NANOPHASE MATERIALS: SYNTHESIS — PROPERTIES — APPLICATIONS
NATO Advanced Study Institute (ASI) 920873
20th June - 2nd July, 1993, Corfu, Greece

Submitted to:

Dr. Lawrence Kabacoff
Scientific Officer - Materials Division
ONR Code 1131M
Office of the Chief of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000

Grant No. N00014-93-1-0667

Submitted by:

George C. Hadjipanayis
Department of Physics and Astronomy
University of Delaware
Newark, DE 19716-2570
General Report

The concept of a NATO/ASI on nanophase materials originated in September of 1990 at the Conference on Nanostructured Materials in Atlantic City. It was clear in that conference that there was a need for a more tutorial-type meeting to review the present state of nanophase materials and discuss future research directions and technological applications. I also knew that such a school needed special attention because of its multidisciplinary nature. However, my previous experience directing the successful interdisciplinary NATO/ASI on "The Science and Technology of Nanostructure Magnetic Materials" (held in Crete during 1990) gave me confidence in my ability to organize such a multidisciplinary school with successful results.

The idea matured during the NATO Advanced Workshop on "The Physics and Chemistry of Finite Systems: from Clusters to Crystals" held in Richmond, Virginia, in 1992 and right after the workshop I asked Dr. Siegel, who is considered to be one of the few experts in nanophase materials, to be the Co-Director of the school.

We then formed an international committee and gathered information about the ASI lecturers. Our choices were based on pioneer work on nanophase research, as well as excellence in teaching. We advertised the NATO/ASI at several conferences, including the Cancun International Conference on
Nanostructured Materials (September 1992), the 3M Conference in Houston (November 1992), the MRS Meeting in Boston (December 1992), and the Intermag Conference in Stockholm (April 1993). We also sent letters to most of the groups working on nanophase materials in the USA and Europe (as well as in Eastern Europe and Russia). The response was overwhelming, with over 150 applications. This allowed us to choose a number of invited talks to complement and strengthen our program and, as we found out later, that was an excellent idea because of the multidisciplinary nature of the school. However, we soon realized that the percentage of graduate students who applied was rather low. At that time, we decided to send letters again and even call the various groups asking them to have their graduate students apply. This worked well and, ultimately, a large number of graduate students attended the conference (more than 30%). The fact that so many young people participated gave this ASI a very special tone of enthusiasm.

We prepared a booklet containing the agenda, summaries of lectures and abstracts of invited talks, a listing of posters, and complete participant address list and this was distributed to participants upon arrival. We were surprised at the extent to which the scientific community now relies on electronic mail and most of the conference correspondence was conducted via E-mail; indeed, we found this the only feasible way to communicate with scientists in Russia and Eastern Europe.

The program of the NATO/ASI was divided into the following sessions: Synthesis/Characterization, Mechanical Properties, Thermodynamic Properties, Electronic Properties, Optical Properties, Magnetic Properties, and Applications. Each session was comprised of lectures, invited talks, and posters, as well as a one-hour panel discussion. The major topic of the panel
discussion in each session was "Current Problems and Future Directions." The moderator of the panel talked to the students and to the speakers of the session and gathered questions from the students for further discussion. The discussion was opened to all the participants. We believe that this format allowed thorough coverage of each topic.

From the comments we received, we have reason to believe that this was an excellent ASI. Everybody praised this meeting as one of its kind. The scientific program was excellent. The participants represented a diverse mixture of physicists, chemists, and materials scientists who learned from each other. The social activities program was also rich consisting of a reception, dinner galas and banquet, and excursions to various places in Corfu. As a result of the excellent scientific and social programs, a strong interaction and friendship among the participants was established which will hopefully lead to future scientific collaborations.

Scientific Report

The Institute covered a broad spectrum of topics from the disciplines of physics, chemistry, biology and materials science that comprise the developing field of nanophase materials. The nature of nanophase materials and the fundamental criteria for their synthesis were elucidated.

The various types of nanostructured materials share three features: atomic domains (grains or phases) spatially confined to less than 100 nm, significant atom fractions associated with interfacial environments, and interactions between their constituent domains. Thus, nanostructured materials include zero-dimensionality atom clusters and cluster assemblies,
one- and two-dimensionally modulated multilayers and overlayers, respectively, and their three-dimensional analogues, nanophase materials.

Interest in the possibilities of nanostructuring materials has resulted in a variety of new methodologies for manufacturing novel materials with ultrafine structural or phase domains by means of which creation of new levels of property engineering become possible through the sophisticated control of scale, morphology, interaction, and architecture. A variety of these synthesis methods was described including synthesis from molecular precursors (gas condensation; chemical precipitation; aerosol reactions; biological templating), from processing of bulk precursors (mechanical attrition; crystallization from the amorphous state; phase separation), and from nature (biological systems).

The atomic-scale structures of nanophase materials play a dominant role in determining their properties. Among the primary topics discussed were grain boundaries and other interfaces between the constituent phases which make up the materials, the atomic defects, dislocations, and strains within the constituent grains, porosity among the grains and its control, and connectivity among grains and percolation through granular networks. The tremendous importance of the detailed chemical nature of the grain interfaces was clearly evident in several presentations and discussions. The ability to experimentally characterize this chemistry on the nanometer-length scales associated with nanophase materials is an important current challenge. Also, the degree of atomic order (local or short-range; mid-range; long-range) within the grains was discussed frequently and the ability to differentiate among these degrees experimentally was clearly a concern.
Grain size affects the properties of nanophase materials in many ways. These range from electronic and optical effects (so-called "quantum size effects") caused by spatial confinement of delocalized valence electrons to altered cooperative ("many body") atom phenomena, such as lattice vibrations and melting, to the suppression of such lattice-defect mechanisms as dislocation generation and migration in confined grain sizes. Various possibilities were discussed for creating nanophase materials with controlled grains sizes and, hence, unique or improved properties, which can impact our ability to engineer a wide variety of controlled optical, electrical, magnetic, mechanical, and chemical properties and create opportunities for their future technological applications to the good of society.
Main Lectures Given

X-Ray and Neutron Diffraction Studies of Nanostructured Materials
 Dr. Rainer Birringer, Universität des Saarlandes, Germany
Quantum Confine in Semiconductor Nanocrystals: Isolated Crystallites and Porous Silicon
 Dr. L. E. Brus, A T & T Bell Laboratories, USA
Mechanical Properties of Granular Solids and Multilayers
 Dr. Robert Cammarata, Johns Hopkins University, USA
Magnetic Granular Solids
 Dr. C. L. Chien, Johns Hopkins University, USA
Physical and Chemical Properties of High-Nucletarity Metal Cluster Compounds: Model Systems for Ultra-Small Particles
 Dr. Joseph de Jongh, Rijksuniversiteit Leiden, The Netherlands
Biological Applications
 Dr. D. P. E. Dickson, University of Liverpool, UK
Nanophase Materials by Mechanical Attrition
 Dr. H.-J. Fecht, Technical University of Berlin, Germany
Chemical Synthesis of Nanophase Materials
 Dr. K. Klabunde, Kansas State University, USA
Catalysis and Surface Chemistry
 Dr. K. Klabunde, Kansas State University, USA
Optical Properties of Granular Solids
 Dr. Jacques Lafait, L'Université Pierre et Marie Curie, France
Surface Magnetism of Nanometer Particles
 Dr. A. H. Morrish, University of Manitoba, Canada
Amorphous Magnetic Particles
 Dr. Steen Mørup, Technical University of Denmark, Denmark
Electronic Transport in Granular Metal Films (Theory)
 Dr. Ping Sheng, Exxon Research and Engineering Company, USA
Mechanical Properties of Nanophase Materials
 Dr. Richard Siegel, Argonne National Laboratory, USA
Gas Evaporation and Electron Microscopical Observations of Small Particles
 Dr. Anders Thølen, Technical University of Denmark, Denmark
Organizing Committee

Dr. G. C. Hadjipanayis (Director), University of Delaware, USA
Dr. R. W. Siegel (Co-director), Argonne National Laboratory, USA
Dr. A. Kostikas, Demokritos Research Centre, Greece
Dr. M. Muhammed, Royal Institute of Technology, Sweden

Publication

List of Participants

1. LECTURERS

A. H. Morrish
Department of Physics
University of Manitoba
Winnipeg, R3T 2N2
CANADA

S. Mørup
Laboratory of Applied Physics
Technical University of Denmark
DK-2800 Lyngby
DENMARK

Anders Thølen
Laboratory of Applied Physics LTF
Building 307
Technical University of Denmark
2800 Lyngby DK
DENMARK

Jacques Lafait
Laboratoire D'Optique des Solides
L'Université Pierre et Marie Curie
Boite 80 - 4, Place Jussieu
75252 Paris Cedex 05
FRANCE

Rainer Birringer
Universität des Saarlandes
Werkstoffwissenschaften und Fertigungstechnik
GEB. 43
W-6600 Saarbrücken
GERMANY

Hans J. Fecht
Technical University of Berlin
Institut of Materials Research
Hardenbergstrasse 36
W-1000 Berlin
GERMANY
L. J. de Jongh
Kamerlingh Onnes Laboratory
Der Rijksuniversiteit Leiden
Rostbus 9506
Leiden RA 2300
NETHERLANDS

D. P. E. Dickson
Oliver Lodge Laboratory
Department of Physics
University of Liverpool
P. O. Box 147
Liverpool L69 3BX, England
UNITED KINGDOM

L. E. Brus
AT & T Bell Laboratories
Materials Science & Engineering
Research Division 1A258
600 Mountain Avenue
Murray Hill, NJ 07974
USA

Robert C. Cammarata
Department of MS & E
102 Maryland Hall
Johns Hopkins University
Baltimore MD 21218
USA

C. L. Chien
Department of Physics
Charles & 34th Street
Johns Hopkins University
Baltimore, MD 21218
USA

K. J. Klabunde
Chemistry Department
Kansas State University
Manhattan, KS 66506
USA
2. ASI STUDENTS

A. Arrott
Simon Frazier University
Department of Physics
Burnaby, BC V5A 1S6
CANADA

Michel L. Trudeau
Hydro-Québec Research Institute
1800 Montée Ste-Julie
Varennes, Québec
CANADA

Franz Bodker
Department of Physics
Building 307
Technical University of Denmark
DK-2800 Lyngby
DENMARK

Seren Linderoth
Materials Department
Riso National Laboratory
P. O. Box 49
DK-4000 Roskilde
DENMARK
Michael S. Pedersen
Laboratory of Applied Physics
Building 307
Technical University of Denmark
DK-2800 Lyngby
DENMARK

Muhail A. Sethi
Laboratory of Applied Physics
Building 307
Technical University of Denmark
DK-2800 Lyngby
DENMARK

B. Barbara
Laboratoire de Magnetisme Louis Neel
BP1266, 38052 Grenoble
CEDEX 9
FRANCE

Michel Cauchetier
Commissariat à l’Energie Atomique
Centre d’Etudes de Saclay
Services des Photons, Atomes et Molecules
CEN Saclay - 91191 Gif. sur. Yvette CEDEX
FRANCE

J. L. Dorman
Laboratoire de Magnetism CNRS
1 Pl. A. Briand
92125 Meudon CEDEX
FRANCE

Nathalie Herlin
Commissariat à l’Energie Atomique
Centre d’Etudes de Saclay
Service des Photons, Atomes, et Molecules
Centre d’Etudes de Saclay – Bat 522
F-91 191 Gif/Yvette CEDEX
FRANCE

Jean-Pierre Jolivet
Chimie de la Matiere Condensee URACNRS 1466
Université P. et M. Curie
4 Place Jussieu T54 E5
75 252 Paris
FRANCE
Claude Monty
Centre National de La Recherche Scientifique
Laboratoire de Physique des Matériaux
1, Place Aristide Briand, Bellevue
92195 Meudon CEDEX
FRANCE

Elisabeth Tronc
Chimie de la Materire Condensee
University Pierre et Marie Curie
4, place Jussieu (T54-E5
75252 PARIS CEDEX 05
FRANCE

Wolfgang Dickenscheid
Institut fur Werkstoffphysik
FB 15
W6600 Saarbrucken
GERMANY

Volker Haas
Universitat des Saarlandes
FB 15
Gebaeude 43
D-6600 Saarbrucken
GERMANY

H. W. Hahn
Technische Universitat Darmstadt
FB21 - Material Wissenschast
Fachgebiet Duene
Schichten Hilperstr. 31
D-6100 Darmstadt
GERMANY

Herbert Hofmeister
Max-Planck-Institut fur Mikrostrukturphysik
Weinberg 2
D-0-4050 Halle/Saale
GERMANY

Peter Hockel
FB 15, Gebaeude 43
Universitat des Saarlandes
W-6600 Saarbrucken
GERMANY
A. Kehrel
Technische Universität Berlin
Institut für Metallforschung
Metallphysik
Hardenbergstr. 36
1000 Berlin 12
GERMANY

Heike Konrad
FB 15, Geb. 43
Universität des Saarlandes
D-6600 Saarbrücken
GERMANY

Carl E. Krill
FB 15 Werkstoffwissenschaften
Universität des Saarlandes
Gebäude 43
W-6600 Saarbrücken
GERMANY

H. Micklitz
11 Physikalisches Institut
Universität zu Köln 41
Sielpicher Str. 77
5000 Köln 41
GERMANY

H.-E. Schaefer
Institut für Theoretische und Angewandte Physik
Universität Stuttgart
Pfaffenwaldring 57/VI
7000 Stuttgart 80
GERMANY

Ursel Wagner
Physik Department #15
Technische Universität München
D8046-Garching
GERMANY

Ashraf Yussouff
Fakultät für Physik
LS Dieterich
Universität Konstanz
7750 Konstanz
GERMANY
D. Nicolaides
Institute of Materials Science
"Demokritos" National Research Center for Physical Sciences
153 10 ag. Paraskevi Attiki
P.O.B. 60228
GREECE

Ioannis Panagiotopoulos
Department of Physics
The University of Ioannina
P. O. Box 1186 GR-451 10
Ioannina
GREECE

Vassilios Papaefthymiou
Department of Physics
The University of Ioannina
P. O. Box 1186 GR-451 10
Ioannina
GREECE

G. C. Papavasiliou
Department of Physics
The University of Ioannina
P. O. Box 1186 GR-451 10
Ioannina
GREECE

D. Petrides
Department of Physics
The University of Ioannina
P. O. Box 1186 GR-451 10
Ioannina
GREECE

K. Soukoulis
Department of Physics
University of Crete
Iraklion
GREECE

Padelis Trikalitis
Department of Physics
The University of Ioannina
P. O. Box 1186 GR-451 10
Ioannina
GREECE
P. Trohidou
Institute of Materials Science
"Demokritos" National Research Center for Physical Sciences
153 10 ag. Paraskevi Attiki
P.O.B. 60228
GREECE

C. Volteras
Department of Physics
The University of Ioannina
P. O. Box 1186 GR-451 10
Ioannina
GREECE

Giovanni Asti
University of Parma
Dpto. Di Fisica, V. Le Dell Scienze
43100 Parma
ITALY

Diego Bassett
Dipartimento di Scienze e Tecnologie Chimiche
Università degli Studi di Udine
Vio Cotonificio 108
I-33100 Udine
ITALY

D. Fiorani
ICMAT - Area della Ricerca di Roma
V. Salaria 29.5
C. p. 10 - 00016 Monterodondo Stazione (Roma)
ITALY

Federica Malizia
Universita di Ferrara - Dipartimento di Fisica
Via Paradiso 12
1-44100 Ferrara
ITALY

José Maria Fonte Ferreira
Departamento de Engenharia Cerâmica e do Vidro
Universidade de Aveiro
3800 Aveiro
PORTUGAL
Pedro Gorria Korres
Instituto de Magnetismo Aplicado
Apdo. Correos 155
28230 Las Rosas
Madrid
SPAIN

A. Hernando
Instituto de Magnetismo Aplicado
RENFE-UCM
P. O. Box 155, Las Rozas
Madrid 28230
SPAIN

Juan S. Muñoz
Departament de Física
Universitat Autònoma de Barcelona
Edifici C
08193 Bellaterra (Barcelona)
SPAIN

J. Navarro
Instituto de Magnetismo Aplicado
RENFE-UCM
P. O. Box 155, Las Rozas
Madrid 28230
SPAIN

X. X. Zhang
Departament de Física Fonamental
Universitat de Barcelona
Av. Diagonal, 647
E-08028 Barcelona
SPAIN

H. A. Davies
University of Sheffield
School of Materials
P. O. Box 600, Sir Robert Hadfield Bldg.
Mappin Street
Sheffield S1 4DU
UNITED KINGDOM
Andreas Lyberatos
Physics Department
Keele University
Keele, Staffordshire ST5 5BG
UNITED KINGDOM

Pantelis Alexopoulos
IBM Almaden Research Center
650 Harry Road, K64–807
San Jose, CA 95120
USA

Paul Alivisatos
Department of Chemistry
University of California
Berkeley, CA 94720
USA

Richard Ambroze
Department of Physics
Charles & 34th Street
Johns Hopkins University
Baltimore, MD 21218
USA

Ami Berkowitz
Department of Physics and Center for Magnetic
Recording Research, 0401
University of California, San Diego
LaJolla, CA 92–92
USA

Altaf H. Carim
Dept. of Materials Sciences & Engineering
Pennsylvania State University
118 Steidle Building
University Park, PA 16802
USA

Jian-Ping Chen
Physics Department
Kansas State University
Manhattan, KS 66506
USA

Aris Christou
Dept. of Mechanical Engineering
University of Maryland
College Park, MD 20742–3035
USA
Siu-Tat Chui
Bartol Research Institute
University of Delaware
217 Sharp Laboratory
Newark, DE 19716
USA

Brian Elliott
Department of Materials Science
Northwestern University
Materials and Life Sciences Facility (MLSF)
2225 N. Campus Drive
Evanston, IL 60208-3108
USA

Alan S. Edelstein
Naval Research Laboratory
Materials Science & Technology 6371
4555 Overlook Avenue, S. W.
Washington, DC 20375-5000
USA

Aniruddh Fadnis
117 Swain West
Indiana University
Bloomington, IN 47405
USA

Charles M. Falco
Optical Sciences Center
University of Arizona
Tucson, AZ 85721
USA

E. P. Giannelis
Cornell University
Department of MS&E
Bard Hall
Ithaca, NY 14853
USA

Gretchen E. Fougere
Argonne National Laboratory
Materials Science Division, Building 212, C-206
9700 South Cass Avenue
Argonne, IL 60439
USA
Puru Jena
Physics Department
Virginia Commonwealth University
Box 2000
Richmond, VA 23284
USA

Samuel Jiang
Department of Physics
Charles & 34th Street
Johns Hopkins University
Baltimore, MD 21218
USA

Richard Kodama
Magnetic Recording Center
University of California at La Jolla
La Jolla, CA 92039
USA

Olga Koper
Chemistry Department
Kansas State University
Manhattan, KS 66506
USA

Xu-Hua Lin
Department of Physics and Astronomy
University of Delaware
Newark, DE 19716
USA

Jeffrey Long
Department of Chemistry
Harvard University
12 Oxford Street
Cambridge, MA 02138
USA

Kathy Mohs
Chemistry Department
Kansas State University
Manhattan, KS 66506
USA

Dimitrios A. Papaconstantopoulos
Naval Research Laboratory
Code 4600
4555 Overlook Avenue, SW
Washington, DC 20375-5000
USA
Andreas Tschoepe
Massachusetts Institute of Technology
Department of Chemical Engineering
25 Ames Street, Room # 66-557
Cambridge, MA 02139
USA

Karl M. Unruh
Department of Physics and Astronomy
University of Delaware
Newark, DE 19716
USA

Omar M. Yaghi
Department of Chemistry and Biochemistry
Arizona State University
Tempe, AZ 85281-1604
USA

Jackie Y. Ying
Department of Chemical Engineering
Room 66-544
Massachusetts Institute of Technology
Cambridge MA 02139-4307
USA

Iovka D. Dragieva
Faculty of Physics
Sofia University
5 Anton Ivanov Boulevard
BH-1126 Sofia
BULGARIA

J. Geshev
Faculty of Physics
Sofia University
5 Anton Ivanov Boulevard
BH-1126 Sofia
BULGARIA

Yana Kostova Athanasova
Faculty of Physics
Sofia University
5 Anton Ivanov Boulevard
BH-1126 Sofia
BULGARIA

Imre Bakonyi
Research Inst. for Solid State Physics
Hungarian Academy of Sciences
H-1525 Budapest, P. O. B. 49
HUNGARY

22
G. I. Márk
Central Research Institute for Physics
P. O. Box 49
H-1525 Budapest
HUNGARY

Anna Slawska-Waniewska
Institute of Physics
Polish Academy of Sciences
Al. Lotnikow 32/46
02-668 Warszawa
POLAND

Elena D. Obraztsova
Department of Physics
Moscow State University
119899 Moscow
RUSSIA

Rouslan Z. Valiev
Institute of Metals Superplasticity Problems
Russian Academy of Sciences
Khalturina 39
Ufa 450001
RUSSIA

Mamoun Muhammed
Inorganic Chemistry
Royal Institute of Technology
S-10044 Stockholm
SWEDEN
The Institute covered a broad spectrum of topics from the disciplines of physics, chemistry, biology and materials science that comprise the developing field of nanophase materials. The nature of nanophase materials and the fundamental criteria for their synthesis were elucidated.

The various types of nanostructured materials share three features: atomic domains (grains or phases) spatially confined to less than 100 nm, significant atom fractions associated with interfacial environments, and interactions between their constituent domains. Thus, nanostructured materials include zero-dimensionality atom clusters and cluster assemblies, one- and two-dimensionally modulated multilayers and overlayers, respectively, and their three-dimensional analogues, nanophase materials.