Identification of Resonant, Two-Electron, and Inter-Atomic Features in K and Γ_{23} NEXAFS Spectra

by

D.E. Ramaker, H. Sambe, H. Qian and W.E. O'Grady

Prepared for Publication in

Physics Scripta

George Washington University
Department of Chemistry
Washington, D.C.

September 1994

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
Identification of Resonant, Two-Electron, and Inter-Atomic Features in K and L\textsubscript{23} NEXAFS Spectra.

D.E. Ramaker, H. Sambe, X. Qian and W.E. O'Grady

Chemistry Department
George Washington University
Washington, D.C. 20052

Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

Approved for public release; distribution is unlimited.

Experimental Cl K NEXAFS spectra for Cl- hydrated in H\textsubscript{2}O, and on passivated Al electrodes (below and above the pitting potential) have widely different spectral line shapes. Experimental K- and L\textsubscript{23}-edge NEXAFS data for the alkali halides and rare gas solids are compared with FEFF6 calculated results to optimize code input parameters, test code validity, and identify many-body features in these model systems. Differences are shown to arise from many-body shake-up and charge-transfer excitations. Although relatively small in the model spectra, the latter interatomic excitations are believed to be primarily responsible for the different Cl- line shapes on the passivated Al electrodes.
Identification of Resonant, Two-electron, and Inter-atomic Features in K and L$_{23}$ NEXAFS Spectra

D.E. Ramakera, H. Sambea, H. Qiana and W.E. O'Gradyb

aGeorge Washington University, Wash. DC 20052, bNaval Research Laboratory, Wash., DC. 20375.

Abstract

Experimental Cl K NEXAFS spectra for Cl$^-$ hydrated in H$_2$O, and on passivated Al electrodes (below and above the pitting potential) have widely different spectral line shapes. Experimental K- and L$_{23}$-edge NEXAFS data for the alkali halides and rare gas solids are compared with FEFF6 calculated results to optimize, code input parameters, test code validity, and identify many-body features in these model systems. Differences are shown to arise from many-body shake-up and charge-transfer excitations. Although relatively small in the model spectra, the latter interatomic excitations are believed to be primarily responsible for the different Cl$^-$ line shapes on the passivated Al electrodes.

Keywords: NEXAFS, Chloride ion, Alkali halides, Rare gases, Many-body features

Corresponding Author
David E. Ramaker
Chemistry Department
George Washington University
Washington, DC 20052
Tel. 202-994-6934 FAX: 202-994-6934
E-mail: Ramaker@GWUVM.GWU.EDU
1. Introduction

Recent near edge X-ray absorption fine structure (NEXAFS) data have been used to observe the Cl$^-$ edge on passivated Al surfaces exposed to chloride solution as a function of the electrode potential above and below the pitting potential [1]. These spectra reveal that different chemical states of the chlorine atoms are present as a function of the electrode potential. In an attempt to understand the spectra of this complex disordered system, we undertook a study of several related model solids; namely alkali halides and rare gases. In the ionic picture, the alkali and halide ions are isoelectronic with rare-gas atoms.

2. Alkali halide results

Calculations utilizing the curved wave multiple scattering model (FEFF6 code [2]) on alkali halides involving Li$^+$, Na$^+$, K$^+$, Rb$^+$, F$^-$, Cl$^-$, and Br$^-$ for both the metal and halide K- and L$\text{2}\text{3}$-edges were performed. Since the L$\text{2}\text{3}$ edge is composed of the sum of the L$_2$ and L$_3$ edges, we developed an iterative method,

$$\mu_{i+1,L3}(E) = (\mu_{i,L3}(E) + \alpha [\mu_{\exp}(E) - R_{23}\mu_{i,L3}(E-\Delta E_{23})])/(1+\alpha),$$ \hspace{1cm} (1)
to separate the two, with the L_2/L_3 branching ratio, R_{23}, and energy separation ΔE_{23} as input parameters, and where α is a convergence control parameter, normally chosen to be unity. Often R_{23} can be determined using the first few peaks in the experimental spectrum since they are well isolated and ΔE_{23} can be obtained from XPS data. This iterative procedure is found to converge in 5 to 10 iterations, even for poor initial guesses of the L_3 (e.g., $\mu_i=0,L_3=\mu_{\text{exp}}$).

Fig. 1 compares the L_3 and L_2 components obtained from the experimental data for KCL[3]. The Cl-L_3 is compared with the Cl-d projected partial density of states (PDOS) obtained using the augmented plane wave method [4], and with FEFF6 results. The E_1 and E_2 excitonic states are not reproduced in the FEFF6 results. Except for R_7, all R_i resonant features are evident, thus suggesting little two-electron contributions if any.

We found the following general trends in FEFF6. For insulators with large band gaps such as those examined here, use of the ground state exchange correlation potential without a constant imaginary part best reproduces experimental data below 20 eV while above 30 eV
the Hedin-Lundquist self-energy is better. The inclusion of the core-hole (i.e. Z+1 effect) improves results, and the "non-ionic" calculations are better than the "ionic" calculations.

3. Condensed rare gas results

The NEXAFS spectra of solid Ne, Ar, and Kr, were examined utilizing FEFF6 calculations and gas phase spectra [5]. Seven features in the experimental K-edge NEXAFS of solid Ne that are not reproduced by the FEFF6 calculations are found to be attributable to two-electron excitations. Five of them are the usual one-center excitations coming from 1s2p → 3p3p and 1s2p → 3s3p shakeup excitations. The remaining two are novel two-center excitations involving semi-localized resonant orbitals, \(1s_a^2p_b \rightarrow 3p_a \leftrightarrow p_b \), where the subscripts \(a \) and \(b \) imply different atomic centers. Two-center excitations involving only bound orbitals, such as \(1s_a^2p_b \rightarrow 3p_a^+3p_b \), do not appear because of the smaller relaxation upon creation of the core hole by the localized 3p compared with that of the semi-localized \(\leftrightarrow p \) orbital.

4. Cl⁻/Al electrode results

Large pre-edge features visible in the Cl K-edge NEXAFS for Cl⁻/passivated Al electrodes,
which are not reproduced in the FEFF6 results, and also not present in results for NaCl, are attributed to two-center charge-transfer satellites. A Larson-Sawatzky model [6] is utilized to explain these satellites, which are particularly large at the Al electrode surface, and suggest the presence of ClO at the surface, vs Cl- in the bulk of the passivation layer (or in NaCl); with Cl- in larger quantities just below the pitting potential.

* Supported by the Office of Naval Research

References
Figure Caption

1. Decomposition of experimental [3] Cl K-edge NEXAFS (absorption) into the L$_3$ and L$_2$ components as described in the text ($R_{23} = 2.0$, $\Delta E_{23} = 1.6$ eV), and comparison of the L$_3$ component with optimally aligned Cl-d projected PDOS [4] and with FEFF6 results (maximum MS scattering length 9.5 Å with all paths included, i.e., criteria = 0, ground state exchange, and no mean free path corrections or Debye-Waller broadening). The core hole effect is included in the FEFF6 results, but not in the Cl-d PDOS. The Cl-s PDOS are ignored in both cases, and the transition matrix elements are not included in the Cl-d PDOS.