NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may be any way related thereto.

This report is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

ED PENDLETON
Project Engineer
Aeroelasticity Section
Structural Dynamics Branch

TERRY M. HARRIS
Technical Manager
Aeroelasticity Section
Structural Dynamics Branch

JOSEPH W. MOSCHLER, Major, USAF
Chief, Structural Dynamics Branch
Structures Division

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify WL/FIBGE Bldg. 45, 2130 Eighth St Ste 1, Wright-Patterson Air Force Base, OH 45433-7542 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.
Buffeting pressure measurements were made on the vertical tail surface of a full scale F/A-18 aircraft model in the National Full Scale Aerodynamics Complex at NASA Ames Research Center. Test variables included aircraft angle-of-attack, aircraft sideslip angle, and dynamic pressure. Accelerometers were used to obtain vertical tail accelerations. Pressure transducers were mounted on the starboard vertical tail. Steady and unsteady pressures were obtained. Unsteady pressure data were reduced to PSD and CSD forms. Both steady and unsteady RMS pressure coefficients are also presented.

Volume 1 contains the general description of the model, the test program, and highlights of the reduced data. Volume 2 contains steady and unsteady RMS data. Volume 3 contains unsteady PSD results. Volume 4 contains unsteady CSD results.
Foreword

This report was prepared by the Structural Dynamics Branch, Structures Division, Flight Dynamics Directorate, Wright Laboratory, Wright Patterson Air Force Base, Ohio. The wind tunnel test program described in this report was conducted during a joint NASA, Navy, and Air Force F/A-18 test program conducted at the NASA Ames Research Center. The wind tunnel data taken by Wright Laboratory engineers during the F/A-18 wind tunnel test was acquired in support of Project 2401, “Structural Mechanics”, Task 240104, “Vibration Prediction and Control, Measurement, and Analysis” and Work Unit 24010446, F-18 Twin Vertical Tail Buffet. The project engineers for this effort were Mr. Ed Pendleton and Mr. Chris Pettit. Mr. Dansen Brown, a mathematician, provided engineering analysis support for reduction of the test data. Mr. Mike Banford was the lead technician responsible for instrumentation and data collection.

The authors wish to thank the NASA Ames F/A-18 Wind Tunnel Test Team for their cooperation during testing of the F/A-18, especially Mr. Gavin Botha, Ms. Wendy Lanser, Mr. Kevin James, Mr. Roger Stewart, and Mr. Roy Arakaki. The authors also wish to thank Dr. Holt Ashley of RANN Corporation, Mr. Marty Ferman formerly of McDonnell Douglas Corporation and now at Parks College, and Dr. James Olsen for their technical advice and suggestions during the preparation of this report. The authors further thank Mr. Larry Dukate for assistance in reducing test data; and Mr. Mike Hart, Mr. Scott Harris, and Mr. Dick Ta for their technical assistance during the instrumentation phase of the test program.

This manuscript was released in August 1994 for publication as a Technical Memorandum. This report covers technical work conducted from March 1993 through August 1994.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II Cross Spectral Densities of Unsteady Pressure Coefficients and Accelerations — 20° Angle-of-Attack, 33 psf Dynamic Pressure</td>
<td>3</td>
</tr>
</tbody>
</table>
List of Illustrations

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Six by Six Grid of Pressure Transducers</td>
<td>4</td>
</tr>
<tr>
<td>2 - 325</td>
<td>Differential Pressure Coefficient CSDs - Angle-of-Attack = 20°, Sideslip = 0°, Q = 33 psf (LEX Fence OFF)</td>
<td>7</td>
</tr>
<tr>
<td>326 - 649</td>
<td>Differential Pressure Coefficient CSDs - Angle-of-Attack = 20°, Sideslip = 0°, Q = 33 psf (LEX Fence ON)</td>
<td>333</td>
</tr>
<tr>
<td>650 - 657</td>
<td>CSDs between Inside and Outside Surface Pressure Coefficients at Each Transducer Station - Angle-of-Attack = 20°, Sideslip = 0°, Q= 33 psf (LEX Fence OFF and ON)</td>
<td>659</td>
</tr>
<tr>
<td>658 - 661</td>
<td>Fin-Tip Acceleration CSDs - Angle-of-Attack = 20°, Sideslip = 0°, Q = 33 psf (LEX Fence OFF)</td>
<td>679</td>
</tr>
<tr>
<td>662 - 665</td>
<td>Fin-Tip Acceleration CSDs - Angle-of-Attack = 20°, Sideslip = 0°, Q = 33 psf (LEX Fence ON)</td>
<td>685</td>
</tr>
<tr>
<td>666 - 667</td>
<td>CSDs between Differential Pressure Coefficient at 10% Chord, 85% Span and Fin-Tip Accelerations - Angle-of-Attack = 20°, Sideslip = 0°, Q = 33 psf (LEX Fence OFF and ON)</td>
<td>691</td>
</tr>
</tbody>
</table>
Section I

Introduction

Contemporary twin-tail fighter aircraft may encounter high frequency empennage vibrations caused by flow emanating from the forebody or wings during high angle-of-attack maneuvering. This turbulent flow occurs when the air flow on the forebody or upper wing surfaces becomes detached at high angles of attack. The separated flow becomes turbulent, resulting in fluctuating pressures on the wings and other surfaces in the flow path.

The induced unsteady pressures, commonly referred to as buffet, are broad-band random fluctuations having predominant frequencies associated with the primary airflow characteristics of the aircraft. These primary airflow properties may include, but are not limited to, vortex flow from engine inlets, sharp corners, and highly swept lifting surfaces. In the current application, the turbulent flow excites tail surfaces embedded in the flow, and large oscillatory structural responses result at the resonant frequencies of the tail. After prolonged exposure to this flow environment, the tail structure can begin to fatigue and repairs must be initiated. The maintenance costs and aircraft down time associated with these repairs are often quite high. To reduce these costs, the tail structure and associated equipment must be designed to both minimize and tolerate these oscillatory responses.

One twin-tail fighter aircraft that often encounters tail buffet when conducting air combat maneuvers at high angles-of-attack is the F/A-18. In an effort to quantify the F/A-18 tail buffet loads and to provide data for use in the development of potential solutions to counter the twin tail buffet problem, wind tunnel tests were conducted to measure the aerodynamic pressures on the twin tails of an F/A-18. Buffet pressures and the resulting structural vibrations of the vertical fins were obtained over a range of angle of attack and sideslip conditions.

Volume IV of this technical report presents the Cross Spectral Densities (CSDs) of the unsteady pressures and accelerations measured on the F/A-18’s vertical tails during selected
wind tunnel test conditions. This volume is bound in two parts: Part 1 contains various pressure and acceleration cross spectral densities from the $\alpha = 20^\circ$, $\beta = 0^\circ$ test conditions, and Part 2 presents CSDs from the $\alpha = 32^\circ$, $\beta = 0^\circ$ test conditions. Volume I of this report presents a general description of the full scale aircraft model and the test program. Volume II presents results from both steady and unsteady pressures, obtained during high buffet flow conditions. Volume III of this technical report presents the Power Spectral Densities (PSD) of the measured aerodynamic pressures and accelerations.
Section II

Cross Spectral Densities
of Unsteady Pressure Coefficients and Accelerations

The wind tunnel buffet tests were conducted during a ten day period in August 1993 at the NASA Ames NAFC 80-by-120 foot tunnel in Mountain View, California. Unsteady pressure measurements, as well as acceleration data, were obtained for sixty-three (63) test conditions. Four of the test conditions were at a dynamic pressure of 20 lb/ft^2, and fifty-nine of the conditions were at the maximum tunnel dynamic pressure of 33 lb/ft^2. During the tests, pressure measurements were collected as the static angle-of-attack, α, was varied through a range from 20 to 40 degrees at zero sideslip. Measurements were also obtained as the static aircraft sideslip angle, β, was varied from -16 to +16 deg at both 30 and 35 deg angle-of-attack. Measurements were taken both with and without the LEX fence both deployed.

Figure 1 shows the Kulite microphone pressure transducer locations along the F/A-18's twin vertical starboard tail. The station number for each pair of inside and outside transducers is equivalent to the number for each outboard transducer. Accelerometers were located on both starboard and port tails at the tails' tips close to the leading and trailing edges.

At each test condition, steady and unsteady pressure data were recorded for 30 sec with the data acquisition system's multiplexers operating in the direct current (DC) and alternating current (AC) modes, respectively. Seventy-two channels of pressure data and four channels of acceleration data were recorded.

Pressure differential time histories were computed for each pressure transducer pair at each location by subtracting the outer time history from the inner time history. These data and the acceleration data were converted to the frequency domain using Fast Fourier Transform (FFT) techniques. A transform size of 2048 resulted in a frequency resolution of approximately $\Delta f = 0.8 \text{ Hz}$. A Hanning window was applied to reduce the bandwidth leakage, and an average of 22
Figure 1. Six by six grid of pressure transducers.
transforms with a 50% overlap was used to increase statistical confidence. Power Spectral
Densities (PSDs) were then computed from the Fourier transforms, and the results were plotted
from 2 Hz to 120 Hz. The total record time of $T = 15 \text{ sec}$ was determined to be sufficiently long
with a sampling interval of $\Delta t = 611.77 \mu\text{sec}$. The resulting PSDs may be found in Volume III of
this report.

Cross Spectral Densities (CSDs) were computed for the $\alpha = 20^\circ$ and 32°, zero sideslip
test conditions, both with and without the LEX fence deployed. For each of these conditions, the
coherece and phase angle relations between several quantities were calculated. The
combinations of measured variables that were compared using cross spectral analysis included:

i. Differential pressure coefficients at pressure transducer stations i and j,
 $CSD(\Delta p_i, \Delta p_j)$, where $i, j = 1, 2, \ldots, 36$.

ii. Pressure coefficients on the inside and outside surfaces at each pressure
 transducer station, $CSD[(p_{in}, p_{out})_i]$ where $i = 1, 2, \ldots, 36$.

iii. Fin-tip accelerations from accelerometers S1, S2, P1, and P2. Note that S1 and S2
 are the starboard fore and aft accelerometers. P1 and P2 are defined similarly for
 the port fin.

iv. Differential pressure coefficient at 10% chord, 85% span and each of the fin-tip
 accelerations, $CSD(\Delta p_{6,67}, \ddot{z})$, where the subscript “6,67” indicates the difference
 between the pressure coefficients at transducer 6 and 67 in Figure 1. This
 comparison was directed toward a preliminary examination of motion-induced
 pressures (see Page 43 of Volume I). No analysis of this effect is included here
 since the primary purpose of this report is to organize and present the test data.

The cross spectral densities were computed using standard FFT techniques similar to those
described above for the PSDs.

Following the wind tunnel test, a post-test inspection of the instrumentation was
conducted to evaluate the condition of each pressure transducer. The inspection revealed that the
wire from transducer #26 had severed. All remaining transducers appeared functional, but some were slightly fouled with residue from test fogging mixture.

Reduction of the raw signals from data also revealed clues about transducer condition. Steady and unsteady data plots reduction confirmed that transducer #26 had been inoperative during the entire wind tunnel test. These pressure plots also indicated that transducer #22 had been functional for only a portion of the test and was inoperative for data records 66-79.

Steady pressure differences across the fin determined using transducer pairs #20 and #53 and #29 and #44 appeared to be inconsistent with the steady data from the other stations’ transducers. Unsteady RMS pressure differences across the fin determined using transducer pairs #29 and #44 also appeared to be inconsistent with the unsteady RMS data from the other stations’ transducers. Further inspection of the raw signals from these transducer pairs indicated that the signals from transducers #20, #53 and #44 were inconsistent with the signals from the other transducers.

Overall, the conclusion from evidence gathered during the post test inspections and steady and unsteady data reduction is that transducers #26 was nonfunctional for all records, transducers #20, #44 and #53 were functioning improperly for all records and #22 was nonfunctional for data records 66-79.
Differential Pressure Coefficient
Cross Spectral Densities

\[\alpha = 20^\circ, \beta = 0^\circ, Q = 33 \text{ psf} \]

(LEX fence OFF)

Within each quadrant of the page, the phase angle is displayed as the upper plot, and the coherence appears on the right-hand axis of the lower plot. The transducers being analyzed are listed near the upper right of each chart. Refer to the transducer reference numbers displayed in Figure 1.
F-18 Tail Buffet Test

F-18 Tail Buffet Test

F-18 Tail Buffet Test

F-18 Tail Buffet Test
F-18 Tail buffet Test

Graphs showing frequency response with various peak values and parameters.
Differential Pressure Coefficient
Cross Spectral Densities

\[\alpha = 20^\circ, \beta = 0^\circ, Q = 33 \text{ psf} \]
(LEX fence ON)

Within each quadrant of the page, the phase angle is displayed as the upper plot, and the coherence appears on the right-hand axis of the lower plot. The transducers being analyzed are listed near the upper right of each chart. Refer to the transducer reference numbers displayed in Figure 1.
F-1B Tail Buffet Test

Q-93 Alpha=20 Beta=0 FENCE ON PHS 9 : ref PHS 19

FREQUENCY - Hz

Theta = 0.3613 Hz

F-1B Tail Buffet Test

Q-93 Alpha=20 Beta=0 FENCE ON PHS 10 : ref PHS 19

FREQUENCY - Hz

Theta = 0.4010 Hz

F-1B Tail Buffet Test

Q-93 Alpha=20 Beta=0 FENCE ON PHS 12 : ref PHS 19

FREQUENCY - Hz

Theta = 0.509 Hz

F-1B Tail Buffet Test

Q-93 Alpha=20 Beta=0 FENCE ON PHS 11 : ref PHS 19

FREQUENCY - Hz

Theta = 0.592 Hz
F-18 Tail Buffer Test

Q-33 Agility-20 Beta-0 ENS ON

FREQUENCY - Hz
0 40

TWTILITY FUNCTION - WATT
0 100

F-18 Tail Buffer Test

Q-33 Agility-20 Beta-0 ENS ON

FREQUENCY - Hz
0 40

TWTILITY FUNCTION - WATT
0 100

F-18 Tail Buffer Test

Q-33 Agility-20 Beta-0 ENS ON

FREQUENCY - Hz
0 40

TWTILITY FUNCTION - WATT
0 100

F-18 Tail Buffer Test

Q-33 Agility-20 Beta-0 ENS ON

FREQUENCY - Hz
0 40

TWTILITY FUNCTION - WATT
0 100
Cross Spectral Densities between Inside and Outside Surface Pressures at Each Transducer Station

\[\alpha = 20^\circ, \beta = 0^\circ, Q = 33 \text{ psf} \]

LEX fence OFF and ON plots are displayed in the top and bottom halves of the page, respectively. Within each quadrant of the page, the phase angle is displayed as the upper plot, and the coherence appears on the right-hand axis of the lower plot. The transducers whose signals are being compared are listed near the upper right of each chart. Refer to the transducer reference numbers displayed in Figure 1.
Fin-Tip Acceleration

Cross Spectral Densities

$\alpha = 20^\circ, \beta = 0^\circ, Q = 33 \text{ psf}$

(LEX fence OFF)

Within each quadrant of the page, the phase angle is displayed as the upper plot, and the coherence appears on the right-hand axis of the lower plot. The transducers being analyzed are listed near the upper right of each chart. Accelerometer numbering is as follows:

<table>
<thead>
<tr>
<th>Accelerometer Number</th>
<th>Accelerometer Reference Name</th>
<th>Accelerometer Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>P2</td>
<td>Port Fin — Aft</td>
</tr>
<tr>
<td>74</td>
<td>P1</td>
<td>Port Fin — Fore</td>
</tr>
<tr>
<td>75</td>
<td>S2</td>
<td>Starboard Fin — Aft</td>
</tr>
<tr>
<td>76</td>
<td>S1</td>
<td>Starboard Fin — Fore</td>
</tr>
</tbody>
</table>
Fin-Tip Acceleration
Cross Spectral Densities

\[\alpha = 20^\circ, \beta = 0^\circ, Q = 33 \text{ psf} \]
(LEX fence ON)

Within each quadrant of the page, the phase angle is displayed as the upper plot, and the coherence appears on the right-hand axis of the lower plot. The transducers being analyzed are listed near the upper right of each chart. Accelerometer numbering is as follows:

<table>
<thead>
<tr>
<th>Accelerometer Number</th>
<th>Accelerometer Reference Name</th>
<th>Accelerometer Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>P2</td>
<td>Port Fin — Aft</td>
</tr>
<tr>
<td>74</td>
<td>P1</td>
<td>Port Fin — Fore</td>
</tr>
<tr>
<td>75</td>
<td>S2</td>
<td>Starboard Fin — Aft</td>
</tr>
<tr>
<td>76</td>
<td>S1</td>
<td>Starboard Fin — Fore</td>
</tr>
</tbody>
</table>
Cross Spectral Densities between Differential Pressure Coefficient
at 10% Chord, 85% Span and Fin-Tip Accelerations

\[\alpha = 20^\circ, \beta = 0^\circ, Q = 33 \text{ psf} \]

Eight CSDs are included in this section. LEX fence OFF results appear on the first page in this section, and LEX fence ON results appear on the second. Within each quadrant of the page, the phase angle is displayed as the upper plot, and the coherence appears on the right-hand axis of the lower plot. The transducers being analyzed are listed near the upper right of each chart. Refer to the transducer reference numbers displayed in Figure 1.