THESIS

NATURAL CONVECTION COOLING OF A THREE BY THREE ARRAY OF LEADLESS CHIP CARRIER PACKAGES IN A DIELECTRIC LIQUID

by

Joseph Matthew Bradley

March 1994

Thesis Advisor: Yogendra Joshi

Approved for public release; distribution is unlimited
Liquid cooling of a three-by-three array of commercially available leadless chip carrier packages, mounted on a ceramic substrate was examined. Baseline data were obtained for cooling with pure dielectric liquids. The effects of addition of high thermal conductivity ceramic powder to the liquid were next examined, both for natural and forced circulation conditions. Vertical and horizontal orientations were studied, for two different ceramic particle types, and two different particle sizes for each ceramic. For a range of chip power levels, chip, substrate and cold plate temperatures were measured. Interpretations for these data are provided. A numerical model was developed for the vertical geometry and compared to the measurements obtained.
NATURAL CONVECTION COOLING OF A THREE-BY-THREE ARRAY OF LEADLESS CHIP CARRIER PACKAGES IN A DIELECTRIC LIQUID

by

Joseph M. Bradley
Lieutenant Commander, United States Navy
B.E., The Cooper Union

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING
and
MECHANICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL
March 1994

Author:

Joseph M. Bradley

Approved by:

Yogendra Joshi, Thesis Advisor

Matthew D. Kelleher, Chairman
Department of Mechanical Engineering

Richard S. Elster,
Dean of Instruction
ABSTRACT

Liquid cooling of a three-by-three array of commercially available leadless chip carrier packages, mounted on a ceramic substrate was examined. Baseline data were obtained for cooling with pure dielectric liquids. The effects of addition of high thermal conductivity ceramic powder to the liquid were next examined, both for natural and forced circulation conditions. Vertical and horizontal orientations were studied, for two different ceramic particle types, and two different particle sizes for each ceramic. For a range of chip power levels, chip, substrate and cold plate temperatures were measured. Interpretations for these data are provided. A numerical model was developed for the vertical geometry and compared to the measurements obtained.
TABLE OF CONTENTS

I. INTRODUCTION ... 1
 A. STATEMENT OF PROBLEM .. 1
 B. PREVIOUS RESEARCH IN IMMERSION COOLING 3
 C. OBJECTIVES ... 5

II. EXPERIMENTAL APPARATUS AND PROCEDURE 8
 A. APPARATUS FOR NATURAL CONVECTION TESTS 9
 B. STUDIES WITH EXTERNAL EXCITATION 13
 C. MODIFICATIONS FOR FORCED CONVECTION 13
 D. POWER DISTRIBUTION SYSTEM .. 15
 E. DATA ACQUISITION ASSEMBLY .. 15
 F. EXPERIMENTAL PROCEDURE ... 16

III. EXPERIMENTAL RESULTS .. 19
 A. DESCRIPTION OF RESULTS .. 19
 B. DISCUSSION OF HORIZONTAL PLATE NATURAL CIRCULATION
 DATA .. 29
 C. DISCUSSION OF VERTICAL SUBSTRATE ORIENTATION NATURAL
 CIRCULATION DATA ... 31
 D. DISCUSSION OF EXTERNALLY EXCITED NATURAL CIRCULATION
 DATA .. 32
 E. DISCUSSION OF FORCED CIRCULATION RESULTS 33
 F. NONDIMENSIONAL GRAPHS ... 33

IV. NUMERICAL MODEL .. 36
 A. GOVERNING EQUATIONS ... 36
 B. SOLUTION TECHNIQUE .. 38

V. CONCLUSIONS .. 45

VI. RECOMMENDATIONS ... 47

APPENDIX A - POWER AND TEMPERATURE ACQUISITION PROGRAMS
 A. DATA MONITORING PROGRAM .. 49
 B. DATA ACQUISITION PROGRAM .. 51
 C. FLOWRATE COLLECTION PROGRAM 52

APPENDIX B - LIST OF RUNS .. 54
LIST OF FIGURES

Figure 2-1: System Arrangement And Apparatus. ... 8
Figure 2-2: Photograph Of Enclosure Interior. ... 9
Figure 2-3: Plan View, Enclosure Interior, Cover Removed. .. 10
Figure 2-4: Section View, Enclosure Midplane. ... 11
Figure 2-5: Plan View, Enclosure Interior, Cover Removed, Flow Path Illustrated. 14
Figure 2-6: Section View, Enclosure Midplane, Flow Path Illustrated. 14
Figure 2-7: Motor, Weight And Plate Used For External Excitation Runs. 18
Figure 3-1: Power Versus Package To Plate Temperature Difference, Horizontal Geometry. .. 21
Figure 3-2: Power Versus Package To Peak Diode Temperature, Horizontal Geometry. .. 21
Figure 3-3: Power Versus Package To Plate Temperature Difference, Horizontal Geometry. .. 22
Figure 3-4: Power Versus Package To Peak Diode Temperature, Horizontal Geometry. .. 22
Figure 3-5: Power Versus Package To Plate Temperature Difference, Horizontal Geometry. .. 23
Figure 3-6: Power Versus Package To Peak Diode Temperature, Horizontal Geometry. .. 23
Figure 3-7: Power Versus Package To Plate Temperature Difference, Horizontal Geometry. .. 24
Figure 3-8: Power Versus Package To Peak Diode Temperature, Horizontal Geometry. .. 24
Figure 3-9: Power Versus Package To Plate Temperature Difference, Vertical Geometry. .. 25
Figure 3-10: Power Versus Package To Peak Diode Temperature, Vertical Geometry. 25
Figure 3-11: Power Versus Package To Plate Temperature Difference, Vertical Geometry. .. 26
Figure 3-12: Power Versus Package To Peak Diode Temperature, Vertical Geometry. 26
Figure 3-13: Power Versus Package To Plate Temperature Difference, External Excitation. .. 27
Figure 3-14: Power Versus Package To Peak Diode Temperature, External Excitation. 27
Figure 3-15: Power Versus Package To Plate Temperature Difference, Forced Circulation ... 28
Figure 3-16: Power Versus Package To Peak Diode Temperature, Forced Circulation .. 28
Figure 3-17: Ra Versus Nu For 3 Micron Bn ... 35
Figure 3-18: Ra Versus Nu For Natural Circulation Runs .. 35
Figure 4-1: Numerical Model Package Orientation And Axis Selection .. 38
Figure 4-2: Isotherms For Ra = 1.15E3, In The Y - Z Plane At X = 0.29. \(\tau = 959 \) ... 40
Figure 4-3: ZY Velocity Vectors For Ra = 1.15E3, In The Y - Z Plane At X = 0.29. \(\tau = 959 \) ... 40
Figure 4-4: Isotherms For Ra = 1.13E7 In The X-Y Plane At Z = 2.55. \(\tau = 959 \) ... 41
Figure 4-5: XY Velocity Vectors For Ra = 1.13E7 In The X-Y Plane At Z = 2.55. \(\tau = 959 \) ... 41
Figure 4-6: Isotherms For Ra = 1.15E7, In The Y - Z Plane At X = 0.29. \(\tau = 3516 \) .. 43
Figure 4-7: ZY Velocity Vectors For Ra = 1.15E7, In The Y - Z Plane At X = 0.29. \(\tau = 3516 \) .. 43
Figure 4-8: Isotherms For Ra = 1.15E7 In The X-Y Plane At Z = 2.55. \(\tau = 3516 \) .. 44
Figure 4-9: XY Velocity Vectors For Ra = 1.15E7 In The X-Y Plane At Z = 2.55. \(\tau = 3516 \) .. 44
ACKNOWLEDGEMENT

The people who contributed to this thesis enabled it to be completed in a timely manner. They include Jim Scholfield, who repeatedly provided workable solutions to difficult technical problems, and whose ability to produce equipment in the blink of an eye without significant funds is truly amazing. Mr. Tom McChord was instrumental in taking rough plans and directing the production of the enclosure. Lastly, I would like to thank Professor Joshi for continuing as my thesis advisor, even though he left the school 8 months ago. His advice and direction enabled a significant amount of work to be accomplished.
I. INTRODUCTION

A. STATEMENT OF PROBLEM

As the demand for faster yet smaller computers has grown, one physical limitation has been the heat removal capacity from the system. The search for effective thermal management techniques has expanded in recent years and is expected to continue as long as package sizes decrease and clock speeds increase. These two factors combine to dramatically increase the heat flux seen by the package.

Historically, there has been a progression in the heat removal capacity that has matched or only slightly trailed the increase in the heat generation rate. Thus, thermal considerations have generally had a secondary effect in slowing the quest for greater computational speed and reduced package size. Today, though, the heat fluxes exceed 65 watts/cm² and the capability to remove this heat flux is sorely challenged. Bar-Cohen [Ref. 1]

Natural circulation air cooling was one of the first methods used to remove heat. The advantages are obvious, air is virtually free and is usually found in abundance. However, for higher heat loads and for applications with concern for airborne contaminant damage, natural convection may not be adequate or appropriate. Forced convection air cooling can provide increased heat removal capability. For many applications the pressure drop due to filtering is within acceptable ranges. Sloan [Ref. 2]
Mezenq et al. [Ref. 3] studied gas fluidized beds to improve heat transfer capability. They demonstrated dramatic performance increases (heat transfer coefficient increase) by the use of small suspended sand or silica particles in an air stream. The bed exhibited a very high effective thermal conductivity with low dependence on particle conductivity.

Situations arise, where either due to the heat load, or the environment, air is not a suitable candidate as the primary heat sink. A number of techniques are currently being investigated for such applications. They include conduction with indirect liquid cooling, use of fluid backplane and direct liquid immersion cooling.

One approach is the use of thermally conductive solids to transfer the heat to a cold fluid as exemplified by the water cooled piston structure of the IBM Thermal Conduction Module. A lower liquid side thermal resistance can be achieved by utilizing a highly finned silicon or ceramic heat exchanger. The interface resistance between the chip or package surface and the primary conductor poses the primary limitation on the thermal performance. Bergles and Bar Cohen [Ref. 4]

A second approach is the use of a fluid backplane. This can reduce the interfacial resistance between the chip and the coolant. The resistance can be entirely eliminated by making the cold plate an integral part of the module. Kishimoto and Osaki [Ref. 5]

A third approach is the use of direct immersion cooling. Here, the electronic components are immersed in a dielectric liquid. Heat transfer in these situations can be either single phase or with a phase change. The coolant flow may be either natural or forced. Various fluorocarbon liquids available as Fluorinerts® (3M Corporation) have
been used in this application. Another variation is the use of mixtures of phase change particles and dielectric liquids to improve the heat transfer capabilities of the pure fluid; Choi, et al. [Ref. 6].

B. PREVIOUS RESEARCH IN IMMERSION COOLING

The conduction interfacial resistance at the chip or package places an upper bound on the attainable thermal performance of methods involving indirect liquid cooling. Baker [Ref. 7] outlined the fundamentals of immersion cooling and reported the results of a study using Freon - 113 and Dow Corning #200 silicone dielectric liquid to effectively cool small heat sources. Immersion cooling is currently commercially implemented in the Cray-2 supercomputer; Danielson, et. al. [Ref. 8]. Other geometries have been investigated. One possible design is a liquid encapsulated module, similar to that studied by IBM. In this design, natural convection heat transfer carries the heat dissipated from the immersed chips to a perfluorinated liquid and eventually to the enclosure walls; Bergles and Bar Cohen [Ref. 4]. Related concepts involve pool boiling at the chips investigated by Arata [Ref. 9] and/or condensation at the enclosure walls.

A number of studies of natural convection in geometries of interest to electronic cooling have recently been carried out. Joshi et.al. [Ref. 10] presented flow visualizations and component surface temperature measurements for natural convection cooling of a three by three array of discrete heated protrusions on the vertical wall of a rectangular enclosure filled with a dielectric liquid. Joshi et.al. [Ref. 11] presented experimental
studies of the heat transfer and flow characteristics of a column of protruding heat sources on a vertical surface and within a vertical channel. Sathe and Joshi [Ref. 12] reported results of a two-dimensional numerical investigation of natural convection flow and heat transfer arising from a protruding heat source on a vertical plate within an enclosure. Joshi and Paje [Ref. 13] reported experimental results of natural convection heat transfer from a commercially available leadless chip carrier package. Wroblewski and Joshi [Ref. 14] reported the results of a numerical investigation of the same leadless chip carrier package studied by Joshi and Paje.

The thermal properties of four Fluorinerts and water are shown in Table 1-1. Reference to Table 1-1 reveals these Fluorinerts to have low thermal conductivities, specific heats and latent heats of vaporization compared to water. The direct liquid cooling of electronic components necessitates the use of chemically stable and inert, non-toxic liquids with high dielectric strength and high volumetric resistivity. The need for a fluid suitable for electronic circuit applications has constrained the choices to fluids which have poor thermal transport characteristics. The desire to improve the transport properties led to this study. It examines the effect of particle additions to the Fluorinert liquids on their heat transfer characteristics. Also presented are measurements and numerical simulation of natural convection in pure liquids.
TABLE 1-1: THERMOPHYSICAL PROPERTIES OF SEVERAL LIQUIDS AT ATMOSPHERIC PRESSURE (3M MANUAL) [REF. 15]

<table>
<thead>
<tr>
<th>Perfluorinated Liquid Designation</th>
<th>Property</th>
<th>FC-87</th>
<th>FC-72</th>
<th>FC-84</th>
<th>FC-75</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfluorinated Liquid Designation</td>
<td>Boiling Point, degrees C</td>
<td>30</td>
<td>56</td>
<td>83</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Liquid Density, ρ, kg/m³</td>
<td></td>
<td>1633</td>
<td>1680</td>
<td>1575</td>
<td>1590</td>
<td>958</td>
</tr>
<tr>
<td>Kinematic Viscosity, ν, cs</td>
<td></td>
<td>4.20E-04</td>
<td>0.4</td>
<td>0.55</td>
<td>4.5E-04</td>
<td>2.70E-04</td>
</tr>
<tr>
<td>Specific Heat, c, J/kg K</td>
<td></td>
<td>1088</td>
<td>1088</td>
<td>1130</td>
<td>1172</td>
<td>4184</td>
</tr>
<tr>
<td>Thermal Conductivity, k, W/mK</td>
<td></td>
<td>5.51E-02</td>
<td>5.45E-02</td>
<td>5.35E-02</td>
<td>5.70E-02</td>
<td>6.83E-01</td>
</tr>
<tr>
<td>Vol. Coef. Expansion, β, K⁻¹</td>
<td></td>
<td>1.60E-03</td>
<td>1.60E-03</td>
<td>1.50E-03</td>
<td>1.40E-03</td>
<td>2.00E-04</td>
</tr>
<tr>
<td>Dielectric Constant</td>
<td></td>
<td>1.71</td>
<td>1.72</td>
<td>1.71</td>
<td>1.75</td>
<td>78.00</td>
</tr>
<tr>
<td>Average molecular weight, g/mole</td>
<td></td>
<td>288</td>
<td>338</td>
<td>388</td>
<td>438</td>
<td>18</td>
</tr>
</tbody>
</table>

C. OBJECTIVES

The investigation reported here is a continuation of the studies conducted by Joshi et. al. [Ref. 10, 11], Sathe and Joshi [Ref. 12], Joshi and Paje [Ref. 13] and Wroblewski and Joshi [Ref. 14]. The present study was conducted with a three by three array of leadless chip carrier packages mounted on a ceramic substrate which formed one wall of a dielectric liquid filled enclosure. The first part investigated the effect of various ceramic particle loadings on overall heat transfer rates in two orientations, the (i) horizontal and (ii) vertical. Ceramics, particularly the nitrides, are a class of materials that combine many useful features. They have very high electrical resistivities, moderate densities and have exceptionally high thermal conductivities. Table 1-2 shows the properties of some
ceramics that were considered for this study. The present investigation studied the effect of powdered Boron Nitride (BN) and Aluminum Nitride (AlN) additions on the thermal transport characteristics of Fluorinert-75 (FC 75). During the course of the investigation, no enhancements were noted in the heat transfer rates as a result of the particle additions. Extensive measurements of heat transfer characteristics were made for various particle sizes and volume fractions. The horizontal geometry was tested in natural circulation, natural circulation with external vibration, and forced circulation modes. The vertical geometry was only tested in the natural circulation mode.

TABLE 1-2: CERAMIC PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>Aluminum Nitride (AlN)</th>
<th>Boron Nitride (BN)</th>
<th>Alumina Al₂O₃</th>
<th>Magnesia MgO</th>
<th>Silicon Nitride (Si₃N₄)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density, ρ, kg/m³</td>
<td>3050*</td>
<td>2290*</td>
<td>3970*</td>
<td>3580*</td>
<td>3440*</td>
</tr>
<tr>
<td>Thermal Conductivity, k, W/m K</td>
<td>320*</td>
<td>225*</td>
<td>30*</td>
<td>48*</td>
<td>16 - 33*</td>
</tr>
<tr>
<td>Electrical Resistivity, Ω - m</td>
<td>>10E12*</td>
<td>>10E12*</td>
<td>>10E12*</td>
<td>>10E12*</td>
<td>>10E12*</td>
</tr>
</tbody>
</table>

* Samsonov [Ref. 16], * Slack [Ref. 17], * Callister [Ref. 18], * Mutterties [Ref. 19]

The second part of the study was the modification and use of a numerical model to simulate the three dimensional transport for the pure liquid conditions with a vertical orientation of the substrate.

The specific objectives were:

- To design and build an enclosure to study natural convection from a three by three package array in fluorocarbon liquids.
- To study the effects of component orientation on the overall heat transfer rates in the enclosure under natural convection conditions.
• To design and build an enclosure in order to study forced convection from the above package array in fluorocarbon liquids.
• To investigate heat transfer in liquid--ceramic mixtures for several ceramic types, particle sizes and volume fractions.
• To develop a numerical model of the nine package vertical substrate orientation.
II. EXPERIMENTAL APPARATUS

AND PROCEDURE

As shown in Figure 2-1, the experimental apparatus consisted of several components; an enclosure containing the electronic packages, a power distribution system, a heat removal system, and a data acquisition system. For the forced circulation flow data, a screw type pump, a turbine flow meter and associated tubing were added to the apparatus. Figure 2-2 is a photograph of the enclosure interior.

Figure 2-1: System arrangement and apparatus.
A. APPARATUS FOR NATURAL CONVECTION TESTS

The enclosure consisted of four side walls of 2.5 cm thick Plexiglas plates, with an outside dimension of 9.86 cm by 9.92 cm, a bottom wall of 2.5 cm thick Plexiglas, and an aluminum cover plate 9.96 cm by 9.96 cm and 0.66 cm thick. Both the enclosure and the plate had a reference chamfer cut in the front right corner to permit retention of the proper alignment of the enclosure and plate. The interior of the enclosure initially measured 5.18 cm by 5.12 cm by 5.08 cm deep. Figure 2-3 shows an overhead view of the interior of the enclosure.

The rear wall was provided with a 9 pin connector to provide a data and power path to the package assembly. A ceramic plate 5.08 cm by 5.08 cm by 0.05 cm thick was
inserted to protect the leads and to prevent flow disturbances caused by the wires. The ceramic plate reduced the interior to 4.72 cm by 5.08 cm by 5.08 cm deep. A recessed channel with a 3 mm diameter gasket was provided in the top of the side walls. The rear wall also had a 0.64 cm hole drilled to provide a vent/expansion path. A 0.64 cm I.D. tygon tube was attached to provide a surge volume during the heating cycle. Figure 2-4 shows the enclosure section view, cut through the middle row of packages. Additionally, a form fitting 2.54 cm thick insulation pad, which is not shown, surrounded the enclosure during operation.

![Diagram of enclosure interior](image)

Figure 2-3: Plan view, enclosure interior, cover removed.
Figure 2-4: Section view, enclosure midplane.

Most of the power generated by the package was removed from the enclosure by the aluminum cover plate. Eight 0.64 cm holes were drilled and tapped to provide a means of attaching the plate to the enclosure. Four thermoelectric (Peltier effect) coolers were mounted to the top of the aluminum plate to remove the heat produced by the electronic packages. The four coolers were in turn cooled by four Pin Grid Arrays (PGA) with integral cooling fans. The four coolers were powered by a HP 6286 DC Power Supply under control of a HP 85B micro computer. The coolers were controlled to maintain a temperature of 24 °C on the lower face of the aluminum plate. This temperature was monitored by four copper-constantan thermocouples. The Pin Grid Array cooling fans were also controlled by a HP 6289A DC Power Supply. These Pin Grid Arrays and their
associated fans are normally installed in computers utilizing Intel 486 chips and were operated in a similar manner.

The electronic packages formed a three by three array of leadless chip carriers mounted on a ceramic substrate. The ceramic substrate of 5.18 cm length, 5.06 cm width and a thickness of 0.07 cm, was mounted horizontally at the base of the enclosure. Five of the nine packages were equipped with diode type temperature sensors integrated within the chips. These diodes display a linear decrease in resistance with temperature increase. Only three of the five diodes were monitored due to space limitations. Like any solid state component, the diodes are limited in their range of temperature. The manufacturer (Texas Instruments) indicated a maximum of 135°C, and no data was acquired above this temperature. The temperature sensors are mounted on the base of the package. The chip is covered by a thin, brass lid. Between the chip and the lid a small air gap exists. The nine chips within the package array could be wired in a wide variety of configurations. Due to space considerations, all nine chips were wired in parallel. The wire gauge limited the total current to 1 amp DC. This proved to be sufficient during these trials and exceeded the heat removal capacity of the cooling medium.

Attached to the bottom surface of the ceramic substrate, under each package was a 0.127 mm diameter copper-constantan thermocouple. These thermocouples were calibrated at the same time as the internal diodes in a temperature controlled bath against a platinum resistance thermometer. Four 0.127 mm copper-constantan thermocouples were attached to the bottom of the aluminum plate. An additional 0.127 mm copper-constantan
thermocouple monitored the temperature of the thermoelectric coolers to prevent damage to the coolers. Two thermocouples were mounted on one enclosure outside wall to assist in determining steady state conditions. Ambient temperature was also monitored.

B. STUDIES WITH EXTERNAL EXCITATION

As will be discussed later, the ceramic particles, especially the Aluminum Nitride, were denser than the Fluorinert, and were not able to be picked up by the buoyant stream. In an effort to keep them from settling on the substrate, an external excitation was provided via an eccentric weight attached to a DC motor via a common bed plate to the enclosure. No other modifications to the enclosure were made for these data runs.

C. MODIFICATIONS FOR FORCED CONVECTION

For the forced circulation portion of the study, a flow loop was constructed to enable fluid to be circulated through the enclosure as illustrated in Figure 2-5 and 2-6. Four 0.64 cm diameter holes were drilled through the right wall of the enclosure used for the natural circulation study. The holes were arranged with two in the lower portion of the wall and two in the upper portion. A divider plate was inserted within the enclosure so as to allow the fluid entering at the lower two holes to flow over the package, up through three holes drilled in the plate to the upper portion of the enclosure, past the cold plate, to the suction of a positive displacement screw type pump, through a turbine flowmeter and return to the enclosure. A hose clamp was applied to the vent line, to prevent leakage.
Figure 2-5: Plan view, enclosure interior, cover removed, flow path illustrated.

Figure 2-6: Section view, enclosure midplane, flow path illustrated.
D. POWER DISTRIBUTION SYSTEM

Power to the package resistors was supplied by a 0-1.5 A, 0-40 V HP-6289A DC Power Supply. As discussed above, the individual packages were wired in parallel. The data acquisition system was connected to read the voltage drop across the nine packages and also across a known precision resistor that was wired in series with the package assembly. From these two voltages, the input power to the chipset using the following relation:

\[
\text{Power} = \frac{V_{\text{resistor}}}{R} \cdot V_{\text{package}}
\]

E. DATA ACQUISITION ASSEMBLY

The data acquisition assembly consisted of a HP 300 computer system, a HP-3852 Data Acquisition Unit and a 386 clone PC. The HP-300 computer instructed the data acquisition system to monitor voltages, resistance and temperatures from the desired elements. A monitoring program determined when steady state had been achieved and alerted the operator. The monitoring program also detected out of limit parameters, similarly alerting the operator to take corrective action. When steady state, as indicated by a less than 0.2 °C change in temperatures, on the aluminum plate, was achieved, a separate data collection program was run which directed the data to the 386 computer where it could be analyzed. Following evaluation of a successful data run, the monitoring program was reloaded and the next set of conditions established. For the forced circulation data, an Omega Engineering, Inc. FLSC-18B turbine flowmeter was used to
measure the flowrate. The flowmeter was calibrated using FC-75 in the range 51 to 117 ml/s.

F. EXPERIMENTAL PROCEDURE

The study examined two different geometries, four different fluid/ceramic mixtures, as many as thirteen different ceramic particle loads per ceramic and up to five power levels per ceramic powder load, without exceeding the maximum chip temperature of 135 °C. To prepare for each run, the same basic procedure was followed. The enclosure was filled with FC-75, and the ceramic load was adjusted as necessary. After reassembling the cover and vent, the Pin Grid Arrays were placed on the top of the Peltier effect coolers. The monitoring system and all auxiliary power systems were started. The monitoring program was used during heatup, to check on system performance and to evaluate proximity to steady state. During the heatup, dissolved air was vented from the assembly, and no data was taken until this was complete. A series of runs was defined as a set of runs at power levels decreasing from the highest chosen for the given conditions; up to a maximum of five power levels for each ceramic load. The natural circulation and external excitation runs all started at 1.55 watts per chip (14 watts total to array) or the highest achievable power level and included data at 1.39, 1.22, 1.05 and 0.89 watts per package. The forced circulation series all started at 2.2 watts per chip (20 watts total to the array), and included data at 1.55 and 0.9 watts per chip.
1. Natural Circulation Runs

Once the monitoring program indicated that steady state had been achieved, the data collection program (see Appendix A) was loaded. No adjustments were permitted during data collection to the input power or thermoelectric cooler voltage. Three data runs were generally taken for each condition. If the plate temperature or input power varied outside of the specified band during the data runs, the collection program was unloaded, and the monitoring program was reloaded to restore steady state. Once steady state was reestablished, data taking was recommenced. After satisfactory runs were obtained for the given power level, the input power was reduced to the next point in the series. The desired power levels were 14.0, 12.5, 11.0, 9.5, and 8.0 watts. Some ceramic loadings blanketed the packages and prevented achieving all the desired power levels.

2. Natural Circulation - External Excitation

The runs with external excitation were conducted in the same manner as the unexcited natural circulation runs, with the exception that a small direct current motor was used to vibrate the enclosure. Figure 2-7 is a picture of the motor, eccentric weight and plate used for the external excitation runs.

3. Forced Circulation

The forced circulation data was collected generally in a manner similar to the natural circulation data. Some differences existed. The pump was used to suction drag Fluorinert and fill the system. The small volume of trapped air was vented through the vent line. When ceramic was to be added, the pump suction line was disconnected and the
ceramic was added to the tubing. The pump was then run to distribute the ceramic evenly, prior to energizing the chips. The ceramic addition was limited by the tendency of the ceramic to clog the turbine flowmeter. Following system fill, the monitoring and power supply system were energized and data was collected in the same manner as the natural circulation data, with the same program. Following the collection of a series of data, a separate program was used to measure the flow rate. (see Appendix A)

Figure 2-7: Motor, weight and plate used for external excitation runs.
III. EXPERIMENTAL RESULTS

A. DESCRIPTION OF RESULTS

Contained in Appendix B is a complete listing of all the data runs performed for this study. For this investigation, measurements were made of chip temperatures (using diode sensors), ceramic substrate temperatures (using thermocouples), cold plate temperatures (using thermocouples), package voltage drop and precision resistor voltage drop for power input determination. The data has been collated by particle size, type and heating configuration. For each condition, two figures are plotted, (i) total package input power versus the temperature difference between the package diodes and the cold plate, (ii) total package input power and the peak diode temperature. Figures 3-1 through 3-8 show the results of natural circulation for each of the particle types in the horizontal geometry. Figures 3-9 through 3-12 show the results of natural circulation in the vertical geometry. Figures 3-13 and 3-14 show the effect of external excitation for one particle type and size. Figures 3-15 and 3-16 show the effect of forced circulation for one particle type and size.

The figures discussed above are in dimensional form and some difficulty arises when trying to compare the data from different combinations of ceramic and fluid. The results were non-dimensionalized to permit comparison of the data. During the original testing, no temperature data was taken directly on the side of the substrate exposed to the fluid. However, the temperature on the bottom of the substrate was measured by nine
thermocouples as was the external temperature of the case. This permitted estimation of a heat flux through the enclosure case, and then a determination of the substrate fluid interface temperature. Once this surface temperature was estimated, a Rayleigh number was determined. The data collection system provided sufficient data for the determination of a Nusselt number directly. All of the following figures are in non-dimensional form.

Figure 3-17 shows the plot of Ra versus Nu for three different loadings of the 3 micron BN particle and a baseline run. Figure 3-18 shows the results of natural circulation for each of the different particle types in the horizontal geometry.

1. Description Of Data - Natural Circulation

As previously discussed, the test surface consisted of a three by three array of leadless chip carrier packages, numbered as shown in Figure 2-3. Only the center column temperature sensing diodes (labeled 2, 5 and 8 in Figure 2-3) were connected to the data acquisition system. All nine packages were powered in parallel, however, no method was available to determine the variation in power input between the various packages. As shown in Figure 2-4, nine thermocouples, labeled in the same order as the packages in Figure 2-3, mounted to the base of the ceramic substrate were connected to the data acquisition system. These temperatures and the total input power are represented in the following 16 figures.
Figure 3-1: Power versus package to plate temperature difference, horizontal geometry.

Figure 3-2: Power versus package to peak diode temperature, horizontal geometry.
Figure 3-3: Power versus package to plate temperature difference, horizontal geometry.

Figure 3-4: Power versus package to peak diode temperature, horizontal geometry.
Figure 3-5: Power versus package to plate temperature difference, horizontal geometry.

Figure 3-6: Power versus package to peak diode temperature, horizontal geometry.
Figure 3-7: Power versus package to plate temperature difference, horizontal geometry.

Figure 3-8: Power versus package to peak diode temperature, horizontal geometry.
Figure 3-9: Power versus package to plate temperature difference, vertical geometry.

Figure 3-10: Power versus package to peak diode temperature, vertical geometry.
Figure 3-11: Power versus package to plate temperature difference, vertical geometry.

Figure 3-12: Power versus package to peak diode temperature, vertical geometry.
Figure 3-13: Power versus package to plate temperature difference, external excitation.

Figure 3-14: Power versus package to peak diode temperature, external excitation.
Figure 3-15: Power versus package to plate temperature difference, forced circulation.

Figure 3-16: Power versus package to peak diode temperature, forced circulation.
B. DISCUSSION OF HORIZONTAL PLATE NATURAL CIRCULATION DATA

A baseline run was conducted using pure FC-75. This baseline was periodically performed throughout the duration of data gathering to verify the data taking system and detect system variations. In the horizontal geometry, two different types of ceramic particles, each having two different sizes were investigated. Boron Nitride was tested in particles of 0.3-0.7 microns, hereinafter referred to as the 0.7 micron BN and 2-3 microns, hereinafter referred to as the 3 micron BN. Aluminum Nitride was tested in particle sizes of 5 microns and 44 microns. Table 3-1 shows the representative loadings that have been called 'light', 'medium' and 'heavy' for ease of reference.

TABLE 3-1: PARTICLE LOADING NOMENCLATURE

<table>
<thead>
<tr>
<th>Light</th>
<th>Medium</th>
<th>Heavy</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIN 44.0 micron</td>
<td>0.1</td>
<td>1.11</td>
</tr>
<tr>
<td>AIN 5.0 micron</td>
<td>1.25</td>
<td>10.33</td>
</tr>
<tr>
<td>BN 3.0 micron</td>
<td>0.17</td>
<td>0.39</td>
</tr>
<tr>
<td>BN 0.7 micron</td>
<td>0.1</td>
<td>0.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Light</th>
<th>Medium</th>
<th>Heavy</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIN 5.0 micron</td>
<td>5.07</td>
<td>10.33</td>
</tr>
<tr>
<td>BN 3.0 micron</td>
<td>0.17</td>
<td>1.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Light</th>
<th>Medium</th>
<th>Heavy</th>
</tr>
</thead>
<tbody>
<tr>
<td>BN 3.0 micron</td>
<td>0.22</td>
<td>1.22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Light</th>
<th>Medium</th>
<th>Heavy</th>
</tr>
</thead>
<tbody>
<tr>
<td>BN 3.0 micron</td>
<td>1.00</td>
<td>3.66</td>
</tr>
</tbody>
</table>

All weights in grams
1. Effect Of Particle Loading

While many of the particle types were tested at various loadings, three general classifications, light, medium and heavy were developed for the loading. Throughout the testing, the heavier loads were seen to diminish the heat transfer capability. Figures 3-1 and 3-2 illustrate the point graphically. As the load is increased to a point where the enclosure is packed as full as possible with AlN, the peak power is reduced. At this point the input power has been reduced to 50% of the desired peak input power, yet the diode temperature has risen by 30°C above the baseline temperature at 14 watts total input power.

2. Effect Of Particle Size

As was discussed earlier, two different particle sizes were tested for each of the two ceramics. Two pairs of figures, Figures 3-1 and 3-3 and Figures 3-5 and 3-7 show the effect of two different particle sizes. The first figure of each pair (Figure 3-1 and 3-5) represents the smaller of the two particles for each material, while the second figure of each pair (Figure 3-3 and 3-7) represents the larger of the two particles for each material. While the loadings are not exactly the same, the larger particles show much more rapid heat transfer decrement as the loading is increased. This was further confirmed by visual observation, as the larger particles were not picked up by the buoyant streams at lower loadings. Figures 3-2, 3-4, 3-6 and 3-8 show the same trend even more prominently in the rapid rise of peak diode temperature for given power levels. The larger particles were so
deleterious that the desired input power was not able to be obtained. For these conditions the input power was limited to avoid exceeding a diode temperature of 135°C.

3. Effect Of Particle Density

Boron Nitride has a density relatively close to that of FC-75 and was observed to be easily lifted off the plate by the plumes that formed above the chips. Aluminum Nitride is quite a bit denser than Boron Nitride and as loading was increased, rapidly blanketed the plate and could not be lifted by the buoyant plumes. Figures 3-1 and Figures 3-5 show that as the Aluminum Nitride load is increased, the ability to transfer heat is reduced faster than the capability is reduced for the Boron Nitride. In fact for the heavy load with Boron Nitride, the peak package temperature is nearly ten degrees cooler than for the Aluminum Nitride case. This is quite unexpected as bulk Aluminum Nitride has a thermal conductivity nearly twice that of Boron Nitride.

C. DISCUSSION OF VERTICAL SUBSTRATE ORIENTATION NATURAL CIRCULATION DATA

A baseline set of data was obtained with the enclosure mounted with the substrate containing the packages in a vertical arrangement. The cold plate was thus also mounted vertically, opposite the packages. This geometry was only tested in a limited number of runs as it was observed that the particles soon fell out of suspension and rested on the bottom wall.
1. Effect Of Particle Loading

The Boron Nitride 3 micron particles and the Aluminum Nitride 5 micron particles were the only types tested across a wide range of particle loads. Figures 3-11 and 3-12 illustrate that the particles had a tendency to fall out of suspension. The temperatures soon came to the same values as the baseline data when there were insufficient particles to rest against the vertical plate. Figures 3-9, 3-10, 3-11 and 3-12 demonstrate that when there were sufficient particles in contact with the plate, reduction in the heat transfer occurred.

2. Effect Of Geometry

Comparison of Figures 3-1 and 3-2 with 3-9 and 3-10, demonstrates that the vertical geometry had a better heat transfer coefficient than the horizontal geometry. This is to be expected, since the horizontal geometry develops cells that interfere with their neighbors. The vertical geometry results in a larger circulation that sweeps the entire wall.

D. DISCUSSION OF EXTERNALLY EXCITED NATURAL CIRCULATION DATA

During the early parts of the study it was noted that as the particle loading increased, the fraction of the particles that were lifted by the buoyant plumes decreased and the packages became covered by particles, decreasing the heat transfer and raising their temperatures. It was also noted earlier that Boron Nitride has a density close to that of the Fluorinert. An external excitation was provided to the enclosure by a small direct current motor to keep the particles suspended in the liquid. As Figures 3-13 and 3-14 illustrate,
there was still a decrement in performance. The decrement was greater than the stationary performance for the same load.

E. DISCUSSION OF FORCED CIRCULATION RESULTS

A baseline run was conducted using pure FC-75. In the forced circulation geometry, only the 3 micron Boron Nitride was investigated. For the forced circulation portion of the study, flowmeter voltage, (converted to flowrate) was also measured. The apparatus failed after testing was completed for one Reynolds number.

As illustrated in Figures 3-15 and 3-16, the addition of particles did not enhance the heat transfer in the forced circulation condition. The different particle loadings exhibited essentially the same performance. The measurements were limited by the ability of the turbine flowmeter to pass the heavier particle loadings and as noted above, the apparatus failed due to mechanical cracking of the ceramic insert at the rear wall early in this testing regime.

F. NONDIMENSIONAL GRAPHS

The data was non-dimensionalized as discussed earlier, with some modifications. Additional thermocouples were installed after the completion of the originally scheduled testing. These were attached to the tops of packages 1, 2, 4 and 5 and were used to obtain an estimate of the fluid-surface interface temperatures. At low loadings, the surface temperature of the packages is within several degrees of the substrate bottom temperature.
At a higher particle loading the difference approaches 10°C at 14 watts total input. The data did not meet the strict repeatability of the previous data due to the cracking noted above and was used to provide an estimate of adjustment of the substrate bottom temperature in conjunction with the technique described earlier.

Only the natural circulation data is presented in non-dimensional form, as the other modes show similar trends. Figure 3-17 represents the data from only the 3 micron Boron Nitride data runs. Figure 3-18 is a representation of the data from representative samples for all the ceramic particles. It is evident that for all particles as the loading is increased the non dimensional Nusselt number decreases for a given Rayleigh number. As the loading increased, the heat transfer capacity of the FC-75 diminished substantially.
Figure 3-17: Ra versus Nu for 3 micron BN

Figure 3-18: Ra versus Nu for natural circulation runs.
IV. NUMERICAL MODEL

A numerical model of the natural convection in the enclosure for a three by three array of packages in the vertical substrate orientation was developed utilizing a control volume approach as described by Patankar [Ref. 20]. The model is similar to that discussed by Wroblewski and Joshi [Ref. 14] for a single package and included the following features: control volumes for velocities that are staggered with respect to those for temperature and pressure; a power law scheme; harmonic mean formulation for the interface diffusivities; the SIMPLER algorithm for the velocity pressure coupling; and a fully implicit forward difference scheme in time. The conjugate conduction in the solid domains was handled numerically by solving the same full set of momentum and energy equations throughout the entire enclosure, but with a large value of viscosity specified for the solid regions.

A. GOVERNING EQUATIONS

The non-dimensional governing equations for the three dimensional unsteady problem, assuming constant properties and the Boussinesq approximation, are as follows:

\[\frac{\partial U}{\partial t} + \frac{\partial (UU)}{\partial x} + \frac{\partial (UV)}{\partial y} + \frac{\partial (WU)}{\partial z} = -\frac{\partial P}{\partial x} + \left(\frac{Pr}{Re}\right)^{1/2} \left(\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2}\right) \]

\[\frac{\partial V}{\partial t} + \frac{\partial (UV)}{\partial x} + \frac{\partial (VV)}{\partial y} + \frac{\partial (WV)}{\partial z} = -\frac{\partial P}{\partial y} + \left(\frac{Pr}{Re}\right)^{1/2} \left(\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}\right) + \theta \]
z momentum;

\[\frac{\partial \omega}{\partial t} + \frac{\partial (\omega u)}{\partial x} + \frac{\partial (\omega v)}{\partial y} + \frac{\partial (\omega w)}{\partial z} = -\frac{\partial p}{\partial z} + \left(\frac{1}{Pr_R} \right)^{1/2} \left(\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} + \frac{\partial^2 \omega}{\partial z^2} \right) \]

energy (fluid);

\[\frac{\partial \theta}{\partial t} + \frac{\partial (\theta u)}{\partial x} + \frac{\partial (\theta v)}{\partial y} + \frac{\partial (\theta w)}{\partial z} = \left(\frac{1}{Pr_R} \right)^{1/2} \left(\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} + \frac{\partial^2 \theta}{\partial z^2} \right) \]

energy (chip);

\[C_c \frac{\partial \theta}{\partial t} = \left(\frac{1}{Pr_c} \right)^{1/2} \left[R_c \left(\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} + \frac{\partial^2 \theta}{\partial z^2} \right) + \frac{1}{H_i L_i^2} \right] \]

energy (unheated regions)

\[C_i \frac{\partial \theta}{\partial t} = \left(\frac{1}{Pr_R} \right)^{1/2} \left[R_i \left(\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} + \frac{\partial^2 \theta}{\partial z^2} \right) \right] \]

The appropriate non-dimensional parameters are \(Ra = g \beta Q^4 / \alpha \nu k_\alpha \), \(Pr = \nu / \alpha \), \(U = u / U_o \), \(V = v / U_o \), \(W = w / U_o \), \(U_o = (g \beta Q / k_\alpha)^{1/2} \), \(\tau = t U_o / l \), \(\theta = (T - T_0) / (Q / l k_\alpha) \), \(P = p / p U_o^3 \), \(X = x / l \), \(Y = x / l \), \(Z = z / l \), \(H_e = h_e / l \), \(L_e = l / l \), \(R_e = k_e / k_\alpha \), \(R_i = k_i / k_\alpha \), \(C_c = (\rho c_p) / (\rho c_{p_i}) \), and \(C_i = (\rho c_{p_i}) / (\rho c_p) \). The energy equation for unheated regions is applicable to all of the regions within the package except the chip itself. The subscript \(i \) refers to these various regions: \(i = s \) to the ceramic substrate; \(i = p \) to the ceramic package itself; \(i = l \) to the lid; \(i = g \) to the solder; \(i = r \) to the air gap between the chip and the lid, and \(i = m \) to the gold and tungsten coating.

The boundary conditions for the enclosure walls are as follows:

\(X = 0; \partial \theta / \partial X = 0, U = 0, V = 0, W = 0 \)

\(X = X_e; \theta = 0, U = 0, V = 0, W = 0 \)

\(Y = 0, X_e; \partial \theta / \partial Y = 0, U = 0, V = 0, W = 0 \)

\(Z = 0, X_e; \partial \theta / \partial Z = 0, U = 0, V = 0, W = 0 \)

where \(X_e = X / l \).
Figure 4-1 illustrates the axis selection used for the analysis. The substrate is vertically aligned. The axis normal to the package is designated the X-axis, the axis in the vertical plane designated the Y-axis, and the axis parallel to the substrate surface is designated as the Z-axis.

B. SOLUTION TECHNIQUE

The solution was obtained throughout the entire enclosure. The initial nondimensional time step was selected to be $\Delta \tau = 1$ for $Ra = 1.15E3$. An algorithm within the program expanded the time steps if convergence was reached within a time step in three iterations. Two iterations per time step is the minimum required due to the technique used for convergence checking.
1. Results

a. Base Case

The initial case was similar to the geometry and conditions developed by Wroblewski and Joshi [Ref. 14] for the single chip leadless package. The solver used for that study has been ported from an Amdahl mainframe and refined to run on a Sun Microsystems Sparc10 workstation.

b. Current Case

Once the solver had been verified, the geometry was revised to reflect the three by three array of leadless chip carrier packages that were used for the experimental work. A low Rayleigh number (Ra = 1.15E3) was used to test the stability of the numerical model. For FC-75, this Rayleigh number is equivalent to an input power of only 4.4 microwatts. Thus the problem is primarily conduction heat transfer and the fluid develops very low velocities. Figure 4-2 shows the isotherms for the nine package geometry in the Z - Y plane passing through the plane adjacent to the package lid surfaces, at τ = 959.

Figure 4-3 is a plot of the fluid velocities in the same plane as the temperature plot of Figure 4-2. It shows the fluid developing upward velocities in the heated regions. This is still in the transient period discussed by Wroblewski and Joshi. The temperature contours for a vertical cut in the X - Y plane through the center of the middle column of packages are shown in Figure 4-4. The plumes are starting to develop above the packages, but there is very little flow developing in the enclosure. Figure 4-5 shows the velocities in the same plane as Figure 4-4.
Figure 4-2: Isotherms for $Ra = 1.15E3$, in the $Y-Z$ plane at $X = 0.29$. $\tau = 959$.

Figure 4-3: ZY velocity vectors for $Ra = 1.15E3$, in the $Y-Z$ plane at $X = 0.29$. $\tau = 959$.
Figure 4-4: Isotherms for $Ra = 1.13E7$ in the X-Y plane at $Z = 2.55$. $\tau = 959$.

Figure 4-5: XY velocity vectors for $Ra = 1.13E7$ in the X-Y plane at $Z = 2.55$. $\tau = 959$.
The model was now reprogrammed for the case of a much higher Rayleigh number. The highest Rayleigh number attained in this study was 1.15E7. This is equivalent to a power input of 44 milliwatts. The following figures are taken at the same positions as the corresponding figures for the case of Ra = 1.15E3. Due to the temperature scaling, the nondimensional temperatures are lower, while the actual temperatures are higher. Figure 4-6 shows the isotherms for the nine package geometry in the Z - Y plane passing through the plane adjacent to the package lid surfaces, at $\tau = 3619$. Figure 4-7 is a plot of the fluid velocities in the same plane as the temperature plot of Figure 4-6. It shows the fluid developing upward velocities in the heated regions. The temperature profiles for a vertical cut in the X - Y plane through the center of the middle column of packages is shown in Figure 4-8. Figure 4-9 shows the velocities in the same plane as Figure 4-8. The plumes are starting to develop above the packages, and the flow velocities are larger in the enclosure. In addition the return flow from the cold plate has begun and flow is beginning to develop the circulation expected for this type of enclosure.
Figure 4-6: Isotherms for Ra = 1.15E7, in the Y-Z plane at X = 0.29. τ = 3516.

Figure 4-7: ZY velocity vectors for Ra = 1.15E7, in the Y-Z plane at X = 0.29. τ = 3516.
Figure 4-8: Isotherms for Ra = 1.15E7 in the X-Y plane at Z = 2.55. $\tau = 3516$.

Figure 4-9: XY velocity vectors for Ra = 1.15E7 in the X-Y plane at Z = 2.55. $\tau = 3516$.

44
V. CONCLUSIONS

The desire to improve the heat transfer performance of Fluorinert-75 through the use of ceramic particles was unsuccessful. The particles and loadings tested all resulted in unchanged or reduced heat transfer capability than the pure FC-75. The larger particles caused a greater decrement than the smaller particles due to their increased propensity to resist the buoyant streams and rest on the face of the chips. The .3 micron Boron Nitride, which was the smallest particle and has the density closest to the Fluorinert, caused the smallest decrement in heat transfer.

The external excitation proved to be successful in suspending the particles from the plate, but still resulted in a heat transfer decrement.

The forced circulation data showed the relative insensitivity of the heat transfer capability of the Fluorinert to the addition of particles in this regime. It also demonstrated the dangers of using forced circulation in direct electronic cooling. Throughout the natural convection testing, extending over a period of greater than six months, no damage had been encountered to the packages. In the forced circulation testing the packages failed in four days, most probably due to flow induced vibration of the divider plate. The danger in actual electronic equipment of similar phenomena should be a key consideration in the design of direct immersion cooling schemes. The results of this testing indicate that for the
materials tested, and possibly for a wider range of ceramic materials, the particles do not enhance the heat transfer characteristics.

The three dimensional numerical model was successfully modified to model the geometry encountered in this study for the vertical substrate orientation. The model was able to adequately represent the expected temperature profiles.
VI. RECOMMENDATIONS

The following recommendation are made for further study:

1. Investigate the physical reason for the failure of high thermal conductivity particles to raise the overall mixture thermal conductivity.

2. Investigate particles that more closely match the density of the Fluorinert.

3. Refine the mesh used for the numerical model to concentrate in the regions with large gradients.
APPENDIX A

POWER AND TEMPERATURE ACQUISITION PROGRAMS
A. DATA MONITORING PROGRAM

100!!!!!!!!!!!!!!!!!!!!!!!!!!!
110!! DATA COLLECTION
120!! MONITORING FOR EQUILIBRIUM
130!! V(0) MONITORS VOLTAGE DROP ACROSS
140!! THE PRECISION RESISTOR
150!! V(1) MONITORS THE VOLTAGE DROP ACROSS THE
160!! CHIP SET
170!! O() MONITORS THE DIODE OHMS
180!! T() ARE THE TEMPERATURES
190!! T(0) IS THE AMBIENT
200!! T(1-9) ARE THE CHIPS
210!! T(10) IS NOT USED
220!! T(11-14) ARE THE UNDER PLATE
240!! T(16-17) ARE THE SIDE WALLS
250 REAL V(1),O(2),T(17)
260 REAL Vt(1,10),Ot(2,10),Tt(17,10)
261 PRINT "PWR"
263 INPUT Pwr
270 PRINTER IS CRT
280 CLEAR SCREEN
290 J=0
300 OUTPUT 709;"RST"
310 OUTPUT 709;"REAL V(1),O(2),T(16)"
320 OUTPUT 709;"CONFMEAS DCV,203-204,USE 700"
330 ENTER 709;V(*)
340 PRINT V(0),V(1),V(0)*V(1)/.101
350 Vt(0,J)=V(0)
360 Vt(1,J)=V(1)
370 Vt(0,10)=Vt(0,10)+V(0)
380 Vt(1,10)=Vt(1,10)+V(1)
390 OUTPUT 709;"CONFMEAS OHM,200-202,USE 700"
400 ENTER 709;O(*)
410 Ot(0,J)=(7234.555-O(0))/19.9904
420 Ot(1,J)=(7241.029-O(1))/20.0697
430 Ot(2,J)=(7241.567-O(2))/20.0871
440 PRINT Ot(0,J)
450 PRINT Ot(1,J)
460 PRINT Ot(2,J)
470 Ot(0,10)=Ot(0,10)+Ot(0,J)
480 Ot(1,10)=Ot(1,10)+Ot(1,J)
490 Ot(2,10)=Ot(2,10)+Ot(2,J)
500 OUTPUT 709; "CONFMEAS TEMPT, 300-309, 311-316, 318, USE 700, INTO T"
510 OUTPUT 709; "VREAD T"
520 FOR I=0 TO 16
530 ENTER 709; T(I)
540 IF I<10 OR I>14 THEN 560
550 IF T(I)>60 THEN BEEP
560 PRINT I, T(I)
570 Tt(I, J)= T(I)
580 Tt(I, 10)= Tt(I, 10)+ T(I)
590 NEXT I
600 Tave=0
610 FOR I=10 TO 13
620 Tave= Tave+ T(I)
630 NEXT I
640 PRINT Tave/4
650 J= J+1
660 IF J=10 THEN 680
670 GOTO 320
680 PRINT Vt(0,10)/J
690 PRINT Vt(1,10)/J
691 Power= Vt(0,10)*Vt(1,10)/(.101*J*J)
700 PRINT Power
710 Vt(0,10)=0
720 Vt(1,10)=0
730 PRINT Ot(0,10)/J
740 PRINT Ot(1,10)/J
750 PRINT Ot(2,10)/J
760 Ot(0,10)=0
770 Ot(1,10)=0
780 Ot(2,10)=0
790 FOR I=0 TO 16
800 PRINT I, Tt(I, J)/10
810 Tt(I, J)=0
820 NEXT I
830 PRINT "Tave = "; Tave/4
840 PRINT
841 IF Tave<23.8*4 OR Tave>24.2*4 THEN 850
842 IF ABS(Power-Pwr)>0.05 THEN 850
843 BEEP
844 PRINT "STEADY STATE MET"
850 K=K+1
860 PRINT K
870 PRINT
B. DATA ACQUISITION PROGRAM

100!!!!!!!!!!!!!!!!!!!!!!!!
110!! DATA COLLECTION FILE
120!! ENTER THE RUN TYPE
150 !! V(0) MONITORS VOLTAGE DROP ACROSS
160 !! THE PRECISION RESISTOR
170 !! V(1) MONITORS THE VOLTAGE DROP ACROSS THE
180 !! PACKAGES
190 !! O() MONITORS THE DIODE OHMS
200 !! T() ARE THE TEMPERATURES
210 !! T(0) IS THE AMBIENT
220 !! T(1-9) ARE THE CHIPS
230 !! T(10) IS NOT USED
240 !! T(11-14) ARE THE UNDER PLATE
250 !! T(15) IS THE PELTIER
260 !! T(16-17) ARE THE SIDE WALLS
270 REAL V(1),O(2),T(17),Ts
280 REAL Vt(1,10),Ot(2,10),Tt(17,10)
290 PRINTER IS CRT
300 CLEAR SCREEN
310 PRINT "INPUT TARGET POWER LEVEL: "
320 INPUT Pwr
330 Geom$="H - FC"
340 PRINTER IS 9
350 Fluid$="FC 75"
360 Ceramic$="3m BN"
370 Grams=3.66
380 PRINT "THIS RUN IS AT ";Pwr," WATTS"
390 PRINT DATE$(TIMEDATE),TIME$(TIMEDATE)
400 PRINT "THE FLUID IS: ";Fluid$," ARRANGEMENT IS: ";Geom$
410 PRINT "THE CERAMIC IS: ";Ceramic$
420 PRINT "THE CERAMIC WEIGHT IS: ";Grams," GRAMS"
430 J=0
440 OUTPUT 709;"RST"
450 OUTPUT 709;"REAL V(1),O(2),T(16)"
C. FLOWRATE COLLECTION PROGRAM

100
110
120
130
140
150
160
170
180
190

FLOW METER CALIBRATION
!! F(0) MONITORS THE VOLTAGE ACROSS THE FLOWMETER
REAL F(0)
REAL Ft(10)
PRINT IS CRT
CLEAR SCREEN
PRINT "RHEOSTAT SETTING"
INPUT R

PRINT "DATA RUN ENDED"
200 J=0
210 OUTPUT 709;"RST"
220 OUTPUT 709;"REAL F(0)"
230 OUTPUT 709;"CONFMEAS DCV,205,USE 700"
240 ENTER 709;F(*)
250 F(0)=F(0)*(-1.0)
260 PRINT "FLOW ",F(0)
270 Ft(J)=F(0)
280 FOR N=1 TO 2000
290 NEXT N
300 J=J+1
310 IF J=10 THEN 330
320 GOTO 210
330 PRINT "ELAPSED TIME"
340 INPUT Ti
350 PRINT "ML PUMPED"
360 INPUT Mi
370 PRINTER IS 9
380 PRINT "CALIBRATION"
390 PRINT "DIAL SETTING ",R
400 FOR J=1 TO 10
410 PRINT Ft(J)
420 NEXT J
430 PRINT "ELAPSED TIME ";Ti
440 PRINT "VOLUME (ML) ";Mi
450 PRINTER IS CRT
460 END
APPENDIX B

LIST OF RUNS
<table>
<thead>
<tr>
<th>Run Name</th>
<th>Ceramic</th>
<th>Size Microns</th>
<th>Load Grams</th>
<th>Power Watts</th>
<th>Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0_14</td>
<td>None</td>
<td>NA</td>
<td>NA</td>
<td>14</td>
<td>Horizontal</td>
</tr>
<tr>
<td>C0_12.5</td>
<td>None</td>
<td>NA</td>
<td>NA</td>
<td>12.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>C0_11</td>
<td>None</td>
<td>NA</td>
<td>NA</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>C0_9.5</td>
<td>None</td>
<td>NA</td>
<td>NA</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>C0_8</td>
<td>None</td>
<td>NA</td>
<td>NA</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>A1_14</td>
<td>AlN</td>
<td>5</td>
<td>1.25</td>
<td>14</td>
<td>Horizontal</td>
</tr>
<tr>
<td>A1_125</td>
<td>AlN</td>
<td>5</td>
<td>1.25</td>
<td>12.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>A1_11</td>
<td>AlN</td>
<td>5</td>
<td>1.25</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>A1_9.5</td>
<td>AlN</td>
<td>5</td>
<td>1.25</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>A1_8</td>
<td>AlN</td>
<td>5</td>
<td>1.25</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>A2_14</td>
<td>AlN</td>
<td>5</td>
<td>2.52</td>
<td>14</td>
<td>Horizontal</td>
</tr>
<tr>
<td>A2_125</td>
<td>AlN</td>
<td>5</td>
<td>2.52</td>
<td>12.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>A2_11</td>
<td>AlN</td>
<td>5</td>
<td>2.52</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>A2_9.5</td>
<td>AlN</td>
<td>5</td>
<td>2.52</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>A2_8</td>
<td>AlN</td>
<td>5</td>
<td>2.52</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>A3_115</td>
<td>AlN</td>
<td>5</td>
<td>5.07</td>
<td>11.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>A3_11</td>
<td>AlN</td>
<td>5</td>
<td>5.07</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>A3_9.5</td>
<td>AlN</td>
<td>5</td>
<td>5.07</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>A3_8</td>
<td>AlN</td>
<td>5</td>
<td>5.07</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>A4_113</td>
<td>AlN</td>
<td>5</td>
<td>10.33</td>
<td>11.3</td>
<td>Horizontal</td>
</tr>
<tr>
<td>A4_11</td>
<td>AlN</td>
<td>5</td>
<td>10.33</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>A4_9.5</td>
<td>AlN</td>
<td>5</td>
<td>10.33</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>A4_8</td>
<td>AlN</td>
<td>5</td>
<td>10.33</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>A5_7</td>
<td>AlN</td>
<td>5</td>
<td>full</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B1_14</td>
<td>BN</td>
<td>3</td>
<td>1.95</td>
<td>14</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B1_125</td>
<td>BN</td>
<td>3</td>
<td>1.95</td>
<td>12.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B1_11</td>
<td>BN</td>
<td>3</td>
<td>1.95</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B1_9.5</td>
<td>BN</td>
<td>3</td>
<td>1.95</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B1_8</td>
<td>BN</td>
<td>3</td>
<td>1.95</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>Run Name</td>
<td>Ceramic</td>
<td>Size Microns</td>
<td>Load Grams</td>
<td>Power Watts</td>
<td>Orientation</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>B2_14</td>
<td>BN</td>
<td>3</td>
<td>.166</td>
<td>14</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B2_125</td>
<td>BN</td>
<td>3</td>
<td>.166</td>
<td>12.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B2_11</td>
<td>BN</td>
<td>3</td>
<td>.166</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B2_9.5</td>
<td>BN</td>
<td>3</td>
<td>.166</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B2_8</td>
<td>BN</td>
<td>3</td>
<td>.166</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B3_14</td>
<td>BN</td>
<td>3</td>
<td>0.303</td>
<td>14</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B3_125</td>
<td>BN</td>
<td>3</td>
<td>0.303</td>
<td>12.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B3_11</td>
<td>BN</td>
<td>3</td>
<td>0.303</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B3_9.5</td>
<td>BN</td>
<td>3</td>
<td>0.303</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B3_8</td>
<td>BN</td>
<td>3</td>
<td>0.303</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B4_14</td>
<td>BN</td>
<td>3</td>
<td>0.393</td>
<td>14</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B4_125</td>
<td>BN</td>
<td>3</td>
<td>0.393</td>
<td>12.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B4_11</td>
<td>BN</td>
<td>3</td>
<td>0.393</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B4_9.5</td>
<td>BN</td>
<td>3</td>
<td>0.393</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B4_8</td>
<td>BN</td>
<td>3</td>
<td>0.393</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B5_14</td>
<td>BN</td>
<td>3</td>
<td>0.016</td>
<td>14</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B5_125</td>
<td>BN</td>
<td>3</td>
<td>0.016</td>
<td>12.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B5_11</td>
<td>BN</td>
<td>3</td>
<td>0.016</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B5_9.5</td>
<td>BN</td>
<td>3</td>
<td>0.016</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B5_8</td>
<td>BN</td>
<td>3</td>
<td>0.016</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B6_14</td>
<td>BN</td>
<td>3</td>
<td>0.054</td>
<td>14</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B6_125</td>
<td>BN</td>
<td>3</td>
<td>0.054</td>
<td>12.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B6_11</td>
<td>BN</td>
<td>3</td>
<td>0.054</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B6_9.5</td>
<td>BN</td>
<td>3</td>
<td>0.054</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B6_8</td>
<td>BN</td>
<td>3</td>
<td>0.054</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B7_14</td>
<td>BN</td>
<td>3</td>
<td>0.097</td>
<td>14</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B7_125</td>
<td>BN</td>
<td>3</td>
<td>0.097</td>
<td>12.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B7_11</td>
<td>BN</td>
<td>3</td>
<td>0.097</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B7_9.5</td>
<td>BN</td>
<td>3</td>
<td>0.097</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B7_8</td>
<td>BN</td>
<td>3</td>
<td>0.097</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>Run Name</td>
<td>Ceramic</td>
<td>Size Microns</td>
<td>Load Grams</td>
<td>Power Watts</td>
<td>Orientation</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>B8_14</td>
<td>BN</td>
<td>3</td>
<td>0.115</td>
<td>14</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B8_125</td>
<td>BN</td>
<td>3</td>
<td>0.115</td>
<td>12.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B8_11</td>
<td>BN</td>
<td>3</td>
<td>0.115</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B8_9.5</td>
<td>BN</td>
<td>3</td>
<td>0.115</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B8_8</td>
<td>BN</td>
<td>3</td>
<td>0.115</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B9_14</td>
<td>BN</td>
<td>3</td>
<td>0.164</td>
<td>14</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B9_125</td>
<td>BN</td>
<td>3</td>
<td>0.164</td>
<td>12.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B9_11</td>
<td>BN</td>
<td>3</td>
<td>0.164</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B9_9.5</td>
<td>BN</td>
<td>3</td>
<td>0.164</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>B9_8</td>
<td>BN</td>
<td>3</td>
<td>0.164</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>D1_14</td>
<td>BN</td>
<td>3</td>
<td>0.05</td>
<td>14</td>
<td>Horizontal</td>
</tr>
<tr>
<td>D1_125</td>
<td>BN</td>
<td>3</td>
<td>0.05</td>
<td>12.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>D1_11</td>
<td>BN</td>
<td>3</td>
<td>0.05</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>D1_9.5</td>
<td>BN</td>
<td>3</td>
<td>0.05</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>D1_8</td>
<td>BN</td>
<td>3</td>
<td>0.05</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>D2_14</td>
<td>BN</td>
<td>3</td>
<td>0.099</td>
<td>14</td>
<td>Horizontal</td>
</tr>
<tr>
<td>D2_125</td>
<td>BN</td>
<td>3</td>
<td>0.099</td>
<td>12.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>D2_11</td>
<td>BN</td>
<td>3</td>
<td>0.099</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>D2_9.5</td>
<td>BN</td>
<td>3</td>
<td>0.099</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>D2_8</td>
<td>BN</td>
<td>3</td>
<td>0.099</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>D3_14</td>
<td>BN</td>
<td>3</td>
<td>0.155</td>
<td>14</td>
<td>Horizontal</td>
</tr>
<tr>
<td>D3_125</td>
<td>BN</td>
<td>3</td>
<td>0.155</td>
<td>12.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>D3_11</td>
<td>BN</td>
<td>3</td>
<td>0.155</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>D3_9.5</td>
<td>BN</td>
<td>3</td>
<td>0.155</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>D3_8</td>
<td>BN</td>
<td>3</td>
<td>0.155</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>D4_5</td>
<td>BN</td>
<td>3</td>
<td>full</td>
<td>4.8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>E1_14</td>
<td>BN</td>
<td>0.7</td>
<td>0.051</td>
<td>14</td>
<td>Horizontal</td>
</tr>
<tr>
<td>E1_125</td>
<td>BN</td>
<td>0.7</td>
<td>0.051</td>
<td>12.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>E1_11</td>
<td>BN</td>
<td>0.7</td>
<td>0.051</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>E1_9.5</td>
<td>BN</td>
<td>0.7</td>
<td>0.051</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>E1_8</td>
<td>BN</td>
<td>0.7</td>
<td>0.051</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>Run Name</td>
<td>Ceramic</td>
<td>Size Microns</td>
<td>Load Grams</td>
<td>Power Watts</td>
<td>Orientation</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>E2_14</td>
<td>BN</td>
<td>0.7</td>
<td>0.100</td>
<td>14</td>
<td>Horizontal</td>
</tr>
<tr>
<td>E2_125</td>
<td>BN</td>
<td>0.7</td>
<td>0.100</td>
<td>12.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>E2_11</td>
<td>BN</td>
<td>0.7</td>
<td>0.100</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>E2_9.5</td>
<td>BN</td>
<td>0.7</td>
<td>0.100</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>E2_8</td>
<td>BN</td>
<td>0.7</td>
<td>0.100</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>E3_14</td>
<td>BN</td>
<td>0.7</td>
<td>0.150</td>
<td>14</td>
<td>Horizontal</td>
</tr>
<tr>
<td>E3_125</td>
<td>BN</td>
<td>0.7</td>
<td>0.150</td>
<td>12.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>E3_11</td>
<td>BN</td>
<td>0.7</td>
<td>0.150</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>E3_9.5</td>
<td>BN</td>
<td>0.7</td>
<td>0.150</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>E3_8</td>
<td>BN</td>
<td>0.7</td>
<td>0.150</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>E4_14</td>
<td>BN</td>
<td>0.7</td>
<td>0.248</td>
<td>14</td>
<td>Horizontal</td>
</tr>
<tr>
<td>E4_125</td>
<td>BN</td>
<td>0.7</td>
<td>0.248</td>
<td>12.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>E4_11</td>
<td>BN</td>
<td>0.7</td>
<td>0.248</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>E4_9.5</td>
<td>BN</td>
<td>0.7</td>
<td>0.248</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>E4_8</td>
<td>BN</td>
<td>0.7</td>
<td>0.248</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>F1_14</td>
<td>AIN</td>
<td>44</td>
<td>0.049</td>
<td>14</td>
<td>Horizontal</td>
</tr>
<tr>
<td>F1_125</td>
<td>AIN</td>
<td>44</td>
<td>0.049</td>
<td>12.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>F1_11</td>
<td>AIN</td>
<td>44</td>
<td>0.049</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>F1_9.5</td>
<td>AIN</td>
<td>44</td>
<td>0.049</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>F1_8</td>
<td>AIN</td>
<td>44</td>
<td>0.049</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>F2_14</td>
<td>AIN</td>
<td>44</td>
<td>0.103</td>
<td>14</td>
<td>Horizontal</td>
</tr>
<tr>
<td>F2_125</td>
<td>AIN</td>
<td>44</td>
<td>0.103</td>
<td>12.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>F2_11</td>
<td>AIN</td>
<td>44</td>
<td>0.103</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>F2_9.5</td>
<td>AIN</td>
<td>44</td>
<td>0.103</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>F2_8</td>
<td>AIN</td>
<td>44</td>
<td>0.103</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>F3_14</td>
<td>AIN</td>
<td>44</td>
<td>0.207</td>
<td>14</td>
<td>Horizontal</td>
</tr>
<tr>
<td>F3_125</td>
<td>AIN</td>
<td>44</td>
<td>0.207</td>
<td>12.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>F3_11</td>
<td>AIN</td>
<td>44</td>
<td>0.207</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>F3_9.5</td>
<td>AIN</td>
<td>44</td>
<td>0.207</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>F3_8</td>
<td>AIN</td>
<td>44</td>
<td>0.207</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>Run Name</td>
<td>Ceramic</td>
<td>Size Microns</td>
<td>Load Grams</td>
<td>Power Watts</td>
<td>Orientation</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>F4_14</td>
<td>AIN</td>
<td>44</td>
<td>1.11</td>
<td>14</td>
<td>Horizontal</td>
</tr>
<tr>
<td>F4_125</td>
<td>AIN</td>
<td>44</td>
<td>1.11</td>
<td>12.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>F4_11</td>
<td>AIN</td>
<td>44</td>
<td>1.11</td>
<td>11</td>
<td>Horizontal</td>
</tr>
<tr>
<td>F4_9.5</td>
<td>AIN</td>
<td>44</td>
<td>1.11</td>
<td>9.5</td>
<td>Horizontal</td>
</tr>
<tr>
<td>F4_8</td>
<td>AIN</td>
<td>44</td>
<td>1.11</td>
<td>8</td>
<td>Horizontal</td>
</tr>
<tr>
<td>V0_14</td>
<td>None</td>
<td>NA</td>
<td>NA</td>
<td>14</td>
<td>Vertical</td>
</tr>
<tr>
<td>V0_125</td>
<td>None</td>
<td>NA</td>
<td>NA</td>
<td>12.5</td>
<td>Vertical</td>
</tr>
<tr>
<td>V0_11</td>
<td>None</td>
<td>NA</td>
<td>NA</td>
<td>11</td>
<td>Vertical</td>
</tr>
<tr>
<td>V0_9.5</td>
<td>None</td>
<td>NA</td>
<td>NA</td>
<td>9.5</td>
<td>Vertical</td>
</tr>
<tr>
<td>V0_8</td>
<td>None</td>
<td>NA</td>
<td>NA</td>
<td>8</td>
<td>Vertical</td>
</tr>
<tr>
<td>V3A_14</td>
<td>AIN</td>
<td>44</td>
<td>5.07</td>
<td>14</td>
<td>Vertical</td>
</tr>
<tr>
<td>V3A_125</td>
<td>AIN</td>
<td>44</td>
<td>5.07</td>
<td>12.5</td>
<td>Vertical</td>
</tr>
<tr>
<td>V3A_11</td>
<td>AIN</td>
<td>44</td>
<td>5.07</td>
<td>11</td>
<td>Vertical</td>
</tr>
<tr>
<td>V3A_9.5</td>
<td>AIN</td>
<td>44</td>
<td>5.07</td>
<td>9.5</td>
<td>Vertical</td>
</tr>
<tr>
<td>V3A_8</td>
<td>AIN</td>
<td>44</td>
<td>5.07</td>
<td>8</td>
<td>Vertical</td>
</tr>
<tr>
<td>V4A_14</td>
<td>AIN</td>
<td>44</td>
<td>10.33</td>
<td>14</td>
<td>Vertical</td>
</tr>
<tr>
<td>V4A_125</td>
<td>AIN</td>
<td>44</td>
<td>10.33</td>
<td>12.5</td>
<td>Vertical</td>
</tr>
<tr>
<td>V4A_11</td>
<td>AIN</td>
<td>44</td>
<td>10.33</td>
<td>11</td>
<td>Vertical</td>
</tr>
<tr>
<td>V4A_9.5</td>
<td>AIN</td>
<td>44</td>
<td>10.33</td>
<td>9.5</td>
<td>Vertical</td>
</tr>
<tr>
<td>V4A_8</td>
<td>AIN</td>
<td>44</td>
<td>10.33</td>
<td>8</td>
<td>Vertical</td>
</tr>
<tr>
<td>V5A_8</td>
<td>AIN</td>
<td>44</td>
<td>full</td>
<td>8</td>
<td>Vertical</td>
</tr>
<tr>
<td>V1B_14</td>
<td>BN</td>
<td>3</td>
<td>1.95</td>
<td>14</td>
<td>Vertical</td>
</tr>
<tr>
<td>V1B_125</td>
<td>BN</td>
<td>3</td>
<td>1.95</td>
<td>12.5</td>
<td>Vertical</td>
</tr>
<tr>
<td>V1B_11</td>
<td>BN</td>
<td>3</td>
<td>1.95</td>
<td>11</td>
<td>Vertical</td>
</tr>
<tr>
<td>V1B_9.5</td>
<td>BN</td>
<td>3</td>
<td>1.95</td>
<td>9.5</td>
<td>Vertical</td>
</tr>
<tr>
<td>V1B_8</td>
<td>BN</td>
<td>3</td>
<td>1.95</td>
<td>8</td>
<td>Vertical</td>
</tr>
<tr>
<td>V2B_14</td>
<td>BN</td>
<td>3</td>
<td>.166</td>
<td>14</td>
<td>Vertical</td>
</tr>
<tr>
<td>V2B_125</td>
<td>BN</td>
<td>3</td>
<td>.166</td>
<td>12.5</td>
<td>Vertical</td>
</tr>
<tr>
<td>V2B_11</td>
<td>BN</td>
<td>3</td>
<td>.166</td>
<td>11</td>
<td>Vertical</td>
</tr>
<tr>
<td>V2B_9.5</td>
<td>BN</td>
<td>3</td>
<td>.166</td>
<td>9.5</td>
<td>Vertical</td>
</tr>
<tr>
<td>V2B_8</td>
<td>BN</td>
<td>3</td>
<td>.166</td>
<td>8</td>
<td>Vertical</td>
</tr>
<tr>
<td>Run Name</td>
<td>Ceramic</td>
<td>Size Microns</td>
<td>Load Grams</td>
<td>Power Watts</td>
<td>Orientation</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>E1B_14</td>
<td>None</td>
<td>NA</td>
<td>NA</td>
<td>14</td>
<td>Excitation</td>
</tr>
<tr>
<td>E1B_125</td>
<td>None</td>
<td>NA</td>
<td>NA</td>
<td>12.5</td>
<td>Excitation</td>
</tr>
<tr>
<td>E1B_11</td>
<td>None</td>
<td>NA</td>
<td>NA</td>
<td>11</td>
<td>Excitation</td>
</tr>
<tr>
<td>E1B_9.5</td>
<td>None</td>
<td>NA</td>
<td>NA</td>
<td>9.5</td>
<td>Excitation</td>
</tr>
<tr>
<td>E1B_8</td>
<td>None</td>
<td>NA</td>
<td>NA</td>
<td>8</td>
<td>Excitation</td>
</tr>
<tr>
<td>E2B_14</td>
<td>BN</td>
<td>3</td>
<td>0.22</td>
<td>14</td>
<td>Excitation</td>
</tr>
<tr>
<td>E2B_125</td>
<td>BN</td>
<td>3</td>
<td>0.22</td>
<td>12.5</td>
<td>Excitation</td>
</tr>
<tr>
<td>E2B_11</td>
<td>BN</td>
<td>3</td>
<td>0.22</td>
<td>11</td>
<td>Excitation</td>
</tr>
<tr>
<td>E2B_9.5</td>
<td>BN</td>
<td>3</td>
<td>0.22</td>
<td>9.5</td>
<td>Excitation</td>
</tr>
<tr>
<td>E2B_8</td>
<td>BN</td>
<td>3</td>
<td>0.22</td>
<td>8</td>
<td>Excitation</td>
</tr>
<tr>
<td>E3B_14</td>
<td>BN</td>
<td>3</td>
<td>1.22</td>
<td>14</td>
<td>Excitation</td>
</tr>
<tr>
<td>E3B_125</td>
<td>BN</td>
<td>3</td>
<td>1.22</td>
<td>12.5</td>
<td>Excitation</td>
</tr>
<tr>
<td>E3B_11</td>
<td>BN</td>
<td>3</td>
<td>1.22</td>
<td>11</td>
<td>Excitation</td>
</tr>
<tr>
<td>E3B_9.5</td>
<td>BN</td>
<td>3</td>
<td>1.22</td>
<td>9.5</td>
<td>Excitation</td>
</tr>
<tr>
<td>E3B_8</td>
<td>BN</td>
<td>3</td>
<td>1.22</td>
<td>8</td>
<td>Excitation</td>
</tr>
<tr>
<td>FC1B_20</td>
<td>None</td>
<td>NA</td>
<td>NA</td>
<td>20</td>
<td>Forced</td>
</tr>
<tr>
<td>FC1B_14</td>
<td>None</td>
<td>NA</td>
<td>NA</td>
<td>14</td>
<td>Forced</td>
</tr>
<tr>
<td>FC1B_8</td>
<td>None</td>
<td>NA</td>
<td>NA</td>
<td>8</td>
<td>Forced</td>
</tr>
<tr>
<td>FC2B_20</td>
<td>BN</td>
<td>3</td>
<td>1.0</td>
<td>20</td>
<td>Forced</td>
</tr>
<tr>
<td>FC2B_14</td>
<td>BN</td>
<td>3</td>
<td>1.0</td>
<td>14</td>
<td>Forced</td>
</tr>
<tr>
<td>FC2B_8</td>
<td>BN</td>
<td>3</td>
<td>1.0</td>
<td>8</td>
<td>Forced</td>
</tr>
<tr>
<td>FC3B_20</td>
<td>BN</td>
<td>3</td>
<td>3.66</td>
<td>20</td>
<td>Forced</td>
</tr>
<tr>
<td>FC3B_14</td>
<td>BN</td>
<td>3</td>
<td>3.66</td>
<td>14</td>
<td>Forced</td>
</tr>
<tr>
<td>FC3B_8</td>
<td>BN</td>
<td>3</td>
<td>3.66</td>
<td>8</td>
<td>Forced</td>
</tr>
</tbody>
</table>
APPENDIX C

SAMPLE UNCERTAINTY CALCULATIONS
The accuracy of the data in this study was determined by performing an uncertainty analysis. For a function comprising a number of independent measurements, \(F = F(X_A, X_B, X_C) \), the uncertainty of \(F \) was calculated as:

\[
\delta F = \left[\left(\frac{\delta F}{\delta X_A} \delta X_A \right)^2 + \left(\frac{\delta F}{\delta X_B} \delta X_B \right)^2 + \left(\frac{\delta F}{\delta X_C} \delta X_C \right)^2 \right]^{1/2}
\]

If the function \(F = K \cdot X_A \cdot X_B \cdot X_C \), then the uncertainty was determined by:

\[
\frac{\delta F}{F} = \left[\left(a \frac{\delta X_A}{X_A} \right)^2 + \left(b \frac{\delta X_B}{X_B} \right)^2 + \left(c \frac{\delta X_C}{X_C} \right)^2 \right]^{1/2}
\]

The properties of concern:

- \(T_{\text{plate}} = 23.9^\circ C \) \(\delta T_{\text{plate}} = 0.25^\circ C \)
- \(T_{\text{surf}} = 69.5^\circ C \) \(\delta T_{\text{surf}} = 0.25^\circ C \)
- \(Q = 14.0 \) watts \(\delta Q = 0.25 \) watts
- \(\rho = 1654 \) kg/m\(^3\) \(\delta \rho = 4.54 \) kg/m\(^3\)
- \(\beta = 0.00148 \) K\(^{-1}\) \(\delta \beta = 3.46 \times 10^{-6} \) K\(^{-1}\)
- \(c_p = 1004 \) joule/kgK \(\delta c_p = 2.4 \) joule/kgK
- \(\nu = 4.603 \times 10^{-7} \) m\(^2\)/s \(\delta \nu = 1.64 \times 10^{-7} \) m\(^2\)/s
- \(\alpha = 3.585 \times 10^{-8} \) m\(^2\)/s \(\delta \alpha = 1.26 \times 10^{-8} \) m\(^2\)/s
- \(k = 0.058 \) W/m*K \(\delta k = 4.30 \times 10^{-5} \) W/m*K
- \(L = 0.009 \) m \(\delta L = 0.00009 \) m
- \(A = 0.001137 \) m\(^2\) \(\delta A = 1.0 \times 10^{-4} \) m\(^2\)
- \(g = 9.807 \) m/s\(^2\)

Uncertainty calculations are for the 3 micron BN light load at maximum power, that is mean power input of 14 watts.
\[\Delta T = T_s - T_{plate} \]
\[\text{Nu} = \frac{Q \cdot L}{k \cdot A \cdot (\Delta T)} \]
\[\text{Nu} = 33.89 \]

With the properties listed above \(\delta \text{Nu} = 2.36 \) or 6.97\%. The Rayleigh Number (Ra) is dependent on \(\beta, c_p, k, \nu, \rho \) and \(\alpha \), all of which vary with temperature for FC-75 [Ref. 21]

\[\frac{\delta \text{Nu}}{\text{Nu}} = \left[\left(\frac{\delta Q}{Q} \right)^2 + \left(\frac{\delta L}{L} \right)^2 + \left(\frac{\delta A}{A} \right)^2 + \left(\frac{\delta (\Delta T)}{\Delta T} \right)^2 \right]^{1/2} \]
\[\beta = \frac{0.00246}{1.825 - 0.00246 \cdot T} \]

\[c_p = (0.2411 + 3.7037 \cdot 10^{-4} \cdot T) \]

\[k = 0.065 - 7.895 \cdot 10^{-5} \cdot T \]

\[\nu = [1.4074 - 1.96 \cdot 10^{-5} \cdot T + 3.8018 \cdot 10^{-6} \cdot T^2 - 2.731 \cdot 10^{-6} \cdot T^3 + 8.168 \cdot 10^{-7} \cdot T^4] \cdot 10^{-6} \]

\[\rho = (1.825 - 0.00246 \cdot T) \cdot 100 \]

\[\alpha = \frac{k}{\rho c_p} \]

Thus

\[\frac{\delta \text{Ra}}{\text{Ra}} = \left[\left(\frac{\delta Q}{Q} \right)^2 + \left(\frac{4 \delta L}{L} \right)^2 + \left(\frac{\delta A}{A} \right)^2 + \left(\frac{8 \delta k}{k} \right)^2 + \left(\frac{\delta \nu}{\nu} \right)^2 + \left(\frac{\delta \rho}{\rho} \right)^2 \right]^{1/2} \]

where \(\text{Ra} = \frac{g \cdot P \cdot Q^4}{k \cdot \nu \cdot A} \); \(\text{Ra} = 9.93 \cdot 10^8 \) and \(\delta \text{Ra} = 8.61 \cdot 10^7 \) or 8.67\%.
APPENDIX D

NUMERICAL ANALYSIS

PROGRAM
A general purpose FORTRAN program for solving three-dimensional heat transfer and fluid flow in rectangular coordinates.

Version of program which can use large arrays for finer grids and do unsteady calculations. Calculations for large array version are the same as those for the lower dimension program except that coefficients for F.D. equations are recalculated rather than stored and reused later. This requires approximately 25 percent more time for execution.

Developed by:
S. B. Sathe
Code 69ST, Department of Mechanical Engineering
U.S. Naval Postgraduate School
Monterey, CA 93943
Tel: (408) 646-2417
Bitnet address: 5140P@NAVPGS

Modified for unsteady operation by:
D. E. Wroblewski
Code 69WR0, Department of Mechanical Engineering
U.S. Naval Postgraduate School
Monterey, CA 93943
Tel: (408) 646-2465

Relaxation = 0.4

c DT = 1.
c Thought = 0.75
c EPST = 0.05
c RA = 1.15e3

C uses multiply logic for convergence.

Logical LSTOP
INTEGER N0W(14)
COMMON/CNTL/LSTOP,ICALL,LSTOP
LOGICAL LSOLVE,PRINT,LBLK,LSTOP
COMMON F(35,25,35),R(35,25,35),RHO(35,25,35),GAM(35,25,35),
1 CON(35,25,35),AKP(35,25,35),AKM(35,25,35),AP(35,25,35),
2 AIP(35,25,35),AIM(35,25,35),AIP(35,25,35),AIM(35,25,35),
3 COMMON delh(35,25,35),delh(35,25,35),eps(35,25,35),
4 X(35),XU(35),XDF(35),XCV(35),XCVS(35),
5 Y(35),YV(35),YDF(35),YCV(35),YCVS(35),
6 Z(35),ZW(35),ZDF(35),ZCV(35),ZCVS(35),
7 R(35),RMN(35),SX(35),SXMN(35),XCV(35),XCVP(35),
8 YCVJ(35),YCVJP(35),ZCVK(35),ZCVP(35),ST(35,25,35)
COMMON DU(35,25,35),DV(35,25,35),DW(35,25,35),FV(35),FVP(35),
 FX(35),FXM(35),FY(35),FYM(35),PT(35),QT(35),TOLD(35,25,35),
 FZ(35),FZM(35),WHAT(35,25,35),WHAT(35,25,35),UOLD(35,25,35)
COMMON/INDEX/RELX(13),LPRINT(13),LBLK(11),NTIMES(10),
 LSOLVE(10),TIME,DT,DX,LY,DL,Y,L,T,ROCON,ZERO,TLAST,
2NF,NFMAX,NP,NRHO,NGAM,L1,L2,L3,M1,M2,M3,N1,N2,N3,
3IST,JST,KST,ITER,LAST,
4IPREF,JPREF,JPREF,MODE
COMMON/HEADIN/TITLE
 CHARACTER*10 TITLE(13)
COMMON/CNTL/LSTOP,I2CALL,I2STOP
COMMON/CONV1/EPSU,EPSV,EPSW,EPST,ICONV,ITER1,T0(35,25,35),ENBAL,
 U0(35,25,35),V0(35,25,35),W0(35,25,35),ITERL
COMMON/RESID/RMAX(13),IRESD
COMMON/SORC/SMAX,SSUM
common/force/zforce(35,25,35),yforce(35,25,35),zforce(35,25,35)
COMMON/COEF/FLOW,DIFF,ACOF
DIMENSION U(35,25,35),V(35,25,35),W(35,25,35),PC(35,25,35)
DIMENSION T(35,25,35)
EQUIVALENCE(F(1,1,1,1),U(1,1,1)),(F(1,1,1,2),V(1,1,1)),
 (F(1,1,1,3),W(1,1,1)),(F(1,1,1,4),PC(1,1,1))
 (F(1,1,1,5),T(1,1,1))
C**
open(16, file='p-coord')
open(20, file='p-rhos')
ISTOP=0
CALL MESH
CALL GEOMET
CALL BEGIN
10 CALL VARHO
19999 FORMAT('LSTOP=',I2)
 CALL BNDRY
 CALL PRTOUT
 CALL INCRV
 IF(LSTOP) THEN
 WRITE(*,19999) ISTOP
 STOP
ENDIF
 CALL COEF
 GO TO 10
END
C SUBROUTINE PROFIL
C COMMON/COEF/FLOW,DIFF,ACOF
C**
 ACOF=DIFF
 CPRINT*,ACOF,DIFF
 c.flow=0.
 IF(FLOW.EQ.0.) RETURN
 TEMP=DIFF-AABS(FLOW)*0.1
 66
ACOF=0.
IF(TEMP.LE.0.) RETURN
TEMP=TEMP/DIFF
ACOF=DIFF*TEMP**5
RETURN
END

LOGICAL LSOLVE, LPRINT, LBLK, LSTOP
COMMON F(35,25,35), RHO(35,25,35), GAM(35,25,35),
1 CON(35,25,35), AKP(35,25,35), AKM(35,25,35), AP(35,25,35),
2 AIP(35,25,35), AIM(35,25,35), AJP(35,25,35), AJM(35,25,35),
COMMON delh(35,25,35), delh0(35,25,35), epsi(35,25,35),
3 X(35), XU(35), XDIF(35), XCV(35), XCVS(35), tccp, aclent,
4 Y(35), YV(35), YDIF(35), YCV(35), YCVS(35), melt, tprev(35,25,35),
5 Z(35), ZW(35), ZDIF(35), ZCV(35), ZCVS(35), ap0(35,25,35),
6 YCVR(35), YCVRS(35), ARX(35), ARX(35), ARXP(35), ap1(35,25,35),
7 R(35), RMN(35), SX(35), SXMN(35), XCVI(35), XCVIP(35),
8 YCV(35), YCVJP(35), ZCVK(35), ZCVK(35), st(35,25,35),
COMMON DU(35,25,35), DV(35,25,35), DW(35,25,35), FV(35), FVP(35),
1 FX(35), FXM(35), FY(35), FYM(35), PT(35), QT(35), TOLD(35,25,35),
2 FZ(35), FZM(35), VHat(35,25,35), WHAT(35,25,35), UOLD(35,25,35),
COMMON/INDEX/RELAX(13), LPRINT(13), LBLK(11), NTIMES(10),
1 LSOLVE(10), TIME, DT, XL, YL, ZL, SRHO, CON, ZERO, TLAST,
2 NF, NMAX, NP, NRHO, NGAM, L1, L2, L3, M1, M2, M3, N1, N2, N3,
3 IST, JST, KST, ITER, LAST,
4 IPREF, JPRE, KPRE, MODE
DIMENSION D(35), VAR(35), VARM(35), VARP(35), PHIBAR(35)
common/force/xforce(35,25,35), yforce(35,25,35), zforce(35,25,35)
COMMON/HEADIN/TITLE
CHARACTER*10 TITLE(13)

C ***
COMMON/COEF/FLOW, DIFF, ACOF
ISTF=IST-1
JSTF=JST-1
KSTF=KST-1
IT1=L2+IST
IT2=L3+IST
JT1=M2+JST
JT2=M3+JST
KT1=N2+KST
KT2=N3+KST

NTSSS=NTIMES(NF)
cprint*, NF, NTSSS
DO 999 NT=1, NTSSS
DO 391 N=NF, NF
C IF(.NOT.LBLK(NF))GO TO 60
60 CONTINUE
COMMENCE TDMA LINE BY LINE SWEEPS FOR SOLUTION
DO 90 K=KST,N2
 DO 90 J=IST,M2
 PT(ISTF)=0.
 QT(ISTF)=F(ISTF,J,K,N)
 DO 70 I=IST,L2
 DENOM=AP(I,J,K)*PT(I-1)*AIM(I,J,K)
 PT(I)=AIM(I,J,K)/DENOM
 1 +AKP(I,J,K)*F(I,J,K+1,N)+AKM(I,J,K)*F(I,J+1,K,N)
 QT(I)=(TEMP+AIM(I,J,K)*QT(I-1))/DENOM
70 CONTINUE
 DO 80 II=IST,L2
 I=IT-1 II
80 F(I,J,K,N)=F(I,J,K,N)*PT(I)*QT(I)
90 CONTINUE
C DO 190 KK=KST,N3
 K=KT2-KK
 DO 190 JJ=IST,M3
 J=JT-JJ
 PT(ISTF)=0.
 QT(ISTF)=F(ISTF,J,K,N)
 DO 170 I=IST,L2
 DENOM=AP(I,J,K)*PT(I-1)*AIM(I,J,K)
 PT(I)=AIM(I,J,K)/DENOM
 1 +AKP(I,J,K)*F(I,J,K+1,N)+AKM(I,J,K)*F(I,J+1,K,N)
 QT(I)=(TEMP+AIM(I,J,K)*QT(I-1))/DENOM
170 CONTINUE
 DO 180 II=IST,L2
 I=IT-1 II
180 F(I,J,K,N)=F(I,J,K,N)*PT(I)*QT(I)
190 CONTINUE
C DO 280 JJ=IST,L2
 DO 280 K=KST,N2
 PT(ISTF)=0.
 QT(ISTF)=F(ISTF,K,N)
 DO 270 J=IST,M2
 DENOM=AP(I,J,K)*PT(I-1)*AIM(I,J,K)
 PT(I)=AIM(I,J,K)/DENOM
 1 +AKP(I,J,K)*F(I+1,J,K,N)+AIM(I,J,K)*F(I,J+1,K,N)
 QT(I)=(TEMP+AIM(I,J,K)*QT(I-1))/DENOM
270 CONTINUE
 DO 280 JJ=IST,M2
280 CONTINUE
DO 290 J=IST,J
DO 490 K=1,KST
DO 590 II=1,IK
F(QTWSJF)-FL.M7
DO 570 K=KST,1
DENOM=AP(LKJPTK-1)*AKM(K)
F(FLKJFULK+1NPTJKT(0))
570 CONTINUE
500 CONTINUE
590 CONTINUE
390 CONTINUE
DO 290 J=IST,J
DO 580 KK=KST,N2
K=KTI-KX
580 F(LJ,K,N)=F(LJ,K+1,N)*PT(K)+QT(K)

590 CONTINUE
C***
391 CONTINUE
C***
999 CONTINUE
CALL RESET
RETURN
END

C***

SUBROUTINE RESET

LOGICAL LSOLVE,LPRT,LBLK,LSTOP
COMMON F(35,25,35),P(35,25,35),RHO(35,25,35),GAM(35,25,35),
CON(35,25,35),AKP(35,25,35),AKM(35,25,35),AP(35,25,35),
2 AJP(35,25,35),AIM(35,25,35),AJP(35,25,35),AJM(35,25,35),
COMMON DEL(35,25,35),DELH(35,25,35),EPS(35,25,35),
3 X(35),XL(35),XDIF(35),XCX(35),XSVS(35),T(:,CP,ALATENT),
4 Y(35),YV(35),YDIF(35),YCV(35),YCVS(35),T(:,MET,IPREV)(35,25,35),
5 Z(35),ZW(35),ZDIF(35),ZCV(35),ZCVS(35),AP0(35,25,35),
6 YCVR(35),YCVRS(35),ARX(35),ARX(35),ARXJ(35),ARXJP(35),AP1(35,25,35),
7 R(35),RMN(35),SX(35),SXMN(35),XCV(35),XCVIP(35),
8 YCV(35),YCVIP(35),ZCV(35),ZCVK(35),ZCVKP(35),AP(35,25,35),
COMMON DU(35,25,35),DV(35,25,35),DW(35,25,35),FV(35),FVP(35),
1 FX(35),FXM(35),FY(35),FYM(35),FT(35),QT(35),TOLD(35,25,35),
2 FZ(35),FZM(35),WHAT(35,25,35),WHAT(35,25,35),UOLD(35,25,35),
COMMON INDEX,RELAX(13),LPRT(13),LBLK(11),NTIME(10),
1 LLSOLVE(10),TIME,DT,XL,YL,ZLS,RHOCON,ZERO,TLAST,
2 NF,NMAX,NRHO,NGAM,L1L2L3L4L5L6L7L8N9,
13ST,JST,KST,ITER,TLAST,
4IPREF,JPREF,IPREF,MODE
COMMON/HEADER/TTITLE
CHARACTER*10 TITLE(13)
COMMON/CNTL,LSTOP,ICALL,LSTOP
COMMON/CONV,EPST,EPST,EPST,CONV,ITER1,T0(35,25,35),ENBAL,
1 U0(35,25,35),V0(35,25,35),W0(35,25,35),ITERL
COMMON/RESID/RMAX(13),IRESID
COMMON/force,xforce(35,25,35),yforce(35,25,35),zforce(35,25,35)
COMMON/SORC,SMAX,SSUM
COMMON/CORF,LFLOW,DFF,ACOF
DIMENSION U(35,25,35),V(35,25,35),W(35,25,35),PC(35,25,35)
DIMENSION T(35,25,35)
equivalence(F(1,1,1,1),U(1,1,1,1)),(F(1,1,1,2),V(1,1,1,1)
1 (F(1,1,1,3),W(1,1,1,1)),(F(1,1,1,4),PC(1,1,1,1)),
2 .(F(1,1,1,5),T(1,1,1,1))
DO 400 K=2,N2
DO 400 J=2,N2

70
SUBROUTINE GEOMET

LOGICAL LSOLVE, PRINT, LBLK, LSTOP

COMMON F(35,25,35), P(35,25,35), RHQ(35,25,35), GAM(35,25,35),
1 CON(35,25,35), AKP(35,25,35), AKM(35,25,35), AP(35,25,35),
2 AIP(35,25,35), AIM(35,25,35), AJF(35,25,35), AJM(35,25,35)
3 COMMON delh(35,25,35), delho(35,25,35), epsilon(35,25,35),
4 X(35), XU(35), XDIF(35), XCV(35), XCVS(35), t, cp, alacent,
5 Y(35), YV(35), YDIS(35), YCV(35), YCVS(35), qmelt, qprev(35,25,35),
6 Z(35), ZW(35), ZDIF(35), ZCV(35), ZCVS(35), ap(35,25,35),
7 YCVR(35), YCVR(35), ARX(35), ARX(35), ARX(35), ap(35,25,35),
8 R(35), RMN(35), SX(35), SXMIN(35), XCV(35), XCV(35),
9 XCV(35), YCV(35), ZCV(35), ZCVK(35), ZCV(35), st(35,25,35)

COMMON DU(35,25,35), DV(35,25,35), DW(35,25,35), FV(35), FVP(35),
1 FX(35), FXM(35), FY(35), FYM(35), PT(35), QT(35), TOLD(35,25,35),
2 FZ(35), FZM(35), VHAT(35,25,35), WHAT(35,25,35), UOLD(35,25,35)
3 COMMON INDEX, RELAX(35), LPRINT(35), LBLK(35), NTIMES(35),
4 ILSOLVE(10), TLEVEL, XL, YL, ZL, S, RHOCON, ZER0, TLAST,
5 NF, NMAX, NP, NRHO, NGAM, LL1, LL2, L3, M1, M2, M3, N1, N2, N3,
6 IST, JST, KST, ITER, LAST,
7 4PREF, JPREF, KOEFL, MODE

COMMON HEADIN/ITLE

CHARACTER*10 TITLE, INDEX

COMMON/CONTV/CONT, LISTOP, CALL, LSTOP

COMMON/CONV1/EPSV, EPSW, EPSW, EPST, ICONV, ITER1, T0(35,25,35), ENB1,
1 U0(35,25,35), VX0(35,25,35), VX0(35,25,35), ITERL

COMMON/RESID/RMAX(13), RESID

COMMON/FORCE/XFORCE(35,25,35), YFORCE(35,25,35), ZFORCE(35,25,35)

COMMON/SORC/SMAX, SSUM

COMMON/COEF/FLOW, DIFF, ACOF

DIMENSION U(35,25,35), V(35,25,35), W(35,25,35), PC(35,25,35)

DIMENSION T(35,25,35)

EQUIVALENCE(F1(1,1,1), U(1,1,1)), (F1(1,1,2), V(1,1,1)),
1 (F1(1,1,3), W(1,1,1)), (F1(1,1,4), PC(1,1,1)),
2 (F1(1,1,5), T(1,1,1))

1 FORMAT(15X, 'COMPUTATION IN CARTESIAN COORDINATES')
2 FORMAT(15X, 'COMPUTATION FOR AXISYMMETRIC SITUATION')
3 FORMAT(15X, 'COMPUTATION IN POLAR COORDINATES')
4 FORMAT(14X, 40('H*',//))

L2=L1-1
L3=L2-1
M2=M1-1
M3=M2-1
N2=N1-1
N3=N2-1
X(1)=XU(2)
DO 5 I=2,L2
5 X(I)=0.5*(XU(I+1)+XU(I))
X(L1)=XU(L1)
Y(1)=YV(2)
DO 10 J=2,M2
10 Y(J)=0.5*(YV(J+1)+YV(J))
Y(M1)=YV(M1)
Z(1)=ZW(2)
DO 7 K=2,N2
7 Z(K)=0.5*(ZW(K+1)+ZW(K))
Z(N1)=ZW(N1)
C——
DO 15 I=2,L1
15 XDIF(I)=X(I)-X(I-1)
DO 18 I=2,L2
18 XCV(I)=XU(I+1)-XU(I)
DO 20 I=3,L2
20 XCVS(I)=XDIF(I)
XCVS(3)=XCVS(3)+XDIF(2)
XCVS(L2)=XCVS(L2)+XDIF(L1)
DO 22 I=3,L3
22 XCV(I)=0.5*XCV(I)
22 XCVIP(I)=XCV(I)
XCVIP(2)=XCV(2)
XCVI(L2)=XCV(L2)
DO 175 K=2,N1
175 ZDIF(K)=Z(K)-Z(K-1)
175 ZCV(K)=ZW(K+1)-ZW(K)
DO 270 K=3,N2
270 ZCVS(K)=ZDIF(K)
ZCVS(3)=ZCVS(3)+ZDIF(2)
ZCVS(N2)=ZCVS(N2)+ZDIF(N1)
DO 272 K=3,N3
272 ZCVKP(K)=ZCV(K)
272 ZCVKP(2)=ZCV(2)
ZCVK(N2)=ZCV(N2)
DO 35 J=2,M1
35 YDIF(J)=Y(J)-Y(J-1)
DO 40 J=2,M2
40 YCV(J)=YV(J+1)-YV(J)
DO 45 J=3,M2
45 YCVS(J)=YDIF(J)
YCVS(3)=YCVS(3)+YDIF(2)
YCVS(M2)=YCVS(M2)+YDIF(M1)
DO 277 J=3,M3
277 YCV(J)=0.5*YCV(J)
277 YCVIP(J)=YCV(J)
YCVIP(2)=YCV(2)
YCVJ(M2)=YCV(M2)
IF(MODE.NE.1) GO TO 55
DO 52 J=1,M1
52 RMN(J)=1.0
73
52 R(I)=1.0
 GO TO 56
55 DO 50 J=2,M1
50 R(I)=R(I-1)+YDIF(I)
 RMN(2)=R(1)
 DO 60 J=3,M2
60 RMN(I)=RMN(I-1)+YCV(I-1)
 RMN(M1)=R(M1)
56 CONTINUE
 DO 57 J=1,M1
57 SX(I)=1.
 SX(I)=R(I)
 IF(MODE.NE.3) GO TO 57
 SX(I)=R(I)
 IF(I.NE.1) SXMN(J)=RMN(J)
 CONTINUE
 DO 62 J=2,M2
62 SXM(I)=R(I)*YCV(I)
 ARX(I)=SX(I)
 IF(MODE.NE.3) GO TO 62
 ARX(I)=YCV(I)
62 CONTINUE
 DO 64 J=4,M3
64 YCVS(I)=0.5*(R(I)+R(I-1))*YDIF(I)
 YCVS(3)=0.5*(R(3)+R(2))*YCVS(3)
 YCVS(M2)=0.5*(R(M2)+R(M3))*YCVS(M2)
 IF(MODE.NE.3) GO TO 67
 DO 65 J=3,M3
65 ARX(I)=0.25*(1.+RMN(I)/R(I))*ARX(I)
 GO TO 68
67 DO 66 J=3,M3
66 ARX(I)=0.5*ARX(I)
 ARX(I)=ARX(I)
68 ARX(I)=ARX(I)
 ARX(M2)=ARX(M2)
 DO 70 J=3,M3
70 FV(I)=ARX(I)/ARX(J)
70 FVP(I)=1.-FV(I)
 DO 85 I=3,L2
85 FXM(I)=1.-FX(I)
 FX(I)=0.
 FXM(2)=1.
 FX(I)=1.
 FXM(I)=0.
 DO 90 J=3,M2
90 FYM(I)=1.-FY(I)
90 FYM(I)=1.-FY(I)
 FY(I)=0.
 FYM(2)=1.
FY(M1) = 1.
FYM(M1) = 0.
DO 87 K = 3, N2
FZ(K) = 0.5*ZCV(K-1)/ZDF(K)
87 FZM(K) = 1 - FZ(K)
FZ(2) = 0.
FZM(2) = 1.
FZ(N1) = 1.
FZM(N1) = 0.

CON, APU, U, V, RHO, PC AND P ARRAYS ARE INITIALIZED HERE
DO 95 K = 1, N1
DO 95 J = 1, L1
U(LJ,K) = 0.
V(LJ,K) = 0.
W(LJ,K) = 0.
DU(LJ,K) = 0.
DV(LJ,K) = 0.
DW(LJ,K) = 0.
CON(LJ,K) = 0.
AP(LJ,K) = 0.
RHO(LJ,K) = RHOCON
P(LJ,K) = 0.
AIP(LJ,K) = 0.
AJP(LJ,K) = 0.
AKP(LJ,K) = 0.
AIM(LJ,K) = 0.
AJM(LJ,K) = 0.
AKM(LJ,K) = 0.
PC(LJ,K) = 0.
CON(LJ,K) = 0.
95 CONTINUE
IF (MODE.EQ.1) PRINT 1
IF (MODE.EQ.2) PRINT 2
IF (MODE.EQ.3) PRINT 3
PRINT 4
RETURN

COME HERE TO CALCULATE COEFFICIENTS FOR FINITE DIFF. EQNS.
C*---
C* subroutine COEFF
C*---

LOGICAL LSOLVE, LPRINT, LBLK, LSTOP
COMMON F(35,25,35), P(35,25,35), RHO(35,25,35), GAM(35,25,35),
1 CON(35,25,35), AKP(35,25,35), AKM(35,25,35), AP(35,25,35),
2 AIM(35,25,35), AJM(35,25,35), AJP(35,25,35), AJM(35,25,35),
COMMON delh(35,25,35), delh0(35,25,35), epsi(35,25,35),
3 X(35), UX(35), XDF(35), XCV(35), XCVS(35), t, cp, latent,
4 V(35), YV(35), YDF(35), YCV(35), YCVS(35), tmeit, tprev(35,25,35),
5 Z(35), ZW(35), ZZDF(35), ZCV(35), ZCVS(35), ap(35,25,35),

75
C START OF ITERATION LOOP FOR EACH TIMESTEP
C

99 CONTINUE ICALL=1
C
C CALL UCOF, VCOF, AND WCOF TO FIND UHAT, VHAT, WHAT
C CALL UCOF
C CALL VCOF
C CALL WCOF
C
C CALL POF TO CALCULATE PRESSURE EQN. COEF.
C IF(.NOT.ILSOLVE(NP)) GO TO 500
C CALL POF
C IF(ITER.LE.1) GO TO 409
DO 408 K=2,N2
DO 408 J=2,M2
DO 408 I=2,L2
AP(I,J,K)=AP(I,J,K)/RELAX(NP)
 CON(I,J,K)=CON(I,J,K)/(1.-RELAX(NP))*AP(I,J,K)*P(I,J,K)
408 CONTINUE
409 CONTINUE
NP=4
C CALL TDMA
C CALCULATE U*

CALL UCOF
NF=1
IST=3
JST=2
KST=2
DO 413 K=2,N2
DO 413 J=2,M2
DO 413 I=3,L2
413 CON(IJK)=CON(IJK)+DU(IJK)*AP(IJK)*(P(I+1,J,K)-P(I,J,K))
C
C SAVE OLD VALUES OF U FOR CONVERGENCE CHECKING
C
DO 704 I=1,L1
DO 704 J=1,M1
DO 704 K=1,N1
UOLD(IJK)=U(IJK)
704 CONTINUE
C
CALL TDMA
C
C CALCULATE V*
C
CALL VCOF
NF=2
IST=2
JST=3
KST=2
DO 513 K=2,N2
DO 513 I=2,L2
DO 513 J=3,M2
513 CON(IJK)=CON(IJK)+DV(IJK)*AP(IJK)*(P(I-1,J,K)-P(I,J,K))
C
C SAVE OLD VALUES OF V FOR CONVERGENCE CHECKING (TEMP STORE IN WHAT)
C
DO 714 I=1,L1
DO 714 J=1,M1
DO 714 K=1,N1
WHAT(IJK)=V(IJK)
714 CONTINUE
C
CALL TDMA
C
C CALCULATE W*
C
CALL WCOF
NF=3
IST=2
JST=2
KST=3
DO 523 J=2,M2
DO 523 I=2,L2
DO 523 K=3,N2
CON(1,1,1)=CON(1,1,1)+DW(LJ,K)*AP(LJ,K)*(P(LJ,K-1)-P(LJ,K))
523 CONTINUE

C
C SAVE OLD VALUES OF W FOR CONVERGENCE CHECKING (TEMP STORE IN WHAT)
C
DO 724 I=1,L1
DO 724 J=1,M1
DO 724 K=1,N1
WHAT(LJ,K)=W(LJ,K)
724 CONTINUE
CALL TDMA
C
COEFFICIENTS FOR THE PRESSURE CORRECTION EQUATION———
C
CALL PCOF
NF=4
IF(.NOT.LSOLVE(NF)) GO TO 500
IST=2
JST=2
KST=2
CALL DIFFUS
SMAX=0.
SSUM=0.
C
WRITE(*,*)' P COEFF 2'
DO 410 K=2,N2
DO 410 J=2,M2
DO 410 I=2,L2
VOL=YCV(J)*XCV(I)*ZCV(K)
410 CON(I,J,K)=CON(I,J,K)*VOL
DO 701 K=2,N2
DO 701 J=2,M2
CON(2,J,K)=RHO(I,J,K)*U(2,J,K)*YCV(J)*ZCV(K)
701 CONTINUE
DO 702 I=2,L2
DO 702 K=2,N2
CON(L2,J,K)=RHO(L1,J,K)*V(L2,J,K)*XCV(I)*ZCV(K)
702 CONTINUE
DO 153 I=2,L2
DO 153 J=2,M2
CON(LJ,2)=RHO(LJ,1)*W(LJ,2)*XCV(I)*YCV(J)
153 CONTINUE
C
WRITE(*,*)' P COEFF 3'
DO 351 K=2,N2
DO 351 J=2,M2
DO 351 I=2,L2
78
AREA=VCV(J)*ZCV(K)
ARHO=AREA*(FX(I+1)*RHO(I+1,J,K)+FXM(I+1)*RHO(I,J,K))
FLOW=ARHO*U(I+1,J,K)
CON(I,J,K)=CON(I,J,K)-FLOW
CON(I+1,J,K)=CON(I+1,J,K)+FLOW
C
AREA=XCV(I)*ZCV(K)
ARHO=AREA*(FY(I+1)*RHO(I+1,J,K)+FYM(I+1)*RHO(I,J,K))
FLOW=ARHO*V(I+1,J,K)
CON(I,J,K)=CON(I,J,K)-FLOW
CON(I+1,J,K)=CON(I+1,J,K)+FLOW
C
AREA=XCV(I)*YCV(J)
ARHO=AREA*(FZ(K+1)*RHO(I+1,J,K+1)+FZM(K+1)*RHO(I,J,K))
FLOW=ARHO*W(I+1,J,K+1)
CON(I,J,K)=CON(I,J,K)-FLOW
CON(I,J,K+1)=CON(I,J,K)+FLOW
PC(I,J,K)=0.
351 CONTINUE
DO 352 I=2,L2
DO 352 J=2,M2
DO 352 K=2,N2
SMAX=AMAX1(SMAX,ABS(CON(I,J,K)))
SSUM=SSUM+CON(I,J,K)
352 CONTINUE
CALL TDMA
C
COME HERE TO CORRECT THE VELOCITIES
C
C WRITE(*,*),'VEL CORREC'
DO 511 K=2,N2
DO 511 J=2,M2
DO 511 I=2,L2
IF(I.LT.2) U(I,J,K)=U(I,J,K)+DU(I,J,K)*(PC(I-1,J,K)-PC(I,J,K))
IF(I.GT.2) U(I,J,K)=U(I,J,K)+DU(I,J,K)*(PC(I-1,J,K)-PC(I,J,K))
511 CONTINUE
500 CONTINUE
C WRITE(*,*),'T COEFF 1'
C
COEFFICIENTS FOR OTHER EQUATIONS
C
CALL RESET
IST=2
JST=2
KST=2
DO 600 NF=5,NFMAX
IF(NOT.LSOLVE(NF)) GO TO 600
CALL DIFFUS
REL=1.-RELAX(NF)
DO 601 I=2,L2

79
DO 601 J=2,M2
DO 601 K=2,N2

COEFFICIENTS A WEST AND EAST

AREA = YCV(1)*ZCV(K)
FLOW = AREA*U(J+1,J,K)*(FY(I+1)*RHO(I+1,J,K)+FXM(I+1)*RHO(I,J,K))
DIFF = AREA*2.*GAM(I+1,J,K)*GAM(I+1,J,K)*(XCV(I)*GAM(I+1,J,K)+
1.*XCV(I+1)*GAM(I+1,J,K)+1.0E-20)
CALL PROFIL
IF(ABS(FLOW).LT.1E-20) FLOW=0.
AIM(I+1,J,K)=ACOF+AMAX1(ZERO,FLOW)
AIP(I,J,K)=AIM(I+1,J,K)-FLOW

COEFFICIENTS NORTH AND SOUTH

AREA = XCV(I)*ZCV(K)
FLOW = AREA*V(J+1,K)*(FY(I+1)*RHO(I+1,J,K)+FXM(I+1)*RHO(I,J,K))
DIFF = AREA*2.*GAM(I,J,K)*GAM(I+1,J,K)*(XCV(I)*GAM(I+1,J,K)+
1.*XCV(I+1)*GAM(I+1,J,K)+1.0E-20)
CALL PROFIL
AIM(I+1,J,K)=ACOF+AMAX1(ZERO,FLOW)
AIP(I,J,K)=AIM(I+1,J,K)-FLOW

COEFFICIENTS AOUT AND AINT

AREA = YCV(J)*XCV(I)
FLOW = AREA*W(J+1,K)*(FZ(K+1)*RHO(I,J,K)+FZX(K+1)*RHO(L,J,K))
DIFF = AREA*2.*GAM(I,J,K)*GAM(I+1,J,K)*(XCV(I)*GAM(I+1,J,K)+
1.*XCV(I+1)*GAM(I+1,J,K)+1.0E-20)
CALL PROFIL
IF(ABS(FLOW).LT.1E-20) FLOW=0.
AKM(I,J,K+1)=ACOF+AMAX1(ZERO,FLOW)
AKP(I,J,K)=AKM(L,J,K+1)-FLOW

601 CONTINUE
C WRITE(*,*) 'T COEFF 2 '
DO 610 J=2,M2
DO 610 K=2,N2

COEFFICIENTS A WEST AND EAST

AREA = YCV(J)*ZCV(K)
FLOW = AREA*U(J+1,J,K)*RHO(I+1,J,K)
DIFF = AREA*2.*GAM(I+1,J,K)*XDIF(2)
CALL PROFIL
IF(ABS(FLOW).LT.1E-20) FLOW=0.
AIM(I,J,K)=ACOF+AMAX1(ZERO,FLOW)
AIP(I,J,K)=AIM(I,J,K)-FLOW

C WRITE(*,*) 'T COEFF 3 '
DO 611 I=2,L2
DO 611 K=2,N2

COEFFICIENTS ANORTH AND ASOUTH

AREA = XCV(I)*ZCV(K)
FLOW = AREA*V(J+1,K)*RHO(I,J,K)
DIFF = AREA*2.*GAM(I,J,K)*YDIF(2)

610 CONTINUE
C WRITE(*,*) 'T COEFF 4 '
DO 612 I=2,L2
DO 612 K=2,N2

COEFFICIENTS AOUT AND AINT

AREA = YCV(J)*XCV(I)
FLOW = AREA*W(J+1,K)*RHO(I,J,K)
DIFF = AREA*2.*GAM(I+1,J,K)*YDIF(2)
CALL PROFIL
IF(ABS(FLOW).LT.1E-20) FLOW=0.
AKM(I,J,K)=ACOF+AMAX1(ZERO,FLOW)
AKP(I,J,K)=AKM(I,J,K)-FLOW

611 CONTINUE
CALL PROFIL
AJM(L2,K)=ACOF+AMAX1(ZERO,FLOW)
FLOW=AREA*V(LM1,K)*RHO(LM1,K)
DIFF=AREA*GAM(LM1,K)*YDIF(M1)
CALL PROFIL
AJM(LM2,K)=ACOF+AMAX1(ZERO,FLOW)-FLOW
611 CONTINUE
C WRITE(*,*)'T COEFF 4'
DO 612 I=2,L2
DO 612 J=2,M2

COEFFICIENTS AOUT AND AINTO
AREA= YCV(J)*XCV(I)
FLOW=AREA*W(LJ,I)*RHO(LJ,I)
DIFF=AREA*GAM(LJ,I)*ZDIF(2)
CALL PROFIL
AKM(LJ,2)=ACOF+AMAX1(ZERO,FLOW)
FLOW=AREA*W(LJ,N1)*RHO(LJ,N1)
DIFF=AREA*GAM(LJ,N1)*ZDIF(N1)
CALL PROFIL
AKP(JN2)=ACOF+AMAX1(ZERO,FLOW)-FLOW
612 CONTINUE
C WRITE(*,*)'T COEFF 5'
DO 3987 I=1,L1
DO 3987 J=1,M1
DO 3987 K=1,N1
VOL=YCV(J)*XCV(I)*ZCV(K)
APT=RHO(LJ,K)*DT
AP(LJ,K)=AP(LJ,K)-APT
CON(LJ,K)=CON(LJ,K)+APT*(T0(LJ,K)
AP(LJ,K)=(-AP(LJ,K)*VOL+AP(LJ,K)+AJM(LJ,K)
1+AJM(LJ,K)+AJM(LJ,K)+AKM(LJ,K)+AKP(LJ,K)
2/REAX(NF)
ap(i,j,k)=ap(i,j,k)
C
C SAVE OLD VALUES OF T FOR CONVERGENCE CHECKING
C
C TOLD(L,J,K)=T(L,J,K)
3987 CONTINUE

CALL TDMA
C

600 CONTINUE

C CHECK FOR CONVERGENCE IN THIS TIME STEP
C CONVERGENCE BASED ON CHANGE IN TEMPERATURE BETWEEN SUCCESSIVE
C ITERATIONS AND ON OVERALL ENERGY BALANCE
C
81
IF(ITER1.EQ.1) THEN
ITER1=ITER1+1
ELSE
C FIND MAXIMUM VALUES FOR THIS ITERATION
TMX=0.0
UMX=0.0
VMX=0.0
WMX=0.0
DO 689 I=1,L1
DO 689 J=1,M1
DO 689 K=1,N1
TMX=AMAX1(ABS(T(I,J,K)),TMX)
UMX=AMAX1(ABS(U(I,J,K)),UMX)
VMX=AMAX1(ABS(V(I,J,K)),VMX)
WMX=AMAX1(ABS(W(I,J,K)),WMX)
689 CONTINUE
DELTMX=0.0
DO 690 I=2,L2
DO 690 J=2,M2
DO 690 K=2,N2
C CALCULATE RELATIVE CHANGE IN TEMP FROM LAST ITERATION
DELT=ABS(T(I,J,K)-TOLD(I,J,K))/TMX
DELU=ABS(U(I,J,K)-UOLD(I,J,K))/UMX
DELV=ABS(V(I,J,K)-VOLD(I,J,K))/VMX
DELW=ABS(W(I,J,K)-WOLD(I,J,K))/WMX
DELTMX=AMAX1(DELT,DELTMX)
DELMUX=AMAX1(DELU,DELMUX)
DELVMX=AMAX1(DELV,DELVMX)
DELWMX=AMAX1(DELW,DELWMX)
690 CONTINUE
IF(time.gt.0.4 and iter1.gt.100)go to 1023
IF(DELTMX.GT.EPSL) GO TO 691
C CHECK ENERGY BALANCE AFTER DELTMX CRITERIA MET
CALL NRGBAL
IF(ABS(ENBAL).LE.1.5) THEN
1023 ICONV=1
ITER1=ITER1
ITER1=0
ENDIF
691 ITER1=ITER1+1
IF(ABS(ENBAL).GE.200) THEN
C ITERATIONS ARE DIVERGING: TERMINATE RUN
WRITE(*,*) ' DIVERGING ITERATIONS: RUN TERMINATED'
WRITE(*,*) ' TRY SMALLER RELAXATION FACTORS'
STOP
ENDIF
IF(ITER1.GT.10000) THEN
CALL NRGBAL
WRITE(4,*) X,Y,Z,U,V,W,T
WRITE(*,*) 'EXCEEDED MAX NUMBER OF ITERATIONS PER TIME STEP'
WRITE(*,*) 'PROGRAM TERMINATING'
WRITE(*,*) 'TIME=',TIME
WRITE(*,*) 'DELTMX=',DELTMX,' ENBAL=',ENBAL
STOP
ENDIF
ENDIF
CALL NRGBAL
C WRITE((13,*) ITER,DELTMX,DELMX,DELMX,DELVMX,DELVMX,ENBAL
IF(I(K,ONV).EQ.0) THEN
C TIME STEP IS NOT CONVERGED: UPDATE BOUNDARY CONDITIONS AND ITERATE
PRINT*,TIME,' TIME',DELTMX
PRINT*,ENBAL,' ITER',ITER
PRINT*,T(4,5,6),T(12,7,9),T(7,13,15)
CALL BNDRY
GOTO 99
ENDIF
C TIME STEP IS CONVERGED: INCREMENT TIME AND ITERATION COUNTERS
100 TIME=TIME+DT
ITER=ITER+1
IF(TIME.GE.TLAST) 1
LSTOP=.TRUE.
RETURN
end
C
C**
C subroutine INCRV
C
LOGICAL LSOLVE,PRINT,LBLK,LSTOP
COMMON F(35,25,35),P(35,25,35),RHO(35,25,35),GAM(35,25,35),
1 CON(35,25,35),AKP(35,25,35),AKM(35,25,35),AP(35,25,35),
2 AIP(35,25,35),AIM(35,25,35),API(35,25,35),AJM(35,25,35),
COMMON delh(35,25,35),delh0(35,25,35),epsi(35,25,35),
3 X(35),XU(35),XDIF(35),XCV(35),XCVS(35),&.cop_alien.
4 Y(35),YY(35),YDIF(35),YCV(35),YCVS(35),&melt,prev(35,25,35),
5 Z(35),ZW(35),ZDIF(35),ZCV(35),ZCVS(35),&po(35,25,35),
6 YCVR(35),YCVRS(35),ARX(35),ARK(35),ARXIP(35),API(35,25,35),
7 R(35),RMN(35),SX(35),SXMN(35),XCV(35),XCVS(35),
8 YCV(35),YCVIP(35),ZCVK(35),ZCVKP(35),&f(35,25,35)
COMMON DU(35,25,35),DV(35,25,35),DW(35,25,35),FV(35),FVP(35),
1 FX(35),FXM(35),FY(35),FYM(35),PT(35),QT(35),TOLD(35,25,35),
2 FZ(35),FMZ(35),WHAT(35,25,35),WHAT(35,25,35),UOLD(35,25,35),
COMMON INDEX/RELAX(13),PRINT(13),LBBK(11),NTIMES(10),
1 LSOLVE(10),TIME,DT,XY,LY,LY,SRHOCON,ZERO,TLAST,
2 NF,NFMAX,GP,NGAM,L1,L2,L3,M1,M2,M3,N1,N2,N3,
3 IST,IST,ITER,LAST,
4 IPREF,IPREF,KPREF,MODE
COMMON/HEADING/TITLE
CHARACTER*10 TITLE(13)
COMMON/CNT/LSTOP,ICALL,LSTOP
COMMON/CONV1/ EPSU, EPSV, EPSW, EPST, ICNV, ITER1, T0(35,25,35), ENBAL,
1 U0(35,25,35),V0(35,25,35),W0(35,25,35),ITERL
COMMON/RESID/RMAX(13),RESID
common/force/force(35,25,35),yforce(35,25,35),zforce(35,25,35)
COMMON/SORC/SMAX,SSUM
COMMON/COEF/FLOW,DIFF,ACOF
DIMENSION U(35,25,35),V(35,25,35),W(35,25,35),PC(35,25,35)
DIMENSION T(35,25,35)
EQUIVALENCE (F(1,1,1,1),U(1,1,1,1),V(1,1,1,1),W(1,1,1,1))
C
C TIME STEP IS CONVERGED: INCREMENT VARIABLE ARRAYS
REWIND(7)
DO 700 I=1,L1
DO 700 J=1,M1
DO 700 K=1,N1
TO(IJ,K)=T(IJ,K)
U0(IJ,K)=U(IJ,K)
V0(IJ,K)=V(IJ,K)
W0(IJ,K)=W(IJ,K)
delt0(i,j,k)=delt(i,j,k)
tprev(i,j,k)=t(i,j,k)
700 CONTINUE
WRITE(7,*)X,Y,Z,XU,Y,V,W,T
RETURN
END
CC
SUBROUTINE UCFOF
CC
LOGICAL LSOLVE,PRINT,LBLK,LSTOP
COMMON F(35,25,35),P(35,25,35),RHO(35,25,35),GAM(35,25,35),
1 CON(35,25,35),AKP(35,25,35),AKM(35,25,35),AP(35,25,35),
2 AJP(35,25,35),AIM(35,25,35),AMJ(35,25,35)
COMMON delt(35,25,35),delt0(35,25,35),epsit(35,25,35),
3 X(35),XU(35),XDIF(35),XCV(35),XCVS(35),ix,op,alist,
4 Y(35),YV(35),YDF(35),YCV(35),YCVS(35),tmelt,tprev(35,25,35),
5 Z(35),ZW(35),ZDIF(35),ZCV(35),ZCVS(35),apo(35,25,35),
6 YCVR(35),YCVRS(35),ARX(35),ARX(35),ARX(35),ap(35,25,35),
7 R(35),RMN(35),SX(35),SXMN(35),XCV(35),XCV(35),
8 YCV(35),YCVS(35),ZCVK(35),ZCVKP(35),st(35,25,35),
COMMON DU(35,25,35),DV(35,25,35),DW(35,25,35),FV(35),FVP(35),
1 FX(35),FXM(35),FY(35),FYM(35),PT(35),QT(35),TOLD(35,25,35),
2 FZ(35),FZM(35),VHAT(35,25,35),WHAT(35,25,35),UOLD(35,25,35)
COMMON/INDEX/RELAX(13),LPRINT(13),LBLK(11),NTIMES(10),
1 LSOLVE(10),TIME,DT,DL,VLZ,LS,ROCON,ZERO,TLAST,
2 NP,NFMAX,NP,SRHO,NGAM,L1,L1,L2,L3,M1,M2,M3,N1,N2,N3,
3 NST,JST,KST,ITER,LAST,
4IPREF,JPREP,KPREP,MODE
COMMON/HEADINTITLE
CHARACTER*10 TITLE(13)
COMMON/CNTL/LSTOP,ICALL,ISTOP

84
COMMON/RESID/RMAX(13),RESID
COMMON/CONV/EPF,EPF,EPST,ICONV,ITER1,TO(35,25,35),ENBAL,
1 U0(35,25,35),VO(35,25,35),W0(35,25,35),ITERL
COMMON/SORC/SMAX,SSUM
COMMON/COEF/FLOW,DIFF,ACOF
DIMENSION U(35,25,35),V(35,25,35),W(35,25,35),PC(35,25,35)
common/force/xforce(35,25,35),yforce(35,25,35),zforce(35,25,35)
DIMENSION T(35,25,35)
EQUIVALENCE(F(1,1,1,1),U(1,1,1,1)),(F(1,1,1,2),V(1,1,1,1)),
1 (F(1,1,1,3),W(1,1,1,1)),(F(1,1,1,4),PC(1,1,1,1))
2 .(F(1,1,1,5),T(1,1,1,1))

C
C **
C ENTRY UCOF
C
COEFFICIENTS FOR THE U EQUATION
C

CALL RESET
NF=1
IF(.NOT.LSOLVE(NF)) GO TO 100
IST=3
JST=2
KST=2
CALL DIFFUS

REL=1.-RELAX(NF)
C WRITE(21,*)' U: COEFF 1'
DO 103 I=3,L2
DO 103 J=2,M2
DO 103 K=2,N2

COEFFICIENTS EAST AND WEST
FL=U(I,J,K)*(FX(I)*RHO(I,J,K)+FXM(I)*RHO(I+1,J,K))
FLP=U(I+1,J,K)*(FX(I+1)*RHO(I+1,J,K)+FXM(I+1)*RHO(I,J,K))
FLOW=YCV(I)*ZCV(K)*0.5*(FL+FLP)
DIFF=YCV(I)*ZCV(K)*GAM(I,J,K)*XCV(I)

CALL PROFIL
AIM(I+1,J,K)=ACOF+AMAX1(ZERO,FLOW)
AIP(I,J,K)=AIM(I+1,J,K)-FLOW

COEFFICIENTS NORTH AND SOUTH
FL=XCV(I)*V(I,J+1,K)*(FY(J+1)*RHO(I,J+1,K)+FYM(J+1)*RHO(I,J,K))
FLM=XCV(I-1)*V(I-1,J+1,K)*(FY(J+1)*RHO(I-1,J+1,K)+FYM(J+1)*
1 RHO(I-1,J,K))
GM=GAM(I,J,K)*GAM(I+1,J,K)
1 /YCV(I)*GAM(I+1,J+1,K)+YCV(J+1)*GAM(I,J,K)+
2 1.0E-20*XCV(I)
GMM=GAM(I-1,J,K)*GAM(I-1,J+1,K)
1 /YCV(I)*GAM(I-1,J+1,K)+YCV(J+1)*
2 GAM(I-1,J,K)+1.E-20*XCVIP(I-1)
DIFF=ZCV(K)*2.*GM+GMM
FLOW=ZCV(K)*FL+FLM

CALL PROFIL

85
AI\[L+1,K\]=ACOF+AMAXI(\text{ZERO,FLOW})

\text{AJP(\text{\}J,K)\}=\text{AI}\[\text{\}J,K}\}-\text{FLOW}

\text{COEFFICIENTS AIN AND AOUT}

\text{FL}=\text{XCVI(I)}*W(U(J+1,K)+1)*RHO(U(J+1,K-1)+FZM(K)+RHO(U(J,K))

\text{FLM}=\text{XCVIP(I)}*W(U(I-1,J+1,K)+1)*RHO(U(I-1,J+1,K-1)+FZM(K))

\text{1 RHO(I-1,J+1,K))

\text{GM}=\text{GAM}(U(I,J,K))\text{GAM}(U(I,J+1,K))

1/(ZCV(K)*GAM(1,J,K+1)+ZCV(K+1)*GAM(U(I,J,K))

2*1.0E-20*XCVI(I)

\text{GMM}=\text{GAM(I,J,K+1)}*GAM(I,J+1,K+1)

1/(ZCV(K)*GAM(I,J,K+1)+ZCV(K+1)*GAM(I,J,K+1))

2*GAM(I,J+1,K)+1.0E-20*XCVIP(I)

\text{DIFF}=\text{YCV}(I)*U(I,J,K+1)*\text{FLOW}\text{GAM}(I,J,K)

\text{FLOW}=(\text{YCV}(I)\text{FL+FLM})

\text{CALL PROFIL}

\text{AKJ}(U(I,J,K))=ACOF+AMAXI(\text{ZERO,FLOW})

\text{AKP(U(I,J,K))=AKJ(U(I,J,K+1)-FLOW}

\text{CONTINUE}

\text{C WRITE(*,*) 'U: COEFF 2'}

\text{DO 104 J=2,M2}

\text{DO 104 K=2,N2}

\text{COEFFICIENTS AEAST AND AWEST}

\text{AREA}=(\text{YCV}(I)*ZCV(K)

\text{FLOW}=(\text{AREA}+\text{RHO}(U(I,J,K))*U(2,J,K)

\text{DIFF}=(\text{AREA}+\text{GAM}(U(I,J,K))*XCV(2)

\text{CALL PROFIL}

\text{AIJ(U(I,J,K))=ACOF+AMAXI(\text{ZERO,FLOW})}

\text{FLOW}=(\text{AREA}+\text{RHO}(U(I,J,K))*U(2,J,K)

\text{DIFF}=(\text{AREA}+\text{GAM}(U(I,J,K))*XCV(2)

\text{CALL PROFIL}

\text{AJP(U(I,J,K))=ACOF+AMAXI(\text{ZERO,FLOW})-FLOW}

\text{CONTINUE}

\text{C WRITE(*,*) 'U: COEFF 3'}

\text{DO 105 I=3,L2}

\text{DO 105 K=2,N2}

\text{COEFFICIENTS ANORTH AND ASOUTH}

\text{FL}=\text{XCVI(I)}*V(U(I,J,K))*RHO(U(I,K,1)+11)

\text{FLM}=\text{XCVIP(I)}*V(U(I,J,K)-1,2K)*RHO(U(I-1,1,K)

\text{FLOW}=(\text{ZCV}(K)*FL+FLM)

\text{GM}=\text{XCVI(I)}*GAM(U(I,K,1)+11)+\text{XCVIP(I)}*GAM(U(I-1,1,K)

\text{DIFF}=(\text{ZCV}(K)\text{GM)*DYDF(2)}

\text{CALL PROFIL}

\text{AJM(U(I,J,K))=ACOF+AMAXI(\text{ZERO,FLOW})}

\text{FL}=\text{XCVI(I)}*V(U(I,M,K))*RHO(U(I,M,1,K)

\text{FLM}=\text{XCVIP(I)}*V(U(I,M,K)-1,2K)*RHO(U(I-1,M,1,K)

\text{FLOW}=(\text{ZCV}(K)*FL+FLM)

\text{GM}=\text{XCVI(I)}*GAM(U(I,M,K)+11)+\text{XCVIP(I)}*GAM(U(I-1,M,1,K)

\text{DIFF}=(\text{ZCV}(K)\text{GM)*DYDF(MI)}

\text{CALL PROFIL}

\text{AJP(U(I,M,K))=ACOF+AMAXI(\text{ZERO,FLOW})-FLOW}

\text{CONTINUE}
C WRITE(*,*) 'U: COEFF 4'
DO 106 I=3,L2
DO 106 J=2,M2
COEFFS AIM AND AOUT
FL=XCV(I)*W(U,J,J)*RHO(U,J)
FLM=XCV(I-1)*W(U-1,J,J)*RHO(U-1,J)
FLOW=YCV(I)*FL+FLM
GM=XCV(I)*GAM(U,J,J)+XCV(I-1)*GAM(U-1,J,J)
DIFF=YCV(I)*GM/ZDIF(2)
CALL PROFIL
AKM(U,J)=ACOF+AMAX1(ZERO,FLOW)
FL=XCV(I)*W(U,J,J)*RHO(U,J)
FLM=XCV(I-1)*W(U-1,J,J)*RHO(U-1,J)
FLOW=YCV(I)*FL+FLM
GM=XCV(I)*GAM(U,J,J)+XCV(I-1)*GAM(U-1,J,J)
DIFF=YCV(I)*GM/ZDIF(2)
CALL PROFIL
AKM(U,J)=ACOF+AMAX1(ZERO,FLOW)-FLOW
106 CONTINUE
C WRITE(*,*) 'U: COEFF 5'
DO 107 I=3,L2
DO 107 J=2,M2
DO 107 K=2,N2
VOL=YCV(I)*XCV(I)*ZCV(K)
APT=RHO(U,I,J)*XCV(I)+RHO(U-1,I,J)*XCV(I-1)
1/XCV(I)*DT
AP(U,J)=AP(U,J)-APT
CON(U,J)=CON(U,J)+APT*U0(U,J)
AP(U,J)=
1 (-AP(U,J)*VOL+AIM(U,J)+APM(U,J)+AP(U,J)+AP(U,J))
2 +AKM(U,J)+AKM(U,J))
3/RELAX(NF)

**************source term

 CON(U,J)=CON(U,J)*VOL+REL*AP(U,J)*U(U,J)
DU(U,J)=VOL/ZDIF(2)
DU(U,J)=DU(U,J)/AP(U,J)
107 CONTINUE
 IF(CALL_EQ.1) THEN
 C TEMPORARY USE OF PC(U,J) TO STORE UHAT
 DO 151 K=2,N2
 DO 151 J=2,M2
 DO 151 I=3,L2
PC(U,J)=(AP(U,J)*U(U+1,J,J)+AIM(U,J)*U(U-1,J,J)
1 +APM(U,J)*U(U+1,J,J)+APM(U,J)*U(U-1,J,J)
2 +AKM(U,J)*U(U+1,J,J)+AKM(U,J)*U(U-1,J,J)
3 +CON(U,J)/AP(U,J)
151 continue
endif
100 CONTINUE
RETURN
subroutine VCOF

LOGICAL LSOLVE, LPRINT, LBLK, LSTOP
 3 X(35,5), XDIF(35,5), XCVA(35,5), XCVS(35,5), t, cp, alastent,
 4 Y(35,5), Ydif(35,5), YCV(35,5), YCVS(35,5), melt, t, prem(35,25,35,5),
 5 Z(35,5), ZW(35,5), ZDIF(35,5), ZCV(35,5), ZCVS(35,5), ap0(35,25,35,5),
 6 YCVR(35,5), YCVRS(35,5), ARX(35,5), ARX(35,5), ARXJP(35,5), ap1(35,25,35,5),
 7 R(35,5), RMN(35,5), SX(35,5), SXMN(35,5), XCV(35,5), XCVIP(35,5),
 8 YCVJ(35,5), YCVJP(35,5), ZCVK(35,5), ZCVKP(35,5), st(35,25,35,5)
 1 FX(35,5), FXM(35,5), FY(35,5), FYM(35,5), PT(35,5), QT(35,5), TOLD(35,25,35,5),
 COMMON/INDEX/RELAX(13), LPRINT(13), LBLK(11), NTIMES(10),
 1 LSOLVE(10), TIME, DT, XL, YL, ZL, SHOCON, ZERO, TLAST,
 2 NF, NFX, NFX, NRHO, NGAM, L1, L2, L3, M1, M2, M3, N1, N2, N3,
 3 ISTRU, JSTRU, KSTRU, ITER, LAST,
 4 Ipref, Ipref, KPref, MODE
 COMMON/HEADING/TITLE
 CHARACTER*10 TITLE(13)
 COMMON/CNTL/LSTOP, ICALL, LSTOP
 COMMON/CONV1/ EPSU, EPSW, EPSV, EPS, EPST, IONV, IITER, TO(35,25,35,5), ENBAL,
 1 UO(35,25,35,5), VD(35,25,35,5), W0(35,25,35,5), ITERL
 COMMON/RESID/RMAX(13), RESID
 COMMON/SCR/SMAX, SSMAX
 COMMON/COEF/FLOW, DIFF, ACOF
 DIMENSION T(35,25,35,5)
 EQUIVALENCE(F(1,1,1,1), U(1,1,1)), (F(1,1,1,1), V(1,1,1)),
 1 (F(1,1,1,1), W(1,1,1)), (F(1,1,1,1), PC(1,1,1)),
 2 (F(1,1,1,1), T(1,1,1)))

COEFFICIENTS FOR THE V EQUATION---------------------------

CALL RESET
NF=2
IF(NOT.LSOLVE(NF)) GO TO 200
IST=2
JST=-3
KST=2
CALL DIFFUS
REL=1.-RELAX(NF)
C WRITE(*,*)' V: COEFF 1'
DO 203 J=3,M2
DO 203 I=2,L2

88
DO 203 K=2,N2
COEFFICIENTS ANORTH AND ASOUTH
 FL=V(LJ,K)*(FY(I)*RHO(LJ,K)+FYM(I)*RHO(LJ,K))
 FLM=V(LJ+1,K)*(FY(I)*RHO(LJ+1,K)+FYM(I)*RHO(LJ,K))
 FLOW=XCV(I)*ZCV(K)*0.5*(FL+FLM)
 DIFF=XCV(I)*ZCV(K)*GAM(LJ,K)*YCV(I)
 CALL PROFIL
 AIM(LJ+1,K)=ACOF+AMAX1(ZERO,FLOW)
 AJP(LJ,K)=AIM(LJ+1,K)-FLOW
COEFFICIENTS AEAST AND SEWEST
 FL=YCV(I)*W(LJ+1,K)*RHO(LJ+1,K)+FXM(I)*RHO(LJ,K))
 FLM=YCVLP(I)*W(LJ+1,K)*RHO(LJ+1,K)+FXM(I)*RHO(LJ,K)
 1 RHO(LJ+1,K)
 GM=GM(LJ,K)*GAM(LJ+1,K)
 1 /XCV(I)*GAM(LJ+1,K)+XCV(I+1)*GAM(LJ,K)+
 2 1.0E-20)*YCV(I)
 GMG=GM(LJ,K)+GAM(LJ+1,K)
 1 /XCV(I)*GAM(LJ+1,K)+XCV(I+1)*
 2 GAM(LJ+1,K)+1.0E-20)*YCVJPR(I-1)
 DIFF=ZCV(K)*2.*GM+GMM
 FLOW=ZCV(K)*FL+FLM
 CALL PROFIL
 AIM(LJ+1,K)=ACOF+AMAX1(ZERO,FLOW)
 AJP(LJ,K)=AIM(LJ+1,K)-FLOW
COEFFICIENTS ANIN AND AOUT
 FL=YCV(I)*W(LJ+1,K)*RHO(LJ+1,K)+FZW(I)*RHO(LJ,K))
 FLM=YCVLP(I)*W(LJ+1,K)*RHO(LJ+1,K)+FZW(I)*RHO(LJ,K)
 1 RHO(LJ+1,K)
 GM=GM(LJ,K)*GAM(LJ+1,K)
 1 /XCV(K)*GAM(LJ+1,K)+ZCV(K+1)*GAM(LJ,K)+
 2 1.0E-20)*YCV(I)
 GMG=GM(LJ,K)+GAM(LJ+1,K)
 1 /XCV(K)*GAM(LJ+1,K)+ZCV(K+1)*
 2 GAM(LJ+1,K)+1.0E-20)*YCVJPR(I-1)
 DIFF=ZCV(K)*2.*GM+GMM
 FLOW=XCV(I)*FL+FLM
 CALL PROFIL
 AKM(LJ,K+1)=ACOF+AMAX1(ZERO,FLOW)
 AKP(LJ,K)=AKM(LJ+1,K)-FLOW
203 CONTINUE
C WRITE(*,*) 'V: COEFF 2'
DO 204 I=2,L2
 DO 204 K=2,N2
COEFFICIENTS ANORTH AND ASOUTH
 AREA=XCV(I)*ZCV(K)
 FLOW=AREA*RHO(LJ+1,K)*V(LJ,K)
 DIFF=AREA*GAM(LJ+1,K)*YCV(I)
 CALL PROFIL
 AIM(LJ,K)=ACOF+AMAX1(ZERO,FLOW)
 FLOW=AREA*RHO(LJ+1,K)*V(LJ+1,K)
 DIFF=AREA*GAM(LJ+1,K)*YCV(I)
CALL PROFIL
AIP(L,J,K)=ACOF+AMAX1(ZERO,FLOW)-FLOW
204 CONTINUE
C WRITE(*,*)'V: COEFF 3'
DO 205 J=3,M2
DO 205 K=2,N2
COEFFICIENTS A EAST AND A WEST
FL=YC(VI(J)*U(2,J,K)*RHO(1,J,K)
FLM=YC(VP(J-1)*U(2,J-1,K)*RHO(1,J-1,K)
FLOW=ZCV(K)*(FL+FLM)
GM=YC(VI(J)*GAM(1,J,K)+YC(VP(J-1)*GAM(1,J-1,K)
DIFF=ZCV(K)*GM/XDIF(2)
CALL PROFIL
AIP(L,J,K)=ACOF+AMAX1(ZERO,FLOW)
205 CONTINUE
C WRITE(*,*)'V: COEFF 4'
DO 206 J=2,L2
DO 206 K=3,M2
COEFFICIENTS A IN AND A OUT
FL=YC(VI(J)*W(L,J,K)*RHO(L,J,K)
FLM=YC(VP(J-1)*W(L-1,J,K)*RHO(L-1,J,K)
FLOW=XC(VT(J)*(FL+FLM)
GM=YC(VI(J)*GAM(L,J,K)+YC(VP(J-1)*GAM(L-1,J,K)
DIFF=XC(VT(J)*GM/ZDIF(2)
CALL PROFIL
AIP(L,J,K)=ACOF+AMAX1(ZERO,FLOW)
206 CONTINUE
C WRITE(*,*)'V: COEFF 5'
DO 207 J=2,L2
DO 207 K=3,N2
VOL=XC(VT(J)*YC(S(J)*ZCV(K)
APT=(RHO(L,J,K)*YC(VI(J)+RHO(L-1,J,K)*YC(VP(J-1))
1/(YC(VS(J)*DT)
AP(L,J,K)=AP(L,J,K)-APT
CON(L,J,K)=CON(L,J,K)+APT*VO(L,J,K)
AP(L,J,K)=
90
1 (-AIP(LJK)*VOL+AI4P(LJK)+AJM(LJK)+AJP(LJK)+AIM(LJK)
2 +AI4P(LJK)+AKM(LJK))
3/RELAX(NF)

source term

CON(LJK)=CON(LJK)*VOL+REL*AP(LJK)*V(LJK)
DV(LJK)=VOL/YDF(I)
DV(LJK)=DV(LJK)/AP(LJK)
207 CONTINUE
IF(CALL.EQ.1) THEN
DO 8099 I=1,2
DO 8099 K2,N2
DO 8099 J-3,M2
8099 IF(ICALLEQ.1) THEN
DO 8099 K2,N2
DO 8099 J-3,M2
ENDIF
200 CONTINUE
RETURN
END
C
C **

subroutine WCOF
LOGICAL LSOLVE,LPRINT,LBLK,LSTOP
COMMON F(35,25,35),P(35,25,35),RHO(35,25,35),GAM(35,25,35),
1 CON(35,25,35),AI4P(35,25,35),AJM(35,25,35),AP(35,25,35),
2 AIP(35,25,35),AIM(35,25,35),AJP(35,25,35),AIM(35,25,35),
COMMON delh(35,25,35),delh(35,25,35),epsi(35,25,35),
3 X(35),XU(35),XDIFF(35),XCV(35),XCVS(35),XCVX(35),XCVX(35),XCVX(35),
4 Y(35),YV(35),YDIFF(35),YCV(35),YCVS(35),YCVX(35),YCVX(35),YCVX(35),
5 Z(35),ZW(35),ZDIFF(35),ZCV(35),ZCVS(35),ZCVX(35),ZCVX(35),
6 YCV(35),YCVRS(35),ARX(35),ARXIP(35),AI4P(35,25,35),
7 R(35),RMN(35),SX(35),SXMN(35),XCVI(35),XCVP(35),
8 YCV(35),YCVIP(35),ZCVK(35),ZCVK(35),ZCVK(35),
COMMON DU(35,25,35),DV(35,25,35),DW(35,25,35),FX(35),FY(35),
1 FX(35),FXM(35),FY(35),FYM(35),PT(35),QT(35),TOLD(35,25,35),
2 F2(35),FZ(35),VHAT(35,25,35),WHAT(35,25,35),UOLD(35,25,35),
COMMON INDEX/RELAX(13),LPRINT(13),LBLK(11),NTIMES(10),
1 LSOLVE(10),TIME,DT,XL,YL,ZL,SL,CON/zERO,TLAST,
2 NF, NM, MAX, NRHO, NGAM, L1, L2, L3, M1, M2, M3, N1, N2, N3,
3IST, JST, KST, ITER, LAST,
4IPREF, JREF, KPREF, MODE
COMMON/HEADIN/TITLE
CHARACTER*10 TITLE(13)
COMMON/CNTL/LSTOP,JCALL,JSTOP
COMMON/CONV/EPSSU,EPSSV,EPSSW,EPST,ICONV,ITER,T0(35,25,35),ENBAL,
1 UO(35,25,35),W(35,25,35),W(35,25,35),ITERL
COMMON/RESID/RMAX(13),RESID
COMMON/SORC/SMAX,SSUM
COMMON/COEF/FLOW,DIV,ACOF

91
DIMENSION U(35,25,35),V(35,25,35),W(35,25,35),PC(35,25,35)
COMMON/force/zforce(35,25,35),yforce(35,25,35),zforce(35,25,35)
DIMENSION T(35,25,35)
EQUIVALENCE(F(1,1,1,1),U(1,1,1)),F(1,1,1,2),V(1,1,1)),
1 (F(1,1,1,3),W(1,1,1)),(F(1,1,1,4),PC(1,1,1)),
2 (F(1,1,1,5),T(1,1,1))

COEFFICIENTS FOR THE W EQUATION

CALL RESET
NF=3
IF(NOT.LSOLVE(NF)) GO TO 300
IST=2
JST=2
KST=3
CALL DIFFUS
REL=1.-RELAX(NF)
C WRITE(*,*), ' W: COEFF 1'
DO 303 K=3,N2
DO 303 J=2,M2
DO 303 I=2,L2

COEFFICIENTS AIN AND AOUT
FL=W(L,J,K)*FZ(K)RHO(L,J,K)+FZM(K)RHO(L,J,K)
FLP=W(L,J,K+1)*FZ(K+1)RHO(L,J,K)+FZM(K+1)RHO(L,J,K)
FLOW=YCV(J)*XCV(I)*0.5*(FL+FLP)
DIFF=YCV(J)*XCV(I)*GAM(L,J,K)*ZCV(K)
CALL PROFIL
AKM(L,J,K+1)=ACOF+AMAXI(ZERO,FLOW)
AKP(L,J,K)=AKM(L,J,K+1)-FLOW

COEFFICIENTS ANORTH AND ASOUTH
FL=ZCVK(K)RHO(L,J,K)+FY(I+1)RHO(L,J,K)+FYM(I+1)RHO(L,J,K)
FLM=ZCVK(K+1)RHO(L,J,K+1)+FY(I+1)RHO(L,J,K+1)+FYM(I+1)RHO(L,J,K+1)+
1 RHO(L,J,K-1))
GM=GAM(L,J,K)GAM(L,J,K)
1 /(YCV(J)GAM(L,J,K+1)+YCV(J)*GAM(L,J,K)+
2 1.0E-20)*ZCVK(K)
GMM=GAM(L,J,K-1)GAM(L,J,K-1)
1 /(YCV(J)*GAM(L,J,K-1)+YCV(J)*
2 GAM(L,J,K-1)+1.0E-20)*ZCVK(K-1)
DIFF=XCV(I)*2.*(GM+GMM)
FLOW=XCV(I)*FL+FLM)
CALL PROFIL
AIM(L,J,K+1)=ACOF+AMAXI(ZERO,FLOW)
AIM(L,J,K)=AIM(L,J,K+1)-FLOW

COEFFICIENTS AEAST AND AWEST
FL=ZCVK(K)*FX(I+1)RHO(I+1,J,K)+FXM(I+1)RHO(I+1,J,K)
FLM=ZCVK(K+1)*FX(I+1)RHO(I+1,J,K)+FXM(I+1)RHO(I+1,J,K+)
1 RHO(I+1,J,K))
GM=GAM(I+1,J,K)GAM(I+1,J,K)
1 /(XCV(I)*GAM(I+1,J,K)+XCV(I)*GAM(I+1,J,K)+
2 1.0E-20)*ZCVK(K)
$\text{GMM} = \text{GAM}(I,J,K-1) \times \text{GAM}(I+1,J,K-1)$

1. $/(\text{XC}V(I) \times \text{GAM}(I+1,J,K-1) + \text{XC}V(I+1) \times \text{GAM}(I,J,K-1))$
2. $\text{GAM}(I,J,K-1) \times 1E-20 \times \text{ZCVK}(K-1)$

$\text{DIFF} = \text{YCV}(J) \times 2 \times (\text{GAM} + \text{GMM})$

$\text{FLOW} = \text{YCV}(J) \times (\text{FL} + \text{FLM})$

CALL PROFIL

$\text{AIM}(I+1,J,K) = \text{ACOF} + \text{AMAX1}(\text{ZERO}, \text{FLOW})$

$\text{AIM}(I,J,K) = \text{AIM}(I+1,J,K) \times \text{FLOW}$

CONTINUE

C WRITE(*,*) 'W: COEFF 2'

DO 304 I=2,M2

DO 304 J=2,L2

$\text{COEFFICIENTS AIN AND AOUT}$

$\text{AREA} = \text{YCV}(J) \times \text{XC}(I)$

$\text{FLOW} = \text{AREA} \times \text{RHO}(L,J) \times W(J,2)$

$\text{DIFF} = \text{AREA} \times \text{GAM}(L,J) \times \text{ZCV}(2)$

CALL PROFIL

$\text{AKM}(I,J,3) = \text{ACOF} + \text{AMAX1}(\text{ZERO}, \text{FLOW})$

$\text{FLOW} = \text{AREA} \times \text{RHO}(L,N) \times W(J,1)$

$\text{DIFF} = \text{AREA} \times \text{GAM}(I,N) \times \text{ZCV}(N)$

CALL PROFIL

$\text{AKP}(L,J,2) = \text{ACOF} + \text{AMAX1}(\text{ZERO}, \text{FLOW}) \times \text{FLOW}$

CONTINUE

C WRITE(*,*) 'W: COEFF 3'

DO 304 I=2,L2

DO 304 K=3,N2

$\text{COEFFICIENTS ANORTH AND ASOUTH}$

$\text{FL} = \text{ZCVK}(K) \times 2(I,J,K) \times \text{RHO}(L,J)$

$\text{FLM} = \text{ZCVK}(K-1) \times 2(I,J,K-1) \times \text{RHO}(L,J)$

$\text{FLOW} = \text{XC}(I) \times (\text{FL} + \text{FLM})$

$\text{GM} = \text{ZCVK}(K) \times \text{GAM}(I,J) \times \text{ZCVK}(K-1) \times \text{GAM}(I,J,K-1)$

$\text{DIFF} = \text{XC}(I) \times \text{GM} \times \text{YDIF}(2)$

CALL PROFIL

$\text{AIM}(I,J,3) = \text{ACOF} + \text{AMAX1}(\text{ZERO}, \text{FLOW})$

$\text{FL} = \text{ZCVK}(K) \times 2(I,M) \times \text{RHO}(L,M)$

$\text{FLM} = \text{ZCVK}(K-1) \times 2(I,M,K-1) \times \text{RHO}(L,M)$

$\text{FLOW} = \text{XC}(I) \times (\text{FL} + \text{FLM})$

$\text{GM} = \text{ZCVK}(K) \times \text{GAM}(I,M) \times \text{ZCVK}(K-1) \times \text{GAM}(I,M,K-1)$

$\text{DIFF} = \text{XC}(I) \times \text{GM} \times \text{YDIF}(M)$

CALL PROFIL

$\text{AIM}(I,M,2) = \text{ACOF} + \text{AMAX1}(\text{ZERO}, \text{FLOW}) \times \text{FLOW}$

CONTINUE

C WRITE(*,*) 'W: COEFF 4'

DO 306 K=3,N2

DO 306 J=2,M2

$\text{COEFFICIENTS AEast and AWest}$

$\text{FL} = \text{ZCVK}(K) \times 2(U,JK) \times \text{RHO}(L,J)$

$\text{FLM} = \text{ZCVK}(K-1) \times 2(U,J,K-1) \times \text{RHO}(L,J)$

$\text{FLOW} = \text{YCV}(J) \times (\text{FL} + \text{FLM})$

$\text{GM} = \text{ZCVK}(K) \times \text{GAM}(I,J,K) \times \text{ZCVK}(K-1) \times \text{GAM}(I,J,K-1)$

$\text{DIFF} = \text{YCV}(J) \times \text{GM} \times \text{XDIF}(2)$

93
CALL PROFIL
AIP(L+1,J,K)=ACOF+A2MAXI(ZERO,FLW)
FL=ZCVK(K)*U(L+1,J,K)*RHO(L+1,J,K)
FLM=ZCVP(K-1)*U(L+1,J,K-1)*RHO(L+1,J,K-1)
FLOW=VCV(J)*(FL+FLM)
GM=ZCVK(K)*GM(L+1,J,K)+ZCVP(K-1)*GM(L+1,J,K-1)
DIFF=VCV(J)*GM/XDIFF(L)

306 CONTINUE
C WRITE(*,*) ' W. COEFF 5'
DO 307 I=2,L2
DO 307 J=2,M2
DO 307 K=3,N2
VOL=VCV(J)+ZCVS(K)*XCV(I)
APT=(RHO(L+1,LK)*ZCVK(K)+RHO(LK)*ZCVP(K-1))/
K(ZCVS(K))*DT
AP(L+1,J,K)=AP(L,J,K)-APT
CON(L+1,J,K)=CON(L,J,K)+APT*X(W(L+1,LK))
AP(L+1,J,K)=
1 -AP(L+1,J,K)*VOL+AIM(L+1,J,K)+AIP(L+1,J,K)+AIM(L+1,J,K)
2 +AKP(L+1,J,K)+AKM(L+1,J,K)
3/RELAX(NF)

307 CONTINUE
IF(ICALL.EQ.1) THEN
DO 9099 I=2,L2
DO 9099 J=2,M2
DO 9099 K=3,N2
9099 WHAT(L+1,J,K)=AP(L+1,J,K)*W(I+1,J,K)+AIM(L+1,J,K)*W(I+1,J,K)
1 +AIP(L+1,J,K)*W(I+1,J,K)+AIM(L+1,J,K)*W(I+1,J,K)
2 +AKP(L+1,J,K)*W(I+1,J,K)+AIM(L+1,J,K)*W(I+1,J,K)
3 +CON(L+1,J,K)/AP(L+1,J,K)
ENDIF
300 CONTINUE
RETURN
end
C

subroutine PCOF
LOGICAL LSOLVE,LPRINT,LBLK,LSTOP
COMMON F(35,25,35),P(35,25,35),RHO(35,25,35),GM(35,25,35),
1 CON(35,25,35),AKP(35,25,35),AKM(35,25,35),AP(35,25,35),
2 AIM(35,25,35),AIM(35,25,35),AIM(35,25,35)
COMMON delh(35,25,35),delh0(35,25,35),eps(35,25,35),
3 X(35),XU(35),XDF(35),XCV(35),XCVS(35),&c,Apalant,
4 Y(35),YV(35),YDF(35),YCV(35),YCVS(35),tmel,prev(35,25,35),
94
COEFFICIENTS FOR THE PRESSURE EQUATION

\begin{align*}
&\text{C}^0 = \text{NP}^0 \\
&\text{IST} = 2 \\
&\text{KST} = 2 \\
&\text{WRITE(*,*) 'PC: COEFF 1'} \\
&\text{DO 501 } I=2,2M2 \\
&\text{DO 501 } K=2,2N2 \\
&\text{AIP(2,JK)=0.0} \\
&\text{CON(2,JK)=RHO(1,JK)*U(2,JK)*YCV(J)*ZCV(K)} \\
&\text{CON(L1,JK)=0.0} \\
&\text{501 CONTINUE} \\
&\text{DO 502 } I=2,2L2 \\
&\text{DO 502 } K=2,2N2 \\
&\text{AIP(LM2,JK)=0.0} \\
&\text{CON(L2,K)=RHO(L1,K)*V(L2,K)*XCV(I)*ZCV(K)} \\
&\text{CON(LM1,K)=0.0} \\
&\text{502 CONTINUE} \\
&\text{DO 503 } I=2,L2 \\
&\text{DO 503 } J=2,M2 \\
&\text{AKM(L1,L2)=0.0}
\end{align*}
AKP(I,J) = 0.0
CON(I,J) = RHO(I,J,1) * W(J) * XCV(I) * YCV(J)
503 CONTINUE
C
C WRITE(*,*) 'PC: COEFF 2'
DO 504 K = 2, N2
DO 504 J = 2, M2
DO 504 I = 2, L2
AREA = YCV(I) * ZCV(K)
ARHO = AREA * (FX(I+1) * RHO(I+1,J,K) + FXM(I+1) * RHO(I,J,K))
FLOW = ARHO * PC(I+1,J,K)
IF(LEQ(L,J)) FLOW = ARHO * W(I,J,K)
IF(ABS(FLOW),LT,1E-20) FLOW = 0.
APJ(I,J,K) = ARHO * DU(I+1,J,K)
AJM(I+1,J,K) = APJ(I,J,K)
CON(I,J,K) = CON(I,J,K) + FLOW
CON(I+1,J,K) = CON(I+1,J,K) + FLOW
C
AREA = XCV(I) * ZCV(K)
ARHO = AREA * (FY(I+1) * RHO(I,J,K+1) + FYM(I+1) * RHO(I,J,K))
FLOW = ARHO * VHAT(I+1,J,K)
IF(LEQ(M,J)) FLOW = ARHO * V(I,M,J,K)
IF(ABS(FLOW),LT,1E-20) FLOW = 0.
APJ(I,J,K) = ARHO * DV(I+1,J,K)
AJM(I+1,J,K) = APJ(I,J,K)
CON(I,J,K) = CON(I,J,K) + FLOW
CON(I+1,J,K) = CON(I+1,J,K) + FLOW
AREA = XCV(I) * YCV(J)
ARHO = AREA * (FF(K+1) * RHO(I,J,K+1) + FZM(K+1) * RHO(I,J,K))
FLOW = ARHO * WHAT(I,K,J+1)
IF(LEQ(N,J)) FLOW = ARHO * W(I,J,N1)
AKP(I,J,K) = ARHO * DW(I,J,K+1)
AKM(I,J,K+1) = AKP(I,J,K)
IF(ABS(FLOW),LT,1E-20) FLOW = 0.
CON(I,J,K) = CON(I,J,K) + FLOW
CON(I,J,K+1) = FLOW
C
WRITE(*,*) '3: IJK
APJ(I,J,K) = APJ(I,J,K) + AJM(I,J,K) + APJ(I,J,K) + AJM(I,J,K)
+ AKP(I,J,K) + AKM(I,J,K)
504 CONTINUE
RETURN
END

SUBROUTINE unmesh

LOGICAL LSOLVE, LPRINT, LBLK, LSTOP
COMMON F(35,25,35), P(35,25,35), RHO(35,25,35), GAM(35,25,35),
1 CON(35,25,35), AKP(35,25,35), AKM(35,25,35), AP(35,25,35),
2 AJP(35,25,35), AJM(35,25,35), AJP(35,25,35), AJM(35,25,35)
COMMON delh(35,25,35), delh(35,25,35), eps(35,25,35),
3 X(35), XU(35), XDIF(35), XCV(35), XCVS(35), tk, cp, alatent,
4 Y(35), YV(35), YDIFF(35), YCV(35), YCVS(35), tmean, tprev(35, 25, 35),
5 Z(35), ZW(35), ZDIFF(35), ZCV(35), ZCVS(35), a0(35, 25, 35),
6 YCVR(35), YCVRS(35), ARX(35), ARXR(35), ARXR(35), a1(35, 25, 35),
7 R(35), RMN(35), SX(35), SXMIN(35), XCVL(35), XCVIP(35),
8 YCVL(35), YCVIP(35), ZCV(35), ZCVK(35), ZCVKP(35), ut(35, 25, 35)
COMMON DU(35, 25, 35), DV(35, 25, 35), DW(35, 25, 35), FV(35), FVR(35),
1 FX(35), FXM(35), FY(35), FYM(35), PT(35), QT(35), TOLD(35, 25, 35),
2 FZ(35), FZM(35), VAT(35, 25, 35), WHAT(35, 25, 35), UOLD(35, 25, 35)
COMMON INDEX, RELAX(13), LPRINT(13), LBLK(11), NTIMES(10),
1 LSOLVE(10), TIME, DT, XN, YN, ZN, RHOCON, ZERO, TLAST,
2 NF, NMAX, NP, NRHO, NGAM, L1, L2, L3, M1, M2, M3, N1, N2, N3,
3 NST, JST, KST, ITER, LAST,
4 IPREF, JREF, KREF, MODE
COMMON/HEA, NVTITLE
CHARACTER*10 TITLE(13)
COMMON/CNTL, LISTOP, ICALL, ISTOP
COMMON/CONV2, EPSU, EPSV, EPSW, EPST, ICONST, ITER1, TO(35, 25, 35), ENBAL,
1 UO(35, 25, 35), V0(35, 25, 35), W0(35, 25, 35), ITERL
COMMON/SORCE, SMAX, SSUM
COMMON/COF, FLOW, DIFF, ACOF
DIMENSION U(35, 25, 35), V(35, 25, 35), W(35, 25, 35), PC(35, 25, 35)
common/vforce, xforce(35, 25, 35), yforce(35, 25, 35), zforce(35, 25, 35)
DIMENSION T(35, 25, 35)
EQUIVALENCE(F(1, 1, 1, 1), U(1, 1, 1)), (F(1, 1, 1, 2), V(1, 1, 1)),
2 (F(1, 1, 1, 3), W(1, 1, 1)), (F(1, 1, 1, 4), PC(1, 1, 1))
C***
10 FORMAT(26(1H1), 3X, A10, 3X, 26(1H1))
20 FORMAT(1X, 4H1 = '6, 689)
30 FORMAT(1X, 4H1)
40 FORMAT(1X, 12, 3X, 1P, 7E9.2)
50 FORMAT(1H1)
51 FORMAT(1X, 4H1 = '74, 15X))
52 FORMAT(1X, 4H1 = '74, 15X))
53 FORMAT(1H1)
54 FORMAT(1X, 1P, 7E9.2)
55 FORMAT(1X, 1P, 7E9.2)
56 FORMAT(1X, 2X, 1P, 7E9.2)
57 FORMAT(1X, 2X, 1P, 7E9.2)
59 FORMAT(1X, 2X, 1P, 7E9.2)
C***
c ENTRY UMESH
C***
x D(2) = 0.
Y D = YL / FLOAT(L1-2)
DO 11 I = 3, L1
1 XU(I) = XU(I-1) + DX
YV(2) = 0.
DY = YL / FLOAT(M1-2)
DO 2 J = 3, M1
2 YV(J) = YV(J-1) + DY
ZW(2)=0.
DZ=ZL/FLOAT(N1-2)
DO 3 K=3,N1
3 ZW(K)=ZW(K-1)+DZ
RETURN
end

subroutine PRINT

LOGICAL ISOLVE,PRINT,LBLKLSTOP
1 CON(35,25,35,3),AKP(35,25,35),AKM(35,25,35),AP(35,25,35),
2 AJP(35,25,35),AJP(35,25,35),AJP(35,25,35),AJM(35,25,35)
COMMON delh(35,25,35),delh(35,25,35),epsd(35,25,35),
3 X(35),XU(35),XDIFF(35),XCV(35),XCVS(35),&q,alastent,
4 Y(35),YV(35),YDIFF(35),YCV(35),YCVS(35),emelt,prev(35,25,35),
5 Z(35),ZW(35),ZDIFF(35),ZCV(35),ZCVS(35),ap0(35,25,35),
6 YCVR(35),YCVRS(35),ARX(35),ARQ(35),ARQIP(35),ap1(35,25,35),
7 R(35),RMN(35),S(35),SXMN(35),XCV(35),XCVIP(35),
8 YCV(35),YCVIP(35),ZCVK(35),ZCVKP(35),si(35,25,35)
COMMON DU(35,25,35),DV(35,25,35),DW(35,25,35),FV(35),FVP(35),
1 FX(35),FXM(35),FY(35),FYM(35),PT(35),TOLD(35,25,35),
2 FZ(35),FMQ(35),VHT(35,25,35),VHTD(35,25,35),UOLD(35,25,35)
COMMON INDEX,RELAX(13),LPRINT(13),LBLKL(11),NTIMES(10),
1 LSOLVE(10),TIME,DT,XL,YL,ZL,S,RHOCON,ZERO,TLAST,
2 NF,NPFMAX,NP,NRHO,NGAMM,1,2,1,3,4,5,6,7,1,2,3
3 NST,IST,KST,ITER,LAST,
4 IPREF,JPRE,FKPRE,MODE
COMMON/HEADING/TITLE
CHARACTER*10 TITLE(13)
COMMON/CONT/LSTTOP,JCALL,LSTTOP
COMMON/CONV/EPUL,EPUS,EPUSB,EPUST/ICONV,ITER1,T0(35,25,35),ENBAL,
1 UO(35,25,35),VO(35,25,35),WO(35,25,35),ITERL
COMMON/SORC/SMAX,SSUM
COMMON/COEY/FLOW,DIFF,ACOF
DIMENSION U(35,25,35),V(35,25,35),W(35,25,35),PC(35,25,35)
common/force/dforce(35,25,35),yforce(35,25,35),zforce(35,25,35)
DIMENSION T(35,25,35)
EQUIVALENCE(F(1,1,1,1),U(1,1,1,1),V(1,1,1,1)),F(1,1,1,2),V(1,1,1,1)),
1 (F(1,1,1,1),W(1,1,1,1)),F(1,1,1,4),PC(1,1,1))
2 .(F(1,1,1,5),T(1,1,1))

10 FORMAT(26(IH*),3X,A10,3X,26(IH*))
20 FORMAT(1X,4H1=",6,6f9)
30 FORMAT(1X,H1)
40 FORMAT(1X,2I2,3X,1P,7E9.2)
50 FORMAT(H1)
51 FORMAT(1X,T=",2X,7(I4,5X))
52 FORMAT(1X,T=",1P,7E9.2)
53 FORMAT(TH=",1P,7E9.2)
54 FORMAT(1X,T=",2X,7(I4,5X))
55 FORMAT(1X,'Y = ',1P,7E9.2)
56 FORMAT(1X,'K = ',2X,7(4,5X))
57 FORMAT(1X,'Z = ',1P,7E9.2)
59 FORMAT(1X,'K = ',2X,4)

IF(.NOT.LPRINT(3)) GO TO 80
80 CONTINUE

IF(.NOT.LPRINT(NP)) GO TO 90

C
CONSTRUCT BOUNDARY PRESSURES BY EXTRAPOLATION
C
DO 91 K=2,N2
DO 91 J=2,M2
P(1,J,K)=P(2,J,K)*XCVS(3)-P(3,J,K)*XDIF(2)/XDIF(3)
91 P(L1,J,K)=P(L2,J,K)*XCVS(L2)-P(L3,J,K)*XDIF(L1)/XDIF(L2)
DO 92 K=2,N2
DO 92 J=2,L2
P(L1,J,K)=P(L2,J,K)*YCVS(3)-P(L3,J,K)*YDIF(2)/YDIF(3)
92 P(LM1,J,K)=P(LM2,J,K)*YCVS(M2)-P(LM3,J,K)*YDIF(M1)/YDIF(M2)
DO 93 J=2,M2
DO 93 K=2,L2
P(L1,J,K)=P(L1,J,K)*ZCVS(3)-P(L1,J,K)*ZDIF(2)/ZDIF(3)
93 P(L,J,N1)=P(L,J,N2)*ZCVS(N2)-P(L,J,N3)*ZDIF(N1)/ZDIF(N2)
DO 94 K=2,N2
P(L,J,K)=P(1,J,K)+P(1,J,K)-P(2,J,K)
94 CONTINUE
DO 95 J=2,M2
95 CONTINUE
DO 96 K=2,L2
96 CONTINUE
PREF=P(PREF,PREF,PREF)
DO 97 K=1,N1
DO 97 J=1,M1
DO 97 I=1,L1
97 P(L,J,K)=P(L,J,K)-PREF
90 CONTINUE
C
C PRINT 50
WRITE(16,50)
IEND=0
301 IF(IEND.EQ.1) GO TO 310
IBEG=IEND+1
IEND=IEND+7
IEND=MIN(IEND,L1)
c PRINT 50
write(16,50)
c PRINT 51,(I,1=IBEG,IEND)
write(16,51),(i=ibeg,iend)
IF(MODE.EQ.3) GO TO 302
c PRINT 52,(X(I),I=IBEG,IEND)
write(16,52),(x(i),i=ibeg,iend)
GO TO 303
c 302 PRINT 53,(X(I),I=IBEG,IEND)
302 write(16,53),(x(i),i=ibeg,iend)
303 GO TO 301
310 JEND=0
c PRINT 50
write(16,50)
311 IF(JEND.EQ.MI) GO TO 320
JBEG=JEND+1
JEND=JEND+7
JEND=MIN(JEND,M1)
c PRINT 50
write(16,50)
c PRINT 54,(J,J=IBEG,IEND)
write(16,54),(j=ibeg,jend)
c PRINT 55,(Y(J),J=IBEG,IEND)
write(16,55),(y(j),j=ibeg,jend)
GO TO 311
320 KEND=0
c PRINT 50
write(16,50)
321 IF(KEND.EQ.NI) GO TO 330
KBEG=KEND+1
KEND=KEND+7
KEND=MIN(KEND,N1)
c PRINT 50
write(16,50)
c PRINT 56,(K,K=KBEG,KEND)
write(16,56),(k,k=kbeg,kend)
c PRINT 57,(Z(K),K=KBEG,KEND)
write(16,57),(z(k),k=kbeg,kend)
GO TO 321
330 CONTINUE
C
DO 999 NF=1,NGAM
c do 999 nf=5,5
IF(.NOT.LPRWN(NF)) GO TO 999
c PRINT 50
write(16,50)
c PRINT 10,TITLE(NF)
write(16,10)title(nf)
DO 998 K=1,N1
 c PRINT 50
 write(16,50)
 c PRINT 59,K
 write(16,59)K
 IFST=1
 JFST=1
 KFST=1
 IF(NF.EQ.1.OR.NF.EQ.4) IFST=2
 IF(NF.EQ.2.OR.NF.EQ.4) JFST=2
 IF(NF.EQ.3.OR.NF.EQ.4) KFST=2
 IBEG=IFST-7
110 CONTINUE
 IBEG=IBEG+7
 IEND=IBEG+6
 IEND=MIN(IEND,L1)
 c PRINT 50
 write(16,50)
 c PRINT 20,1=(IBEG,IEND)
 write(16,201,i=(ibeg,iend)
 c PRINT 30
 write(16,30)
 JFL=JFST+M1
 DO 115 JJ=JFST+1
 J=JFL-JJ
 cPRINT 40,J=(F(IJY,KNFIBEGIEND)
 write(16,40)j,(f(ij,y,knf(ibeg,iend)
115 CONTINUE
 IF(IEND.LT.IA) GO TO 110
998 CONTINUE
999 CONTINUE
RETURN
END
C
C
CCC
C PROBLEM DEPENDENT PORTION
C
CCC
BLOCK DATA
C**
c LOGICAL LSTOP
 c INTEGER*4 NOW(14)
c COMMON CNTRL,LSTOP,ICALL,LSTOP
LOGICAL LSOLVE,LPRINT,LBLK,LSTOP
COMMON F(35,25,35),P(35,25,35),RHO(35,25,35),GAM(35,25,35),
1 CON(35,25,35),AKP(35,25,35),AKM(35,25,35),AP(35,25,35),
2 AIP(35,25,35),AIM(35,25,35),AFP(35,25,35),AIM(35,25,35),
COMMON delX(35,25,35),delY(35,25,35),epsi(35,25,35),
1 X(35),XU(35),XDIF(35),XCVS(35),XCVS(35),tfc,paulment,
4 Y(35),YV(35),YDIF(35),YCVS(35),YCV(35),tmelt,iprev(35,25,35),
5 Z(35),ZW(35),ZDIF(35),ZCVS(35),ZCV(35),ap0(35,25,35),
6 YCVR(35), YCVRS(35), ARX(35), ARXX(35), ARXP(35), mp1(35,25,35).
7 R(35), RMN(35), SX(35), SMN(35), XCVI(35), XCVIP(35).
8 YCVI(35), YCVIP(35), ZCVK(35), ZCVPK(35), mp2(35,25,35)
COMMON DU(35,25,35), DV(35,25,35), DW(35,25,35), FV(35), FVP(35),
1 FX(35), FXM(35), FY(35), FYM(35), PT(35), QT(35), TOLD(35,25,35),
2 FZ(35), FZM(35), WHAT(35,25,35), WHAT(35,25,35), UOLD(35,25,35),
COMMON INDEX/RELAX(13), LPRINT(13), LBLK(11), NTIMES(10),
1 LSOLVE(10), TIME, DT, XL, YL, ZL, RHOCON, ZERO, TLAST,
2 NF, NFMAX, NP, NRHO, NGAM, LI, L2, L3, M1, M2, M3, N1, N2, N3,
31ST, JST, KST, ITER, LAST,
4 IPREF, JREF, KREF, MODE
COMMON/HEADING/TITLE
 CHARACTER*10 TITLE(13)
COMMON/CTRL/STOP, CALL/STOP
COMMON/CONV/ EPSU, EPSV, EPSW, EPSST, CONV, ITER, TO(35,25,35), ENBAL,
1 U0(35,25,35), V0(35,25,35), W0(35,25,35), ITERL
 COMMON/RESID/RMAX(13), RRESID
 COMMON/SORC/SMAX, SSUM
 common/force/xforce(35,25,35), yforce(35,25,35), zforce(35,25,35)
 COMMON/COEF/FLOW, DIF, AFCOF
 DIMENSION U(35,25,35), V(35,25,35), W(35,25,35), PC(35,25,35)
 DIMENSION T(35,25,35)
 EQUVALENCE(F(1,1,1), U(1,1,1)), (F(1,1,2), V(1,1,1)),
1 (F(1,1,3), W(1,1,1)), (F(1,1,4), PC(1,1,1))
2 .(F(1,1,5), T(1,1,1))

 DATA NFMAX, NP, NRHO, NGAM/ 5, 6, 7, 8/
 DATA LSTOP, LSOLVE, LPRINT/24*.FALSE./
 DATA MODE, TIME, ITER, RESID, ITER/1, 0, 0, 0, 1/1
 DATA NTIMES/13*.3, 10*5/
 DATA LBLK/1: TRUE/
 DATA DT, IPREF, JREF, KREF, RHOCON/1.E+10, 1, 1, 1, 1, 1, 1/
C+++
C NF=1, 2, 3 STAND FOR U, V AND W VELOCITIES.
C NF=4 IS FOR PRESSURE
C NF=5 IS FOR TEMPERATURE
C LSOLVE=TRUE SOLVES THAT PARTICULAR PHI
 DATA (LSOLVE(I), I=1,6)*6*.TRUE./
C DATA (LSOLVE(I), I=1,6)*4*.FALSE..TRUE...FALSE./
C LPRINT(NF)=TRUE PRINTS VARIABLE ASSOCIATED WITH NF ON CALLING PRINT
C DATA LPRINT(1), LPRINT(5)/* TRUE./
C TERMINATE ITERATIONS AT ITER=LAST
 DATA LAST/100/
C UNDERRELAXATION FACTORS
 c DATA RELAX(1), RELAX(2), RELAX(3), RELAX(4)/*0.7, 0.7, 0.7, 0.7/
 c DATA RELAX(5), RELAX(6)/* 0.7/
C TITLES FOR THE FIELD PRINTOUTS
 DATA TITLE(1), TITLE(2), TITLE(3), TITLE(5), TITLE(6) /
11 U", "V", "W", "T", "P"/
C NUMBER OF SWEEPS IN THE LINE-BY-LINE TDMA ALGORITHM
 c DATA NTIMES(4), NTIMES(5)/*2*/
C TOLERANCES FOR CONVERGENCE
DATA EPSU, EPSV, EPSW, EPS1/1.0E-3, 1.0E-3, 1.0E-3, 5.0E-2/
DATA ZERO0/.
END

C...

C...

SUBROUTINE USE
C...

C IF LARGER NUMBER OF GRID POINTS IS TO BE USED, THE DIMENSION
C STATEMENTS MUST BE CHANGED THROUGH THE PROGRAM TO ACCOMODATE
C VALUES GREATER THAN (28,26,28) ETC.
C...
c LOGICAL LSTOP
c INTEGER*4 NOW(14)
c COMMON/CNTL,LSTOP,ICALL,LSTOP
LOGICAL LSOLVE, IPRINT, LBLK, LSTOP
COMMON F(35,25,35), P(35,25,35), RHO(35,25,35), GAM(35,25,35),
1 CON(35,25,35), AKP(35,25,35), AKM(35,25,35), AP(35,25,35),
2 AP(35,25,35), AIM(35,25,35), AJP(35,25,35), AJM(35,25,35),
3 COMMON delh(35,25,35), delho(35,25,35), eps1(35,25,35),
4 X(35), XL(35), XDL(35), XCV(35), XCVS(35),
5 Z(35), ZW(35), ZDIF(35), ZCV(35), ZCVS(35), ap0(35,25,35),
6 YCVR(35), YVCVS(35), ARX(35), ARX(35), ARXP(35), ap1(35,25,35),
7 R(35), RMN(35), SX(35), SXMIN(35), XCVI(35), XCVIP(35),
8 YCVI(35), YCVIP(35), ZCVK(35), ZCVKP(35),
9 COMMON DU(35,25,35), DV(35,25,35), DW(35,25,35), FV(35), FVP(35),
10 FX(35), FXM(35), FY(35), FYM(35), PT(35), QT(35), TOL(35,25,35),
11 FZ(35), FZM(35), WHAT(35,25,35), WHAT(35,25,35), UOLD(35,25,35),
12 COMMON/INDEX/RELAX/13, IPRINT/13, LBLK/11, NTIMES/10,
13 LSOLVE/10, TIME, DT, XL, YL, ZL, RHOCON, ZERO, TLAST,
14 NF, NFMAX, NP, NRHO, NGAML, L1, 2, L3, M1, M2, M3, N1, N2, N3,
15 IST, KST, ITER, LAST;
16 IPREF, IPREF, IPREF, MODE
COMMON/HEADER/VITLE
CHARACTER*10 VITLE(13)
COMMON/CNTL,LSTOP,ICALL,LSTOP
COMMON/CONV/ EPSU, EPSV, EPSW, EPS1, ITER1, T0(35,25,35), ENBAL,
1 U0(35,25,35), V0(35,25,35), W0(35,25,35), ITERL
COMMON/RESID/RMAX/13, IRESID
COMMON/SORC/SMAX, SSUM
COMMON/force/xforce(35,25,35), yforce(35,25,35), zforce(35,25,35)
COMMON/COEF/ FLOW, DIF, ACOF
DIMENSION U(35,25,35), V(35,25,35), W(35,25,35), PC(35,25,35)
DIMENSION T(35,25,35), imat(35,25,35), xu(35), yv(35), zw(35)
EQUIVALENCE(F(1,1,1,1), U(1,1,1), F(1,1,1,2), V(1,1,1)),
1 (F(1,1,1,3), W(1,1,1)), (F(1,1,1,4), PC(1,1,1)),
2 , (F(1,1,1,5), T(1,1,1))
DIMENSION PRTTM/10
DATA IPR, BRTOL, IPR/1.0, 3.8E-5, 1/C
ENTRY MESH

103
C
C DOMAIN LENGTHS IN THE 3 DIRECTIONS
X_L=5.1
Y_L=5.04
Z_L=5.04
C NUMBER OF GRID POINTS IN THE 3 DIRECTIONS
L_I=28
M_I=24
N_I=24
C
XU(2)=0.
XU(3)=0.08
XU(4)=0.083
XU(5)=0.100
XU(6)=0.1274
XU(7)=0.131
XU(8)=0.174
XU(9)=0.259
XU(10)=0.29
XU(11)=0.30
XU(12)=0.33
XU(13)=0.36
XU(14)=0.50
XU(15)=0.65
XU(16)=0.8
XU(17)=1.00
XU(18)=1.75
XU(19)=2.5
XU(20)=3.25
XU(21)=4.0
XU(22)=4.5
XU(23)=4.75
XU(24)=4.85
XU(25)=4.95
XU(26)=5.03
XU(27)=5.07
XU(28)=5.10
C
ZW(2)=0.
ZW(3)=0.48
ZW(4)=0.58
ZW(5)=0.885
ZW(6)=0.94
ZW(7)=0.995
ZW(8)=1.296
ZW(9)=1.396
ZW(10)=2.106
ZW(11)=2.206
ZW(12)=2.511
ZW(13)=2.566
ZW(14)=2.621
ZW(15) = 2.926
ZW(16) = 3.026
ZW(17) = 3.736
ZW(18) = 3.836
ZW(19) = 4.141
ZW(20) = 4.196
ZW(21) = 4.251
ZW(22) = 4.561
ZW(23) = 4.661
ZW(24) = 5.04

C
YV(2) = 0.
YV(3) = 0.48
YV(4) = 0.58
YV(5) = 0.885
YV(6) = 0.94
YV(7) = 0.995
YV(8) = 1.296
YV(9) = 1.396
YV(10) = 2.106
YV(11) = 2.206
YV(12) = 2.511
YV(13) = 2.566
YV(14) = 2.621
YV(15) = 2.926
YV(16) = 3.026
YV(17) = 3.736
YV(18) = 3.836
YV(19) = 4.141
YV(20) = 4.196
YV(21) = 4.251
YV(22) = 4.561
YV(23) = 4.661
YV(24) = 5.04

C ENTRY BEGIN
C INITIAL TIME
 WRITE(*,*) 'INITIAL TIME'
 TIME = 0.0
C INITIAL TIME STEP
 WRITE(*,*) 'INITIAL TIME STEP'
 DT = 30
C ITERATIONS STOP AT ITER = LAST
 WRITE(*,*) 'ITERATIONS STOP AT ITER = LAST'
C HOW MANY TIMES SHOULD FULL DATA BE PRINTED TO FILE
 WRITE(*,*) 'NUMBER OF TIMES FOR PRINTING DATA TO FILE'
 NNPR = 2
C WHEN IS DATA TO BE PRINTED
 WRITE(*,*) 'PRITTM1, PRITTM2, ...'
 PRITTM(1) = 0.0
C READ RAYLEIGH NUMBER
 c WRITE(*,*)RAYL="
 RA=1.15e3
C READ PRANDTL NUMBER
 c WRITE(*,*)PRANTL="
 PR=24
C READ XLHC RATIO
 c WRITE(*,*)CHIP HEIGHT TO PACKAGE LENGTH RATIO
 XLHC=0.043
 c WRITE(*,*)CHIP LENGTH TO PACKAGE LENGTH RATIO
 XLLL=0.017
C READ RATIO OF CONDUCTIVITIES
 c WRITE(*,*)RATIO OF CONDUCTIVITIES (CHIP-TO-FLUID)
 RC=2360.0
 c WRITE(*,*)RATIO OF CONDUCTIVITIES (SUBSTRATE-TO-FLUID)
 RS=333.0
 c WRITE(*,*)RATIO OF CONDUCTIVITIES (PACKAGE-TO-FLUID)
 RP=266.0
 c WRITE(*,*)RATIO OF CONDUCTIVITIES (LID-TO-FLUID)
 RL=271.0
 c WRITE(*,*)RATIO OF CONDUCTIVITIES (AIR-TO-FLUID)
 RR=0.42
 c WRITE(*,*)RATIO OF CONDUCTIVITIES (SOLDER-TO-FLUID)
 RG=796.0
 c WRITE(*,*)RATIO OF CONDUCTIVITIES (GOLD COATING-TO-FLUID)
 RG=3900.0
C READ RATIO OF THERMAL INERTIA
 c WRITE(*,*)RATIO OF RHOC*CP (SUBSTRATE-TO-FLUID)
 RHOCS=1.63
 c WRITE(*,*)RATIO OF RHOC*CP (CHIP-TO-FLUID)
 RHOCC=0.9
 c WRITE(*,*)RATIO OF RHOC*CP (PACKAGE-TO-FLUID)
 RHOCP=1.68
 c WRITE(*,*)RATIO OF RHOC*CP (LID-TO-FLUID)
 RHOCL=1.98
 c WRITE(*,*)RATIO OF RHOC*CP (AIR-TO-FLUID)
 RHOCA=0.00064
 c WRITE(*,*)RATIO OF RHOC*CP (SOLDER-TO-FLUID)
 RHOCS=0.68
 c WRITE(*,*)RATIO OF RHOC*CP (GOLD-TO-FLUID)
 RHOCM=1.36
C READ WHETHER TO RAMP SOURCE TERMS
 c WRITE(*,*)RAMP SOURCE TERMS (0/1)
 IRAMP=1
C DETERMINE IF WANT TO USE A PREVIOUSLY COMPUTED SOLUTION AS
C AN INITIAL GUESS
 c WRITE(*,*)READ FROM INPUT FILE (0/1)
 IREAD=1
IF(READ.EQ.1)READ=TRUE.
IF(READ.EQ.0)READ=FALSE.
C READ IN RELAXATION PARAMETERS
C WRITE(*,*) ' ENTER relaxation'
 RELAX(1)=0.4
 RELAX(2)=0.4
 RELAX(3)=0.4
 RELAX(4)=0.4
 RELAX(5)=0.4
 RELAX(6)=0.4
C PROVIDE INITIAL GUESS. THE PROGRAM SOLVES FOR THE INTERIOR POINTS
C ONLY. HENCE THE BOUNDARY VALUE FOR THE TEMPERATURES AT THE HOT
C AND COLD BOUNDARIES HAVE BEEN ALREADY SPECIFIED.
C**
DO 100 I=1,L1
DO 100 J=1,M1
DO 100 K=1,N1
IMAT(J,K)=0
RHO(J,K)=1.0
100 CONTINUE
DO 101 I=1,L1
DO 101 J=1,M1
DO 101 K=1,N1
U(J,K)=0.
V(J,K)=0.
W(J,K)=0.
T(J,K)=0.
IF(LNE.L1) T(J,K) = 0.075
C SET UP MATERIAL TYPE ARRAY
C SUBSTRATE
IF(J .LE. 2) THEN
IMAT(J,K)=1
RHO(J,K)=RHOC
ENDIF
C COMPONENT DETAILS
IF (J .LE. 8.AND.I.GE.4.AND.
2 OR.J.GE.18.AND.J.LE.23).AND(.
4 OR.K.GE.18.AND.K.LE.23)) THEN
C CHIP AND AIR GAP
IF (I.EQ.7) THEN
IF(
2 OR.J.GE.18.AND.J.LE.23).AND(.
4 OR.K.GE.18.AND.K.LE.23)) THEN
IMAT(J,K)=3
RHO(J,K)=RHOCHR

107
ENDIF
C CHIP
IF
2 OR.J.GE.20.AND.J.LE.21).AND.
4 OR.K.GE.20.AND.K.LE.21)) THEN
IMAT(LJK)=1
RHO(LJK)=RHOCC
ENDIF
ENDIF
C AIR SPACE ABOVE CHIP
IF (LEQ.8) THEN
IF
2 OR.J.GE.18.AND.J.LE.23).AND.
4 OR.K.GE.18.AND.K.LE.23)) THEN
IMAT(LJK)=3
RHO(LJK)=RHOCR
ENDIF
ENDIF
C GOLD/TUNGSTEN COATING BELOW DIE (CHIP)
IF (LEQ.6) THEN
IF
2 OR.J.GE.18.AND.J.LE.23).AND.
4 OR.K.GE.18.AND.K.LE.23)) THEN
IMAT(LJK)=7
RHO(LJK)=RHO CM
ENDIF
ENDIF
C PACKAGE
IF (IMAT(LJK).EQ.0) THEN
IMAT(LJK)=2
RHO(LJK)=RHOCP
ENDIF
ENDIF
C LID
IF (LEQ.9) THEN
IF
2 OR.J.GE.18.AND.J.LE.23).AND.
4 OR.K.GE.18.AND.K.LE.23)) THEN
IMAT(LJK)=4
RHO(LJK)=RHOCL
ENDIF
ENDIF
C FLUID BETWEEN CHIP AND SUBSTRATE
IF (J.EQ.3) THEN
 2 OR J.GE.18 .AND. J.LE.23 .AND. J.LE.16 .AND.
 4 OR K.GE.18 .AND. K.LE.23) THEN
 IMAT(IJK) = 6
 RHO(IJK) = 1.0
 ENDIF
ENDIF

SOLDER CONNECTION BETWEEN CHIP AND SUBSTRATE

IF (J.EQ.3) THEN
 IF (J.GE.4 .AND.
 2 OR J.GE.5 .OR. J.EQ.8 .OR. J.EQ.12 .OR. K.EQ.15 .AND.
 2 OR J.GE.19 .OR. J.EQ.22) THEN
 IMAT(IJK) = 5
 RHO(IJK) = RHO CG
 ENDIF
IF (J.EQ.9 .AND.
 2 OR J.EQ.5 .OR. J.EQ.8 .OR. J.EQ.12 .OR. K.EQ.15 .AND.
 2 OR J.GE.19 .OR. J.EQ.22) THEN
 IMAT(IJK) = 5
 RHO(IJK) = RHO CG
 ENDIF
ELSE IF (J.EQ.11 .AND.
 2 OR J.EQ.5 .OR. J.EQ.8 .OR. J.EQ.12 .OR. K.EQ.15 .AND.
 2 OR J.GE.19 .OR. J.EQ.22) THEN
 IMAT(IJK) = 5
 RHO(IJK) = RHO CG
 ENDIF
ELSE IF (J.EQ.16 .AND.
 2 OR J.EQ.5 .OR. J.EQ.8 .OR. J.EQ.12 .OR. K.EQ.15 .AND.
 2 OR J.GE.19 .OR. J.EQ.22) THEN
 IMAT(IJK) = 5
 RHO(IJK) = RHO CG
 ENDIF
ELSE IF (J.EQ.18 .AND.
 2 OR J.EQ.5 .OR. J.EQ.8 .OR. J.EQ.12 .OR. K.EQ.15 .AND.
 2 OR J.GE.19 .OR. J.EQ.22) THEN
 IMAT(IJK) = 5
 RHO(IJK) = RHO CG
 ENDIF
ELSE IF (J.EQ.23 .AND.
 2 OR J.EQ.5 .OR. J.EQ.8 .OR. J.EQ.12 .OR. K.EQ.15 .AND.
 2 OR J.GE.19 .OR. J.EQ.22) THEN
 IMAT(IJK) = 5
 RHO(IJK) = RHO CG
 ENDIF
ELSE IF (J.EQ.5 .AND.
 2 OR J.GE.18 .OR. J.EQ.23) THEN

IMAT(I,J,K)=5
RHO(I,J,K)=RHOOG
ENDIF
IF(J.EQ.8.AND.
2 OR.K.EQ.18.OR.K.EQ.23))THEN
IMAT(I,J,K)=5
RHO(I,J,K)=RHOOG
ENDIF
IF(J.EQ.12.AND.
2 OR.K.EQ.18.OR.K.EQ.23))THEN
IMAT(I,J,K)=5
RHO(I,J,K)=RHOOG
ENDIF
IF(J.EQ.15.AND.
2 OR.K.EQ.18.OR.K.EQ.23))THEN
IMAT(I,J,K)=5
RHO(I,J,K)=RHOOG
ENDIF
IF(J.EQ.19.AND.
2 OR.K.EQ.18.OR.K.EQ.23))THEN
IMAT(I,J,K)=5
RHO(I,J,K)=RHOOG
ENDIF
IF(J.EQ.22.AND.
2 OR.K.EQ.18.OR.K.EQ.23))THEN
IMAT(I,J,K)=5
RHO(I,J,K)=RHOOG
ENDIF
ENDIF
101 CONTINUE
DO 576 I=1,N1
DO 576 J=1,M1
DO 576 K=1,N1
WRITE(20,*) I,J,K,RHO(I,J,K)
576 CONTINUE
IF(.NOT.LREAD) RETURN
C READ DATA FROM INPUT FILE
REWIND(7)
READ(7,*) X,Y,Z,XU1,YV1,ZW1,U,V,W,P,T
ICHK=0
DO 102 I=2,L1
IF(ABS(XU(I)-XU(I-1)).GT.1E-7) THEN
ICHK=1
WRITE(*,*) 'XU(I)-XU(I-1),GT.1E-7'
ENDIF
102 CONTINUE
102 CONTINUE
 DO 103 J=2,MI
 IF(ABS(YVI(J)-YV(J)).GT.1E-7) THEN
 ICHK=1
 WRITE(*,*) 'YV(J),YVI(J),J,YV(J),YVI(J)
 ENDIF
 103 CONTINUE
 DO 104 K=2,NI
 IF(ABS(ZW1(K)-YV(K)).GT.1E-7) THEN
 ICHK=1
 WRITE(*,*) 'K,YV(K),ZW1(K),K,YV(K),ZW1(K)
 ENDIF
 104 CONTINUE
 IF(ICHK.EQ.1) STOP
 RETURN
C
C***
C ENTRY VARRHO
C***
 RETURN
C
C***
C INCORPORATE BOUNDARY CONDITIONS
 ENTRY BNDRY
 DO 864 I=1,L1
 DO 864 J=1,MI
 C ADIABATIC SIDES (Z=0,Z=1)
 T(I,J,1)=T(I,J,2)
 T(I,J,N1)=T(I,J,N2)
 864 CONTINUE
 DO 865 J=1,M1
 DO 865 K=1,N1
 C ADIABATIC SIDE (X=0)
 T(I,J,K)=T(2J,K)
 T(I,LJ,K)=0.
 865 CONTINUE
 DO 866 I=1,L1
 DO 866 K=1,N1
 C ADIABATIC TOP AND BOTTOM (Y=0,Y=XL)
 T(I,1,K)=T(2L,K)
 T(LM1,K)=T(LM2,K)
 866 CONTINUE
 RETURN
C
 ENTRY PRTOUT
 IF(ITER.NE.0) GO TO 400
 PRINT 401
 401 FORMAT (1X,'SIMPLER',/)
 ANUCLD=0.0
 400 CONTINUE
 COMPUTE AVERAGE NUSSELT NUMBER
ANUHOT=0.0
ANUCLD=0.0
ACHPT=0.
ACHPS=0.
ACHPST=0.
ACHPSB=0.
ACHPB=0.
ASUB=0.
ASUBB=0.
AGAP=0.
HTCAP=0.0
HTCAP1=0.0

C CONTRIBUTIONS TO HOT WALL NUSSELT NO. FROM SIDES OF CHIP
DO 665 J=3,9
IF(LGT.3.AND.LLT.9) RRT=RP
IF(L.EQ.9) RRT=RL.

C CONTRIBUTIONS FROM Y-SIDES OF CHIP
DO 663 K=11,18
IF(L.EQ.3) THEN
IF(IMAT(1,10,K),EQ,5) THEN
 AGAP=AGAP+2.*(T(I,10,K)-T(I,9,K))*XCV(I)*ZCV(K)/
 1 (YCV(10)/RG+YCV(9))
ELSE
 AGAP=AGAP+2.*(T(I,10,K)-T(I,9,K))*XCV(I)*ZCV(K)/
 1 (YCV(10)+YCV(9))
ENDIF
IF(IMAT(1,17,K),EQ,5) THEN
 AGAP=AGAP+2.*(T(I,17,K)-T(I,18,K))*XCV(I)*ZCV(K)/
 1 (YCV(17)/RG+YCV(18))
ELSE
 AGAP=AGAP+2.*(T(I,17,K)-T(I,18,K))*XCV(I)*ZCV(K)/
 1 (YCV(17)+YCV(18))
ENDIF
ELSE
 ACHPSB=ACHPSB+2.*(T(I,10,K)-T(I,9,K))*XCV(I)*ZCV(K)/
 1 (YCV(10)/RRT+YCV(9))
 ACHPST=ACHPST+2.*(T(I,17,K)-T(I,18,K))*XCV(I)*ZCV(K)/
 1 (YCV(17)/RRT+YCV(18))
ENDIF
663 CONTINUE

C CONTRIBUTIONS FROM Z-SIDES OF CHIP
DO 664 J=10,17
IF(L.EQ.3) THEN
IF(IMAT(J,11),EQ,5) THEN
 AGAP = AGAP +2.*(T(J,11)-T(J,10))*YCV(J)*XCV(I)/
 1 (ZCV(11)/RG+ZCV(10))
ELSE
 AGAP = AGAP +2.*(T(J,10)-T(J,9))*YCV(J)*XCV(I)/
 1 (ZCV(11)+ZCV(10))
ENDIF
664 CONTINUE

112
IF(IMAT(I,J,18).EQ.5) THEN
 AGAP=AGAP+2.*(T(I,J,18)-T(I,J,19))*YCV(J)*XCV(I)/
 ((ZCV(18)/RGT+ZCV(19))
ELSE
 AGAP=AGAP+2.*(T(I,J,18)-T(I,J,19))*YCV(J)*XCV(I)/
 ((ZCV(18)+ZCV(19))
ENDIF
ELSE
 ACHPS=ACHPS+2.*(T(I,J,11)-T(I,J,10))*YCV(J)*XCV(I)/
 ((ZCV(11)/RGT+ZCV(10))
 +2.*(T(I,J,18)-T(I,J,19))*YCV(J)*XCV(I)/
 ((ZCV(18)/RGT+ZCV(19))
ENDIF
664 CONTINUE
665 CONTINUE
 ANUHOT=ANUHOT+ACHPS+ACHPS+ACHPSB+AGAP
DO 666 J=2,M2
 DO 667 K=2,N2
 DO 669 I=2,M2
 IF(QMAAT(J,LK).EQ.0) THEN
 TCAPI=HCAPI+RHO(I,J)*XCV(I)*YCV(J)*ZCV(K)/
 (RGT/PR**0.5
 ELSE
 TCAPI=HCAPI+RHO(I,K)*XCV(I)*YCV(J)*ZCV(K)/
 (RGT/PR**0.5
 ENDIF
 669 CONTINUE
 CONTINUE
7664 CONTINUE
7665 CONTINUE
 COMPUTE AVERAGE NUSSELT NUMBER AT THE HOT AND COLD WALL
 IF(IMAT(4,J,K).EQ.0) THEN
 C CONTRIBUTION TO HOT WALL NUSSELT NUMBER FROM SUBSTRATE HEAT LOSS
 ANUHOT=ANUHOT+2.*(T(2,J,K)-T(3,J,K))*YCV(J)*ZCV(K)/
 ((XCV(2)/RGT+XCV(3))
 ASUB=ASUB+2.*(T(2,J,K)-T(3,J,K))*YCV(J)*ZCV(K)/
 ((XCV(2)/RGT+XCV(3))
 ELSE
 C CONTRIBUTI0N FORM TOP OF CHIP
 ANUHOT=ANUHOT+2.*(T(9,J,K)-T(10,J,K))*YCV(J)*ZCV(K)/
 ((XCV(9)/RGT+XCV(10))
 ACHPT=ACHPT+2.*(T(9,J,K)-T(10,J,K))*YCV(J)*ZCV(K)/
 ((XCV(9)/RGT+XCV(10))
 C
 IF(IMAT(3,J,K).EQ.5) THEN
 RRT=RG/RC
 RRT1=RG/RS
 ELSE
 RRT=1/RC
 RRT1=1/RS
 ENDIF
 C
 ACHPB=ACHPB+2.*RC*(T(4,J,K)-T(3,J,K))*YCV(J)*ZCV(K)/
 ((XCV(4)/RGT+XCV(3)*RRT))
 ASUBB=ASUBB+2.*RS*(T(3,J,K)-T(2,J,K))*YCV(J)*ZCV(K)/
ANUCLD=ANUCLD+(T(L2,J,K)-T(L1,J,K))*YCV(J)*ZCV(K)

ENDIF

ANUHOT=ANUHOT

C MONITOR SSUM, SMAX AND OTHER QUANTITIES AS ITERATIONS PROCEED

C ON CONVERGENCE, SMAX SHOULD BE VERY SMALL (LESS THAN 1.0E-04)

C SSUM SHOULD ACHIEVE A SMALL VALUE WITHIN A FEW ITERATIONS, WELL

C BEFORE CONVERGENCE. SSUM WILL NOT BE SMALL IF THE BOUNDRY

C CONDITIONS ARE NOT WRITTEN CORRECTLY.

XITER=FLOAT(ITER)

WRITE(21,*), ITER, T(22,15,15), T(23,15,15), SSUM

XITER5=FLOAT(ITER/IPR)

IF(ABS(XITER/FLOAT(IPR)-XITER5).LT.1.E-5) THEN

RESID=1

PRINT 403, ITER, ITERL, TIME, SSUM, T(6,14,14), V(6,22,14), ENBAL

WRITE(12,1121) TIME, ANUHOT, ANUCLD, ASUB, HTCAP, HTCAP1

C COMPUTE LOCAL AND GLOBAL NUSSELT NUMBERS AS ITERATIONS PROCEED

IF (ITER.EQ.250.OR.ITER.EQ.500.OR.ITER.EQ.750

1.OR.ITER.EQ.1000.OR.ITER.EQ.1250.OR.ITER.EQ.1500

2.OR.ITER.EQ.1750.OR.ITER.EQ.2000.OR.ITER.EQ.2250

3.OR.ITER.EQ.2500.OR.ITER.EQ.2750.OR.ITER.EQ.3000

4.OR.ITER.EQ.3250.OR.ITER.EQ.3500.OR.ITER.EQ.3750

5.OR.ITER.EQ.4000.OR.ITER.EQ.4250.OR.ITER.EQ.4500

6.OR.ITER.EQ.4750.OR.ITER.EQ.5000.OR.ITER.EQ.5250

7.OR.ITER.EQ.5500.OR.ITER.EQ.5750.OR.ITER.EQ.6000

8.OR.ITER.EQ.6250.OR.ITER.EQ.6500.OR.ITER.EQ.6750

9.OR.ITER.EQ.7000.OR.ISTOP.GT.0.OR.TIME.GE.TLAST) THEN

WRITE(8,*), ITER, RMAX(1), RMAX(2), RMAX(3), RMAX(4)

WRITE(8,*), ITER, RMAX(1), RMAX(2), RMAX(3), RMAX(5)

WRITE(8,*), V(10,14,14), T(10,14,14), V(6,22,14), T(10,14,14)

WRITE(8,*), V(10,14,14), T(10,14,14), V(6,22,14), T(10,14,14)

WRITE(8,*), ANUHOT = ANUHOT, HTCAP1 = HTCAP1

WRITE(8,*), ANUCLD = ANUCLD, HTCAP = HTCAP

WRITE(8,*), ACHPS = ACHPS, ACHPT, ACHPT

WRITE(8,*), ACHPF = ACHPF, ASUB, ASUB

WRITE(8,*), ACHPSB = ACHPSB, ACHPSB, ACHPS, ACHPS

WRITE(8,*), ASUB = ASUB, AGAP, AGAP

C IF(TIME.GE.TLAST.OR.LSTOP) THEN

WRITE(8,*), RA = RA, PR = PR

WRITE(8,*), ZL = ZL, RC = RC

WRITE(8,*), RS = RS, XLHC = XLHC

ENDIF

WRITE(8,*)

114
 C CHECK TO SEE WHETHER TO WRITE DATA TO FILE
 IF (TIME .GE. PRRTM(IPR)) THEN
 WRITE(7,*) X,Y,Z,XU,YV,ZW,U,V,W,P,T
 IPR=IPR+1
 WRITE(8,*) 'DATA WRITEN TO FILE FOR TIME =',TIME
 ENDIF
 C SEE WHETHER TIMESTEP SHOULD BE LENGTHENED
 C
 IF (ITER.LE.3.AND.ITER.GT.1) THEN
 IF (TIME.LE.10.) THEN
 DT=DT*1.5
 ENDIF
 WRITE(8,*) 'TIME=' ,TIME,' TIME STEP CHANGED TO DT =' ,DT
 ELSE
 DT=DT*1.1
 ENDIF
 WRITE(8,*) 'TIME=' ,TIME,' TIME STEP CHANGED TO DT =' ,DT
 ENDIF
 C
 IF (TIME .GE. TLAST OR ISTOP.GT.0) THEN
 C GET A FIELD PRINTOUT AFTER ITERATIONS STOP
 CALL PRINT
 C WRITE IN ORDER TO COMMENCE NEW PROBLEM
 WRITE(7,*) X,Y,Z,XU,YV,ZW,U,V,W,P,T
 WRITE(8,*) 'DATA WRITEN TO FILE FOR TIME =',TIME
 C WRITE MATRIX OF CONDUCTIVITIES TO A FILE FOR USE BY PLOT ROUTINE
 DO 1122 I=1,L1
 DO 1122 J=1,M1
 DO 1122 K=1,N1
 IF (IMAT(IJK).EQ.-1) THEN
 PC(IJK)=RS
 ELSEIF (IMAT(IJK).EQ.1) THEN
 PC(IJK)=RC
 ELSEIF (IMAT(IJK).EQ.2) THEN
 PC(IJK)=RP
 ELSEIF (IMAT(IJK).EQ.3) THEN
 PC(IJK)=RR
 ELSEIF (IMAT(IJK).EQ.4) THEN
 PC(IJK)=RL
 ELSEIF (IMAT(IJK).EQ.5) THEN
 PC(IJK)=RG
 ELSEIF (IMAT(IJK).EQ.7) THEN
 PC(IJK)=RM
 ELSE
 PC(IJK)=1
 ENDIF
 1122 CONTINUE
 REWIND(9)
 WRITE(9,*) PC
ENDIF
1121 FORMAT(F13.1,5G13.5)
RETURN

C**

ENTRY DIFFUS
IF (NF.EQ.4) RETURN
PR=24.0
RA=1.15e3
RC=2360.0
RC=2360.0
RS=333.0
RP=266.0
RL=271.0
RR=0.42
RG=796.0
RM=3900.0

DO 500 I=1,L1
DO 500 J=1,M1
DO 500 K=1,N1
C DIFFUSIVITY FOR THE U, V OR W EQUATIONS
IF(IMAT(I,J,K).NE.0) THEN
C SET DIFFUSIVITY TO A HIGH VALUE FOR ALL SOLID REGIONS
GAM(I,J,K)=10E15
ELSE
GAM(I,J,K)=(PR/RA)**0.5
ENDIF

C DIFFUSIVITY FOR THE ENERGY EQUATION
IF (NF.EQ.5) THEN
IF(IMAT(I,J,K).EQ.-1) THEN
GAM(I,J,K)=RS/(RA**PR)**0.5
ELSEIF(IMAT(I,J,K).EQ.1) THEN
GAM(I,J,K)=RC/(PR**RA)**0.5
ELSEIF(IMAT(I,J,K).EQ.2) THEN
GAM(I,J,K)=RP/(PR**RA)**0.5
ELSEIF(IMAT(I,J,K).EQ.3) THEN
GAM(I,J,K)=RR/(PR**RA)**0.5
ELSEIF(IMAT(I,J,K).EQ.4) THEN
GAM(I,J,K)=RL/(PR**RA)**0.5
ELSEIF(IMAT(I,J,K).EQ.5) THEN
GAM(I,J,K)=RG/(PR**RA)**0.5
ELSEIF(IMAT(I,J,K).EQ.7) THEN
GAM(I,J,K)=RM/(PR**RA)**0.5
ELSE
GAM(I,J,K)=1/(PR*RA)**0.5
ENDIF

C SPECIFY ZERO DIFFUSIVITIES FOR THE ADIABATIC BOUNDARIES
GAM(I,J,K)=0.0
GAM(I,M1,K)=0.0
GAM(I,J,N1)=0.0
GAM(I,M1,N1)=0.0
GAM(I,J,K)=0.0
GAM(I,J,N1)=0.0
GAM(I,J,N1)=0.0
END
GAM(LJ,1)=0.0
ENDIF
500 CONTINUE
IF (NF.NE.2 .AND. NF.NE.5) RETURN
C SOURCE TERMS ARE EVALUATED ONLY FOR INTERIOR POINTS
DO 501 I=2,L2
DO 501 J=2,M2
DO 501 K=2,N2
IF (NF.EQ.2) THEN
C C SOURCE TERM FOR X MOMENTUM C
C INTERPOLATE TO GET THE VALUE OF TEMPERATURE AT THE CONTROL VOLUME C INTERFACE, SINCE THE VELOCITY U IS EVALUATED AT THE INTERFACE.
TM=FY(J)*T(LJ,K)+FYM(J)*T(LJ-1,K)
CON1=TM
C SUPPLY ONLY PART OF THE SOURCE TERM IN THE MOMENTUM EQ. TO C AVOID C DIVERGENCE BEFORE 200 ITERATIONS
CON(LJ,K)=FL0AT(ITER**2)*CON/200.*2
IF (ITER.GT.200 .OR. IRAMP.EQ.0)CON(LJ,K)=CON1
C C SOURCE TERM FOR ENERGY EQUATION IN SLAB C
ELSE IF(IMAT(LJ,K).EQ.1)THEN
CON(LJ,K)=1/(PR*RA)**0.5*XLH/XX**2
ENDIF
ENDIF
501 CONTINUE
RETURN
C **
ENTRY NRCBAL
C
ANUCLD=0.0
HTCAP=0.0
DO 780 J=2,M2
DO 780 K=2,N2
DO 770 L=2,L2
HTCAP=HTCAP+RHO(LJ,K)*XCV(I)*YCV(J)*ZCV(K)*
1 (T(LJ,K)-T(LJ-1,K))/DT*(PR*RA)**0.5
770 CONTINUE
ANUCLD=ANUCLD+(T(L2,J,K)-T(L1,J,K))*YCV(J)*ZCV(K)*
1 (XDIFF(I))
780 CONTINUE
C WRITE(*,'HTCAP=',HTCAP,'ANUCLD=',ANUCLD
C print*,ANUCLD,HTCAP
ENBAL=ANUCLD+HTCAP-1
RETURN
END
CONTINUE
C WRITE(*,*) 'HTCAP =',HTCAP,' ANUCLD =',ANUCLD
c print*,ANUCLD,HTCAP
 ENBAL = ANUCLD + HTCAP + 1
 RETURN
END
REFERENCES

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Cameron Station
 Alexandria, VA 22304-6145

2. Library, Code 52
 Naval Postgraduate School
 Monterey, CA 93943-5002

3. Mr. Howard Stevens
 Head, Electrical Section
 David Taylor Research Center
 Annapolis, MD 21402

4. Superintendent
 Naval Postgraduate School
 Attn: Professor M.D. Kelleher, CodeME/Kk
 Department of Mechanical Engineering
 Monterey, CA 93943-5004

5. Mr. Duane Embree
 Naval Weapons Support Center
 Code 0642
 Crane, IN 47522

6. Superintendent
 Naval Postgraduate School
 Attn: Curricular Officer, Code 34
 Monterey, CA 93943-5004

7. LCDR Joseph M. Bradley
 1518 112th Street Court NW
 Gig Harbor, WA 98335
8. Professor Yogendra Joshi
University of Maryland
Department of Mechanical Engineering
3147 Engineering Classroom Building
College Park, MD 20742