>Median</td>
<td>0.8380</td>
<td>1.0090</td>
<td>0.9808</td>
<td>1.01090</td>
<td>1.9819</td>
<td>1.2920</td>
</tr>
<tr>
<td>Max</td>
<td>1.0228</td>
<td>1.3428</td>
<td>1.7738</td>
<td>1.0718</td>
<td>2.1602</td>
<td>1.3073</td>
</tr>
<tr>
<td>MAD</td>
<td>0.0669</td>
<td>0.0294</td>
<td>0.0913</td>
<td>0.0010</td>
<td>0.01783</td>
<td>0.0153</td>
</tr>
<tr>
<td>Skew</td>
<td>-0.7512</td>
<td>0.2689</td>
<td>1.0432</td>
<td>0.8506</td>
<td>-0.6343</td>
<td>-0.7036</td>
</tr>
</tbody>
</table>
5. Multiple Comparison Calculations for Rating Type - SPA

The Kruskal-Wallis H Test Statistic

\[
H = \frac{12}{N(N+1)} \sum_{j=1}^{k} \frac{R_{j}^2}{n_j} - \frac{N(N+1)}{12} \left(\frac{1}{n_1} + \frac{1}{n_2} + \cdots + \frac{1}{n_k} \right)
\]

where

\(k \) = number of samples
\(R_j \), \(R_{j'} \) = sum of the ranks in the \(j \)th and \(j' \)th sample, respectively
\(n_j \) = number of observations in the \(j \)th sample
\(N \) = total number of observations

Multiple Comparison Inequality

\[
R_{i} - R_{j} \leq z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_i} + \frac{1}{n_j} \right)}
\]

Mean Rank of Ratings 1, 2, & 3 for CPI
\(R_{\text{cpi}} = (12.8 \ 18.0 \ 19.0) \)

Mean Rank of Ratings 1, 2, & 3 for SPI
\(R_{\text{spi}} = (12.0 \ 13.3 \ 24.1) \)

Number of Observations in Ratings 1, 2, & 3
\(n = (6 \ 14 \ 14) \)

Calculation of \(N \)
\(N = n_{1,1} + n_{1,2} + n_{1,3} \)
\(N = 34 \)

Critical \(z \) Value - Corresponds to a .2 level of significance and provides at least a 80% level of confidence.
\(z = 1.834 \)

Multiple Comparisons - "which populations differ from which others"

- If the difference in mean rank (DMR) between 2 samples is greater than the right-hand side (RHS) of the multiple comparison inequality above, there is a statistically significant difference between the 2 samples.
- The direction of the significant difference is determined by noting for each pair which sample has the larger sample mean.

Comparison of Rating 1 and 2

\[
\text{DMR}_{\text{cpi}} = |R_{\text{cpi},1} - R_{\text{cpi},2}| \quad \text{DMR}_{\text{cpi}} = 5.2
\]

\[
\text{DMR}_{\text{spi}} = |R_{\text{spi},1} - R_{\text{spi},2}| \quad \text{DMR}_{\text{spi}} = 1.3
\]

\[
\text{RHS} = z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,2}} \right)} \quad \text{RHS} = 8.912
\]

For CPI \(\text{DMR}_{\text{cpi}} - \text{RHS} = -3.712 \)
No significant difference

For SPI \(\text{DMR}_{\text{spi}} - \text{RHS} = -7.612 \)
No significant difference

Comparison of Rating 2 and 3

\[
\text{DMR}_{\text{cpi}} = |R_{\text{cpi},2} - R_{\text{cpi},3}| \quad \text{DMR}_{\text{cpi}} = 1
\]

\[
\text{DMR}_{\text{spi}} = |R_{\text{spi},2} - R_{\text{spi},3}| \quad \text{DMR}_{\text{spi}} = 10.8
\]

\[
\text{RHS} = z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,2}} + \frac{1}{n_{1,3}} \right)} \quad \text{RHS} = 6.903
\]

For CPI \(\text{DMR}_{\text{cpi}} - \text{RHS} = -5.903 \)
No significant difference

For SPI \(\text{DMR}_{\text{spi}} - \text{RHS} = 3.897 \)
SPI at Rating 3 > SPI at Rating 2

Comparison of Rating 1 and 3

\[
\text{DMR}_{\text{cpi}} = |R_{\text{cpi},1} - R_{\text{cpi},3}| \quad \text{DMR}_{\text{cpi}} = 6.2
\]

\[
\text{DMR}_{\text{spi}} = |R_{\text{spi},1} - R_{\text{spi},3}| \quad \text{DMR}_{\text{spi}} = 12.1
\]

\[
\text{RHS} = z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,3}} \right)} \quad \text{RHS} = 8.912
\]

For CPI \(\text{DMR}_{\text{cpi}} - \text{RHS} = -2.712 \)
No significant difference

For SPI \(\text{DMR}_{\text{spi}} - \text{RHS} = 3.188 \)
SPI at Rating 3 > SPI at Rating 1

Figure E-9 Calculations for Multiple Comparison Test for Software Process Assessment (SPA)
6. Multiple Comparison Calculations for Rating Type - SCE

The Kruskal-Wallis H Test Statistic

\[H = \frac{12}{N(N+1)} \sum_{j=1}^{k} \frac{R_{j} - \bar{R}_{j}}{n_{j}} \left(\frac{N(N+1)}{2} \right)^{12} \]

Multiple Comparison Inequality

\[|R_{i} - R_{j}| \leq z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{i}} + \frac{1}{n_{j}} \right)} \]

where

- \(k \) = number of samples
- \(R_{i}, R_{j} \) = sum of the ranks in the ith and jth sample, respectively
- \(n_{i}, n_{j} \) = number of observations in the ith and jth sample, respectively
- \(N \) = total number of observations

Mean Rank of Ratings 1, 2, & 3 for CPI

\(R_{\text{cpi}} = (6.6 \ 12.0 \ 16.7) \)

Mean Rank of Ratings 1, 2, & 3 for SPI

\(R_{\text{spi}} = (8.4 \ 10.9 \ 11.7) \)

Number of Observations in Ratings 1, 2, & 3

\(n = (11 \ 4 \ 3) \)

Calculation of \(N \)

\[N = n_{1,1} + n_{1,2} + n_{1,3} = 18 \]

Critical z Value - Correlates to a 0.2 level of significance and provides at least a 80% level of confidence.

\(z = 1.834 \)

Multiple Comparisons - "which populations differ from which others"

- If the difference in mean rank (DMR) between 2 samples is greater than the right-hand side (RHS) of the multiple comparison inequality above, there is a statistically significant difference between the 2 samples.
- The direction of the significant difference is determined by noting for each pair which sample has the larger mean.

Comparison of Rating 1 and 2

\(\text{DMR}_{\text{cpi}} = |R_{\text{cpi},1} - R_{\text{cpi},2}| \quad \text{DMR}_{\text{spi}} = |R_{\text{spi},1} - R_{\text{spi},2}| \)

\(\text{DMR}_{\text{cpi}} = 5.4 \)

\(\text{DMR}_{\text{spi}} = 2.5 \)

RHS = \(z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,2}} \right)} \)

\(z = 1.834 \)

\(\text{RHS} = 5.717 \)

For CPI \(\text{DMR}_{\text{cpi}} - \text{RHS} = -0.317 \) no significant difference

For SPI \(\text{DMR}_{\text{spi}} - \text{RHS} = -3.217 \) no significant difference

Comparison of Rating 2 and 3

\(\text{DMR}_{\text{cpi}} = |R_{\text{cpi},2} - R_{\text{cpi},3}| \quad \text{DMR}_{\text{spi}} = |R_{\text{spi},2} - R_{\text{spi},3}| \)

\(\text{DMR}_{\text{cpi}} = 4.7 \)

\(\text{DMR}_{\text{spi}} = 0.8 \)

RHS = \(z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,2}} + \frac{1}{n_{1,3}} \right)} \)

\(z = 1.834 \)

\(\text{RHS} = 7.478 \)

For CPI \(\text{DMR}_{\text{cpi}} - \text{RHS} = -2.778 \) no significant difference

For SPI \(\text{DMR}_{\text{spi}} - \text{RHS} = -6.678 \) no significant difference

Comparison of Rating 1 and 3

\(\text{DMR}_{\text{cpi}} = |R_{\text{cpi},1} - R_{\text{cpi},3}| \quad \text{DMR}_{\text{spi}} = |R_{\text{spi},1} - R_{\text{spi},3}| \)

\(\text{DMR}_{\text{cpi}} = 10.1 \)

\(\text{DMR}_{\text{spi}} = 3.3 \)

RHS = \(z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,3}} \right)} \)

\(z = 1.834 \)

\(\text{RHS} = 6.377 \)

For CPI \(\text{DMR}_{\text{cpi}} - \text{RHS} = -3.723 \)

For SPI \(\text{DMR}_{\text{spi}} - \text{RHS} = -3.077 \)

CPI at Rating 3 > CPI at Rating 1

no significant difference

Figure E-10 Calculations for Multiple Comparison Test for Software Capability Evaluation (SCE)
Appendix F: Data Supporting the Analysis of Moderator “Baseline Volatility”

This appendix contains the complete set of plots, tables, and calculations supporting sections 5.2.2. The plots and the Kruskal-Wallis tables for nonparametric analysis of variance are from the Statistix 4.0 computer program. The multiple comparison calculations were performed using Mathcad 4.0. Note that we did not abridge the data as we transcribed it from these computer programs into the report, and thus the number of digits reported in each calculation are not necessarily significant.

The moderator “Baseline Volatility” is defined as the proportional change in the budget-at-complete (BAC) over the period of interest, i.e., we calculated the change in total budget over the 12 month period as a percentage of the budget at the beginning of the period. This rate of change of the budget is indicative of rebaselining, whatever the source, whether it is due to reallocation of work, ECPs, or reprogramming. We arbitrarily selected a change in budget of plus or minus fifteen percent as the stratification level in our analysis.

This moderator was considered because a correlation between rating and performance could be affected by the relative changes in the baseline of a project. The causes of these changes in baseline can vary from redirection on behalf of the government to inadequate initial budgeting by the contractor. It is possible that a change in the baseline, regardless of the type, could affect the link between contractor performance and the performance indices of interest.
1. Scatter Plots of CPI and SPI

Figure F-1 Scatter Plot of CPI versus Rating for Less than 15% Change in Baseline

Figure F-2 Scatter Plot of SPI versus Rating for Less than 15% Change in Baseline
Figure F-3 Scatter Plot of CPI versus Rating for Greater than 15% Change in Baseline

Figure F-4 Scatter Plot of SPI versus Rating for Greater than 15% Change in Baseline
2. Box and Whisker Plots of CPI and SPI

Figure F-5 Box and Whiskers for CPI for Less than 15% Change in Baseline

Figure F-6 Box and Whiskers for SPI for Less than 15% Change in Baseline
Figure F-7 Box and Whiskers for CPI for Greater than 15% Change in Baseline

Figure F-8 Box and Whiskers for SPI for Greater than 15% Change in Baseline
3. Kruskal-Wallis and Multiple Comparison Tests

Table F-1
Kruskal-Wallis for CPI Less than 15% Change in Baseline

<table>
<thead>
<tr>
<th>RATING</th>
<th>MEAN</th>
<th>SAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.2</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>20.4</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>27.8</td>
<td>8</td>
</tr>
<tr>
<td>TOTAL</td>
<td>19.5</td>
<td>38</td>
</tr>
</tbody>
</table>

KRUSKAL-WALLIS STATISTIC 7.9190
P-VALUE, USING CHI-SQUARED APPROXIMATION 0.0191

Table F-2
Multiple Comparison Matrix for CPI for Less than 15% Change in Baseline

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>14.2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>20.4</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>27.8</td>
<td>--</td>
</tr>
</tbody>
</table>

K-W Statistic of 7.9190, P=0.0191

Table F-3
Kruskal-Wallis for SPI for Less than 15% Change in Baseline

<table>
<thead>
<tr>
<th>RATING</th>
<th>MEAN</th>
<th>SAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.7</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>15.8</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>28.0</td>
<td>8</td>
</tr>
<tr>
<td>TOTAL</td>
<td>19.5</td>
<td>38</td>
</tr>
</tbody>
</table>

KRUSKAL-WALLIS STATISTIC 6.4301
P-VALUE, USING CHI-SQUARED APPROXIMATION 0.0402

Table F-4
Multiple Comparison Matrix for SPI for Less than 15% Change in Baseline

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>18.7</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>15.8</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>28.0</td>
<td>0.377</td>
</tr>
</tbody>
</table>

K-W Statistic of 6.4301, P=0.0402
Table F-5
Kruskal-Wallis for CPI for Greater than 15% Change in Baseline

<table>
<thead>
<tr>
<th>Mean Sample</th>
<th>Kruskal-Wallis One-Way Nonparametric AOV for CPI by Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating</td>
<td>Rank</td>
</tr>
<tr>
<td>1</td>
<td>5.5</td>
</tr>
<tr>
<td>2</td>
<td>10.3</td>
</tr>
<tr>
<td>3</td>
<td>7.0</td>
</tr>
<tr>
<td>Total</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Kruskal-Wallis Statistic 1.9619
P-Value, Using Chi-Squared Approximation 0.3750

Table F-6
Multiple Comparison Matrix for CPI for Greater than 15% Change in Baseline

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>5.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>10.3</td>
<td>-2.204</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>7.0</td>
<td>-4.498</td>
<td>-1.815</td>
<td>--</td>
</tr>
</tbody>
</table>

K-W Statistic of 1.9619, P=0.3750

Table F-7
Kruskal-Wallis for SPI for Greater than 15% Change in Baseline

<table>
<thead>
<tr>
<th>Mean Sample</th>
<th>Kruskal-Wallis One-Way Nonparametric AOV for SPI by Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating</td>
<td>Rank</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
</tr>
<tr>
<td>2</td>
<td>6.0</td>
</tr>
<tr>
<td>3</td>
<td>8.6</td>
</tr>
<tr>
<td>Total</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Kruskal-Wallis Statistic 1.6730
P-Value, Using Chi-Squared Approximation 0.4332

Table F-8
Multiple Comparison Matrix for SPI for Greater than 15% Change in Baseline

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>5.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>6.0</td>
<td>-6.004</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>8.6</td>
<td>-2.398</td>
<td>-2.515</td>
<td>--</td>
</tr>
</tbody>
</table>

K-W Statistic of 1.6730, P=0.4332
4. **Descriptive Statistics**

<table>
<thead>
<tr>
<th>Table F-9</th>
<th>Descriptive Statistics for Less than 15% Change in Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>15</td>
</tr>
<tr>
<td>Mean</td>
<td>0.7711</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.2737</td>
</tr>
<tr>
<td>Min</td>
<td>0.2019</td>
</tr>
<tr>
<td>Median</td>
<td>0.8380</td>
</tr>
<tr>
<td>Max</td>
<td>1.0788</td>
</tr>
<tr>
<td>MAD</td>
<td>0.1439</td>
</tr>
<tr>
<td>Skew</td>
<td>-1.0260</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table F-10</th>
<th>Descriptive Statistics for Greater than 15% Change in Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>2</td>
</tr>
<tr>
<td>Mean</td>
<td>0.9393</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.1265</td>
</tr>
<tr>
<td>Min</td>
<td>0.8498</td>
</tr>
<tr>
<td>Median</td>
<td>0.9393</td>
</tr>
<tr>
<td>Max</td>
<td>1.0288</td>
</tr>
<tr>
<td>MAD</td>
<td>0.0895</td>
</tr>
<tr>
<td>Skew</td>
<td>0.00</td>
</tr>
</tbody>
</table>
5. Multiple Comparison Calculations for Less Than 15% Change in Baseline

The Kruskal-Wallis H Test Statistic

\[H = \frac{12}{N(N+1)} \sum_{j=1}^{k} \left(\frac{R_j - \frac{N(N+1)}{2}}{n_j} \right)^2 \]

where

\(k \) = number of samples

\(R_i, R_j \) = sum of the ranks in the ith and jth sample, respectively

\(n_i, n_j \) = number of observations in the ith and jth sample, respectively

\(N \) = total number of observations

Multiple Comparison Inequality

\[|R_i - R_j| \leq z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_i} + \frac{1}{n_j} \right)} \]

Mean Rank of Ratings 1, 2, & 3

for CPI

\(R_{\text{cpi}} = (14.2 \ 20.4 \ 27.8) \)

Mean Rank of Ratings 1, 2, & 3

for SPI

\(R_{\text{spi}} = (18.7 \ 15.8 \ 28.0) \)

Number of Observations in Ratings 1, 2, & 3

\(n = (15 \ 15 \ 8) \)

Calculation of \(N \)

\(N = n_{1,1} + n_{1,2} + n_{1,3} \)

\(N = 38 \)

Critical \(z \) Value - Corresponds to a .2 level of significance and provides at least a 80% level of confidence.

\(z = 1.834 \)

Multiple Comparisons - "which populations differ from which others"

- If the difference in mean rank (DMR) between 2 samples is greater than the right-hand side (RHS) of the multiple comparison inequality above, there is a statistically significant difference between the 2 samples.

- The direction of the significant difference is determined by noting for each pair which sample has the larger sample mean.

Comparison of Rating 1 and 2

\[
\begin{align*}
\text{DMR}_{\text{cpi}} &= |R_{\text{cpi},1} - R_{\text{cpi},2}| \\
\text{DMR}_{\text{spi}} &= |R_{\text{spi},1} - R_{\text{spi},2}|
\end{align*}
\]

\(\text{RHS} = z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,2}} \right)} \)

\(\text{RHS} = 7.442 \)

For CPI \(\text{DMR}_{\text{cpi}} - \text{RHS} = -1.242 \) no significant difference

For SPI \(\text{DMR}_{\text{spi}} - \text{RHS} = -4.542 \) no significant difference

Comparison of Rating 2 and 3

\[
\begin{align*}
\text{DMR}_{\text{cpi}} &= |R_{\text{cpi},2} - R_{\text{cpi},3}| \\
\text{DMR}_{\text{spi}} &= |R_{\text{spi},2} - R_{\text{spi},3}|
\end{align*}
\]

\(\text{RHS} = z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{2,1}} + \frac{1}{n_{2,3}} \right)} \)

\(\text{RHS} = 8.923 \)

For CPI \(\text{DMR}_{\text{cpi}} - \text{RHS} = -1.523 \) no significant difference

For SPI \(\text{DMR}_{\text{spi}} - \text{RHS} = 3.277 \) SPI at Rating 3 > SPI at Rating 2

Comparison of Rating 1 and 3

\[
\begin{align*}
\text{DMR}_{\text{cpi}} &= |R_{\text{cpi},1} - R_{\text{cpi},3}| \\
\text{DMR}_{\text{spi}} &= |R_{\text{spi},1} - R_{\text{spi},3}|
\end{align*}
\]

\(\text{RHS} = z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,3}} \right)} \)

\(\text{RHS} = 8.923 \)

For CPI \(\text{DMR}_{\text{cpi}} - \text{RHS} = 4.677 \) CPI at Rating 3 > CPI at Rating 1

For SPI \(\text{DMR}_{\text{spi}} - \text{RHS} = 0.377 \) SPI at Rating 3 > SPI at Rating 1

Figure F-9 Calculations for Multiple Comparison Test for Less than 15% change in Baseline
6. **Multiple Comparison Calculations for Greater Than 15% Change in Baseline**

The Kruskal-Wallis H Test Statistic

\[
H = \frac{12}{N(N+1)} \sum_{j=1}^{k} \frac{R_j - n_j(N+1)}{2}
\]

where
- \(k \) = number of samples
- \(R_j, R_j \) = sum of the ranks in the ith and jth sample, respectively
- \(n_i, n_j \) = number of observations in the ith and jth sample, respectively
- \(N \) = total number of observations

Multiple Comparison Inequality

\[
| R_i - R_j | \leq z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_i} + \frac{1}{n_j} \right)}
\]

Mean Rank of Ratings 1, 2, & 3 for CPI
- \(R_{cpi} = (5.5, 10.3, 7.0) \)

Mean Rank of Ratings 1, 2, & 3 for SPI
- \(R_{spi} = (5.0, 6.0, 8.6) \)

Number of Observations in Ratings 1, 2, & 3
- \(n = (2, 3, 9) \)

Calculation of \(N \)
- \(N = n_{1,1} + n_{1,2} + n_{1,3} = 14 \)

Critical \(z \) Value - Corresponds to a .2 level of significance and provides at least a 80% level of confidence.
- \(z = 1.834 \)

Multiple Comparisons - "which populations differ from which others"
- If the difference in mean rank (DMR) between 2 samples is greater than the right-hand side (RHS) of the multiple comparison inequality above, there is a statistically significant difference between the 2 samples.
- The direction of the significant difference is determined by noting for each pair which sample has the larger sample mean.

Comparison of Rating 1 and 2

<table>
<thead>
<tr>
<th>DMR (cpi)</th>
<th>DMR (spi)</th>
<th>RHS = (z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,2}} \right)})</th>
<th>RHS = 7.004</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{cpi_{1,1}} - R_{cpi_{1,2}})</td>
<td>(R_{spi_{1,1}} - R_{spi_{1,2}})</td>
<td>(4.8)</td>
<td>(1)</td>
</tr>
</tbody>
</table>

For CPI DMR \(cpi \) - RHS = -2.204
For SPI DMR \(spi \) - RHS = -6.004

Comparison of Rating 2 and 3

<table>
<thead>
<tr>
<th>DMR (cpi)</th>
<th>DMR (spi)</th>
<th>RHS = (z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,3}} \right)})</th>
<th>RHS = 5.115</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{cpi_{1,2}} - R_{cpi_{1,3}})</td>
<td>(R_{spi_{1,2}} - R_{spi_{1,3}})</td>
<td>(3.3)</td>
<td>(2.6)</td>
</tr>
</tbody>
</table>

For CPI DMR \(cpi \) - RHS = -1.815
For SPI DMR \(spi \) - RHS = -2.515

Comparison of Rating 1 and 3

<table>
<thead>
<tr>
<th>DMR (cpi)</th>
<th>DMR (spi)</th>
<th>RHS = (z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,3}} \right)})</th>
<th>RHS = 5.998</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{cpi_{1,1}} - R_{cpi_{1,3}})</td>
<td>(R_{spi_{1,1}} - R_{spi_{1,3}})</td>
<td>(1.5)</td>
<td>(3.6)</td>
</tr>
</tbody>
</table>

For CPI DMR \(cpi \) - RHS = -4.498
For SPI DMR \(spi \) - RHS = -2.398

Figure F-10 Calculations for Multiple Comparison Test for Greater than 15% change in Baseline
Appendix G: Data Supporting the Analysis of Moderator “Contract Type”

This appendix contains the complete set of plots, tables, and calculations supporting section 5.2.2. The plots and the Kruskal-Wallis tables for nonparametric analysis of variance are from the Statistix 4.0 computer program. The multiple comparison calculations were performed using Mathcad 4.0. Note that we did not abridge the data as we transcribed it from these computer programs into the report, and thus the number of digits reported in each calculation are not necessarily significant.

The type of contract used to procure systems fundamentally influences the relationship between the Government and the contractor. For example, a fixed-price contract tends to place the monetary risk on the contractor, while a cost-type contract shifts most of the monetary risk to the Government (Nicholas 1990:497). The apportionment of risk between the parties affects how the task is proposed, costed, structured, performed, and tracked. Such a profound environmental moderator may have an effect on the correlation between performance and rating.
1. Scatter Plots of CPI and SPI

Figure G-1 Scatter Plot of CPI versus Rating for Cost Contracts

Figure G-2 Scatter Plot of SPI versus Rating for Cost Contracts
Figure G-3 Scatter Plot of CPI versus Rating for Fixed Price Contracts

Figure G-4 Scatter Plot of SPI versus Rating for Fixed Price Contracts
2. *Box and Whisker Plots of CPI and SPI*

Figure G-5 Box and Whiskers Plot for CPI for Cost Contracts

Figure G-6 Box and Whiskers Plot for SPI for Cost Contracts
Figure G-7 Box and Whiskers Plot for CPI for Fixed Price Contracts

Figure G-8 Box and Whiskers Plot for SPI for Fixed Price Contracts
3. Kruskal-Wallis and Multiple Comparison Tests

Table G-1
Kruskal-Wallis for CPI for Cost Contracts

<table>
<thead>
<tr>
<th>RATING</th>
<th>MEAN</th>
<th>SAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>7.8</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>11.6</td>
<td>9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>9.0</td>
<td>17</td>
</tr>
</tbody>
</table>

KRUSKAL-WALLIS STATISTIC 6.3651
P-VALUE, USING CHI-SQUARED APPROXIMATION 0.0415

Table G-2
Multiple Comparison Matrix for CPI for Cost Contracts

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>7.8</td>
<td>-2.263</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>11.6</td>
<td>2.126</td>
</tr>
</tbody>
</table>

K-W Statistic of 6.3651, P=0.0415

Table G-3
Kruskal-Wallis for SPI for Cost Contracts

<table>
<thead>
<tr>
<th>RATING</th>
<th>MEAN</th>
<th>SAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5.6</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>10.6</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>9.0</td>
<td>17</td>
</tr>
</tbody>
</table>

KRUSKAL-WALLIS STATISTIC 3.2383
P-VALUE, USING CHI-SQUARED APPROXIMATION 0.1981

Table G-4
Multiple Comparison Matrix for SPI for Cost Contracts

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>10.0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>5.6</td>
<td>-2.363</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>10.6</td>
<td>-5.574</td>
</tr>
</tbody>
</table>

K-W Statistic of 3.2383, P=0.1981

G-6
Table G-5
Kruskal-Wallis for CPI for Fixed Price Contracts

<table>
<thead>
<tr>
<th>RATING</th>
<th>MEAN</th>
<th>SAMPLE RANK</th>
<th>SAMPLE SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11.3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>11.4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11.0</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

Kruskal-Wallis Statistic: 0.2890
P-Value, Using Chi-Squared Approximation: 0.8655

Table G-6
Multiple Comparison Matrix for CPI for Fixed Price Contracts

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>9.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>11.3</td>
<td>-5.038</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>11.4</td>
<td>-5.069</td>
<td>-5.43</td>
<td>--</td>
</tr>
</tbody>
</table>

K-W Statistic of 0.2890, P=0.8655

Table G-7
Kruskal-Wallis for SPI for Fixed Price Contracts

<table>
<thead>
<tr>
<th>RATING</th>
<th>MEAN</th>
<th>SAMPLE RANK</th>
<th>SAMPLE SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9.2</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15.2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>11.0</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

Kruskal-Wallis Statistic: 6.3101
P-Value, Using Chi-Squared Approximation: 0.0426

Table G-8
Multiple Comparison Matrix for SPI for Fixed Price Contracts

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>6.8</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>9.2</td>
<td>-4.438</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>15.2</td>
<td>1.431</td>
<td>0.47</td>
<td>--</td>
</tr>
</tbody>
</table>

K-W Statistic of 6.3101, P=0.0426
4. Descriptive Statistics

Table G-9

Descriptive Statistics for Cost Contracts

<table>
<thead>
<tr>
<th></th>
<th>Rating=1 CPI</th>
<th>Rating=1 SPI</th>
<th>Rating=2 CPI</th>
<th>Rating=2 SPI</th>
<th>Rating=3 CPI</th>
<th>Rating=3 SPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Mean</td>
<td>0.6191</td>
<td>0.9608</td>
<td>0.9316</td>
<td>0.8905</td>
<td>1.1001</td>
<td>1.0811</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.3338</td>
<td>0.3718</td>
<td>0.1354</td>
<td>0.1335</td>
<td>0.2927</td>
<td>0.1483</td>
</tr>
<tr>
<td>Min</td>
<td>0.2363</td>
<td>0.5507</td>
<td>0.8000</td>
<td>0.6978</td>
<td>0.5808</td>
<td>0.9335</td>
</tr>
<tr>
<td>Median</td>
<td>0.7711</td>
<td>1.0560</td>
<td>0.9273</td>
<td>0.8963</td>
<td>1.0611</td>
<td>1.0242</td>
</tr>
<tr>
<td>Max</td>
<td>0.8498</td>
<td>1.2757</td>
<td>1.1479</td>
<td>1.0474</td>
<td>1.7097</td>
<td>1.3652</td>
</tr>
<tr>
<td>MAD</td>
<td>0.0787</td>
<td>0.2197</td>
<td>0.0905</td>
<td>0.0766</td>
<td>0.0661</td>
<td>0.0705</td>
</tr>
<tr>
<td>Skew</td>
<td>-0.6632</td>
<td>-0.4396</td>
<td>0.7890</td>
<td>-0.3387</td>
<td>0.4619</td>
<td>0.8551</td>
</tr>
</tbody>
</table>

Table G-10

Descriptive Statistics for Fixed Price Contracts

<table>
<thead>
<tr>
<th></th>
<th>Rating=1 CPI</th>
<th>Rating=1 SPI</th>
<th>Rating=2 CPI</th>
<th>Rating=2 SPI</th>
<th>Rating=3 CPI</th>
<th>Rating=3 SPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Mean</td>
<td>0.8284</td>
<td>0.9433</td>
<td>1.1081</td>
<td>0.9611</td>
<td>1.2139</td>
<td>1.1338</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.4187</td>
<td>0.6621</td>
<td>0.5812</td>
<td>0.0569</td>
<td>0.5393</td>
<td>0.1419</td>
</tr>
<tr>
<td>Min</td>
<td>0.2019</td>
<td>0.3028</td>
<td>0.3496</td>
<td>0.9043</td>
<td>0.7924</td>
<td>0.8998</td>
</tr>
<tr>
<td>Median</td>
<td>1.0165</td>
<td>0.8015</td>
<td>1.1114</td>
<td>0.9660</td>
<td>0.9765</td>
<td>1.1322</td>
</tr>
<tr>
<td>Max</td>
<td>1.0788</td>
<td>1.8676</td>
<td>2.0506</td>
<td>1.0774</td>
<td>2.1602</td>
<td>1.3073</td>
</tr>
<tr>
<td>MAD</td>
<td>0.0322</td>
<td>0.2849</td>
<td>0.3432</td>
<td>0.0474</td>
<td>0.1355</td>
<td>0.1104</td>
</tr>
<tr>
<td>Skew</td>
<td>-1.1374</td>
<td>0.6854</td>
<td>0.1955</td>
<td>0.8254</td>
<td>1.0770</td>
<td>-0.2942</td>
</tr>
</tbody>
</table>
5. Multiple Comparison Calculations for Cost Contracts

The Kruskal-Wallis H Test Statistic

\[H = \frac{12}{N(N+1)} \sum_{j=1}^{k} \left(R_j - \frac{n_j(N+1)}{2} \right)^2 / n_j \]

where

- \(k \) = number of samples
- \(R_i, R_j \) = sum of the ranks in the ith and jth sample, respectively
- \(n_i, n_j \) = number of observations in the ith and jth sample, respectively
- \(N \) = total number of observations

Mean Rank of Ratings 1, 2, & 3 for CPI

\[R_{cpi} = (3.3, 7.8, 11.6) \]

Mean Rank of Ratings 1, 2, & 3 for SPI

\[R_{spi} = (10.0, 5.6, 10.6) \]

Number of Observations in Ratings 1, 2, & 3

\[n = (3, 5, 9) \]

Calculation of \(N \):

\[N = n_{1,1} + n_{1,2} + n_{1,3} \]

\(N = 17 \)

Critical \(z \) Value - Corresponds to a .2 level of significance and provides at least a 80% level of confidence.

\(z = 1.834 \)

Multiple Comparisons - "which populations differ from which others"
- If the difference in mean rank (DMR) between 2 samples is greater than the right-hand side (RHS) of the multiple comparison inequality above, there is a statistically significant difference between the 2 samples.
- The direction of the significant difference is determined by noting for each pair which sample has the larger sample mean.

Comparison of Rating 1 and 2

\[\text{DMR}_{cpi} = |R_{cpi,1} - R_{cpi,2}| \quad \text{DMR}_{cpi} = 4.5 \]

\[\text{DMR}_{spi} = |R_{spi,1} - R_{spi,2}| \quad \text{DMR}_{spi} = 4.4 \]

\[\text{RHS} = z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,2}} \right)} \quad \text{RHS} = 6.763 \]

For CPI: \(\text{DMR}_{cpi} - \text{RHS} = -2.263 \) no significant difference

For SPI: \(\text{DMR}_{spi} - \text{RHS} = -3.363 \) no significant difference

Comparison of Rating 2 and 3

\[\text{DMR}_{cpi} = |R_{cpi,2} - R_{cpi,3}| \quad \text{DMR}_{cpi} = 3.8 \]

\[\text{DMR}_{spi} = |R_{spi,2} - R_{spi,3}| \quad \text{DMR}_{spi} = 5 \]

\[\text{RHS} = z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,2}} + \frac{1}{n_{1,3}} \right)} \quad \text{RHS} = 5.166 \]

For CPI: \(\text{DMR}_{cpi} - \text{RHS} = -1.366 \) no significant difference

For SPI: \(\text{DMR}_{spi} - \text{RHS} = -0.166 \) no significant difference

Comparison of Rating 1 and 3

\[\text{DMR}_{cpi} = |R_{cpi,1} - R_{cpi,3}| \quad \text{DMR}_{cpi} = 8.3 \]

\[\text{DMR}_{spi} = |R_{spi,1} - R_{spi,3}| \quad \text{DMR}_{spi} = 0.6 \]

\[\text{RHS} = z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,3}} \right)} \quad \text{RHS} = 6.174 \]

For CPI: \(\text{DMR}_{cpi} - \text{RHS} = 2.126 \) CPI at Rating 3 > CPI at Rating 1

For SPI: \(\text{DMR}_{spi} - \text{RHS} = -5.574 \) no significant difference

Figure G-9 Calculations for Multiple Comparison Test for Cost Contracts
6. Multiple Comparison Calculations for Fixed Price Contracts

<table>
<thead>
<tr>
<th>The Kruskal-Wallis H Test Statistic</th>
<th>Multiple Comparison Inequality</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H = \frac{12}{N(N+1)} \sum_{j=1}^{k} \left(\frac{R_j - n_j(N+1)}{2} \right)^2$</td>
<td>$</td>
</tr>
</tbody>
</table>

where:
- k = number of samples
- R_i, R_j = sum of the ranks in the ith and jth sample, respectively
- n_i, n_j = number of observations in the ith and jth sample, respectively
- N = total number of observations

Mean Rank of Ratings 1, 2, & 3 for CPI

| R_{CPI} | 9.5 11.3 11.4 |

Mean Rank of Ratings 1, 2, & 3 for SPI

| R_{SPI} | 6.8 9.2 15.2 |

Calculation of N

$N = n_{1,1} + n_{1,2} + n_{1,3}$

$N = 21$

Critical z Value

Corresponds to a .2 level of significance and provides at least a 80% level of confidence.

$z = 1.834$

Multiple Comparisons

"which populations differ from which others"

- If the difference in mean rank (DMR) between 2 samples is greater than the right-hand side (RHS) of the multiple comparison inequality above, there is a statistically significant difference between the 2 samples.
- The direction of the significant difference is determined by noting for each pair which sample has the larger sample mean.

Comparison of Rating 1 and 2

| DMR_{CPI} | $|R_{\text{CPI}} - R_{\text{CPI}}|$ | DMR_{SPI} | $|R_{\text{SPI}} - R_{\text{SPI}}|$ | $\text{RHS} = z \frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,2}} \right)$ |
|----------------------|-------------------------------|----------------------|-------------------------------|--|
| $\text{DMR}_{\text{CPI}} = 1.8$ | $\text{DMR}_{\text{SPI}} = 2.4$ | $\text{RHS} = 6.838$ |

For CPI $\text{DMR}_{\text{CPI}} - \text{RHS} = -5.038$

For SPI $\text{DMR}_{\text{SPI}} - \text{RHS} = -4.438$

- no significant difference

Comparison of Rating 2 and 3

| DMR_{CPI} | $|R_{\text{CPI}} - R_{\text{CPI}}|$ | DMR_{SPI} | $|R_{\text{SPI}} - R_{\text{SPI}}|$ | $\text{RHS} = z \frac{N(N+1)}{12} \left(\frac{1}{n_{1,2}} + \frac{1}{n_{1,3}} \right)$ |
|----------------------|-------------------------------|----------------------|-------------------------------|--|
| $\text{DMR}_{\text{CPI}} = 0.1$ | $\text{DMR}_{\text{SPI}} = 6$ | $\text{RHS} = 5.53$ |

For CPI $\text{DMR}_{\text{CPI}} - \text{RHS} = -5.43$

For SPI $\text{DMR}_{\text{SPI}} - \text{RHS} = 0.47$

- no significant difference

Comparison of Rating 1 and 3

| DMR_{CPI} | $|R_{\text{CPI}} - R_{\text{CPI}}|$ | DMR_{SPI} | $|R_{\text{SPI}} - R_{\text{SPI}}|$ | $\text{RHS} = z \frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,3}} \right)$ |
|----------------------|-------------------------------|----------------------|-------------------------------|--|
| $\text{DMR}_{\text{CPI}} = 1.9$ | $\text{DMR}_{\text{SPI}} = 8.4$ | $\text{RHS} = 6.969$ |

For CPI $\text{DMR}_{\text{CPI}} - \text{RHS} = -5.069$

For SPI $\text{DMR}_{\text{SPI}} - \text{RHS} = 1.431$

- no significant difference

Figure G-10 Calculations for Multiple Comparison Test for Fixed Price Contracts
Appendix H: Data Supporting the Analysis of Moderator “Percent Complete”

This appendix contains the complete set of plots, tables, and calculations supporting section 5.2.2. The plots and the Kruskal-Wallis tables for nonparametric analysis of variance are from the Statistix 4.0 computer program. The multiple comparison calculations were performed using Mathcad 4.0. Note that we did not abridge the data as we transcribed it from these computer programs into the report, and thus the number of digits reported in each calculation are not necessarily significant.

In our review of the literature, we found that proximity to completion has a significant effect on the dynamics of the cumulative performance indices. For example, cumulative SPI, by definition, is driven to 1.00 at program completion while cumulative CPI has been shown to be stable from the 20% completion point, where “stability” is defined as CPI range being less than 0.2. The dynamics of the cumulative performance indices have been well noted in the literature, and are a fundamental element in the art of estimating at-complete costs (Christensen and Heise 1993:7-15) In our research, however, we are taking a 12-month slice of these performance indices. We acknowledge these “snapshot” indices will not be as stable as the cumulative indices. Nevertheless, it was important that our research capture the degree to which the dynamics of the cumulative indices affected our non-cumulative indices.

For our dataset, we chose 80 percent complete as the point about which we stratified the sample. This was done to distinguish between the performance over the bulk of the contract and the performance near program completion.
1. Scatter Plots of CPI and SPI

![Scatter Plot of CPI vs RATING](image)

Figure H-1 Scatter Plot of CPI versus Rating for Less than 80% Complete

![Scatter Plot of SPI vs RATING](image)

Figure H-2 Scatter Plot of SPI versus Rating for Less than 80% Complete
Figure H-3 Scatter Plot of CPI versus Rating for Greater than 80% Complete

Figure H-4 Scatter Plot of SPI versus Rating for Greater than 80% Complete
2. Box and Whisker Plots of CPI and SPI

Figure H-5 Box and Whiskers Plot of CPI for Less than 80% Complete

Figure H-6 Box and Whiskers Plot of SPI for Less than 80% Complete
Figure H-7 Box and Whiskers Plot of CPI for Greater than 80% Complete

Figure H-8 Box and Whiskers Plot of SPI for Greater than 80% Complete
3. Kruskal-Wallis and Multiple Comparison Tests

Table H-1
Kruskal-Wallis for CPI for Less than 80% Complete

<table>
<thead>
<tr>
<th>RATING</th>
<th>RANK</th>
<th>SAMPLE SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.9</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>9.5</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>11.7</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>11.0</td>
<td>21</td>
</tr>
</tbody>
</table>

KRUSKAL-WALLIS STATISTIC 0.3647
P-VALUE, USING CHI-SQUARED APPROXIMATION 0.8333

Table H-2
Multiple Comparison Matrix for CPI for Less than 80% Complete

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>10.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>9.5</td>
<td>-5.733</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>11.7</td>
<td>-4.808</td>
<td>-4.532</td>
<td></td>
</tr>
</tbody>
</table>

K-W Statistic of .3647, P=0.8333

Table H-3
Kruskal-Wallis for SPI for Less than 80% Complete

<table>
<thead>
<tr>
<th>RATING</th>
<th>RANK</th>
<th>SAMPLE SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.7</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>8.3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>15.8</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>11.0</td>
<td>21</td>
</tr>
</tbody>
</table>

KRUSKAL-WALLIS STATISTIC 11.8499
P-VALUE, USING CHI-SQUARED APPROXIMATION 0.0027

Table H-4
Multiple Comparison Matrix for SPI for Less than 80% Complete

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>5.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8.3</td>
<td>-4.533</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>15.8</td>
<td>4.492</td>
<td>0.768</td>
<td></td>
</tr>
</tbody>
</table>

K-W Statistic of 11.8499, P=0.0027
Table H-5
Kruskal-Wallis for CPI for Greater than 80% Complete

<table>
<thead>
<tr>
<th>RATING</th>
<th>MEAN</th>
<th>SAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9.1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>17.4</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>23.1</td>
<td>7</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16.0</td>
<td>31</td>
</tr>
</tbody>
</table>

Kruskal-Wallis Statistic 10.3915

P-Value, Using Chi-Squared Approximation 0.0055

Table H-6
Multiple Comparison Matrix for CPI for Greater than 80% Complete

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>9.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>17.4</td>
<td>1.396</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>23.1</td>
<td>5.782</td>
<td>-2.019</td>
<td></td>
</tr>
</tbody>
</table>

K-W Statistic of 10.3915, P=0.0055

Table H-7
Kruskal-Wallis for SPI for Greater than 80% Complete

<table>
<thead>
<tr>
<th>RATING</th>
<th>MEAN</th>
<th>SAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>12.5</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>17.2</td>
<td>7</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16.0</td>
<td>31</td>
</tr>
</tbody>
</table>

Kruskal-Wallis Statistic 4.1921

P-Value, Using Chi-Squared Approximation 0.1229

Table H-8
Multiple Comparison Matrix for SPI for Greater than 80% Complete

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>20.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>12.5</td>
<td>0.696</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>17.2</td>
<td>-5.318</td>
<td>-3.019</td>
<td></td>
</tr>
</tbody>
</table>

K-W Statistic of 4.1921, P=0.1229
4. Descriptive Statistics

Table H-9
Descriptive Statistics for Less than 80% Complete

<table>
<thead>
<tr>
<th></th>
<th>Rating=1 CPI</th>
<th>Rating=1 SPI</th>
<th>Rating=2 CPI</th>
<th>Rating=2 SPI</th>
<th>Rating=3 CPI</th>
<th>Rating=3 SPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Mean</td>
<td>0.8869</td>
<td>0.7413</td>
<td>0.9553</td>
<td>0.9215</td>
<td>1.0229</td>
<td>1.1316</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.2956</td>
<td>0.2582</td>
<td>0.1144</td>
<td>0.0889</td>
<td>0.3054</td>
<td>0.1306</td>
</tr>
<tr>
<td>Min</td>
<td>0.2363</td>
<td>0.3028</td>
<td>0.8368</td>
<td>0.8383</td>
<td>0.5808</td>
<td>0.9335</td>
</tr>
<tr>
<td>Median</td>
<td>1.0144</td>
<td>0.7304</td>
<td>0.9365</td>
<td>0.9003</td>
<td>0.9839</td>
<td>1.1322</td>
</tr>
<tr>
<td>Max</td>
<td>1.0788</td>
<td>1.0560</td>
<td>1.1114</td>
<td>1.0474</td>
<td>1.7097</td>
<td>1.3652</td>
</tr>
<tr>
<td>MAD</td>
<td>0.0325</td>
<td>0.1797</td>
<td>0.0544</td>
<td>0.0330</td>
<td>0.1654</td>
<td>0.0874</td>
</tr>
<tr>
<td>Skew</td>
<td>-1.8149</td>
<td>-0.4767</td>
<td>0.5437</td>
<td>0.7634</td>
<td>0.9270</td>
<td>0.1378</td>
</tr>
</tbody>
</table>

Table H-10
Descriptive Statistics for Greater than 80% Complete

<table>
<thead>
<tr>
<th></th>
<th>Rating=1 CPI</th>
<th>Rating=1 SPI</th>
<th>Rating=2 CPI</th>
<th>Rating=2 SPI</th>
<th>Rating=3 CPI</th>
<th>Rating=3 SPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>14</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Mean</td>
<td>0.7236</td>
<td>1.1498</td>
<td>1.1008</td>
<td>0.9661</td>
<td>1.3405</td>
<td>1.0692</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.2310</td>
<td>0.2841</td>
<td>0.5069</td>
<td>0.0929</td>
<td>0.5035</td>
<td>0.1628</td>
</tr>
<tr>
<td>Min</td>
<td>0.2019</td>
<td>0.9535</td>
<td>0.3496</td>
<td>0.6978</td>
<td>0.9674</td>
<td>0.8998</td>
</tr>
<tr>
<td>Median</td>
<td>0.8242</td>
<td>1.0143</td>
<td>0.9808</td>
<td>0.9803</td>
<td>1.0675</td>
<td>1.0072</td>
</tr>
<tr>
<td>Max</td>
<td>0.9770</td>
<td>1.8676</td>
<td>2.0506</td>
<td>1.0774</td>
<td>2.1602</td>
<td>1.3073</td>
</tr>
<tr>
<td>MAD</td>
<td>0.0514</td>
<td>0.0279</td>
<td>0.2194</td>
<td>0.0387</td>
<td>0.0430</td>
<td>0.0535</td>
</tr>
<tr>
<td>Skew</td>
<td>-1.2353</td>
<td>1.8100</td>
<td>0.3716</td>
<td>-1.6724</td>
<td>0.9585</td>
<td>0.7304</td>
</tr>
</tbody>
</table>
5. Multiple Comparison Calculations for Less Than 80% Complete

![The Kruskal-Wallis H Test Statistic and Multiple Comparison Inequality](image)

where

- \(k \) = number of samples
- \(R_i, R_j \) = sum of the ranks in the \(i \)th and \(j \)th sample, respectively
- \(n_i, n_j \) = number of observations in the \(i \)th and \(j \)th sample, respectively
- \(N \) = total number of observations

Mean Rank of Ratings 1, 2, & 3

- **for CPI**
 \(R_{cpi} = (10.9, 9.5, 11.7) \)
- **for SPI**
 \(R_{spi} = (3.7, 8.3, 15.8) \)

Calculation of \(N \):

\[
N = n_{1,1} + n_{1,2} + n_{1,3} = N = 21
\]

Critical \(z \) Value - Corresponds to a .2 level of significance and provides at least a 80% level of confidence.

\[z = 1.834 \]

Multiple Comparisons - "which populations differ from which others"

- If the difference in mean rank (DMR) between 2 samples is greater than the right-hand side (RHS) of the multiple comparison inequality above, there is a statistically significant difference between the 2 samples.
- The direction of the significant difference is determined by noting for each pair which sample has the larger sample mean.

Comparison of Rating 1 and 2

<table>
<thead>
<tr>
<th>DMR</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPI</td>
<td>1.4</td>
</tr>
<tr>
<td>SPI</td>
<td>2.6</td>
</tr>
</tbody>
</table>

For CPI: \(\text{DMR}_\text{cpi} - \text{RHS} = -5.733 \)
For SPI: \(\text{DMR}_\text{spi} - \text{RHS} = -4.533 \)

no significant difference

Comparison of Rating 2 and 3

<table>
<thead>
<tr>
<th>DMR</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPI</td>
<td>2.2</td>
</tr>
<tr>
<td>SPI</td>
<td>7.5</td>
</tr>
</tbody>
</table>

For CPI: \(\text{DMR}_\text{cpi} - \text{RHS} = -4.532 \)
For SPI: \(\text{DMR}_\text{spi} - \text{RHS} = 0.768 \)

no significant difference

Comparison of Rating 1 and 3

<table>
<thead>
<tr>
<th>DMR</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPI</td>
<td>0.8</td>
</tr>
<tr>
<td>SPI</td>
<td>10.1</td>
</tr>
</tbody>
</table>

For CPI: \(\text{DMR}_\text{cpi} - \text{RHS} = -4.808 \)
For SPI: \(\text{DMR}_\text{spi} - \text{RHS} = 4.492 \)

no significant difference

Figure H-9 Calculations for Multiple Comparison Test for Less than 80% Complete
6. Multiple Comparison Calculations for Greater Than 80% Complete

The Kruskal-Wallis H Test Statistic

\[
H = \frac{12}{N(N+1)} \sum_{j=1}^{k} \frac{R_j - n_j(N+1)^2}{n_j}
\]

where
- \(k \) = number of samples
- \(R_j \), \(R_j' \) = sum of the ranks in the ith and jth sample, respectively
- \(n_j \), \(n_j' \) = number of observations in the ith and jth sample, respectively
- \(N \) = total number of observations

Multiple Comparison Inequality

\[
\frac{R_i - R_j}{\sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_i} + \frac{1}{n_j} \right)}} \leq z
\]

Mean Rank of Ratings 1, 2, & 3 for CPI

\[
R_{\text{CPI}} = (9.1 \ 17.4 \ 23.1)
\]

Mean Rank of Ratings 1, 2, & 3 for SPI

\[
R_{\text{SPI}} = (20.1 \ 12.5 \ 17.2)
\]

Number of Observations in Ratings 1, 2, & 3

\[
n = (10 \ 14 \ 7)
\]

Calculation of \(N \)

\[
N = n_{1,1} + n_{1,2} + n_{1,3} = 31
\]

Critical \(z \) Value - Corresponds to a .2 level of significance and provides at least a 80% level of confidence.

\[z = 1.834 \]

Multiple Comparisons - "which populations differ from which others"

- If the difference in mean rank (DMR) between 2 samples is greater than the right-hand side (RHS) of the multiple comparison inequality above, there is a statistically significant difference between the 2 samples.
- The direction of the significant difference is determined by noting for each pair which sample has the larger sample mean.

Comparison of Rating 1 and 2

\[
\begin{align*}
\text{DMR}_{\text{CPI}} & = |R_{\text{CPI,1,1}} - R_{\text{CPI,1,2}}| & \text{DMR}_{\text{CPI}} = 8.3 \\
\text{DMR}_{\text{SPI}} & = |R_{\text{SPI,1,1}} - R_{\text{SPI,1,2}}| & \text{DMR}_{\text{SPI}} = 7.6 \\
\text{RHS} & = z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,2}} \right)} & \text{RHS} = 6.904 \\
\end{align*}
\]

For CPI \(\text{DMR}_{\text{CPI}} - \text{RHS} = 1.396 \)

For SPI \(\text{DMR}_{\text{SPI}} - \text{RHS} = 0.696 \)

CPI at Rating 2 > CPI at Rating 1

SPI at Rating 1 > SPI at Rating 2

Comparison of Rating 2 and 3

\[
\begin{align*}
\text{DMR}_{\text{CPI}} & = |R_{\text{CPI,1,2}} - R_{\text{CPI,1,3}}| & \text{DMR}_{\text{CPI}} = 5.7 \\
\text{DMR}_{\text{SPI}} & = |R_{\text{SPI,1,2}} - R_{\text{SPI,1,3}}| & \text{DMR}_{\text{SPI}} = 4.7 \\
\text{RHS} & = z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,2}} + \frac{1}{n_{1,3}} \right)} & \text{RHS} = 7.719 \\
\end{align*}
\]

For CPI \(\text{DMR}_{\text{CPI}} - \text{RHS} = -2.019 \)

For SPI \(\text{DMR}_{\text{SPI}} - \text{RHS} = -3.019 \)

no significant difference

Comparison of Rating 1 and 3

\[
\begin{align*}
\text{DMR}_{\text{CPI}} & = |R_{\text{CPI,1,1}} - R_{\text{CPI,1,3}}| & \text{DMR}_{\text{CPI}} = 14 \\
\text{DMR}_{\text{SPI}} & = |R_{\text{SPI,1,1}} - R_{\text{SPI,1,3}}| & \text{DMR}_{\text{SPI}} = 2.9 \\
\text{RHS} & = z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,3}} \right)} & \text{RHS} = 8.218 \\
\end{align*}
\]

For CPI \(\text{DMR}_{\text{CPI}} - \text{RHS} = 5.782 \)

For SPI \(\text{DMR}_{\text{SPI}} - \text{RHS} = -5.318 \)

CPI at Rating 3 > CPI at Rating 1

no significant difference

Figure H-10 Calculations for Multiple Comparison Test for Greater than 80% Complete
Appendix I: Data Supporting the Analysis of Moderator "Application Type"

This appendix contains the complete set of plots, tables, and calculations supporting section 5.2.2. The plots and the Kruskal-Wallis tables for nonparametric analysis of variance are from the Statistix 4.0 computer program. The multiple comparison calculations were performed using Mathcad 4.0. Note that we did not abridge the data as we transcribed it from these computer programs into the report, and thus the number of digits reported in each calculation are not necessarily significant.

Application type is a gross predictor of project complexity. The categories selected, real-time applications versus information systems applications, capture the distinction between the highly complex avionics, flight control, simulation, and command and control applications and the usually less-demanding database and catalog applications.
1. Scatter Plots of CPI and SPI

Figure I-1 Scatter Plot of CPI versus Rating for Real-Time Applications

Figure I-2 Scatter Plot of SPI versus Rating for Real-Time Applications
Figure I-3 Scatter Plot of CPI versus Rating for Information Systems Applications

Figure I-4 Scatter Plot of SPI versus Rating for Information Systems Applications
2. Box and Whiskers Plots of CPI and SPI

![Box and Whiskers Plot for CPI Real-Time Applications](image1)

Figure I-5 Box and Whiskers Plot for CPI Real-Time Applications

![Box and Whiskers Plot for SPI Real-Time Applications](image2)

Figure I-6 Box and Whiskers Plot for SPI Real-Time Applications
Figure I-7 Box and Whiskers Plot for CPI Information Systems Applications

Figure I-8 Box and Whiskers Plot for SPI Information Systems Applications
3. Kruskal-Wallis Tests and Multiple Comparison Tests

Table I-1
Kruskal-Wallis for CPI for Real-Time Applications

<table>
<thead>
<tr>
<th>RATING</th>
<th>MEAN</th>
<th>SAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.7</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>8.9</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>17.6</td>
<td>12</td>
</tr>
<tr>
<td>TOTAL</td>
<td>13.0</td>
<td>25</td>
</tr>
</tbody>
</table>

KRUSKAL-WALLIS STATISTIC 8.9519
P-VALUE, USING CHI-SQUARED APPROXIMATION 0.0114

Table I-2
Multiple Comparison Matrix for CPI for Real-Time Applications

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>8.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>8.9</td>
<td>-7.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>17.9</td>
<td>2.451</td>
<td>2.58</td>
<td></td>
</tr>
</tbody>
</table>

K-W Statistic of 8.9519, P=0.0114

Table I-3
Kruskal-Wallis for SPI for Real-Time Applications

<table>
<thead>
<tr>
<th>RATING</th>
<th>MEAN</th>
<th>SAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.8</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>10.4</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>16.1</td>
<td>12</td>
</tr>
<tr>
<td>TOTAL</td>
<td>13.0</td>
<td>25</td>
</tr>
</tbody>
</table>

KRUSKAL-WALLIS STATISTIC 4.0714
P-VALUE, USING CHI-SQUARED APPROXIMATION 0.1306

Table I-4
Multiple Comparison Matrix for SPI for Real-Time Applications

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>9.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>10.4</td>
<td>-6.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>16.1</td>
<td>-0.449</td>
<td>-0.72</td>
<td></td>
</tr>
</tbody>
</table>

K-W Statistic of 4.0714, P=0.1306
Table I-5
Kruskal-Wallis for CPI for Information Systems Applications

<table>
<thead>
<tr>
<th>RATING</th>
<th>MEAN</th>
<th>SAMPLE</th>
<th>RANK</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.5</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18.2</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>11.2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>13.5</td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kruskal-Wallis Statistic: 7.3088
P-value, using Chi-Squared Approximation: 0.0259

Table I-6
Multiple Comparison Matrix for CPI for Information Systems Applications

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>9.5</td>
<td>1</td>
<td>11</td>
<td>18.2</td>
<td>2</td>
<td>11</td>
<td>2.571</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>11.2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>5</td>
<td>-5.983</td>
</tr>
</tbody>
</table>

K-W Statistic of 7.3088, P=0.0259

Table I-7
Kruskal-Wallis for SPI for Information Systems Applications

<table>
<thead>
<tr>
<th>RATING</th>
<th>MEAN</th>
<th>SAMPLE</th>
<th>RANK</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.3</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10.2</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>21.2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>13.5</td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kruskal-Wallis Statistic: 7.1545
P-value, using Chi-Squared Approximation: 0.0280

Table I-8
Multiple Comparison Matrix for SPI for Information Systems Applications

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>13.3</td>
<td>1</td>
<td>11</td>
<td>10.2</td>
<td>2</td>
<td>11</td>
<td>-3.029</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>21.2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>5</td>
<td>0.217</td>
</tr>
</tbody>
</table>

K-W Statistic of 7.1545, P=0.0280

I-7
4. Descriptive Statistics

Table I-9
Descriptive Statistics for Real-Time Applications

<table>
<thead>
<tr>
<th></th>
<th>Rating=1 CPI</th>
<th>Rating=1 SPI</th>
<th>Rating=2 CPI</th>
<th>Rating=2 SPI</th>
<th>Rating=3 CPI</th>
<th>Rating=3 SPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Mean</td>
<td>0.7202</td>
<td>0.9333</td>
<td>0.7705</td>
<td>0.9280</td>
<td>1.2592</td>
<td>1.1024</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.4024</td>
<td>0.5620</td>
<td>0.2966</td>
<td>0.1304</td>
<td>0.4556</td>
<td>0.1649</td>
</tr>
<tr>
<td>Min</td>
<td>0.2019</td>
<td>0.3028</td>
<td>0.3496</td>
<td>0.6978</td>
<td>0.5808</td>
<td>0.8998</td>
</tr>
<tr>
<td>Median</td>
<td>0.8928</td>
<td>0.8015</td>
<td>0.8368</td>
<td>0.9660</td>
<td>1.0890</td>
<td>1.0252</td>
</tr>
<tr>
<td>Max</td>
<td>1.0788</td>
<td>1.3676</td>
<td>1.1479</td>
<td>1.0774</td>
<td>2.1602</td>
<td>1.3652</td>
</tr>
<tr>
<td>MAD</td>
<td>0.1560</td>
<td>0.3625</td>
<td>0.1089</td>
<td>0.0814</td>
<td>0.0802</td>
<td>0.1085</td>
</tr>
<tr>
<td>Skew</td>
<td>-0.5187</td>
<td>0.6673</td>
<td>-0.4693</td>
<td>-0.6303</td>
<td>0.8288</td>
<td>0.3558</td>
</tr>
</tbody>
</table>

Table I-10
Descriptive Statistics for Information Systems Applications

<table>
<thead>
<tr>
<th></th>
<th>Rating=1 CPI</th>
<th>Rating=1 SPI</th>
<th>Rating=2 CPI</th>
<th>Rating=2 SPI</th>
<th>Rating=3 CPI</th>
<th>Rating=3 SPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Mean</td>
<td>0.8250</td>
<td>1.0088</td>
<td>1.2581</td>
<td>0.9742</td>
<td>0.9003</td>
<td>1.1143</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.1688</td>
<td>0.1536</td>
<td>0.4360</td>
<td>0.0556</td>
<td>0.0972</td>
<td>0.0852</td>
</tr>
<tr>
<td>Min</td>
<td>0.5143</td>
<td>0.7044</td>
<td>0.7792</td>
<td>0.9043</td>
<td>0.7924</td>
<td>1.0000</td>
</tr>
<tr>
<td>Median</td>
<td>0.8437</td>
<td>1.0112</td>
<td>1.1114</td>
<td>0.9878</td>
<td>0.9599</td>
<td>1.0919</td>
</tr>
<tr>
<td>Max</td>
<td>1.0288</td>
<td>1.3428</td>
<td>2.0506</td>
<td>1.0718</td>
<td>0.9856</td>
<td>1.2207</td>
</tr>
<tr>
<td>MAD</td>
<td>0.0810</td>
<td>0.0336</td>
<td>0.2448</td>
<td>0.0321</td>
<td>0.0256</td>
<td>0.0805</td>
</tr>
<tr>
<td>Skew</td>
<td>-0.7858</td>
<td>0.2900</td>
<td>0.6107</td>
<td>0.0822</td>
<td>-0.3803</td>
<td>-0.0559</td>
</tr>
</tbody>
</table>
5. **Multiple Comparison Calculations for Real-Time Applications**

The Kruskal-Wallis H Test Statistic

\[H = \frac{12}{N(N+1)} \sum_{j=1}^{k} \left(\frac{R_j - \bar{R}}{n_j} \right)^2 \]

Multiple Comparison Inequality

\[|R_i - R_j| \leq z \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_i} + \frac{1}{n_j} \right)} \]

where
- \(k \) = number of samples
- \(R_i, R_j \) = sum of the ranks in the \(i \)th and \(j \)th sample, respectively
- \(n_i, n_j \) = number of observations in the \(i \)th and \(j \)th sample, respectively
- \(N \) = total number of observations

Mean Rank of Ratings 1, 2, & 3 for CPI

\(R_{	ext{cpi}} = (8.7, 8.9, 17.9) \)

Mean Rank of Ratings 1, 2, & 3 for SPI

\(R_{	ext{spi}} = (9.8, 10.4, 16.1) \)

Number of Observations in Ratings 1, 2, & 3

\(n = (6, 7, 12) \)

Calculation of \(N \)

\(N = n_{1,1} + n_{1,2} + n_{1,3} \)

\(N = 25 \)

Critical z Value - Corresponds to a .2 level of significance and provides at least a 80% level of confidence.

\(z = 1.834 \)

Multiple Comparisons - "which populations differ from which others"

- If the difference in mean rank (DMR) between 2 samples is greater than the right-hand side (RHS) of the multiple comparison inequality above, there is a statistically significant difference between the 2 samples.
- The direction of the significant difference is determined by noting for each pair which sample has the larger sample mean.

Comparison of Rating 1 and 2

\[\text{DMR}_{	ext{cpi}} = |R_{	ext{cpi,1}} - R_{	ext{cpi,2}}| \]

\[\text{DMR}_{	ext{spi}} = |R_{	ext{spi,1}} - R_{	ext{spi,2}}| \]

\[\text{RHS}_{	ext{cpi}} = 0.2 \]

\[\text{RHS}_{	ext{spi}} = 0.6 \]

For CPI \(\text{DMR}_{	ext{cpi}} - \text{RHS} = -7.31 \)

For SPI \(\text{DMR}_{	ext{spi}} - \text{RHS} = -6.91 \)

Comparison of Rating 2 and 3

\[\text{DMR}_{	ext{cpi}} = |R_{	ext{cpi,2}} - R_{	ext{cpi,3}}| \]

\[\text{DMR}_{	ext{spi}} = |R_{	ext{spi,2}} - R_{	ext{spi,3}}| \]

\[\text{RHS}_{	ext{cpi}} = 9 \]

\[\text{RHS}_{	ext{spi}} = 5.7 \]

For CPI \(\text{DMR}_{	ext{cpi}} - \text{RHS} = 2.58 \)

For SPI \(\text{DMR}_{	ext{spi}} - \text{RHS} = -0.72 \)

\(\text{CPI at Rating 3} > \text{CPI at Rating 2} \)

Comparison of Rating 1 and 3

\[\text{DMR}_{	ext{cpi}} = |R_{	ext{cpi,1}} - R_{	ext{cpi,3}}| \]

\[\text{DMR}_{	ext{spi}} = |R_{	ext{spi,1}} - R_{	ext{spi,3}}| \]

\[\text{RHS}_{	ext{cpi}} = 9.2 \]

\[\text{RHS}_{	ext{spi}} = 6.3 \]

For CPI \(\text{DMR}_{	ext{cpi}} - \text{RHS} = 2.451 \)

For SPI \(\text{DMR}_{	ext{spi}} - \text{RHS} = -0.449 \)

\(\text{CPI at Rating 3} > \text{CPI at Rating 1} \)

Figure I-9 Calculations for Multiple Comparison Test for Real-Time Applications
6. Multiple Comparison Calculations for Information Systems Applications

The Kruskal-Wallis H Test Statistic

\[H = \frac{12}{N(N+1)} \sum_{j=1}^{k} \left(\frac{R_j - \frac{n_j(N+1)}{2}}{n_j} \right)^2 \]

where
\[k = \text{number of samples} \]
\[R_j, R_j = \text{sum of the ranks in the ith and jth sample, respectively} \]
\[n_j = \text{number of observations in the ith sample} \]
\[N = \text{total number of observations} \]

Multiple Comparison Inequality

\[|R_i - R_j| < z \sqrt{ \frac{N(N+1)}{12} \left(\frac{1}{n_i} + \frac{1}{n_j} \right) } \]

Mean Rank of Ratings 1, 2, & 3 for CPI
\[R_{\text{cpi}} = (9.5, 18.2, 11.2) \]
Mean Rank of Ratings 1, 2, & 3 for SPI
\[R_{\text{spi}} = (13.3, 10.2, 21.2) \]
Number of Observations in Ratings 1, 2, & 3
\[n = (10, 11, 5) \]

Calculation of \(N = n_{1,1} + n_{1,2} + n_{1,3} \)
\[N = 26 \]

Critical \(z \) Value - Corresponds to a .2 level of significance and provides at least a 80% level of confidence.
\[z = 1.834 \]

Multiple Comparisons - "which populations differ from which others"
- If the difference in mean rank (DMR) between 2 samples is greater than the right-hand side (RHS) of the multiple comparison inequality above, there is a statistically significant difference between the 2 samples.
- The direction of the significant difference is determined by noting for each pair which sample has the larger sample mean.

Comparison of Rating 1 and 2

\[\text{DMR}_{\text{cpi}} = |R_{\text{cpi,1,1}} - R_{\text{cpi,1,2}}| \]
\[\text{DMR}_{\text{spi}} = |R_{\text{spi,1,1}} - R_{\text{spi,1,2}}| \]
\[\text{DMR}_{\text{cpi}} = 8.7 \quad \text{DMR}_{\text{spi}} = 3.1 \]
\[\text{RHS} = z \sqrt{ \frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,2}} \right) } \]
\[\text{RHS} = 6.129 \]

For CPI \(\text{DMR}_{\text{cpi}} \) - RHS = 2.571
For SPI \(\text{DMR}_{\text{spi}} \) - RHS = 3.029

CPI at Rating 2 > CPI at Rating 1
no significant difference

Comparison of Rating 2 and 3

\[\text{DMR}_{\text{cpi}} = |R_{\text{cpi,1,2}} - R_{\text{cpi,1,3}}| \]
\[\text{DMR}_{\text{spi}} = |R_{\text{spi,1,2}} - R_{\text{spi,1,3}}| \]
\[\text{DMR}_{\text{cpi}} = 7 \quad \text{DMR}_{\text{spi}} = 11 \]
\[\text{RHS} = z \sqrt{ \frac{N(N+1)}{12} \left(\frac{1}{n_{1,2}} + \frac{1}{n_{1,3}} \right) } \]
\[\text{RHS} = 7.566 \]

For CPI \(\text{DMR}_{\text{cpi}} \) - RHS = 0.566
For SPI \(\text{DMR}_{\text{spi}} \) - RHS = 3.404

no significant difference

Comparison of Rating 1 and 3

\[\text{DMR}_{\text{cpi}} = |R_{\text{cpi,1,1}} - R_{\text{cpi,1,3}}| \]
\[\text{DMR}_{\text{spi}} = |R_{\text{spi,1,1}} - R_{\text{spi,1,3}}| \]
\[\text{DMR}_{\text{cpi}} = 1.7 \quad \text{DMR}_{\text{spi}} = 7.9 \]
\[\text{RHS} = z \sqrt{ \frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,3}} \right) } \]
\[\text{RHS} = 7.683 \]

For CPI \(\text{DMR}_{\text{cpi}} \) - RHS = 5.983
For SPI \(\text{DMR}_{\text{spi}} \) - RHS = 0.217

no significant difference

Figure I-10 Calculations for Multiple Comparison Test for Information Systems Applications
Appendix J: Support for Analysis of Moderator “Language”

This appendix contains the complete set of plots, tables, and calculations
supporting section 5.2.2. The plots and the Kruskal-Wallis tables for nonparametric
analysis of variance are from the Statistix 4.0 computer program. The multiple
comparison calculations were performed using Mathcad 4.0. Note that we did not
abridge the data as we transcribed it from these computer programs into the report, and
thus the number of digits reported in each calculation are not necessarily significant.

Ada, as the official “standard” higher order language (HOL) of the DoD, is
mandated for all new software development programs. This requirement to use Ada may
impose difficulties on software development contractors if they have little experience
with Ada, or if Ada is not their preferred language. On the other hand Ada is a powerful
language which imposes rigorous discipline in the development process, and thus may
provide benefits in the testing and integration phases of development. Thus it is
important to determine if such a significant program characteristic has any effect on the
correlation between rating and performance.
1. Scatter Plots of CPI and SPI

![Scatter Plot of CPI vs RATING](image)

Ada Applications: 24 Cases

Figure J-1 Scatter Plot of CPI versus Rating for Ada Applications

![Scatter Plot of SPI vs RATING](image)

Ada Applications: 24 Cases

Figure J-2 Scatter Plot of SPI versus Rating for Ada Applications
Figure J-3 Scatter Plot of CPI versus Rating for Non-Ada Applications

Figure J-4 Scatter Plot of SPI versus Rating for Non-Ada Applications
2. Box and Whisker Plots of CPI and SPI

Figure J-5 Box and Whiskers Plot for CPI for Ada Applications

Figure J-6 Box and Whiskers Plot for SPI for Ada Applications
Figure J-7 Box and Whiskers Plot for CPI for Non-Ada Applications

Figure J-8 Box and Whiskers Plot for SPI for Non-Ada Applications
3. Kruskal-Wallis and Multiple Comparison Tests

Table J-1
Kruskal-Wallis for CPI for Ada Applications

<table>
<thead>
<tr>
<th>Rating</th>
<th>Mean</th>
<th>Sample Rank</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8.8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>16.3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>12.5</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

KRUSKAL-WALLIS STATISTIC 6.7500
P-VALUE, USING CHI-SQUARED APPROXIMATION 0.0342

Table J-2
Multiple Comparison Matrix for CPI for Ada Applications

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>8.8</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8.8</td>
<td>-7.941</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>16.3</td>
<td>1.581</td>
<td>0.013</td>
<td></td>
</tr>
</tbody>
</table>

K-W Statistic of 6.7500, P=0.0342

Table J-3
Kruskal-Wallis for SPI for Ada Applications

<table>
<thead>
<tr>
<th>Rating</th>
<th>Mean</th>
<th>Sample Rank</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.0</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>16.0</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>12.5</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

KRUSKAL-WALLIS STATISTIC 7.8000
P-VALUE, USING CHI-SQUARED APPROXIMATION 0.0202

Table J-4
Multiple Comparison Matrix for SPI for Ada Applications

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>11.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5.0</td>
<td>-1.941</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>16.0</td>
<td>-0.919</td>
<td>3.513</td>
<td></td>
</tr>
</tbody>
</table>

K-W Statistic of 7.8000, P=0.0202
Table J-5
Kruskal-Wallis for CPI for Non-Ada Applications

<table>
<thead>
<tr>
<th>Rating</th>
<th>Sample</th>
<th>Rank</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10.6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15.3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>10.0</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

Kruskal-Wallis Statistic 5.3558
P-Value, Using Chi-Squared Approximation 0.0687

Table J-6
Multiple Comparison Matrix for CPI for Non-Ada Applications

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>Rating</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>6.3</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>10.6</td>
<td>3</td>
<td>1.702</td>
<td>--</td>
<td>-2.094</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>15.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

K-W Statistic of 5.3558, P=0.0687

Table J-7
Kruskal-Wallis for SPI for Non-Ada Applications

<table>
<thead>
<tr>
<th>Rating</th>
<th>Sample</th>
<th>Rank</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9.7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>13.0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>10.0</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

Kruskal-Wallis Statistic 1.0705
P-Value, Using Chi-Squared Approximation 0.5855

Table J-8
Multiple Comparison Matrix for SPI for Non-Ada Applications

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>Rating</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>9.0</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>9.7</td>
<td>3</td>
<td>-4.629</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>13.0</td>
<td></td>
<td>-3.298</td>
<td>-3.494</td>
<td></td>
</tr>
</tbody>
</table>

K-W Statistic of 1.0705, P=0.5855
4. Descriptive Statistics

<table>
<thead>
<tr>
<th>Table J-9</th>
<th>Descriptive Statistics for Ada Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>8</td>
</tr>
<tr>
<td>Mean</td>
<td>0.7270</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.2675</td>
</tr>
<tr>
<td>Min</td>
<td>0.2363</td>
</tr>
<tr>
<td>Median</td>
<td>0.8242</td>
</tr>
<tr>
<td>Max</td>
<td>1.0288</td>
</tr>
<tr>
<td>MAD</td>
<td>0.1787</td>
</tr>
<tr>
<td>Skew</td>
<td>-0.6825</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table J-10</th>
<th>Descriptive Statistics for Non-Ada Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>6</td>
</tr>
<tr>
<td>Mean</td>
<td>0.8224</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.3254</td>
</tr>
<tr>
<td>Min</td>
<td>0.2019</td>
</tr>
<tr>
<td>Median</td>
<td>0.9321</td>
</tr>
<tr>
<td>Max</td>
<td>1.0788</td>
</tr>
<tr>
<td>MAD</td>
<td>0.1166</td>
</tr>
<tr>
<td>Skew</td>
<td>-1.3198</td>
</tr>
</tbody>
</table>
5. Multiple Comparison Calculations for Ada Applications

<table>
<thead>
<tr>
<th>The Kruskal-Wallis H Test Statistic</th>
<th>Multiple Comparison Inequality</th>
</tr>
</thead>
<tbody>
<tr>
<td>[H = \frac{12}{N(N+1)} \sum_{j=1}^{k} \left[\frac{R_j - \frac{n_j(N+1)}{2}}{n_j} \right]^2]</td>
<td>[</td>
</tr>
</tbody>
</table>

where
- \(k \) = number of samples
- \(R_i, R_j \) = sum of the ranks in the ith and jth sample, respectively
- \(n_i, n_j \) = number of observations in the ith and jth sample, respectively
- \(N \) = total number of observations

Mean Rank of Ratings 1, 2, & 3 for CPI

\[R_{\text{cpi}} = (8.8, 8.8, 16.3) \]

Mean Rank of Ratings 1, 2, & 3 for SPI

\[R_{\text{spi}} = (11.0, 5.0, 16.0) \]

Number of Observations in Ratings 1, 2, & 3

\[n = (8, 4, 12) \]

Calculation of \(N \)

\[N = n_{1,1} + n_{1,2} + n_{1,3} \]

\[N = 24 \]

Critical z Value - Corresponds to a .2 level of significance and provides at least a 80% level of confidence.

\[z = 1.834 \]

Multiple Comparisons - "which populations differ from which others"

- If the difference in mean rank (DMR) between 2 samples is greater than the right-hand side (RHS) of the multiple comparison inequality above, there is a statistically significant difference between the 2 samples.
- The direction of the significant difference is determined by noting for each pair which sample has the larger sample mean.

Comparison of Rating 1 and 2

<table>
<thead>
<tr>
<th>DMR(_{\text{cpi}}) =</th>
<th>DMR(_{\text{cpi}}) = 0</th>
<th>DMR(_{\text{spi}}) = 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R_{\text{cpi,1,1}} - R_{\text{cpi,1,2}}]</td>
<td>[R_{\text{spi,1,1}} - R_{\text{spi,1,2}}]</td>
<td>[\text{RHS} \leq \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,2}} \right)}]</td>
</tr>
</tbody>
</table>

For CPI DMR\(_{\text{cpi}}\) = RHS = -7.941

For SPI DMR\(_{\text{spi}}\) = RHS = -1.941

no significant difference

Comparison of Rating 2 and 3

<table>
<thead>
<tr>
<th>DMR(_{\text{cpi}}) =</th>
<th>DMR(_{\text{cpi}}) = 7.5</th>
<th>DMR(_{\text{spi}}) = 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R_{\text{cpi,1,2}} - R_{\text{cpi,1,3}}]</td>
<td>[R_{\text{spi,1,2}} - R_{\text{spi,1,3}}]</td>
<td>[\text{RHS} \leq \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,2}} + \frac{1}{n_{1,3}} \right)}]</td>
</tr>
</tbody>
</table>

For CPI DMR\(_{\text{cpi}}\) = RHS = 0.013

For SPI DMR\(_{\text{spi}}\) = RHS = 3.513

CPI at Rating 3 > CPI at Rating 2

SPI at Rating 3 > SPI at Rating 2

Comparison of Rating 1 and 3

<table>
<thead>
<tr>
<th>DMR(_{\text{cpi}}) =</th>
<th>DMR(_{\text{cpi}}) = 7.5</th>
<th>DMR(_{\text{spi}}) = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R_{\text{cpi,1,1}} - R_{\text{cpi,1,3}}]</td>
<td>[R_{\text{spi,1,1}} - R_{\text{spi,1,3}}]</td>
<td>[\text{RHS} \leq \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,3}} \right)}]</td>
</tr>
</tbody>
</table>

For CPI DMR\(_{\text{cpi}}\) = RHS = 1.581

For SPI DMR\(_{\text{spi}}\) = RHS = 0.919

CPI at Rating 3 > CPI at Rating 1

no significant difference

Figure J-9 Calculations for Multiple Comparison Test for Ada Applications

J-9
6. Multiple Comparison Calculations for Non-Ada Applications

The Kruskal-Wallis H Test Statistic

\[H = \frac{12}{N(N+1)} \sum_{j=1}^{k} \left(R_j - \frac{n_j(N+1)}{2} \right)^2 \]

Multiple Comparison Inequality

\[\left| \frac{R_i - R_j}{\sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_i} + \frac{1}{n_j} \right)}} \right| \leq \text{critical z value} \]

where

- \(k \) = number of samples
- \(R_j, R_j \) = sum of the ranks in the \(i \)th and \(j \)th sample, respectively
- \(n_i, n_j \) = number of observations in the \(i \)th and \(j \)th sample, respectively
- \(N \) = total number of observations

Mean Rank of Ratings 1, 2, & 3

for CPI
\[R_{\text{cpi}} = (6.3, 10.6, 15.3) \]

for SPI
\[R_{\text{spi}} = (9.0, 9.7, 13.0) \]

Calculation of \(N \)
\[N = n_{1,1} + n_{1,2} + n_{1,3} \]
\[N = 19 \]

Critical z Value - Corresponds to a .2 level of significance and provides at least a 80% level of confidence.
\[z = 1.834 \]

Multiple Comparisons - "which populations differ from which others"

- If the difference in mean rank (DMR) between 2 samples is greater than the right-hand side (RHS) of the multiple comparison inequality above, there is a statistically significant difference between the 2 samples.
- The direction of the significant difference is determined by noting for each pair which sample has the larger sample mean.

Comparison of Rating 1 and 2

DMR_{cpi} = \left| R_{\text{cpi}_{1,1}} - R_{\text{cpi}_{1,2}} \right| = 4.3
DMR_{spi} = \left| R_{\text{spi}_{1,1}} - R_{\text{spi}_{1,2}} \right| = 0.7
RHS = \frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,2}} \right) = 5.329

For CPI DMR_{cpi} - RHS = -1.029
For SPI DMR_{spi} - RHS = -4.629

no significant difference

Comparison of Rating 2 and 3

DMR_{cpi} = \left| R_{\text{cpi}_{1,2}} - R_{\text{cpi}_{1,3}} \right| = 4.7
DMR_{spi} = \left| R_{\text{spi}_{1,2}} - R_{\text{spi}_{1,3}} \right| = 3.3
RHS = \frac{N(N+1)}{12} \left(\frac{1}{n_{1,2}} + \frac{1}{n_{1,3}} \right) = 6.794

For CPI DMR_{cpi} - RHS = -2.094
For SPI DMR_{spi} - RHS = -3.494

CPI at Rating 3 > CPI at Rating 2
SPI at Rating 3 > SPI at Rating 2

Comparison of Rating 1 and 3

DMR_{cpi} = \left| R_{\text{cpi}_{1,1}} - R_{\text{cpi}_{1,3}} \right| = 9
DMR_{spi} = \left| R_{\text{spi}_{1,1}} - R_{\text{spi}_{1,3}} \right| = 4
RHS = \frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,3}} \right) = 7.298

For CPI DMR_{cpi} - RHS = 1.702
For SPI DMR_{spi} - RHS = -3.298

CPI at Rating 3 > CPI at Rating 1

no significant difference

Figure J-10 Calculations for Multiple Comparison Test for Non-Ada Applications
Appendix K: Data Supporting the Analysis of the Moderator “Project Size”

This appendix contains the complete set of plots, tables, and calculations supporting section 5.2.2. The plots and the Kruskal-Wallis tables for nonparametric analysis of variance are from the Statistix 4.0 computer program. The multiple comparison calculations were performed using Mathcad 4.0. Note that we did not abridge the data as we transcribed it from these computer programs into the report, and thus the number of digits reported in each calculation are not necessarily significant.

Project size is the key driver in nearly all software cost estimation models, including REVIC (Revised Enhanced Version of Intermediate COCOMO), SEER-Software Estimation Model, and PRICE-S. Thus, project size is a necessary moderator to evaluate, in terms of its effect upon the rating/performance correlation. Given the lack of uniformity in the definition of software project size (we gathered data in the form of KSLOC, DSI, Equivalent DSI, and DSI converted from bytes), we can at best only give approximate size distinctions. Thus, we chose to stratify our sample on the relatively common size categories: “Greater than 100K LOC” and “Less than 100K LOC.” This level of distinction is fairly common in the literature when distinguishing between relatively large programs and relatively small programs. As stated above, with the questionable consistency of our size data, any finer distinction would be misleading. Projects which have no size associated with them, such as management or testing WBSs, were excluded from the analysis.
1. Scatter Plots of CPI and SPI

![Scatter Plot of CPI vs RATING](image)

Figure K-1 Scatter Plot of CPI versus Rating for Applications Less than 100K (LOC)

![Scatter Plot of SPI vs RATING](image)

Figure K-2 Scatter Plot of SPI versus Rating for Applications Less than 100K (LOC)
Figure K-3 Scatter Plot of CPI versus Rating for Applications Greater than 100K LOC

Figure K-4 Scatter Plot of SPI versus Rating for Applications Greater than 100K LOC
2. Box and Whisker Plots of CPI and SPI

Figure K-5 Box and Whiskers Plot for CPI for Applications Less than 100K (LOC)

Figure K-6 Box and Whiskers Plot for SPI for Applications Less than 100K (LOC)
Figure K-7 Box and Whiskers Plot for CPI for Applications Greater than 100K LOC

Figure K-8 Box and Whiskers Plot for SPI for Applications Greater than 100K LOC
3. *Kruskal-Wallis and Multiple Comparison Tests*

Table K-1

<table>
<thead>
<tr>
<th>Rating</th>
<th>Sample</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.5</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>13.5</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>11.2</td>
<td>9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>11.0</td>
<td>21</td>
</tr>
</tbody>
</table>

Kruskal-Wallis Statistic 4.4531

P-Value, Using Chi-Squared Approximation 0.1079

Table K-2

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>5.5</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>13.5</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>11.2</td>
<td></td>
</tr>
</tbody>
</table>

K-W Statistic of 4.4531, P=0.1079

Table K-3

<table>
<thead>
<tr>
<th>Rating</th>
<th>Sample</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.5</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>6.7</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>15.4</td>
<td>9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>11.0</td>
<td>21</td>
</tr>
</tbody>
</table>

Kruskal-Wallis Statistic 8.6046

P-Value, Using Chi-Squared Approximation 0.0135

Table K-4

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>9.5</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>6.7</td>
<td>-4.169</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>15.4</td>
<td>3.17</td>
</tr>
</tbody>
</table>

K-W Statistic of 8.6046, P=0.00135
Table K-5

Kruskal-Wallis for CPI for Applications Greater than 100K LOC

<table>
<thead>
<tr>
<th>RATING</th>
<th>MEAN</th>
<th>SAMPLE</th>
<th>RANK</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.5</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8.0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12.2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>9.0</td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kruskal-Wallis Statistic 2.8706

P-value, Using Chi-Squared Approximation 0.2380

Table K-6

Multiple Comparison Matrix for CPI for Applications Greater than 100K LOC

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>7.5</td>
<td>-5.171</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8.0</td>
<td>-0.058</td>
<td>-2.013</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>12.2</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

K-W Statistic of 2.8706, P=0.2380

Table K-7

Kruskal-Wallis for SPI for Applications Greater than 100K LOC

<table>
<thead>
<tr>
<th>RATING</th>
<th>MEAN</th>
<th>SAMPLE</th>
<th>RANK</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.6</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7.8</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10.6</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>9.0</td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kruskal-Wallis Statistic 0.7912

P-value, Using Chi-Squared Approximation 0.6733

Table K-8

Multiple Comparison Matrix for SPI for Applications Greater than 100K LOC

<table>
<thead>
<tr>
<th>Rating</th>
<th>n</th>
<th>Mean Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>8.6</td>
<td>-4.871</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>7.8</td>
<td>-3.28</td>
<td>-3.413</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>10.6</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

K-W Statistic of 0.7192, P=0.6733

K-7
4. Descriptive Statistics

Table K-9
Descriptive Statistics for Applications Less than 100K LOC

<table>
<thead>
<tr>
<th>Rating=1 CPI</th>
<th>Rating=1 SPI</th>
<th>Rating=2 CPI</th>
<th>Rating=2 SPI</th>
<th>Rating=3 CPI</th>
<th>Rating=3 SPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Mean</td>
<td>0.8113</td>
<td>0.8193</td>
<td>1.3524</td>
<td>0.8959</td>
<td>1.1245</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.1884</td>
<td>0.3462</td>
<td>0.4702</td>
<td>0.0978</td>
<td>0.3538</td>
</tr>
<tr>
<td>Min</td>
<td>0.5623</td>
<td>0.3028</td>
<td>0.8000</td>
<td>0.6978</td>
<td>0.7924</td>
</tr>
<tr>
<td>Median</td>
<td>0.8322</td>
<td>0.9681</td>
<td>1.2830</td>
<td>0.9060</td>
<td>1.0498</td>
</tr>
<tr>
<td>Max</td>
<td>1.0187</td>
<td>1.0384</td>
<td>2.0506</td>
<td>1.0199</td>
<td>1.9819</td>
</tr>
<tr>
<td>MAD</td>
<td>0.1018</td>
<td>0.0424</td>
<td>0.4141</td>
<td>0.0388</td>
<td>0.0774</td>
</tr>
<tr>
<td>Skew</td>
<td>-0.3726</td>
<td>-1.1186</td>
<td>0.2283</td>
<td>-0.8603</td>
<td>1.6647</td>
</tr>
</tbody>
</table>

Table K-10
Descriptive Statistics for Applications Greater than 100K LOC

<table>
<thead>
<tr>
<th>Rating=1 CPI</th>
<th>Rating=1 SPI</th>
<th>Rating=2 CPI</th>
<th>Rating=2 SPI</th>
<th>Rating=3 CPI</th>
<th>Rating=3 SPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Mean</td>
<td>0.6875</td>
<td>1.0887</td>
<td>0.6801</td>
<td>1.0159</td>
<td>1.1659</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.3347</td>
<td>0.4102</td>
<td>0.3825</td>
<td>0.0551</td>
<td>0.5903</td>
</tr>
<tr>
<td>Min</td>
<td>0.2019</td>
<td>0.5507</td>
<td>0.3496</td>
<td>0.9660</td>
<td>0.5808</td>
</tr>
<tr>
<td>Median</td>
<td>0.8023</td>
<td>1.0347</td>
<td>0.6115</td>
<td>1.0101</td>
<td>1.0611</td>
</tr>
<tr>
<td>Max</td>
<td>1.0788</td>
<td>1.8676</td>
<td>1.1479</td>
<td>1.0774</td>
<td>2.1602</td>
</tr>
<tr>
<td>MAD</td>
<td>0.2443</td>
<td>0.2727</td>
<td>0.2436</td>
<td>0.0407</td>
<td>0.1011</td>
</tr>
<tr>
<td>Skew</td>
<td>-0.4432</td>
<td>0.6272</td>
<td>0.3073</td>
<td>0.1372</td>
<td>1.0485</td>
</tr>
</tbody>
</table>
5. Multiple Comparison Calculations for Applications Less than 100K LOC

The Kruskal-Wallis H Test Statistic

\[H = \frac{12}{N(N+1)} \sum_{j=1}^{k} \left(\frac{n_j}{n} \right)^2 \left(\frac{R_j - n_j}{n_j} \right)^2 \]

where
- \(k \) = number of samples
- \(R_j \) = sum of the ranks in the ith sample, respectively
- \(n_j \) = number of observations in the ith sample, respectively
- \(N \) = total number of observations

Multiple Comparison Inequality

\[|R_i - R_j| \leq \sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_i} + \frac{1}{n_j} \right)} \]

Mean Rank of Ratings 1, 2, & 3 for CPI
\(R_{\text{cpi}} = (5.5, 13.5, 11.2) \)

Mean Rank of Ratings 1, 2, & 3 for SPI
\(R_{\text{spi}} = (9.5, 6.7, 15.4) \)

Calculation of \(N \)

\(N = n_{1,1} + n_{1,2} + n_{1,3} \quad N = 21 \)

Critical \(z \) Value - Corresponds to a .2 level of significance and provides at least a 80% level of confidence. \(z = 1.834 \)

Multiple Comparisons - "which populations differ from which others"

- If the difference in mean rank (DMR) between 2 samples is greater than the right-hand side (RHS) of the multiple comparison inequality above, there is a statistically significant difference between the 2 samples.
- The direction of the significant difference is determined by noting for each pair which sample has the larger sample mean.

Comparison of Rating 1 and 2

<table>
<thead>
<tr>
<th>DMR_{\text{cpi}}</th>
<th>DMR_{\text{spi}}</th>
<th>RHS</th>
<th>RHO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(z)</td>
<td>(z)</td>
</tr>
<tr>
<td>(R_{\text{cpi},1} - R_{\text{cpi},2})</td>
<td>(R_{\text{spi},1} - R_{\text{spi},2})</td>
<td>(\sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,2}} \right)})</td>
<td>(6.969)</td>
</tr>
<tr>
<td>DMR_{\text{cpi}} = 8</td>
<td>DMR_{\text{spi}} = 2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For CPI DMR_{\text{cpi}} - RHS = 1.031</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For SPI DMR_{\text{spi}} - RHS = -4.169</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comparison of Rating 2 and 3

<table>
<thead>
<tr>
<th>DMR_{\text{cpi}}</th>
<th>DMR_{\text{spi}}</th>
<th>RHS</th>
<th>RHO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(z)</td>
<td>(z)</td>
</tr>
<tr>
<td>(R_{\text{cpi},2} - R_{\text{cpi},3})</td>
<td>(R_{\text{spi},2} - R_{\text{spi},3})</td>
<td>(\sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{2,1}} + \frac{1}{n_{2,3}} \right)})</td>
<td>(5.53)</td>
</tr>
<tr>
<td>DMR_{\text{cpi}} = 2.3</td>
<td>DMR_{\text{spi}} = 8.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For CPI DMR_{\text{cpi}} - RHS = -3.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For SPI DMR_{\text{spi}} - RHS = 3.17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comparison of Rating 1 and 3

<table>
<thead>
<tr>
<th>DMR_{\text{cpi}}</th>
<th>DMR_{\text{spi}}</th>
<th>RHS</th>
<th>RHO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(z)</td>
<td>(z)</td>
</tr>
<tr>
<td>(R_{\text{cpi},1} - R_{\text{cpi},3})</td>
<td>(R_{\text{spi},1} - R_{\text{spi},3})</td>
<td>(\sqrt{\frac{N(N+1)}{12} \left(\frac{1}{n_{1,1}} + \frac{1}{n_{1,3}} \right)})</td>
<td>(6.838)</td>
</tr>
<tr>
<td>DMR_{\text{cpi}} = 5.7</td>
<td>DMR_{\text{spi}} = 5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For CPI DMR_{\text{cpi}} - RHS = -1.138</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For SPI DMR_{\text{spi}} - RHS = -0.938</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure K-9 Calculations for Multiple Comparison Test for Applications Less than 100K LOC
6. *Multiple Comparison Calculations for Applications Greater than 100K LOC*

The Kruskal-Wallis H Test Statistic

\[
H = \frac{12}{N(N+1)} \sum_{j=1}^{k} \left(\frac{n_j(N+1)}{2} - \frac{R_j^2}{k} \right)
\]

where
- \(k\) = number of samples
- \(R_j, R_j\) = sum of the ranks in the \(i\)th and \(j\)th sample, respectively
- \(n_j, n_j\) = number of observations in the \(i\)th and \(j\)th sample, respectively
- \(N\) = total number of observations

Multiple Comparison Inequality

\[
\left| \frac{R_i - R_j}{\sqrt{N(N+1)/12}} \right| \leq \sqrt{\frac{n_i + 1}{n_j + 1}}
\]

Mean Rank of Ratings 1, 2, & 3

<table>
<thead>
<tr>
<th></th>
<th>Mean Rank of Ratings 1, 2, & 3 for CPI</th>
<th>Mean Rank of Ratings 1, 2, & 3 for SPI</th>
<th>Number of Observations in Ratings 1, 2, & 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPI</td>
<td>(R_{\text{CPI}} = (7.5, 8.0, 12.2))</td>
<td>(R_{\text{SPI}} = (8.6, 7.8, 10.6))</td>
<td>(n = (8, 4, 5))</td>
</tr>
</tbody>
</table>

Calculation of \(N\):

\[N = n_{1,1} + n_{1,2} + n_{1,3} = 17\]

Critical z Value: Corresponds to a .2 level of significance and provides at least a 80% level of confidence. \(z = 1.834\)

Multiple Comparisons: "which populations differ from which others"

- If the difference in mean rank (DMR) between 2 samples is greater than the right-hand side (RHS) of the multiple comparison inequality above, there is a statistically significant difference between the 2 samples.
- The direction of the significant difference is determined by noting for each pair which sample has the larger sample mean.

Comparison of Rating 1 and 2

<table>
<thead>
<tr>
<th>DMR CPI</th>
<th>DMR SPI</th>
<th>RHS</th>
<th>RHS Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>R_{\text{CPI},1,1} - R_{\text{CPI},1,2}</td>
<td>)</td>
<td>(</td>
</tr>
</tbody>
</table>

For CPI DMR CPI - RHS = -5.171
For SPI DMR SPI - RHS = -4.871

No significant difference

Comparison of Rating 2 and 3

<table>
<thead>
<tr>
<th>DMR CPI</th>
<th>DMR SPI</th>
<th>RHS</th>
<th>RHS Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>R_{\text{CPI},1,2} - R_{\text{CPI},1,3}</td>
<td>)</td>
<td>(</td>
</tr>
</tbody>
</table>

For CPI DMR CPI - RHS = -2.013
For SPI DMR SPI - RHS = -3.413

No significant difference

Comparison of Rating 1 and 3

<table>
<thead>
<tr>
<th>DMR CPI</th>
<th>DMR SPI</th>
<th>RHS</th>
<th>RHS Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>R_{\text{CPI},1,1} - R_{\text{CPI},1,3}</td>
<td>)</td>
<td>(</td>
</tr>
</tbody>
</table>

For CPI DMR CPI - RHS = -0.58
For SPI DMR SPI - RHS = -3.28

No significant difference

Figure K-10 Calculations for Multiple Comparison Test for Applications Greater than 100K LOC
Bibliography

Christensen, David S. Professor, Air Force Institute of Technology, Wright-Patterson AFB OH. Personal interview. 9 November 1994.

Vita - Captain Robert M. Flowe

Captain Flowe was born in Alexandria, Virginia, on 1 April, 1960. He attended W.T. Woodson High School in Fairfax, Virginia, graduating in 1978. After high school, Captain Flowe attended Virginia Polytechnic Institute and State University in Blacksburg, Virginia, graduating with a Bachelor of Science in Aerospace and Ocean Engineering in June, 1984. While pursuing his undergraduate degree, Captain Flowe worked for the National Aeronautics and Space Administration at the Johnson Space Center, in Houston, Texas as a cooperative education engineering trainee.

While still an undergraduate, Captain Flowe enlisted in the Air Force on 13 September 1983. Upon graduation from Virginia Tech, he attended Officer Training School at Lackland Air Force Base, Texas, where he received his commission on 7 November, 1984. Upon commissioning, Captain Flowe was assigned to the Titan III Systems Program Office at Los Angeles Air Force Base, Los Angeles, California. During his five-year assignment to Los Angeles Air Force Base, Captain Flowe played a key role in the operation and management of the Titan 34D space launch system. Captain Flowe was reassigned in September 1989 to the 6595th Aerospace Test Group, Vandenberg Air Force Base, California, where Captain Flowe supported integration, test, and launch of Titan II and Titan IV space launch vehicles. Captain Flowe was selected to attend the Air Force Institute of Technology in May, 1993.

Permanent Address:
Robert M. Flowe
4305 Olley Lane
Fairfax, VA 22032
Vita - Captain James Thordahl

Captain Thordahl was born in Ayre, Scotland, on 4 December 1965. He attended Paraclete High School in Lancaster, California. He earned a Bachelor of Science degree in Aerospace Engineering from the University of Notre Dame, Notre Dame, Indiana, in May 1988. Upon graduation he was commissioned through Air Force ROTC and entered active duty in January 1989 as a Laser Weapons Project Officer assigned to the Phillips Laboratory, Kirtland AFB, New Mexico. While assigned as a Laser Weapons Project Officer, Captain Thordahl managed several programs in support of high energy laser development for the Ground Based Laser Antisatellite program, including the first ever coupled multiple-output Chemical Oxygen-Iodine Laser (COIL). In April 1991, he was selected to serve as the Air Force Maui Optical Site (AMOS) Program Manager where he was responsible for providing operational electro-optical data to the Space Surveillance Network and optical research support to all DoD services, National Laboratories, and the SDIO. In May of 1993, he entered the School of Systems and Logistics, Air Force Institute of Technology.

Permanent Address:
James B. Thordahl
42910 Chicory Avenue
Lancaster, CA 93534
A CORRELATIONAL STUDY OF THE SEI’S CAPABILITY
MATURITY MODEL AND SOFTWARE DEVELOPMENT
PERFORMANCE IN DOD CONTRACTS

Robert M. Flowe, Captain USAF
James B. Thordahl, Captain USAF

Air Force Institute of Technology,
WPAFB OH 45433-6583

HQ AFMC/ENPC
Wright-Patterson AFB, OH 45433

Approved for public release; distribution unlimited

The Software Engineering Institute's (SEI) Capability Maturity Model (CMM) is
widely used to measure an organization's software development process maturity. The Department of Defense (DoD) has
adopted this model with the belief that a more mature software development process will result in a more successful
software project. Although there is a growing body of anecdotal evidence supporting this presumed correlation, there is
currently no empirical evidence. Thus, the goal of our research was to determine the nature of the correlation, if any,
between software process maturity and software project success, where process maturity is based on a CMM rating and
success is based on the parameters of cost and schedule. To investigate this correlation we identified software unique
projects, obtained CMM rating information on the contractor, collected cost and schedule data from a time frame
representative of the rating, and interviewed project personnel to collect project context information. Using plots of cost
and schedule performance versus rating level and nonparametric statistical techniques we found that, within our dataset, a
correlation does exist between software development process maturity and project performance. The nature of this
correlation appears to be improved cost and schedule performance with higher software process maturity.