FREZCHEM: A Chemical-Thermodynamic Model for Aqueous Solutions at Subzero Temperatures

Giles M. Marion and Steven A. Grant

July 1994
Abstract
This report documents a FORTRAN version of the Spencer-Møller-Weare chemical
thermodynamic model for aqueous electrolyte solutions at subzero temperatures
(FREZCHEM). FREZCHEM is structured to predict the chemical composition and
unfrozen water of aqueous solutions between −60 °C and +25 °C at atmospheric
pressure (0.101325 MPa). FREZCHEM includes two reaction pathways: 1) freeze-
ing at variable temperature and fixed total water and 2) evaporation at variable
water and fixed temperature. Activity coefficients and the activity of
water are calculated using the Pitzer equations, which are valid to high solution
ionic strengths (~20 mol kg⁻¹). Fifteen chloride and sulfate salts of sodium,
potassium, calcium, and magnesium are included in the model. Predicted and
experimental measurements of solute molalities and the unfrozen water fraction
during seawater freezing are in good agreement. At −50 °C, 0.3% of seawater
remains unfrozen with 99.7% of Na and 95.5% of Cl having precipitated into
one of four salts. FREZCHEM should find many applications in physicochemical
studies of aqueous solutions and freezing.

For conversion of SI metric units to U.S./British customary units of measurement
consult ASTM Standard E380-89a, Standard Practice for Use of the International
System of Units, published by the American Society for Testing and Materials,
FREZCHEM: A Chemical-Thermodynamic Model for Aqueous Solutions at Subzero Temperatures

Giles M. Marion and Steven A. Grant

July 1994

Prepared for
OFFICE OF THE CHIEF OF ENGINEERS

Approved for public release; distribution is unlimited.
PREFACE

This report was prepared by Dr. Giles M. Marion and Dr. Steven A. Grant, Research Physical Scientists, of the Geochemical Sciences Branch, Research Division, U.S. Army Cold Regions Research and Engineering Laboratory. Funding was provided by DA Project 4A161102AT24, *Research in Snow, Ice and Frozen Ground*, Tasks EC and SC, Work Units B03, *Soil Solute Interactions at Low Temperature*, and F02, *Chemical Processes in Frozen Soil*, and by Strategic Environmental Research and Development Program (SERDP) Work Unit, *Fate and Transport in Seasonally Frozen Soil and Discontinuous Permafrost*.

The authors thank Andrew Sezak for assistance in translating the FREZCHEM program into the FORTRAN version, and Dr. Samuel C. Colbeck, James H. Cragin and David Fisk for technically reviewing earlier drafts of this report.

The contents of this report are not to be used for advertising or promotional purposes. Citation of brand names does not constitute an endorsement or approval of the use of such commercial products.
CONTENTS

Preface .. ii
Introduction .. 1
Model structure .. 1
Mathematical algorithm ... 4
FREZCHEM program .. 6
Program input and output .. 7
Program limitations .. 7
Program validation ... 10
Future directions .. 12
Literature cited ... 13
Appendix A: FORTRAN listing of the FREZCHEM program 15
Abstract .. 36

ILLUSTRATIONS

Figure
1. A stability diagram for the NaCl-H_2O system at subzero temperatures .. 2
2. The FREZCHEM model flowchart .. 5
3. The concentration of major seawater constituents during freezing 9
4. The concentration of minor seawater constituents during freezing 10
5. The model prediction of the distribution of water during seawater freezing ... 11
6. The amount of unfrozen water during seawater freezing 11
7. The model predictions of sodium and chloride distribution during seawater freezing ... 12

TABLES

Table
1. Minerals currently in the FREZCHEM model ... 3
2. A listing of chemical species and their numerical designation in the FREZCHEM model ... 3
3. FREZCHEM model output for freezing of seawater at -30 °C 4
4. FREZCHEM model output for evaporation of seawater at 0 °C 8
FREZCHEM: A Chemical-Thermodynamic Model for Aqueous Solutions at Subzero Temperatures

GILES M. MARION AND STEVEN A. GRANT

INTRODUCTION

The presence of solutes lowers the freezing-point of aqueous solutions; and when solutions freeze, ice formation largely excludes solutes, concentrating them in the unfrozen brine which, in turn, further lowers the brine freezing point. For example, when the temperature of a 1.0 molal NaCl solution is lowered below 0 °C, ice starts to form at approximately −3 °C (Fig. 1). As ice forms, the NaCl molality increases and the temperature drops along the ice–solution line, assuming that equilibrium is maintained, until the eutectic is reached at −21.3 °C and 5.17 molal (Fig. 1). At this point, the residual solution freezes, forming a mixture of ice and hydrohalite [NaCl·2H2O(cr)]. Clearly, complex interactions exist between solute concentrations and the freezing process.

A number of chemical thermodynamic models for aqueous electrolyte solutions have been developed in recent years (Sposito and Mattigod 1979, Plummer et al. 1988, Spencer et al. 1990). However, only the Spencer-Møller-Weare model deals explicitly with aqueous solutions at subzero temperatures. This model accounts for the precipitation of the chloride and sulfate salts of sodium, potassium, calcium, and magnesium over the temperature range from −60 °C to +25 °C at atmospheric pressure (0.101325 MPa). While the parameters used in the model have been published (Spencer et al. 1990), a working version of the model has not been published. Such a working model would be extremely useful for geochemists and geophysicists interested in the complex interactions between solutes and the freezing process. This preliminary report will document a FORTRAN version of the Spencer-Møller-Weare model, which we have chosen to call FREZCHEM.

MODEL STRUCTURE

FREZCHEM is a chemical thermodynamic "equilibrium" model. This model will calculate the equilibrium composition of aqueous solutions at specified temperatures, but will not provide any information on the time required to reach, or the path of change to, the equilibrium state. FREZCHEM calculates equilibrium between water and ice and between dissolved and solid phase salts.

For water and ice at equilibrium,

\[
\mu_i = \mu_i^o + RT \ln(a_{H_2O(cr, l)}) = \mu_w = \mu_w^o + RT \ln(a_{H_2O(l)})
\]

where \(R \) is the gas constant, \(T \) is absolute temperature, \(\mu_i \) and \(\mu_w \) are the chemical potentials of ice and water, \(\mu_i^o \) and \(\mu_w^o \) are the standard chemical potentials, and \(a_{H_2O(cr, l)} \) and \(a_{H_2O(l)} \) are the activities of water in the form of ice and liquid water. Equation 1 can be rearranged to yield

\[
\frac{\mu_i^o - \mu_w^o}{RT} = \ln \left(\frac{a_{H_2O(l)}}{a_{H_2O(cr, l)}} \right) = \frac{\Delta_{ fus} G^o}{RT}
\]

Equation 2

where \(\Delta_{ fus} G^o \) is the standard Gibbs energy of fusion (\(\mu_i^o - \mu_w^o \)). At equilibrium with respect to pure ice, \(a_{H_2O(cr, l)} = 1.0 \). Therefore

\[
(a_{H_2O(l)}) = \exp \left[\frac{\Delta_{ fus} G^o}{RT} \right] = K
\]

the activity of water is equal to the equilibrium constant (\(K \)) at a given temperature. For equilibrium with respect to a salt (e.g., hydrohalite)
NaCl•2H₂O(cr) \rightleftharpoons Na⁺(aq) + Cl⁻(aq) + 2 H₂O(l) \hspace{1cm} (4)

and

$$(a_{Na} \gamma_{Na}(aq))(a_{Cl} \gamma_{Cl}(aq))(a_{H₂O}(l))^2 = K$$ \hspace{1cm} (5)

assuming that the activity of the pure salt [NaCl•2H₂O(cr)] = 1.0. The relation between activity (a) and molality (m) of a substance “B” is given by

$$a_B = \gamma_B m_B$$ \hspace{1cm} (6)

where γ is the activity coefficient. If molalities are given, to calculate activities requires an extra-thermodynamic model for activity coefficients.

The Pitzer equations are used to calculate the activity of water and the activity coefficients for soluble ions. These equations allow calculation of activity coefficients to high ionic strengths in complex solutions (Plummer et al. 1988, Spencer et al. 1990, Pitzer 1991).

The osmotic coefficient (ϕ), and single-ion activity coefficients for cations (γ_M) and anions (γ_C) are given by

$$(\phi - 1) = 2/(\Sigma m_i) \left[-A \Phi^{1.5}/(1 + b I^{0.5}) + \Sigma m_a \Phi^-_{ca} + ZC_{ca} \right]$$

$$\Sigma m_a m_a \left(\Phi^-_{ca} + \Sigma m_c \Psi^-_{aca} \right) +$$

$$\Sigma m_c m_a \Phi^-_{aa} + \Sigma m_c \Psi^-_{aca} \right)$$ \hspace{1cm} (7)

$$\ln \left(\gamma_M \right) = z_M^2 F + \Sigma m_a (2B_{Ma} + ZC_{Ma}) +$$

$$\Sigma m_a (2\Phi_{Ma} + \Sigma m_c \Psi_{Mca}) +$$

$$\Sigma m_a m_d \Psi_{aaM} + \Sigma m_a m_a C_{ca}$$ \hspace{1cm} (8)

$$\ln \left(\gamma_C \right) = z_C^2 F + \Sigma m_c (2B_{C\chi} + ZC_{C\chi}) +$$

$$\Sigma m_c (2\Phi_{C\chi} + \Sigma m_c \Psi_{C\chi}) +$$

$$\Sigma m_c m_c \Psi_{C\chi} + \Sigma m_a m_c C_{ca}$$ \hspace{1cm} (9)

where $A\Phi$ is the Debye-Huckel constant, b is a constant (=1.2), $B\Phi, C, \Phi, \psi$ are salt interaction coefficients, z_i is the charge number of the ith ion, I is the ionic strength defined by

$$I = 0.5 \Sigma m_i z_i^2,$$ \hspace{1cm} (10)

Z is defined by
Table 1. Minerals currently in the FREZCHEM model.

1. Na$_2$SO$_4$·10H$_2$O(cr) (mirabilite)
2. Na$_2$SO$_4$(cr) (thenardite)
3. K$_2$SO$_4$(cr) (arcanite)
4. MgSO$_4$·6H$_2$O(cr) (hexahydrate)
5. MgSO$_4$·7H$_2$O(cr) (epsmite)
6. MgSO$_4$·K$_2$SO$_4$·6H$_2$O(cr) (picromerite)
7. NaCl(cr) (halite)
8. NaCl·2H$_2$O(cr) (hydrohalite)
9. KCl(cr) (sylvite)
10. CaCl$_2$·6H$_2$O(cr) (antarcticite)
11. MgCl$_2$·6H$_2$O(cr) (bischofite)
12. MgCl$_2$·8H$_2$O(cr)
13. MgCl$_2$·12H$_2$O(cr)
14. K$_2$MgCl$_3$·6H$_2$O(cr) (carnallite)
15. CaCl$_2$·2MgCl$_2$·12H$_2$O(cr) (tachyhydrite)

\[Z = \Sigma m_i |z_i| \]

(11)

and \(F \) is a complex function of \(A^f \), \(I \), and the salt interaction coefficients (Plummer et al. 1988, Pitzer 1991). Given \(\phi \) from eq 7, the activity of water is defined by

\[a_{H_2O(l)} = \exp(-\phi \Sigma m_i / 55.50837). \]

(12)

The equilibrium constants and the Pitzer equation parameters for the temperature range -60 °C to +25 °C were published by Spencer et al. (1990) as functions of temperature using equations of the form

\[P(T) = a_1 + a_2 T + a_3 T^2 + a_4 T^3 + a_5 T^4 \ln(T) \]

(13)

where \(P(T) \) is the Pitzer equation parameter directly or the function, \([-\Delta_f G^o / RT]\) (where \(\Delta_f G^o \) is the standard reaction Gibbs energy), for equilibrium constants \([K = \exp(-\Delta_f G^o / RT)] \) and \(T \) is thermodynamic temperature (K). Refer to Spencer et al. (1990) for the specific parameters used in the model (their Tables 1, 2, and 3). The only additional parameter, beyond those used in the Spencer-Møller-Weare model, is \(\Psi(Ca,Mg,SO_4) = 0.024 \), which is treated as a constant independent of temperature (Pitzer 1991).

Table 2. A listing of chemical species and their numerical designation in the FREZCHEM model.

<table>
<thead>
<tr>
<th>#</th>
<th>Species</th>
<th>#</th>
<th>Species</th>
<th>#</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Na$^+(aq)$</td>
<td>11</td>
<td>Cl$^-(aq)$</td>
<td>21</td>
<td>CO$_2$(aq)</td>
</tr>
<tr>
<td>2</td>
<td>K$^+(aq)$</td>
<td>12</td>
<td>SO$_4^{2-}(aq)$</td>
<td>22</td>
<td>CaSO$_4$(aq)</td>
</tr>
<tr>
<td>3</td>
<td>Ca$^{2+}(aq)$</td>
<td>13</td>
<td>OH$^-(aq)$</td>
<td>23</td>
<td>MgSO$_4$(aq)</td>
</tr>
<tr>
<td>4</td>
<td>Mg$^{2+}(aq)$</td>
<td>14</td>
<td>HCO$_3^-(aq)$</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>H$^+(aq)$</td>
<td>15</td>
<td>CO$_3^{2-}(aq)$</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>16</td>
<td></td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>17</td>
<td></td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>18</td>
<td></td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>19</td>
<td></td>
<td>29</td>
<td>CO$_2$(g)</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>20</td>
<td>H$_2$O(l)</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. A listing of chemical species and their numerical designation in the FREZCHEM model.

<table>
<thead>
<tr>
<th>#</th>
<th>Species</th>
<th>#</th>
<th>Species</th>
<th>#</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>H$_2$O(cr,l)</td>
<td>41</td>
<td>Na$_2$SO$_4$·10H$_2$O(cr)</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>NaCl·2H$_2$O(cr)</td>
<td>42</td>
<td>Na$_2$SO$_4$(cr)</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>NaCl(cr)</td>
<td>43</td>
<td>MgSO$_4$·6H$_2$O(cr)</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>KCl(cr)</td>
<td>44</td>
<td>MgSO$_4$·7H$_2$O(cr)</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>CaCl$_2$·6H$_2$O(cr)</td>
<td>45</td>
<td>K$_2$SO$_4$(cr)</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>MgCl$_2$·6H$_2$O(cr)</td>
<td>46</td>
<td>MgSO$_4$·K$_2$SO$_4$·6H$_2$O(cr)</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>MgCl$_2$·8H$_2$O(cr)</td>
<td>47</td>
<td></td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>MgCl$_2$·12H$_2$O(cr)</td>
<td>48</td>
<td></td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>KMgCl$_3$·6H$_2$O(cr)</td>
<td>49</td>
<td></td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>CaCl$_2$·2MgCl$_2$·12H$_2$O(cr)</td>
<td>50</td>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Temp (K)</td>
<td>Ion. Str.</td>
<td>AH₂O</td>
<td>Phi</td>
<td>H₂O (g)</td>
<td>Ice (g)</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>------</td>
<td>-----</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>243.15</td>
<td>7.8770</td>
<td>0.74696</td>
<td>1.6390</td>
<td>33.120</td>
<td>948.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>0.48695</td>
<td>1.6940</td>
<td>0.54243</td>
<td>0.91885</td>
<td>5.56104E-01</td>
</tr>
<tr>
<td>K</td>
<td>0.10630E-01</td>
<td>0.32095</td>
<td>0.19599</td>
<td>0.62905E-01</td>
<td>1.0630E-01</td>
</tr>
<tr>
<td>Ca</td>
<td>0.55300E-02</td>
<td>0.28873</td>
<td>0.51732</td>
<td>0.14833</td>
<td>0.94967E-02</td>
</tr>
<tr>
<td>Mg</td>
<td>0.55160E-01</td>
<td>1.6654</td>
<td>1.1282</td>
<td>1.8790</td>
<td>0.55160E-01</td>
</tr>
<tr>
<td>Cl</td>
<td>0.56818</td>
<td>5.9081</td>
<td>1.8095</td>
<td>10.691</td>
<td>0.19568</td>
</tr>
<tr>
<td>SO₄</td>
<td>0.29390E-01</td>
<td>0.55838E-02</td>
<td>0.32328</td>
<td>0.18051E-02</td>
<td>0.18494E-03</td>
</tr>
<tr>
<td>CaSO₄</td>
<td>0.00000</td>
<td>0.10058E-02</td>
<td>1.0000</td>
<td>0.10058E-02</td>
<td>0.33313E-04</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>0.00000</td>
<td>0.42492E-05</td>
<td>1.0000</td>
<td>0.42492E-05</td>
<td>0.14074E-06</td>
</tr>
<tr>
<td>H₂O(l)</td>
<td>0.00000</td>
<td>0.74696</td>
<td>1.8384</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solid Species</th>
<th>Moles</th>
<th>Equil. Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ice</td>
<td>52.633</td>
<td>0.74693</td>
</tr>
<tr>
<td>NaCl₂·2H₂O</td>
<td>0.37250</td>
<td>5.4770</td>
</tr>
<tr>
<td>NaCl</td>
<td>0.00000</td>
<td>19.127</td>
</tr>
<tr>
<td>KCl</td>
<td>0.00000</td>
<td>1.0399</td>
</tr>
<tr>
<td>CaCl₂·6H₂O</td>
<td>0.00000</td>
<td>695.12</td>
</tr>
<tr>
<td>MgCl₂·6H₂O</td>
<td>0.00000</td>
<td>4085.0</td>
</tr>
<tr>
<td>MgCl₂·8H₂O</td>
<td>0.00000</td>
<td>1403.3</td>
</tr>
<tr>
<td>MgCl₂·12H₂O</td>
<td>0.00000</td>
<td>27.775</td>
</tr>
<tr>
<td>KMgCl₃·6H₂O</td>
<td>0.00000</td>
<td>1054.2</td>
</tr>
<tr>
<td>CaCl₂·2MgCl₂·12H₂O</td>
<td>0.00000</td>
<td>0.17775E+21</td>
</tr>
<tr>
<td>Na₂SO₄·10H₂O</td>
<td>0.29172E-01</td>
<td>0.81213E-04</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>0.00000</td>
<td>0.73236</td>
</tr>
<tr>
<td>MgSO₄·6H₂O</td>
<td>0.00000</td>
<td>3.1211</td>
</tr>
<tr>
<td>MgSO₄·7H₂O</td>
<td>0.00000</td>
<td>0.93967E-01</td>
</tr>
<tr>
<td>K₂SO₄</td>
<td>0.00000</td>
<td>0.61722E-02</td>
</tr>
<tr>
<td>MgSO₄·K₂SO₄·6H₂O</td>
<td>0.00000</td>
<td>0.21935E-04</td>
</tr>
<tr>
<td>CaSO₄ (ion-pair)</td>
<td>0.26618</td>
<td></td>
</tr>
<tr>
<td>MgSO₄ (ion-pair)</td>
<td>798.18</td>
<td></td>
</tr>
</tbody>
</table>

Iterations = 39

The specific salts included in the present model are listed in Table 1. In addition to these salts, the model also explicitly considers ion-pairs for CaSO₄ and MgSO₄.

MATHEMATICAL ALGORITHM

Two basic mathematical approaches are used in chemical thermodynamic models to calculate equilibrium concentrations and activities: Gibbs energy minimization or solution of sets of nonlinear equations. The Spencer et al. (1990) model explicitly uses Gibbs energy minimization. The PHROPITZ model (Plummer et al. 1988) uses the nonlinear equation solution method. Both approaches ultimately provide the same answers.

The FREZCHEM model solves sets of nonlinear equations that include ice–water and mineral equilibria. These equations may, in principle, be solved either simultaneously or sequentially. FREZCHEM uses the sequential approach, which treats each reaction as an independent reaction (Fig. 2). The solution of the set of nonlinear equations occurs by iterating through the sequence many times. Advantages of the sequential approach vis-a-vis the simultaneous or Gibbs energy minimization approaches include 1) programming
simplicity since only one reaction is considered in separate subroutines, 2) ease of adding or subtracting new reactions since they can be inserted or deleted at any point in the sequence, and 3) the ease of program operation for both simple and complex aqueous solutions. With respect to the last point, only subroutines containing the elements in the “input” listing are used. For example, if only Na and Cl are present, then the program will only “call” the subroutine dealing with NaCl equilibrium and will bypass the remainder. For complex aqueous solutions such as seawater, the program will “call” every subroutine. The major disadvantage of the sequential approach is that it can be slow to converge. Another problem with the current model is convergence. At times, the program diverges or oscillates and never arrives at the equilibrium concentrations.

The program assumes that the initial aqueous solution is unfrozen and calculates the amount of ice, if any, that will form at the specified salt concentrations and temperature. The program first tests to see if ice and water are at equilibrium at the specified temperature. The criteria are

IF \(a_{H_2O(l)} > K \) THEN freeze \hspace{1cm} (14)

IF \(a_{H_2O(l)} = K \) THEN equilibrium \hspace{1cm} (15)

IF \(a_{H_2O(l)} < K \) THEN water is stable phase \hspace{1cm} (16)

where \(a_{H_2O(l)} \) is the activity of water calculated from the Pitzer equations (eq 7 and 12) and \(K \) is the equilibrium constant for ice-water (eq 3). If \(a_{H_2O(l)} > K \), this implies that water is thermodynamically unstable and ice (stable phase) should form. Ice formation is calculated indirectly. First, solute concentrations are increased proportionally, which decreases \(a_{H_2O(l)} \) (eq 12) until \(a_{H_2O(l)} = K \) and equilibrium is reached. Ice formation is calculated by
Ice = Total H$_2$O - Water$_f$ \hspace{1cm} (17)

Water$_f$ = Water$_i$ ($\Sigma m_i/\Sigma m_4$) \hspace{1cm} (18)

where Water$_i$, Water$_f$, and Total H$_2$O are the final water, initial water, and total H$_2$O (ice and water), m_i are the initial molalities of solutes, and m_f are the final molalities. These calculations assume that the ice phase is a pure phase. If $a_{H_2O}(0) < K$, this implies that water is the thermodynamically stable phase and ice should not form at the specified salt concentrations and temperature.

In addition to freezing, FREZCHEM will also evaporate solutions. In contrast to freezing, the evaporation of water is not controlled by an equilibrium relation. The evaporation routine simply removes water incrementally from the solution, at a fixed temperature, according to the user’s specifications. The program will not allow evaporation if ice is thermodynamically stable at the specified temperature and solution concentrations.

After ice and water are equilibrated, the program cycles through subroutines to handle mineral equilibria (Fig. 2). At present, there are 11 subroutines to handle the 15 mineral phases (Table 1) and the two ion-pair equilibria. Minerals that are identical in chemical composition except for waters of hydration are handled in the same subroutine [e.g., NaCl(cr) and NaCl•2H$_2$O(cr)].

After cycling through the mineral equilibrium equations, the program calculates the amount of water associated with hydrated salts (Fig. 2). Then the program tests for overall mineral equilibrium. In FREZCHEM, the initial and final solution phase concentrations must agree to within ±0.1% for all solution phase cations and anions. In general if more than one mineral phase is precipitating, the first cycle through the mineral subroutines will not suffice to establish overall mineral equilibrium and the equations must be solved repeatedly.

Eventually mineral equilibrium is established. Then the program tests to see if ice and water are still in equilibrium or $a_{H_2O}(0) < K$. For equilibrium, $a_{H_2O}(0)$ must agree with K to within ±0.00005. If ice and water are not in equilibrium and $a_{H_2O}(0) > K$, then the program cycles through the ice-water equilibrium and subsequently mineral equilibrium subroutines. Eventually the program converges to within the numerical equilibrium criteria established in the program, and output is sent to the print files.

FREZCHEM PROGRAM

A listing of the FREZCHEM FORTRAN program is in Appendix A. A major effort was made to adhere to the FORTRAN 77 ANSI Standard in writing this program. For example, FREZCHEM uses an 80-column statement line where columns 1–5 are statement labels, column 6 is a continuation column, columns 7–72 are used for statements, and columns 73–80 are used for commentary. Variable names are ≤ 6 characters. FREZCHEM is a FORTRAN translation of an earlier program written in TrueBASIC. FORTRAN assumes, unless otherwise declared, that variables beginning with the letters “IJKLMN” are integer variables and all other initial letters refer to real variables. In order to retain the same variable names between programs, this restriction required formal declaration of some real variables in the FORTRAN version. FREZCHEM is currently running on a Macintosh Quadra 800 computer using the MacFortran II compiler (version 3.2, Absoft 1991).

The FREZCHEM program consists of a main program called FREZCHEM and 15 subroutines. FREZCHEM reads in data from screen queries, initializes some parameters, freezes or evaporates the aqueous solution, calculates the water of hydration, tests for chemical thermodynamic equilibria, and most importantly “calls” the various subroutines (Fig. 2).

Subroutine PARAMETER calculates the parameters for the Pitzer equations and the equilibrium constants as functions of temperature (eq 13). For the most part, these parameters are taken from Spencer et al. (1990). Subroutine PITZER calculates activity coefficients and the activity of water using the Pitzer and other equations (eq 7–12). Subroutine INTERACTION calculates the higher-order electrostatic interaction terms for the Pitzer equations. Subroutine PPRINT prints the results. The remaining 11 subroutines deal with mineral equilibria. For example, Subroutine MgCl$_2$ determines which MgCl$_2$ salt is thermodynamically stable and equilibrates, if necessary, the salt with the solution phase. Other mineral subroutines perform similar functions for specific minerals.

FREZCHEM was structured to be user-expandable. To alter the model requires knowing how chemical species are explicitly designated in the model. Table 2 summarizes the chemical species currently in or anticipated to be included in the
model in the near future. Species 1–10 are reserved for soluble cations; species 11–20 are reserved for soluble anions; species 21–30 are reserved for neutral species, both solution phase and gas phase. The solid phase species are designated with numbers 31–60. Blank spaces in Table 2 are available for future additions.

PROGRAM INPUT AND OUTPUT

Input to FREZCHEM is through screen queries that request the molal concentrations for Na, K, Ca, Mg, Cl, and SO₄. FREZCHEM is structured to cycle through a sequence of temperature changes (freezing) or water removals (evaporation). For a temperature change, the screen queries request the initial temperature, the final temperature, and the incremental temperature change. For example, to calculate the freezing of seawater between 273.15 K (0 °C) and 223.15 K (−50 °C) by 5 K intervals, enter: 273.15, 223.15, and 5.0. Because the model assumes an initially unfrozen solution, enter the temperature sequence from high (initial) to low (final). For evaporative removal, the screen queries request the temperature (assumed fixed for evaporation), the final total water content (grams), and the incremental water removal (grams). To evaporate water from 1000 g (the fixed initial water content for both freezing and evaporation) to 100 g by 50-g increments at 0.0 °C, enter 273.15, 100, and 50 for the evaporative screen queries.

Output from the program is to a file called "FrData" which can be sent to a printer. A freezing simulation for seawater at 243.15 K (−30 °C) is given in Table 3, and an evaporative (1000 g to 100 g) simulation for seawater at 0 °C is given in Table 4. After the title, the first line of output gives the temperature, ionic strength, activity of water (AH₂O), osmotic coefficient (phi), and the final calculated amounts of water and ice. The basic unit of mass in the model is 1.0 kg water. For the seawater simulation at −30 °C, the final distribution of water is 948.20 g of ice, 33.12 g water, 13.42 g of water in hydrohalite (0.3725 moles), and 5.26 g of water in mirabilite (0.0292 moles), which adds up to exactly 1000.00 g (Table 3). The final distribution of water in the evaporative scenario at 0 °C is 96.93 g water and 3.07 g water in mirabilite (0.017043 moles), which adds up to exactly 100.00 g (Table 4).

The solution phase species are grouped together in the output. This output includes initial concentration (the program input), final concentration, activity coefficient, activity, and the moles remaining in the solution phase. Because the basic unit of mass is 1.0 kg water, the initial concentration [moles/kg (water)] is also equal to the total moles. A difference between "Initial Conc." and "Moles" in the solution phase output is attributable to either salt precipitation or ion-pair formation. For example, the initial concentration (total moles) of Na is 0.48695. The distribution of Na at −30 °C is 0.05610 moles in the solution, 0.37250 moles as hydrohalite, and 0.05834 moles as mirabilite, which adds up to 0.48694 moles of Na (Table 3). For the seawater evaporative simulation, the final distribution of Na is 0.45286 moles in the solution and 0.03409 moles as mirabilite, which adds up to 0.48695 moles of Na (Table 4).

The solid phase species are also grouped together in the output. This output includes the moles of solid phase species and the equilibrium constant for the reaction. For the seawater freezing simulation, ice, hydrohalite, and mirabilite have precipitated at −30 °C (Table 3). For the seawater evaporative simulation, only mirabilite appears to have precipitated at 0 °C (Table 4); however, see Program Limitations (below) for a discussion of probable gypsum precipitation. Whenever ice is present, the activity of water (0.74696) must agree with the equilibrium constant for ice-water (0.74693) (Table 3) to within ±0.00005 units, which is the convergence criterion used in the model. For salts that are precipitating, the appropriate solution phase activity product should equal the equilibrium constant. For NaCl·2H₂O (cr), the activity product is equal to (0.91885) × (10.691) × (0.74696)² = 5.48 which agrees with the equilibrium constant of 5.48 (Table 3).

The final output are the equilibrium constants for the CaSO₄ and MgSO₄ ion-pairs and the number of iterations through the equilibrium routines before convergence.

PROGRAM LIMITATIONS

FREZCHEM has convergence problems especially at high ionic strengths (>15 molal), where activity coefficients are rapidly changing, and at junctions, where new phases begin to precipitate. The program contains a routine to catch mathematical problems or special circumstances. If "iterations" reaches 300, a message to this effect is
Table 4. FREZCHEM model output for evaporation of seawater at 0 °C.

<table>
<thead>
<tr>
<th>Temp (K)</th>
<th>Ion. Str.</th>
<th>AH₂O</th>
<th>Phi</th>
<th>H₂O (g)</th>
<th>Ice (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>273.15</td>
<td>6.8671</td>
<td>0.75383</td>
<td>1.3728</td>
<td>96.930</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>0.48695</td>
<td>4.6721</td>
<td>0.81929</td>
<td>3.8278</td>
<td>0.45286</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0.10630E-01</td>
<td>0.10967</td>
<td>0.39751</td>
<td>0.43593E-01</td>
<td>0.10630E-01</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>0.95300E-02</td>
<td>0.92284E-01</td>
<td>1.0610</td>
<td>0.97912E-01</td>
<td>0.89451E-02</td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>0.55160E-01</td>
<td>0.56905</td>
<td>2.1926</td>
<td>1.2477</td>
<td>0.55158E-01</td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>0.56818</td>
<td>5.8618</td>
<td>1.2301</td>
<td>7.2105</td>
<td>0.56818</td>
<td></td>
</tr>
<tr>
<td>SO₄</td>
<td>0.29390E-01</td>
<td>0.12133</td>
<td>0.30951E-01</td>
<td>0.37552E-02</td>
<td>0.11760E-01</td>
<td></td>
</tr>
<tr>
<td>CaSO₄</td>
<td>0.00000</td>
<td>0.60346E-02</td>
<td>1.0000</td>
<td>0.60346E-02</td>
<td>0.58493E-03</td>
<td></td>
</tr>
<tr>
<td>MgSO₄</td>
<td>0.00000</td>
<td>0.19557E-04</td>
<td>1.0000</td>
<td>0.19557E-04</td>
<td>0.18957E-05</td>
<td></td>
</tr>
<tr>
<td>H₂O(l)</td>
<td>0.00000</td>
<td>0.75383</td>
<td>5.3804</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solid</th>
<th>Species</th>
<th>Moles</th>
<th>Equil. Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ice</td>
<td>0.00000</td>
<td>1.0002</td>
<td></td>
</tr>
<tr>
<td>NaCl+2H₂O</td>
<td>0.00000</td>
<td>17.957</td>
<td></td>
</tr>
<tr>
<td>NaCl</td>
<td>0.00000</td>
<td>31.339</td>
<td></td>
</tr>
<tr>
<td>KCl</td>
<td>0.00000</td>
<td>3.7721</td>
<td></td>
</tr>
<tr>
<td>CaCl₂+6H₂O</td>
<td>0.00000</td>
<td>1862.7</td>
<td></td>
</tr>
<tr>
<td>MgCl₂+6H₂O</td>
<td>0.00000</td>
<td>55958.</td>
<td></td>
</tr>
<tr>
<td>MgCl₂+8H₂O</td>
<td>0.00000</td>
<td>7090.2</td>
<td></td>
</tr>
<tr>
<td>MgCl₂+12H₂O</td>
<td>0.00000</td>
<td>708.26</td>
<td></td>
</tr>
<tr>
<td>KMgCl₂+6H₂O</td>
<td>0.00000</td>
<td>7819.3</td>
<td></td>
</tr>
<tr>
<td>CaCl₂+2MgCl₂+12H₂O</td>
<td>0.00000</td>
<td>0.27626E+19</td>
<td></td>
</tr>
<tr>
<td>Na₂SO₄+10H₂O</td>
<td>0.17043E-01</td>
<td>0.32600E-02</td>
<td></td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>0.00000</td>
<td>0.69007</td>
<td></td>
</tr>
<tr>
<td>MgSO₄+6H₂O</td>
<td>0.00000</td>
<td>0.18782</td>
<td></td>
</tr>
<tr>
<td>MgSO₄+7H₂O</td>
<td>0.00000</td>
<td>0.54675E-01</td>
<td></td>
</tr>
<tr>
<td>K₂SO₄</td>
<td>0.00000</td>
<td>0.69458E-02</td>
<td></td>
</tr>
<tr>
<td>MgSO₄+K₂SO₄+6H₂O</td>
<td>0.00000</td>
<td>0.50713E-04</td>
<td></td>
</tr>
<tr>
<td>CaSO₄ (ion-pair)</td>
<td>0.60935E-01</td>
<td>239.57</td>
<td></td>
</tr>
<tr>
<td>MgSO₄ (ion-pair)</td>
<td>239.57</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Iterations = 3

printed and the program exits. The most likely explanations for nonconvergence within 300 iterations are divergence, oscillating around the correct solution, or the system is beyond the eutectic, at which point only solid phases are thermodynamically stable.

To rectify mathematical problems, try changing the temperature or evaporative increments, either increasing or decreasing their step size (e.g., change temperature decrement from 10 to 5 degrees or change water decrement from 50 to 100 g).

Generally one can tell the approximate eutectic of more complex mixtures from the behavior of pure salts. For example, the eutectic temperature for pure CaCl₂ is −50.4 °C (Spencer et al. 1990). Failure of the model to converge at −40 °C for a solution containing CaCl₂ such as seawater cannot be due to exceeding the eutectic, which must be lower in temperature than the eutectic of the pure solution. Failure of the model to converge within 300 iterations at −54 °C for seawater is caused by exceeding the eutectic at −53.6 °C (Spencer et al. 1990).

If you use FREZCHEM to identify “junctions” such as the eutectic, you need to carefully scrutinize the output for accuracy. For example, FREZCHEM prints results for seawater freezing down to −53.7 °C; at −53.8 °C, the program fails to converge within 300 iterations because the solution is beyond the eutectic temperature. If one examines the printed output at −53.7 °C, the solution is slightly supersaturated with respect to CaCl₂.
(the last of the seawater salts to precipitate) based on calculated activity products, but the program indicates no precipitation of CaCl₂ (moles = 0.0). At -53.6 °C, the solution is undersaturated with respect to CaCl₂. The true eutectic lies between -53.7 °C and -53.6 °C, which agrees with Spencer et al. (1990) who place the seawater eutectic at -53.64 °C. Small errors can occur at junctions; therefore, these solutions need to be carefully scrutinized.

FREZCHEM is limited to applications where chloride and sulfate salts of sodium, potassium, calcium, and magnesium are dominant. Two common salts not currently in the model are gypsum [CaSO₄·2H₂O(cr)] and calcite [CaCO₃(cr)]. In the evaporative scenario (Table 4), the calculated activity product for gypsum in seawater is 2.09 × 10⁻⁴ which is apparently supersaturated with respect to gypsum at 0 °C (K = 2.33 × 10⁻⁵, Plummer et al. 1988). The reason gypsum and calcite are missing from the current model is because these salts are relatively insoluble and as a consequence, there are few solubility data at subzero temperatures. Because neither gypsum nor calcite can be parameterized over the temperature range of interest (-60 to +25 °C), we have chosen not to include their solubility, even over a limited temperature range, in this preliminary version of FREZCHEM.

This is not to say that FREZCHEM cannot be used in circumstances where gypsum or calcite are precipitating, only that caution is necessary in interpreting the results. For example, calcite precipitates during both seawater freezing (Nelson and Thompson 1954) and seawater evaporation, as does gypsum during seawater evaporation (McCaffrey et al. 1987). However, the amounts of calcite precipitation are relatively minor and can apparently be ignored. Note the good agreement in Ca concentrations during seawater freezing between experimental data and the model that ignored both calcite and gypsum (Figs. 3 and 4). One cannot ignore gypsum during seawater evaporation (McCaffrey et al. 1987, Herut et al. 1990) where explicit recognition must be made of gypsum precipitation. As pointed out previously, a 10-fold concentration of seawater at 0 °C is likely to lead to the significant precipitation of both mirabilite (0.0170 moles) and gypsum (supersaturated) (Table 4). Where gypsum precipitation is possible, check the calculated gypsum activity product for apparent supersaturation. Unfortunately, reliable gypsum solubility products are available only for temperatures ≥0 °C (Plummer et al. 1988).

![Figure 3. The concentrations of major seawater constituents during freezing. Experimental measurements are from Nelson and Thompson (1954).](image-url)
Figure 4. The concentrations of minor seawater constituents during freezing. Experimental measurements are from Nelson and Thompson (1954).

PROGRAM VALIDATION

The Spencer-Møller-Weare model and consequently the FREZCHEM model are parameterized primarily with data from pure binary and ternary salt solutions. Spencer et al. (1990) present 13 figures demonstrating how well their model fits the experimental data (e.g., Fig. 1). In general, the agreement is excellent, which is not surprising because this is the database used to parameterize the model, and as a consequence, this is not a true validation of the model.

The primary validation of the Spencer-Møller-Weare model is a comparison of model predictions for seawater freezing with experimental data from Nelson and Thompson (1954). The comparison of major (Fig. 3) and minor (Fig. 4) seawater constituents demonstrates good agreement except for Mg and K concentrations between −30° and −40 °C and SO4 concentrations between −5° and −10 °C. The seawater experimental data between −30° and −40 °C show a great excess of cations over anions indicating a major problem with the analytical measurements. All of the discrepancy between measured and predicted Mg and K concentrations can be attributed to this charge imbalance. The model predicts that mirabilite precipitates at −5.9 °C, while experimental measurements suggest that precipitation begins at −6.2 °C. This is the largest discrepancy in the temperature of first appearance of salt between the model and the experimental data. We plan to address these problems with experimental work in the near future.

Another approach to validating the model, not used by Spencer et al. (1990), is to examine the distribution of water during seawater freezing. For a system starting with 1.0 kg of water at 0 °C, approximately 50% of the water has turned to ice by the time the temperature has dropped to −4 °C (Fig. 5). By −10°C, only 20% of the original water is unfrozen. At about −23 °C, hydrated salts become a significant sink for water; this is where hydrohalite begins to precipitate. At −50°C, the original 1000 g of water is redistributed as 964.73 g of ice, 32.12 g of hydrated salts, and 3.15 g of unfrozen water. There is good agreement between calculated unfrozen water and experimental measurements (Richardson 1976) at least down to −36 °C (Fig. 6). Below −36 °C, the experimental and model estimates diverge but come back together at −50 °C where the model predicts 3.15 g water and the experimental measurement indicates 3.53 g water. The two curves diverge at the point where MgCl2•12H2O(cr) begins to precipitate at −36 °C.

Given major uncertainties in both model parameterization and experimental measurements, we cannot determine if the model or experimental measurements are more accurate at low temperature.
The importance of salt precipitation in controlling seawater freezing is illustrated by examining the distribution of total Na and Cl during the freezing process (Fig. 7). At -50 °C, only 0.3% and 4.5% of the original soluble Na and Cl at 0 °C remain in the solution phase; 99.7% and 95.5% of the Na and Cl have precipitated in four salts.

The ionic strength of the unfrozen seawater changes from 0.72 to 11.85 molal between 0 °C and -50 °C. This large increase in salt concentration during the freezing process is the primary reason why it is necessary to use the Pitzer equations to evaluate the activity of water and activity coefficients.

Figure 5. The model prediction of the distribution of water during seawater freezing.

Figure 6. The amount of unfrozen water during seawater freezing. Experimental measurements are from Richardson (1976).
Figure 7. The model predictions of sodium and chloride distribution during seawater freezing.

FUTURE DIRECTIONS

The data presented in this report (Fig. 3–7) demonstrate the great complexity of the solute-freezing interaction and why this interaction must be considered to define accurately the freezing process, especially at high salinities. The FREZCHEM model can calculate the role of the Cl and SO₄ salts of Na, K, Ca, and Mg in the freezing process. The model is useful as is, but more work needs to be done in order to develop a new "state-of-the-art" model.

For the chloride salts, KCl solubility is the major uncertainty. The parameterization of KCl solubil-
ity by Spencer et al. (1990) is based on only one data point below –24 °C. We are beginning experiments to measure the solubility of KCl in KCl-CaCl₂ solutions to –50 °C. At a minimum, we want to add gypsum [CaSO₄·2H₂O(cr)] solubility to the model and re-examine the solubility of Na₂SO₄, which is not predicted well by the current model (Fig. 4). And finally, we need to add calcite [CaCO₃(cr)] solubility to the model. Calcite and gypsum are common minerals that are present in many natural systems. Their inclusion in the model would be critical to many applications.

There are mathematical convergence problems, at times, with the FREZCHEM model, probably due to the sequential approach to solving a set of nonlinear equations used in the model. An alternative mathematical approach is the Gibbs energy minimization algorithm (Greenberg 1986, Harvie et al. 1987, Spencer et al. 1990). Our present strategy is to first document, by using the FREZCHEM model, where convergence problems exists. If these problems appear to be intractable using our present mathematical algorithm, we plan to try Gibbs energy minimization.

LITERATURE CITED

13
PROGRAM FREZCHEM

C FREZCHEM: This is a chemical thermodynamic model for aqueous
C solutions over the temperature range from +25C to -60C. This
C model uses the Pitzer equations for activity coefficients and
C the activity of water and is valid to high ionic strengths
C (20 M). The model considers the precipitation-dissolution of
C the chloride and sulfate salts of calcium, magnesium, sodium,
C and potassium.

REAL IX, INIT(20), I, K
DIMENSION FINAL(20)
CHARACTER*50 TITLE
DOUBLE PRECISION AKI, AKII, ISALGM, SALGM, DELGM, SALH2O, X
DOUBLE PRECISION M, MO, H2O

COMMON /A/ MAXCAT, MAXAN, AKI(0:20), AKII(0:20), BET0(10,11:20),
xBET1(10,11:20), BET2(10,11:20), C(10,11:20), CPHI(10,11:20),
XPSI(20,20,20), THETA(20,20), A, Z(30)
COMMON /B/ X(60), GX(60), K(20:60), AH2O, DEL(5),
xIX(30), TITLE, ITER, AX(60), TEMP, I, PHI

OPEN (UNIT = 2, FILE = "FrData")

C Read in or initialize run parameters.

PRINT*, 'TITLE ='
READ(*,1) TITLE

1 FORMAT (A50)
PRINT*, 'FREEZE(1) OR EVAPORATION(2) SCENARIO ?'
READ*, PATH
PRINT*, 'SODIUM (M/KG) ='
READ*, IX(1)
PRINT*, 'POTASSIUM (M/KG) ='
READ*, IX(2)
PRINT*, 'CALCIUM (M/KG) ='
READ*, IX(3)
PRINT*, 'MAGNESIUM (M/KG) ='
READ*, IX(4)
PRINT*, 'CHLORIDE (M/KG) ='
READ*, IX(11)
PRINT*, 'SULFATE (M/KG) ='
READ*, IX(12)
PRINT*, 'INITIAL TEMPERATURE (K) ='
READ*, TEMP
IF (PATH.EQ.1) THEN
PRINT*, 'FINAL TEMPERATURE (K) ='
READ*, FINTEMP
PRINT*, 'TEMPERATURE DECREMENT (K) ='
READ*, DELTEMP
ELSE
PRINT*, 'FINAL WATER (G) ='
READ*, FINWAT
PRINT*, 'WATER DECREMENT (G) ='
READ*, DELWAT
END IF
DATA DEL / 1.25, 1.10, 1.01, 1.001, 1.0001 /
X(1) = IX(1)
X(2) = IX(2)
X(3) = IX(3)
X(4) = IX(4)
MAXCAT = 4
X(11) = IX(11)
X(12) = IX(12)
MAXAN = 12
X(30) = 1000
X(31) = 0
ISALGM = 0
ITER = 0

CALL PARAMETER
CALL Pitzer

C Test for supersaturation with respect to ice phase and freeze
C if necessary.

IF (AH2O .GT. K(31)) THEN
 IF (PATH.EQ.2) THEN
 WRITE(2,*)'THEORETICALLY THIS SOLUTION SHOULD FREEZE.'
 WRITE (2,*)'THEREFORE, CAN NOT EVALUATE THIS USING AN
 X EVAPORATIVE SCENARIO.'
 FINTEM=TEMP
 DELTEM=1.0
 PATH=1
 END IF
 MO = 0
 M = 0
 H2O = X(30) + X(31)
 DO 10 J = 1, 25
 MO = MO + X(J)
 10 CONTINUE
 DO 70 KA = 1, 5
 DO 30 J = 1, 25
 X(J) = X(J) * DEL(KA)
 30 CONTINUE
 DO 40 J = 32, 60
 X(J) = X(J) * DEL(KA)
 40 CONTINUE
 CALL PIZZER
 IF (AH2O .GT. K(31)) GOTO 20
 DO 50 J = 1, 25
 X(J) = X(J) / DEL(KA)
 50 CONTINUE
 DO 60 J = 32, 60
 X(J) = X(J) / DEL(KA)
 60 CONTINUE
 DO 80 J = 1, 25
 M = M + X(J)
 80 CONTINUE
 X(30) = X(30) * MO / M
 X(31) = H2O - X(30)
 END IF

C Test for mineral saturation and equilibrate solutions.

200 DO 210 J = 1, 20
INIT(J) = X(J)
210 CONTINUE
CALL PIZER
ITER = ITER + 1
IF ((IX(3) .GT. 0) .AND. (IX(12) .GT. 0)) CALL CASO4
IF ((IX(4) .GT. 0) .AND. (IX(12) .GT. 0)) CALL MGSO4
IF ((IX(1) .GT. 0) .AND. (IX(12) .GT. 0)) CALL NA2SO4
IF ((IX(2) .GT. 0) .AND. (IX(12) .GT. 0)) CALL ARCANITE
IF ((IX(2) .GT. 0) .AND. (IX(4) .GT. 0) .AND. (IX(12) .GT. 0))
CALL PICROMERITE
IF (IX(2).GT.0).AND. (IX(11).GT.0)) CALL SYLVITE
IF (IX(1).GT.0).AND. (IX(11).GT.0)) CALL NACL
IF (IX(4).GT.0).AND. (IX(11).GT.0)) CALL MGCL2
IF (IX(3).GT.0).AND. (IX(11).GT.0)) CALL ANTARCTICITE
IF (IX(2).GT.0).AND. (IX(4).GT.0).AND. (IX(11).GT.0))
CALL CARNALLITE
IF (IX(3).GT.0).AND. (IX(4).GT.0).AND. (IX(11).GT.0))
CALL TACHYHYDRITE
IF (ITER.EQ.300) THEN
WRITE (2,*) 'THIS RUN IS NOT CONVERGING AFTER 300
*INTERATIONS'
GOTO 270
END IF

C Calculate water associated with hydrated salts.

SALH2O=2*X(32)+6*X(35)+6*X(36)+8*X(37)+12*X(38)+6*X(39)+12*X(40)
SALH2O=SALH2O+10*X(41)+6*X(43)+7*X(44)+6*X(46)
SALGM = SALH2O * X(30) .* 18.0153 / 1000
DELMG = SALGM - ISALGM
X(30) = X(30) - DELMG
DO 220 J = 1, 25
 X(J) = X(J) * (X(30) + DELMG) / X(30)
220 CONTINUE
DO 230 J = 32, 60
 X(J) = X(J) * (X(30) + DELMG) / X(30)
230 CONTINUE
ISALGM = SALGM

C Test for mineral equilibria.

235 DO 240 J = 1, 20
 FINAL(J) = X(J)
 IF (FINAL(J).EQ.0) GOTO 240
 IF ((ABS(FINAL(J)-INIT(J))/FINAL(J))*1000 .GT. 1) GOTO 200
240 CONTINUE

C Test for ice-water equilibria.

CALL PIZER
IF (AH2O-K(31).GT.0.00005) GOTO 5

C Print Results.

260 CALL PPRINT

C Update Temperature or Water Content

IF (PATH.EQ.1) THEN
 TEMP = TEMP - DELTEM
 IF (TEMP .GE. FINTEMP) GOTO 3
 ELSE
 X(30)=X(30)-DELWAT
 TH2O = SALGM+X(30)
 IF (TH2O.LT.FINWAT) GOTO 270
 DO 263 IJK=1,25
 X(IJK)=X(IJK)*(X(30)+DELWAT)/X(30)
263 CONTINUE
 DO 265 IJK=32,60
 X(IJK)=X(IJK)*(X(30)+DELWAT)/X(30)
265 CONTINUE
 GO TO 3
SUBROUTINE PARAMETER

C This subroutine calculates the parameters and their temperature
C dependence for the Pitzer equations and mineral solubility products.

REAL IX,I,K
CHARACTER*50 TITLE
DOUBLE PRECISION D(64,6), P(64), AKI, AKII, T, X

COMMON /A/ MAXCAT, MAXAN, AKI(0:20), AKII(0:20), BET0(10:11:20),
 XBT1(10:11:20), BET2(10:11:20), C(10:11:20), CPHI(10:11:20),
 XPSI(20,20,20), THETA(20,20), A, Z(30)
COMM /B/ X(60), GX(60), K(20:60), AH2O, DEL(5),
 XI(30), TITLE, ITER, AX(60), TEMP, I, PHI

DATA AKI / 1.925154014814667, -0.060076477753119,
 x -0.029779077456514, -0.007299499609373,
 x 0.0000388260636404, 0.000036874599598,
 x 0.0000036583601823, -0.0000045036975204,
 x -0.0000004537895710, 0.0000002937706971,
 x 0.000000396566462, -0.0000000202099617,
 x -0.0000000025267769, 0.00000013522610,
 x 0.00000001229405, -0.00000000821969,
 x -0.0000000050847, 0.0000000046333,
 x 0.0000000001943, -0.0000000002563,
 x -0.00000000010991 /

DATA AKII / 0.6280232302502852, 0.462762985338493,
 x 0.150044637187895, -0.028796057604906,
 x -0.036552745910311, -0.001668087945272,
 x 0.006519840398744, 0.001130378079086,
 x -0.00087171310131, -0.000242107641309,
 x 0.000087294451594, 0.000034682122751,
 x -0.000004583768938, -0.00000394684306,
 x -0.00000250453880, 0.00000216991779,
 x 0.000000080779570, 0.00000004558555,
 x -0.000000006944757, -0.000000002849257,
 x 0.000000000237816 /

DATA Z / 1,1,2,2,1,0,0,0,0,0,0,-1,-2,-1,-1,-2,
 x 0,0,0,0,0,0,0,0,0,0,0,0 /

C Data Stored in D(I,J) are from Spencer et al. (1990)

DATA (D(I,J), J=1,6), I=1,64) /
 x 86.6836948, 0.0848795942, -8.8878515D-5,
 x 4.88096393D-8, -1.32731477D3, -17.6460172,
 x 7.87239712, -8.386496D-3, 1.44137774D-5,
 x -8.7820301D-9, -496.920671, -0.820972560,
 x 866.915291, 0.606166931, -4.8048921D-4,
 x 1.88503857D-7, -1.70460145D4, -167.171296,
 x 1.70761824, 2.32970177D-3, -2.46665619D-6,
 x 1.21543380D-9, -1.35583596, -0.38776714,
 x 26.5718766, 9.92715099D-3, -3.6232333D-6,
 x -6.28427180D-11, -755.707220, -4.67300770,
x 3.95552403D-6, -1.54040868D5, -1.83624247D3,
x 1.42290062D5, 1.61973105D2, -1.95332071D-1,
x 1.17636119D-4, -2.04059847D6, -2.97464810D4,
x 7.52225093D2, 1.17584653D-1, 0, 0, -2.43223909D4, -1.21990076D2,
x 2.27801976D3, 6.49361616D-1, 0, -6.23075123D4, -3.95438891D2,
x 2.55008965D5, 2.44532240D2, -2.48807876D-1,
x 1.22425236D-4, -4.02988342D6, -5.18668604D4,
x -4.45702171D1, 2.32023790D-1, -7.14935692D-4,
x 5.32658215D-7, -4.24817923D3, 8.59110245,
x 8.03777918D1, -1.388069D-1, 0, 0, 0, 0,
x 8.44728050D4, 7.68443387D1, -7.4825816D-2,
x 3.51806085D-5, -1.3881852D6, -1.7026778D4,
x -3.9635632D3, -5.8114490, 7.59799462D-3,
x -4.6571737D-6, 3.93454893D4, 8.79598423D2,
x 2.39166461D1, -9.3680744D-2, 0, 0, 0, 0,
x 2.02443627, -1.8051586D-2, 0, 0, 0, 0,
x -3.53346251D4, -2.76809991D1, 2.39856021D-2,
x -1.02081845D-5, 6.37561988D5, 6.94737787D3,
x -1.75203509D1, 2.793713D-2, 0, 0, 0, 0 /

T=TEMP
DO 730 J = 1, 64
P (J) = D (J, 1) + D (J, 2) * T + D (J, 3) * T ** 2 + D (J, 4) * T ** 3 + D (J, 5)
X / T + D (J, 6) * LOG (T)
730 CONTINUE

A = P (1)
BET0 (1, 11) = P (2)
BET1 (1, 11) = P (3)
CPHI (1, 11) = P (4)
BET0 (2, 11) = P (5)
BET1 (2, 11) = P (6)
CPHI (2, 11) = P (7)
BET0 (3, 11) = P (8)
BET1 (3, 11) = P (9)
CPHI (3, 11) = P (10)
BET0 (4, 11) = P (11)
BET1 (4, 11) = P (12)
CPHI (4, 11) = P (13)
BET0 (1, 12) = P (14)
BET1 (1, 12) = P (15)
CPHI (1, 12) = P (16)
BET0 (2, 12) = P (17)
BET1 (2, 12) = P (18)
CPHI (2, 12) = P (19)
BET0 (3, 12) = P (20)
BET1 (3, 12) = P (21)
BET2 (3, 12) = P (22)
BET0 (4, 12) = P (23)
BET1 (4, 12) = P (24)
CPHI (4, 12) = P (25)
THETA (1, 2) = P (26)
PSI (1, 2, 11) = P (27)
PSI (1, 2, 12) = P (28)
THETA (1, 3) = P (29)
PSI (1, 3, 11) = P (30)
PSI (1, 3, 12) = P (31)
THETA (1, 4) = P (32)
PSI (1, 4, 11) = P (33)
PSI (1, 4, 12) = P (34)
THETA (2, 3) = P (35)
PSI (2, 3, 11) = P (36)
THETA (2, 4) = P (37)
PSI (2, 4, 11) = P (38)
PSI(2,4,12) = P(39)
THETA(3,4) = P(40)
PSI(3,4,11) = P(41)
PSI(3,4,12) = 0.024
THETA(11,12) = P(42)
PSI(11,12,1) = P(43)
PSI(11,12,2) = P(44)
PSI(11,12,3) = P(45)
PSI(11,12,4) = P(46)
K(34) = EXP(P(47))
K(31) = EXP(P(48))
K(32) = EXP(P(49))
K(22) = EXP(P(50))
K(23) = EXP(P(51))
K(33) = EXP(P(52))
K(35) = EXP(P(53))
K(36) = EXP(P(54))
K(37) = EXP(P(55))
K(38) = EXP(P(56))
K(39) = EXP(P(57))
K(40) = EXP(P(58))
K(41) = EXP(P(59))
K(42) = EXP(P(60))
K(43) = EXP(P(61))
K(44) = EXP(P(62))
K(45) = EXP(P(63))
K(46) = EXP(P(64))
RETURN
END

C--

C--

SUBROUTINE PITZER

C This subroutine calculates activity coefficients and the activity
C of water using the Pitzer equations.

REAL I,IX,K
CHARACTER*50 TITLE
DOUBLE PRECISION AKI,AKII,X
DIMENSION SUMCA(10), SUMCAT(10), SUMAN(10), SUMZ(10),
X SUMAC(11:20), SUMAA(11:20), SUMCC(11:20), SUMK(11:20),
X BPHI(10,11:20), B(10,11:20), BPRIME(10,11:20),
X PHI(20,20), PHIFRI(20,20), PHIIJ(20,20)

COMMON /A/ MAXCAT,MAXAN,AKI(0:20),AKII(0:20),BETA(10,11:20),
X BET(10,11:20),BET2(10,11:20),C(10,11:20),CPHI(10,11:20),
X PSI(20,20,20),THETA(20,20),A,Z(30)
COMMON /B/ X(60),GX(60),K(20:60),AH2O,DEL(5),
X IX(30),TITLE,ITER,AX(60),TEMP,I,PHI

ZZ = 0
SM = 0
I = 0
DO 280 J = 1, 20
 ZZ = ZZ + X(J) * ABS(Z(J))
 I = I + 0.5 * (X(J) * Z(J)**2)
 SM = SM + X(J)
280 CONTINUE

DATA SUMCA / 10*0 /
DATA SUMCAT / 10*0 /
DATA SUMAN / 10*0 /
DATA SUMZ / 10*0 /
DATA SUMC / 10*0 /
DATA SUMAA / 10*0 /
DATA SUMCC / 10*0 /
DATA SUMK / 10*0 /

ALPHA = 2 * SQRT(I)
ALPHA1 = 1.4 * SQRT(I)
ALPHA2 = 12 * SQRT(I)
G1 = 2*(1-(1+ALPHA1)*EXP(-ALPHA1))/ALPHA1**2
G2 = 2*(1-(1+ALPHA2)*EXP(-ALPHA2))/ALPHA2**2
GPR11 = -2*(1-(1+ALPHA1+ALPHA1**2/2)*EXP(-ALPHA1))/ALPHA1**2
GPR12 = -2*(1-(1+ALPHA2+ALPHA2**2/2)*EXP(-ALPHA2))/ALPHA2**2
G = 2*(1-(1+ALPHA)*EXP(-ALPHA))/ALPHA**2
GPRIME = -2*(1-(1+ALPHA+ALPHA**2/2)*EXP(-ALPHA))/ALPHA**2

DO 300 J = 1, MAXCAT
 DO 290 IK = 11, MAXAN
 IF (Z(J)*ABS(Z(IK))) .EQ. 4) THEN
 BPHI(J,IK)=BET0(J,IK)+BET1(J,IK)*EXP(-ALPHA1)
 *BET2(J,IK)*EXP(-ALPHA2)
 B(J,IK)=BET0(J,IK)+BET1(J,IK)*G1+BET2(J,IK)*G2
 BPRIME(J,IK)=BET1(J,IK)*GPR11/I+BET2(J,IK)*GPR12/I
 ELSE
 BPHI(J,IK)=BET0(J,IK)+BET1(J,IK)*EXP(-ALPHA)
 B(J,IK)=BET0(J,IK)+BET1(J,IK)*G
 BPRIME(J,IK)=BET1(J,IK)*GPRIME/I
 END IF
 C(J,IK)=CPSI(J,IK)/(2*SQRT(Z(J)*ABS(Z(IK))))
 CONTINUE
 290
 300
 CONTINUE
 DO 320 J = 1, MAXCAT - 1
 DO 310 IK = J + 1, MAXCAT
 IF ((Z(J) .EQ. 0) .OR. (Z(IK) .EQ. 0)) GOTO 310
 CALL INTERACTION(Z(J),Z(IK),I,A,PHIPHI(J,IK),
 PHIPRI(J,IK),PHIJ(J,IK),THETA(J,IK),AKI,AKII)
 CONTINUE
 310
 CONTINUE
 DO 340 J = 11, MAXAN - 1
 DO 330 IK = J + 1, MAXAN
 IF ((Z(J) .EQ. 0) .OR. (Z(IK) .EQ. 0)) GOTO 330
 CALL INTERACTION(Z(J),Z(IK),I,A,PHIPHI(J,IK),
 PHIPRI(J,IK),PHIJ(J,IK),THETA(J,IK),AKI,AKII)
 CONTINUE
 330
 CONTINUE
 340
 C Calculation of summation terms for F and PHI.
 SCATON = 0
 SUBSUM = 0
 SANON = 0
 SUMCAF = 0
 SUMANF = 0
 DO 370 J = 1, MAXCAT - 1
 DO 360 IK = J + 1, MAXCAT
 DO 350 L = 11, MAXAN
 SUBSUM = SUBSUM + PSI(J,IK,L) * X(L)
 SCATON=SCATON+(SUBSUM+PHIPHI(J,IK))*X(J)*X(IK)
 SUMCAF=SUMCAF+PHIPRI(J,IK)*X(J)*X(IK)
 CONTINUE
 360
 370
 350
SUBSUM = 0
360 CONTINUE
370 CONTINUE
SUBSUM = 0
DO 400 J = 11, MAXAN - 1
 DO 390 IK = J + 1, MAXAN
 DO 380 L = 1, MAXCAT
 SUBSUM = SUBSUM + PSI(J, IK, L) * X(L)
 380 CONTINUE
 SANON = SANON + (SUBSUM + PHIPHI(J, IK)) * X(J) * X(IK)
 SUMANF = SUMANF + PHIPRI(J, IK) * X(J) * X(IK)
 SUBSUM = 0
390 CONTINUE
400 CONTINUE
SUMB = 0
SUMPHI = 0
DO 420 J = 1, MAXCAT
 DO 410 IK = J + 1, MAXAN
 SUMB = SUMB + X(J) * X(IK) * BPRI(J, IK)
 410 CONTINUE
SUMPHI = SUMPHI + X(IK) * PHIPHI(J, IK)
420 CONTINUE
F = -A * (SQR(T(I)) / (1 + 1.2 * SQR(T(I))) + 2 * LOG(1 + 1.2 * SQR(T(I))) / 1.2) + SUMB +
 SUMCAF + SUMANF
 PHI = 1 + (2 / SM) * (-A * XI**1.5) / (1 + 1.2 * SQR(T(I))) + SUMPHI + SCATON +
 SANON
 AH20 = EXP(-PHI * SM / 55.50837)

C Calculation of terms for activity coefficients (gamma).
SUM = 0
DO 450 J = 1, MAXCAT - 1
 DO 440 IK = J + 1, MAXAN
 DO 430 L = 11, MAXAN
 PSI(IK, J, L) = PSI(IK, IK, L)
 PHIIT(J, IK) = PHIIT(J, IK)
430 CONTINUE
440 CONTINUE
450 CONTINUE
DO 480 L = 11, MAXAN - 1
 DO 470 IK = L + 1, MAXAN
 DO 460 J = 1, MAXCAT
 PSI(IK, L, J) = PSI(IK, IK, J)
 PHIIT(IK, L) = PHIIT(IK, L)
460 CONTINUE
470 CONTINUE
DO 500 J = 1, MAXCAT
 DO 490 IK = 11, MAXAN
 SUMCA(J) = SUMCA(J) + X(IK) * (2 * B(J, IK) + ZZ * C(J, IK))
490 CONTINUE
500 CONTINUE
DO 530 J = 1, MAXCAT
 DO 520 IK = 1, MAXCAT
 IF (J .EQ. IK) GOTO 520
 DO 510 L = 11, MAXAN
 SUM = SUM + X(L) * PSI(J, IK, L)
 510 CONTINUE
 SUMCAT(J) = SUMCAT(J) + X(IK) * (SUM + 2 * PHIIT(J, IK))
 SUM = 0
520 CONTINUE
DO 560 J = 1, MAXCAT
DO 550 IK = 11, MAXAN-1
 DO 540 L = IK + 1, MAXAN
 SUMAN(J) = SUMAN(J) + X(IK) * X(L) * PSI(IK,L,J)
 CONTINUE
 DO 550 J = 1, MAXCAT
 SUM = 0
 DO 570 IK = 11, MAXAN
 SUM = SUM + X(J) * X(IK) * C(J,IK)
 CONTINUE
 DO 590 J = 1, MAXCAT
 SUMZ(J) = SUM * ABS(Z(J))
 CONTINUE
 DO 600 J = 1, MAXCAT
 GX(J) = EXP(Z(J)**2+F+SUMCA(J)+SUMCAT(J)+SUMAN(J)+SUMZ(J))
 CONTINUE
 SUM = 0
 DO 620 IK = 11, MAXAN
 SUMAC(IK) = SUMAC(IK) + X(J) * (2*B(J,IK) + ZZ*C(J,IK))
 CONTINUE
 DO 650 IK = 11, MAXAN
 L = 11, MAXAN
 IF (IK .EQ. L) GO TO 640
 DO 630 J = 1, MAXCAT
 SUM = SUM + X(J) * PSI(IK,L,J)
 CONTINUE
 SUMAA(IK) = SUMAA(IK) + X(L) * (2*PHIIJ(IK,L) + SUM)
 SUM = 0
 CONTINUE
 CONTINUE
 DO 680 IK = 11, MAXAN
 J = 1, MAXCAT - 1
 L = J + 1, MAXCAT
 SUMCC(IK) = SUMCC(IK) + X(J) * X(L) * PSI(J,L,IK)
 CONTINUE
 CONTINUE
 SUM = 0
 DO 700 J = 1, MAXCAT
 IK = 11, MAXAN
 SUM = SUM + X(J) * X(IK) * C(J,IK)
 CONTINUE
 DO 710 IK = 11, MAXAN
 SUMK(IK) = SUM * ABS(Z(IK))
 CONTINUE
 DO 720 IK = 11, MAXAN
 GX(IK) = EXP(Z(IK)**2+F+SUMAC(IK)+SUMAA(IK)+SUMCC(IK)+SUMK(IK))
 CONTINUE
RETURN
END

C---

C---

SUBROUTINE INTERACTION(21,22,I,A,PHIPHI,PHIPRI,PHIIJ,THETA,
AKI,AKII)
C This subroutine calculates the higher-order electrostatic interaction terms for the Pitzer equations.

REAL I, JX(2,2), JXPRIME(2,2)
DIMENSION B(0:22), D(0:22), ZA(2), XA(2,2)
DOUBLE PRECISION AKI(0:20), AKII(0:20)

B(21) = 0
B(22) = 0
D(21) = 0
D(22) = 0
ZA(1) = Z1
ZA(2) = Z2

DO 770 JJ = 1, 2
 DO 760 IJ = 1, 2
 XA(JJ, IJ) = 6*ZA(IJ)*ZA(JJ)*C*SQR(I)
 X = XA(JJ, IJ)
 IF (X .LT. 1) THEN
 ZZ = -.4*X**0.20-2.0
 DZ = 0.80*X**(-0.80)
 DO 740 K = 20, 0, -1
 B(K) = ZZ*B(K+1)-B(K)+AKI(K)
 D(K) = B(K+1)+ZZ*D(K+1)-D(K)
 END DO
 ELSE
 ZZ = (40/9)*X**(-0.10)-22/9
 DZ = (-40/90)*X**(-1.10)
 DO 750 K = 20, 0, -1
 B(K) = ZZ*B(K+1)-B(K)+AKII(K)
 D(K) = B(K+1)+ZZ*D(K+1)-D(K)
 END DO
 END IF
 JS(JJ, IJ) = .25*X-1+.5*(B(0)-B(2))
 JXPRIME(JJ, IJ) = .25+.5*DZ*(D(0)-D(2))
 CONTINUE
760 CONTINUE
770 CONTINUE
ETHETA = (Z1*Z2/(4*I))*JX(1,2) - 5*JX(1,1) - 5*JX(2,2)
ETHPRI = ETHERA/ I *(2*I*Z2/(8*I**2))* (XA(1,2) * JXPRIME(1,2) - 5*
 XA(1,1) * JXPRIME(1,1) - 5*X A(2,2) * JXPRIME(2,2)
PHII = THETA + ETHERA + I * ETHPRI
PHII = THETA + ETHPRI
RETURN
END

C---
C---

SUBROUTINE PPRINT
C Subroutine prints the results.

REAL MOL, K, IX, I
CHARACTER*20 SPECIS(30), SOLID(31:60)
CHARACTER*50 TITLE
DIMENSION AX(60)
DOUBLE PRECISION X

COMMON /B/ X(60), GX(60), K(20:60), AH2O, DEL(5),
 XIX(30), TITLE, ITER, AX(60), TEMP, I, PHI

25
DATA SPECIS / 'NA', 'K', 'CA', 'Mg', 'H', 0, 0, 0, 0, 0,
 'Cl', 'SO4', 'OH', 'HCO3', 'CO3', 0, 0, 0, 0,
 'CO2(AQ)', 'CASO4', 'MGSO4', 0, 0, 0, 0, 0, 'CO2(AM)', 'H2O(L)' /
DATA SOLID / 'ICE', 'NACL.2H2O', 'NACL', 'KCL', 'CACL2.6H2O',
 'MGCL2.6H2O', 'MGCL2.8H2O', 'MGCL2.12H2O', 'KMGL3.6H2O',
 'CACL2.2MGCL2.12H2O', 'NA2SO4.10H2O', 'NA2SO4', 'MGSO4.6H2O',
 'MGSO4.7H2O', 'K2SO4', 'MGSO4.K2SO4.6H2O',
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /
GX(22) = 1
GX(23) = 1
CALL PITZER
DO 780 J = 1, 30
 AX(J) = X(J) * GX(J)
780 CONTINUE
WRITE(2,785) TITLE
785 FORMAT(A50)
WRITE(2,*)
WRITE(2,787) "Temp(K)", "Ion.Str.", "AH2O", "Phi", "H2O(g)", "Ice(g)"
787 FORMAT(1X, A7, A15, A10, A13, A14, A13)
WRITE(2,790) TEMP, I, AH2O, PHI, X(30), X(31)
790 FORMAT(1X, G10.5, 1X, 5G13.5)
WRITE(2,*)
WRITE(2,795) "Solution", "Initial", "Final"
795 FORMAT(1X, A8, A13, A11)
WRITE(2,797) "SPECIES", "Conc.", "Conc.", "Act.Coeff.", "Activity",
 "Moles"
797 FORMAT(1X, A7, A12, A13, A17, A12, A10)
DO 810 J = 1, 23
 MOLE = X(J) * X(30) / 1000
 IF (MOLE .EQ. 0) GOTO 810
 WRITE(2,800) SPECIS(J), IX(J), X(J), GX(J), AX(J), MOLE
800 FORMAT(1X, A11, 5G13.5)
810 CONTINUE
MOLE = X(30) / 18.0153
WRITE(2,812) SPECIS(30), AH2O, MOLE
812 FORMAT(1X, A11, 42X, G10.5, G12.5)
WRITE(2,*)
WRITE(2,815) "Solid", "Equil."
815 FORMAT(1X, A5, 30X, A7)
WRITE(2,817) "SPECIES", "Moles", "Constant"
817 FORMAT(1X, A7, A21, A16)
DO 840 J = 31, 46
 MOLE = X(J) * X(30) / 1000
 IF (J .EQ. 31) MOLE = X(31) / 18.0153
 WRITE(2,830) SOLID(J), MOLE, K(J)
830 FORMAT(1X, A20, 2G13.5)
840 CONTINUE
WRITE(2,*)
WRITE(2,845) "CaSO4 (ionpair)", K(22)
845 FORMAT(1X, A15, G31.5)
WRITE(2,850) "MgSO4 (ionpair)", K(23)
850 FORMAT(1X, A15, G30.5)
WRITE(2,*)
WRITE(2,*) " Iterations = ", ITER
WRITE(2,*)
WRITE(2,*)
RETURN
END

C--

C--
SUBROUTINE NACL

C Subroutine for NaCl equilibrium.

REAL IX, I, K
CHARACTER*50 TITLE
DOUBLE PRECISION NAT, CLT, KPRIME, X, DELTA

COMMON /B/ X(60), GX(60), K(20:60), AH2O, DEL(5),
xIX(30), TITLE, ITER, AX(60), TEMP, I, PHI

DELTA=0
HHALIT = K(32) / AH2O**2
HALITE = K(33)
NAT = X(1) + X(32) + X(33)
CLT = X(11) + X(32) + X(33)
IF (HHALIT .GT. HALITE) KPRIME = K(33)/(GX(1)*GX(11))
IF (HALITE .GT. HHALIT) KPRIME = K(32)/(GX(1)*GX(11)*AH2O**2)
IF (NAT*CLT-KPRIME .GT. 0) GOTO 860

855 X(1) = NAT
X(11) = CLT
X(32) = 0
X(33) = 0
GOTO 880

860 DECREM = MIN(NAT, CLT)
DO 870 KA = 2, 5
865 DELTA = DELTA+DECREM*(DEL(KA)-1)
IF (DELTA .LT. 0) GOTO 855
X(1) = NAT - DELTA
X(11) = CLT - DELTA
IF (KA .EQ. 5) CALL PIZER
HHALIT = K(32) / AH2O**2
HALITE = K(33)
IF (HHALIT .GT. HALITE) KPRIME = K(33)/(GX(1)*GX(11))
IF (HALITE .GT. HHALIT) KPRIME = K(32)/(GX(1)*GX(11)*AH2O**2)
X = X(1)*X(11)-KPRIME .GT. 0) GOTO 865
DELTA = DELTA-DECREM*(DEL(KA)-1)

870 CONTINUE
X(1) = NAT - DELTA
X(11) = CLT - DELTA
IF (HHALIT .GT. HALITE) THEN
X(33) = DELTA
X(32) = 0
ELSE
X(32) = DELTA
X(33) = 0
END IF

880 RETURN
END

C---

C---

SUBROUTINE SYLVE

C Subroutine for KCl equilibrium.

REAL IX, I, K
CHARACTER*50 TITLE
DOUBLE PRECISION KT, CLT, KPRIME, X, DELTA

27
COMMON /B/ X(60),GX(60),K(20:60),AH2O,DEL(5),
XIX(30),TITLE,ITER,AX(60),TEMP,I,PHI

DELTA=0
KT = X(2) + X(34)
CLT = X(11) + X(34)
KPRIME = K(34) / (GX(2)*GX(11))
IF (KT*CLT-KPRIME .GT. 0) GOTO 890

885 X(2) = KT
X(11) = CLT
X(34) = 0
GOTO 910

890 DECREM = MIN(KT,CLT)
DO 900 KA = 2, 5

895 DELTA = DELTA+DECREM*(DEL(KA)-1)
IF (DELTA .LT. 0) GOTO 885
X(2) = KT - DELTA
X(11) = CLT - DELTA
IF (KA .EQ. 5) CALL Pitzer
KPRIME = K(34)/(GX(2)*GX(11))
IF (X(2)*X(11)-KPRIME .GT. 0) GOTO 895
DELTA = DELTA-DECREM*(DEL(KA)-1)

900 CONTINUE
X(2) = KT-DELTA
X(11) = CLT-DELTA
X(34) = DELTA

910 RETURN
END

C---
C---
C
SUBROUTINE ANTARCTICITE

C Subroutine for CaCl2 equilibrium.

REAL IX,I,K
CHARACTER*50 TITLE
DOUBLE PRECISION CAT,CLT,KPRIME,X,DELTA

COMMON /B/ X(60),GX(60),K(20:60),AH2O,DEL(5),
XIX(30),TITLE,ITER,AX(60),TEMP,I,PHI

DELTA=0
CAT = X(3) + X(35)
CLT = X(11) + 2*X(35)
KPRIME = K(35)/(GX(3)*GX(11)**2*AH2O**6)
IF (CAT*CLT**2-KPRIME .GT. 0) GOTO 920

915 X(3) = CAT
X(11) = CLT
X(35) = 0
GOTO 940

920 DECREM = MIN(CAT,CLT)
DO 930 KA = 2, 5

925 DELTA = DELTA+DECREM*(DEL(KA)-1)
IF (DELTA .LT. 0) GOTO 915
X(3) = CAT - DELTA
X(11) = CLT - 2*DELTA
IF (KA .EQ. 5) CALL Pitzer
KPRIME = K(35)/(GX(3)*GX(11)**2*AH2O**6)
IF (X(3)*X(11)**2-KPRIME .GT. 0) GOTO 925
DELTA = DELTA - DECREM*(DEL(KA)-1)

C---
C---
930 CONTINUE
 X(3) = CAT-DELTA
 X(11) = CLT - 2*DELTA
 X(35) = DELTA
940 RETURN
END

C--

C--

SUBROUTINE MGCL2

C Subroutine for MgCl2 equilibrium.

REAL IX,I,K
CHARACTER*50 TITLE
DOUBLE PRECISION MGT,CLT,KPRIME,X,DELTA,KPRIM1,KPRIM2,KPRIM3

COMMON /B/ X(60),GX(60),K(20:60),AH2O,DEL(5),
 IIX(30),TITLE,ITER,AX(60),TEM,IT,PHI

DELTA=0
MGT = X(4)+X(36)+X(37)+X(38)
CLT = X(11)+2*X(36)+2*X(37)+2*X(38)
KPRIM1 = K(36)/(GX(4)*GX(11)**2*AH2O**6)
KPRIM2 = K(37)/(GX(4)*GX(11)**2*AH2O**8)
KPRIM3 = K(38)/(GX(4)*GX(11)**2*AH2O**12)
KPRIME=MIN(KPRIM1,KPRIM2,KPRIM3)
IF (MGT*CLT**2>KPRIME .GT. 0) GOTO 960
950 X(4) = MGT
 X(11) = CLT
 X(36) = 0
 X(37) = 0
 X(38) = 0
 GOTO 990
960 DECREM = MIN(MGT,CLT)
DO 980 KA = 2, 5
970 DELTA = DELTA+DECREM*(DEL(KA)-1)
 IF (DELTA .LT. 0) GOTO 950
 X(4) = MGT - DELTA
 X(11) = CLT-2*DELTA
 IF (KA .EQ. 5) CALL Pitzer
 KPRIM1 = K(36)/(GX(4)*GX(11)**2*AH2O**6)
 KPRIM2 = K(37)/(GX(4)*GX(11)**2*AH2O**8)
 KPRIM3 = K(38)/(GX(4)*GX(11)**2*AH2O**12)
 KPRIME=MIN(KPRIM1,KPRIM2,KPRIM3)
 IF (X(4)*X(11)**2>KPRIME .GT. 0) GOTO 970
 DELTA = DELTA - DECREM*(DEL(KA)-1)
980 CONTINUE
 X(4) = MGT - DELTA
 X(11) = CLT - 2*DELTA
 IF (KPRIM1 .EQ. KPRIME) THEN
 X(36) = DELTA
 X(37) = 0
 X(38) = 0
 END IF
 IF (KPRIM2 .EQ. KPRIME) THEN
 X(37) = DELTA
 X(36) = 0
 X(38) = 0
 END IF
 IF (KPRIM3 .EQ. KPRIME) THEN

29
X(38) = DELTA
X(36) = 0
X(37) = 0

END IF

990 RETURN
END

C---

C---

SUBROUTINE CARNALLITE

C Subroutine for KMgCl3.6H2O equilibrium.

REAL I,K
CHARACTER*50 TITLE
DOUBLE PRECISION KT,MGT,CLT,KPRIME,X,DELTA

COMMON /B/ X(60),GX(60),K(20:60),AH2O,DEL(5),xix(30),TITLE,ITER,AX(60),TEMP,I,PHI

DELTA=0
KT = X(2) + X(39)
MGT = X(4) + X(39)
CLT = X(11) + 3*X(39)
KPRIME = X(39)/(GX(2)*GX(4)*GX(11)**3*AH2O**6)
IF (KT*MGT*CLT**3-KPRIME .GT. 0) GOTO 1005

1000 X(2) = KT
X(11) = CLT
X(4) = MGT
X(39) = 0
GOTO 1030

1005 DECREM = MIN(KT,MGT,CLT)
DO 1020 KA = 2, 5

1010 DELTA = DELTA+DECREM*(DEL(KA)-1)
IF (DELTA .LT. 0) GOTO 1000
X(2) = KT - DELTA
X(4) = MGT - DELTA
X(11) = CLT - 3*DELTA
IF (KA .EQ. 5) CALL PITZER
KPRIME = X(39)/(GX(2)*GX(4)*GX(11)**3*AH2O**6)
IF (X(2)*X(4)*X(11)**3-KPRIME .GT. 0) GOTO 1010
DELTA = DELTA - DECREM*(DEL(KA)-1)
CONTINUE

1030 RETURN
END

C---

C---

SUBROUTINE TACHYHYDRITE

C Subroutine for CaMg2Cl6.12H2O equilibrium.

REAL IX,I,K
CHARACTER*50 TITLE

C---
COMMON /B/ X(60),GX(60),K(20:60),AH2O,DEL(5),
XIX(30),TITLE,ITER,AX(60),TEMP,I,PHI

DOUBLE PRECISION KPRIME,CAT,MGT,CLT,X,DELTA

DELTA=0
CAT = X(3) + X(40)
MGT = X(4) + 2*X(40)
CLT = X(11) + 6*X(40)
KPRIME = K(40)/(GX(3)*GX(4)**2*GX(11)**6*AH2O**12)
IF (CAT*MGT**2*CLT**6-KPRIME .LT. 0) GOTO 1050

1040 X(3) = CAT
X(11) = CLT
X(4) = MGT
X(40) = 0
GOTO 1080

1050 DECREM = MIN(CAT,MGT,CLT)
DO 1070 KA = 2, 5

1060 DELTA = DELTA+DECREM*(DEL(KA)-1)
IF (DELTA .LT. 0) GOTO 1040
X(3) = CAT - DELTA
X(4) = MGT - 2*DELTA
X(11) = CLT - 6*DELTA
IF (KA .EQ. 5) CALL PITZER
KPRIME = K(40)/(GX(3)*GX(4)**2*GX(11)**6*AH2O**12)
IF (X(3)*X(4)**2*X(11)**6-KPRIME .GT. 0) GOTO 1060
DELTA = DELTA-DECREM*(DEL(KA)-1)

1070 CONTINUE
X(3) = CAT - DELTA
X(4) = MGT - 2*DELTA
X(11) = CLT - 6*DELTA
X(40) = DELTA

1080 RETURN
END

SUBROUTINE ARCANITE

C Subroutine for K2SO4 equilibrium.

REAL IX,I,K
CHARACTER*50 TITLE
DOUBLE PRECISION KT,SO4T,KPRIME,X,DELTA

COMMON /B/ X(60),GX(60),K(20:60),AH2O,DEL(5),
XIX(30),TITLE,ITER,AX(60),TEMP,I,PHI

DELTA=0
KT = X(2) + 2*X(45)
SO4T = X(12) + X(45)
KPRIME = K(45)/(GX(2)**2*GX(12))
IF (KT**2*SO4T-KPRIME .GT. 0) GOTO 1100

1090 X(2) = KT
X(12) = SO4T
X(45) = 0
GOTO 1130

1100 DECREM = MIN(KT,SO4T)
DO 1120 KA = 2, 5

1110 DELTA = DELTA+DECREM*(DEL(KA)-1)
IF (DELTA .LT. 0) GOTO 1090
X(2) = KT - 2*DELTA
X(12) = SO4T - DELTA
IF (KA .EQ. 5) CALL Pitzer
KP = K(45)/(Gx(2)**2*Gx(12))
IF (X(2)**2*X(12)-KP .GT. 0) GOTO 110
DELTA = DELTA - DECREM*(DEL(KA)-1)
1120 CONTINUE
X(2) = KT - 2*DELTA
X(12) = SO4T - DELTA
X(45) = DELTA
1130 RETURN
END

SUBROUTINE NA2SO4

C Subroutine for Na2SO4 equilibrium.

REAL MIRAB,IX,I,K
CHARACTER*50 TITLE
DOUBLE PRECISION NAT,SO4T,KPRIME,X,DELTA

COMMON /B/ X(60),GX(60),K(20:60),AH2O,DEL(5),
XIX(30),TITLE,ITER,AX(60),TEMP,I,PHI

DELTA=0
NAT = X(1)+2*X(41)+2*X(42)
SO4T = X(12)+X(41)+X(42)
MIRAB = K(41)/AH2O**10

tenar = K(42)
IF (MIRAB .GT. TENAR) THEN
 KPRIME = K(42)/(GX(1)**2*Gx(12))
ELSE
 KPRIME = K(41)/(GX(1)**2*Gx(12)*AH2O**10)
END IF
IF (NAT**2*SO4T-KPRIME .GT. 0) GOTO 1150
1140 X(1) = NAT
X(12) = SO4T
X(41) = 0
X(42) = 0
GOTO 1180
1150 DECREM = MIN(NAT,SO4T)
DO 1170 KA = 2, 5
1160 DELTA = DELTA+DECREM*(DEL(KA)-1)
IF (DELTA .LT. 0) GOTO 1140
X(1) = NAT - 2*DELTA
X(12) = SO4T - DELTA
IF (KA .EQ. 5) CALL Pitzer
MIRAB = K(41)/AH2O**10
TENAR = K(42)
IF (MIRAB .GT. TENAR) THEN
 KPRIME = K(42)/(GX(1)**2*Gx(12))
ELSE
 KPRIME = K(41)/(GX(1)**2*Gx(12)*AH2O**10)
END IF
IF (X(1)**2*X(12)-KPRIME .GT. 0) GOTO 1160
DELTA = DELTA - DECREM*(DEL(KA)-1)
1170 CONTINUE
X(1) = NAT - 2*DELTA
X(12) = SO4T - DELTA
IF (MIRAB .LT. TENAR) THEN
X(41) = DELTA
X(42) = 0
ELSE
X(42) = DELTA
X(41) = 0
END IF
1180 RETURN
END

C---

C---

SUBROUTINE MGSO4

C Subroutine for MgSO4 equilibrium.

REAL IX, I, K
CHARACTER*50 TITLE
DOUBLE PRECISION A, B, C, XA, MGT, SO4T, KPRIME, KIONFR, X, DELTA

COMMON /B/ X(60), GX(60), K(20:60), AH2O, DEL(5),
 IX(30), TITLE, ITER, AX(60), TEMP, I, PHI

DELTA=0
MGT = X(4)+X(43)+X(44)+X(23)
SO4T = X(12)+X(43)+X(44)+X(23)
HEXAHY = K(43)/AH2O**6
EPSOM = K(44) / AH2O**7
IF (HEXAHY .LT. EPSOM) THEN
 KPRIME = K(43)/(GX(4)*GX(12)*AH2O**6)
ELSE
 KPRIME = K(44)/(GX(4)*GX(12)*AH2O**7)
END IF
IF (MGT*SO4T-KPRIME .GT. 0) GOTO 1200
1190 KIONFR = K(23)/(GX(4)*GX(12))
A = 1
B = -1*(MGT+SO4T+KIONFR)
C = MGT*SO4T
XA = (-B-SQRT(B**2-4*A*C))/(2*A)
X(4) = MGT - XA
X(12) = SO4T - XA
X(23) = XA
X(43) = 0
X(44) = 0
GOTO 1230
1200 DECREM = MIN(MGT, SO4T)
DO 1220 KA = 2, 5
1210 DELTA = DELTA+DECREM*(DEL(KA)-1)
IF (DELTA .LT. 0) GOTO 1190
KIONFR = K(23)/(GX(4)*GX(12))
X(23) = KPRIME/KIONFR
X(4) = MGT - DELTA - X(23)
X(12) = SO4T - DELTA - X(23)
IF (KA .EQ. 5) CALL PITZER
HEXAHY = K(43)/AH2O**6
EPSOM = K(44)/AH2O**7
IF (HEXAHY .LT. EPSOM) THEN
 KPRIME = K(43)/(GX(4)*GX(12)*AH2O**6)
ELSE
 KPRIME = K(44)/(GX(4)*GX(12)*AH2O**7)
END IF

33
IF (X(4)*X(12)-KPRIME .GT. 0) GOTO 1210
DELTA = DELTA-DECREM*(DEL(KA)-1)

1220 CONTINUE
X(23) = KPRIME/KIONPR
X(4) = MGT - DELTA - X(23)
X(12) = SO4T - DELTA - X(23)
IF (HEXAHY .LT. EPSOM) THEN
 X(43) = DELTA
 X(44) = 0
ELSE
 X(44) = DELTA
 X(43) = 0
END IF

1230 RETURN
END

C---
C---

SUBROUTINE PICROMERITE

C Subroutine for K2Mg(SO4)2.6H2O equilibrium.

REAL IX,I,K
CHARACTER*50 TITLE
DOUBLE PRECISION A,B,C,XA,MGT,KT,SO4T,KPRIME,KIONPR,X,DELTA

COMMON /B/ X(60), GX(60), K(20:60), AH2O, DEL(5),
 xIX(30), TITLE, ITER, AX(60), TEMP, I, PHI

PHASE = PHASE + 1
DELTA=0
KPRIME = K(46)/(GX(4)*GX(2)**2*GX(12)**2*AH2O**6)
MGT = X(4) + X(46) + X(23)
KT = X(2) + 2*X(46)
SO4T = X(12) + 2*X(46) + X(23)
IF (MGT*KT**2*SO4T**2-KPRIME .GT. 0) GOTO 1250

1240 KIONPR = K(23)/(GX(4)*GX(12))
A = 1
B = -1*(MGT+SO4T+KIONPR)
C = MGT*SO4T
XA = (-B-SQRT(B**2-4*A*C))/(2*A)
X(4) = MGT - XA
X(12) = SO4T - XA
X(23) = XA
X(2) = KT
X(46) = 0
GOTO 1280

1250 DECREM = MIN(MGT,SO4T,KT)
DO 1270 KA = 2, 5
1260 DELTA = DELTA+DECREM*(DEL(KA)-1)
IF (DELTA .LT. 0) GOTO 1240
KIONPR = K(23)/(GX(4)*GX(12))
X(23) = KPRIME/KIONPR
X(4) = MGT - DELTA - X(23)
X(12) = SO4T - 2*DELTA - X(23)
X(2) = KT - 2*DELTA
IF (KA .EQ. 5) CALL Pitzer
KPRIME = K(46)/(GX(4)*GX(2)**2*GX(12)**2*AH2O**6)
IF (X(4)*X(2)**2*X(12)**2-KPRIME .GT. 0) GOTO 1260
DELTA = DELTA-DECREM*(DEL(KA)-1)
1270 CONTINUE
X(23) = KPRIME/KIONPR
X(4) = MGT - DELTA - X(23)
X(12) = SO4T - 2*DELTA - X(23)
X(2) = KT - 2*DELTA
X(46) = DELTA
1280 RETURN
END

C---

C---

SUBROUTINE CASO4

C Subroutine for CaSO4 equilibrium.

REAL IX, I, K
CHARACTER*50 TITLE
DOUBLE PRECISION A, B, C, XA, CAT, SO4T, KIONPR, IXA, X

COMMON /B/ X(60), GX(60), X(20:60), AH2O, DEL(5),
 XIX(30), TITLE, ITER, AX(60), TEMP, I, PHI

1290 CALL PITZER
 KIONPR = X(22)/(GX(3)*GX(12))
 CAT = X(3) + X(22)
 SO4T = X(12) + X(22)
 IXA = X(22)
 A = 1
 B = -1*(CAT + SO4T + KIONPR)
 C = CAT*SO4T
 XA = (-B-SQRT(B**2-4*A*C))/(2*A)
 X(3) = CAT - XA
 X(12) = SO4T - XA
 X(22) = XA
 IF ((ABS(IXA-XA)/XA)*100 .GT. 1) GOTO 1290
RETURN
END

C---

35
FREZCHEM: A Chemical-Thermodynamic Model for Aqueous Solutions at Subzero Temperatures

Giles M. Marion and Steven A. Grant

U.S. Army Cold Regions Research and Engineering Laboratory
72 Lyme Road
Hanover, N.H. 03755-1290

Office of the Chief of Engineers
Washington, DC 02314-1000

Approved for public release; distribution is unlimited.
Available from NTIS, Springfield, Virginia 22161

This report documents a FORTRAN version of the Spencer-Møller-Weare chemical thermodynamic model for aqueous electrolyte solutions at subzero temperatures (FREZCHEM). FREZCHEM is structured to predict the chemical composition and unfrozen water of aqueous solutions between -60 °C and +25 °C at atmospheric pressure (0.101325 MPa). FREZCHEM includes two reaction pathways: 1) freezing at variable temperature and fixed total water and 2) evaporation at variable water and fixed temperature. Activity coefficients and the activity of water are calculated using the Pitzer equations, which are valid to high solution ionic strengths (=20 mol kg⁻¹). Fifteen chloride and sulfate salts of sodium, potassium, calcium, and magnesium are included in the model. Predicted and experimental measurements of solute molalities and the unfrozen water fraction during seawater freezing are in good agreement. At -50 °C, 0.3% of seawater remains unfrozen with 99.7% of Na and 95.5% of Cl having precipitated into one of four salts. FREZCHEM should find many applications in physicochemical studies of aqueous solutions and freezing.

Aqueous solutions
Computer modeling
Evaporation
Freezing
Salts
Thermodynamics

UNCLASSIFIED
UNCLASSIFIED
UNCLASSIFIED

1a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.
Available from NTIS, Springfield, Virginia 22161

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report documents a FORTRAN version of the Spencer-Møller-Weare chemical thermodynamic model for aqueous electrolyte solutions at subzero temperatures (FREZCHEM). FREZCHEM is structured to predict the chemical composition and unfrozen water of aqueous solutions between -60 °C and +25 °C at atmospheric pressure (0.101325 MPa). FREZCHEM includes two reaction pathways: 1) freezing at variable temperature and fixed total water and 2) evaporation at variable water and fixed temperature. Activity coefficients and the activity of water are calculated using the Pitzer equations, which are valid to high solution ionic strengths (=20 mol kg⁻¹). Fifteen chloride and sulfate salts of sodium, potassium, calcium, and magnesium are included in the model. Predicted and experimental measurements of solute molalities and the unfrozen water fraction during seawater freezing are in good agreement. At -50 °C, 0.3% of seawater remains unfrozen with 99.7% of Na and 95.5% of Cl having precipitated into one of four salts. FREZCHEM should find many applications in physicochemical studies of aqueous solutions and freezing.

14. SUBJECT TERMS

Aqueous solutions
Computer modeling
Evaporation
Freezing
Salts
Thermodynamics

UNCLASSIFIED
UNCLASSIFIED
UNCLASSIFIED

15. NUMBER OF PAGES
37

16. PRICE CODE
UL

17. SECURITY CLASSIFICATION OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT
UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prepared by ANSI Std. Z39-18
298-102