Computer Programs in Marine Science

National Oceanographic Data Center, Washington, D.C.
Product Liability Insurance: Assessment of Related Problems and Issues. Staff Study
PB-252 204/PAT 181 p PC$9.50/MFS3.00
Evaluation of Home Solar Heating System
UCRL-51 711/PAT 154 p PC$8.75/MFS3.00
Developing Noise Exposure Contours for General Aviation Airports
ADA-023 429/PAT 205 p PC$7.75/MFS3.00
Cooling Tower Environment, 1974. Proceedings of a Symposium Held at the University of Maryland Adult Education Center on Mar. 4-5, 1974
CONF-74 0302/PAT 645 p PC$13.60/MFS3.00
Biological Services Program. Fiscal Year 1975
PB-251 738/PAT 52 p PC$3.50/MFS3.00
An Atlas of Radiation Histopathology
TI-26-676/PAT 234 p PC$7.60/MFS3.00
Federal Funding of Civilian Research and Development. Vol. 2. Case Studies
PB-251 683/PAT 336 p PC$10.00/MFS3.00
Handbook on Aerosols
TI-26-808/PAT 141 p PC$6.00/MFS3.00

for the Assessment of Ocean Outfalls
ADA-023 514/PAT 34 p PC$4.00/MFS3.00
Guidelines for Documentation of Computer Programs and Automated Data Systems
PB-250 867/PAT 54 p PC$4.50/MFS3.00
NOx Abatement for Stationary Sources in Japan
PB-250 856/PAT 116 p PC$5.50/MFS3.00
U.S. Coal Resources and Reserves
PB-252 752/PAT 16 p PC$3.50/MFS3.00
ADA-018 418/PAT 70 p PC$4.50/MFS3.00
Assessment of a Single Family Residence Solar Heating System in a Suburban Development Setting
PB-246 141/PAT 244 p PC$8.00/MFS3.00
PB-249 344/PAT 223 p PC$7.75/MFS3.00
A Preliminary Forecast of Energy Consumption Through 1985
PB-251 445/PAT 69 p PC$4.50/MFS3.00

HOW TO ORDER

When you indicate the method of payment, please note if a purchase order is not accompanied by payment, you will be billed an additional $5.00 rush and handling charge. And please include the card expiration date when using American Express.

Normal delivery time takes three to five weeks. It is vital that you order by number or your order will be manually filled, involving a delay. You can opt for airmail delivery for a $2.00 charge per item. Just check the Airmail Service box. If you're really pressed for time, call the NTIS Rush Order Service. (703) 557-4700. For a $10.00 charge per item, your order will be airmailed within 48 hours. Or, you can pick up your order in the Washington Information Center & Bookstore or at our Springfield Operations Center within 24 hours for a $6.00 per item charge.

You may also place your order by telephone or TEL-EX. The order desk number is (703) 557-4650 and the TELEX number is 89-4405.

Whenever a foreign sales price is NOT specified in the listings, all foreign buyers must add the following charges to each order:
- $5.50 for each paper copy;
- $1.50 for each microfiche; and
- $7.00 for each published Search.

Thank you for your interest in NTIS. We appreciate your order.

METHOD OF PAYMENT

☐ Charge my NTIS deposit account no.

☐ Purchase order no.

☐ Check enclosed for $.

☐ Charge to my American Express Card account number

Card expiration date

Signature ____________________________

☐ Airmail Services requested

Nota

NTIS

National Technical Information Service
U.S. DEPARTMENT OF COMMERCE
Springfield, Va. 22161
(703) 557-4450 TELEX 89-4405

NAME__________________________

ADDRESS ____________________________

CITY. STATE. ZIP. ____________________________

Item Number Quantity Paper Copy Microfiche Unit Price* Total Price*

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Paper Copy</th>
<th>Microfiche</th>
<th>Unit Price*</th>
<th>Total Price*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All Prices Subject to Change

11/76

Sub Total

Additional Charge

Enter Grand Total
KEY TO OCEANOGRAPHIC RECORDS DOCUMENTATION NO. 5

Computer Programs in Marine Science

U.S. DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration
Environmental Data Service

April 1976
16. ABSTRACT

This edition is a followup of the previous edition of "Computer Programs in Oceanography." In this edition abstracts of seven hundred programs have been supplied by nearly eighty institutions in ten countries. (Author extracted)

17. KEY WORDS AND DOCUMENT ANALYSIS

17A. DESCRIPTORS

*Computers, *Computer programs, *Data, Data processing, Surveys, Abstracts Oceanographic surveys, Oceanographic data,

17B. IDENTIFIERS/OPEN-ENDED TERMS

*Marine Science, *Marine research data

17C. COSATI FIELD/GROUP

9B, 8J, 5B

18. AVAILABILITY STATEMENT

Released for distribution:

[Signature]

Form 25-13 (2-73) Supersedes all previous editions.

UNCLASSIFIED

PRICE SUBJECT TO CHANGE

NOAA FORM 25-13 BIBLIOGRAPHIC DATA SHEET U. S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

1. NOAA ACCESSION NUMBER

NOAA-76062212

2. TITLE AND SUBTITLE

Computer Programs in Marine Science
Key to Oceanographic Records Documentation No. 5

3. RECIPIENT'S ACCESSION NUMBER

4. REPORT DATE

April 1976

5. AUTHOR(S)

Mary A. Firestone (compiler)

6. PERFORMING ORGANIZATION NAME AND ADDRESS

National Oceanographic Data Center, NOAA
Washington, DC 20235

7. SPONSORING ORGANIZATION NAME AND ADDRESS

Environmental Data Service, NOAA
Washington, DC 20235

8. REPORT NO.

9. PROJECT/TASK NO.

10. CONTRACT/GRANT NO.

11. TYPE OF REPORT AND PERIOD COVERED

12. PUBLICATION REFERENCE

Computer Programs in Marine Science, Key to Oceanographic Records Documentation No. 5
April 1976

13. ABSTRACT

This edition is a followup of the previous edition of "Computer Programs in Oceanography." In this edition abstracts of seven hundred programs have been supplied by nearly eighty institutions in ten countries. (Author extracted)

14. KEY WORDS AND DOCUMENT ANALYSIS

14A. DESCRIPTORS

*Computers, *Computer programs, *Data, Data processing, Surveys, Abstracts Oceanographic surveys, Oceanographic data,

14B. IDENTIFIERS/OPEN-ENDED TERMS

*Marine Science, *Marine research data

14C. COSATI FIELD/GROUP

9B, 8J, 5B

15. SECURITY CLASS. (THIS REPORT)

UNCLASSIFIED

16. SECURITY CLASS. (THIS PAGE)

UNCLASSIFIED

17. NO. OF PAGES

23

18. AVAILABILITY STATEMENT

Released for distribution:

[Signature]

19. SECURITY CLASS. (THIS REPORT)

UNCLASSIFIED

20. SECURITY CLASS. (THIS PAGE)

UNCLASSIFIED

21. PRICE

$0.00

22. DISTRIBUTION STATEMENT

GENERAL
KEY TO OCEANOGRAPHIC RECORDS DOCUMENTATION NO. 5

Computer Programs in Marine Science

Compiled by Mary A. Firestone
Mention of a commercial company or product does not constitute an endorsement by the NOAA National Oceanographic Data Center. Use for publicity or advertising purposes of information from this publication concerning proprietary products or the tests of such products is not authorized.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>v</td>
</tr>
<tr>
<td>Physical Oceanography</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry</td>
<td>22</td>
</tr>
<tr>
<td>Coastal and Estuarine Processes</td>
<td>24</td>
</tr>
<tr>
<td>Engineering</td>
<td>30</td>
</tr>
<tr>
<td>Geology and Geophysics</td>
<td>38</td>
</tr>
<tr>
<td>Biology</td>
<td>50</td>
</tr>
<tr>
<td>Fisheries</td>
<td>56</td>
</tr>
<tr>
<td>Pollution</td>
<td>72</td>
</tr>
<tr>
<td>Currents and Transfer Processes</td>
<td>74</td>
</tr>
<tr>
<td>Tides</td>
<td>80</td>
</tr>
<tr>
<td>Waves</td>
<td>82</td>
</tr>
<tr>
<td>Air-Sea Interaction and Heat Budget</td>
<td>87</td>
</tr>
<tr>
<td>Ice</td>
<td>91</td>
</tr>
<tr>
<td>Sound</td>
<td>93</td>
</tr>
<tr>
<td>Sound Velocity</td>
<td>97</td>
</tr>
<tr>
<td>Sound - Ray 'ath</td>
<td>99</td>
</tr>
<tr>
<td>Navigation and Charting</td>
<td>103</td>
</tr>
<tr>
<td>Graphic Display</td>
<td>116</td>
</tr>
<tr>
<td>Time and Spectral Series Analysis</td>
<td>125</td>
</tr>
<tr>
<td>Curve Fitting</td>
<td>138</td>
</tr>
<tr>
<td>Applied Mathematics</td>
<td>141</td>
</tr>
<tr>
<td>Data Reduction, Editing, Conversion, Inventory, Retrieval, and Special Input/Output</td>
<td>143</td>
</tr>
<tr>
<td>General Index</td>
<td>155</td>
</tr>
<tr>
<td>Language Index</td>
<td>181</td>
</tr>
<tr>
<td>Hardware Index</td>
<td>194</td>
</tr>
<tr>
<td>Institution Index</td>
<td>208</td>
</tr>
<tr>
<td>Federal Information Processing Standard Software Summary</td>
<td>226</td>
</tr>
</tbody>
</table>
INTRODUCTION

Since the last edition of "Computer Programs in Oceanography" (compiled by Cloyd Dinger) was published in 1970, the National Oceanographic Data Center (NODC) has received many requests from scientists throughout the international oceanographic community for updated information on available programs. The present edition is in answer to this demand. Abstracts of seven hundred programs have been supplied by nearly eighty institutions in ten countries (See table, pages vii-viii).

Those familiar with the previous edition will note several changes. Four new chapters have been added - Fisheries, Engineering, Coastal and Estuarine Processes, Pollution - and the title has been changed to reflect a broader interest than was implied in the term "oceanography". In addition to the institution, language, and hardware indexes, a general index has been provided, allowing the reader to search by parameter, method, author, etc. And, most importantly, the number of abstracts has nearly doubled.

Most of the programs listed herein are not available from the NODC. If the NODC holds a copy of the program, it will be so noted at the end of the abstract, and the form will be described (listing, deck, etc.); copies of these materials can be supplied. Requests which involve small amounts of materials and labor will be answered free of charge; for larger requests, an itemized cost estimate will be provided, and work will begin after funds or a purchase order have been received. (Contact the Oceanographic Services Branch telephone (202) 634-7439)

Many programs available in published form can be obtained from the following sources, as noted in the abstracts:

National Technical Information Service (NTIS)
U. S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161 Telephone (703) 321-8543

Assistant Public Printer
U. S. Government Printing Office (GPO)
Washington, DC 20402 Telephone (202) 783-3238

When ordering from NTIS or GPO, include the order number of the document, as well as payment in the form of check or money order. Telephone orders are accepted by both agencies if the purchaser has a deposit account.

Inclusion of information on a particular program does not guarantee that the program will always be available. When the originator feels that a program has become obsolete, support for that program often is discontinued. Every effort has been made to exclude all programs which definitely are not available to anyone. About one hundred programs from the previous edition have been retained because the NODC holds a reproducible, documented copy, or the originators have stated that they still support the programs. Judging from the requests received at NODC, many of these older programs are still of interest to the scientific community.

The NODC cannot assume responsibility for the accuracy of the abstracts, except those originated by our organization, or for the proper functioning of the programs. Most of these programs will not work, without modification, on a system other than the system for which they were designed.

Reports describing program libraries are available from several other federal agencies. "Scientific Program Library Abstracts" describes programs in the following categories: Regression and curve-fit, statistical analysis, matrix operations, simultaneous equations, numerical analysis, approximation of special function, operations research, computer simulation, time series analysis, sorts, applications programs, and miscellaneous. These programs were either written for or adapted to run on a Burroughs B5500 computer containing 37,6K 48-bit words of magnetic core storage, magnetic disk mass storage, and seven-channel tape drives. Contact:

Bureau of Mines, Division of AUP
U. S. Department of the Interior
P. O. Box 25407, Federal Center
Denver, CO 80225
"Computer Software for Spatial Data Handling" is scheduled for publication in the summer of 1976; address inquiries to the Commission on Geographical Data Sensing and Processing of the International Geographical Union, 226 O’Conner Street, Ottawa, Ontario, Canada.

Several general-purpose programs are documented in "Computing Technology Center Numerical Analysis Library," report number CTC-39, available from NTIS for $12.00 paper copy, $2.25 microfiche. The Computing Technology Center is operated by the Nuclear Division of Union Carbide Corporation at the Oak Ridge National Laboratory in Oak Ridge, Tennessee.

"Argonne Code Center: Compilation of Program Abstracts," report number ANL-7411, supplement 8, may also be obtained from NTIS, for $13.60 paper copy, $4.25 microfiche. The Argonne Code Center is located at the Argonne National Laboratory, 9703 South Cass Avenue, Argonne, IL 60439. Programs maintained by the Center are chiefly intended for use in nuclear reactor research. Included in the Environmental and Earth Sciences category are programs for the following: Environmental impact studies, geology, seismology, geophysics, hydrology and ground water studies, bioenvironmental systems analyses, meteorological calculations relating to the atmosphere and its phenomena, studies of airborne particulate matter, climatology, etc.

Persons or organizations wishing to contribute program information for use in future editions and for reference in answering requests are asked to use standard form 185, Federal Information Processing Standard Software Summary; several copies of the form are printed as the last pages in this book, beginning on page 226.

The technical assistance of the following NODC personnel is acknowledged, with appreciation:

Albert H. Bargeski
Dean I.
Georg... Heimerdinger
Nelson C. Ross
John Sylvester
Robert W. Taber
Rosa T. Washington
Judith Yavner
Thomas Yowell
<table>
<thead>
<tr>
<th>National Oceanic and Atmospheric Administration</th>
<th>U. S. Department of Defense</th>
<th>Other Federal Agencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Data Service:</td>
<td>Department of the Army:</td>
<td>U. S. Department of the Interior:</td>
</tr>
<tr>
<td>National Oceanographic Data Center</td>
<td>Coastal Engineering Research Center</td>
<td>Geological Survey:</td>
</tr>
<tr>
<td>National Geophysical and Solar-</td>
<td>Department of the Navy:</td>
<td>National Center (Reston, VA)</td>
</tr>
<tr>
<td>Terrestrial Data Center</td>
<td>Civil Engineering Laboratory</td>
<td>Woods Hole, MA</td>
</tr>
<tr>
<td>Center for Experiment Design and</td>
<td>(Port Huene, CA)</td>
<td>Menlo Park, CA</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>Naval Postgraduate School</td>
<td>Corpus Christi, TX</td>
</tr>
<tr>
<td>National Environmental Satellite Service</td>
<td>Fleet Numerical Weather Central</td>
<td>U. S. Department of Transportation:</td>
</tr>
<tr>
<td>National Ocean Survey</td>
<td>(Monterey, CA)</td>
<td>Coast Guard:</td>
</tr>
<tr>
<td>National Weather Service:</td>
<td>Naval Undersea Research and</td>
<td>Oceanographic Unit (Washington, DC)</td>
</tr>
<tr>
<td>Techniques Development Laboratory</td>
<td>Development Center (San Diego, CA)</td>
<td>Ice Patrol (New York, NY)</td>
</tr>
<tr>
<td>Environmental Research Laboratories:</td>
<td>Naval Electronics Laboratory</td>
<td>Environmental Protection Agency:</td>
</tr>
<tr>
<td>Pacific Marine Environmental Laboratory</td>
<td>(San Diego, CA)</td>
<td>Gulf Breeze, FL</td>
</tr>
<tr>
<td>Atlantic Oceanographic and</td>
<td>Naval Undersea Center (Pasadena, CA)</td>
<td></td>
</tr>
<tr>
<td>Meteorological Laboratories</td>
<td>Naval Underwater Systems Center</td>
<td></td>
</tr>
<tr>
<td>National Marine Fisheries Service:</td>
<td>(New London, CT, and Newport, RI)</td>
<td></td>
</tr>
<tr>
<td>Southwest Fisheries Center:</td>
<td>Naval Surface Weapons Center</td>
<td></td>
</tr>
<tr>
<td>La Jolla Laboratory</td>
<td>(Silver Spring, MD)</td>
<td></td>
</tr>
<tr>
<td>Honolulu Laboratory</td>
<td>Naval Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>Southeast Fisheries Center</td>
<td>(Washington, DC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fleet Weather Facility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Suitland, MD)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Naval Oceanographic Office</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Washington, DC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Defense Mapping Agency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrographic Center</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Washington, DC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Naval Academy (Annapolis, MD)</td>
<td></td>
</tr>
<tr>
<td>U.S. Academic/Research Institutions</td>
<td>Other U.S. Contributors</td>
<td>Foreign and International Contributors</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Columbia University:</td>
<td>Los Angeles City Sanitation Department</td>
<td>Fisheries Research Board of Canada</td>
</tr>
<tr>
<td>Hudson Laboratories</td>
<td>California Department of Water Resources</td>
<td>Marine Environmental Data Service (Canada)</td>
</tr>
<tr>
<td>Lamont-Doherty Geological Observatory</td>
<td></td>
<td>Bedford Institute of Oceanography (Canada)</td>
</tr>
<tr>
<td>Cornell University</td>
<td></td>
<td>National Institute of Oceanography (England)</td>
</tr>
<tr>
<td>University of Delaware</td>
<td></td>
<td>Institute of Oceanographic Sciences (Wales)</td>
</tr>
<tr>
<td>University of Hawaii</td>
<td></td>
<td>University of Bergen (Norway)</td>
</tr>
<tr>
<td>University of Illinois</td>
<td></td>
<td>BCO Nacional de Datos Oceanograficos (Brazil)</td>
</tr>
<tr>
<td>Johns Hopkins University</td>
<td>Arthur D. Little, Inc.</td>
<td>BNDO, Centre National pour l'Exploitation des Oceans (France)</td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td>Rand Corporation</td>
<td></td>
</tr>
<tr>
<td>University of Maine</td>
<td></td>
<td>Centro Argentino de Datos Oceanograficos</td>
</tr>
<tr>
<td>University of Maryland</td>
<td></td>
<td>University of Puerto Rico</td>
</tr>
<tr>
<td>University of Miami</td>
<td></td>
<td>Universidad N. A. de Mexico</td>
</tr>
<tr>
<td>University of Michigan</td>
<td></td>
<td>Inter-American Tropical Tuna Commission</td>
</tr>
<tr>
<td>North Carolina State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oregon State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Pittsburgh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Rhode Island</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rice University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scripps Institution of Oceanography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southampton College</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Texas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas A&M University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virginia Polytechnic Institute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Washington</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Williams College</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Wisconsin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woods Hole Oceanographic Institution</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PHYSICAL OCEANOGRAPHY

Transport Computations from Language - FORTRAN I and IV
Atmospheric Pressure
Hardware - IBM 1620/IBM 1130

Computes the steady-state mass transport in the ocean from atmospheric pressure data, according to a system of analysis designed by Dr. N.P. Fofonoff. Input: Sea level pressure cards from the extended forecast division of the U.S. National Weather Service. Output: Meridional and zonal components of Ekman transport, total meridional transport, integrated transport, and integrated geostrophic transport (mean monthly values for the specified grid of alternate five degrees of latitude and longitude in the Northern Hemisphere). FORTRAN I program is listed in FRB manuscript series report (Ocean. and Limnol.) No. 163, by Dr. Charlotte Froese, 1963.

Pacific Biological Station
Fisheries Research Board of Canada
P. O. Box 100
Nanaimo, B. C. V9R 5K6

STD Computations
STD02
Language - FORTRAN IV
Hardware - IBM 1130

Pacific Biological Station
Fisheries Research Board of Canada
P. O. Box 100
Nanaimo, B. C. V9R 5K6

Hydrographic Cast Computations
HYDRO
Language - FORTRAN IV
Hardware - IBM 1130

Pacific Biological Station
Fisheries Research Board of Canada
P. O. Box 100
Nanaimo, B. C. V9R 5K6

Digitizes STD Data
DEEP
Language - FORTRAN
Hardware - Hewlett-Packard 2115A

Digitizes salinity-temperature-depth data on line, using time as a criterion for selecting points. Input are frequencies from the Bisset-Berman STD system and station heading data through a teletype. Output, on paper tape, has station identification fields, time interval between data points, an, the STD data. Technical report No. 152 (unpublished manuscript), by A. Huyer and C.A. Collins, Dec. 1969. See program WET, next page.

Pacific Biological Station
Fisheries Research Board of Canada
P. O. Box 100
Nanaimo, B. C. V9R 5K6
STD Processing Language - FORTRAN
STD Data Processing Language - FORTRAN IV

Pacific Biological Station
Fisheries Research Board of Canada
P. O. Box 100
Nanaimo, B. C. V9R 5K6

Copy on file at NODC (above report)

Hydrosearch Language - ALGOL

Provides easy, inexpensive retrieval of hydrographic station data, with selection criteria expressed in terms of data properties. Output: Summary listing, detailed listing, cards, tape, or disk file. The program can be run either in batch mode or interactively; users can be local or remote via dial-up, ARPANET or FTS. User's Guide available.

Ed Coughran
University of California, San Diego
P. O. Box 109
La Jolla, CA 92037

Available from originator only

Telephone (714) 452-1050

Salinity Anomaly Language - FORTRAN II

Calculates the salinity anomaly from a standard T/S or Theta/S curve for North Atlantic Central water developed by L.V. Worthington. The results are output on the line printer. Author - A.B. Grant (June 1968).

Director
Bedford Institute of Oceanography
P. O. Box 10146
Dartmouth, N. S. B2Y 4A2

Available from originator only

Oxygen Saturation, Oxygen Anomaly Language - FORTRAN II

Calculates the percentage of oxygen saturation in seawater, according to tables and formulae by Montgomery (1967), as well as an oxygen anomaly on a sigma-t surface, according to a tabulated curve by Richards and Redfield (1955). The results are output on the line printer, station by station. Author - A.B. Grant (June 1968).
Plot Theta-S Curves

Language - FORTRAN II
Hardware - CDC 3100/PDP-8/CalComp Plotter

Nutrient Concentrations

Language - FORTRAN II
Hardware - CDC 3150

Reduces a set of discretely sampled voltages from the Technicon AutoAnalyzer to a set of peak heights and thence to a set of nutrient concentrations. Input: Magnetic tape produced by a Techal Digitizer and Kennedy Incremental Recorder; card deck containing identifiers for all samples and standards. Output: Tables of peak heights and of derived nutrient concentrations. Up to 8 parameters and 400 samples can be accommodated per run.

STD Tables and Plots

Language - FORTRAN IV
Hardware - HP 2100A/Disk/CalComp Plotter
optional

Reduces data from Guildline STD and Hewlett Packard data logger to tables of salinity-temperature-depth information and prepares it for plotting. The equation giving salinity as a function of conductivity ratio, temperature, and pressure is due to Dr. Andrew Bennett.
Consistency of Physical and Chemical Data

Language - COBOL and FORTRAN subroutines
Hardware - IBM 360-50/48K/Disk/2 tape units

Performs consistency check of physical and chemical data obtained during oceanographic cruises. Input: Disk pack with recorded and sorted data, parameter card indicating whether the input corresponds to physical or chemical data. Output: Listing of inconsistent data.

Capitan de Fragata Nestor
Lopez Ambrosioni
Centro Argentino de Datos Oceanográficos
Avenida Montes de Oca 2124
Buenos Aires, República Argentina
Telephone 21-0061

Capitan de Fragata Nestor
Lopez Ambrosioni
Centro Argentino de Datos Oceanográficos
Avenida Montes de Oca 2124
Buenos Aires, República Argentina
Telephone 21-0061

Calculation of Thermometric Values

Language - COBOL and FORTRAN subroutines
Hardware - IBM 360-50/58K/Disk/2 tape units

Calculates thermometric depth and corrected temperatures. Input: Disk with physical data and calibration table of reversing thermometers. Output: Listing of evaluated and accepted physical data.

Station Data System Final Values

Language - COBOL and FORTRAN subroutine
Hardware - IBM 360-50/64K/Disk/2 tape units

Interpolates temperature, salinity, and oxygen at standard depths; calculates sigma-t and sound velocity at observed and standard depths; also calculates specific volume anomaly and dynamic depth anomaly at standard depths. Input: Disk pack with accepted primary data records. Output: Listing of observed and computed values at observed and standard depths.

Daily Seawater Observations

Language - FORTRAN IV
Hardware - CDC CYBER 74

Input: Daily observations of temperature and salinity. Output: (1) Quarterly statistics, (2) annual statistics, (3) listing of seven-day normally weighted means for one year, and (4) plot of normally weighted means for one year. Author - H. Somers. Early version in FORTRAN II-D for the IBM 1620.

Data Management System for Physical and Chemical Data

Language - COBOL, FORTRAN, PL/I, machine lang.
Hardware - CDC 6400 under SCOPE 3.3, 125K octal words/IBM 360-85 under MVT, 200K decimal bytes

The OCEANS V system is designed to make available any physical, chemical, or meteorological...
data collected as manual recordings or analog traces. The system is divided into a number of
modules and presently processes data collected using Nanren Bottles and mechanical bathythermo-
graphs. There are three stages to the system: (1) edit and quality control of newly collected
data, (2) addition of these data to existing historical data, and (3) retrieval/report from
these historical data.

D. Branch
Marine Environmental Data Service
580 Booth Street
Ottawa, Ont. KIA OH3
Telephone (613) 995-2011

Mass Transport and Velocities
GEO MASS

Calculates velocities at standard depths between two stations relative to deepest common depth;
also calculates trapezoidally mass transport between successive depths and cumulative mass
transport from surface. Assumes deepest common depth is level of no motion. Author - C. Peter
Duncan.

Donald K. Atwood
Marine Sciences Department
University of Puerto Rico
Mayaguez, PR 00708
Telephone (809) 892-2482

Station Data
TWIRP

Interpolates oceanographic data; calculates sigma-t, dynamic depth anomaly, potential tempera-
ture, and delta-t. Input: Observed thermometric depths, temperature, salinity, and chemistry.
Output: Temperature, salinity, sigma-t, potential temperature, delta-t at observed depths and
all of these plus dynamic height anomaly interpolated to standard depths. Author - C. Peter
Duncan.

Donald K. Atwood
Marine Sciences Department
University of Puerto Rico
Mayaguez, PR 00708
Telephone (809) 892-2482

Thermometer Correction, Thermometric Depth
GIESE 04

Corrects thermometers and calculates thermometric depth, as per formulae by Keyte. Input:
Thermometer number, uncorrected reading, auxiliary thermometer reading, data, cruise number,
station number, wire out. Output: Corrected temperatures, corrected unprotected thermometer
readings, and thermometric depth. Author - Mary West.

Donald K. Atwood
Marine Sciences Department
University of Puerto Rico
Mayaguez, PR 00708
Telephone (809) 892-2482

Oceanography Station Computer Program

Processes observed station data to obtain interpolated values of temperature, salinity, oxygen,
specific volume anomaly, dynamic depth, sigma-t, and sound velocity. The three-point Lagrange
interpolation equation and the Wilson sound velocity formula are used in the computations.
Running time is two seconds per station.
Flexible System for Biological, Physical, and Chemical Data
SEDHYP (System d'Exploitation des Donnees en Hydrologie Profonde)

A very flexible system of about 5,000 cards which computes, interpolates, lists, and plots physical, chemical, and biological parameters. Input includes: List of the parameters to be listed, computed, interpolated, plotted, and copied on files; method of computation and interpolation; name of the parameter to be used as "interpolator"; list of the interpolation levels; format of the processed data. Output: Listings of the observed, computed, or interpolated parameters; plots of one parameter versus another parameter with all the curves on the same graph, or by groups of N curves on the same graph; copy of the values of one parameter on a working file for further use by other programs. The options, input on cards, are analysed and controlled; each station is stored in "common" area; then parameters are computed and interpolated. Files in a new format (FICPAR) are created; each file contains all the values of all the stations for one parameter. The plot is realized from two files of the FICPAR type. Documentation: Presentation de SEDHYP, Dec. 1973; also, Catalogues des methodes de calcul, d'interpolation et de reduction, Dec. 1973.

Mr. Stanislas, BNDO
Centre National pour l'Exploitation des Oceans
Boite Postale 337
29273 Brest Cedex, France

Subroutines for Physical, Chemical and Biological Parameters

CO4 SAL, C44 TETA, C 46 SIGN Z, etc.

Subroutines compute the following parameters: Depth, pressure, salinity, potential temperature, sigma-o, oxygen saturation percent, sigma-t, delta-st, potential sigma, alpha, delta-alpha, sigma-st, potential energy anomaly, salinity or temperature flux, Vaisala frequency. Input: Value of all parameters to be used in the computations and the catalog identification number of the chosen method. Documentation: "Catalogue des methodes de calcul des parametres physiques, chimiques et biologiques," Dec. 1973.

Mr. Stanislas, BNDO
Centre National pour l'Exploitation des Oceans
Boite Postale 337
29273 Brest Cedex, France

Interpolation Subroutines

INTERP1, INTERP2, etc.

Subroutines interpolate the values of a parameter at different levels; for each subroutine, the method is different: spline function, polynomial interpolation, linear interpolation, Lagrange polynomial interpolation. Input: The values of the parameter to be interpolated, the corresponding values of the parameter to be used as "interpolator" (e.g., depth), list of the levels of the "interpolator" for which interpolation is asked, the number of points to be used. Documentation: "Catalogue des methodes d'interpolation," Dec. 1973.
Processes STD and CTD Data
SEDSTD (Système d'Exploitation des DONNEES STD, CTD)

The system includes programs to copy the raw data from paper tape onto magnetic tape, to produce validated data from the raw data using calibration information, and to process the validated data. It is possible to reprocess the stations from raw data or validated data on magnetic tape. Option information to be supplied includes: identification number of the stations to be processed, whether the data are raw or validated, list of the depth levels to be listed, and scale of the parameters to be plotted. Output: Listings of depth or pressure, temperature, salinity (observed or computed from conductivity), oxygen, oxygen saturation percent, sigma-t, potential temperature, potential sigma, delta-alpha, and delta-d for each station; plots of temperature, salinity, oxygen and sigma-t vs. depth, and temperature vs. salinity for each station; magnetic tape files of raw and validated data. Documentation: Présentation de SEDSTD, Dec. 1973.

Reads, Calculates, Interpolates Station Data
CATRICORN

Reads oceanographic station data from cards or NODC formatted 120-character-per-record tape. If desired, it can edit the NODC tape and/or calculate and interpolate oceanographic parameters for each station or calculate and interpolate variables at specified theta-sigma, theta, theta-p, and potential temperatures. (See subroutines F3, SECPG, EDIT, and PLTEDT.)

Station Data Calculations
F3

This subroutine takes as input, through its common blocks, the observed values for depth, temperature, salinity, and, if available, oxygen, phosphate, silicate, nitrate, and nitrite. It then interpolates salinity and temperature to standard depths, using either a linear means or by weighting two Lagrangian three-point polynomials (depending on whether there are three or four properly distributed data points). The subroutine calculates the following for both the observed and standard depths: potential temperature, thermosteric anomaly, specific volume anomaly, sigma-t, the sigma values for depths of 0, 1000, 2000, 3000, 4000, and 5000 meters. Computations of sound velocity, dynamic height, and transport functions are made for standard depths only. The computation for stability is made at the observed depths only. The values of oxygen, phosphate, silicate, nitrate, and nitrite are simply printed out, if they are read.

Subroutine F3 is a composite of programs written by various authors: The original "F" program was written by Kilmer and Durbury for the IBM 650. This program was expanded by Nowlin and McLellan for the IBM 7094 and again by Eleuterius for the IBM 360. The Scripps SNARKI program provided the basis for much of the present version. (See program CAPRICORN.)
This subroutine generates a plot tape to make any of the following 13 plots: Temperature vs. depth, salinity vs. depth, sigma-t vs. depth, temperature vs. salinity, oxygen vs. sigma-t, oxygen vs. temperature, temperature vs. silicate, potential temperature vs. salinity, phosphate vs. depth, sound velocity vs. depth, stability vs. depth, silicate vs. depth, oxygen vs. depth. The size of the plots is 11 x 17 inches. (See program CAPRICORN)

Calculates Station Data
SECPG

This subroutine computes the depths that correspond to input density surfaces. It then interpolates temperature, salinity, oxygen, phosphate, nitrate, and nitrite to these computed depths. Using these interpolated values for temperature and salinity, the following are calculated at each computed depth: Potential temperature, thermosteric anomaly, specific volume anomaly, sigma theta for depths of 0, 1000, 2000, 3000, 4000, and 5000 meters, transport, dynamic height and acceleration potential. Uses Lagrangian interpolation or linear interpolation, depending on point distribution. (See program CAPRICORN)

Station Data
HYD2

Computes station data. Input: Header information, depth, temperature, salinity, oxygen and silicate from a user-specified device. Output: Station data including depth, temperature, salinity, oxygen, silicate, pressure, potential temperature, dynamic height, etc. Plot or tape output optional.
Dynamic Height
DYNHT
Subprogram calculates an array of dynamic heights for specified arrays of pressure and specific volume anomalies.
Jacqueline Webster
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Available from originator only
Telephone (617) 548-1400

Potential Energy Anomaly
PEN
Subprogram computes the potential energy anomaly from pressure and specific volume anomaly.
Jacqueline Webster
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Available from originator only
Telephone (617) 548-1400

Various Parameters from Station Data
OCCOMP
Computes various oceanographic parameters from NODC format station data; interpolates parameters to standard depths; computes geostrophic velocity and volume transport for successive stations.
Mary Hunt
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Available from originator only
Telephone (617) 548-1400

Specific Volume Anomaly
SVANOM
Subroutine computes the specific volume anomaly, given the pressure and the specific volume, from an empirical formula devised by Fofonoff and Tabata.
Mary Hunt
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Copy on file at NODC (listing, documentation)
Telephone (617) 548-1400

Pressure Subroutine
PRESS
Subroutine computes a series of pressures from a given series of depths, temperatures, salinities, and their latitude. The equation for pressure is integrated by successive approximations.
Mary Hunt
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Copy on file at NODC (listing, documentation)
Telephone (617) 548-1400
Subroutine reads oceanographic station data cards and returns the information therein to the user, one station for each call.

Mary Hunt
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Available from originator only
Telephone (617) 548-1400

Computes geostrophic velocity difference between two oceanographic stations, according to a formula described by N.P. Fofonoff and Charlotte Froese.

Mary Hunt
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Copy on file at NODC (listing, documentation)
Telephone (617) 548-1400

Computes volume transport between two stations.

Mary Hunt
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Available from originator only
Telephone (617) 548-1400

Subroutine computes sigma-t from temperature and salinity by Knudsen's formula, rewritten by Fofonoff and Tabata. DSIGMT is the double-precision form of SIGMAT.

Mary Hunt
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Copy on file at NODC (listing, documentation)
Telephone (617) 548-1400

Subroutine calculates adiabatic temperature gradient for specified values of pressure, temperature, and salinity, using an empirical formula developed by N.P. Fofonoff.

Mary Hunt
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Copy on file at NODC (listing, documentation)
Telephone (617) 548-1400

Subprogram computes the potential temperatures at a given temperature, salinity, and pressure, using a formula derived from a polynomial fit to laboratory measurements of thermal expansion.
Specific Volume
SPVOL

Subprogram computes the specific volume (ml/g) of seawater at a given temperature, pressure,
sigma-o, and sigma-t, using formula by V.W. Ekman (rewritten by Fofonoff and Tabata). Input:
values of sigma-t as calculated by subprogram SIGMAT.

Oxygen
OPLT

Computes oxygen in ml/l and percent saturation.

Chlorophyl
CHLO

Computes chlorophyl in mg/l.

Salinity
SALTY

Computes salinity in ppt with temperature correction and shear correction between each standard
water sample.

Temperature-Salinity Class Volume
TSVOL

Calculates volume of water by T-S class, area within which station is located (in sq. km) and
total volume for each T-S class.
Thermometer Correction Language - FORTRAN IV
Hardware - CDC 3300
Corrects deep-sea reversing thermometers using calibration factors; computes thermometric depth for unprotected thermometers, lists bad thermometers and their malfunctions, computes observed L-Z, plots L-Z curve (on line), computes used L-Z and picks from the L-Z curve the depths for the other bottles.

U.S. Coast Guard Oceanographic Unit
Bldg. 159-E, Navy Yard Annex
Washington, DC 20590
Available from originator only
Telephone (202) 426-4642

Transport Language - FORTRAN IV
Hardware - CDC 3300/CalComp Plotter
Calculates sigma-t, dynamic heights, solenoidal values of average temperature and salinity volume flow, current velocity at top of each solenoid, distance (n.m.) between stations, specific heat, heat and salt transport, net volume flow for each pair of stations, net volume flow in form of cold core and warm water for each station and plots solenoid graph on off-line plotter.

U.S. Coast Guard Oceanographic Unit
Bldg. 159-E, Navy Yard Annex
Washington, DC 20590
Available from originator only
Telephone (202) 426-4642

Plots Temperatures, Lists Mixed Layer Depths Language - FORTRAN
Hardware - Burroughs 6700/Less than 20K words/CalComp Plotter
Plots sea temperature for one-degree quadrangles for the eastern tropical Pacific Ocean; also, computes and lists mixed layer depths. Mixed layer depths are computed by an empirical formula and modified by reports received from tuna fishing vessels. Input: Disk files of synoptic marine radio weather reports, prepared separately from punched cards.

A.J. Good
Southwest Fisheries Center
National Marine Fisheries Service, NOAA
P.O. Box 271
La Jolla, CA 92037
Available from originator only
Telephone (714) 453-2820, ext. 325

Constants for Harmonic Synthesis of Mean Sea Temperatures, HARMONIC Language - ALGOL
Hardware - Burroughs 6700/Less than 30K words/
Disk input and output
Computes five constants to be used in harmonic synthesis of mean sea temperatures, by one-degree quadrangles. Monthly variations of mean sea temperature are treated by a Fourier series analysis. Disk file of constants, by one-degree quadrangles for the Pacific Ocean.

A.J. Good
Southwest Fisheries Center
National Marine Fisheries Service, NOAA
P.O. Box 271
La Jolla, CA 92037
Available from originator only
Telephone (714) 453-2820, ext. 325

Vertical Section Plots Language - FORTRAN 63
Hardware - CDC 3600/32K words/3 tape units/Calcomp Plotter
Constructs vertical temperatures and salinity sections from STD magnetic tape on 30-inch-wide
plotting paper. The product of the two dimensions (station distance x depth) of a data array times four must not exceed 32,000. NOAA Technical Report NMFS CIRC-365.

Kenneth A. Bliss
Southwest Fisheries Center
National Marine Fisheries Service, NOAA
P.O. Box 271
La Jolla, CA 92037
Available from originator only
Telephone (714) 453-2820

Converts STD Data
RDEDTP
Language - FORTRAN
Hardware - CDC 3600/15K words/2 tape units

Kenneth Bliss
Southwest Fisheries Center
National Marine Fisheries Service, NOAA
P.O. Box 271
La Jolla, CA 92037
Available from originator only
Telephone (714) 453-2820

Corrects STD Data
TPMOD
Language - FORTRAN
Hardware - CDC 3600/10K words/2 tape units

Kenneth Bliss
Southwest Fisheries Center
National Marine Fisheries Service, NOAA
P.O. Box 271
La Jolla, CA 92037
Available from originator only
Telephone (714) 453-2820

Environmental Dynamics Subroutines
OCEANLIB
Language - BASIC
Hardware - IBM 360/Dartmouth DTSS

A series of subroutines: ALPHA calculates Alpha 35, 0, F for any depth by interpolating standard values from a random access file; GRAV computes the resultant gravity at any latitude, using the international gravity formula. SIGMAT calculates sigma-o and sigma-t using empirical formulas of Knudsen for sigma-o and LaFond for sigma-t. DENSITY calculates the in situ density of seawater, using empirical formulas developed by LaFond and others. SOUND computes sound velocity using the empirical formula developed by Leroy in 1968. POSIT computes the direction and distance between points on the earth's surface, using spherical trigonometry, allowing the earth's radius to vary.

LCDR W.C. Barney
Environmental Sciences Department
U.S. Naval Academy
Annapolis, MD 21402
Available from originator only
Telephone (301) 267-3561

Geostrophic Current
CURRENT
Language - BASIC
Hardware - IBM 360/Dartmouth DTSS/14.5K

Calculates geostrophic current at standard depths between adjacent stations using method of
dynamic height or geopotential anomalies. Requires OCEANLIB subroutines.

LCDR W.C. Barney
Environmental Sciences Department
U.S. Naval Academy
Annapolis, MD 21402
Telephone (301) 267-3561
Available from originator only

Monthly Sonic Layer Depth
Calculates acoustic layer depth from BT traces and converts position to plot on Mercator base without overprints. OS No. 53480. Author - D.B. Nix.
Data Systems Office
U.S. Naval Oceanographic Office
Washington, DC 20373
Telephone (301) 763-1449
Available from originator only

Vertical Temperature Gradient
Computes, from geographic station data, the vertical temperature gradient largest in absolute magnitude between successive standard depths, for each station. These gradients are tabulated in frequency distribution format, and averages are calculated for each one-degree square. OS No. 20126 Part 2. Author - C.S. Caldwell.
Data Systems Office
U.S. Naval Oceanographic Office
Washington, DC 20373
Telephone (301) 763-1449
Available from originator only

Water Clarity
Combines data taken with Scripps illuminatmer, transmissometer, Secchi disk and Forel-Ule Scale. Logarithmic combination of parameters are summed over observation intervals to yield meter by meter results. Input: Diffuse attenuation coefficients, transparency readings, depths of observations via cards. Output: Visibility loss at specific levels of the water column and contrast loss expressed in decibel values.
Philip Vinson
U.S. Naval Oceanographic Office
Washington, DC 20373
Telephone (202) 433-3878
Available from originator only

Oceanographic Data Computation
Assembles temperature, salinity, and sound velocity at forty standard oceanographic depths from any preselected ocean area onto magnetic tape. Also included for each oceanographic station is the layer depth, layer sound velocity, in-layer gradient, below-layer gradient, axis depth and axis depth sound velocity. Output used by program SUMMARY. NUC Tech. Note 1223.
John J. Russell
Naval Undersea Center
Code 14
San Diego, CA 92132
Telephone (714) 225-6243
Available from originator only
Variance and Standard Deviation

Language - FORTRAN EXTENDED
Hardware - CDC 6500/63K 60 bit words/Disk/
Two tape units

Summary

Orders selected oceanographic data at each of forty standard levels and selects maximum, 10, 20, 30, 40, 50, 60, 70, 80, 90, 25 and 75th percentiles, and minimum. Also computes variance and standard deviation at each of the forty standard depths. Input: Data generated by the program TPONV. Output: Deck of eighty-one cards - two cards at each of the forty standard depths. First card contains maximum, percentiles (above), minimum, number of observations, and identification at one depth. The second card contains variance, number of observations, mean, depth number, and identification. NUC Tech. Note 1224.

John J. Russell
Naval Undersea Center
Code 14
San Diego, CA 92132
Telephone (714) 225-6243

Available from originator only

Sigma-T
INVREJ
Hardware - CDC 6600
Removes inversions in sigma-t profiles prior to calculation of buoyance-frequency profile. The following options are available: binomial smoothing, minima rejection, maxima rejection, and local smoothing.

K. Crocker
Naval Underwater Systems Center
Newport, RI 02840
Telephone (401) 841-3307

Available from originator only

STD Processing
OCEANDATA
Language - ANSI FORTRAN
Hardware - CDC 3300/26K words
Converts raw Plessey CTD-STD data (frequency or period average) to parametric form, corrects salinity for time constant mismatch, rejects invalid data, averages data by designated intervals (normally 1 decibar). Provides listing, plots, disk and tape files of corrected raw data and reduced data. Several special purpose editions available.

K. Crocker
Naval Underwater Systems Center
Newport, RI 02840
Telephone (401) 841-3307

Available from originator only

Internal Waves
WITCOMB
Language - USASI FORTRAN
Hardware - CDC 3300/26K words
Calculates internal wave eigenvalues (dispersion curves) and eigenfunctions as solutions to the linear internal wave equation. Input: Density as a function of depth in the ocean from the surface to the bottom. Data points do not have to be equally spaced in depth. Output: Density profile (smoothed), buoyancy-frequency profile, dispersions curves (all listings); plotter tape for preceding plus eigenfunctions. Performs numerical integration of internal wave equation using assumed values of frequency and wavenumber until boundary conditions are satisfied by trial and error.

Alan T. Massey
Naval Underwater Systems Center
Newport, RI 02840
Telephone (401) 841-4772

Available from originator only

Interpolation for Oceanographic Data
Language - FORTRAN
Hardware - CDC 3200/IBM 1620

Available from originator only
Interpolates the values of depth, temperature, and salinity at isentropic levels (constant values of the density functions). Uses a four-point Lagrangian polynomial. Exception: Modifications are made where common oceanographic conditions distort the polynomial. Technical Report TH-312 by J. Farrell and R. Lavoie, Feb. 1964.

Naval Underwater Systems Center Copy on file at NODC (above report)
Newport, RI 02840

STD-S/V Data
52049

Language - FORTRAN V
Hardware - UNIVAC 1108/CalComp Plotter

Performs general purpose processing of STD-S/V data; includes conversion to oceanographic units, editing, ordering relative to increasing depth, calculation of dependent variables, and plotting of results. Input: Pressure or depth, temperature, salinity or conductivity, and sound speed in units of frequency, period or geophysical units. Density computed by integration of P, T, S throughout the water column; sound speed by Wilson's equation; potential temperature by Fofonoff's equation. Output: Magnetic tape, listing, plots of profiles, T vs. S, cross-sections, geographic contours; measured parameters plus density, sound speed, potential quantities, Brunt-Vaisala frequency.

Michael Facher
Naval Underwater Systems Center
New London, CT 06320

Thermometric Depth Calculation
CAST

Language - HP FORTRAN IV under RTE
Hardware - HP 2100S/12K words core/10K for RTE/CalComp Plotter

Uses thermometer readings from Nansen bottles to calculate thermometric depths of the bottles, following method described in instructions for filling out Naval Oceanographic Office "A Sheet." Thermometric depths are printed with input data; L-Z graph is plotted.

J. Dean Clemons
Shipboard Computing Group, Code 8003
Naval Research Laboratory
Washington, DC 20375

Thermometer Data File Handler
THERMO

Language - HP FORTRAN IV under RTE
Hardware - HP 2100S/12K words core/10K for RTE

Maintains and builds a disk file containing correction factors for thermometers used on Nansen casts. Program is interactive and can add, delete, change, or list data for each thermometer.

J. Dean Clemons
Shipboard Computing Group, Code 8003
Naval Research Laboratory
Washington, DC 20375

Internal Gravity Waves
DISPER

Language - FORTRAN
Hardware - CDC 3600

Sea Surface Temperature Analysis Model
MEDITST

Sigurd Larson
Environmental Prediction Research Facility
Naval Postgraduate School
Monterey, CA 93940

Available from originator only

Objective Thermocline Analysis

Reads digitized bathythermograph traces and then analyzes them objectively by Gaussian and non-Gaussian methods for the top, center, and base of the main thermocline. Additionally, such features as multiple thermoclines, inversions, and thermal filaments are identified and their key points are included in the information data printout. "Objective Digital Analysis of Bathymetromograph Traces," thesis by Eric F. Grosfils, Dec. 1968.

Naval Postgraduate School
Monterey, CA 93940

Available from NTIS, Order No. AD 689 121/LK, $5.75 paper, $2.25 microfiche.

Wet Bulb Temperature
WETBLB

Computes the wet bulb temperature from the inputs of dry bulb temperature, pressure, and relative humidity. This is sometimes useful for generating homogeneous archive outputs (filling in missing wet bulb temperatures from the other variables).

Jerry Sullivan
Center for Experiment Design and Data Analysis, NOAA/ORD
Washington, DC 20355

Available from originator only

Internal Wave Oscillations
ZNODE

Isentropic Interpolation
Language - FORTRAN
Hardware - IBM 360-65/61K bytes

Provides values of several variables at selected density (sigma-t) levels; interpolation by cubic spline, with modifications for oscillation. Input: NODC SD2 (station data) file. Output: Interpolated values of depth, temperature, salinity, pressure, specific volume anomaly, dynamic height and acceleration potential, on magnetic tape. Author - Douglas R. Hamilton.

Oceanographic Services Branch
National Oceanographic Data Center
NOAA/EDS
Washington, DC 20235
Telephone (202) 634-7439

Potential Temperature and/or Density
POTDEN
Language - Assembler
Hardware - IBM 360-65/50K bytes

Reads the NODC SD2 (station data) file and replaces temperature and/or sigma-t with potential temperature and/or density. Requires subroutine PDEN. Author - Walter Morawski.

Oceanographic Services Branch
National Oceanographic Data Center
NOAA/EDS
Washington, DC 20235
Telephone (202) 634-7439

SIGHAT
Language - FORTRAN
Hardware - IBM 360-65/740 bytes (object form)

Computes sigma-t, giving a rounded floating point answer accurate to four significant decimal digits (xx.xx); also returns the computed variable FS (a function of sigma-t), a short floating point number. Author - Robert Van Wie.

Oceanographic Services Branch
National Oceanographic Data Center
NOAA/EDS
Washington, DC 20235
Telephone (202) 634-7439

Dynamic Depth Anomaly
DYANGOM
Language - FORTRAN IV-G
Hardware - IBM 360-65

Subroutine computes dynamic depth anomaly. Author - Robert Van Wie.

Oceanographic Services Branch
National Oceanographic Data Center
NOAA/EDS
Washington, DC 20235
Telephone (202) 634-7439

Computes Salinity from Conductivity, T, P
SALINE
Language - FORTRAN
Hardware - IBM 360-65
Computes salinity from conductivity in milli mhos/cm, pressure in decibars, and temperature in degrees C. Valid for temperature range 0-30 degrees C, salinity range 20-40 ppt, pressure range 0-3000 decibars; measurements outside these ranges may cause a significant error in the resulting salinity computation. Author - Philip Hadsell.

Oceanographic Services Branch Copy on file at NODC
National Oceanographic Data Center
NOAA/EDS
Washington, DC 20235 Telephone (202) 634-7439

Volume Transport Function
QFUN

Computes the volume transport function at each depth of a hydrographic station. Author - Ralph Johnson.

Oceanographic Services Branch Copy on file at NODC
National Oceanographic Data Center
NOAA/EDS
Washington, DC 20235 Telephone (202) 634-7439

Potential Temperature, Potential Density
PODENS

Computes potential temperature and potential density from depth, temperature, and salinity. Author - Dave Pendleton.

Oceanographic Services Branch Copy on file at NODC
National Oceanographic Data Center
NOAA/EDS
Washington, DC 20235 Telephone (202) 634-7439

Volume Transport
VOLTRN

Computes volume transport between any two stations, according to the formulas in D. Pendleton's "Specifications for a subroutine which computes the transport function," NODC, August 29, 1972. Author - Ralph Johnson.

Oceanographic Services Branch Copy on file at NODC
National Oceanographic Data Center
NOAA/EDS
Washington, DC 20235 Telephone (202) 634-7439

Computes Pressure
PRESSR

Computes pressure from latitude, depth, temperature, salinity, and sigma-t. Must be called serially through a cast since the calculation of pressure at each depth after the surface involves the depth, density, and pressure of the preceding depth. Author - Sally Heimerdinger.

Oceanographic Services Branch Copy on file at NODC
National Oceanographic Data Center
NOAA/EDS
Washington, DC 20235 Telephone (202) 634-7439
Temperature Difference Calculations

Language - Assembler
Hardware - IBM 360-65/36K bytes

Takes selected BT's or sections of the BT geofile and sums the temperature difference for each Marsden square, one degree square and month; these may be summed over 10, 15, or 20-meter intervals. Input: BT records sorted by Marsden (ten-degree) squares. Author - Walter Morawski.

Oceanographic Services Branch
National Oceanographic Data Center
NOAA/EDS
Washington, DC 20235
Telephone (303) 634-7439

RSMAS Data Processing and Analysis
Programs; Data Management System (DNS)

Language - FORTRAN
Hardware - UNIVAC 1106/PDP-11

Data Processing:

DNSED is a general-purpose editor for DNS files; editing may be by hand or by algorithm. (PDP-11)

DNSCHUF automatically chops a DNS time series into profiles. (PDP-11)

AACAL aligns, calibrates, and pre-edits data from Aanderaa current meter; output is DNS file. (PDP-11)

MK2CAL transcribes and calibrates Mark II Cyclesonde (unattended current profiler) data; output is DNS file. (PDP-11)

DERIVE appends to a DNS file new quantities derived from the input file; repertoire is expandable. (UNIVAC, PDP-11)

DNSORT concatenates DNS files from various sources, sorts according to selected keys, segments into class intervals, and outputs a DNS file. (UNIVAC)

MATRIX #1 interpolates data in depth-time coordinates to a uniform grid with various input and output options. (UNIVAC)

Data Analysis:

PLSAD computes a wide variety of statistical and dynamical quantities from time series of STD and/or PCH profiles; requires data on a uniform, rectangular grid. (UNIVAC)

IVEC computes internal wave eigenvalues and eigenfunctions. (UNIVAC)

CHRSEC computes dynamical fields and internal wave rays for x, z sections; requires mean sigma-t and mean velocity fields on a common level but otherwise nonuniform grid. (UNIVAC)

SPKTRA computes auto- and cross-spectra by Tukey (correlation) method. (UNIVAC)

CNSPC computes auto- and cross-spectra in polarized form for single or a pair of complex-valued series; input is selected output of SPKTRA. (UNIVAC)

TIDES computes amplitude and phases for specified frequencies by least-squares; for pairs of series, tidal ellipse parameters are computed. (UNIVAC)

METFLX computes all meteorological fluxes from observed meteorological parameters by bulk formulas. (UNIVAC)

EMPIUC1 computes cross covariance matrix and finds its eigenvalue and (orthogonal) eigenvectors. (UNIVAC)

(*Reading and writing DNS files in machine-level language)
Christopher N.K. Hoovers or Henry T. Perkins
Division of Physical Oceanography
Rosenstiel School of Marine and Atmospheric Science
University of Miami
10 Rickenbacker Causeway
Miami, FL 33149
Telephone (305) 350-7546
CHEMISTRY

CO₂ and D.O. SAT Language - FORTRAN
Hardware - IBM 360/less than 5000 bytes

Paul J. Godfrey
Department of Natural Resources
Cornell University, Fernow Hall
Ithaca, NY 14850

Copy on file at NODC (listing, documentation)
Telephone (607) 256-3120

Alkalinity

ALCT

Language - FORTRAN IV
Hardware - CDC 3150

Calculates total alkalinity, carbonate alkalinity, pH, and log (k(A)) for a potentiometric alkalinity titration. Endpoints are found by Gram plot method; complete procedure has been described by Dyrssen and Sillen. Input: Paper tape from DATOS data set and ASR-33 Teletype; a set of sample salinities on disk, tape, or cards; one or two cards containing run information. Output: Line printer plots of the titration curves; extensive information about each sample run; and a summary sheet with the four parameters for each sample.

John L. Barron
Bedford Institute of Oceanography
P. O. Box 1006
Dartmouth, N. S. B2Y 4A2

Available from originator only
Telephone (902) 426-3676

Specific Conductivity with Pressure Effect

Language - FORTRAN
Hardware - IBM 360

Computes specific conductivities from measured values of resistance for the electrolytic solution and the pressures at which the measures were made. Also determines other useful quantities needed to determine the effect of pressure on the ionic conductance through the upper 2000 meters of the ocean’s water column. The conductivity increase which results solely from solution concentration changes during compression is determined and found to be a significant error source. Thesis by Michael E. Hays, Dec. 1968.

U.S. Naval Postgraduate School
Monterey, CA 93940

Available from NTIS, Order No. AD 686 654,
$4.75 paper copy, $2.25 microfiche.

Percentage Saturation of Oxygen in Estuarine Waters

Language - FORTRAN IV-G
Hardware - IBM 360-65

Computes the percentage saturation of dissolved oxygen in estuarine or brackish water. Because of the temperature compensation at a fixed 25 degrees C in the conductivity measurements, salinity is given as input and is used to compute chlorinity. This computed chlorinity, with the
accompanying temperature, is used to determine the oxygen solubility of the water. The maximum percentage saturation of the dissolved oxygen in the water is calculated from the given oxygen content and the computed oxygen solubility. The same procedure is used to ascertain the minimum percentage saturation of oxygen. Independent of the dissolved oxygen data, there is another set of measured temperature and conductivity from which salinity is computed. Author - Patricia A. Fulton.

Computer Center Division
U.S. Geological Survey
National Center
Reston, VA 22092

Copy on file at NODC (listing, documentation)
Telephone (703) 860-7106

Water Chemistry - Dielectric Constant
MO101
Language - FORTRAN IV
Hardware - IBM 360-65

Calculates the dielectric constant of water (0 to 360 degrees C (water saturated for T over 100 degrees C)), the density of water (0 to 360 degrees C), the extended Debye-Hueckel activity coefficients of charged species, the activity products for 33 hydrolysis reactions including oxides, hydroxides, carbonates, sulfides, and silicates, the concentrations and activities of ten ion pairs or complexes, and of 22 aqueous species, the oxidation potential calibrations, the standard state oxidation potentials and Eh values at equilibrium for 13 redox reactions, moles and ppm of cations at equilibrium with 42 solid phases and the chemical potentials for each of the 42 reactions along with activity product/equilibrium constant ratios for the hydrolysis reactions.

Computer Center Division
U.S. Geological Survey
National Center
Reston, VA 22092

Copy on file at NODC (deck, documentation)
Telephone (703) 860-7106
COASTAL AND ESTUARINE PROCESSES

Three-Dimensional Estuarine Circulation Model
Language - FORTRAN IV
Hardware - UNIVAC 1108/40K 6 character words

Produces a fully three-dimensional simulation of estuarine circulation for arbitrary lateral and bottom geometry, inflowing rivers, openings to the sea, salinity, wind effect, and other related parameters.

Alan J. Fuller
Department of Meteorology (IFDAM)
University of Maryland
Space Science Building
College Park, MD 20742
Available from originator only
Telephone (301) 454-2708

Multi-Layer Hydrodynamic-Numerical Model
Language - FORTRAN IV
Hardware - CDC 6500/CDC 7600

Computes the current patterns using a two-layer hydrodynamical-numerical model for bays, estuaries, and sections of coastline. This program applies the finite difference hydrodynamic equations to a two-layer system. As optional output, it can produce currents and layer elevation fields, surface pollutant diffusion fields, and detailed special point information. EPRF Tech. Note 2-74, "A Multi-Layer Hydrodynamic-Numerical Model," by T. Laevastu.

Talvo Laevastu
Environmental Prediction Research Facility
Naval Postgraduate School
Monterey, CA 93940
Available from originator only
Telephone (408) 646-2937

Single Large Hydrodynamical-Numerical Model
Language - FORTRAN IV
Hardware - CDC 6590/IBM 360

Computes tidal, permanent, and wind-induced flows for bays, estuaries, or sections of the coastline, using the finite difference form of the hydrodynamic equations. Input includes bottom bathymetry and tides at an open boundary. Output: Wave elevation and current speed and direction fields, diffusion of pollutants field, if desired; detailed data for up to twelve points. EPRF Technical Note 1-74, "A Vertically Integrated Hydrodynamical-Numerical Model," by T. Laevastu.

Kevin M. Rabe
Research Facility Environmental Prediction
Naval Postgraduate School
Monterey, CA 93940
Available from originator only
Telephone (408) 646-2842

Estuarine Model
Language - FORTRAN
Hardware - IBM 370-165/150K characters

Solves a system of non-linear algebraic equations for a vertical plane estuary model. Output: Salinity and two velocity component profiles as a function of two space variables.

L.J. Pietrafesa
Center for Marine and Coastal Studies
North Carolina State University
Raleigh, NC 27607
Available from originator only
Telephone (919) 787-6074
MIT Salinity Intrusion Program

Language - FORTRAN IV
Hardware - IBM 360-65/120 K bytes

Provides predictions of unsteady salinity intrusion in a one-dimensional estuary of varying cross-section, using finite difference solution to the equations of motion and conservation of salt; coupling is accounted for through a density term in the momentum equation. Input: Schematized geometry, upstream inflows as a function of time, ocean salinity and tidal elevations at the ocean. Output: (1) Surface elevations, cross-sectional discharges and salinities as a function of time; (2) high-water slack salinities by tidal cycle; (3) longitudinal dispersion coefficients; (4) plots. Technical Report No. 159, "Prediction of Unsteady Salinity Intrusion in Estuaries: Mathematical Model and User's Manual," by M.L. Thatcher and D.R.F. Harleman, Ralph M. Parsons Laboratory, Massachusetts Institute of Technology, 1972. Also MIT Sea Grant Publications 72-21.

M. Llewellyn Thatcher
Southampton College
Southampton, NY 11968

Available from MIT or from the author.
Telephone (516) 283-4000

Dynamic Deterministic Simulation
SIMUDELIT

Language - FORTRAN IV
Hardware - IBM 360/5 tape units/CalComp Plotter optional

Simulates growth of a subaqueous deposit where a fresh water stream enters a saline basin. Tidal effects and longshore transport also are included. Input: Stream width and depth, water discharge, sediment load, profile of basin bottom, tidal range, length of tidal cycle, and transport parameter. Output: Tables of particle trajectories, graphs of distribution of different size grains in deposit, plots of delta development in plan and elevation views.

K. Kay Shearin
University of Delaware
P.O. Box 2826
Lewes, DE 19958

Available from originator only
Telephone (302) 645-6674

Beach Simulation Model

Language - FORTRAN IV
Hardware - IBM 1130/16K words/3 disks/CalComp Plotter

A computer simulation model to study relationships among barometric pressure, wind, waves, longshore currents, beach erosion, and bar migration. Fourier series are used to represent major trends in weather and wave parameters. Barometric pressure plotted as a function of time; longshore current velocity computed as function of first derivative of barometric pressure. Nearshore area represented by a linear plus quadratic surface with bars and troughs generated by normal and inverted normal curves. Waves and current energies computed for storm and poststorm recovery periods are used to simulate coastal processes which cause erosion and deposition. A series of maps are produced to show changes in nearshore topography through time.

William T. Fox
Department of Geology
Williams College
Williamstown, MA 01267

Available from originator only
Telephone (413) 597-2221

Estuarine Density Currents and Salinity
DENSITIT

Language - FORTRAN
Hardware - IBM 370-155/250K bytes

Performs numerical calculation of steady density currents and salinities in an estuary in three dimensions by numerical solution of finite-difference equations for a number of quasi-timesteps. Input: Local geometry, depths, tidal currents, latitude, boundary salinities. Output: x-y-z

Dennis Best or L.S. Slotta
Ocean Engineering Program
Oregon State University
Corvallis, OR 97331

Telephone (503) 754-3631

Upwelling
CSTLUPFL
Language - FORTRAN
Hardware - CDC 6400/150K characters/2 tape units

Provides sigma-t and three velocity component profiles as a function of two space variables for a steady-state, two-dimensional upwelling. Input: Independent variable and independent parameter sizes.

L.J. Pietrafesa
Center for Marine and Coastal Studies
North Carolina State University
Raleigh, NC 27607

Telephone (919) 787-6074

Mathematical Water Quality Model for Estuaries
Language - FORTRAN IV
Hardware - IBM 360/350K

Michael Amein
Dept. of Civil Engineering
North Carolina State University
Raleigh, NC 27607

Telephone (919) 737-2332

Computation of Flow through Masonboro Inlet, North Carolina
Language - FORTRAN IV
Hardware - IBM 360/350K

Michael Amein
Dept. of Civil Engineering
North Carolina State University
Raleigh, NC 27607

Telephone (919) 737-2332

Circulation in Pamlico Sound
Language - FORTRAN
Hardware - IBM 360/320K

Provides the water surface elevations, water velocity plots, and flows through inlets for Pamlico and Albemarle Sounds, North Carolina. Input: Wind fields, inflows, ocean tides.
AUGUR is a general three-dimensional simulation package designed to handle general spatial bookkeeping problems and basic input-output of data, thus leaving the main problem of modeling to the user. The specifications are:

1. to handle 1 to a maximum of 33,000 volumes;
2. to handle a one-, two-, or three-dimensional space in any one of the following structures:
 - (a) $1 \times 1 \times 1$
 - (b) $1 \times NR \times 1$
 - (c) $1 \times NR \times ND$
 - (d) $1 \times 1 \times ND$
 - (e) $NC \times 1 \times 1$
 - (f) $NC \times NR \times 1$
 - (g) $NC \times NR \times ND$
 - (h) $NC \times 1 \times ND$
 - where $NC = \text{maximum volumes along the west to east axis}$
 - $NR = \text{maximum volumes along the south to north axis}$
 - $ND = \text{maximum volumes along the lower to upper axis}$
3. to determine the following information of each volume:
 - (a) corner coordinates
 - (b) volume centroid
 - (c) centroids of the volume's faces
 - (d) projected areas onto XY, XZ, and YZ planes of the volume's faces
 - (e) the volume measurement
4. to allow the user to handle:
 - (a) 1 to 40 state variables in each volume
 - (b) velocities at the centroid of each volume or (but not both) at the centroids of each face of the volume
 - (c) boundary conditions for state variables and velocities
5. to allow the user to initialize all state variables and velocities of each volume;
6. to allow the user to define the corner coordinates of each volume;
7. to set up the space in a right-handed coordinate system;
8. to allow free field data input (to a certain extent);
9. to use Adams-Bashforth predictor equation for the simulation with Euler's equation as a starter with the option to replace these equations;
10. to be able to save the simulated data on tape in order to continue the simulation later on or to plot the data;
11. to provide the option of suppressing certain output.

Due to the generality of the specifications, AUGUR requires much more computer core storage than a program written for a specific model. In order to reduce the core requirement, AUGUR has been subdivided into semi-independent parts called overlays, thus allowing only currently needed programs to occupy core while keeping the unneeded ones on disk until later. Further reduction of core is made possible by keeping in core only those data arrays of volumes which are to be used immediately and storing the data arrays of volumes not currently in use on disk.

Salinity Distribution in One-Dimensional Estuary, ARAGORN
Language - FORTRAN
Hardware -
A model is constructed for an estuary to predict the salinity distribution for a given freshwater inflow, with application to the upper Chesapeake Bay and the Susquehanna River. Based on a salt continuity equation in which the seaward salt advection is balanced by turbulent diffusion toward the head of the bay. In final form, it is a linear, second-order, and parabolic partial differential equation with variable coefficients which are functions of both space and time. Tech. Report 54, Ref. 69-7, by William Bolcourt, May 1969.
Chesapeake Bay Institute
The Johns Hopkins University
Baltimore, MD 21218

Modeling an Ocean Pond
Language - FORTRAN
Hardware - IBM 370-155
Department of Mechanical Engineering and Applied Mechanics
University of Rhode Island
Kingston, RI 02881

Estuarine Chemistry
Language - FORTRAN IV/WATFIV
Hardware - IBM 370
From raw hydrographic data and nutrient chemistry data absorbences, computes actual values as compared with standards, along with instantaneous tide height of station. Estuarine low salinity procedures are applied. Output: Formatted concentrations of nitrite, nitrate, ammonia, urea, dissolved oxygen, silicate, and phosphate. Author - Stephen A. Macko.
B.J. McAlice
Available from originator only
Ira C. Darling Center (Marine Laboratory)
University of Maine at Orono
Walpole, ME 04573
Telephone (207) 563-3146

Estuarine Tides
TID;7
Language - WATFIV FORTRAN
Hardware - IBM 370
Computes instantaneous tide height, range, and tide character, given corrections. Author - Stephen A. Macko.
B.J. McAlice
Available from originator only
Ira C. Darling Center (Marine Laboratory)
University of Maine at Orono
Walpole, ME 04573
Telephone (207) 563-3146

Mathematical Model of Coastal Upwelling: Drift, Slope, and Littoral Currents
OCEAIP7
Language - FORTRAN IV
Hardware - IBM 360-40/23K bytes
Calculates and prints drift, slope, and littoral current tables, as well as their corresponding
flux tables - a total of 33 tables. Input: Orientation of the coast, latitude of the site, direction of the wind, velocity of the wind. Output: For drift currents, the results are presented in ten tables, corresponding to each tenth of the H/D ratio, where H is the depth of the site and D is the depth of the friction layer (a function of latitude and wind velocity); in each table the drift currents are shown at 20 levels of the local depth; at each level, values for the following elements are given - velocity, angle with the wind, direction, angle with the slope, slope component of velocity, and component of velocity parallel to the coast. The drift fluxes are presented in an eleventh table and calculated at each tenth of the H/D ratio, giving values for the following elements - rate of flow (m^3/sec), angle with the wind, angle with the slope, direction, slope component of the rate of flow, and component of the rate of flow parallel to the coast. Slope currents and fluxes and littoral currents and fluxes are presented in tables similar to those of drift currents and fluxes, but without values for angle of currents and fluxes with the wind.

Beach and Nearshore Maps

Lang - FORTRAN IV
Hard - IBM 1130/8K

Topographic maps of the beach and nearshore area are computed and plotted based on nine profiles from a baseline across the beach. Profiles are spaced at 100-foot intervals along the beach with survey points at five-foot intervals along each profile. Linear interpolation is made parallel to the baseline between adjacent profiles. Numbers and symbols are printed to form the maps. Profiles for a series of days are used to print maps of erosion and deposition by subtracting elevations for each day from the elevations for the previous day. ONR Tech. Report No. 4, "Beach and Nearshore Dynamics in Eastern Lake Michigan", by Davis and Fox, 1971.

Numerical Model, Dynamics and Kinematics of Partially Mixed Estuaries

Lang - FORTRAN
Hard -

A real-time numerical model is developed to describe the dynamics and kinematics of partially mixed estuaries. The governing equations are formally laterally averaged and realistic estuarine bathymetry is included. The external inputs to the model are salinity and tidal amplitude as a function of time at the ocean boundary and the freshwater discharge at the river boundary. The model includes the continuity, salt, and momentum balance equations coupled by equations of state. The numerical technique conserves volume, salt, and momentum in absence of dissipative effects. Simulations show that using a constant vertical eddy viscosity and diffusivity produce unrealistic salinity distributions, but have minor effects on the surface amplitudes; results from the application of the model to the Potomac Estuary, using a stability dependent eddy viscosity and diffusivity, yield distributions comparable to field observations. Further numerical experimentation illustrates the response of the circulation to changes in the boundary friction and the river discharge. Reference 75-9, Technical Report 91, "A Numerical Investigation into the Dynamics of Estuarine Circulation," by Alan Fred Blumberg, October 1975.

Cheaspeake Bay Institute
The Johns Hopkins University
Baltimore, MD 21218

Copy on file at NODC (above report)
ENGINEERING

Deep Ocean Load Handling Systems (DOLLS) Language = FORTRAN IV
Hardware = CDC 6600

L.W. Hallanger
Civil Engineering Laboratory
Naval Construction Battalion Center
Port Hueneme, CA 93043
Telephone (805) 982-5787

Load Motion and Cable Stresses Language = FORTRAN IV
Hardware = CDC 6600

Determines the transient and/or steady-state load motion and cable stresses in a vertically suspended load due to excitation at top or release from non-equilibrium position. Uses the method of orthogonal collocation in the "length" variable in order to reduce the equations to a set of ordinary differential equations. These are solved by a predictor-corrector method.

Input: Cable length, cable density, Ea, load radius, load density, fluid density, added mass and drag coefficient on load (sphere only), initial tension at load, frequency and amplitude of forced motion.

Output: Time history of cable tensions, velocities, and time history of load motion.

H.S. Zwibel
Civil Engineering Laboratory
Naval Construction Battalion Center
Port Hueneme, CA 93043
Telephone (805) 982-4625

Soil Test Data Language = FORTRAN IV
Hardware = CDC 6600/100K characters

Uses standard technique for reduction of triaxial soil test data. Input: Axial displacement of sample, axial load, original area, original height, consolidation pressure, volume change, and pore water pressure.

Output: Axial strain, pore water pressure change, principal stress difference, axial minor and major principal effective stress, principal stress ratio, P, Q.

H.J. Lee
Civil Engineering Laboratory
Naval Construction Battalion Center
Port Hueneme, CA 93043
Telephone (805) 982-5624

Dynamic Stress Response of Lifting Lines Language = FORTRAN IV
Hardware = CDC 6600/2 tape units

Predicts dynamic response of a lift line/payload system with long line length. Response operators are calculated from explicit equations; the output spectrum is used in a statistical calculation to determine the probability distributions. Input: Cable physical properties and elasticity, payload physical descriptions, surface excitation in the form of displacement spectrum or acceleration spectrum.

Output: Dynamic tension or payload motion operators as a function of frequency, probability distribution of dynamic tension and motion, and design peak

Francis C. Liu
Civil Engineering Laboratory
Naval Construction Battalion Center
Port Hueneme, CA 93043
Telephone (805) 982-4613

Dynamic Response of Cable System
Language - FORTRAN IV
Hardware - CDC 6600

Determines dynamic responses of a two-dimensional cable system in the ocean with in-line masses, based on lumped mass approximation; equations of motion were solved numerically by predictor-corrector method; cable segment takes tension only. Input: Cable static position, cable physical and elastic properties, in-line mass characteristics, current profile, surface excitation in sinusoidal form. Output: Tension and mass point location as function of time.

Francis C. Liu
Civil Engineering Laboratory
Naval Construction Battalion Center
Port Hueneme, CA 93043
Telephone (805) 982-4613

Changes in Electromechanical Cable
RAXSC
Language - FORTRAN IV
Hardware - CDC 6600

Determines the internal and external changes of a multi-strand electromechanical cable under end constraints and loadings. Based on helical wire model, equations are solved numerically by progressive iteration. Input: Cable construction details, wire physical properties, external loadings and constraints. Output: Cable end torque or torsion, elongation, internal changes. Note: RAXSC and RADAC have been combined to form program TAWAC.

Francis C. Liu
Civil Engineering Laboratory
Naval Construction Battalion Center
Port Hueneme, CA 93043
Telephone (805) 982-4613

End Responses in Electromechanical Cable
RADAC
Language - FORTRAN IV
Hardware - CDC 6600

Predicts the elongation, end rotation, or end moment of a double-armored electromechanical cable. Based on helical wire model, the problem is solved numerically by progressive iteration. Input: Cable physical and elastic properties, end loadings and/or conditions, detailed description of cable construction. Output: End responses in the form of end moment or end torques, cable elongation, cable geometric changes, wire tensions. Note: RAXSC and RADAC have been combined to form program TAWAC.

Francis C. Liu
Civil Engineering Laboratory
Naval Construction Battalion Center
Port Hueneme, CA 93043
Telephone (805) 982-4613

Unmanned Free-Swimming Submersible
UFSS Plotting Program
Language - BASIC
Hardware - hp 9830A/4K words core/24K words
additional/plotter plus ROM

Calculates radius of mission possible for theoretical UFSS (Unmanned Free-Swimming Submersible) when internal energy usage (hotel load) is varied. Uses simple iteration to select relative
speed for most efficient energy usage per actual distance covered. Input: Minimum, maximum, and increment on external volume and hotel load of UFSS; responses (yes or no) for speed matrix; response (yes or no) for another run with an ocean current one half knot greater than previous plot. Output: Speed matrix (if desired) up and downstream, matrix of radii covering volume and hotel load variations; graphic output of radii matrix as a function of external volume and hotel load as a parameter. Documentation: OTD-01-74-01-01.

Edward J. Finn
Ocean Instrumentation Branch
Naval Research Laboratory, Code 8422
Washington, DC 20375
Telephone (202) 767-2112

Unmanned Free-Swimming Submersible
UFSS Variable Hotel Load

Language - BASIC
Hardware - HP 9830A/2K words

Calculates ranges possible with theoretical UFSS when internal energy usage (hotel load) is varied, using iteration to determine speed for most efficient energy usage per actual distance covered. Input: Minimum, maximum and increment on external volume of UFSS and on hotel load in watts; response to question on desire to have most efficient speeds printed. Output: Matrix of ranges covering volume and hotel load variations; speed matrix (if desired); terminal plot of data in the matrix. Documentation: OTD-01-74-01-01.

Edward J. Finn
Ocean Instrumentation branch
Naval Research Laboratory, Code 8422
Washington, DC 20375
Telephone (202) 767-2112

Unmanned Free-Swimming Submersible
Nominal UFSS Program

Language - BASIC
Hardware - HP 9830A/2K words

Calculates distance covered by theoretical unmanned free-swimming submersible vehicle with specific energy package, using iteration to determine speed for most efficient energy usage per actual distance covered. Output: Data about model; most efficient speed with ocean current and range (one-way) as a function of external volume of the UFSS.

Edward J. Finn
Ocean Instrumentation Branch
Naval Research Laboratory, Code 8422
Washington, DC 20375
Telephone (202) 767-2112

Steady-State Trapezoidal Array Configurations

Language - FORTRAN V
Hardware - UNIVAC 1108

J.D. Wilcox
Naval Underwater Systems Center
New London, CT 06320
Telephone (203) 442-0771

Anchor Last, Buoy System Development Dynamics

Language - FORTRAN V
Hardware - UNIVAC 1108

Equations of motion for a surface or subsurface buoy system initially stretched out are solved.
as the anchor is dropped. The equations of motion for buoy, cable (modeled as a number of lump masses) and anchor are integrated in the time domain, using a fourth order Runge-Kutta algorithm. Velocity-squared drag and hydrodynamic masses concentrated at each lump. Input: Physical parameters of items to be modeled. Output: \(x-z \) positions, tensions and angles, sequential plots. NUSC/NL Technical Memorandum TA12-134-71, March 1971.

Gary T. Griffin
Naval Underwater Systems Center
New London, CT 06320
Telephone (203) 442-0771

Cable-Towed Buoy Configurations

Steady-state configurations under forces due to a ship on a turn are determined. The three-dimensional steady state cable equations are integrated with a fourth order Runge-Kutta algorithm from the towed body up to the ship. Input: Physical parameters of items to be modeled. Output: Buoy attitude \(x-y-z \) positions, ship speed, buoy speed, tensions and angles. Three-dimensional plots available. Project CORMORANT Memo 0132 (4.10.3), "Steady State Towline Configurations in a Turn," Sept. 1973.

Gary T. Griffin
Naval Underwater Systems Center
New London, CT 06320
Telephone (203) 442-0771

Free-Floating Spar

The equations of motion for spar buoy, cable (lump mass model), and an extended three-leg structure are solved in the time domain using a fourth order Runge-Kutta algorithm. Auxiliary computation of spar buoy bending in the waves is included. Input: Physical parameters of the items to be modeled. Output: Spar buoy \(x-z \) motions and tilt, hydrophone motions on the ends of the three-leg structure. NUSC/NL Technical Memorandum No. TA12-257-71, Nov. 1971.

Gary T. Griffin
Naval Underwater Systems Center
New London, CT 06320
Telephone (203) 442-0771

Ship Suspended Array Dynamics

Equations of motion for a vertically suspended cable array are solved in the time domain as the ship drifts and responds to waves. The cable is broken up into a elastically connected lump masses, each having two degrees of freedom. The \(2 \times 2 \) equations of motion are solved simultaneously in the time domain using a fourth order Runge-Kutta algorithm. Velocity-squared
viscous forces and hydrodynamic masses are concentrated at each lump. NUSC Tech. Memo. No. 2212-
202-68, "A Study of the Stability of the Five-Hydrophone, Ship-Suspended General Dynamics Ar-

Gary T. Griffin
Naval Underwater Systems Center
New London, CT 06320
Telephone (203) 442-0771

Boomerang Corer Descent/Ascent
Trajectories

Boomerang corer trajectories due to currents are calculated. The three-dimensional body equa-
tions are integrated in the time domain using a fourth order Runge-Kutta algorithm.

Gary T. Griffin
Naval Underwater Systems Center
New London, CT 06320
Telephone (203) 442-0771

Buoy-Ship Dynamics

The equations of motion for the buoy moving in a plane (3-D Heave, Surge and Pitch) and con-
strained by the A-frame and vangs are solved in the time domain using a fourth order Runge-
Kutta algorithm. Ship response to the quasi-random sea state is computed using Lewis's dimen-
sionless RAO's. NUSC letter ser. TA12:83, "Results of First Order Study of Ship-to-Buoy Mooring
Study."

Kirk T. Patton or Gary T. Griffin
Naval Underwater Systems Center
New London, CT 06320
Telephone (203) 442-0771

Buoy System Dynamics

Six degree-of-freedom equations of motion for the buoy are solved in the time domain using a
fourth order Runge-Kutta integration algorithm. These equations are coupled with the set of
partial differential equations for cable dynamics through tensions and velocities at the buoy. The
equations of motion for the cable are solved in the space-time domain using a method of
characteristics approach, i.e., a modification of Hartree's method. Output motions and ten-
sions for the buoy and along the cable are plotted as power spectra using FFT methods. The
program has been used for the design of oceanographic and acoustic buoy systems and for evalua-
tion of NOAA Data Buoy design.

Kirk T. Patton and Gary T. Griffin
Naval Underwater Systems Center
New London, CT 06320
Telephone (203) 442-0771

Fixed Thin Line Array Dynamics

Equations of motion for the cable array are solved in the time domain for excitation by cur-
cences. The array is broken up into n elastically connected lump masses, each having three de-
grees of freedom. The 3 x n equations of motion are solved simultaneously, using a fourth or-
der Runge-Kutta algorithm. Velocity-squared viscous forces and hydrodynamic masses are con-
centrated at each lump.

34
Marine Corer Dynamics

The equations of motion for a corer free-falling through the water column (or, for the case of a cable-lowered corer, free-falling through its trip height) are integrated in the time domain, using a fourth order Runge-Kutta algorithm. Upon impact with the bottom, frictional forces due to the sediment are introduced and the corer comes to rest. Output: Terminal velocity, velocity at impact, penetration of corer and compaction of recovered sample. "An Analysis of Marine Corer Dynamics," by K.T. Patton and G.T. Griffin, Marine Technology Society Journal, Nov.-Dec. 1969.

Kirk T. Patton and Gary T. Griffin
Naval Underwater Systems Center
New London, CT 06320
Telephone (203) 442-0771

Steady-State Buoy System Configurations

Steady-state configurations under forces due to winds and currents are computed. The three-dimensional cable equations are integrated with a fourth order Runge-Kutta algorithm from the buoy down to the anchor. An iterative method is used to modify the buoy's displacement until the vertical cable projection matches the water depth; 1/1000 the cable length is typically used as the integration step size. Output: Buoy drift and cable x-y-z positions, tensions, two angles and stretch as functions of cable length. Three-dimensional plots also available. NUSC Report 35.

Kirk T. Patton or Gary T. Griffin
Naval Underwater Systems Center
New London, CT 06320
Telephone (203) 442-0771

Steady-State Subsurface Buoy System Configurations

Steady-state configurations under forces due to currents are computed. The three-dimensional cable equations are integrated with a fourth order Runge-Kutta algorithm from the buoy down to the anchor; 1/1000th the line length is typically used as the integration step size. Output: x-y-z cable positions, tensions, stretch and angles (all in dimensionless form) as a function of dimensionless cable length. Three-dimensional plots also available. NUSC Report...
Towed Array Dynamics

Equations of motion for the towline, towed array, and drogue are solved in the time domain for response to ship motions, etc. The equations are integrated using a fourth order Runge-Kutta algorithm. The program first computes the steady-state configuration and tensions which serve as initial conditions for the dynamics section. Also, using the steady-state data, the Strouhal excitation frequencies and amplitudes are computed along the towline.

Kirk T. Patton or Gary T. Griffin
Naval Underwater Systems Center
New London, CT 06320
Telephone (203) 442-0771

Towed System Configurations

Steady-state configurations for towed systems are determined. Effects of current and ship turns can be included. The three-dimensional cable equations are integrated with a fourth order Runge-Kutta algorithm from the towed body up to the ship. For steady ship turns, the centrifugal force is also integrated up the cable. 1/100th to 1/1000th the cable length is used as the integral step size. Output: x-y-z positions, tensions, stretch, and angles as functions of cable length. Can be dimensionless. Three-dimensional plots also available. NUSC Tech. Memo. 933-0175-64, "Towline Configurations and Forces" by K.T. Patton, Oct. 1964; NUSC/NL Report No. 4379, "Nondimensional Steady State Cable Configurations," by G.T. Griffin, Aug. 1974; Project CORMoran Memo. D112/4.10.3, "Two-dimensional Steady-State Towed System Configurations," by G.T. Griffin, March 1973.

Kirk T. Patton or Gary T. Griffin
Naval Underwater Systems Center
New London, CT 06320
Telephone (203) 442-0771

Towed System Dynamics

Equations of motion for the towed body and for the cable (when treated as a lump mass model of n lumps) are solved in the time domain using a fourth order Runge-Kutta algorithm. The towed body is allowed six degrees of freedom, and each cable element has three. "Dynamics of a Cable-Towed Body System," by G.T. Griffin, MS Thesis, University of Rhode Island, Kingston, Jan. 1974.

Kirk T. Patton or Gary T. Griffin
Naval Underwater Systems Center
New London, CT 06320
Telephone (203) 442-0771

Trapezoidal Array Deployment Dynamics

Equations of motion for a trapezoidal array are solved in the time domain as the second anchor is lowered and the ship is underway. The two subsurface buoys and the four cables are broken
up into six elastically connected lump masses, each having three degrees of freedom. The eighteen equations of motion are solved simultaneously in the time domain, using a fourth order Runge-Kutta algorithm. Velocity-squared viscous forces and hydrodynamic masses are concentrated at each lump. NUSC Report No. 4141, "Dynamics of Trapezoidal Cable Arrays," by G.T. Griffin and K.T. Patton, March 1972.

Kirk T. Patton or Gary T. Griffin Available from originator only Naval Underwater Systems Center New London, CT 06320 Telephone (203) 442-0771

Trapezoidal Array Dynamics Language - FORTRAN V Hardware - UNIVAC 1108

Equations of motion for a subsurface trapezoidal cable array are solved in the time domain for response to currents. The two subsurface buoys and the three cables are broken up into six elastically connected lump masses, each having three degrees of freedom. The eighteen equations of motion are solved simultaneously using a fourth order Runge-Kutta algorithm. Velocity-squared viscous forces and hydrodynamic masses are concentrated at each lump. NUSC Report No. 4141, "Dynamics of Trapezoidal Cable Arrays," by G.T. Griffin and K.T. Patton, March 1972.

Kirk T. Patton or Gary T. Griffin Available from originator only Naval Underwater Systems Center New London, CT 06320 Telephone (203) 442-0771

Steady-State Cable Laying Language - FORTRAN IV Hardware -

R. Pierce Available from originator only Naval Underwater Systems Center New London, CT 06320 Telephone (203) 442-0771

Towed Array Configurations Language - FORTRAN V Hardware - UNIVAC 1108

Steady-state towed array configurations are computed. The two-dimensional cable equations are integrated with a fourth order Runge-Kutta algorithm from the drogue up to the ship; 1/1000th the total cable length is used as the integrated step size. Output: x-z positions, tensions, stretch, and angle as functions of cable length. Plot routine available.

S. Rupinski Available from originator only Naval Underwater Systems Center New London, CT 06320 Telephone (203) 442-0771

Cable Configuration Language - FORTRAN IV Hardware - IBM 1800

Computes the equilibrium configuration and tensions of a cable towing a submerged body for faired, unfaired, and discontinuous (lower part faired) cables. The output on the line printer gives the values of the input data followed by various calculated values. The solution is found for the "heavy general cable" law of cable loadings as described by N.C. Eames (1968). Execution time: About 30 seconds for each case. NIO Program No. 168. Author - Catherine Clayson.

National Institute of Oceanography Copy on file at NODC (listing, documentation) Wembley, Godalming, Surrey, England
GEOLOGY AND GEOPHYSICS

Convection in Variable Viscosity Fluid

Language - FORTRAN IV
Hardware - CDC 6600/140K bytes/Disc/
Tektronix graphics terminal

J.-Cl. De Bremaecker
Rice University
P.O. Box 1892
Houston, TX 77001

Copy on file at NODC
Telephone (713) 528-4161

Gravitational Attraction, Two Dimensional Bodies, TALWANI 2-D GRAVITY, W9206

Language - FORTRAN IV-H
Hardware - IBM 360-65

Calculates the vertical component of gravitational attraction of two-dimensional bodies of arbitrary shape by approximating them to many-sided polygons. The technique is from Talwani, Worsel, and Landisman in J.G.R., Vol. 64(1), 1959. Output: Gravity values are printed in tables; the calculated profile and the observed profile (if one exists) are plotted on the line printer in either a page size plot or an extended plot with the x-axis running down the page. Contains option of units in miles, kilofeet, or kilometers.

Computer Center Division
U.S. Geological Survey
Reston, VA 22092

Copy on file at NODC (listing, documentation)
Telephone (703) 860-7106

X-Ray Diffraction Analysis

Language - FORTRAN IV
Hardware - XDS Sigma 7/20K 32 bit words/RAD

Provides mineralogic analysis of marine sediments from X-ray diffraction data. Input: Tape containing data generated by X-ray diffractometer. Output: List of "d" spacings, 20 angles, intensities and peak heights of diffraction maxima, list of minerals and estimated amounts in samples analyzed.

John C. Hathaway
Office of Marine Geology
U.S. Geological Survey
Woods Hole, MA 02543

Available from originator only
Telephone (617) 548-8700

Sediment Grain Size Analysis

Language - FORTRAN IV
Hardware - IBM 1130

Calculates statistical parameters for sediment grain size analysis. Moment measures routine (Sheppard's correction applied) from Schlee and Webster (1965); linear interpolation for Folk and Inman Graphic Measures. Input: PHI size, cumulative frequency percent couples. Output: Moment measure of mean, standard deviation, skewness, kurtosis, Folk Graphic Measures, Inman Graphic Measures, mode and median values, histogram plots.

Gerald L. Shideler
U.S. Geological Survey
P.O. Box 6732
Corpus Christi, TX 78411
Telephone (512) 888-3241

Program maintained by:
Computer Center Division
U.S. Geological Survey
Federal Center
Denver, CO 80225
Magnetic Anomalies
MAG2D

Computes theoretical magnetic anomalies for two-dimensional bodies magnetized in any specified direction. Vertical, horizontal, and total field anomalies are computed at a series of observation points equally spaced along a profile. A graphic display of the anomaly and the bodies may be output to the CalComp or Versatec Plotter. A line printer plot of the anomaly is made. Modification of program by W.B. Joyner, USGS, Silver Spring, MD. Requires Woods Hole Oceanographic Institution subroutines, MOVE, AXIS, SYMBOL, NUMBER and PLOTDFER.

James M. Robb
U.S. Geological Survey
Office of Marine Geology
Woods Hole, MA 02543

Copy (main program) on file at NODC
(listing, documentation)
Telephone (617) 548-8700

Geophysical Data Reduction and Plotting Programs

Geophysics Group
School of Oceanography
Oregon State University
Corvallis, OR 97331

Available from originator only

Processing and Display of Marine Geophysical Data

A system of programs to process and plot marine gravity, magnetic, and bathymetric data using improved navigation techniques and standard data formats. The navigation programs use EN Log and Doppler Speed Log data and gyro headings combined with Magnavox 706 satellite navigator fixes to determine data point positions and Eotvos corrections. All outputs from processing programs and input to plotting programs are in standard NGSCC format for marine geophysical data. Tech. Report. by M. Gemperle, G. Connard, and K. Keeling (in press, 1975).

Geophysics Group
School of Oceanography
Oregon State University
Corvallis, OR 97331

Available from originator only

Marine Seismic Data Reduction and Analysis

Geophysics Group
School of Oceanography
Oregon State University
Corvallis, OR 97331

Available from originator only

A Library of Geophysics Subroutines
GLIB

Language - FORTRAN IV
Hardware - CDC 3300
The library consists of various subroutines commonly used in geophysical data reduction and plotting and not available in the OS3 FORTRAN library. The subroutines fall into five general categories: (1) Plotting - general purpose plotting subroutines, (2) Time and data conversion, (3) Arithmetic functions not contained in the OS3 FORTRAN library, (4) File control programs peculiar to the OS3 operating system, (5) Miscellaneous subroutines. Tech. Report by K. Keeling, M. Gemperle, and G. Connard (in press, 1975).

Geophysics Group
School of Oceanography
Oregon State University
Corvallis, OR 97331

Reduction, Display and Storage of navigation, Language - FORTRAN IV (most of the programs)
Gravity, Magnetic and Depth Data Hardware - IBM 1130/Peripherals described below

Processes data recorded by a data logger, prepares profiles and maps, and provides reduced data in a form suitable for data banking and interpretation. The first stage of the processing is to de-multiplex the data to separate disk files, and at the same time automatically edit where possible and flag errors that occur. The second stage is to filter data affected by ship motion, and the third stage is to optimize the navigation by merging dead-reckoning, hyperbolic or satellite data, and from this calculate depths, and gravity and magnetic anomalies. Graphical presentation of the data is in the form of profiles and maps. The maps include the ship's track and posted geophysical values or profiles along the ship's track. The finally reduced data may be stored on magnetic tape in any of the International Geophysical or Exchange Formats. With this system it is possible to reduce data and produce maps and final reports within three weeks of the end of the survey. The complete system can be used at sea with one engineer and one operator/programer, or the data logger alone may be used at sea and then only an engineer would be required.

The IBM 1130 has a central processing unit with 8K 16-bit words of core storage, an integral disk drive, and a console typewriter. Peripherals include two extra IBM disk drives, a Data Disc fixed-head disk drive, Tektronix Model 4012 visual display unit with a Tektronix Model 4610-1 hard copy unit, a 76 cm CalComp drum plotter, Facit punch tape input/output, and two RDL Series 10500 magnetic tape decks. A Data Dynamics 390 teletypewriter is used for off-line punch tape preparation and, when necessary, as a remote terminal via a Modem linked in parallel with the visual display unit.

Equipment that has been successfully interfaced with the Decca Data Logger include a Decca Main Chain Mk 21 Receiver, Decca Hifix, Sperry Gyrocompass Mk 227, Microtechnica Gyrocompass, LaCoste and Romberg Shipborne Gravity Meter, Askania Gas2 and Gas3 Gravity Meters, Anschutz Gyro-Stabilized Platform, Barringer Proton Magnetometer, Edo-Western Precision Depth Recorder (333C-26) linked to an Edo-Western Digitrack (261C), Two-Component Magnetic Log, Walker Electric Log, and a Marquart Doppler Sonar 2015A.

Computer System Copy on file at NODC (Above manuals)
Institute of Oceanographic Sciences
Research Vessel Base, No. 1 Dock
Barry, South Glamorgan, Wales, UK

Computation and Plotting of Magnetic Anomalies and Gradients Language - FORTRAN II
Hardware - IBM 7094/CalComp plotter

Computes the anomaly profiles for total field, horizontal and vertical components, first and second vertical derivatives, and first and second horizontal derivatives over a uniformly magnetized two-dimensional polygon of irregular cross-section. Output may be printed or plotted.

Geomagnetic Field Language - FORTRAN IV
Hardware - XDS Sigma 7/372 32 bit words

Robert C. Groman
Woods Hole Oceanographic Institution
Woods Hole, MA 02543

Marine Geophysical Data Reduction Language - FORTRAN IV
Hardware - IBM 360-65

Corrects soundings for sound velocity variations (if desired), computes residual magnetic anomalies from magnetic total-intensity values, and reduces marine gravity values to free-air anomalies corrected for Eotvos effect and drift. Each geophysical data point is associated with a date-time group, a geographic position, and an approximate mileage along track. The output is in the form of separate magnetic tapes and listings each for bathymetric, magnetic, and gravity data, in a format suitable for direct input to display or analytical programs. NOAA Technical Memorandum ERL AOL-11, "A Computer Program for Reducing Marine Bathymetric, Magnetic, and Gravity Data," by Paul J. Grim, Atlantic Oceanographic and Meteorological Laboratories, Miami, Florida, January 1971.

Paul J. Grim, Code 9621
Copy on file at NODC (Above report, with
Marine Geology and Geophysics Branch
listing)
National Geophysical and Solar-
Terrestrial Data Center, NOAA/EDS
Boulder, CO 80302

Plots Profiles of Bathymetry and Magnetic or Gravity Anomalies Language - FORTRAN IV
Hardware - IBM 360-65/CalComp 563 Plotter

Produces bathymetric and magnetic anomaly profiles in a form suitable for publications with little or no additional drafting. The horizontal scale can be the distance along the trackline in nautical miles or kilometers, or degrees of latitude or longitude. The input consists of digitized bathymetric and magnetic anomaly data on separate magnetic tapes. The horizontal and vertical axes of the profiles are determined automatically with reference to the maximum and minimum values of the input data. Control cards contain variables that further determine how the data are to be plotted. The program can also be used for plotting gravity anomaly profiles by substituting the gravity anomaly in milligals for the magnetic anomaly in gammas on the input tape. One of the control card variables causes the vertical axis to be labeled either gammas or milligals. Magnetics and bathymetry can be plotted together (the bathymetry is always below the magnetics) or either can be plotted separately. In addition, the same data can be replotted in a different manner (for example, with a different vertical exaggeration) if desired. ESSA Technical Memorandum ERLM-AOXL 8, "Computer Program for Automatic Plotting of Bathymetric and Magnetic Anomaly Profiles," by Paul J. Grim, Atlantic Oceanographic and Meteorological Laboratories, Miami, Florida, July 1970.

Paul J. Grim, Code 9621
Copy on file at NODC (Above report, with
Marine Geology and Geophysics Branch
listing)
National Geophysical and Solar-
Terrestrial Data Center, NOAA/EDS
Boulder, CO 80302
Lists Raw Data
ZLIST

Lists a single file of MG&G standard raw data tape, according to a standard format. Requires subroutine DLIST (HRHIN). Author - R.K. Lattimore.

Director, Marine Geology and
Geophysics
Atlantic Oceanographic and
Meteorological Laboratories/NOAA
15 Rickenbacker Causeway
Miami, FL 33149

Available from originator only

Telephone (305) 361-3361

Plots Trackline
QCKDRAW

Using as input the standard MG&G navigation cards, plots a trackline with or without tick marks delineating time intervals. The user is given external control of the map size, latitude and longitude map boundaries, the number of files to be mapped, the time marks, and annotation. The trackline is plotted up to the boundary limits specified, allowing the user to plot only a sector of the navigation deck loaded. Because the size of the actual plotting sheet is 29 inches, internal boundaries may also be required. In this case, bookkeeping devices within the program will assign trackline to the appropriate submaps and plot each in sequence. Author - J.W. Lavelle.

Director, Marine Geology and
Geophysics
Atlantic Oceanographic and
Meteorological Laboratories/NOAA
15 Rickenbacker Causeway
Miami, FL 33149

Available from originator only

Telephone (305) 361-3361

Plots Contour-Crossing Intervals
DOUBEX

Calculates contour-crossing intervals, determines highs and lows along a trackline, and plots both, using as input a USA Standard format data tape. Annotation of the extreme is also provided. The user is given control of the map size, the latitude and longitude boundaries, the number of files to be mapped, the contouring interval, and the data field from which the data is chosen. If the data which are being handled require more than one plotting sheet, an appropriate choice of latitude and longitude boundaries will allow the entire job to be handled at one time, with the plots drawn consecutively. Author - J.W. Lavelle.

Director, Marine Geology and
Geophysics
Atlantic Oceanographic and
Meteorological Laboratories/NOAA
15 Rickenbacker Causeway
Miami, FL 33149

Available from originator only

Telephone (305) 361-3361

Plots Geophysical Data
PLOTZ

Produces a plotter tape to display raw depth, magnetic, or gravity data vs. time, with the aspect ratio automatically determined to facilitate comparison with the original records. Scale factor (fathoms, gammas, or gravity meter units per inch) must be specified; if maximum and minimum values are not specified, the raw data will be scanned and the values determined. Requires subroutines LIMITS, DIGICT, HRHIN, PLOT (includes PLOTS and FACTOR), NUMBER, SYMBOL. Author - R.K. Lattimore.
Lists Every Hundredth Value

Language - UNIVAC 1108
Hardware - UNIVAC 1108

SNOOP

Scans a tape containing data in the standard MG&G format, listing every 100th value and the last value before an end-of-file mark. Author - R.K. Lattimore.

Navigation Computations

Language - UNIVAC 1108
Hardware - UNIVAC 1108

TPNAV

Accepts standard MG&G navigation data cards, computes course and speed made good and Eotvos correction between adjacent positions, compares this with input course and speed if given; creates a binary tape with position, azimuth, and distance information required for interpolation of position in programs FATHOM, CAMRA, and GAL. Author - R.K. Lattimore.

Edits Geophysical Data

Language - UNIVAC 1108
Hardware - UNIVAC 1108

ZEDIT

Performs two editing functions on MG&G standard raw data tape: (a) Deletion by index number; (b) insertion of new data by date-time group; such data can be put on tape (e.g., output from program HANDY) or in card format, one value per card. Data to be inserted must be ordered by date-time group. Requires subroutines DLIST (HRMIN). Author - R.K. Lattimore.

Geophysical Data Conversion

Language - UNIVAC 1108
Hardware - UNIVAC 1108

HANDY

Converts data in the MG&G standard data-card format to a binary tape suitable for input to the raw-data editing, evaluation, and processing programs (e.g., FATHOM, PLOT?, ZEDIT). Requires subroutine VCIST (HRMIN). Author - R.K. Lattimore.
Lists Geophysical Data
LISTP

Language - UNIVAC 1108
Hardware - UNIVAC 1108

Lists the contents of a tape containing one or more files of reduced marine geophysical data. Requires subroutine PFLIST (modification of FTLIST). Author - R.K. Lattimore.

Director, Marine Geology and
Geophysics
Atlantic Oceanographic and
Meteorological Laboratories/NOAA
15 Rickenbacker Causeway
Miami, FL 33149
Telephone (305) 361-3361

Course, Speed, Eotvos Correction
LOXNAV

Language - UNIVAC 1108
Hardware - UNIVAC 1108

Accepts standard MG&C navigation data cards, computes courses and speed made good and Eotvos correction between adjacent positions; if course and speed are given on input, compares input with computed values. Author - R.K. Lattimore.

Director, Marine Geology and
Geophysics
Atlantic Oceanographic and
Meteorological Laboratories/NOAA
15 Rickenbacker Causeway
Miami, FL 33149
Telephone (305) 361-3361

Converts Geophysical Data
PHONEY

Language - UNIVAC 1108
Hardware - UNIVAC 1108

Converts marine geophysical data from 120-column image (10 images to the block), even-parity BCD on 7-track tape (produced by program UNIFOO on the CDC 6600) to the standard MG&C storage format. Author - R.K. Lattimore.

Director, Marine Geology and
Geophysics
Atlantic Oceanographic and
Meteorological Laboratories/NOAA
15 Rickenbacker Causeway
Miami, FL 33149
Telephone (305) 361-3361

Sound Velocity Variation and Navigation
FATHOM

Language - UNIVAC 1108
Hardware - UNIVAC 1108

Given smooth-track navigation data and sounding values indexed by time, the program corrects for sound-velocity variation (if desired), ship's draft (if desired), and computes latitude, longitude, and distance along track for each observation; the output is in the standard MG&C reduced-data format. Requires subroutines GP, HRMIN, QUIT (TPLIST). Author - R.K. Lattimore.
Regional Field, Residual Magnetic Anomaly

GAMMA

Given smooth-track navigation data and total-field magnetic measurements indexed by time, the program computes regional field, residual magnetic anomaly, latitude, longitude, and distance along track for each observation. Output is in the standard MG&G reduced-data format. The regional field is computed as follows: For each input navigation point, or for each 20 n.m. interval along track (if navigation points are farther apart), a regional-field value is computed according to the method of Cain et al using the IGRF 1965 parameters. Regional field values for each observation are interpolated linearly. Requires subroutines FIELD, GOFIND, GPMAG, SETUP, QUIT (TPLIST). Author - R.K. Lattimore.

Gravity

GAL

Given smoothed-track navigation data and gravity meter dial readings indexed by date/time, this program will (1) compute Eotvos correction between adjacent navigation points; (2) reduce the dial reading to observed gravity corrected for instrument drift and Eotvos effect; (3) determine latitude, longitude, and distance along track for the observations; (4) compute the free-air anomaly from the 1930 International formula for theoretical gravity. Requires subroutines GOFIND, GPGAL, HRMIN, QUIT (TPLIST). Author - R.K. Lattimore.

Plots Profiles of Geophysical Data

DISPLOT

This program will scale and generate the necessary plotter commands to produce a graph of sounding, depth, magnetic or gravity value vs. distance along track. The source data consist of as many as four magnetic tapes containing unformatted standardized geophysical data, such as are produced by MG&G reduction programs (Grim, 1971). As many as nine Y-quantities may be plotted against one X-axis. Options provide for: (1) converting distance in nautical miles to kilometers; (2) scanning the data and annotating the upper X-axis, at the appropriate point, with crossings of even degrees of latitude or longitude; (3) omitting all axes; (4) plotting the profile reversed, or from right to left against distance values which increase from left to right; (5) drawing the zero Y ordinate; and (6) "Assembling" a single profile from more than one source, i.e., from different places on a single tape, or from different tapes. The input data are not edited. Multiple profiles may overlap one another as indicated by space limitations or aesthetics. NOAA Technical Memorandum IRL AOML-11, "A Computer Program for Reducing Marine Bathymetric, Magnetic, and Gravity," by Paul J. Grim, January 1971. Author - Robert K. Lattimore, October 1971.

Director, Marine Geology and Geophysics
Atlantic Oceanographic and Meteorological Laboratories/NOAA
15 Rickenbacker Causeway
Miami, FL 33149
Telephone (305) 361-3361

Available from originator only
Converts Digitizer Data

DIGIT

Converts digitizer data on punched cards to MG&G standard raw-data tape. Requires subroutine DLIST (NMNMIN). Authors - Developed by J.W. Lavelle, modified for 1108 by R.K. Lattimore.

Edits Reduced Geophysical Data

EDIT

Performs editing operations on a file of reduced marine geophysical data as follows: (a) Deletions (maximum 2000); (b) insertion of new data or modification of single points (maximum 1500); (c) block adjustments to Z1, Z2, Z3, Z4 (maximum 1500 points). The total number of editing operations may not exceed 2500; with the exception of deletions; like operations must be grouped together and ordered by index number. Permitted modifications (b above) include replacing Z1, Zr on a card, interpolating geographic position and mileage given date/time and Z1-Z4, and insertion of completely-specified data, i.e., date/time, latitude, longitude, distance along track, Z1, Z2, Z3, Z4. Requires subroutines QUE, QTWO, QUETWO, DAY, TPLIF. Author - R.K. Lattimore.

Seamount Magnetization

Language - FORTRAN
Hardware - IBM 7074

Computes the magnitude and direction of magnetization of a uniformly magnetized body from its shape and magnetic intensity. OS No. 53533. Author - G. Van Voorhis.

Observation Draping (Gravity)

Language - FORTRAN
Hardware - IBM 7074

Reduces observation data taken with Lacoste-Romberg sea/air or submarine gravimeters to observed gravity value and free-air anomaly. Interpolates geographic position from smoothed fix, course, and speed. Generates HCD chart and x,y coordinates for Mercator projection for each station. OS No. 53543. Author - R.K. Lattimore.
Data Systems Office
U.S. Naval Oceanographic Office
Washington, DC 20373

Available from originator only
Telephone (301) 763-1449

True Ocean Depth
FATHCR

Language - FORTRAN
Hardware - UNIVAC 1108/10K words

Given the Bathometer depth and velocity profile, computes the true ocean depth. The velocity profile is broken into constant gradient segments, the travel time integrated along the profile, and the profile is extrapolated to continue to the estimated travel time of the Bathometer record.

Peter D. Herstein
Naval Underwater Systems Center
New London, CT 06320

Available from originator only
Telephone (203) 442-0771, ext. 2305

Plots Track and Data Profile
TRACK

Language - FORTRAN
Hardware - CDC 3600/3800

Plots a track and the superimposed bathymetry or magnetic profile on a polar stereographic projection. This profile series is plotted perpendicular to the track, using uncorrected meters or fathoms. Input: Data on tape, map parameters, and command words via cards.

James V. Massingill
Environmental Sciences Section
Naval Research Laboratory
Washington, DC 20375

Available from originator only
Telephone (202) 767-2024

GEODATA

Language - FORTRAN
Hardware - CDC 3600/3800

Stores navigation, bathymetry, and magnetic data on magnetic tape in BCD form. Uses the format recommended by the National Academy of Sciences.

James V. Massingill
Environmental Sciences Section
Naval Research Laboratory
Washington, DC 20375

Available from originator only
Telephone (202) 767-2024

Geophysical Data Storage and Retrieval
GEOFILE

Language - FORTRAN IV
Hardware - CDC 3150/32K words/Disk/3 tape units

Data storage and retrieval system for BIDO's geophysical data. The programs sort, edit, merge, and display data recorded at sea. Input: Magnetic tapes from BIDOAL & onboard data logging system, bathymetry data on punched cards, and navigation data. Output: Magnetic tape containing all information recorded during cruises relevant to processing of geophysical data, sorted by geographical location. Computer note BI-C-73-3.

Larry Johnston
Bedford Institute of Oceanography
P. O. Box 1006
Dartmouth, N. S. B2Y 4A2

Available from originator only
Telephone (902) 428-3410

Magnetic Signatures
MAGPLOT

Language - FORTRAN
Hardware - CDC 3600/CDC 3800/706,768 words/Online plotter
Separates and characterizes the various components of magnetic noise in magnetometer records taken from a sensor towed at sea. Gives a printout of histogram data for each of three wavelength filters: \(N \) (amplitude) vs. amplitude; \(N \) (wavelength) vs. wavelength. Also produces plots of filtered magnetic fields as function of distance. Program is briefly described in NRL Form Report No. 7760, "Geological and Geomagnetic Background Noise in Two Areas of the North Atlantic."

Perry B. Alers
Naval Research Laboratory
Washington, DC 20375
Available from originator only
Telephone (202) 767-2530

Sediment Size
Language - FORTRAN
Hardware - UNIVAC 1108/9K 36 bit words
Produces frequency distributions for soil particle size values; applied to marine sediments.

Joseph Kravitz
U.S. Naval Oceanographic Office
Washington, DC 20373
Copy on file at NODC (deck with documentation)
Telephone (202) 433-2490

Bottom Sediment Distribution Plot
Language - FORTRAN V
Hardware - UNIVAC 1108/23K/Drum/3 tape units/CalComp 905/936 system
Produces a plot of bottom sediment notation on a Mercator projection, and a list of all data, including cores, within specified area.

William Berninghausen
U.S. Naval Oceanographic Office
Washington, DC 20373
Copy on file at NODC (deck with documentation)
Telephone (301) 763-1189

Sand, Silt, and Clay Fractions
Language - ALGOL
Hardware - Burroughs 6700/19K words
Computes sand, silt, and clay fractions in sediments. The laboratory method consists of dispersing the sediment in Calgon solution, sieving the sand fraction, and pipetting the silt and clay fractions. Input: Three card files for laboratory data and one card file for interpreting an identifier attached to each sediment sample. Output: Listing with option for ternary plots and punched cards.

Peter B. Woodbury
Deep Sea Drilling Project
Box 1529
La Jolla, CA 92037
Available from originator only
Telephone (714) 452-3526

Soil and Sediment Engineering Test Data
Language - FORTRAN II-D
Hardware - IBM 1620 II/IBM 1627 Model I Plotter
Engineering Index of Core Samples: Reduces data and tabulates results for tests on bulk wet density, vane shear strengths, original water content, liquid limit, plastic limit, and specific gravity of solids; in addition, from the above results, other index properties are simultaneously computed and tabulated; the output table lists results in columns representing each depth segment analyzed.

Grain Size Analysis with Direct Plotting: Input data are sample identification, sample weights, hydrometer readings, and sieve readings. Output on plotter is a particle size distribution curve. Another program provides output on cards of a table with proper headings and values for particle diameters and percent finer by weight.
Carbonate - Organic Carbon Analysis of Sediments: Reduces data from the carbon determinator and tabulates results of the analysis of deep ocean sediments for carbonate and organic carbon percentages; output is in same format as in program for engineering index properties, to which the output from this program is added.

Direct Shear Test with Direct Plotting: Reduces data and plots shear stress vs. shear displacement with appropriate headings and labels; another program, Direct Shear Test, uses the same data formats but presents the results in the form of tabulations rather than plots.

Triaxial Compression Test with Direct Plotting: Reduces the data from triaxial compression tests and plots stress vs. strain with headings for sample identification, lateral pressure, etc. Another program reduces the same raw data and presents the results in the form of tabulations, one for each test.

Consolidation Test (E vs. log time plot): Reduces the data obtained from consolidation test readings. Input includes sample identification and characteristics and test characteristics. The output is in two forms: plots and punched cards. The log of time is plotted vs. the void ratio. The cards are used as input to the next consolidation test program.

Consolidation test (E vs. log P and C(V) vs. log P plots): Develops plots for void ratio vs. log of pressure and coefficient of consolidation vs. log of pressure. The input consists of output cards from the previous program, together with the values of void ratio and pressure at 100% consolidation and the time and void ratio at 50% consolidation. These data were obtained from the plots of void ratio vs. log of time in accordance with the Terzaghi consolidation theory.

Permeability Test with Direct Plotting: Reduces test data and plots curve of permeability vs. time with appropriate headings and labels. The plotting scale is a variable incorporated in the program since permeability values for fine-grained soils vary throughout a wide range.

Settlement Analysis: Estimates settlement values from laboratory test results, for deep ocean foundation investigations. Input: Sediment properties and structure characteristics. Output: A table listing total settlement, footing dimensions, structure load, change in thickness of incremental layers and corresponding depth in sediment, initial stress, and change in stress.

Summary Plots: Plots the results from the laboratory analysis of core samples. The input data are the output results on cards from the previous programs and miscellaneous analyses. Since the link system of programming is used, the items to be plotted can be increased or decreased with slight modifications, depending on the user's requirements. Output is a sequence of plots. The depth into the sediment column is plotted with reference to the ordinate, and the various properties along the abscissa on variable scales.

Civil Engineering Laboratory Available from NTIS Order, No. AD 666 311, Naval Construction Battalion Center $5.75 paper, $2.25 microfiche.
Port Hueneme, CA 93043
BIOLOGY

WHOI Biology Series

<table>
<thead>
<tr>
<th>Program</th>
<th>Language</th>
<th>Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTAPE</td>
<td>FORTRAN IV</td>
<td>XDS Sigma 7/plotter optional</td>
</tr>
<tr>
<td>FLISHT</td>
<td>FORTRAN IV</td>
<td></td>
</tr>
<tr>
<td>CHAKAT</td>
<td>FORTRAN IV</td>
<td></td>
</tr>
<tr>
<td>SELECT</td>
<td>FORTRAN IV</td>
<td></td>
</tr>
<tr>
<td>PREPLOTC</td>
<td>FORTRAN IV</td>
<td></td>
</tr>
<tr>
<td>PLOTSPEC</td>
<td>FORTRAN IV</td>
<td></td>
</tr>
<tr>
<td>STATAB</td>
<td>FORTRAN IV</td>
<td></td>
</tr>
</tbody>
</table>

FTAPE generates a tape containing station data, species data, and systematic order information. FLISHT prints a list in systematic order of the species from the tape, including stations, numbers, sizes, and weights, with a final summary. Subsets can be specified with subroutine SELECT.

CHAKAT summarizes catch information from any specified set of stations on the tape made by FTAPE, including data for all species, a listing of the top-ranking species by number and weight, various diversity indices, and percent similarity between sets. CHAKAT analyzes a transect for faunal breaks, following the method of Backus et al (1965, "The Mesopelagic Fishes Collected during Cruise 17 of the Chain, with a Method for Analyzing Faunal Transects," Bull. Mus. Comp. Zool. Harvard, 134 (5):131-158), using the data on the tape made by FTAPE.

PREPLOTC and PLOTSPEC plot a distribution map for any species on the tape made by FTAPE, with indications of vertical distribution, catch rates, and negative data; the two programs must run together; input includes a tape from NODC with world map outlines; output can be plotted on CalComp or Versatec Plotters.

STATAB prints in readable format the information contained in the station data file made by FTAPE or on the input cards.

R.L. Haedrich
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Available from originator only
Telephone (617) 548-1400, ext. 354

Optimal Ecosystem Policies

OEP

To approximate optimal management policy for an aquatic stream ecosystem, program produces a sequence of converging values of an objective function, optimal values of decision variables, and simulation of the ecosystem using optimal decisions. Input: Parameter values (defaults built in), program constants, species interaction matrices. Deterministic or Monte Carlo simulations (user specified) are fit to state equations, from which the optimal policy is found using the discrete maximum principle.

Robert T. Lackey
Department of Fisheries and Wildlife Sciences
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061
Available from originator only
Telephone (703) 951-6944

Inverse Problem in Ecosystems Analysis

Language - FORTRAN IV
Hardware - UNIVAC 1108/10K 6 character words
Performing systematic analysis and modeling of interacting species in complex ecosystems, using a
previously unpublished iterative technique for regression analysis as well as statistical hypothesis testing. Input: a user-written subroutine defining the general structure of the ecosystem and a set of species population vs. time data to be analyzed. Output: A mathematical model of the ecosystem which has the most simplified structure adequate to explain the observations. For an example, see "A Systematic Approach to Ecosystem Analysis," by Curtis Mobley, J. Theoretical Biology, 41, 119-136 (1973). Program documentation is: SRI Tech. Ref. 72-84.

Curtis Mobley
Dept. of Meteorology (IFDAN)
University of Maryland
College Park, MD 20742
Telephone (301) 454-2708

Toxicity Bioassay
PROBIT ANALYSIS

A routine method for the analysis of all-or-none acute toxicity bioassay data. Input: Number of concentrations, tabular text statistics (F, Chi-square), number of organisms tested and number dead in each concentration and control. In general, mortality must be related to concentration. A minimum of three concentrations, with a partial kill both above and below 50% is required. Output: LC50, 50, 70, 90 values with upper and lower 95% confidence limits; intercept, slope and standard error of regression line, and several additional measures of goodness.

Patrick W. Borthwick
Gulf Breeze Environmental Research Laboratory
Environmental Protection Agency
Sabine Island, Gulf Breeze,
FL 32561
Telephone (904) 932-5326

Species Affinities
REGROUP

The program first determines the numbers of occurrences and joint occurrences of the species in the set of samples; it then calculates an index of affinity for each pair of species. The species are ordered in terms of the numbers of affinities they have, and this list is printed along with a list of names, code numbers, and numbers of occurrences. The program then determines the largest group that could be formed, tests to see whether that many species all have affinity with each other and, if they do, prints out the group. If they do not, it tries the next smaller group, etc. Those species which had affinity only with this group — and/or earlier groups — are listed. The remaining species are reordered and the process continues until all species have been put either in groups or in the list of species with affinities with groups. Limits — 200 species. Author — E.W. Fager.

Scripps Institution of Oceanography
Copy on file at NODC (listing, documentation)
P.O. Box 1529
La Jolla, CA 92037

Productivity
OXYGEN

Determines productivity by oxygen diurnal curve method. Input includes oxygen concentration and oxygen probe parameters. Output contains net and gross productivity and P/R plus original data. Author — William Longley.

Marine Science Institute
The University of Texas
Port Aransas, TX 78373

Copy on file at NODC (listing, documentation)
Species Diversity

Language - FORTRAN IV
Hardware - CDC 6600/50 K 60 bit words

Calculates species diversity index for numbers of organisms and/or weight of organisms, utilizing the diversity index equation derived from Margalef. The program calls subroutine SEASON, which calculates seasonal averages for a given station, seasonal limits being indicated by a control card. This subroutine outputs mean, standard deviation, and range of diversity indices for each seasonal period. Other desired groupings may be entered by a groupings control card. Author - A.D. Eaton.

Marine Science Institute
The University of Texas
Port Aransas, TX 78373

Productivity

Language - FORTRAN IV
Hardware - CDC 6600/25 K 60 bit words

Computes gross and net productivity, respiration, P/R ratio, photosynthetic quotient, efficiency, and diffusion coefficient, given sunlight data and diurnal measures of oxygen and/or carbon dioxide. Author - William Longley.

Marine Science Institute
The University of Texas
Port Aransas, TX 78373

Concentrations per Square Meter of Surface

Language - FORTRAN IV
Hardware - IBM 7074-11/7040 DCS/2231 words

Computes various chemical and biological compound concentrations as well as productivity rates per square meter of water surface from integrated values on per volume basis. Ten concentrations and rates are integrated over up to seven pairs of optional depth limits. Report UWOS-1006, June 1966. Source deck has 771 cards. Authors - Leilonie D. Gillespie and Linda S. Green.

Department of Oceanography
University of Washington
Seattle, WA 98105

Combined Chlorophyll and Productivity

Language - FORTRAN IV
Hardware - CDC 6400

Computes assimilation of productivity in seawater; also computes the quantities of chlorophyll A, B, and C, and the amount of carotenoids in seawater. The chlorophyll program determines the amount of plankton pigments using the equations of Richards and Thompson. The productivity program (Carbon 14) determines the production of marine phytoplankton by using Neilsen's method. Output consists of both printed matter and of library cards; the cards may be used as input to a multiple regression program to derive a relation between productivity and chlorophyll A; a plot routine may be called to graph one or several variables as a function of depth, or to display the horizontal distribution of any given property. Written by Marsha Wallin, Nov. 1963, based on two programs prepared in 1962 for the IBM 709 by N.R. Roni; revised in 1969 for the CDC 6400.

Department of Oceanography
University of Washington
Seattle, WA 98105
Phytoplankton Numbers, Volumes and Surface Areas by Species

Language - FORTRAN IV and MAP
Hardware - IBM 7094-11/7040 DCS/23,836 words

Two programs, differing only in input format, compute concentrations of cell numbers, cell surface areas, and cell and plasma volumes in marine phytoplankton populations, with option to compute mean cell areas, mean cell volumes, and mean plasma volumes, as well as the ratios: cell area to cell volume and cell area to plasma volume. The input quantities are obtained from microscopic examination of seawater samples. A subroutine computes the area, volume, and plasma volume of a cell from measured dimensions of diverse species. Source deck has 1,221 cards.

Department of Oceanography
University of Washington
Seattle, WA 98105

Program to Generate a Taxonomic Directory of Deep-Ocean Zooplankton

Language - FORTRAN IV
Hardware - UNIVAC 1108/20K words

Generates a data file (taxonomic directory) which classifies and catalogs various species of deep-ocean zooplankton collected in water samples for the purpose of studying the population and distribution statistics of these species. Input: Cards containing either the phylum, class, order, genus, or species name and the appropriate identifying numbers associated with each of these categories. NUSC Technical Memorandum No. TL-104-71, May 1971.

Drew Drinkard
Naval Underwater Systems Center
New London, CT 06320
Telephone (203) 442-0771, ext. 2127

Deep-Ocean Zooplankton Distribution

Language - FORTRAN IV
Hardware - UNIVAC 1108/30K words

The purpose of the program is to study the distribution statistics of the deep-ocean zooplankton species within a particular taxonomic category. The distribution characteristics of the individual species are examined for both the individual net samples which have been collected at various sampling depths and the combined net samples for a given tow. Input: Station data, sample data, species abundance data on cards, and a hash table species directory (program available for generating such a hash table). Records total count for each species to which the various organisms collected in the samples belong. For the individual net samples, computes the percentage of the total taxonomic category which each species in the sample represents. For the combined net samples, both the percentage of the total taxonomic category and the percentage of the entire sample (all taxa included) are computed. Finally, the population density of each species within its taxonomic category is calculated. NUSC Technical Memorandum No. TL-107-71, May 1971.

Drew Drinkard
Naval Underwater Systems Center
New London, CT 06320
Telephone (203) 442-0771, ext. 2127

Deep-Ocean Zooplankton Population Statistics

Language - FORTRAN IV
Hardware - UNIVAC 1108/30K

Produces population statistics for both the individual net samples collected at various depths and for the combined net samples. Input: Station data, sample data, species abundance data on cards, and a taxonomic directory on mass storage device. Each species is identified by phylum and class with the aid of the taxonomic directory. The organisms are counted according to the phylum or class. Total counts for the entire sample are calculated for each category. The population densities of each category are computed. Also calculated is the percentage of the total sample that each taxonomic category represents. NUSC Technical Memorandum No. TL-106-71, May 1971.
PIGMENT RATIO

Language - FORTRAN IV
Hardware - IBM 360/less than 50K bytes

Paul J. Godfrey
Department of Natural Resources
Cornell University, Fernow Hall
Ithaca, NY 14850

Copy on file at NODC (listing, documentation)
Telephone (607) 256-3120

SUCCESION

Language - FORTRAN IV
Hardware - IBM 360/4440 bytes

Paul J. Godfrey
Department of Natural Resources
Cornell University, Fernow Hall
Ithaca, NY 14850

Copy on file at NODC (listing, documentation)
Telephone (607) 256-3120

Species Abundance

SPECIES

Language - PL/1
Hardware - IBM 360/250K

This series of three programs was developed to accept species abundance data in its simplest form, check it for errors, produce lists of species abundances where comparisons may be made between days, depths, lakes, stations or years, and convert the input data to a form acceptable to packaged programs. Output: Listings of species abundances, summary data including total abundance, number of species and diversity, and subtotals within user-determined groups, punched output of summary data. "A Computer Program Package for Aquatic Ecologists," by Paul J. Godfrey, Lois White, and Elizabeth Keokosky.

Paul J. Godfrey
Department of Natural Resources
Cornell University, Fernow Hall
Ithaca, NY 14850

Copy on file at NODC (listing, documentation)
Telephone (607) 256-3120

Yield Per Recruit

RYLD, BIOM

Language - FORTRAN IV
Hardware - IBM 1130

Computes the approximate yield of a fish stock per recruitment by either of two methods (arithmetic or exponential approximations), or simply computes the stock biomass when there is no fishing. Output: An equilibrium yield matrix with up to 400 entries corresponding to 20 stations and 20 multipliers. Technical Report No. 92 (unpublished manuscript), No. 1968.
Chlorophyll Language - FORTRAN
Hardware - IBM 370
Calculates chlorophyll in mg/m³ according to BAP extraction, spectrophotometric technique.
Input: Raw absorbencies. Author - Stephen A. Hack*.

B.J. McAlice
Ira C. Darling Center (Marine Laboratory)
University of Maine at Orono
Walpole, ME 04573
Telephone (207) 563-3146

Phytoplankton Population Density Language - WATFIV FORTRAN
Hardware - IBM 370
Computes species densities and population percentages and relative diversity from cell counts.

B.J. McAlice
Ira C. Darling Center (Marine Laboratory)
University of Maine at Orono
Walpole, ME 04573
Telephone (207) 563-3146

Species Diversity Language - WATFIV FORTRAN
Hardware - IBM 370
From unformatted raw data, produces species diversity, and diversity matrix.

B.J. McAlice
Ira C. Darling Center (Marine Laboratory)
University of Maine at Orono
Walpole, ME 04573
Telephone (207) 563-3146
FISHERIES

Length Frequency Analysis Language - FORTRAN
LENFRE Hardware - Burroughs 6500

Uses three methods of stratification to expand sample length frequencies in different strata. The program was developed for tuna fishery samples. Input: Sample length frequencies for up to 80 strata, alpha and beta for the length-weight relation, von Bertalanffy growth parameters. Output: Tables of sample length frequencies, expanded length frequencies (expanded by total catch), weight in each length interval, by strata; total frequencies for all strata combined; average length and weights and age; catch per unit effort.

Atilio L. Coan, Jr. Available from originator only
Southwest Fisheries Center
National Marine Fisheries Service, NOAA
P.O. Box 271
La Jolla, CA 92037
Telephone (714) 453-2820, ext. 285

Yield per Recruit for Multi-Gear Fisheries Language - FORTRAN
MGEAR Hardware - Burroughs 6500/6,200 words

Computes estimates of yield per recruit and several related parameters for fisheries that are exploited by several gears which may have differing vectors of age specific fishing mortality. The Parker yield equation is used. Input is limited to 4 types of gear, 30 age intervals, and 10 levels of fishing mortality. Output: Besides tables of yield per recruit, landings per recruit when fish below minimum size are caught and then discarded dead, average weight of fish in catch, and yield per recruit per effort as functions of minimum size and amount of fishing effort are provided for each gear and for the entire fishery. The program has been used for evaluating proposed minimum size regulations for the yellowfin tuna fishery of the tropical Atlantic, a fishery exploited by four types of vessels (bait boats, small purse seiners, large purse seiners, and longliners) having quite different vectors of age specific fishing mortality.

William H. Lenarz Available from originator only
Southwest Fisheries Center
National Marine Fisheries Service, NOAA
P.O. Box 271
La Jolla, CA 92037
Telephone (714) 453-2820, ext. 280

Resources Allocation in Fisheries Management Language - FORTRAN IV
PISCES Hardware - IBM 370/125K

Uses a Monte Carlo simulation to predict the effect of fisheries management programs upon the distribution and abundance of angler consumption. Input: State fisheries agency data and management plan. Output: (1) Predictions of the number and location of angler-days throughout a state; (2) Standard deviations. "PISCES: A Computer Simulator to Aid Planning in State Fisheries Management Agencies," by R.D. Clark, MS Thesis, VPI&SU.

Robert T. Lackey Available from originator only
Department of Fisheries and Wildlife Sciences
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061
Telephone (703) 951-6944

Computer-Implemented Water Resource Teaching Game, DAM Language - FORTRAN IV
Hardware - IBM 370/120K/Interactive terminal desirable
Using a simulation of an existing reservoir system, this computer-assisted instructional game illustrates the management of a large multiple-use reservoir system. Input: Student management decisions for (1) a regional planning commissioner, (2) a fisheries manager, (3) a power company executive, (4) a recreation specialist, and (5) a city mayor. Output: Status of reservoir system, including human components.

Robert T. Lackey
Department of Fisheries and Wildlife Sciences
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

A Generalized Exploited Population Simulator
GXPOPS
Language - FORTRAN
Hardware - Burroughs 6500/CDC 3600

GXPOPS is a generalized exploited population simulator designed for use on a wide variety of aquatic life history patterns. Population processes programmed into the present version are (1) month-specific and density-independent mortality rates on the recruited population, (2) density-independent growth, (3) sex-specific and age-specific, but density-independent, maturation, (4) reproductive success due to random mating, and (5) density-dependent or density-independent recruitment. Mortality, growth, and maturation can be made density-dependent through the addition of subroutines. The unit length of time is the reproductive cycle, commonly a year in temperate species; computations are performed each one-twelfth of a unit, thereby representing a month for most species.

There are three output options. For each year the complete output option lists monthly (1) the average year class size, yield in numbers and weight for any six consecutive year classes, (2) the total initial population size, (3) the average total fishable population, (4) the total yield in numbers and weight, and (5) the average sex ratio. Annual summaries of initial population, average population, average fishable population, yield in number and weight, and the spawning success are provided by year class or the total population and for the fishable total population. The moderate option lists only the monthly summary totals and the annual summary by year class. The minimum option, suited for long simulations, lists only the annual summary by year class and for the total and fishable total population. GXPOPS is dimensioned to handle the computations for up to 30 year classes, but, in order to economize on space, the output is dimensioned to list up to 6 consecutive year classes only. The FORMAT statements must be rewritten to list an additional number of year classes. "A general life history exploited population simulator with pandalid shrimp as an example," by William U. Fox, Jr., Fishery Bulletin, U.S., 71 (4): 1019-1028, 1973.

William W. Fox, Jr.
Southwest Fisheries Center
National Marine Fisheries Service, NOAA
P.O. Box 271
La Jolla, CA 92037

Generalized Stock Production Model
PRODFIT
Language - FORTRAN
Hardware - CDC 3600/Burroughs 6500

Input: (Option 1) A catch and fishing effort history and a vector of significant year class numbers are read in; the catch per unit effort is computed internally and the averaged fishing effort vector is computed with subroutine AVEFF; (Option 2) The vectors of catch per unit effort and averaged (or equilibrium) fishing effort are read in directly. Output includes a listing of the input data, the transformed data, initial parameter estimates, the iterative solution steps, the management implications of the final model, *Umax, Uopt, fopt, and *max and their variability indices, the observed and predicted values and error terms, estimates of the catchability coefficient, and a table of equilibrium values. (*max is the relative density of the population before exploitation; *opt is the relative population density providing the maximum sustainable yield; fopt is the amount of fishing effort to obtain the maximum sustainable yield; and *max is the maximum sustainable yield.)
Normal Distribution Separator
TCPA1

Separates a length-frequency sampling distribution into K component normal distributions. Used to estimate age group relative abundance in length samples of unageable species. The method is statistically superior to graphical procedures. Also, the program will produce estimates of the percent composition by age group and the number of fish in the sample from each age group. Output includes a plotted histogram, the observed frequencies, and all estimated values. The value of K may be from one to ten. "Estimation of parameters for a mixture of normal distributions," by V. Hasselblad, Technometrics 8(3):431-441, 1966. Author - Victor Hasselblad; modified by Patrick K. Tomlinson.

Christopher T. Psaropulos
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037
Telephone (714) 453-2820, ext. 310 or 253
Estimates age composition using a double sampling scheme with length as strata. Also provides estimates assuming simple random sampling of aged fish. Under the double sampling scheme, the first sample is of lengths (length frequency) to estimate length-strata sizes; the second or main sample is for ages. The second sample can be drawn (1) independently, (2) as a subsample of the first, or (3) as a subsample within length strata. "A method of sampling the Pacific albacore (Thunnus alalunga) catch for relative age composition," by D.J. Mackett, Proc.Worid.Sci. Meet.Biol.Tunas & Rel.Sp., FAC Fish.Rpt. No. 6, Vol. 3, 1963. Author - D.J. Mackett.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037

Best Current Estimate of Numbers, Percentages, Language - FORTRAN
and Weights of Fish Caught, TCPB2
Hardware - Burroughs 6700

Given any number of length detail cards for fish sampled during a given bimonthly (or other) period, this program calculates by primary area and gear: (1) the number of fish sampled at each length-frequency interval; (2) the percentage of fish sampled at each length-frequency interval; (3) the smoothed percentage of fish sampled at each length-frequency interval; (4) the average weight of the fish. With the input of the corresponding catch data the program makes estimates of the number of fish caught at each length-frequency interval for the given period by primary area and gear. The program also makes estimates for the given period for both gears combined for each of the primary and secondary areas of (1) through (4) above. It estimates the same thing for each gear separately and for each of the secondary areas. Finally the program makes estimates for the given period and all preceding periods of that year combined for each gear separately and both gears combined for each of the primary and secondary areas of (1) through (4) above and the total weight of fish caught at each length-frequency interval. Limitations: (a) The cards for each period must be kept separately, and the periods must be in chronological order; (b) gear 2 must follow gear 1 in the catch cards; (c) although any number of periods may be run consecutively, it must be kept in mind that all of the periods will be summed to compute the best current estimate; (d) the maximum number of length frequencies is 80, gears 2, and primary areas 7. Author - Christopher T. Psaropulos.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037

Length-Frequency Distribution of Market
Measurement Sampling, TCPB3
Language - FORTRAN
Hardware - Burroughs 6700

Given any number of length detail cards for fish sampled with input of corresponding catch data during a year period, this program (using the same methods as TCPB2) summarizes, by quarter, market measurement area code, and for each gear, or combined: (1) The average weight, and the number of fish caught at each quarter; (2) the raw and smoothed percentage of fish sampled and caught at each length-frequency interval; (3) the number of fish sampled and caught at each length-frequency interval. Author - Christopher T. Psaropulos.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037
Fits the von Bertalanffy growth-in-length curve to unequally spaced age groups with unequal sample sizes for separate ages. It fits the equation \(L_t = L_\infty - (L_\infty - A) e^{-K(t-t_0)} \) by least squares when data of the form (length, age) are given in pairs \((L_t, t)\). The program minimizes the function \(Q = \frac{1}{2} \sum (L_t - A - BRt)^2 \) by use of the partial derivatives evaluated near zero.

Output is in the von Bertalanffy form, where \(A = L_\infty, R = e^{-k} \) or \(K = -\log_2 R \) and \(t_0 = [\log_2(e - B) - \log_2 R] / K \).

The output gives values of the expected length at age using equation (1) evaluated at ages selected by the user. The pairs \((L_t, t)\) may be read into the program in two different ways. The first assumes that no type of ordering or sorting has occurred and that each \((L_t, t)\) represents a single fish. The second method allows for frequency distributions and the user provides a triple \((L_t, t, m)\) where \(m\) is the number of times (or some weighting factor) the pair \((L_t, t)\) is to be used. Author - Patrick K. Tomlinson.

Christopher T. Psaropulos
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037
Telephone (714) 453-2820, ext. 310 or 253

Von Bertalanffy Growth Curve for Unequal Age Intervals
Language - FORTRAN
Hardware - Burroughs 6700

Uses the method of Tomlinson and Abramson to fit length at age data to the von Bertalanffy growth equation \(L_t = L_\infty - (L_\infty - A) e^{-k(t-t_0)} \) where \(L_t = \) length at time \(t, L_\infty = \) asymptotic length, \(K = \) growth constant, and \(t_0 = \) theoretical time at which \(L_t = 0 \). The age intervals do not need to be equal. Limitations: The number of lengths for each age group must be at least two and not more than 500. (If only one length, or a single mean length, is available for a given age group, it may be punched twice.) The maximum number of age groups is 40. The output includes: (1) estimates of \(L_\infty, K, \) and \(t_0 \) from each iteration of the fitting process; (2) final estimates of \(L_\infty, K, \) and \(t_0 \); (3) standard errors of \(L_\infty, K, \) and \(t_0 \); (4) fitted length for age 0 through the maximum included in the input; (5) mean lengths of the samples at each age group; (6) standard errors of the mean lengths in the samples; (7) the number of lengths in each age group; (8) variance-covariance matrix; (9) standard error of estimate. "Computer programs for fisheries problems," by Norman J. Abramson, Trans. Amer. Fish. Soc. 92(3):310, 1963. Fitting a von Bertalanffy growth curve by least squares including tables of polynomials," by Patrick K. Tomlinson and Norman J. Abramson, Fish Bull. Calif. Dept. Fish & Game 116:169 p., 1961. Author - N.J. Abramson. (See also TCPC 1.)

Christopher T. Psaropulos
Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037
Telephone (714) 453-2820, ext. 310 or 253

Von Bertalanffy Growth Curve for Equal Age Intervals
Language - FORTRAN
Hardware - Burroughs 6700

Similar to TCPC2. However, the age intervals must be equal with at least two observed lengths at each age. The program always yields estimates when a least-squares solution exists, and immediately terminates the run when there is no solution. In this respect it is superior to TCPC2, which occasionally does not converge to estimates even when a solution exists. Author - N.J. Abramson.
Estimates the parameters K and L_0 of the von Bertalanffy growth-in-length curve when only the lengths of individual fish at two points in time are known. This allows the curve to be fitted to tag release and recovery data. Fits equation (1) by least squares when data are of the form (initial length, final length, time elapsed).

$$L_t + A_t = L_e R^{at} + A(1-R^{at}); 0 < R < 1 \ (1)$$

L_t is the initial length; $L_f + A_t$ is the final length, and $A t$ is the time elapsed. Given a triple $(L_t, L_f + A_t, A t)$ and equation (1), the program minimizes the function:

$$Q = a\left[(L_t + A_t - L_e R^{at} - A (1-R^{at}))^2\right]$$

by use of the partial derivatives evaluated near zero. Output is in the von Bertalanffy form, where $L = A$ and $K = \log R$. The output gives values of the expected length using equation (1) evaluated at an initial length and time lapse selected by the user. The user enters one initial length and a time lapse. The program computes the final lengths. The triples are punched on cards, with one triple per card. No provisions are made for frequency distributions or weighting factors. The program will handle up to 3000 triples. Author - Patrick K. Tomlinson.
Survival Rate Estimation
TCPE1

Christopher T. Psaropulos
Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037
Telephone (714) 453-2820, ext. 310 or 253

Survival Rate Estimation
Language - FORTRAN
Hardware - Burroughs 6700

Option 1 assumes that (a) recruitment and annual survival are constant for all age groups entered in catch vector; (b) all ages in catch vector are fully available to sampling gear; (c) ages are known for all fish in catch vector. Computes estimate of survival rate, variance of survival rate, standard error of survival rate, 95% confidence interval for survival rate, instantaneous mortality rate, variance of instantaneous mortality rate, standard error of 2 (total mortality), 95% confidence interval for 2, and Z interval obtained from Z interval.

Option 2 tests the hypothesis that the relative frequency in the 0-age group as compared to the older ages does not deviate significantly from the expected frequency under option 1 assumptions and computes a chi-square statistic associated with the difference between the best estimate and Heinke's estimate. If this statistic exceeds null (a chi-square value for desired confidence level) the catch numbers are recorded as follows: N1 -+ N2 -+ N3 -+ N4 -+ N5 -+ ... -+ Nk -+ Nk+1 and the above computations are made for the new vector N1, ... , Nk+1. This test is repeated until the statistics are less than null, a theoretical chi-square value with one degree of freedom which specifies the significance level of the test. CHI is entered on a control card. If the statistic is less than null, the output is the same as in option 1.

Option 3 is to be used when assumptions (a) and (b) of option 1 hold but it is not possible to age fish whose coded age is greater than "k." Option 3 assumes that the recorded relative frequencies are not reliable for fish of ages k+1, k+2, ..., K in the vector of catch numbers. It sums the catch for ages k+1 to K and computes the same output as in option 1 using the catch vector Nk+1, Nk+2, ..., NK = where = Nk+1+...+NK.

Option 4 permits the user to subdivide the catch curve into a number of segments. The assumptions listed under option 1 may be satisfied for the consecutive age groups in one segment but not for age groups in different segments of a catch curve. Because segmentation of a catch curve may be exploratory, the program allows the use of overlapping segments, i.e., one age group may appear in more than one segment. Option 4 computes the same output as option 1.

Christopher T. Psaropulos
Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037
Telephone (714) 453-2820, ext. 310 or 253
Fishing Mortalities Estimation
TCPE2
Language - FORTRAN
Hardware - Burroughs 6700

Uses the method of Murphy (1965) and Tomlinson (1970) to estimate the population \(P \) of a cohort of fish at the beginning of each of several consecutive time intervals \(t \) and the coefficients of catchability \(q \) and of fishing mortality \(F \) for each interval when the catches \(C \), effort \(f \), and the coefficients of natural mortality \(M \) for each interval and \(F \) for either the first or last interval are known. When estimates of \(F \) and \(M \) are not available, various trial values can be used to obtain estimates which appear to be reasonable. "A solution of the catch equation," by G.I. Murphy, J.Fish.Res.Bd.Can. 22(1):191-202, 1965. "A generalization of the Murphy catch equation," by P.K. Tomlinson, J.Fish.Res.Bd.Can. 27(4):821-825, 1970. Author - Patrick K. Tomlinson; modified by Jo Anne Levatia.

Christopher T. Psaropulos
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037
Telephone (714) 453-2820, ext. 310 or 253

Relative Yield per Recruit at Various Fishing Intensities
TCPE1
Language - FORTRAN
Hardware - Burroughs 6700

Calculates the relative yield in weight per recruit at various fishing intensities by the method of Beverton (1963: Formula 1). With option 1, the program calculates the ratio of the yields per recruit at selected values of \(E = (F/(FM)) \) to the yield per recruit at \(E = 1 \). \(M \) is the coefficient of natural mortality; \(F \) is the coefficient of fishing mortality. With option 2, it calculates the relative yield per recruit at selected levels of \(F \). Limitations: No more than ten values of \(M \) nor more than 1000 values of \(E \) or \(F \) can be used for a single problem; in option 1, \(M \) cannot equal 0. "Maturation, growth and mortality of clupeid and engraulid stocks in relation to fishing," by R.J.H. Beverton, Rapp.Proc.-Verb. 154:44-67, 1963. Author - Christopher T. Psaropulos.

Christopher T. Psaropulos
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037
Telephone (714) 453-2820, ext. 310 or 253

Yield Constant Rates
TCPE2
Language - FORTRAN
Hardware - Burroughs 6700

Christopher T. Psaropulos
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037
Telephone (714) 453-2820, ext. 310 or 253

densometric Yield
TCPE3
Language - FORTRAN
Hardware - Burroughs 6700

Uses Beverton and Holt's (1957: 364) equation to compute the population in numbers, the biomass, the yield in numbers, and the yield in weight theoretically obtainable from one recruit with various combinations of growth, mortality, and age of entry into the fishery. "On the
Piecewise Integration of Yield Curves
TCPF4

Computes an approximate yield isopleth for a given number of recruits to a fishery when both growth and natural mortality are estimated empirically. The calculations are carried out using a modified form of Ricker's method for estimating equilibrium yield. The program is extremely general in that growth, natural mortality and fishing mortality rates need not be measured using the same time intervals. Fishing mortality rates can be age specific (up to 600 different rates can be applied during the life of the fish) but the overall level of fishing mortality can be varied by means of multipliers which apply to all of the individual age specific rates. The range and the intervals between ages at first capture can also be varied by the user.

The program has two approximation options: (1) an exponential mode which assumes that the biomass of the stock changes in a strictly exponential manner during any interval when growth, natural mortality, and fishing rates are all constant (Ricker, 1958: Equation 10.4); (2) an arithmetic mode which uses the arithmetic mean of the stock biomass at the start and at the end of any interval during which all three rates are constant as an estimate of the average biomass present during the interval (Ricker, 1958: Equation 10.3).

Christopher T. Psaropulos
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037

Telephone (714) 453-2820, ext. 310 or 253

Piecewise Integration of Yield Curves When Age is Unknown
TCPF5

Performs piecewise integration of yield curves when age is unknown. Different mortality rates may be associated with intervals in the lifespan and growth is calculated as a function of length from a transformed von Bertalanffy growth curve. Yield isopleths are given as functions of length-at-entry and fishing mortality. Note that program TCPC4 provides von Bertalanffy growth parameters from unailed fish which can be used with this program. The amount of growth a fish will put on during an interval of time is a function of the size at the beginning of the interval, not age. Similarly, survival is usually given as a function of time elapsed, not age. Therefore, growth during an interval and survival during the interval can be combined to produce yield, even though age is unknown. Author - Patrick K. Tomlinson.

Christopher T. Psaropulos
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037

Telephone (714) 453-2820, ext. 310 or 253
Constants in Schaefer's Model
TCPF6

Language - FORTRAN
Hardware - Burroughs 6700

Christopher T. Psaropulos
Available from originator only

Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037
Telephone (714) 453-2820, ext. 310 or 253

Schaefer Logistics Model of Fish Production
TCPF7

Language - FORTRAN
Hardware - Burroughs 6700

Pella and Tomlinson (1969) discussed a generalization of Schaefer's (1954) logistic model to explain changes in catch as related to effort upon a given population and they presented a computer program useful in estimating the parameters of the model when observed catch-effort data are available. However, in their scheme, it is necessary to use numerical methods for approximating the expected catch. Also, the user is required to provide guesses of the parameters and limits to control searching. In general, this program TCPF7 uses the same procedure for estimating the parameters as that described in Pella and Tomlinson. Exceptions: The user only needs to supply catch, observed effort, and elapsed time for each of n intervals; the program will make the guesses and set the values used in the search. "A generalized stock production model," by J.J. Pella and P.K. Tomlinson, Inter-Amer.Trop.Tuna Comm., Bull. 13(3):421-496, 1969. "Some aspects of the dynamics of populations important to the management of the commercial marine fisheries," by M.B. Schaefer, Inter-Amer.Trop.Tuna Comm., Bull. 1(2):25-56. Author - Patrick K. Tomlinson.

Christopher T. Psaropulos
Available from originator only

Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037
Telephone (714) 453-2820, ext. 310 or 253

Flits Generalized Stock Production Model
TCPF9

Language - FORTRAN
Hardware - Burroughs 6700

Christopher T. Psaropulos
Available from originator only

Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037
Telephone (714) 453-2820, ext. 310 or 253

Biometry - Linear Regression Analysis
TCSAI

Language - FORTRAN
Hardware - Burroughs 6700
Performs an analysis of regression with one or more Y-values corresponding to each X-value. The Model I Regression is based on the following assumptions: (a) that the independent variable X is measured without error, where the X's are "fixed"; (b) that the expected value for the variable Y for any given value X is described by the linear function \(Y = \alpha + \beta X \); (c) that for any given value of X the Y's are independently and normally attributed, \(Y = \gamma + \epsilon X + \epsilon \), where \(\epsilon \) is assumed to be normally distributed error term with a mean of zero; (d) that the samples along the regression line have a common variance, \(\sigma^2 \), constant and independent of the magnitude of X or Y. In Model II Regression, the independent variable and the dependent variable are both subject to error. Biometry, by Robert R. Sokal and F. James Rohlf, W.H. Freeman and Company, San Francisco, 1969. Modified by Walter Ritter O.

Christopher T. Psaropulos
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037

Telephone (714) 453-2820, ext. 310 or 253

Generalized Weighted Linear Regression Language - FORTRAN
for Two Variables, TCSA2

Computes the regression line \(Y_i = b_0 + b_1 x_i \) where the Y_i may have different weights. The user may transform the data by any of three transformations; natural logarithms of X, Y, and/or W (weight), common logarithms of X, Y, and/or W, and/or powers of X, Y, and/or W. The two variables and the weights may be transformed independently. The program normalizes the weights (or the transformations of the weights) by dividing each weight by the mean weight. Produces printer plots of the data and deviations. Author - Lawrence E. Gales; modified by Patrick E. Tomlinson and Christopher T. Psaropulos.

Christopher T. Psaropulos
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037

Telephone (714) 453-2820, ext. 310 or 253

Linear Regression, Both Variables Subject to Error, TCSA3

Language - FORTRAN
Hardware - Burroughs 6700

Computes a regression in which both the dependent and the independent variable are subject to error. There are several methods for obtaining solution to the equation in a Model II case, depending upon one's knowledge of the error variances or their ratios. Since this situation is not too likely to arise in the biological sciences, the authors adapted a relatively simple approach in which no knowledge of these variances is assumed -- the Bartlett's three-group method. This method does not yield a conventional least squares regression line and consequently special techniques must be used for significance testing (Sokal and Rohlf, 1969). The user may transform the data by any of three transformations: natural logarithms of X and/or Y; common logarithms of X and/or Y; powers of X and/or Y. The program produces printer plots of the data and derivations. Biometry, by Robert R. Sokal and F. James Rohlf, W.H. Freeman and Company, San Francisco, 1969. Author - Walter Ritter O.; modified by Christopher T. Psaropulos.

Christopher T. Psaropulos
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037

Telephone (714) 453-2820, ext. 310 or 253

Biometry - Product-Moment Correlation Coefficient, TCSB1

Language - FORTRAN
Hardware - Burroughs 6700

Computes the Pearson product-moment correlation coefficient for a pair of variables and its
confidence limits. In addition, the program computes and prints the means, standard deviations, standard errors, and covariances for the variable, as well as the equation of the principal and minor axes. The confidence limits for the slope of the principal axis are also computed and the coordinates of eight points are given for plotting confidence ellipses for bivariate means. *Biometry*, by Robert R. and F. James Rohlf, W.H. Freeman and Company, San Francisco, 1969.

Christopher T. Psaropulos
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
La Jolla, CA 92037
Telephone (714) 453-2820, ext. 310 or 253

Cooley-Lonnes Multiple-Regression Analysis Language - FORTRAN

TCSB2

Computes a multiple-regression analysis for a single criterion and a maximum of 49 predictor variables. The Gauss-Jordan method is used in the solution of the normal equations. There is no restriction in the number of subjects for which score vectors may be presented. Output: Basic accumulations, means, standard deviations, dispersion matrix, and correlation matrix are printed and/or punched as required. Additional printed output, appropriately labeled, includes: The multiple-correlation coefficient; the F test criterion for multiple R, with its degrees of freedom; the beta weights; the adjusted beta weights; the B weights; and the intercept constant. Additional punched output includes: The beta weights; the B weights, and the intercept constant. *Multivariate Procedures for Behavioral Sciences*, by William W. Cooley and Paul R. Lonnes, John Wiley and Sons, Inc., New York. Modified by Walter Ritter O.

Christopher T. Psaropulos
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
La Jolla, CA 92037
Telephone (714) 453-2820, ext. 310 or 253

Biometry - Goodness of Fit to Discrete Frequency Distribution, TCSC1 Language - FOXTRAN

TCSC2

Provides several options for the following operations: (1) Computes a binomial or Poisson distribution with specified parameters; (2) computes the deviations of an observed frequency distribution from a binomial or Poisson distribution of specified parameters or based on appropriate parameters estimated from the observed data; AG-test for goodness of fit is carried out; (3) A series of up to 10 observed frequency distributions may be read in and individually tested for goodness of fit to a specific distribution, followed by a test of homogeneity of the series of observed distributions; (4) A specified expected frequency distribution (other than binomial or Poisson) may be read in and used as the expected distributions; this may be entered in the form of relative frequencies or simply as ratios; the maximum number of classes for all cases is thirty; in the case of binomial and Poisson, the class marks cannot exceed 29. *Biometry*, by Robert R. Sokal and F. James Rohlf, W.H. Freeman and Company, San Francisco, 1969. Modified by Walter Ritter O.

Christopher T. Psaropulos
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
La Jolla, CA 92037
Telephone (714) 453-2820, ext. 310 or 253

Biometry - Basic Statistic for Ungrouped Data Language - FORTRAN

TCS2

Reads in samples of ungrouped continuous or meristic variables, then ranks and optimally performs transformations on these data. Output consists of a table of the various statistics computed: mean, median, variance, standard deviation, coefficient of variation, \(G_1 \), and the Kalmogorov-Smirnov statistic \(D_{max} \) resulting from a comparison of the observed sample with a normal distribution based on the sample mean and variance; these are followed by their standard error and 100 (1 - \(\alpha \))% confidence intervals where applicable. Biometry, by Robert R. Sokal and F. James Rohlf, W.H. Freeman and Company, San Francisco, 1969. Modified by Walter Ritter O.

Christopher T. Psaropulos
Inter-American Tropical Tuna Commission
Post Office Box 271
La Jolla, CA 92037

Biometry - Basic Statistic for Data Grouped into a Frequency Distribution, TCSC3
Language - FORTRAN
Hardware - Burroughs 6700
Similar to TCSC2, but intended for data grouped into a frequency distribution.

Christopher T. Psaropulos
Inter-American Tropical Tuna Commission
Post Office Box 271
La Jolla, CA 92037

Biometry - Single Classification and Nested Anova, TCSD1
Language - FORTRAN
Hardware - Burroughs 6700
Performs either a single classification or a k-level nested analysis of variance following the techniques presented in Sokal and Rohlf (1969). The basic anova table as well as the variance components are computed. The program allows for unequal sample sizes at any level. The input parameters are reproduced in the output, followed by a standard anova table giving SS, df, MS, and \(F_g \). For nested anovas with unequal sample sizes, synthetic mean squares and their approximate degrees of freedom (using Satterthwaite's approximation) are given below each MS and df. Each \(F_g \) is the result of dividing the MS on its line by the synthetic MS from the level above it. When sample sizes are equal, the synthetic mean squares and their degrees of freedom are the same as their ordinary counterparts, but are printed out nevertheless by the program. No pooling is performed. The anova table is followed by a list of the estimated variance components expressed both in the original units and as percentages; these in turn are followed by a table of the coefficients of the expected mean squares. Biometry, by Robert R. Sokal and F. James Rohlf, W.H. Freeman and Company, San Francisco, 1969. Modified by Walter Ritter O.

Christopher T. Psaropulos
Inter-American Tropical Tuna Commission
Post Office Box 271
La Jolla, CA 92037

Biometry - Factorial Anova, TCSD2
Language - FORTRAN
Hardware - Burroughs 6700
Reads in data for a complete factorial analysis of variance with no replications. Using the technique described in Sokal and Rohlf (1969, Section 12.5), it is possible to use this program for single classification anova with equal sample sizes, multi-way analysis of variance with equal replications, and other completely balanced designs. Produces the standard anova table and provides as well an optional output of a table of deviations for all possible one-, two-, three-, four-way (and more) tables. The output is especially useful as input to various programs for testing differences among means and can be inspected for homogeneity of interaction terms. Biometry, by Robert R. Sokal and F. James Rohlf, W.H. Freeman and Company, San Francisco, 1969. Modified by Walter Ritter O.

Christopher T. Psaropulos
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037
Telephone (714) 453-2820, ext. 310 or 253
Performs Tukey's test for nonadditivity to ascertain whether the interaction found in a given set of data could be explained in terms of multiplicative main effects. This test is also useful when testing for nonadditivity in a two-way Model I anova without replication in experiments where it is reasonable to assume that interaction, if present at all, could only be due to multiplicative main effects. It partitions the interaction sum of squares into one degree of freedom due to multiplicative effects of the main effects on a residual sum of squares to represent the other possible interactions or to serve as error in case the anova has no replication.

The Kruskal-Wallis test is a non-parametric method of single classification anova. It is called non-parametric because their null hypothesis is not concerned with specific parameters such as the mean in analysis of variance) but only with distribution of the variates. This is based on the idea of "ranking" the variates in an example after pooling all groups and considering them as a single sample for purposes of ranking. This program performs the Kruskal-Wallis test for equality in the "location" of several samples. The input parameters and sample sizes are reproduced in the output, followed by the Kruskal-Wallis statistic H (adjusted, if necessary), which is to be compared with a chi-square distribution for degrees of freedom equal to n-1.

Performs Fisher's exact test for independence in a 2 x 2 contingency table. The computation is based on the hypergeometric distribution with four classes. These probabilities are computed assuming that the row and column classifications are independent (the null hypothesis) and that the row and column totals are fixed.

Biomtery - R x C Test of Independence in Contingency Tables, TCSE6

Language - FORTRAN
Hardware - Burroughs 6700

Christopher T. Paeopules
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037

Available from originator only
Telephone (714) 453-2820, ext. 310 or 253
POLLUTION

Monte Carlo Spill Tracker

Monte Carlo sampling of Markov wind model at one- to three-hour intervals; spill movement assumed to be linear combination of monetary wind and current vectors. Input: Map of area, output files from analysis of 108-14 data, current hypothesis, postulated spill launch points. Output: Estimates of the likelihood of spill reaching various areas; estimates of the time to reach such areas. See publications NIF/SL 74-20, "Primary, Physical Impacts of Offshore Petroleum Developments," by Stewart and Devaney, NIF Sea Grant Project Office, April 1974.

J.W. Devaney III
Massachusetts Institute of Technology
Room 5-107
Cambridge, MA 02139
Telephone (617) 253-5941

Thermal Pollution Model

Simulates the dispersion of heat from a source. Output is a printout of current and heat fields.

Kevin M. Rabe
Environmental Prediction Research Facility
Naval Postgraduate School
Monterey, CA 93940
Telephone (408) 646-2842

Substance Advection/Diffusion Routine

Talvo Laevastu
Environmental Prediction Research Facility
Naval Postgraduate School
Monterey, CA 93940
Telephone (408) 646-2937

Danish Advection Program

The system was developed as part of an extensive study undertaken by the County Sanitation Districts of Los Angeles and the Southern California Coastal Water Research Project to provide insight into the ecological effects of ocean discharge of treated wastewaters. Biological and physical data for analysis were available from semi-annual benthic surveys on the Palos Verdes Shelf. Due to the nature of the analysis and the probability that the system would be used by other agencies, it was decided that the program would be made general and easily implemented and used in other computing environments and sampling studies. The system differs from other statistics packages in that it allows the user to define a taxonomic structure on encountered species and employ the resultant groupings in the calculation of diversity indices, T and F statistics, linear correlation coefficients, one-way analysis of variance, dissimilarity coefficients, and abiotic-biotic relationship tables. The user can also specify station groupings to be used in computing statistics.

Output: (1) Summary information: (a) raw data, (b) species distribution, (c) dominant species; (2) Univariate statistics: (a) means, standard deviations by parameter for each station, (b) community diversity (8 measures - Brillouin's, Gleason's, Margalef's, Shannon-Weaver's, Simpson's, scaled Shannon-Weaver's, scaled Simpson's, scaled standard deviation), (c) T and F statistics between regions by parameter, (d) dissimilarity coefficients by taxon between regions, between samples for each station, between surveys by region; (3) Multivariate statistics: (a) linear correlation coefficients by region between parameters; (4) Ablitic-biotic relationships: (a) means, standard deviations, ranges of physical parameters for each partition of relative abundance, (b) dominant species occurring at physical parameter class interval pairs.

(*With the following IBM extensions: subject-time dimension transmitted in COMMON, INTEGER2, REAL parameter in a READ, literal enclosed in apostrophes, mixed-mode expressions, SAMPLIST, T format code.)

(**For all programs except BIOMASS, ABUNDANCE, and DIVERSITY, a direct access storage device is required. Since all data sets are accessed sequentially a tape system is possible, however, and with as few as three drives all analyses with the exceptions of those between surveys may be accomplished. The generation of Table V0 (ANOVA among surveys) using five surveys, for example, requires a minimum of ten files to be open simultaneously, and, unless there are ten tape drives available, this would be impossible without using disk storage.)

CURRENTS AND TRANSFER PROCESSES

Drift Bottle Statistics
Language - PL/I Optimizer
Hardware - IBM 360-165/225

Used for determination of spatial and temporal conditions in drift bottle trajectories. Input: Standard NODC 80 character drift bottle record, formatted according to NODC Pub. M-6 in either card or tape form. Bottle records must be roughly sorted by launch point location to facilitate identification of recoveries occurring from a common launch event. Output: Launch and recovery group size distributions; pairwise correlations in recovery location and date. Recovery group size vs. launch group size; Chi-square tests of independent trajectory, hypothesis, etc. Brief discussion of results for U.S. Atlantic Coast available in publication MITSG 74-20, "Primary, Physical Impacts of Offshore Petroleum Developments," by Stewart and Devanney, MIT Sea Grant Project Office, April 1974.

Robert J. Stewart
Massachusetts Institute of Technology
Room 5-207
Cambridge, MA 02139
Telephone (617) 253-5941

Drift Bottle Plots
Language - PL/I
Hardware - IBM 370-168/SC4020 CRT

Robert J. Stewart
Massachusetts Institute of Technology
Room 5-207
Cambridge, MA 02139
Telephone (617) 253-5941

Reformat and Sort Drift Bottle Data
Language - PL/I
Hardware - IBM 370-168/250K/Disk

Reformats into condensed record format (28 characters), screens for bottle configuration, and sorts by launch point, filling into on-line (disk) storage. Input: Standard NODC 80 character drift bottle records per NODC publication M-6. Output: All drift bottles launched within "r" miles of "N" launch points are reformatted and filed in "N" separate data file.

Robert J. Stewart
Massachusetts Institute of Technology
Room 5-207
Cambridge, MA 02139
Telephone (617) 253-5941

Current Profiles from Tilt Data
Language -
Hardware -

Calculates current profiles generated from tilt data obtained from Niskin current array. Current magnitude and direction are computed at each sensor from tilt and azimuth data by means of numerical algorithms developed from analysis of the three-dimensional cable equations. Input: Physical parameters to be modeled. Output: Profiles can be generated at a given time using one method. Profiles can also be generated for one-hour increments from the averaged data which have been curve fitted between sensor stations.

74
Current Meter Data

CREATE-C
CURRENT
CURR PLOT

CREATE-C creates a disk file of raw data digitized from Braincon current meter film and consisting of arc endpoints and angles; listing also produced. CURRENT converts raw data to current speed, direction, etc., according to particular calibration and gives basic statistics: minimum and maximum speed, mean, standard deviations, etc. Input: disk file from CREATE-C and a data card giving information about the data (e.g., format) and about the current meter used (type, observation time, etc.). Output: Listing of converted data and statistics and a new disk file of converted data. Using this data file and a plot data card, CURRENT PLOT prepares a tape for the UCC Plotter to give plots of speed vs. time, direction vs. time, and progressive vector plot. Plots are broken up into one-week units.

K. Crocker
Naval Underwater Systems Center
Newport, RI 02840
Telephone (401) 841-3307

Spectrum

Using processed data file from CURRENT and a preprocessing data card, gives auto-correlation and auto power spectrum for current speed and velocity components with preprocessing options for filtering, condensing, etc.

K. Crocker
Naval Underwater Systems Center
Newport, RI 02840
Telephone (401) 841-3307

Optimized Multi-layer NW Model

Computes surface deviations and integrated current velocities based on hydrodynamic equations for small-scale coastal and open ocean areas for up to three selected layers. The finite difference scheme proposed by Hansen (1919) is extended to multiple layer cases optimized for ease in practical application and for computer computation. Intermediate data tape prepared on CDC 3100. EPRF Tech. Paper 15-74, by R.A. Bauer.

T. Laevastu or A. Stroud
Environmental Prediction Research Facility
Naval Postgraduate School
Monterey, CA 93940
Telephone (408) 646-2937

Mean Drift Routine

Generalized routine to simulate the drift of an object, given the current structure, wind fields, and object leeway. EPRF Tech. Note 1-74, "A Vertically Integrated Hydrodynamical-Numerical Model."
Search and Rescue Planning

Provides an estimate of an object's position in the ocean at the time a search is initiated. Computes drift as a resultant of two components. In all cases 100 percent of the surface current is applied. Wind effects are handled through a series of leeway code options. Input: FNWC surface wind and current field analysis and prognosis; object starting time and position, datum time, last known position, navigation error factors, leeway factors. Output: Datum points (latitude, longitude) for each datum time. UPNAV LIST 3130.5A, 7 Dec. 1972, FNWC Tech. Note 60, August 1970.

Current Meter Turbulence

Gives an indication of turbulence in the ocean by computing measures of the deviations from means over various lengths of time. OS No. 572-2. Author - Robert R. Gleason.

In-Situ Current

Converts one-minute averages of InterOcean Type II current meter to standard vectorial values. Produces vectorial angle and velocity for each data point and then combines vectorially to yield a mean value for entire period. Input: Card images of data points taken from Rustrak recorders. Output: Printout of vectorial and five-minute average values, current speed and direction in knots, and degrees true.

Water Displacement

Computes water displacement resulting from ocean current action. Input: Current speed and direction values on tape, produced by current meter print program. Output: Individual and cumulative displacements for selected unit time in nautical miles; tabular printout, tape, or both.

76
Current Meter Print

Language: FORTRAN
Hardware: UNIVAC 1108/10K 36 bit words/Drum/3 tape units

Calculates ocean current speeds and directions from Geodyne A101 optical current meters. Values are converted to knots and degrees and are vectorially averaged over one-minute data frames, ten scans per frame. Input: Observed current parameters from meter converted from optical film to magnetic tape; parameters are in arbitrary units dependent on meter design. Output: Current speed and direction data; tabulated printout and tape. Tape output drives plotter program.

Gerald Williams
U.S. Naval Oceanographic Office
Washington, DC 20373
Available from originator only
Telephone (202) 433-4187

Current Meter Plot

Language: FORTRAN
Hardware: UNIVAC 1108/9K 36 bit words/3 tape units/CalComp Plotter

Produces plotter tape to plot ocean current speed and direction information. Program calls CalComp subroutines. Input: Current speed and direction data on tape produced by Current Meter Print Program. Output: Histograms, polar plots, and point plots.

Gerald Williams
U.S. Naval Oceanographic Office
Washington, DC 20373
Available from originator only
Telephone (202) 433-4187

Convert Current Meter Tape

Language: FORTRAN V
Hardware: UNIVAC 1108/EXEC 8/Instructions 647 words/Data 707 words/2 tape units

Converts binary data on tape from Geodyne MK III current meter to BCD tape, formatted and blocked for further processing, with edited time, compass, vane, tilt, and speed rotor counts. Binary data decoded with FORTRAN field functions and output blocked and formatted with subroutine NAVIO. Author: Peter J. Topoly.

Data Systems Office
U.S. Naval Oceanographic Office
Washington, DC 20373
Available from originator only
Telephone (301) 763-1449

Current Meter Data

Language: FORTRAN V
Hardware: UNIVAC 1108/EXEC 8/Instructions 647 words/Data 707 words/2 tape units

Computes frame and scan values of current meters (Geodyne A101 optical and MK III magnetic); calculates normalized unit vectors for vectorial speed, litta data, and produces packed BCD tape. Input: BCD tape with rotor counts of compass, vane, speed, and tilt. Output: Packed BCD tape of frame data and averaged frame data (pack rate and averaging rate optional). Author: Peter J. Topoly.

Data Systems Office
U.S. Naval Oceanographic Office
Washington, DC 20373
Available from originator only
Telephone (301) 763-1449

Current Meter Clock Sequence

Language: FORTRAN IV Extended
Hardware: XDS Sigma 7/48K words (192K bytes)

Verifies sequence of crystal clock count values from VACM or Geodyne 850 current meters. Bad
Clock values are identified by use of differencing techniques. Input: Clock values on tape in CARP format. Output: Statistics of clock performance with catalog of erroneous values.

John A. Maltais
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Available from originator only
Telephone (617) 548-1400

Current Meter Calibration
CASDEC
Applies calibration parameters to raw VACM current meter data on tape in CARP format, identifies and removes bad values, and stores the output on tape in standard buoy format.

John A. Maltais
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Available from originator only
Telephone (617) 548-1400

Current Meter Data Reduction and Editing
CARF
Transfers current meter data from VACM cassette or Geodyne 850 cartridge magnetic tape to nine-track computer compatible tape and flags data cycles which have errors.

Mary Hunt
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Available from originator only
Telephone (617) 548-1400

Surface Current Summary
SUFCUR
Produces a statistical summary of surface current observations for each Haraden (ten-degree) square, one-degree square, or five-degree square and month for a given area. Author - Jeffrey Gordon.

Oceanographic Services Branch
National Oceanographic Data Center
NOAA/EDS
Washington, DC 20235
Copy on file at NODC
Telephone (202) 634-7439

Vector Time Series
CURPLT6
Computes and plots statistics, histograms, time series, progressive vector diagram and spectra for time series of current meter data. Input: Current meter time series on tape in CDC 6400 binary format; maximum number of data points is 5126. Output: Listing and tape for off-line plotter. Perfect Daniel frequency window used to compute spectral estimate from FFT-generated periodogram values.

James R. Holbrook
Pacific Marine Environmental Laboratory, NOAA
3711 Fifteenth Avenue, N.E.
Seattle, WA 98103
Available from originator only
Telephone (206) 442-0199

Geophysical Institute
University of Bergen
Bergen, Norway

Current Meter Data Processing System
Language - MS FORTRAN
Hardware - CDC 3150/20K words/2 tape units/
CalComp Plotter

Processes data primarily from Aircon or Aasland moored current meters; performs automatic editing, tidal analysis residuals, tide prediction, filtering, plotting; power spectra and statistical means and histograms are generated. Also performs file management.

Doug Gregory
Bedford Institute of Oceanography
P. O. Box 1006
Dartmouth, N. S. B2Y 4A2

Available from originator only

Telephone (902) 426-2390
TIDES

Astronomical Tide Prediction
Language - FORTRAN IV
Hardware - IBM 360-195/80K bytes

Computes hourly values and time and heights of high and low astronomical tides by harmonic method. Input: Tidal constituent constants. Technical Memorandum WHM TDL-6.

H.N. Roe
Techniques Development Laboratory
National Weather Service, NOAA
8060 Thirteenth Street
Silver Spring, MD 20910

Tides in the Open Sea
Language - FORTRAN 60
Hardware -

Predicts tides in the open sea, utilizing the basic hydrodynamic equations, for the principal lunar semidiurnal constituent M2. Application is made to the analysis of the tidal regime in the Gulf of Mexico. Thesis by Thomas H. Gainer, Jr., May 1966.

Naval Postgraduate School
Monterey, CA 93940

Harmonic Analysis of Data
Language - FORTRAN IV
Hardware - CDC 6600/140K

For analyzing equally spaced short-period data (15 days or 29 days), this program utilizes the standard Fourier analysis and traditional methods of the former Coast and Geodetic Survey. Either a vector (polar form) or scalar variable may be analyzed; for vector series, the program allows either a major-minor axis analysis or a north-east component approach. No data series may exceed 7,000 terms without redimensioning in the program, and no series of other than 15 or 29 days of uniformly spaced data can be analyzed. The program accepts input via magnetic tape or punched cards in any format with the restriction that, for vectors with magnitude and direction in the same record, the angles must precede the amplitudes in the record. For vectors specified by one file of amplitudes and one file of directions, the amplitude file must be read first. Output: mean amplitudes and phases of 26 tidal constituents. NOAA Technical Report NOS 41, "A User's Guide to a Computer Program for Harmonic Analysis of Data at Tidal Frequencies," by R. E. Dennis and E. E. Long, July 1971.

(*The program is executable with minor adjustments on any compatible machine having a 140K memory and access to arcsine and arccosine system functions. Computing time is approximately 1.5 seconds per station on the CDC 6600.)

Charlus R. Muirhead
Chief, Oceanographic Survey, Branch
National Ocean Survey, NOAA
6001 Executive Boulevard
Rockville, MD 20852

Theoretical Radial Tidal Force
Language - MAD
Hardware - IBM 7090

Input: (1) astronomical data from the nautical almanac; (2) the solar ephemeris obtained from the same source (only the earth-sun radius vector is needed); (3) list of local constants.
attitude and longitude in degrees of arc and minutes, elevation in centimeters. Output: Lunar, solar, and total tidal forces and the vector date. Program accommodates maximum of 725 hours 30 days) of data in core storage. Author - Henry L. Pollak.

Dept. of Earth and Planetary Sciences
414 Space Research Coordination Center
University of Pittsburg
Pittsburg, PA 15213

Copy on file at NODC (documented listing)
WAVES

 Hurricanes Storm Surge Forecasts
 SPLASH I
 Language - FORTRAN IV
 Hardware - CDC 6600/77K words
 Predicts hurricane storm surges for landfalling storms, using numerical solutions of linearized transport equations with surface wind forcing and time history bottom stress. Input: Basin data and storm variables, such as intensity, size, and vector storm motion. Output: Storm surge envelopes, storm definitions, and astronomical tides.
 Celso S. Barrientos
 Techniques Development Laboratory
 National Weather Service, NOAA
 8060 Thirteenth Street
 Silver Spring, MD 20910

 Hurricanes Storm Surge Forecasts
 SPLASH II
 Language - FORTRAN IV
 Hardware - CDC 6600/77K octal words
 Predicts storm surges for storms with general track and variant storm conditions, using numerical solutions of linearized transport equations with surface wind forcing and time history bottom stress. Input: Basin data, storm variables, and geographical description of storm track. Output: Storm surge envelopes, space-time history of surges, storm characteristics, and astronomical tides.
 Celso S. Barrientos
 Techniques Development Laboratory
 National Weather Service, NOAA
 8060 Thirteenth Street
 Silver Spring, MD 20910
 Available from NTIS: See SPLASH I

 East Coast Storm Surge
 Language - FORTRAN IV
 Hardware - IBM 360/195/105K bytes
 N.A. Pore
 Techniques Development Laboratory
 National Weather Service
 8060 Thirteenth Street
 Silver Spring, MD 20910
 Available from originator only

 Wave Forecasts
 Language - FORTRAN IV
 Hardware - IBM 360-195/410K bytes
Wave Bottom Velocity

Language - FORTRAN IV G Level 21
Hardware - IBM 360-75/96X

Computes and plots maximum bottom (horizontal) orbital velocity versus still water depth for Airy waves of given height and period. Output: log-log graph of u(max) at sea floor vs. water depth for each wave; also, a listing of the wave's steepness, u(uax) at bottom, wave length, and celerity is produced.

John McHone
Geology Department
University of Illinois
Urbana, IL 61801

Copy on file at NODC (listing, documentation)
Telephone (217) 333-3542

French Spectro-Angular Wave Model

Language - FORTRAN IV/COMPASS
Hardware - CDC 6500/CDC 7600

Kevin H. Rabe
Environmental Prediction Research Facility
Naval Postgraduate School
Monterey, CA 93940

Available from originator only
Telephone (408) 646-2842

Surf Prediction Model

Language - FORTRAN IV
Hardware - CDC 3100/16K 48 bit words

Produces calculated wave ray paths, including the wave information and refraction and shoaling coefficients, using a modified Dobson approach to the solution of the general wave refraction. Technical Report No. 16, by B.S.L. Smith and F.E. Cam and, College of Marine Studies, University of Delaware.

Kevin H. Rabe
Environmental Prediction Research Facility
Naval Postgraduate School
Monterey, CA 93940

Available from originator only
Telephone (408) 646-2842

Singular Wave Prediction Model

Language - FORTRAN
Hardware - CDC 3100/CDC 3200/32K 24 bit words

Wave Interaction with Current

CAPGRAY

Language - FORTRAN IV
Hardware - IBM 370-165/2000K Region

Calculates wave length, wave number, wave slope, and wave energy changes for waves in the capillary-gravity subrange as they interact with non-uniform current. A perturbation scheme using the gravity contribution of the capillary-gravity wave as the perturbation parameter was used to integrate the energy equation exactly. Input: Wave number K for waves with no current.

Steven R. Long
Center for Marine and Coastal Studies
North Carolina State University
Raleigh, NC 27607
Telephone (919) 737-2212

Shipborne Wave Recorder Analysis

SBWRA

Language - FORTRAN IV
Hardware - IBM 1800

Given values of the highest and second highest crests, the lowest and second lowest troughs, the number of zero crossings, and the number of crests in a short record from the NIO shipborne wave recorder, computes the spectral width parameters and the significant wave height and also the predicted maximum height in a period of three hours; outputs the results on line-printer and on disk. NIO Program No. 89. Author - Eileen Page.

National Institute of Oceanography
Copy on file at NODC (listing, documentation)
Wormley, Godalming, Surrey, England

Storm Surge

Language - FORTRAN IV
Hardware - UNIVAC 1108/10K words

Numerical models, based on the hydrodynamic equation and local depth fields, are used to determine the flood levels expected from specific hypothetical storms. Publication TM-35, "Storm Surge on the Open Coast; Fundamentals and Simplified Prediction," May 1971.

(1) For program release: Commander James L. Trayers
Coastal Engineering Research Center
Kingman Building
Fort Belvoir, VA 22060

(2) For program information: D. Lee Harris
Chief, Oceanography Branch
Coastal Engineering Research Center

Wave Refraction

Language - FORTRAN IV
Hardware - UNIVAC 1108/15K words/Plotter

In teaching the engineering applications of water-wave theory, it is often desirable to have students make numerical calculations based on the various wave theories. This is practical, however, only for the simplest of the water-wave theories, as the computations involved with higher order theories are quite tedious and time-consuming. This collection of programs and subroutines represents an attempt to relieve students of these lengthy and detailed computations, so that they can apply the theoretical results in solving realistic problems. At the same time, there are dangers inherent in developing and using computer programs for teaching purposes. The principal difficulty is the "black box" syndrome, where the students merely punch some numbers into a card and, later, get more numbers back from the machine, without the vaguest idea of what happened in between. In order to avoid this difficulty, and, in addition, to provide wide flexibility, it was decided that the best format for this collection would be many short, single-function subroutines, which compute some of the more tedious intermediate results for a given problem, and which can be easily modified or added to by the user. The disadvantage of this approach is that it requires some knowledge of FORTRAN on the part of the student. It is believed that this disadvantage is outweighed by the advantage of making the computational processes both clear and flexible.

LENG1 computes wave length and speed, given the water depth and wave period, using small-amplitude (and Stokes' second-order) wave theory. Values are returned to the calling program through the CALL statement and are also printed out during execution. **LENG3** uses Stokes' third-order wave theory.

PROFI computes water surface elevations, \(\eta(x) \) or \(\eta(t) \), over a wave period, using linear wave theory; returns arrays of \(x \), \(t \), and \(\eta \) through the CALL statement; prints input data and the three arrays. Alternate subroutines **PROF2** and **PROF3** accomplish the same purpose using Stokes' second- and third-order wave equations.

Subroutines **UTAXI**, **UTAXI1**, and **UTAXI2** compute \(u(\max) \) and \(w(\max) \), the partial derivative of \(u \) with respect to \(t(\max) \), or the partial derivative of \(w \) with respect to \(t(\max) \), i.e., the maximum flow velocities in the \(x \) and \(z \) directions and their corresponding temporal accelerations, as a function of \(z \), from \(z = -h \) to \(z = \eta(\max) \), using linear wave theory. Return arrays of \(z \) and \(u(\max) \) etc., for \(z = -h \), \(-29(30)h\), \(-28(30)h\),... for \(z \) less than \(\eta(\max) \), through the CALL statement; prints the input data and the two arrays. Alternative sets of routines carry out the same purpose using Stokes' second- and third-order equations.

Subroutines **UOF1**, **UOF2**, **UOTO1**, and **UOTO2** compute values of \(u(t) \), \(v(t) \), the partial derivative of \(u \) with respect to \(t \), or the partial derivative of \(v \) with respect to \(t \), i.e., the horizontal and vertical flow velocities and their accelerations, over a wave period \(T \) at a given depth \(z \) using linear wave theory. Returns arrays of \(t \) and \(u(t) \), etc., for \(t = 0, T/40, \ldots, 1 \), through the CALL statement; prints the input data and the two arrays. Alternative sets of routines carry out the same purpose using Stokes' second- and third-order equations.

The following four programs, dealing with spectra, were adapted (with permission) from the SHARE program **GI BE TISR**., written at Bell Laboratories, by M.J.R. Healy, 1962: **DFTND** removes the mean, or the mean and linear trend (slope) from a time series \(X(t) \), \(t = 1, N \); **AUTCOV** computes the autocovariance, \(Y(K), K = 0, L \), of the time series \(X(t) \), \(t = 1, N \); **MNCOV** computes the auto- and cross-covariances, \(ZXX(K), ZXY(K), \) etc., of the two sequences \(X(t), Y(t), t = 1, N \, \text{for lags from 0 to L}; **FOURTY** computes either the sine or cosine transform, \(Y(K), K = 1, L + 1 \, \text{of the series} \ X(K), X = 1, N + 1 \, \text{(smoothing of either is optional, with coefficients} \ .25, \ .0, \ .25).
PROFILE computes and plots the wave profile given a spectrum (in the form of the Fourier coefficients). Output: A printer plot (on a printer with a 132-character line) of eta vs. t.

REFL1 computes and prints water surface profiles for the partial (two-dimensional) reflection of a linear (small-amplitude) wave from a structure.

FORCE AND MOMENT computes the total force and moment (about the base, or "mud line") on a circular cylindrical pile as a function of time, using linear theory integrated to the actual water surface. A table of \(F \) and \(M_O \) vs. \(t \) is printed out.

EDIST computes the force distribution on a pile, using linear theory. Prints out the data and the force distribution as a function of time.

Department of Civil Engineering Copy on file at NODC (above report)
Massachusetts Institute of Technology
Cambridge, MA 02139
AIR-SEA INTERACTION AND HEAT BUDGET

Markovian Analysis of TDF-14 Wind Data
Language- PL/I Optimizer
Hardware - IBM 370-180/260k bytes (characters)

J.W. Devanney III
Massachusetts Institute of Technology
Room 5-207
Cambridge, MA 02139
Telephone (617) 253-5941

Summaries Weather Reports SYNOP
Language - FORTRAN (ALGOL input routine)
Hardware - Burroughs 6700/Less than 20K words

Processes synoptic marine radio weather reports to produce summaries of various items, by month. The validity of the data is checked against long-term mean values. Input: Disk files prepared separately from punched cards. Output: Printed summaries by one-, two-, and five-degree quadrangles, of sea and air temperatures, heat budget information, and barometric pressure; also punched cards for selected summary items.

A.J. Good
Southwest Fisheries Center
National Marine Fisheries Service, NOAA
P.O. Box 271
La Jolla, CA 92037
Telephone (714) 453-2820, ext. 325

Pyranometer and Radiometer T'ime Series RAD
Language - FORTRAN
Hardware - CDC 6600/53K words

Converts pyranometer and new radiometer readings to radiant intensity. Input: Cards with punched values of time, voltage values from a net radiometer, pyranometer, humidity sensor, air thermistor, wind speed detector, and values of sea-surface temperature. Output: Listing of the above values converted to proper units plus computed values of net solar radiation, evaporative and conductive fluxes, total flux, effective back radiation, transmittance, solar altitude, and albedo.

R.K. Reed
Pacific Marine Environmental Laboratory, NOAA
3711 Fifteenth Avenue N.E.
Seattle, WA 98105
Telephone (206) 442-0199

Ocean Climatology Analysis Model ANALYS
Language - FORTRAN
Hardware - CDC 1604/16K 48 bit words/Drum/3 tape units

Kevin M. Rabe
Environmental Prediction Research Facility
Naval Postgraduate School
Monterey, CA 93940
Telephone (408) 646-2842

Hurricane Heat Potential Model
Language - FORTRAN IV
Hardware - CDC 6500/20K 60 bit words/Varian Plotter optional

Computes the hurricane heat potential using the station temperature profiles in the form of punched cards in 4-D format. Output: a profile plot, hurricane heat potential, final Varian plot of area with all heat potentials plotted. Thesis by LCDR Shuman.

Kevin M. Rabe
Environmental Prediction Research Facility
Naval Postgraduate School
Monterey, CA 93940
Telephone (408) 646-2842

Mixed Layer Depth Analysis Model
Language - FORTRAN/COMPASS
Hardware - CDC 3100/CDC 3200/32K 24 bit words/Drum/3 tape units

Generates an analyzed mixed layer depth field using ship reports and a first-guess field in the form of an adjusted climatological MLD field. The program uses a Laplacian analysis and relaxation scheme to generate the final field. Output: An analyzed mixed layer depth field on a synoptic basis. EPRF Programming Note 7, "Mediterranean Mixed Layer Depth Analysis Program MEDMLD," by A.E. Anderson, Jr.

Sigurd Larson
Environmental Prediction Research Facility
Naval Postgraduate School
Monterey, CA 93940
Telephone (408) 646-2866

Atmospheric Water Content Model
Language FORTRAN (CDC 3100 MSOS;
Hardware - CDC 3100/12K octal words (24 bit)/15K octal words with system (NSOS)

Computes total grams of water present in atmospheric column surrounding ascent of radiosonde. The method used is based on Smithsonian tables and formulae. Compressibility of moist air is assumed equal to one. Output: Various intermediate values plus geometric height and total quantity of water in grams.

T. Laevastu or A. Stroud
Environmental Prediction Research Facility
Naval Postgraduate School
Monterey, CA 93940
Telephone (408) 646-2937

Ocean-Atmospheric Feedback Model
Language - FORTRAN IV
Hardware - CDC 6500/70K 60 bit words

Simulates the response of the surface air to sea-surface properties and also the processes of

Kevin M. Rabe
Environmental Prediction Research Facility
Naval Postgraduate School
Monterey, CA 93940

Available from originator only

Telephone (408) 646-2842

Wind Computation from Ship Observations
TRUWIND

Calculates the true wind direction in degrees and speed in knots, given the direction and speed of the ship and the observed wind direction and speed. EPRF Program Note 16, "Program TRUWIND," by Baldwin van der Bijl.

Tolvo Laevastu
Environmental Prediction Research Facility
Naval Postgraduate School
Monterey, CA 93940

Available from originator only

Telephone (408) 646-2937

Mie Scattering Computations

Uses Mie scattering theory to compute the angular distribution of scattered radiation from spherical particles, for a range of values of index of refraction and size parameter \(n \), where \(n = \frac{\text{particle radius}}{\text{wavelength of incident radiation}} \).

Jasen W. Fitzgerald
Naval Research Laboratory
Washington, DC 20375

Available from originator only

Telephone (202) 767-2362

Solar Radiation Conversion

Averages the radiation readings from the Eppley pyrheliometer and Beckman-Whitley radiometer for every 15 minutes. Converts from \(\text{L} \) to \(\text{L} \text{angleys/min.} \) and calculates net radiation from both instruments. A modification of this program was made to include a Thornthwaite net radiometer. Authors - S.M. Lazanoff; modified by Mary E. Myers.

Data Systems Office
U.S. Naval Oceanographic Office
Washington, DC 20373

Available from originator only

Telephone (301) 763-1449

Wind Stress

Determines wind stress on the ocean surface. GS No. 53462. Author - W.H. Gemmill.

Data Systems Office
U.S. Naval Oceanographic Office
Washington, DC 20373

Available from originator only

Telephone (301) 763-1449

Two-Dimensional Power Spectrum for SWOP II

Language - FORTRAN
Hardware - IBM 7074

89
Determination of spectrum associated with the spatial distribution of energy as obtained from an instantaneous picture of the ocean taken from aircraft (SNOP II). OS No. 3484. Author - C.W. Winger.

Prediction of Vertical Temperature Change

A technique based primarily on heat budget and wind mixing calculations has been developed for predicting the vertical thermal structure of the ocean; the technique essentially modifies the initial thermal structure through incident solar radiation, back radiation, sensible and evaporative heat exchange, convective heat transfer in the water mass, and wind mixing. Predictions are made at six-hour intervals until 1200Z on the date of forecast. The predicted BT is printed out, and also can be plotted with a Benson-Lehner Model J plotter. Authors - W.H. Gemmill and D.B. Nix. Informal manuscript report LMR No. 0-42-65, Oct. 1965. (See also LMR No. 0-45-65 by B. Thompson and LMR No. 0-13-66 by Barnett and Amstutz.) Program listings separate from reports.

Cloud Cover and Daily Sea Temperature

Divides cloud cover into three groups and computes mean temperature by hour of day and by day for each depth. OS No. 53414. Author - D.B. Nix.
ICE

Sea Ice Studies
Language - FORTRAN IV
YARIT, FLIP, SALPR, RITE
Hardware - IBM 7090-34

A generalized program with several options that allow considerable latitude in the specification of input and output data. A main program reads in the input data and summarizes the results of each year's integration. Subroutine YARIT calculates the temperature and thickness changes of the ice and snow for each time step during the year. Subroutine FLIP takes the monthly values of the independent energy fluxes at the upper boundary and produces smoothed values for each time step. Subroutine SALPR calculates the salinity profile for each time step. Finally, subroutine RITE writes the temperature profile, ice thickness and mass changes for each ten-day period throughout the year. Memorandum RM-6093-PR, "Numerical Prediction of the Thermodynamic Response of Arctic Sea Ice to Environmental Changes," by G.A. Maykut and N. Untersteiner, Nov. 1969. Prepared for U.S. Air Force Project Rand.

The Rand Corporation
1700 Main Street
Santa Monica, CA 90406

Available from NTIS, Order No. Ad 698 733/LK, $7.00 paper, $2.25 microfiche.

Membrane Wind Drift and Concentration of Sea Ice
ICEGRID MODIFIED
Language - FORTRAN 60
Hardware - IBM 1604

Take into consideration the effects of melting on the production of five-day forecasts of the wind drift and concentration of sea ice, using equations after Zubov and an earlier program of Knudie. Uses a 26x21 grid-point array with variable scale. Output fields are concentration, direction, and distance of movement. Incorporates programs ICEHELT and ICEGRID. Thesis by Kenneth M. Irvin, 1965.

Naval Postgraduate School
Monterey, CA 93940

Available from NTIS, Order. No. AD 475 252/LK, $4.25 paper, $2.25 microfiche.

Iceberg Drift
ICE-PLOT
Language - FORTRAN IV
Hardware - CDC 3300/31K words

Provides twelve hours of iceberg drift, iceberg input for Ice Bulletin, and map outline for FAX broadcast. Input: Twelve-hour average wind field, monthly surface current, and initial iceberg position (or previous, updated position if not a new berg). Output: Listing of new iceberg positions, Ice Bulletin message form, and map of approximate new iceberg positions. Vector addition of average winds and currents using four geographical "courses," twenty minutes (lat./long.) apart.

CDR A.D. Super
International Ice Patrol
U.S. Coast Guard
Bldg. 110, Coast Guard Support Center
Governors Island, NY 10004

Available from originator only

Telephone: (212) 264-4798

Ice Drift Analysis/Forecast
Language - FORTRAN II
Hardware - CDC 160A/8K 12 bit words/3 tape units

Forecast or analyzed geostrophic winds and average sea-surface currents on magnetic tape are required input. The geostrophic winds are averaged over the time period specified by typewriter input. The ice drift equations are applied to the resultant wind, and sea surface currents are added. Output is in the form of forecast or analyzed ice drift (movement) at predetermined locations (points) to a maximum of 207.
Lt. Roland A. Garcia, USN
Fleet Weather Facility Suitland
Suitland, MD 20373

Copy on file at NODC (listing, documentation)
Telephone (301) 763-5972
SOUND

Normal Mode Calculations

Language - FORTRAN IV
Hardware - CDC 6500/60K octal words/CalComp or other plotter

Calculates discrete normal modes and resulting propagation loss for depths and ranges of interest. This is a deep water version of a program originally written by Newman and Ingenito (NRL Report No. 2381, 1972). Appropriate for deep profiles and moderate frequencies (~100 Hz), the program uses a finite difference technique to generate mode shapes from the bottom up to the surface. It searches for appropriate eigenvalues yielding proper number of zero crossings and zero pressure at the surface. NOL Tech. Report 74-95.

Ira M. Blatstein
Naval Surface Weapons Center
White Oak
Silver Spring, MD 20910
Available from originator only
Telephone (202) 394-2583

Horizontal Range

Language - FORTRAN
Hardware - CDC 6400

Computes horizontal range from a receiver to a sound source as a function of the D/E angle, the sound speed profile, the source and receiver depths, and the water depth and bottom slope at the point of bottom reflection. Assumes that the surface is flat, no horizontal variations in sound speed profile, and a flat earth. Only the two-dimensional case is considered. NOL Tech. Note 9856.

M. M. Coate
Naval Surface Weapons Center
Code 221
White Oak
Silver Spring, MD 20910
Available from originator only
Telephone (202) 394-2334

Sound Scattering by Organisms

Language - FORTRAN IV
Hardware - CDC 1604/16K 48 bit words

Simulates the scattering of sound by organisms of various shapes and dimensions.

Taivo Laevastu
Environmental Prediction Research Facility
Naval Postgraduate School
Monterey, CA 93940
Available from originator only
Telephone (408) 646-2937

Normal Mode Propagation Model

Language - FORTRAN V
Hardware - UNIVAC 1108/Drum

Produces propagation loss as a function of range and depth, time history of received pulses, mode enhancement information, ray equivalents, group velocity, phase velocity of modes, using as input sound velocity profiles, frequency, source and receiver depths, bottom topography and composition, and selection of modes. For certain plots, plotting programs are required. NUSC Report 4887-II.

William G. Kanabis
Naval Underwater Systems Center
New London, CT 06320
Available from originator only
Telephone (203) 442-0771, ext. 2353
Sound Refraction Corrections
FITIT

Computes data and fits polynomial functions to variable used to correct for bending of non-reflecting, nonvertexing sound rays. Least-squared-error type fitting (stepwise regression not used, but would improve program). Input: Sound velocity profile, limits of integration, domain of polynomial. Output: First to fifth degree polynomials, accuracy of FIT.

A.E. Vans
Naval Underwater Systems Center
Newport, RI 02840

Available from originator only
Telephone (401) 841-3435

Beam Patterns and Widths
CEBAM

Computes beam patterns and their beam widths for three-dimensional array with arbitrary element spacings, taking into consideration individual element's directionality, selectable delay, and shading. Also calculates directivity index and/or reverberation index. Formulation based on three-dimensional spherical and solid geometry. Directivity index and reverberation index calculations are carried out by two-dimensional parabolic numerical integration. NUSC Technical Report 4687.

Ding Lee or Gustave A. Leibiger
Naval Underwater Systems Center
New London, CT 06320

Available from originator only
Telephone (203) 442-0771

Statistics of Acoustic Measurements and Predictions - STAMP

A general purpose processing program which includes a module for performing statistics of acoustic measurements and predictions. Storage requirement is variable; program is segmented. 60K is the maximum. User's Guide in preparation.

Richard B. Lauer
Naval Underwater Systems Center
New London, CT 06320

Available from originator only
Telephone (203) 442-0771, ext. 2827

Propagation Loss
FAST FIELD PROGRAM

Calculates underwater acoustic propagation loss as a function of range for a point monochromatic source in a medium with an arbitrary sound speed profile versus depth. Special input-output requirement: Sound speed profile fitting program. NUSC Report Nos. 1046 and 4103.

Frederick R. DiNapoli
Naval Underwater Systems Center
New London, CT 06320

Available from originator only
Telephone (203) 442-0771, ext. 2647

Bottom Reflectivity

Computes three acoustic reflection coefficients as a function of incident angle and frequency. The program accounts for differences in bath depth, length of source and receivers, water bottom slope, velocity gradient, and recorded travel time. USL Tech. Memo. Nos. 913-4-5 and 907-144-65. The later report also serves to document a supplemental program (USL No. 0629, in FORTRAN) for computing means and standard deviations of the three reflection coefficients. Program No. 0289.

94
Pattern Function Calculations

Language - FORTRAN IV
Hardware - UNIVAC 1108

Computes transducer pattern functions needed in the sonar equations when estimating search performance of acoustic torpedoes. The desired parameters include the transmit and receive directivity indexes and the volume and boundary reverberation indexes. In a vehicle employed in circular search, the reverberation indexes are functions of turn rate and elapsed time in the ping cycle. The output is used by the "Sonar in Refractive Water" program. Report AP-PROG-C-7035, "Pattern Function Calculations," by Herbert S. Kaplan, Associated Aero Science Laboratories, Inc., Pasadena, for NUSC, Apr. 1967.

Naval Undersea Center
Pasadena Laboratory
3202 E. Foothill Blvd.
Pasadena, CA 91107

Rayleigh-Morse Bottom Reflection Coefficients

Language - FORTRAN V
Hardware - UNIVAC 1108

Computes Rayleigh-Morse bottom reflection coefficients, also phase changes of the reflected and transmitted acoustic wave. Author - J.C. Reeves.

Naval Undersea Center
Pasadena Laboratory
3202 E. Foothill Blvd.
Pasadena, CA 91107

Light and Sound Instruction D

Language - FORTRAN
Hardware - IBM 7074

Computes the convergence zone parameters using the Vx method (equations of Donald Cole), by one-degree quadrangle, by month, and by season. OS No. 20112. Author - M.L. Church.

Light and Sound Instruction D

Language - FORTRAN
Hardware - IBM 7074

Computes the convergence zone parameters using the Vx method (equations of Donald Cole), by one-degree quadrangle, by month, and by season. OS No. 20112. Author - M.L. Church.

Data Systems Office
U.S. Naval Oceanographic Office
Washington, DC 20373

Available from originator only
Telephone (301) 763-1449

Propagation Loss

S1587

Language - FORTRAN V
Hardware - UNIVAC 1108/CalComp or Stromberg-Carlson 4060 plotter

T.A. Garrett
Naval Underwater Systems Center
New London, CT 06320

Available from originator only
Telephone (203) 442-0771, ext. 2991

AMOS Propagation Loss

S1797

Language - FORTRAN V
Hardware - UNIVAC 1108/Stromberg-Carlson 4060 plotter

T.A. Garrett
Naval Underwater Systems Center
New London, CT 06320

Available from originator only
Telephone (203) 442-0771, ext. 299.
SOUND VELOCITY

Sound Speed Computation Model
SOVEL

Language - FORTRAN
Hardware - CDC 3100/CDC 3200/CDC 1604/32K
14 bit words/l tape unit

Computes sound speed from salinity-temperature-depth data. EPRF Program Note 10, "Program SOVEL," by T. Laevastu.

Taivo Laevastu
Environmental Prediction Research Facility
Naval Postgraduate School
Monterey, CA 93940
Available from originator only
Telephone (408) 646-2937

Sound Velocity
SONVEL

Language - FORTRAN IV-H
Hardware - XDS Sigma 7

Subroutine computes the speed of sound in seawater from the temperature, salinity, and pressure, according to W.D. Wilson's formulas.

Mary Hunt
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Available from originator only
Telephone (617) 548-1400

Sound Velocity: Wilson's Formula
WLSND, SVELFS, VELPRS

Language - FORTRAN
Hardware - IBM 360-6, 2218 bytes (object form)

Computes sound velocity using Wilson's equations. WLSND is used when pressure is computed from depth and FS is computed from salinity. SVELFS is used when pressure is computed from depth and FS is the entering argument; in this case, FS is usually computed in SIGMAT. VELPRS is used when pressure is not computed but is an entering argument; atmospheric pressure is included; successive calculation starting at the ocean is not necessary here. Author - Robert Van Wie.

Oceanographic Services Branch
National Oceanographic Data Center
NOAA/EDS
Washington, DC 20235
Copy on file at NODC
Telephone (202) 634-7439

Depth Correction
MTCOR

Language - FORTRAN IV
Hardware - XDS Sigma 7/1419 32 bit words

Calculates depth correction for sound velocity using Matthews' tables. Established coefficients are used to approximate Matthews' tables. The Matthews' table number 1-52 must be specified.

Robert C. Groman
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Available from originator only
Telephone (617) 548-1400

Sound Velocity

Language - FORTRAN
Hardware - UNIVAC 1108/6, 100 36 bit words

Adjusts sound velocity values for marine sediments, as recovered from laboratory velocimeter.
to in situ conditions of temperature, pressure, and salinity. Wilson's formula for sound speed in water is used to apply corrections.

Joseph Kravitz
U.S. Naval Oceanographic Office
Washington, DC 20373

Copy on file at NODC (deck with documentation)
Telephone (202) 433-2490

Sonic Velocities through Solid Samples
DSDP/SONHAM

Language - ALGOL
Hardware - Burroughs 6700/7K words

Computes sonic velocities through solid samples from technicians' data taken from a Hamilton frame device (Dr. Edwin R. Hamilton, Naval Undersea Center, San Diego, CA 92132), and interprets a key associated with each sample which defines its origin. Input: One card file for the velocity data and key, and another card file for interpreting the key. Output: Listing with option for punched cards; listing includes five superimposed histograms of velocities at different levels of refinement.

Peter B. Woodbury
Deep Sea Drilling Project
Box 1579
La Jolla, CA 92037

Available from originator only
Telephone (714) 452-3256

Light and Sound Instruction B

Language - FORTRAN
Hardware - IBM 7074

Computes the harmonic mean sound velocity, travel time, and correction ratio at 100-fathom depth intervals by one-degree square. OS No. 20111. Author - M.C. Church.

Data Systems Office
U.S. Naval Oceanographic Office
Washington, DC 20373

Available from originator only
Telephone (301) 763-1449
SOUND — RAY PATH

Continuous Gradient Ray Tracing system
CONGRATS

Language — FORTRAN V
Hardware — UNIVAC 1108/50K 36 bit words/Disk
 drum with 250K words/2 tape
 units/CalComp Plotter

Henry Weinberg or Jeffrey S. Cohen
Naval Underwater Systems Center
New London, CT 06320
Telephone (203) 442-0771, ext. 2589 or 2989

Acoustic Performance and Evaluation —
Digigraphics, APE-DICI

Language — FORTRAN
Hardware — CDC 3300/64K/CDC 274 Digigraphics
 console, controller, software

The model simulates and displays, on a real time basis, the acoustic propagation characteristics of any given ocean medium including ray paths, intensity loss vs. range curves, and isolevel contours. Includes provisions for transducer patterns, target characteristics, and certain receiving circuit characteristics. Input: Ocean profile (SUP, BT), operating frequency, db levels for isolevel contours. Graphic and tabular output. The math model employed is a substantial extension of an ORL program and is based on the theory of ray-path acoustics as presented in "Physics of Sound in the Sea" and a work by Officer; also included are the works of Schulkin and Marsh for absorption coefficients, Wilson for sound velocity calculations, and two Vitro Laboratory studies of Torpedo MK48 acoustic performance. NUSC TD 130, "Operational Procedures for Executing the Acoustic Performance and Evaluation-Digigraphics Simulation Model (APE-DICI)," July 1971.

Ronald P. Kasik
Naval Underwater Systems Center
Newport, RI 02840
Telephone (401) 841-3435

Ray Path
SO4348

Language — FORTRAN
Hardware — UNIVAC 1108/30K/CalComp Plotter

Produces plots of travel vs. range for D, SR, BR, SBR, BRS, SBRS, BRSSR paths, grazing angles for first three bottom bounce paths. Estimates ray paths and travel times by approximating true profile with linear segmented profile. Input: Source, receiver configuration, velocity profile, and plot requirements.

Peter D. Herstein
Naval Underwater Systems Center
New London, CT 06320
Telephone (203) 442-0771, ext. 2395
Critical Acoustic Ratio Language - FORTRAN
Hardware - IBM 7074

Determination of critical ratio of trigonometric functions of acoustic angles involved in connection with the convergence interval for a 3-layer model of the ocean. OS No. 53483. Author - C.H. Winger.

Data Systems Office
U.S. Naval Oceanographic Office
Washington, DC 20373

Available from originator only
Telephone (301) 763-1449

GRASS Underwater Acoustics
Prediction System
Language - FORTRAN 63
Hardware - CDC 3800/Drum Scope 2.1 CalComp Plotter

<table>
<thead>
<tr>
<th>Program</th>
<th>Language</th>
<th>Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTSTOV</td>
<td>DTSTOV</td>
<td>7,679 48 bit words</td>
</tr>
<tr>
<td>VFC</td>
<td>VFC</td>
<td>20,832 48 bit words</td>
</tr>
<tr>
<td>SERPENT</td>
<td>SERPENT</td>
<td>11,622 48 bit words</td>
</tr>
<tr>
<td>LOSSPLOT</td>
<td>LOSSPLOT</td>
<td>12,118 48 bit words</td>
</tr>
<tr>
<td>CTOUR</td>
<td>CTOUR</td>
<td>27,452 48 bit words</td>
</tr>
<tr>
<td>PRFPLT</td>
<td>PRFPLT</td>
<td>126,784 48 bit words</td>
</tr>
<tr>
<td>RAPLOT</td>
<td>RAPLOT</td>
<td>12,118 48 bit words</td>
</tr>
<tr>
<td>PRFPLT</td>
<td>PRFPLT</td>
<td>19,543 48 bit words</td>
</tr>
</tbody>
</table>

VFC is used: To examine input bottom-topography and sound speed data for consistence and physical meaningfulness; to extend all input sound speed profiles to the ocean bottom; to perform earth curvature corrections; to determine derivatives of sound speed data. Two-dimensional sound speed field is modeled using a combination of cubic spline and linear interpolation schemes. Input: Bottom topography in the form of non-uniformly spaced range-depth pairs; sound speed profiles (possibly generated by DTSTOV); program control parameters and data identification numbers. Output: A magnetic tape (coefficient tape) containing corrected and extended sound speed profiles and their first and second derivatives and bottom topography; a printer listing and printer plots of input and output profiles.

CTOUR generates three-dimensional isometric and contour plots of the sound speed fields. The program interpolates value of sound speed at each point using a combination of cubic spline and linear interpolation schemes, then calls contouring and isometric plotting routines. Input: Magnetic (coefficient) tape generated by VFC; contour levels, control parameters, and grid specifications. Output: A CalComp contour and three-dimensional isometric plot of the sound speed field; a printer listing of contour levels and values of sound speed at grid intersections.

PRFPLT generates CalComp plots of sound speed profiles. The vertical gradients and curvatures corresponding to a profile are plotted on the same graph as its sound speeds. A cubic spline interpolation scheme is used. Input: Magnetic (coefficient) tape generated by VFC, program control and data identification numbers on cards. Output: CalComp plots showing input data points and effect of interpolation in depth.

SERPENT traces rays through a two-dimensional range and depth dependent sound speed field bounded by a flat surface and variable bottom topography; calculates random, coherent, and statistical intensities for multiple receivers at user-selected ranges and depths. An iterative ray tracing scheme is used based upon expansion of ray depth, range, and sine in terms of an increment of ray arc length. Iteration step size depends upon sound speed field in rays' vicinity. Input: Coefficient tape from VFC and cards containing source information, receiver information, surface information, output requests, parameters governing ray iteration, run identification information, and bottom loss data. Output: A magnetic tape containing ray statistics (optional), a magnetic tape containing transmission loss information (optional), a printer listing of ray information, transmission loss information, etc.
RAPLOT generates CalComp ray plots (ray depth vs. range from ray source). Input: The ray statistics plot generated by SERPENT, control parameters on cards which select the number of plots to be generated, the rays to be displayed on each plot, the plot size, scaling parameters, etc. Output: Labeled CalComp plots showing rays and bottom profile and a printer listing of input and control parameters.

LOSSLOT generates CalComp plots of transmission loss vs. range. Calculated and experimental values of transmission loss may be displayed on the same plot. Input: Transmission loss tape generated by SERPENT; control parameters and graph titles on cards; experimental measurements or theoretical values of transmission loss on cards. Output: Labeled CalComp plots of transmission loss vs. range. If requested, plots will display random, coherent, and statistical losses together with input experimental data or theoretical curves.

John J. Cornyn, Jr. Available from originator only
Naval Research Laboratory Code 5493C Washington, DC 20375 Telephone (202) 767-3585

Sonar in Refractive Water Language - FORTRAN IV Hardware - UNIVAC 1108/30K words

Traces sound rays, computes reverberation, computes acquisition laminae (vertical plane), in a linear gradient or continuous gradient medium. Output: Tape to be used by program RAY SORT. NUC Technical Publication No. 164, "Digital Computer Programs for Analyzing Acoustic Sound Performance in Refractive Waters," by Philip Marsh and A.B. Poynter, Dec. 1969, two volumes. NUC Programs 800000 and 800001. See also NEWFIT and Pattern Function Calculations which prepare input for this program.

Naval Undersea Center Pasadena Laboratory
3202 E. Foothill Blvd.
Pasadena, CA 91107 Available from NTIS, Order No. AD 863 777 and AD 863 778, $6.00 each volume in paper, $2.25 each volume in microfiche.

Sorts Sound Ray Data RAY SORT Language - FORTRAN IV Hardware - UNIVAC 1108/31K (450 instructions)

Sorts certain sound ray data (from tape written by the "Sonar in Refractive Water" program) by depth, initial ray angle, and depth-intersection number. (See reference for above program)

Naval Undersea Center Pasadena Laboratory
3202 E. Foothill Blvd.
Pasadena, CA 91107 Available from NTIS: See "Sonar in Refractive Water."

Acoustic Ray Tracing Language - FORTRAN II Hardware - IBM 7090

Calculates underwater sound propagation. Program requires input which describes the source, the field, the surface, and the bottom. Output is a report on magnetic tape which gives ray path, slope, curvature, and length. Also given are reflection and extrema statistics, travel time, wave front curvature, and intensity. Technical Report No. 1470764.

Trident/ASW Library Available from NTIS, Order No. AD 605 328, Arthur D. Little, Inc. $4.75 paper, $2.25 microfiche.
35 Acorn Park
Cambridge, MA 02140

101
Ray Tracing Language - FORTRAN/Klerer-May USER language
Hardware

The Hudson Laboratories of Columbia University
145 Palisade Street
Dobbs Ferry, NY 10522

Available from NTIS: Order No. AD 678 759,
$10.00 paper, $2.25 microfiche.

RAYTRACE

RAYTRACE is a straightforward, easy-to-use acoustic ray tracing program which produces a plot and a listing. The user specifies a single-valued velocity profile, source depth, maximum range, a range increment at which points are computed and the length of the plot axes in inches. All axis scaling and labeling is done automatically. The discrete velocity profile supplied is smoothed by linear interpolation. Rays are constructed as arcs of circles between profile depths. At surface and bottom rays are reflected according to the equal angle law. Any number of rays with different initial angles measured from the horizontal may be plotted. In addition to the plot output, RAYTRACE produces the following printed output for each ray at integral multiples of the specified range increment: (1) range; (2) depth of ray at that range; (3) angle of the tangent to the ray at that range measured from the horizontal; (4) total travel time from the source to that range along the ray; (5) total distance from the source to that range along the ray path. Whenever a vertex occurs on a ray, the range is set to that of the vertex, an output point is computed, and incrementing of output range continues from that of the vertex. Originally written by C. Olmstead, the program has been modified by Bergstrom, Fink, M. Jones, and R.C. Spindel.

Woods Hole Oceanographic Institution
Woods Hole, MA 02543

Copy on file at NODC (listing, documentation)
NAVIGATION AND CHARTING

Plots
MAP

Language - FORTRAN IV
Hardware - IBM 360-65/CalComp, Houston Omni-graphe, or Gerber plotter/2 tape units

Generates a plot tape to draw a map according to the user's specifications of latitude and longitude, projection, kind of grid, and size of map. Projection options: Mercator, Miller, square, cylindrical stereographic, Lambert equal-area cylindrical, sinusoidal equal-area, flat-polar sinusoidal equal-area, Mollweide homographic, and Lambert Conic Conformal. Grid lines and coastal lines are drawn at the user's option; if coastal lines are plotted, a land mass data tape is needed. There is an entry which returns (x, y) plotter coordinates for latitude and longitude of a point, enabling the user to plot station positions, ship's track, etc.

Ruth Mclath
Department of Oceanography
Texas A&M University
College Station, TX 77843
Telephone (713) 845-7432

Astronomic Position, Azimuth Method

Language - FORTRAN IV (H or G)
Hardware - IBM 360-65/38K bytes

Calculates the latitude and longitude of an astronomic observation station, given measured horizontal angles between stars and fixed mark along with observation times. A set of observation equations is solved by the method of least squares to obtain corrections to assumed values of latitude, longitude, and the azimuth of the reference mark, as well as probable errors for these three quantities. The adjustment is iterated five times or until the corrections become less than 0.005 seconds, either of which causes a program halt. Output: A table of input information and a record of the process of refinement for each set of station data read in. A previous version of this program was written in ALGOL for the Burroughs 220, in single precision. Author - Spencer Roedder.

Computer Center Division
U.S. Geological Survey
National Center
Reston, VA 22092
Telephone (703) 860-7106

Satellite Rise and Set Times

ALERT, ASORT

Language - FORTRAN IV
Hardware - IBM 1130/5836 words (ALERT), 12040 words (ASORT)

Pacific Biological Station
Fisheries Research Board of Canada
P. O. Box 130
Nanaimo, B. C. V9R 5K6

Satellite Navigation

Language - FORTRAN/Assembler
Hardware - IBM 1800

A set of programs for various aspects of satellite navigation. The programs fall naturally into two sections: those involved in the on-line reduction of data from the satellite, and those involved in the analysis, both on-line and off-line. NIO Report N. 20, Aug. 1969.
Loran/Decca Coordinates Calculation

HNAV

Language - FORTRAN IV
Hardware - IBM 1800

Given a Decca, Loran-A. or Loran-C fix, calculates the latitude and longitude. The method for a hyperbolic system with separate master is used for all cases. The constants for the hyperboloids are calculated in meters for both Loran and Decca, thus allowing a fix to be calculated if one Loran reading and one Decca reading are known. NIO Program No. 165. Uses SDANO and other subroutines. Author - M. Fasham.

Loran/Decca File Initialization

NVI

Language - FORTRAN IV
Hardware - IBM 1800

Given input data on a master-slave pair, HVI1 calculates certain geodetic values and stores them on a tape file for later use by program HNAV. NIO Program No. 164. Author - M. Fasham.

Geodetic Distance and Azimuth

SDANO

Language - FORTRAN IV
Hardware - IBM 1800

Given the geographical coordinates of two points, this subroutine calculates the geodetic distance and azimuths between them. Based on the method of E.S. Sodano for a non-iterative solution of the inverse and direct geodetic problems. NIO Program No. 46. Author - M. Fasham.

General Map Projection

Language - MAD
Hardware - IBM 7090/CalComp 763 plotter

Conversion or generation of latitude and longitude values to map projection coordinates. Includes all commonly employed projections of sphere. Oblique cases may be automatically obtained. Author - W.R. Tobler.

Finite Map Projection Distortions

Language - MAD
Hardware - IBM 7090

Plots Mercator Grid

CHART

Language - FORTRAN

Produces Mercator grid on 30-inch drum or flatbed plotter, with various scale and tick mark options. Input: Card defining upper right coordinate of chart.

Michael Moore
Scripps Institution of Oceanography
P.O. Box 1529
La Jolla, CA 92037
Telephone (714) 452-4194

Available from originator only

Navigational Satellite Passes

ALTRX

Language - FORTRAN

Hardware - IBM 1800/16K words

Given satellite orbital parameters and station description cards, produces listing of satellite passes to occur for a given area and time.

Michael Moore
Scripps Institution of Oceanography
P.O. Box 1529
La Jolla, CA 92037
Telephone (714) 452-4194

Available from originator only

Loran or Omega Conversion

GEPOS

Language - FORTRAN IV

Hardware - HP 2100S/Keyboard/Paper tape reader

Converts Loran-C or Omega information from line-of-position reading to geographic coordinates or geographic coordinates to line-of-position, using method described in Naval Oceanographic Office Informal Report NO. N-3-64 by A.C. Campbell. Input: Line-of-position readings, time, date, initialization parameters; designed to process EPSCO 4010 data logger paper tapes. Output: Listings of converted geographic coordinates and magnetic tape in a format compatible with plotting program THERC.

Chris Polloni
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Telephone (617) 548-1400

Available from originator only

Cruise Track

THERC

Language - FORTRAN IV

Hardware - HP 3100A/16K words/Keyboard/CalComp Plotter

Draws a Mercator chart and cruise track from navigation data. Data format is fixed, compatible with program GEPOS. Input: Geographic coordinates and time (normally GMT).

Chris Polloni
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Telephone (617) 548-1400

Available from originator only

Transformation of Spherical Coordinates

ROTUT

Language - FORTRAN IV

Hardware - XDS Sigma 7/5,500 words

Performs various operations using transformation of spherical coordinates. Output: Rotation
about a pole, transformation to the new coordinate system, weighted or unweighted mean pole computation using Fisher’s distribution, rotation for clonation approach and pole of best small-circle fit.

Christine Wooding
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Available from originator only
Telephone (617) 548-1400

Sum of Finite Rotations on a Sphere
SUMROT
Language - FORTRAN IV
Hardware - XDS Sigma 7

Using coordinate transformation, calculates the sum of finite rotations on a sphere. Requires the latitude and longitude of the pole of rotation, and amount of rotation for each set. Output: Listing of the input rotations plus the resultant rotation and its tensor.

Christine Wooding
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Available from originator only
Telephone (617) 548-1400

Loran Fix
LRFIX
Language - FORTRAN
Hardware - IBM 1800/16K words

Produces position fix from station position and reading pairs cards.

Michael Moore
Scripps Institution of Oceanography
P.O. Box 1529
La Jolla, CA 92037
Available from originator only
Telephone (714) 452-4194

Earth Spherical Subroutines
ESTCH, ESTC2, ESTPL
Language - FORTRAN
Hardware - IBM 1800

ESTCH converts earth spherical to plotter coordinates. Input: Decimal latitude and longitude. Output: Chart position for a call FPLOT (I, X, Y). ESTC2 converts earth spherical to plotter coordinates with inside check. Input and output: Same as ESTCH. ESTPL converts earth spherical to polar coordinates; not valid for over 200 miles, or over the poles. Input: Starting latitude and longitude, end latitude and longitude. Output: Distance (miles), angle (degrees) relative to true North (decimal units).

Michael Moore
Scripps Institution of Oceanography
P.O. Box 1529
La Jolla, CA 92037
Available from originator only
Telephone (714) 452-4194

Plan Course and Schedule
CRUIS and Subroutines
Language - FORTRAN
Hardware - IBM 1800/16K words

CRUIS is used to plan steaming and station time and fuel consumption. Subroutines: SAILB calculates the distance between two points by either great-circle sailing or Mercator sailing, whichever makes the most sense. SAILG calculates great-circle distance and courses: SAILM calculates rhumbline (Mercator) course and distance.

Michael Moore
Scripps Institution of Oceanography
P.O. Box 1529
La Jolla, CA 92037
Available from originator only
Telephone (714) 452-4194
Degree Conversions

DEGR1, DEMI

DEGR1 converts integer degrees and real minutes to real degrees. DEMI converts decimal degrees to integer degrees and decimal minutes.

Michael Moore
Scripps Institution of Oceanography
P.O. Box 1529
La Jolla, CA 92037
Telephone (714) 452-4194

Mercator Degrees

DMRC1

From latitude in degrees, gives Mercator projected latitude in degrees. Expansion (continued fraction) + 77 degrees.

Michael Moore
Scripps Institution of Oceanography
P.O. Box 1529
La Jolla, CA 92037
Telephone (714) 452-4194

Magnetic Field Components

MAGFL

Converts latitude (N+), longitude (E+) to colatitude and east longitude. Input: Geoid latitude, longitude, date (years and decimals of a year). Output: Magnetic field (gammas), north component and east component of magnetic field.

Michael Moore
Scripps Institution of Oceanography
P.O. Box 1529
La Jolla, CA 92037
Telephone (714) 452-4194

Annotated Track on Stereographic Projection

ANNOT

Plots an annotated track (bathymetry or magnetics data) along a track (navigation) on a stereographic projection.

James V. Massirrell
Environmental Sciences Section
Naval Research Laboratory
Washington, DC 20375
Telephone (202) 767-2024

Annotates Chart

CORE

Reads position and bathymetry information from a disk file and annotates the depth on a Mercator chart at the position given. This is a revision of the bathymetry processing section of program OCEANO written by the NRL Propagation Branch.

Robert A. O'Brien, Jr.
Shipboard Computing Group, Code 8003
Naval Research Laboratory
Washington, DC 20375
Telephone (202) 767-2387
Bathymetric or Magnetics Chart Language - HP FORTRAN IV under RTE
PROFL Hardware - HP 2100S/10K words

Plots bathymetric or magnetic data as a function of distance along track or distance on a Mercator chart. The data file (disk) is read, and the track length or chart distance is calculated. The dependent variable is then plotted against this value.

Robert A. O'Brien, Jr. Available from originator only
Shipboard Computing Group, Code 8003 Naval Research Laboratory Washington, DC 20375 Telephone (202) 767-2387

Mercator Chart Digitization Language - HP FORTRAN under RTE
ERAT Hardware - HP 2100S/8K locations/Disk/Summagraphic Digitizing Tablet

The operator digitizes the Mercator chart position, which the program converts to latitude and longitude; the annotated data value is then entered, and position and value are written on the disk. Input: Information to define chart and the output of a digitizing tablet.

Robert A. O'Brien, Jr. Available from originator only
Shipboard Computing Group, Code 8003 Naval Research Laboratory Washington, DC 20375 Telephone (202) 767-2387

Bathymetric Chart Digitization Language - HP FORTRAN IV under RTE
JOBT Hardware - HP 2100S/7200 locations/Disk/Summagraphic digitizing tablet

Produces a disk file containing the digitized bathymetry values as a function of time; also messages to the operator. The program has automatic procedures for redefining the origin when the chart is shifted and when the recording instrument changes phase. Input: Control information necessary to define a coordinate axis and values from a digitizing tablet.

Robert A. O'Brien, Jr. Available from originator only
Shipboard Computing Group, Code 8003 Naval Research Laboratory Washington, DC 20375 Telephone (202) 767-2387

Plots on Stereographic Chart Language - HP FORTRAN IV under RTE
AMRT Hardware - HP 2100S

Reads a disk file containing bathymetry and position, then annotates the depth information on a stereographic projection chart at the position given. Modification of Woods Hole program.

Robert A. O'Brien, Jr. Available from originator only
Shipboard Computing Group, Code 8003 Naval Research Laboratory Washington, DC 20375 Telephone (202) 767-2387

Plots Navigation Data Language - HP FORTRAN IV under RTE
OCEAN Hardware - HP 2100S/15K background words

Reads disk file containing navigation data and plots positions on Mercator chart. This is a revision of the navigation processing in program OCEANO written by the NRL Propagation Branch.
Long Base Line Acoustic Tracking

Language - HP FORTRAN IV under RTF
Hardware - HP 2100S

Real-time local navigation using a bottom distributed acoustic transponder system. Will navigate the ship and a towed body. Input: Real-time data from the transponders giving ranges, depth of towed body; also requires a sound speed profile and location of the transponders. Output: Position of ship and/or towed body; information is logged on magnetic tape.

J. Dean Clamons
Shipboard Computing Group, Code 8003
Naval Research Laboratory
Washington, DC 20375
Telephone (202) 767-2024

FAA Plot

Language - FORTRAN
Hardware - UNIVAC 1108/Concord Digital Plotter

Accepts three card images and a supplied set of FAA data cards as input. The output is a magnetic tape to drive the E-51, E-103, E-108 Concord Digital Plotters, using the echelon mode. The output is a film positive with a plus symbol for the position of the FAA plots. The Mercator, transverse Mercator, and Lambert conformal projection with two standard parallels are the three projections which can be used to plot program outputs. O.S. No. 65652. Authors - Ronald M. Bolton and J. Parrinello.

Distance and Azimuth
CIRAZD

Language - FORTRAN
Hardware - UNIVAC 1108

Finds the distance and azimuth between two points on the earth's surface when the earth is assumed to be a sphere. If either pole is used for the center point, the angle given is with respect to grid north. By use of trigonometric identities and absolute value functions, this program avoids many of the computational problems usually found in distance computations. O.S. No. 55690. Author - Barry Turrett.

Parametric Map

Language - FORTRAN II
Hardware - UNIVAC 1108

Generates any hyperbolic navigation system by using parametric equations. Generates plotting coordinates for Loran-A, Loran-C, Omega, and Decca charts. Will process all lattice lines that fall within a specified geographic area. Can be displayed on any of the following map projections: Mercator, transverse Mercator, Lambert conformal conic, oblique Mercator, polyconic. O.S. No. 53012. Authors - R.A. Bolton, R.M. Bolton.
Loran to Geographic and Geographic to Loran Conversion

Computes a geographic fix, given two loran readings, or computes the time difference reading at a given point for any two specified loran pairs. Uses Sodano inverse method. Informal Manuscript Report DMR No. N-3-64.

Kay Fox
Navigational Science Division
Defense Mapping Agency
Hydrographic Center
Washington, DC 20390

Language - FORTRAN V
Hardware - UNIVAC 1108/15K words

Loran Coordinate Computation

Computes charting coordinates along lines of latitude or longitude for loran hyperbolas at specified intervals. Uses Lambert's method of computing the geodesic and involves convergence by iteration. Informal Manuscript Report DMR No. N-1-64.

Kay Fox
Navigational Science Division
Defense Mapping Agency
Hydrographic Center
Washington, DC 20390

Language - FORTRAN V
Hardware - UNIVAC 1108/34K words

Loran Skywave Correction

Computes the loran-A or loran-C skywave corrections over a specified area. Uses Sodano inverse method. Input: Station positions, spheroid parameters, propagation velocity, area of coverage. Output: For loran A, the nighttime skywave corrections from master, from slave, and from both; for loran C, the daytime corrections as well.

Kay Fox
Navigational Science Division
Defense Mapping Agency
Hydrographic Center
Washington, DC 20390

Language - FORTRAN V
Hardware - /1S K words

Individual Point Generator for Map Projections

Converts geographic positions to discrete points in rectangular coordinates on the following projections: Mercator, transverse Mercator, gnomonic, polar stereographic, azimuthal equidistant, Lambert conformal conic (with one or two standard parallels), Lambert azimuthal equal area polar, Lambert equal area cylindrical, Miller, Albers equal-area conic, rectified skew orthomorphic, and oblique Mercator. Cartographic data may be produced in either graphic or tabular form. OS No. 15646 main program (each of the 13 projection subroutines has its own open shop number). Authors - Ronald Bolton, Louis Rowen, Gregory Vega. Informal report IR No. 69-23.

Data Systems Office
U.S. Naval Oceanographic Office
Washington, DC 20373
Telephone (301) 763-1449

Individual Point Generator for Distance and Azimuth Computations

Uses the geodetic latitude and longitude of two points to compute the distance and azimuth from one point to the other. Results will be in tabular form with the distance in meters and the azimuth and back azimuth in degrees, minutes, and seconds. OS No. 65616. Author - R.H. Bolton.

Data Systems Office
U.S. Naval Oceanographic Office
Washington, DC 20373
Telephone (301) 763-1449

Geodetic Datum Conversion

Transforms geodetic coordinates from one datum to another by utilizing a given shift (in terms of rectangular space coordinates) between the origins of two datums and applying this shift, together with differences in the spheroidal parameters, in formulas derived for this purpose. OS No. 55305. Author - Robert M. Willems.

Data Systems Office
U.S. Naval Oceanographic Office
Washington, DC 20373
Telephone (301) 763-1449

Geodetic Datum Reduction

Reduces geodetic positions from one geodetic datum to another by use of the Vening Meinesz equations. The preferred datums involved are European datum, North American datum, and Tokyo datum. OS No. 55301. Author - D.J. Findlay.

Data Systems Office
U.S. Naval Oceanographic Office
Washington, DC 20373
Telephone (301) 763-1449

Geodetic Position Computation and Plot

Computes geodetic positions at desired intervals along incremental or miscellaneous azimuths. Option to plot or list. Plot uses the LAMB subroutine with 90 standard parallels. OS No. 55321. Author - Merle L. Nelson. An informal report IR No. 69-35 lists this and additional programs and describes procedures for production of secondary phase correction charts and tables. These supplementary programs, written by Edwin Stephenson and Barbara Gray, are in 7074 Autocoder or FORTRAN.

Data Systems Office
U.S. Naval Oceanographic Office
Washington, DC 20373
Telephone (301) 763-1449

Astronomic Latitude

Language - FORTRAN
Hardware -
Programs for determination of first-order astronomic latitude by the Sterneck method and also by the method of "Polaris and South Star"; subroutines for the Baldini, the Garfinkel, and the U.S. Coast and Geodetic Survey (now National Ocean Survey) refraction models. Informal report IR No. 68-21, "Investigations in Determining Astronomic Latitudes and The Computer Programs," by Larry Borquin, April 1968.

Data Systems Office
U.S. Naval Oceanographic Office
Washington, DC 20373
Copy on file at NODC (Above report, includes listing) Telephone (301) 763-1449

Sounding Plot
Language - FORTRAN
Hardware - CDC 3100/IBM 7074/CalComp plotter
Accepts lorac, loran, or raydist lane values, plots ship's track and soundings in UTM mode. OS No. 58419. Author - G.R. Bills.

Data Systems Office
U.S. Naval Oceanographic Office
Washington, DC 20373
Available from originator only Telephone (301) 763-1449

Single Integration
Language - FORTRAN
Hardware - IBM 7074
Equally spaced time series data are integrated once using Tick's method. The data must be sampled at a rate of at least twice the Nyquist frequency. Informal report IM No. 66-36. OS No. 66-36. Author - E.B. Ross.

Data Systems Office
U.S. Naval Oceanographic Office
Washington, DC 20373
Available from originator only Telephone (301) 763-1449

Sodano Inverse
Language - FORTRAN
Hardware - CDC 3100
Computes the normal section length and the forward and reverse azimuths of the geodesic between two points for which the geographic coordinates are known. This computation is useful in determining azimuth and distance between triangulation stations for which geographic positions have been determined but which are not connected by direct observation. OS No. 4326. Authors - Andrew Campbell; modified by C.E. Pierce.

Data Systems Office
U.S. Naval Oceanographic Office
Washington, DC 20373
Copy on file at NODC (Deck, documentation) Telephone (301) 763-1449

Adjusts a State Plane Coordinate Traverse
Language - FORTRAN IV
Hardware - IBM 360-30/IBM 2311 disk/65K bytes
Computes a plane-coordinate traverse adjustment using condition equations and the method of least squares. The normal equations are solved using the Cholesky method. The program will adjust a network with as many as 250 stations, 600 observed directions, 250 measured distances, and 99 condition equations. It is limited to either a Lambert or traverse Mercator projection. Corrections are supplied for the reduction of observed data to grid data and options are available for various types of azimuth and position control. Documentation, "A Computer Program to Adjust a State Plane Coordinate Traverse by the Method of Least Squares" by Jeanne H. Holdahl and Dorothy E. Dubester, Sept. 1972.
The purpose of this system is to make accessible the tools to accelerate and simplify solutions to various scientific problems encountered in the National Ocean Survey disciplines. The user may use the system in the development of his subroutine library. Several aspects were considered in the design and organization of the subroutines so that this purpose could be accomplished. The subroutines were designed so the user need be concerned only with the input and output parameters, not with the internal design of the subroutine. The reference to any subroutine by the problem program is straightforward, thus minimizing user effort. The subroutines are purely computational in function and do not contain any reference to input or output operation. The problem program must be designed so that it contains whatever input/output operations are needed for the solution of the problem. Some routines are in double precision mode to optimize accuracy of the computations; the problem program must be designed to meet this requirement. Although the subroutines are FORTRAN IV programs, there is no restriction on the symbolic programming language which may be used in the problem. The subroutines are uniformly documented and are accompanied by comment statements in sufficient detail to permit the user to gain familiarity with the technique and method of use of the routine. Following are descriptions of individual subroutines:

ANGLE converts an angle expressed in seconds of arc to degrees, minutes, and seconds of arc. The angle, which may be positive or negative, is partitioned into its divisions by successive approximations for each of the divisions. A table is then searched for adjusting the decimal seconds to the desired precision to be used in the user's solution routine. (894 bytes)

ANLIS computes the long distance or geodetic distance and azimuths between two stations whose geodetic positions are known. Evaluation is based on equations of the Andoyer-Lambert method for solving the inverse position problem. This method is valid for distances up to 6000 miles. (576 bytes)

APCTN computes the state plane coordinates from geographic positions and the inverse for stations in zones 2 to 9 of the Alaska plane coordinate system. (6524 bytes)

APCNN computes the state plane coordinates from geographic positions and the inverse for stations in zone 1 of the Alaska plane coordinate system. (4388 bytes)

APOLY computes the American polyconic grid coordinates of a station from geographic positions and the inverse. (4320 bytes)

CGSPC computes the geodetic position (latitude, longitude) and azimuth of an observed station from a station of known geodetic position, with azimuth and distance to the observed station given. Evaluation is based on equations for the forward position computation and is valid for distances up to 600 miles. (2606 bytes)

CUBIC approximates a third-order curve by interpolating coordinates between given points. The evaluation is based on a method which expresses a cubic curve by using two parametric equations and then choosing values for the parameters in the two equations. (1926 bytes)

EXCES computes the spherical excess of a spherical triangle as determined from two angles and a side opposite one of them. The method is valid for triangles whose sides are less than 100 miles in length. (884 bytes)

GLIC computes the geodetic distance and azimuths between two stations whose geodetic positions are known. Evaluation is based on equations of the Gauss midlatitude method for solving the inverse position problem. This method is valid for distances up to 600 miles. (2452 bytes)

HIFIX computes the hyperbolic coordinates of a ship expressed in HIFIX phase differences from
geographic positions, and the inverse. Evaluation is based on Campbell's equations to determine the geographic position of ship from HIFIX phase differences. (5662 bytes)

LORAN computes the hyperbolic coordinates of ship expressed in loran time differences from geographic positions, and the inverse. The program is applicable to loran-A, loran-C, or a mixture of the two systems. Two configurations of fixed stations may be used. In the trind configuration, two pairs of fixed stations are used, each pair having one station, the master station, in common, and a slave station. In the tetrad configuration, two pairs of fixed stations are used, each pair having a separate master station and a slave station. Evaluation is based on Campbell's equations. (6,444 bytes)

OMEGA computes the hyperbolic coordinates of a ship expressed in Omega lane values from geographic positions, and the inverse. Evaluation is based on a modification of Campbell's equations. (3706 bytes)

SODIN computes the geodetic distance and azimuths between two stations whose geodetic positions are known, using the Sodano method for solving the inverse position problem. This method is valid for distances up to 6000 miles. (4622 bytes)

SODPN computes the geodetic position (latitude, longitude) and azimuth of an observed station from a station of known geodetic position, with azimuth and distance to the observed station given. Evaluation is based on equations of the Sodano method for solving the direct position problem. This problem is valid for distances up to 6000 miles. (4986 bytes)

TPFIX computes the geographic position, forward azimuth, back azimuth, and distance of an observing station using angles observed at that station to three fixed stations whose geographic positions are known. The computations include the effect of spherical excess. Evaluation is based on the method of resection to determine the position of an unknown station. (3178 bytes)

UTHCO computes the universal transverse Mercator (UTM) grid coordinates of a station from geographic positions, and the inverse. This routine is designed to work for UTM zones 1 to 60, zone width 6 degrees, in both the Northern and Southern Hemispheres, within the latitude band of 80 degrees and 30 minutes north to 80 degrees and 30 minutes south, and 5 degrees and 45 minutes plus or minus from the central meridian of the major UTM zone. (7930 bytes)
Compute Great-Circle Path
GCIRC

Language - FORTRAN IV-G
Hardware - IBM 360-65/1200 bytes

Computes distance (nautical miles) and initial course (degrees) of a great-circle path between two locations. Requires subroutines COS, SIN, ARCOS. Author - Ralph Johnson.

Oceanographic Services Branch
National Oceanographic Data Center
NOAA/EDS
Washington, DC 20235
Telephone (202) 634-7439

Map Projections and Grids
MAP

Language - FORTRAN IV
Hardware - IBM 360-40/CalComp 763 plotter

Provides a wide variety of map projections and grids to facilitate the display of geographical data. The subroutine has been written in as modular a form as possible to allow for ease of insertion or deletion of routines. Provides the following projections: Mercator, Miller, square, cylindrical stereographic, Lambert equal-area cylindrical, flat-polar equal-area sinusoidal, equal-area sinusoidal, Mollweide homolographic, polar stereographic, Lambert equal-area polar, Colligan's equal-area projection of the sphere, azimuthal equidistant, transversed sinusoidal, transversed Mollweide. Author - John O. Ward.

Oceanographic Services Branch
National Oceanographic Data Center
NOAA/EDS
Washington, DC 20235
Telephone (202) 634-7439
GRAPHIC DISPLAY

Vertical Bar Graphs

Language - MASTER FORTRAN
Hardware - CDC 3300/34 17K words/CalComp Plotter

Reads and edits bar graph parameters and data; calls the CalComp software which generates a plot tape. The CalComp Plotter draws the graphs as vertical bars for any set of data which has less than 101 items. The program uses numeric data and bar graph descriptive data as input. Major parameter categories are X access, Y access, titles, groups, and bar labels. File output is produced on CalComp continuous line plotter which draws individual bars; bars may have labels and may be shaded; there are four different types of shading.

James C. Cheap
Department of Water Resources
Computer Systems Division
1416 Ninth Street
Sacramento, CA 95814

Available from originator only

X-Y Plots

MUDPAK

Language - FORTRAN
Hardware - CDC 3600/24K words/CalComp Plotter

Generates plots of several dependent (y) variables vs. a common independent (x) variable. Numerous user options control type of plot, titling, etc. Exhaustively plots all data from files, one plot per data set (data sets defined by change in key field value). Input: From 1 to 10 card or tape files, comprising 15 dependent variables, file definition cards, plot axis cards, title cards. Output: 11-inch or 30-inch CalComp plots (uses standard CCPLOT routine) and diagnostic listing.

Peter B. Woodbury
Deep Sea Drilling Project
Box 1529
La Jolla, CA 92037

Telephone (714) 452-3526

Plotting Program

PROFL

Language - FORTRAN IV
Computer - CDC 3600

Plots data values against depth or other parameters.

David Wirth
Oceanic Research Division
Scripps Institution of Oceanography
P.O. Box 109
La Jolla, CA 92037

Available from originator only

Dendrograph

Language - FORTRAN, ASSEMBLER
Hardware - IBM 360 370/45K for 360/CalComp Plotter and/or 132 character line printer

Dendrograph draws a two-dimensional diagram depicting the mutual relationships among a group of objects whose pairwise similarities are given. Input: A distance or correlation type matrix. Output: Printer and/or CalComp plot of the dendrograph. This program is a modification of a program by McCammon and Wenninger in Computer Contribution 48, Kansas Geological Survey. The changes are dynamic storage allocation and printer plots. The size of the input matrix is limited by the amount of core available; core is dynamically allocated at execution time.

116
Topographic maps of the beach and nearshore area are computed and plotted based on nine profiles from a baseline across the beach. Profiles are spaced at 100-foot intervals along the beach with survey points at five-foot intervals along each profile. Linear interpolation is made parallel to the baseline between adjacent profiles. Numbers and symbols are printed to form the maps. Profiles for a series of days are used to print maps of erosion and deposition by subtracting elevations for each day from the elevations for the previous day. ONR Tech. Report No. 4, "Beach and Nearshore Dynamics in Eastern Lake Michigan," by Davis and Fox, 1971.

X-Y Plots in a Flexible Format

XDSFLOR

General purpose program to produce x-y coordinate plots in a flexible format. Point and line plots are available in either a time-sharing (interactive) or batch mode. The prime objective of the program is to permit very flexible control over the plot size and labeling at run time through the use of control cards. Input: (1) Control cards with plot description, (2) any formatted BCD file with fixed length records containing one pair of x-y coordinates, on tape or disk. Output: x-y coordinate plot and summary listing. The x-y coordinates are transferred directly from data. User-controlled range checks and multiple plots can be obtained, based on the sort sequence of a control field in each data record. This field will be in addition to the data fields to be plotted. Can use either an off-line CalComp Plotter or an on-line Zeta Plotter connected with a telephone line.

D. Branch

Marine Environmental Data Service
580 Booth Street
Ottawa, Ont. KIA OH3

Plots Hydro Cast Data

PLOC

Plots the results of hydrographic casts in a format suitable for publication. Produces 8 1/2- by 10-inch plots of log (10) depth vs. temperature, salinity, and oxygen.

Pacific Biological Station
Fisheries Research Board of Canada
P. O. Box 100
Nanaimo, B. C. V9R 5K6

Plots STD Data

STPOL

Plots digitized STD data in a format suitable for publication. The plotter draws and labels axes and plots temperature and salinity vs. depth.
Plots Temperature-Salinity

FSAL1

Section Plotting

The program uses the CDC 3100 plotting subroutines to generate data for the PDP-8 plotting program. The user may specify a legend (up to 480 characters), label sizes, scale factors, the parameter to be plotted, and the isopleths to be determined. The plotting is done on a CalComp 31-inch plotter under control of the PDP-8. Cruise data is read from magnetic tape by the CDC 3100 in modified CODC (NEDS) format or Bedford Institute format. An iterative method is used in conjunction with an interpolation function to determine isopleth depths. The interpolation function is described in a Bedford Institute report, BIO 66-3 (unpublished manuscript) by R.F. Reiniger and C.K. Ross, Feb. 1966.

Horizontal Histograms

HISTO

Printer Plots

LISPLD

Lists and plots the data stored on WHOI format magnetic tape. See HISTO format reference. Output is on the line printer. Three types of plot are possible: (1) Variable vs. time or sequence number, (2) angle and speed vs. time, and (3) two variables (one on a minus and one on a plus scale) vs. time.
Plot of Frequency Distribution

Language - FORTRAN IV-H

Hardware - XDS Sigma 7

Produces a two-dimensional frequency distribution of samples averaged over chosen interval against time. Input: Control cards and data on 9-track tape. Output: A line printer plot of averaged compass, wave, direction, and speed against time.

Richard E. Payne
Woods Hole Oceanographic Institution
Woods Hole, MA 02543

Available from originator only

Telephone (617) 548-1500

Velocity Vector Averages

Language - FORTRAN IV-H

Hardware - XDS Sigma 7

Produces a 9-track tape in WHOI format of east and north velocity vector averages and their corresponding polar representations. (See HISTO format reference)

Richard E. Payne
Woods Hole Oceanographic Institution
Woods Hole, MA 02543

Available from originator only

Telephone (617) 548-1400

Progressive Vectors

Language - FORTRAN IV-H

Hardware - XDS Sigma 7/PDP-5 driven CalComp

Plotter optional

Computes progressive vectors from direction and speed values. Input: Control cards and tape in WHOI format. See HISTO format reference. Output: Listing of progressive vectors and/or a tape to be used with a PDP-5 driven CalComp for a plot of the vectors.

Richard E. Payne
Woods Hole Oceanographic Institution
Woods Hole, MA 02543

Available from originator only

Telephone (617) 548-1400

Plots Data Along Track

Language - FORTRAN IV

Hardware - XDS Sigma 7/2986 32 bit words*/
CalComp or Versatec plotter

Plots data in profile along a ship's track. Map is in Mercator projection. The ship's heading is used to determine the orientation of the data. Standard CalComp software is used. Input data can be in any WHOI format or in a user specified format and can be from any device, but typically from a nine-track magnetic tape; also input are run-time parameters to specify scales and other options. *Another version of the program exists for the Hewlett-Packard minicomputer and works in a 16K word environment.

Robert C. Groman
Woods Hole Oceanographic Institution
Woods Hole, MA 02543

Available from originator only

Telephone (617) 548-1400, ext. 469

Profile versus Time or Distance

Language - FORTRAN IV

Hardware - XDS Sigma 7/4010 32 bit words*/
CalComp or Versatec plotter

Plots in profile versus time or cumulative distance, all WHOI standard formats or a user-supplied format. Uses standard CalComp software. Input: Data from any device and run-time parameters to specify scales and other options. Output: Plot tape for offline use and printed information about the run. *Another version of this program exists for the Hewlett-Packard minicomputer and works in a 16K word environment.
DEEP6

Plots navigation with any other data type language - FORTRAN IV
Hardware - Hewlett-Packard minicomputer/
16K 16 bit words/CalComp plotter

Merges and plots x-y navigation with another data type. For each data point a linearly inter-
polated position is calculated. Plots can be annotated x-y charts, data profiles along the
ship's track, or profiles vs. time or distance. Input: x-y navigation data in meters or fath-
omes; a time series of data to be merged with the navigation; and input parameters specifying
scales and options.

Robert C. Groman
Available from originator only
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Telephone (617) 548-1400, ext. 469

Line Printer Plots
GRAPHZ
Language - FORTRAN, COMPASS
Hardware - CDC 3600/4112 octal (2122 decimal)
locations*

This subroutine is intended to be valuable for scientists who want a fast and economical
method of producing plots of their data but do not require the high resolution (100 points per
inch) of the CalComp plotter. Modified by Dianna L. Denton from a program written at the Uni-
(*excluding the common block (11031 octal = 4633 decimal) and system library routines).

Research Computation Center
Naval Research Laboratory
Washington, DC 20375
Copy on file at NODC (tape, above report)

Magnetic Signatures
MAGPLOT
Language - FORTRAN
Hardware - CDC 3600/CDC 3800/706,768 words/On-
line plotter

Separates and characterizes the various components of magnetic noise in magnetometer records
taken from a sensor towed at sea. Gives a printout of histogram data for each of three wave-
length filters: N (amplitude) vs. amplitude; N (wavelength) vs. wavelength. Also produces
plots of filtered magnetic fields as function of distance. Program is briefly described in
NRL Formal Report No. 7760, "Geological and Geomagnetic Background Noise in Two Areas of the
North Atlantic."

Perry B. Alers
 Naval Research Laboratory
 Washington, DC 20375
 Available from originator only
 Telephone (202) 767-2530

Sequential Plotting
Language - FORTRAN
Hardware - IBM 360-65

Subroutines produce plots using a digital computer output printer. The consecutive x, y data
points are plotted with symbols consisting of letters and numerals. Permits rapid plotting of
either a single- or a multivalued curve when high resolution is not required. NELC Report 1613

Naval Electronics Laboratory Center Copy on file at NODC (documented listing)
San Diego, CA 92152

Robert G. Groman
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Available from originator only
Telephone (617) 548-1400, ext. 469

* Plots Navigation with Any Other Data Type

DEEP6
Machine Plotting on Mercator Projection

Language - FORTRAN 63
Hardware - CDC 1604/CalComp 165 plotter

Ocean Sciences Department
Naval Undersea Research and
Development Center
San Diego, CA 92132

Copy on file at NODC (above report)

Overlay Plotting

Language - FORTRAN
Hardware - UNIVAC 1108/12K plotter compatible
with Integrated Graphics System

Performs overlay plots on the FR-80 graphic system using the Integrated Graphics System. No knowledge of IGS required by user. Fitting of data into bounds of "good looking" graph.

Peter D. Herstein
Naval Underwater Systems Center
New London, CT 06320

Available from originator only
Telephone (203) 442-0771, ext. 2305

Physical Data Plot

Language - FORTRAN
Hardware - CDC 3300

Using arrays of profile data and specification parameters, this subroutine prepares a tape for the UCC plotter to provide a profile plot of depth vs. temperature, conductivity, salinity, sigma-t, and sound speed.

K. Crocker
Naval Underwater Systems Center
Newport, RI 02840

Available from originator only
Telephone (401) 841-3307

Reformats Data, Plots Track Chart

Language - FORTRAN
Hardware - UNIVAC 1108/Instructions 5K words/
Data 5K words/2K Plotter buffer/
3 tape units/CalComp Plotter

Decodes blocked BCD data tapes in NGS/DC format into UNIVAC SDF format and plots user-scaled Mercator track charts annotated with way and all underway parameters. Author - Peter J. Topoly.

Data Systems Office
U.S. Naval Oceanographic Office
Washington, DC 20373

Available from originator only
Telephone (202) 763-1449

Produce Contour Charts

Language - FORTRAN
Hardware -

Three programs which enable the user to graphically produce a contour chart by the computer-plotter method. GRIDIT produces a digitized matrix from data points which have been screened for gross errors. REGRIDIT produces a digitized matrix from raw unchecked data points. AUTOMATED CONTOUR constructs a contour chart from a digitized matrix. An example is given for use of the program in contouring the bathymetry of the ocean bottom. Informal manuscript report NH No. 67-4, "An Automated Procedure for Producing Contour Charts," by Roger T. Osborn, Feb. 1967.

121
Profile Plots, Time Axis

Language - FORTRAN IV

Hardware - IBM 360-67/110K bytes for 1500 values per profile/plotter

Profile Plots, Distance Axis

Language - FORTRAN IV

Hardware - IBM 360-67/130K bytes for 1500 values per profile/plotter

Makes profile plots of up to three values along a time axis. Uses Benson-Lehner plotter or easy conversion to CalComp. Input: Cards with specifications for profiles (scales, values, titles, symbols, etc.) and formats, and data cards with Julian day, hour, minute, and one to three values.

Graig McHendrie
Office of Marine Geology
U.S. Geological Survey
345 Middlefield Road
Menlo Park, CA 94025

Available from originator only

Telephone (415) 323-8111, ext. 2174

Profile Plots, Distance Axis

Language - FORTRAN IV

Hardware - IBM 360-67/130K bytes for 1500 values per profile/plotter

Produces profile plots of up to three values along a cumulative distance axis. Uses Benson-Lehner plotter or easy conversion to CalComp. Input: Cards with specifications for each profile (scale, values, symbols, title, etc.) and formats, and data cards with Julian day, hour, minute, latitude, longitude, and one to three values.

Graig McHendrie
Office of Marine Geology
U.S. Geological Survey
345 Middlefield Road
Menlo Park, CA 94025

Available from originator only

Telephone (415) 323-8111, ext. 2174

Map Plots

Language - FORTRAN IV

Hardware - IBM 360-67/244K bytes for 7500 nav. or 6000 data points/plotter

Makes map plots of either data values or navigation data on a Mercator, transverse Mercator, conic, or Lambert conformal projection. Maximum map size is 28 x 61 inches. Assumes equatorial radius of earth is 251,117,000 inches and that west longitude and south latitude are input as negative values. Uses Benson-Lehner plotter or easy conversion to CalComp. Input: Eleven cards with title, formats, and map window specifications followed by data on either cards or tape. Navigation data: Julian day, hour, minute, latitude, longitude. Data values: minute (or sequence no.) value, latitude, longitude.

Graig McHendrie
Office of Marine Geology
U.S. Geological Survey
345 Middlefield Road
Menlo Park, CA 94025

Available from originator only

Telephone (415) 323-8111, ext. 2174

Plots Scattergram

Language - FORTRAN IV

Hardware - IBM 360-65

These subroutines plot a simple scattergram from a set of data pairs. The data are first adjusted to fit in a range of 1 to 100, then rounded, and the scattergram is generated by...
subtracting the origin from each data point and then fixing, or truncating, the number to yield a set of subscript pairs. The location for each subscript pair in the black array is filled with the number of occurrences and finally a plot is produced. These routines ignore out of bound points.

Paul Sabol
Center for Experiment Design and Data Analysis, NOAA/EDS
Washington, DC 20235
Available from originator only
Telephone (202) 634-7344

X-Y Plots
ERTFLY

A generalized x-y plot package. Allows various manipulations of axes as well as special character plotting.

Robert Dennis
Center for Experiment Design and Data Analysis, NOAA/EDS
Washington, DC 20235
Available from originator only
Telephone (202) 634-7340

Displays VHRR Satellite Data
V5MD

Displays VHRR data from the ingest tape on the Digital Muirhead Display (DMD) in 5000 mode (5000 picture elements per scan line; 5000 maximum scan lines per picture). The program uses a two spot running mean of 5000 spots of a possible 6472 along each scan made by the VHRR instrument. It converts each averaged spot via lookup table to a display grayscale. The starting scan line, the number of scan lines to be processed, the starting spot, and the grayscale lookup table are controlled by data cards.

John A. Pritchard
National Environmental Satellite Service, NOAA
Suitland, MD 20233
Available from originator only
Telephone (301) 763-8403

Microfilm Plots of VHRR Satellite Data
SVHRRRAM

Displays the VHRR data from the VHRR ingest tape in the form of printed characters on 16mm microfilm in blocks of 128 characters by 48 characters. Each printed character will represent a square four kilometers on a side at the subsatellite point, is obtained by averaging four lines and six spots along each scan line of data from the VHRR ingest tape, and then is determined by a character lookup table. The program is capable of utilizing 3840 digital spots of a possible 4642.

John A. Pritchard
National Environmental Satellite Service, NOAA
Suitland, MD 20233
Available from originator only
Telephone (301) 763-8403

Vertically Analyzed Contours of Oceanographic Temperatures and Salinities, VACOITS

Language - FORTRAN 63
Hardware - CDC 3600/CaliComp plotter/32K words
Provides a rapid and accurate means of constructing vertical cross sections of sea temperatures and salinities. Although this program has been designated to use STD data recorded on magnetic tape, other versions are being used to contour biological, chemical, and other physical oceanographic data. Each vertical section is divided into two parts: the upper section for the contours from the surface to 300 m, and the lower section from 300 m to 1200 m. Running time:

To analyse and plot contours at intervals of 1 degree C for temperature and 0.1 parts per thousand for salinity from the surface to 1000 m for 50 stations requires four minutes of computer time on the CDC 3600 and 25 minutes on the CalComp 30-inc plotter. Author - Forrest Miller.

Southwest Fisheries Center
National Marine Fisheries Service, NOAA
P.O. Box 271
La Jolla, CA 92037
Telephone (714) 453-2820

Oxygen, Phosphate, Density Plots
Language - FORTRAN IV
Hardware - IBM 360-65/CalComp plotter/33K bytes

Plots oxygen vs. phosphate, oxygen vs. sigma-t, and phosphate vs. sigma-t (single or multiple station) for purposes of quality control and study of water types. Input: Hydrographic data in ICES format. Author - Marilyn Borkowski.

Southeast Fisheries Center
Copy on file at NODC (documented listing)
National Marine Fisheries Service, NOAA
75 Virginia Beach Drive
Miami, FL 33149

General Mercator Plot
Language - FORTRAN IV
Hardware - IBM 360-65, CalComp Plotter/42K bytes

Plots any variable on a Mercator projection; has option of writing in value or making a point plot, and of connecting the points with lines. Input: Any header cards in ICES format. Projection plot may be in any scale per degree, and may include a coastline (obtained from a digitized world tape layout). Author - Marilyn Borkowski.

Southeast Fisheries Center
Copy on file at NODC documented listing
National Marine Fisheries Service, NOAA
75 Virginia Beach Drive
Miami, FL 33149

Plotter Commands
Language - Assembly language under RTE
Hardware - HP 2100S

These subroutines are modifications of the HP subroutine PLOT and the RTE driver DVR10. Together they control a CalComp or CalComp compatible .01" or .0025" incremental step drum plotter with three-pen operation. Equipment type is identified through subchannel. Plot increments are calculated in double precision integer.

Robert A. O'Brien, Jr.
Available from originator only
Shipboard Computing Group, Code 8003
Naval Research Laboratory
Washington, DC 20375
Telephone (202) 767-2387
TIME AND SPECTRAL SERIES ANALYSIS

Spectral Analysis Subroutines
Language - FORTRAN
Hardware - UNIVAC 1108/30K

Given digital time and spectral series, produces autospectral autocorrelation plots and listings, and phase angle vs. frequency plots.

Peter D. Herstein
Naval Underwater Systems Center
New London, CT 06320

Available from originator only
Telephone (203) 442-0771, ext. 2970

Scalar Time Series
Language - FORTRAN IV
Hardware - CDC 6400 (SCOPE 3.4)/100K (octal)
10 character words/CalComp 936/905 Plotting System

Computes and plots statistics, histogram, time series, and spectrum for time series of any scalar quantity. Input: Scalar time series on tape in CDC 6400 binary format; maximum number of 33/2 points is 2336. Output: Listing and tape for off-line plotter. Perfect Daniel frequency window used to compute spectral estimates from FFT generated periodogram values.

James R. Holbrook
Pacific Marine Environmental Laboratory, NOAA
3711 Fifteenth Avenue N.E.
Seattle, WA 98105

Available from originator only
Telephone (206) 442-0199

Time Series Plotting
Language - FORTRAN II
Hardware - CDC 3100/FDP-8/CalComp Plotter

The program uses the CDC 3100 plotting subroutines to generate data for the PDP-8 plotting program. The user may specify a legend (up to 400 characters), label sizes, scale factors, the parameter to be plotted and the isopleths to be determined. The plotting is done on a CalComp 31 inch plotter under control of the PDP-8. Cruise data is read from magnetic tape by the CDC 31U in Bedford Institute format. Time is plotted along the X axis (drum movement) and depth along the Z axis (pen movement). Stations are plotted to the nearest day. Author - D.J. Lawrence. June 1969.

Director
Bedford Institute of Oceanography
P. O. Box 1006
Dartmouth, N. S. B2Y 4A2

Available from originator only
Telephone (902) 426-3584

Time Series Analysis Programs
Language - MS FORTRAN
Hardware - CDC 6400 or CDC 3150/Disk/3 tape units/CalComp Plotter

A series of programs that edit digitized time series data, produce plots, probability distributions, perform fast Fourier transforms on data and convert Fourier coefficients into power and cross spectra. Input: Digitized magnetic tape output from program A TO D and data cards. Output: CalComp plots, printer plots, optional dump of data tape, magnetic tape of Fourier coefficients, listing of spectra, disk file of spectra. Computer Note BI-C-74-2, May 1974.

P. W. Dobson
Bedford Institute of Oceanography
P. O. Box 1006
Dartmouth, N. S. B2Y 4A2

Available from originator only
Telephone (902) 426-3584

125
Time Series - Analog to Digital

A TO D

S. D. Smith
Bedford Institute of Oceanography
P. O. Box 1006
Dartmouth, N. S. B2Y 4A2

Time Series Routines

ARAND SYSTEM

ACFFT computes the autocorrelation or autocovariance function of a single time series using a variation of the convolution property of the discrete Fourier transform in conjunction with a fast Fourier transform algorithm. (2, 4, 5)

ACORR computes the autocorrelation function of a time series for a given number of lags. (3)

ACRPLT is designed to plot estimated autocorrelation or partial autocorrelation functions; standard error designations are included. Provision is made for the inclusion of confidence intervals that correspond to hypotheses that all theoretical correlation values beyond a certain lag are zero. CalComp or Tektronix. (3, 6)

ALIGN aligns cross correlation or cross covariance values, shifting the estimates so that a specified lag becomes lag zero. It is intended for use prior to computing estimates of the squared coherence and phase spectra of two time series. (2, 7)

AMPIICO determines the amplitude, phase, and the squared coherence, given the spectral density functions, the cospectrum and the quadrature spectrum of two time series. (1, 7, 8)

ARHAP produces realizations or observed time series of an autoregressive, moving average, or mixed regressive-moving average process. The order of the autoregressive and/or moving average operator cannot exceed three; one realization is produced per call and there is no restriction on the length of the observed time series. (3, 6)

AUTO calculates values of the biased autocovariance function. (1, 9)

AUTOPLT is designed to plot autocorrelation or autocovariance functions on the CalComp 1627 II plotter. The routine scales the values, determining the range of the values to be plotted on the Y-axis. (2)

AXISL is a plotting aid allowing for general purpose axis drawing and labeling. It is written in assembly language and uses elements of the COMPLOT drivers. (3)

CCFFT employs the convolution property of the discrete Fourier transform in conjunction with
the fast Fourier transform algorithm to compute the cross-correlation (covariance) function. (2, 4, 5)

CCORR computes the biased auto- and cross-correlation functions of two time series. (1)

COHPLT accepts squared-coherency spectrum values and plots coherency on a hyperbolic arctangent scale which allows a constant length confidence interval to be constructed. (2, 7)

COMPLIT is a set of subroutines intended to provide a basis for easily programming graphics applications. These subroutines expand relatively simple instructions specified by the programmer to include all of the necessary details for the plotting device. COMPLIT was designed to be utilized in a time-sharing environment with any of the above plotting devices; also, provisions have been made for plotting on combinations of these devices. (3)

CONFID determines multiplicative factors used in constructing confidence intervals for mean-lagged product spectral estimation. (1, 7)

CONFID determines the multiplicative factors necessary to construct confidence intervals for power spectral estimates found by averaging short modified periodograms, as in FOUSPC, FOUSPC1, FOUSPC2, and FFTPS. (3, 10)

CONNTO is a series of subprograms designed as aids to conversational programming with the following four objectives: (1) to allow the user to respond in as natural a way as possible within the limitations of the operating system available; (2) To make all responses entered by the user consistent in use; (3) To provide a complete set of input/output subprograms for conversational-mode use; (4) To allow ease in usage from a programming point of view, with fairly fast and efficient execution. (3')

COPH computes squared-coherence and phase estimates, given power spectral, cospectral, and quadrature spectrum estimates. The phase estimates can be in either degrees or radians. Similar to AMPHCO. (2)

COSTR computes the discrete cosine transform of an even function (array of values). Goertzel's method is used. (1)

CPEES is a conversational program used in modeling. CPEES picks up information output on file by the CUSID routine, asks the user a few questions, and then determines initial or final parameter estimates for the identified model. Calls USPE and USES, getting preliminary and final parameter estimates. (3, 6)

CPLTO is a conversational call program for the plotting routine PLTSPC, used to plot spectral estimates with confidence intervals and bandwidth. The program allows the user to plot as many data sets as he likes from the same or different files. (2)

CPLT2 is a conversational program to produce plots of frequency dependent data using routine PLTFRQ. The program allows the user to plot as many data sets as he likes from the same or different files. (2)

CROPLT is designed to plot the cross correlation (covariance) functions of two time series on the CalComp 1627 II plotter. The routine automatically scales the values, determining the range of values to be plotted on the Y-axis. (2)

CROSS computes the two cross covariance functions (biased) of two time series. (1, 9)

CUSID is the first of a series of three conversational programs that collectively perform model identification, parameter estimation (see CPEES), and forecasting (see CUSFO) for autoregressive integrated moving average models. This program corresponds to the identification phase in the modeling process, accepting time series data and computing the autocorrelation and partial correlation functions of the series after seasonal and/or nonseasonal difference operators have been applied. The routine is designed for use at a Teletype or a Tektronix graphics terminal; selection of graphics output of the data and correlation functions on either the CalComp plotter or the graphics terminal is available. (3, 6, 11, 12)

CUSFO computes and plots forecasts from the original data and a fitted model. See CUSID. (3)
CET computes z-transform values of a finite sequence of real data points using the chirp z-transform algorithm. Points at which transform values will be computed must lie on circular or spiral contours in the complex plane. The contour may begin at any point in the plane and the constant angular frequency spacing between points on this contour is arbitrary. A special contour of particular importance is the unit circle in which case a Fourier transform is computed. (2, 13, 14)

DATPLT is a general purpose plot routine for time series data. (3)

DEMOD1 estimates values of the energy spectrum of a time series using complex demodulates. The frequencies (in cycles per data interval) at which spectral estimates are to be computed are in the form of an array, allowing one to consider isolated frequencies or a collection of related frequencies, such as an arithmetic progression. Only every 1th value of the complex demodulate at a particular frequency is computed and averaged to form the spectral estimate at that frequency, where L is specified by the user. (1, 15, 16)

DEMOD2 finds the complex demodulate at the given frequency, given a time series, an array of filter weights, a selection integer, and a single frequency. The values of the complex demodulate at the given frequency are returned either as real and imaginary parts of complex numbers or in terms of amplitudes and phases. As in DEMOD1, the calculations use the method of Goertzel for the evaluation of discrete Fourier transforms. (1, 15, 16)

DEMOD3 accepts output from DEMOD2 and calculates an energy spectrum estimate at a single frequency. (1, 15, 16)

DETREND removes a mean or linear trend from a time series, writing over the input array. (1)

DIFF12 computes first or second forward differences of a series. (1)

EUREKA finds either the solution to the matrix equation \(R'f - g \) where \(R \) is a Toeplitz matrix (i.e., a symmetric matrix with the elements along the diagonals equal) and \(f \) is a column vector, or the solution of the normal equations which arise in least-square filtering and prediction problems for single-channel time series. (1, 17, 18)

EXSMO computes a triple exponentially smoothed series. (1, 9)

FFIN, a free-form input routine, allows for the reading of numeric information in BCD that is relatively format free. FFIN returns a single value on each call, and operates by reading 160 characters (2 cards or 2 card images) and advancing a pointer through the buffer on each subsequent call until more information must be input or reading is complete. A companion routine, FFINI, operates exactly as FFIN except that the buffer is cleared and new information input on each call. Both routines set the EOF bit if an end of file is encountered. (3)

FFTCNV computes the convolution of a series with a weighting function using the fast Fourier transform algorithm. The program is designed for the convolution of long series with a relatively short weighting function. (2, 4, 5)

FFTPS uses a fast Fourier transform algorithm to compute spectral estimates by a method of time averaging over short, modified periodograms. (1, 7, 10)

FFTS computes the direct or inverse transform of real or complex data, using a power of two fast Fourier transform algorithm. (2)

FFTPSC finds a raw or modified periodogram for a sequence of real data points using a power of two fast Fourier transform algorithm, i.e., the absolute value squared of raw or Hanned Fourier coefficients are round and suitably scaled. This subroutine is intended for use with time series whose length is slightly smaller than or equal to a power of two. (3)

FILTER1 designs symmetrical, non-recursive digital filters. It is conversational in form and is intended for use at a Tektronix 4002 graphic terminal. Two design techniques are supported, corresponding to the subroutines GENER1 and FIVET. Outputs include an array of filter weights and the attained frequency response. (2)

FIVET designs non-recursive symmetrical digital filters. The design technique is known as the 5's method and requires that the specifications be given for the desired frequency response
function, the maximum allowable deviation from the desired response, and the bandwidth of transitions in the attained response corresponding to discontinuities in the desired response. (2, 19)

FOLD performs polynomial multiplication or, equivalently, the complete transient convolution of two series. (1, 17)

FOURTR takes the Fourier transform of real data; many output options are available. (1, 20)

FOUSPC finds the Fourier transforms of segments of a time series. The segments must be of equal length, but may abut, overlap, or be in any order relative to the given time series. FOUSPC can be used in conjunction with SPEC to estimate power spectra by a method of time averaging over short, modified periodograms. Note that if one is not interested in examining the Fourier-like coefficients of each segment before passing on to spectral estimates, then FOUSPCI or FOUSPC2 should be used. (1)

FOUSPCI computes the power spectrum of a time series by a method of averaging over short, modified periodograms. (3, 7)

FOUSPC2 is similar to FOUSPCI, but accepts two time series, computing the cross spectral matrix at specified frequencies. (1)

FRESPON computes the frequency response of a filter. (1)

GAPPH computes and plots estimated gain and phase functions of a time invariant linear system. The gain values are plotted on a logarithmic scale and both gain and phase plots include confidence interval constructions. Input includes smoothed power and cross spectra estimates. (3, 7)

GENER1 is a filter design program. It may also be used to generate weights of lag window or data window, although the routine WINDOW is specifically designed to perform this task and is therefore somewhat easier to use. (1, 26)

GENER2 generates an arithmetic progression. (1)

GENER3 designs a symmetrical low-pass filter given an array containing desired frequency responses at equally spaced frequencies from zero to one-half cycle per data interval. (1)

LEGPLT plots power spectral estimates on a base ten logarithmic scale, the output device being a CalComp 1627 II plotter. The subroutine automatically scales the estimates, determining the range of values to be plotted on the Y-axis. The estimates must have been computed at equally spaced frequencies. An 80% or 95% confidence interval (computed using routine CONFID) is also plotted. (2)

NOIZT tests a time series to determine if it can be considered a realization of a white noise process. The test is a frequency domain test involving the integrated spectrum of the series. The results are plotted with 80% and 95% confidence regions. (2, 7, 21)

PHAPLT plots the phase estimates with 95% confidence intervals on the CalComp 1627 II plotter. The phase estimates must have been computed at equally spaced frequencies and, in order to generate approximate confidence intervals, the associated squared-coherency estimates at these same frequencies must be given. (2, 7)

PLTOR graphs an initial segment of time series data followed by a set of forecasts that include upper and lower probability limits as generated by CURFO or USFO. (3)

PLTFFQ allows frequency dependent functions to be plotted versus any arithmetic progression of frequencies, using the CalComp 1627 II plotter. The routine scales the frequency values, determining the range of the values to be plotted on the Y-axis. (2)

PLTSPEC is designed to plot power spectra on the CalComp 1627 II plotter. The routine scales the spectral estimates, automatically determining the range of values to be plotted on the Y-axis. Also, the plotting of spectral window bandwidth and confidence intervals is possible. The bandwidth of the spectral window associated with any lag window the user may have used, is
computed by WINDOW and the multiplicative factors needed to determine confidence intervals can be found using the CONFID routines. (2)

POLCAT computes the real and complex roots of a polynomial with real coefficients. (1, 9, 17)

POLYDIV divides one polynomial by another or deconvolves one signal by another. (1, 17)

PROPLT produces a profile plot on either the Tektronix graphics terminals or the CalComp plotter or both, and is intended for use with the routine TIMSPEC which produces spectra from segments of a long record, the segments being equally spaced in time. This profile is not a true perspective view, as the frequency (horizontal) axis of each spectrum is of constant length and separated on the time (vertical) axis by a constant amount. (3)

PSQRT computes the coefficients of the square root of a power series or polynomial. (1, 17)

RANDN generates a (pseudo) random sample from one of four possible population distributions, with the size of the sample specified by the user. The population mean is fixed at zero; the variance or scale parameter is user definable. Provisions have been made for repeated calls to RANDN; that is, one can generate a number of independent random samples from the same or different populations. (3, 22)

RCTFFT computes the discrete Fourier transform of real data using the Cooley-Tukey fast Fourier transform algorithm. The number of data points must be a power of two. (1)

RESPON computes the square of the absolute values of the frequency response of a general filter. (1)

REVERS performs bit-reversing on an array of complex data points. REVERS is written in COMPASS and is used in programs employing the fast Fourier transform algorithm. (1)

RPLACE changes specified values of a time series. The indices of the values to be changed and the new values themselves are read in by RPLACE according to a format specified by the user. (1)

RRVERS performs bit-reversing on an array of real data points; the subroutine is written in COWPASS and is used in FFTPS. (1)

SARIT produces a series by serial computations on one or two other series; there are seven different choices for the series to be produced. (1)

SERCEN generates a time series by adding random numbers or noise to a signal, in this case a trigonometric series. Inputs include amplitudes or coefficients of the trigonometric series, an array of random numbers, and a parameter specifying the desired signal level to noise level ratio. (1, 23)

SHAPE designs a filter which will shape a given series into a desired output series. (1, 17)

SINTI calculates the discrete sine transform of a series of data points. (1)

SNO calculates a smoothed or filtered series, given a time series, a selection integer, and a weighting function. (1, 9)

SPECT2, a conversational main program for use at a teletypewriter, computes power spectral, squared coherence, and phase estimates. The program allows the correlation functions of the two time series involved, the power spectral, squared coherency, and phase estimates to be
output on a combination of devices, including the Teletype, line printer, CalComp plotter and disk. (2, 7)

TAUTOPLT is designed to plot autocorrelation or autocovariance functions on a Tektronix 4002 graphics terminal; the routine scales the values, determines the range of the values to be plotted on the Y-axis. (2)

TCOHPLT, designed for use with a Tektronix graphics terminal, plots coherence estimates on a hyperbolic arctangent scale, allowing the construction of confidence intervals whose length is independent of frequency. (2, 7)

TCROPLT plots the cross correlation (covariance) functions of two time series on the Tektronix graphics terminal; the routine automatically scales the values, determining the range of values to be plotted on the Y-axis. (2)

TFORM1 calculates values of the spectral density function at any arithmetic progression of frequencies on [0,1/2) cycles per data interval, given autocorrelation or autocovariance function of a time series and an array to be used as a weighting kernel. This weighting kernel can be generated using the routine WINDOW. (2, 7, 8)

TFORM2 computes the co- and quadrature spectrum estimates for an arithmetic progression of frequencies on the interval zero to one half cycles per data interval, given the auto and cross correlation functions. Similar to TRANFRH except that it does not produce the associated auto-spectral estimates. (2, 7, 8)

TINSPC finds power spectral estimates computed from segments of a long time series, the beginning of each segment being equally spaced in time. The computational approach is a direct one via a fast Fourier transform algorithm and the technique is appropriate for segment lengths slightly less than or, ideally, exactly equal to a power of two. Thus, the routine allows one to compute a type of "time varying" spectra and these spectra can be graphically examined with the aid of a profile plot (PROPLT) or a contour plotting routine. (3)

TLOGPLT plots power spectral estimates on a logarithmic scale and is designed for use with a Tektronix graphics terminal. The routine automatically scales the estimates, determining the range of values to plot on the Y-axis. The estimates must have been computed at equally spaced frequencies. An 80% or 95% confidence interval (computed using routine CONFID) is also plotted. (2)

TNOIZT performs a frequency domain test to determine if a time series can be considered a white noise or purely random process. The test is appropriate for detecting departures from whiteness due to periodic effects, and is intended for use in conjunction with a test based on the autocorrelation function for detecting local correlation. The routine plots theoretical integrated spectrum values with 80% and 95% confidence regions, the integrated spectrum estimates of the time series being computed from Fourier coefficients input to TNOIZT. These Fourier coefficients may be computed using the FOURTR or RCTFFT routine. (2, 7, 21)

TPHAPLT plots the phase estimates with 95% confidence intervals on a Tektronix 4002 graphics terminal. The phase estimates must have been computed at equally spaced frequencies and, in order to generate approximate confidence intervals, the associated squared-coherency estimates at these same frequencies must be given. (2, 7)

TPLTFRQ is designed to plot frequency response function (or any function of frequency) on a Tektronix graphics terminal. The routine scales the frequency values, determining the range of the values to be plotted on the Y-axis. (2)

TPLTSPC is designed to plot power spectra on a Tektronix graphics terminal. The routine scales the spectral values, automatically determining the range of values to be plotted on the Y-axis. Also, the plotting of spectral window bandwidth and confidence intervals is possible. The bandwidth of the spectral window associated with any lag window the user may have used is computed by WINDOW and the multiplicative factors needed to determine confidence intervals can be found using the CONFID routine. (2)

TRIS1O is designed for smoothing spectral estimates evenly spaced over the interval [0,1/2) (including end points), or equivalently, zero to the Nyquist frequency. The spectral window
applied to a triangular one and the smoothing or convolution is done in a recursive fashion, making it relatively fast. (3, 24)

TSGEN is a conversational program for the generation of a wide variety of time series. More specifically, the program constructs realizations of autoregressive integrated moving average processes where the noise process or "random shock" terms involved may be input from file or generated within the program. In the latter case, a selection of one of four possible families of distributions for the noise is allowed. TSGEN can be run from any Teletype-like terminal, including the Tektronix graphics terminal. (3, 25, 6)

TSPECT1 and TSPECT2 are respectively versions of SPECT1 and SPECT2 that are suitable for use at a Tektronix graphics terminal. (2)

TRANFR calculates values of the spectral density function given the autocorrelation (or autocovariance) function of a time series and an array to be used as a weighting kernel. This weighting kernel can be generated using the routine WINDOW. (1, 7, 8)

TRANFR calculates spectral density functions, the co-spectrum, and the quadrature spectrum, given the autocorrelation (or autocovariance) functions, the cross correlation (or cross covariance) functions of two time series and an array to be used as a weighting kernel. This weighting kernel can be generated using the routine WINDOW. (1, 7, 8)

TTYCON, written in COMPASS, is designed to be used in conversational programs for the output of alphanumeric messages and the input of signed numbers, integer or floating point, and alphanumeric characters. (2)

TTYNUM is designed to be used in conversational programs for the output of one or more alphanumeric messages and the input of one or more signed numbers (integer or floating point) or eight-character alphanumeric identifiers. (2)

UNLEAV is primarily designed for use with RECTWFT. The routine takes an array of interleaved coefficients and separates them, sending the coefficients into two distinct arrays of one half the length of the input array. The length of the input array must be of the form M+2 where M is a power of 2. (1)

USES accepts initial parameter estimates for a seasonal or nonseasonal autoregressive-moving average model and then employs the (possibly differenced and transformed) time series being modeled, computing final parameter estimates. These final parameter estimates are output, along with their covariance and correlation matrix, the residuals from the fitted model, and the sample autocorrelation function of these residuals, and chi-square statistic based on the residual autocorrelations. (3)

USFO generates forecasts with upper and lower probability limits, given the original time series data and a fitted nonseasonal or seasonal autoregressive-integrated-moving average model. Weights for updating forecasts are also output. USFO thus represents the fourth and final stage in a successful modeling attempt, beginning with model identification (USID, CUSID), preliminary estimation of parameters (USPE, CPEES), and final parameter estimated and diagnostic checking (USES, CPEES). (3)

USID accepts a time series as input, possibly transforms and differences the series in seasonal and/or nonseasonal fashion, and then finds the sample autocovariance, autocorrelation, and partial autocorrelation functions. This marks the first of the four programs employed in model identification, parameter estimation, and forecasting, the remaining subroutines being USPE, USES and USFO. Conversational programs (CUSID) and support graphics (ACRPLT) are available for USID. (3, 6, 11, 12)

USPE accepts output from USID and choices for the order of the autoregressive and moving average parts in modeling possibly transformed and differenced time series data; a conversational calling routine for: USPE is CPEES. (3)

WINDOW generates an array to be used as a weighting function or lag window. One of six different lag windows may be selected: The rectangular or box car window, the Parzen lag window, the Bartlett or triangle window, the Tukey or cosine window, the Lanczos data window, and the Lanczos-squared data window. (1, 7)
VINDMdl generates a symmetrical array of weights for use as a data window, as required, for example, in the spectrum estimation procedures of the ARAND routines FOUZPC, FOUZPC1, FOUZPC2, and FTIFS. Two basic window shapes are available, the first having a spectral window very similar to the Tukey or cosine window, while the second produces the Parzen spectral window.

REFERENCES
2. ccr-71-01, OS-3 ARAND SYSTEM: Documentation and Examples, Vol. II.
3. ccr-73-07, OS 3 ARAND SYSTEM: Documentation and Examples, Vol. III.
9. IBM System 360 Scientific Subroutine Package (360A-04-03X) Version III

26. AOMM, A System of Programs for the Analysis of Time Series, Institute of Geophysics and Planetary Physics, University of California, La Jolla.

Director, Computer Center
Oregon State University
Corvallis, OR 97331

Available from originator only
Telephone (503) 754-2494

Generates Arbitrary Filter
HILG

Language - FORTRAN IV
Hardware - IBM 1800

Generates a lowpass, bandpass, or highpass filter defined by three parameters, with or without its conjugate; punches the multipliers on cards; and lists its amplitude response over the full frequency range. NIO Program No. 158. Author - D.E. Cartwright.

National Institute of Oceanography
Wormley, Godalming, Surrey, England

Copy on file at NODC (listing, documentation)

Two-Dimensional Autocorrelation

Language - FORTRAN
Hardware - IBM 7090/IBM 1401

Trident/ASH Library
Arthur D. Little, Inc.
35 Acorn Park
Cambridge, MA 02140

Copy on file at NODC (listing); documentation (above report) available from NTIS, Order No. AD 601 558/LX, $4.75 paper, $2.25 microfiche.

Time Series Analysis

Language - FORTRAN IV
Hardware - IBM 360

BLACKY

Computes, for two simultaneous time series, cross spectra, power spectra, phase and coherence. Subprograms obtain the filtered series, remove the trend, and compute the auto- and cross-correlations. This NPGS library program is listed in a thesis by John G. McMillan, June 1968. The thesis uses digital analysis by program BLACKY in the study of temperature fluctuations near the air-sea interface, the wave field at the same point, and the downstream wind velocity.

Naval Postgraduate School
Monterey, CA 93940

Thesis available from NTIS, Order No. AD 855 533/LX, $3.25 paper, $2.25 microfiche.

Spectral Analysis of Time Series

Language - FORTRAN IV/ALGOL 60
Hardware - UNIVAC 1108/Burroughs B5500
Finds the spectra, cospectra, quadспектa, coherence, and phase of two series or a single spectrum of one series, using the fast Fourier transform (algorithm of Cooley and Tukey, 1965). Special Report No. 6, by Everett J. Fee, March 1969.

The Librarian
Center for Great Lakes Studies
University of Wisconsin-Milwaukee
Milwaukee, WI 53201

Spectra Programs
DETRND, AUTCOV, CRSCOV, FOURTR

DETRND removes the mean, or the mean and linear trend (slope), from a time series. AUTCOV computes the autocovariance of the time series. CRSCOV computes the auto- and cross-covariances of two sequences. FOURTR computes either the sine or cosine Fourier transform. Smoothing of either is optional. Technical Note 13, "Water Wave Teaching Aids," by Ralph H. Cross. Adapted (with permission) from a program written at Bell Laboratories by M.J.R. Healy, 1962.

Hydrodynamics Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02139

Analysis of Non-Linear Response Surface

Language - FORTRAN IV
Hardware - IBM 1130

Analyzes the data from response surface experiments when two or three factors are measured. Options allow calculation of maximum likelihood estimates of power transformations of both independent and dependent variables, and the plotting of their relative maximum likelihood graphs, as a measure of the precision of the principal estimates. The data is then subjected to analysis of variance, using orthogonal polynomials, and principal component analysis; specified contours of the dependent variable are plotted, both without and with transformation. FRB Technical Report No. 87 by J.K. Lindsey, Aug. 1968.

Pacific Biological Station
Fisheries Research Board of Canada
P. O. Box 100
Nanaimo, B. C. V9R 5K6

Multiple Discriminant Analysis

HULDA

Language - FORTRAN IV
Hardware - IBM 1130

A complete multiple discriminant analysis is performed by six interrelated programs which are executed in succession through the link feature in 1130 FORTRAN. Will accept up to 25 variates and as many as 10 groups. Any number of additional data cards can be read and processed after the discriminant analysis has been completed. The value of the discriminant function, classification chi-squares, and probabilities of group membership are computed and printed for each additional m-variate observation. FRB Technical Report No. 112 (unpublished manuscript), by L.V. Pienaar and J.A. Thomson, March 1969.

Pacific Biological Station
Fisheries Research Board of Canada
P. O. Box 100
Nanaimo, B. C. V9R 5K6

Fourier Analysis

LI01

Language - FORTRAN
Hardware - IBM 7090/32K

Obtains amplitudes and phases of frequency components in any record. Standard Fourier analysis plus use of Tukey cosine window to reduce edge effects. Author - Alsop.
Cluster Analysis

Language - FORTRAN
Hardware - IBM 1800

Carries out a single linkage cluster analysis using data in the form of an upper triangular similarity matrix. Output: (1) similarity level of clustering cycle; (2) a list of the linkages that occur at that similarity level; (3) at the end of the cycle, the cluster numbers and a list of the entities making up each cluster are printed. Running time: A matrix of order 60 took approximately 15 minutes to cluster. NIO Program No. 166. Author - M. Fasham.

National Institute of Oceanography Copy on file at NODC (listing, documentation)
Wormley, Godalming, Surrey, England

Probability Distribution

Language - FORTRAN IV
Hardware - IBM 370/120K

Parameters for a Weibull probability distribution are calculated from low, most probable, and high estimates of random variables.

Robert T. Lackey
Department of Fisheries and Wildlife Sciences
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

Statistics from WHOI Format

Language - FORTRAN IV-H
Hardware - XDS Sigma 7

Computes and lists statistical quantities related to variables stored on tape in WHOI standard format. See HISTO format reference.

Richard W. Payne
Wood Hole Oceanographic Institution
Woods Hole, MA 02543

Available from originator only
Telephone (617) 548-1400

Extended Normal Separator Program

Language - FORTRAN IV
Hardware - IBM 360-651/168K where K is 1024 bytes

Separates a polynomial distribution into its component groups where no a priori information is available on the number of modes, their overlap points, or variance. Transformation of frequency distribution by probit analysis, polynomial regression analysis, and program NORMSEP (Hasselblad, 1966). Input: Observed frequency distribution together with values for identification and control purposes. Output: means, variances, and numerical representation of the separated groups.

Marian Y.Y. Yong
National Marine Fisheries Service
P.O. Box 3830
Honolulu, HI 96812

Available from originator only
Telephone (808) 946-2181
Equally spaced time series data are integrated once using Tick's method. The data must be sampled at a rate of at least twice the Nyquist frequency. Informal report LN No. 66-36. OS No. 66-36. Author - E.B. Ross.

Data Systems Office
U.S. Naval Oceanographic Office
Washington, DC 20373

Available from originator only
Telephone (301) 763-1449
CURVE FITTING

Fits a Smooth Curve

SMOOTH

Language - FORTRAN IV

Hardware - 15M 360-65

Fits a smooth curve between supplied points that passes exactly through those points. Author - Dave Pendleton.

Oceanographic Services Branch
National Oceanographic Data Center
NOAA/EDS
Washington, DC 20235

Copy on file at NODC

Telephone (202) 634-7439

Curve Fitting: Velocity Profile

NEWFIT

Language - FORTRAN V

Hardware - UNIVAC 1108/25K

Fits a velocity profile with a series of curve segments having continuous first derivatives at points of intersection. Output: Printed listings of original data, fitted data, and coefficients of curve segments; also, cards for input to program "Sonar in Refractive Water". NEWFIT is the main routine of the program described in Report AP-PROG-C-8070, "A New Curve-Fitting Program," by Melvin O. Brown, Associated Aero Science Laboratories, Inc., Pasadena, for NUSC, Feb. 1968.

Naval Undersea Center
Pasadena Laboratory
5202 E. Foothill Blvd.
Pasadena, CA 91107

Copy on file at NODC (above report)

Least-Squares Curve Fitting in Two, Three, and Four Dimensions

UCF, BCF, TCF

Language - FORTRAN II

Hardware - CDC 3100

Three subroutines, UCF, BCF, and TCF (for Univariate, Bivariate, and Trivariate Curve Fit), for use in two-, three-, and four-space. Curve coefficients calculated by reduction technique due to P.D. Crout (1941). Output: printout of coefficients, in normalized floating point, and differences curve-to-points, in same format. Satellite subroutine SYNNEAT is called to solve m simultaneous equations in x. BIO Computer Note 68-1-C by F.A. Keyte, Jan. 1968.

Director
Bedford Institute of Oceanography
P.O. Box 1006
Dartmouth, N.S., Canada B2Y 4A2

Copy on file at NODC (Report with listing and documentation)

Subroutine for Fitting a Least-Squares Distance Hyperplane to Measured Data

Language - FORTRAN V

Hardware - UNIVAC 1108

A subroutine for modeling measured data in k-space by a least-squares distance hyperplane, and numerically compared with ordinary least squares. Minimizes the sum of the squares of the perpendicular distances from the points \(X_m \) to the hyperplane model. Input: Points \(X_m = (x_{m1}, x_{m2}, ..., x_{mk}) \) in k-space, where each component \(x_{mk} \) is in error. Output: Normal form of the hyperplane: \(A'x' - p = 0 \) (\(A' = A \times' = 1 \)); \(p \) is the distance from the origin of the coordinate axes to the hyperplane. NUSC/NL Tech. Memo. No. PA4-121-74, "A Computer Subroutine for Fitting a Least Squares Distance Hyperplane to Measured Data," by M.J. Goldstein.

Marvin J. Goldstein
Naval Underwater Systems Center
New London, CT 06320

Available from originator only

Telephone (203) 442-0771, ext. 2415
This routine fits a polynomial function \(Y(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_m x^m \) to the data \((x_1, y_1), (x_2, y_2), \ldots (x_n, y_n)\) by using the least squares criterion. The method is very accurate and should perform well for up to a 20-term polynomial and 100 data points.

Jerry Sullivan
Center for Experiment Design and Data Analysis
Washington, DC 20235
Available from originator only
Telephone (202) 634-7288

Least-Squares Plot
Language - FORTRAN
Hardware - IBM 7074

Fits an n-degree polynomial (max. \(n = 10 \)) or an exponential function to data points (max. 200), plotting the actual curve and the computed curve for comparison or plotting the data points only to help identify the type of curve they represent. DS No. 10112. Author - James S. Warden.

Data Systems Office
U.S. Naval Oceanographic Office
Washington, DC 20373
Available from originator only
Telephone (301) 763-1449

Temperature, Salinity Corrections
CRVFIT NIS512
Language - FORTRAN
Hardware - UNIVAC 1108/DEC PDP-9/6K words

Determines corrections for electronically measured temperature and salinity data, using linear and curvilinear regression techniques. Input: Temperatures or salinity data collected simultaneously with electronic sensors, reversing thermometers, and Niskin bottles. Output: Corrections for a range of possible observed values, equations of best fit linear, parabolic, and cubic equations, and standard error of estimate.

Harry Iredale
U.S. Naval Oceanographic Office
Washington, DC 20373
Copy on file at NODC (deck, listing, documentation)
Telephone (202) 433-3257

Bartlett's Curve Fitting
Language - FORTRAN
Hardware - IBM 1800

Bartlett's method for computing the best value for fitting a linear relationship or an exponential relationship. The 70% and 90% confidence limits on the slope are also found. The program takes a maximum of 99 sets of data, each with a maximum of 500 points. NIO Program No. 174. Author - Maureen Tyler.

National Institute of Oceanography
Copy on file at NODC (listing, documentation)
Wormley, Godalming, Surrey, England

Curve Fitting
CRVFT
Language - FORTRAN II
Hardware - GE 225

Finds either best least-squares fit to n points within specified standard deviation "sigma," or fits a specified "M-curve" order curve -- the former executed by M-curve negative, the latter by M-curve non-negative. In either case "SD" is the actual standard deviation as calculated. BJO Computer Note 66-5-C, Appendix 5; also, a 14-page writeup is in the "COPE" catalog (1965) of the Woods Hole Oceanographic Institution. Author - F.K. Keyte.
APPLIED MATHEMATICS

Linear Interpolation

LININT

Language - PL/I
Hardware - IBM 360-65/144 (hex) bytes

Computes a linear interpolation on fullword fixed binary integers. Author - Robert Van Wie.

Oceanographic Services Branch
National Oceanographic Data Center
NOAA/EDS
Washington, DC 20235

Copy on file at NODC
Telephone (202) 634-7439

Lagrangian Three-Point Interpolation

LAG3PT

Language - PL/I
Hardware - IBM 360-65

Computes a Lagrangian three-point interpolation; calls subroutine LININT. Author - Robert Van Wie.

Oceanographic Services Branch
National Oceanographic Data Center
NOAA/EDS
Washington, DC 20235

Copy on file at NODC
Telephone (202) 634-7439

Calculates Spline Coefficient

SPLCOF

Language - FORTRAN IV
Hardware - IBM 360-65

Calculates spline coefficient for use by routine SPLINE. Author - Dave Pendleton.

Oceanographic Services Branch
National Oceanographic Data Center
NOAA/EDS
Washington, DC 20235

Copy on file at NODC
Telephone (202) 634-7439

Interpolating by Cubic Spline

SPLINE

Language - FORTRAN IV
Hardware - IBM 360-65/832 bytes (object form)

Performs interpolation by cubic splines. This method fits a cubic spline between adjacent points while insuring that the first two derivatives remain continuous. The endpoints (X(1) and X(N)) use an extrapolation of the curvature at points X(2) and X(N-1). Author - Dave Pendleton.

Oceanographic Services Branch
National Oceanographic Data Center
NOAA/EDS
Washington, DC 20235

Copy on file at NODC
Telephone (202) 634-7439

Program for Smoothing Data Using the Cubic Spline

Language - FORTRAN IV
Hardware - UNIVAC 1108

Fits measured data with the smoothing cubic spline, using an extension of Reinsch's technique which brings the second derivative of the spline to zero at its end points. The extension allows end conditions on either first or second derivatives. Input: Set of sample data (x_i, y_i), i = 0, 1, ..., n/2; x_0 < x_1 < ... < x_n, and end conditions on either the first or second derivative and a smoothing parameter S c (N^{-1/4}, N^{1/2}), where N = n+1. Output: Smoothed data values.

Marvin J. Goldstein
Naval Underwater Systems Center
New London, CT 06320
Telephone (203) 442-0771, ext. 2415

Solve Algebraic Equations
 MATRIX
Solves n linear algebraic equations in n unknowns, using Cholesky's method.

Alan T. Massey
Naval Underwater Systems Center
Newport, RI 02840
Available from originator only
Telephone (401) 841-4772

Checks Angles
 TANG
In the use of angles, this routine assures that any angle remains between 0° and 360°.

Robert Dennis
Center for Experiment Design and Data Analysis, NOAA/EDS
Washington, DC 20235
Available from originator only
Telephone (202) 634-7344

Trigonometry Subroutines
 ASSUB, SAS, ASA
ASSUB calculates trig other side. Input: 1 angle, 2 sides. Output: Two possible side lengths; if either or both returned sides are zero, these values are undefined. SAS calculates other side. Input: Side, angle, side. Output: Length of other side. ASA calculates other two sides. Input: Angle, side, angle. Output: Length of other two sides.

Michael Moore
Scripps Institution of Oceanography
P.O. Box 1529
La Jolla, CA 92037
Available from originator only
Telephone (714) 452-4194

Inter-Active Calculations
 DDFP/CALC
Provides inter-active computing abilities for persons with the occasional need to do numerical calculations involving small amounts of data. The user may address either the "definition level" or "evaluation level" of ten independent working spaces in which any number of expressions may be defined. The program can save the total working environment for later use. Input: General arithmetic expressions defined in terms of alpha-numeric identifiers, system intrinsic functions and previously defined expressions. An expression is evaluated by assigning values to the independent variables in either an identifier prompting mode or free-field input mode.

W. Thomas Birtley
Deep Sea Drilling Project
Box 1529
La Jolla, CA 92037
Available from originator only
Telephone (714) 452-3526
DATA REDUCTION, EDITING, CONVERSION, INVENTORY, RETRIEVAL, AND SPECIAL INPUT-OUTPUT

Thermometer Correction
Language - FORTRAN IV
Hardware - XDS Sigma 7/12,500 words/2 tape units/CalComp Plotter

Plots thermometer correction curves and prints the calibration data for each thermometer. Formulas used are from "On Formulas for Correcting Reversing Thermometers," by F.K. Keyte.

Mary Hunt
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Available from originator only
Telephone (617) 548-1400

TCPLO

TCPLO Hardware - XDS Sigma
7/12,500 words/2 tape units/CalComp Plotter

Thermometer Correction, Depth Computation
Language - HP ASA Basic FORTRAN
Hardware - HP 2100/HP 2116/12K words/Keyboard/
CalComp Plotter/Paper tape optional

Corrects thermometer readings and computes depth or pressure. Input: Station Information, including thermometer readings, and thermometer calibrations. Output: Depth and corrected temperature for each station.

Chris Polloni
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Available from originator only
Telephone (617) 548-1400

Areal Concentration
Language - FORTRAN IV
Hardware - IBM 360/3676 bytes

INTEGRATE

Performs integration of samples taken at discrete depths to produce areal concentrations. Integration is of form \(\frac{\sum (d_{i+1} - d_i)(A_{i+1} + A_i)}{2} \) where \(d \) = depth and \(A \) = values of a variable for each of \(N \) depths. Input: Data cards containing sample identification codes and depth values along with substance to be integrated. An unlimited number of depths and variables may be integrated. Output: Printed output includes sample identification codes, list of depths and variable values, a depth-weighted average for each depth interval, and the running sum; punched output includes identification codes and integration from surface to selected depths. "A Computer Program Package for Aquatic Ecologists," by Paul J. Godfrey, Lois White, and Elizabeth Keokosky.

Paul J. Godfrey
Department of Natural Resources
Cornell University, Fernow Hall
Ithaca, NY 14850
Copy on file at NODC (listing, documentation)
Telephone (6.7) 256-3120

Unweighted Averages
Language - FORTRAN IV
Hardware - IBM 360/3824 bytes

AVERAGE

Calculates unweighted averages over depth; depths for which data are averaged may be controlled. Input: Data cards with sample identification codes, depth and variables to be averaged; if averages to be controlled by a variable such as thermocline depth, this must also be included. Output: Printed or punched averages of several variables in a form similar to the input data, i.e., one variable after another on each card, thus suitable for use in packaged programs. "A Computer Program Package for Aquatic Ecologists," by Paul J. Godfrey, Lois White, and Elizabeth Keokosky.
Bathymetric Data Reduction

Processes data gathered while navigating with any circular and/or hyperbolic system. Eight options are available pertaining to position conversion, form of input, data smoothing, special corrections, and interpolation of position-dependent values such as contour crossings. OS No. 53559.

Julian Day Conversion

Computes the date from the Julian day.

Julian Date Conversion Routines

Given the month (1-12), day, and year, JULDAY returns the Julian Day. JULIAN calculates month (in 10-character words) and day, given the year and Julian date. JULYAN calculates month (digital) and day from given year and Julian date. JULSEC yields Julian seconds from Julian day, hour, minute, and second. CESLUJ computes the Julian date, hour, minute, and second, given Julian seconds.

Day of the Week

This subroutine returns the day of the week for any date in the nineteenth or twentieth century. Modifications include conversion of the function to a subroutine so Julian day can be extracted and addition of an array containing an alphanumeric description of the day.

Date Calculations
Given year (4 digits) and Julian Day (1-366), DAYK produces the day of the week (1-7, Sun.-Sat.). Given packed date (bits 0-3 month, 4-8 day, 9-15 year), NWDAT produces following date, packed and unpacked. Given day, month, year, NXTDY returns day, month, year of next day. Given packed date, YSTDY produces preceding date (packed).

Michael Moore
Scripps Institution of Oceanography
P.O. Box 1529
La Jolla, CA 92037
Telephone (714) 452-4194

Julian Day Subroutines
CLEJL, CLJUL

Both subroutines calculate Julian Day. Input formats vary. CLEJL format, 01 Nov. 70; CLJUL format, day (1-31), year (00-99), month (1-12).

Time Conversion
DYNX

Calculates hours, minutes, and seconds, given thousandths of hours.

Current Meter Data Reduction

Converts data in the form of angular positions of the rotor and compass arcs from Braincon type 316 current meters into values of current speed and direction, tilt direction, N-S and E-W current components and displacements in kilometers from any arbitrary origin. Data are output to lineprinter with column headings and magnetic tape without headings. Author - W.J. Gould.

National Institute of Oceanography
Wormley, Codalming, Surrey
United Kingdom

Reduction and Display of Data Acquired at Sea

A system of programs (navigation, gravity, topography, magnetics) for the reduction, storage, and display of underway data acquired at sea. A large number of the programs utilize navigation points together with raw digitized geophysical data presented as a time series, where the different data may be read at unequal intervals. Technical Report No. 1, by Manik Talwani, August 1969.

Lamont-Doherty Geological Observatory
Columbia University
Palisades, NY 10964

Available from originator only

Scripps Institution of Oceanography
P.O. Box 1529
La Jolla, CA 92037
Telephone (714) 452-4194

Language - FORTRAN
Hardware - IBM 1800

Language - FORTRAN
Hardware - IBM 1800

Language - FORTRAN
Hardware - IBM 1800

Language - FORTRAN IV
Hardware - IBM 1800

Language - FORTRAN II
Hardware - IBM 1130/Disk/C..IComp 30" plotter

Available from NTIS, Order No. AD 693 293/LK, $10.00 paper copy, $2.25 microfiche.
Hydrographic Data Reduction Language - FORTRAN 63
TWO FIVE Hardware - CDC 3600

Proceeds raw data to obtain corrected depth, temperature, salinity, and oxygen, as follows:
(1) from protected deep-sea reversing thermometer readings, obtains corrected in situ temperature;
(2) from unprotected deep-sea reversing thermometer readings, obtains the thermometric depth, corrected for gravity variations and for the mean density of the overlying water column in any ocean; (3) fits least-squares curves to wire length vs. (wire length minus thermometric depth) to determine the accepted depth; (4) calculates salinity from raw salinity readings; (5) calculates dissolved oxygen concentrations from titrations. Report (unpublished manuscript) by Per-Olof Nantyla, Oct. 1970.

Station Data Reduction Language - FORTRAN II, FAP
STROP Hardware - IBM 7094-7040 DCS/25, 335 words (main program), 2058 words (subroutines)

Thermometer Correction Language - FORTRAN VI
TCUKZ Hardware - IBM 1130

Corrects deep-sea reversing thermometers, computes thermometric depths, allows spurious values to be removed from L-Z table, smooths the L-Z table, and punches smoothed depth and observed temperature and salinity and oxygen values onto cards in CODC format. Two other thermometer correction programs are available: TCIK1 uses the L/Z method; TCIK3 computes pressure. FRA Manuscript report No. 1071 (unpublished manuscript), by C.A. Collins, R.L.K. Tripe and S.K. Wong, Dec. 1969.

Read NODC Format Station Data Language - FORTRAN IV
Hardware - XDS Sigma 7

Subprogram READTAPE reads, unpacks, and returns to the user NODC oceanographic station data records, one station at a time. Subprogram MASTER takes information from master record and returns the information to the calling program. Subprogram ENVIR takes information from the first 24 characters of master or observed detail record and returns the information to the calling program in usable form. Subprogram DETAIL takes the information from an observed detail record and returns to the calling program correct values for all variables and suitable indicators for special conditions. Input to all subprograms: NODC station data on cards or tape.
Reads NODC Station Data Tape
EDIT
This subroutine reads a NODC station data tape (120 characters per record), checks the indicators in characters 81-120, sets the decimal points, then prints the master records, observed station data, and standard station data for each station. See program CAPRICORN.

Ruth McMath
Department of Oceanography
Texas A&M University
College Station, TX 77843
Telephone (713) 845-7432

Converts NODC Format Data to BNDO Format
TRANSNODC
This system prepares data in NODC format for introduction into the Poseidon system; header data are listed, stations are selected and separated into cruises with inventories at the cruise level, and output is provided in BNDO format. Report, "Transcodage des donnees NODC."

Mr. Stanislas, BNDO
Centre National pour l'Exploitation des Oceans
Boite Postale 337
29273 Brest Cedex, France
Telephone 80.46.50, telex 94-627

Converts Data to BNDO Format
TRANSCOD
This system prepares data in out-of-house formats for introduction into the Poseidon system; header data are listed, stations are selected and separated into cruises with inventories at the cruise level, and output is provided in BNDO format. Input formats are those of ORSTOM, SHOM, etc.

Mr. Stanislas, BNDO
Centre National pour l'Exploitation des Oceans
Boite Postale 337
29273 Brest Cedex, France
Telephone 80.46.50, telex 94-627

Reads BNDO Format Data
LSTX 1142
This subroutine is used to read easily the physical, chemical, and biological data in the complex and very flexible BNDO format. Data may be on disk, tape, or cards. After the call, the station is stored in a common area.

Mr. Stanislas, BNDO
Centre National pour l'Exploitation des Oceans
Boite Postale 337
29273 Brest Cedex, France
Telephone 80.46.50, telex 94-627
Editing for WHOI format

Provides several methods by which data stored in WHOI standard format may be edited and tested. Output is the corrected version of the data on 9-track tape. See HISTO format reference.

Richard E. Payne
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
Available from originator only
Telephone (617) 548-1400

Nailing Labels

Generates 4-up peel-off mailing labels on the line printer. Options: Bulk mail handling, sorting by user defined key, rejection of records by user defined key. Input: Addresses on punched cards; privileged information may be included which is not printed.

Peter B. Woodbury
Deep Sea Drilling Project
Box 1529
La Jolla, CA 92037
Available from originator only
Telephone (714) 452-3526

Fortran Access to Scientific Data

Designed to be used as a subroutine, FASD accomplishes the dual purpose of converting an existing data base to FASD format as well as providing a convenient unpack data handling tool. For user convenience, I/O tape status checking, bit shifting, data bias manipulation, etc., have been absorbed by the package so that raw data can be made immediately available from the FASD pack; or raw data can be packed into the FASD format by a single instruction. Available functions are fixed or floating point READ, WRITE, READ IDMT only, and SKIP. The present data base is NODC station data. Access time is 44 seconds for 1,000 random length observations. A table of pointers is maintained to insure accurate transmission of observation data. The FASD format provides an extremely tight pack of thermal structure data where the observation format consists of an identification (parameters such as position, metering device, station number, date time group) and a temperature profile. The FASD format is not computer word length oriented. Input: (1) Raw data to be packed into the FASD format, or (2) magnetic tape containing data in the FASD format. Output: If input (1), a magnetic tape containing FASD packed data; if input (2), raw data are output to the driving program.

Alan W. Church, Code 80
Fleet Numerical Weather Central
Monterey, CA 93940
Copy on file at NODC (listing)

Reproduce and Serialize Deck

Reproduces, lists, and serializes source or data decks. Program options allow reproduction without serialization and up to 999 reproductions and listings of the input deck. Input may be any standard FORTRAN or alphanumeric punch deck.

Jack Foreman
Center for Experiment Design and Data Analysis, NOAA/EDS
Washington, DC 20235
Available from originator only
Telephone (202) 634-7344

Flags Suspicious Data Values

Language - FORTRAN IV
Hardware - IBM 360-65
WITQ is designed as a computationally fast and efficient means of flagging suspiciously large or small values in a series of data. The data series is fitted with a least-squares fit straight line under the assumption that the programmer limits the length of the data series to regions sufficiently small so that the straight line is locally a good approximation to the trend.

Donald Acheson
Center for Experiment Design and Data Analysis, NOAA/EDS
Washington, DC 20235
Telephone (202) 634-7288

Format Free Input Subroutine
READ
A format free input subroutine for cards or other sources. Input: Integer array with first eight variables set to determine input.

Michael Moore
Scripps Institution of Oceanography
F.O. Box 1529
La Jolla, CA 92037
Telephone (714) 452-4194

Meters vs. Fathoms
MATRL
Produces table of corrected depths in meters vs. raw fathoms.

Michael Moore
Scripps Institution of Oceanography
F.O. Box 1529
La Jolla, CA 92037
Telephone (714) 452-4194

A File-Independent, Generalized Application System, GAS

Development of GAS was based on the following premises: (1) most files of oceanographic data consist of identification fields (location, date, etc.), an independent variable (perhaps water depth or time), and one or more dependent variables (e.g., water temperature or dissolved oxygen); (2) a system could be designed to treat these items uniformly, i.e., instead of tailoring programs to a discrete data file, the basic units could be extracted and transmitted to a generalized applications system from which many products could be derived. As a result, GAS has "n" number of applications programs, rather than a theoretical maximum of "n" times the number of files. Only one extra program was necessary — the conversion module which provides a link between the various data files and the GAS system. The system of applications programs is tailored to an intermediate file created by this conversion module. Version 1 of the conversion module can access the files for Nansen casts, mechanical bathythermographs (ST), and expendable bathythermographs (XBT); soon to be added are the continuous salinity-temperature-depth (STD) file, ICES ocean surface reference file, and data from cooperative oceanographic research projects.

A File-Independent, Generalized Application System, GAS

Language - FORTRAN IV-G, Assembler, PL/1-F
Hardware - IBM 360-65

Application/Display Program ➔ File-Access Subprogram ➔ Conversion Program ➔ GAS Records on Tape or Disk ➔ File-Creator Subprogram ➔ To Next Application

149
Following are descriptions of individual programs and subroutines:

GASDIPBS reads the NODC GAS file and, on one pass of the data, produces any one of three different printouts, depending on the control card entry. Author - Gary Keull (44K, FORTRAN IV-G).

GASSAMPC prints the first three and the last basic master records only of a GAS formatted data set and gives a record count. Author - Gary Keull (38K, FORTRAN IV-G).

GASEINV prints out a geographic inventory of GAS data by ten-degree square, one-degree square, and month, and gives counts of all ten degrees and ten degrees and a total number of stations processed. Author - Gary Keull (40K, FORTRAN IV-G).

GASCCI reads GAS records and prints out country code, reference identification number, and from and to consec numbers. Also gives a total station count. Author - Gary Keull (44K, FORTRAN IV-G).

GASVAPRT reads the output of the program GASVASUH and prints vertical array summaries. Author - Walter Mforavski (48K, FORTRAN IV-C).

GVAREFLM takes the GAS vertical array summary programs stored records and produces a 110 character output record. Author - Gary Keull (30K, FORTRAN IV-G).

GASTHIER computes the depth of the thermocline and mixed layer if desired. Also outputs a temperature gradient analysis. Author - Walter Morawski (40K, Assembler).

GASMASK reads the basic and supplementary master information and produces a detailed printout of master information and headings for each station. Author - Judy Yawner (100K, PL/I-F).

INDATA reads GAS records and transfers all the fields present into a common area in core of the calling program. With each call to this subroutine, all master and independent-dependent parameter pairs are transferred to the common area. Author - Walter Morawski (748 bytes (object form), Assembler).

Subroutine CANADA computes Canadian ten-degree, five-degree, two-degree, one-degree, and quarter-degree squares from latitude and longitude degrees and minutes. Authors - Walter Morawski and Gary Keull (3K, FORTRAN IV-G).

Subroutine CREATE creates GAS records when called from a user's program. Author - Walter Morawski (630 bytes (object form), Assembler).

GAS accesses the major files of NODC and creates records compatible with the GAS system. Author - Walter Morawski (96K, FORTRAN IV-G).

MONTH80 selects all stations with a month entry that corresponds to a particular control card entry. Author - Gary Keull (44K, Assembler).

CHEM80 selects all stations with a non-zero chemistry percentage that corresponds to a control card entry. Author - Gary Keull (44K, Assembler).

DEPTH80 selects all stations with a maximum depth greater than the control card entry. Author - Gary Keull (44K, Assembler).

LATLON80 selects an area based on latitude and longitude degrees and minutes entered in a control card. Author - Gary Keull (24K, Assembler).

GASORDER selects certain GAS records (specified by cruise and consec numbers) from an input tape and inserts a sort-order number in an unused area. The output, when sorted on this order number, will be in whatever order the user has specified on the control cards. Author - Walter Morawski (35K, Assembler).

GASVASUM reads GAS type 1, 2, or 3 records and produces three output GAS format records that contain a vertical array summary. (Depth, Max, Avg, Min, Number, Standard Deviation). Summaries are at NODC standard levels, five meter intervals, or ten meter intervals, depending on the input. Author - Walter Morawski (86K, FORTRAN IV-G).
ALTERGAS reads a primary GAS file and finds matches to these records in an auxiliary GAS file. Before outputting, records may be altered and a single file of records may be altered in any way. Author - Walter Morawski (90K, FORTRAN IV-G).

GAS accesses several major files at NODC and creates records compatible with GAS. Author - Walter Morawski (90K, FORTRAN IV-G with Assembler input-output routines).

NODCSQ takes the latitude and longitude fields from the GAS master fields and computes the NODC ten-degree, five-degree, two-degree, one-degree, quarter-degree, and six-minute squares and replaces them into the master field arrays. Author - Walter Morawski (2K, FORTRAN IV-G).

NAHES prints the names of the dependent and independent parameters of the GAS system. At present, there are 29 names which may be printed all at once or singularly; this subroutine is used in program GASDIPS for output type 2 listings. Author - Gary Keull (28K, FORTRAN IV-G).

SD2GAS accesses the NODC SD2 (station data 2) file, selects upon various criteria, and outputs GAS records of various types; user may at same time output regular SD2 records for use by non-GAS programs. The following options are available:
A. Standard and/or observed depths only will be returned;
B. If a value is missing at a particular level, it may be interpolated;
C. Doubtful and questionable data may or may not be included;
D. Chemistry values may be shifted to NODC prescribed nearest standard levels.

Output formats available:
-1 Basic GAS master fields;
-2 Basic GAS master fields and all supplementary fields present;
0 Basic GAS master fields and one independent-dependent parameter pair;
2 Basic GAS master fields and parameter pairs at ten-meter intervals;
3 Basic GAS master fields and parameter pairs at Nansen levels;
4 Basic GAS master fields and parameter pairs whenever they appeared in that particular record;
5 Basic GAS master fields and parameter pairs at depth intervals specified by the user.

Author - Walter Horawski (96K, FORTRAN IV-G).

GASSCUDS summarizes SCUDS (surface current-ship drift) records by area, ten-degree, five-degree, two-degree, one-degree, quarter-degree, one-tenth-degree squares, year, month, or day. Outputs produced are optional. Variations include two print formats or two tape formats. Parameters include all geographic information, month, year, day, north and east components, resultant speed and direction, total observations, number of calms, max and mean speeds, and standard deviation. Also available is a distribution of individual observations by speed and direction. Authors - Gary Keull and Walter Horawski (80K, FORTRAN IV-G).

Oceanographic Services Branch Copy on file at NODC (tape, documentation)
National Oceanographic Data Center NOAA/EDS
Washington, DC 20235 Telephone (202) 634-7439

Other NODC Programs Hardware - IBM 360-65

STD Data:

STDRETV retrieves records from the STD geofile; sections are made on the basis of optional select fields; with one exception, these select fields are located in the master records. Author - Robert Van Wie (Assembler).

Station Data:

SD2TOSDI converts station data from SD2 variable length record to SD1 80 or 83 byte records. Author - Walter Morawski (36K bytes, Assembler).

SDDCHAR processes a series of 83 byte records to construct a one-record-per-station file of variable length character records. Author - Robert Van Wie (92K bytes, PL/1).
SDPR2 produces an edited listing of the SD2 variable length record or data in the 80 byte format. Author - Sally Heimerdinger (36K bytes, Assembler).

SDSELECT selects SD1 records by Haraden square, one-degree square, or card type. Author - Michael Flanagan (24K bytes, Assembler).

SDMSTCT counts the number of SD2 records and prints the first 50 records and the last record. Author - Elmer Freeman (50K bytes, Assembler).

SDISAMP selects five records from SD2 tape; used to give users a sample of SD2 data. Author - Walter Morawski (36K bytes, Assembler).

SDGEOIV reads SD2 master and summarizes the number of stations by month, year, one-degree square, five-degree square, and modified Canadian (ten-degree) square; best results are obtained when running against a geographically sorted file. Author - Michael Flanagan (14K bytes, PL/I).

MAKE20 converts an 80 or 83 byte record from the NODC station data geofile to the 120 character zon-edit format for the IBM 7074. Author - Walter Morawski (36K bytes, Assembler).

DEPTH selects full station data records with depths greater than a given hundred-meter interval. Author - J. Gordon (17K bytes, Assembler).

CRUCON reads either the SD2 file or SD2 master file and prints the NODC cruise consec number inventory. Author - Walter Morawski (36K bytes, Assembler).

CODCONV converts station data in the format of the Marine Environmental Data Service (formerly CODC - Canadian Oceanographic Data Center) to the NODC format. A table of control cards is required to convert the Canadian cruise reference numbers to the NODC system. Author - Walter Morawski (24K bytes, Assembler).

SUPERSEL selects from the SD2 geofile or master file by Canadian (ten-degree) square. Input file is sorted in Canadian square order; output is identical in format, but contains only the data from the desired Canadian squares. Author - Walter Morawski (36K bytes, Assembler).

SDPASS retrieves SD2 records from either the cruise-sorted file, the geosorted file, or the master file. Output is on one of four formats: (1) the original variable length record; (2) a series of 80 byte fixed-length records; (3) 105 byte fixed-length records; (4) undefined records. Author - Robert Van Wie (Assembler).

Expendedable Bathythermograph Data:

XORDER selects XBT data by cruise consec number; inserts a sort number in an unused space; the output, when sorted on this number, will be in whatever order was specified by the user on control cards. Author - Walter Morawski (36K bytes, Assembler).

XBEVALU compares production with standard sample XBT's; sorts input by reference number and consec number before testing and evaluation; prints evaluation statistics. Author - Michael Flanagan (PL/I).

XBTQKOUT enables the user to choose the type of XBT output and the mode of output. Author - Philip Hadessell (60K bytes, FORTRAN IV-G).

XBCONV converts data from seven-track tapes in old NODC XBT format to new NODC format suitable for nine-track tape. Input: Contractor-processed XBT's. Output on disk. Author - Pearl Johnson (56K bytes, PL/I).

XBTQCOUNT gives a station count of XBT data from either the cruise file or the geofile. Author - Elmer Freeman (Assembler).

XBFMC, run after XBFPSUM, reads control cards providing cruise and other master information and, for each cruise, converts (or deletes) Fleet Numerical Weather Central XBT data to the NODC XBT tape record format. Author - Judy Yavner (50K bytes, PL/I).
KBFNWSUM provides a summary of the cruises contained on a file of XBT data from Fleet N.Amer-
ican Weather Central. Author - Judy Yavner (22K bytes, PL/I).

XBSELECT retrieves from the XBT data file by inputting the desired FORTRAN "if" statements.
Author - Philip Hadsell (9K bytes, FORTRAN IV-G).

RETXBT retrieves records from the XBT cruise file or the XBT geofile. Author - Robert Van Wie
(Assembler).

XBTCONV converts the XBT binary-character formatted records to an undefined all-character rec-
ord with a maximum length of 2500 bytes; primarily used to satisfy requests for XBT data on
seven-track tape. Author - Sally Heimerdinger (650 bytes plus 2 times the sum of the buffer
lengths, Assembler).

XBMNSIV, using the subroutine XREAD, reads cruise-ordered XBT data and produces a summary of
each cruise (one line per cruise), indicating the NODC cruise number, the number of observa-
tions per cruise, the beginning and ending dates, the NODC ship code, and the originator's
cruise number. Author - Philip Hadsell (FORTRAN).

XBGEOOSUM prints a summary of the number of observations within given seasons, one-degree
squares, ten-degree square., and quadrants. Author - Philip Hadsell (80K bytes, FORTRAN IV-G).

Mechanical Bathythermograph Data:

RETB T retrieves records from the BT cruise file . r the BT geofile. Author - Robert Van Wie
(Assembler).

BTLISTC provides edited printout with headings of the NODC geographically-sorted bathythermo-
graph file. Author - Michael Fl..gan (2600 bytes, Assembler).

BTGEOIV reads the bathythermograph file, summarizes the number of stations by month, year, one-
degree square, five-degree square, and Maraden square. Author - Charlotte Sparks (14K bytes,
PL/I).

Other NODC programs:

SCHININE prints data from H1-9 surface current file; produces simultaneously any one of the fol-
lowing combinations: (1) edited listing of the entire file; (2) edited listing and punched
 cards, both for the entire file; or (3) edited listing, unedited listing, and magnetic tape.
 all for only the first 150 records. Author - Rosa T. Washington (Less than 56K bytes, PL/I).

SCMULTI outputs surface current data in any one of the following combinations: (1) edited
listing of the entire file; (2) edited listing and punched cards for the entire file; or (3)
edited listing, unedited listing, and magnetic tape, all for only the first 100 records. Au-

DRYLAND reads a sequential tape file and identifies any one-degree square which is comple-

CAMWO computes a WHO square, given a Modified Canadian square. Requires subroutines GRIDSQ,
TENSQ, and WHO. Author - Robert Van Wie (FORTRAN).

Oceanographic Services Branch
National Oceanographic Data Center
EDS/NOAA
Washington, DC 20235

Reformatted Station Output
IBM 1

Outputs formatted hydrographic and nutrient chemical data by station; input is NOAA format raw
data. Author - Stephen A. Macko.
B.J. McAlice
Ira C. Darling Center (Marine Laboratory)
University of Maine at Orono
Walpole, ME 04573
Telephone (207) 563-3146

Available from originator only
<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
<th>Author/Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>126</td>
<td>A TO D</td>
<td>AMEIN MICHAEL</td>
</tr>
<tr>
<td>20</td>
<td>AACAL</td>
<td>ANGGER-DAYS</td>
</tr>
<tr>
<td>20</td>
<td>AANDERAA CURRENT METER</td>
<td>AMERICAN POLYCONIC GRID COORDINATES</td>
</tr>
<tr>
<td>79</td>
<td>AANDERAA CURRENT METER</td>
<td>AMERICAN PUBLIC HEALTH ASSN</td>
</tr>
<tr>
<td>58</td>
<td>ABRAMSON NORMAN J</td>
<td>AMMONIA</td>
</tr>
<tr>
<td>60</td>
<td>ABRAMSON NORMAN J</td>
<td>ANMOS</td>
</tr>
<tr>
<td>130</td>
<td>ABSOLUTE VALUES SQUARE OF</td>
<td>AMSTUTZ</td>
</tr>
<tr>
<td>54</td>
<td>ABUNDANCE</td>
<td>ANALGG TRACES</td>
</tr>
<tr>
<td>101</td>
<td>ACQUISITION LAMINAE</td>
<td>ANALGG TO DIGITAL TIME SERIES</td>
</tr>
<tr>
<td>8</td>
<td>ACCELERATION POTENTIAL</td>
<td>ANALYS</td>
</tr>
<tr>
<td>30</td>
<td>ACCELERATION</td>
<td>ANCHOR</td>
</tr>
<tr>
<td>126</td>
<td>ACFFT</td>
<td>ANCHOR</td>
</tr>
<tr>
<td>149</td>
<td>ACHESON DONALD</td>
<td>ANCHOR</td>
</tr>
<tr>
<td>126</td>
<td>ACORR</td>
<td>ANCHOR</td>
</tr>
<tr>
<td>99</td>
<td>ACoustics performance and evaluation</td>
<td>ANCHOR</td>
</tr>
<tr>
<td>101</td>
<td>ACOUSTIC RAY TRACING</td>
<td>ANCHOR</td>
</tr>
<tr>
<td>109</td>
<td>ACOUSTIC TRANSPONDER NAVIGATION</td>
<td>ANCHOR</td>
</tr>
<tr>
<td>126</td>
<td>ACRPLT</td>
<td>ANCHOR</td>
</tr>
<tr>
<td>23</td>
<td>ACTIVITY COEFFICIENTS</td>
<td>ANCHOR</td>
</tr>
<tr>
<td>23</td>
<td>ACTIVITY PRODUCTS</td>
<td>ANCHOR</td>
</tr>
<tr>
<td>27</td>
<td>ADAMS-BASHFORD PREDICTOR</td>
<td>ANCHOR</td>
</tr>
<tr>
<td>10</td>
<td>ADIABATIC TEMPERATURE GRADIENT</td>
<td>ANCHOR</td>
</tr>
<tr>
<td>99</td>
<td>ADSORPTION COEFFICIENTS</td>
<td>ANCHOR</td>
</tr>
<tr>
<td>72</td>
<td>ADVECTION</td>
<td>ANCHOR</td>
</tr>
<tr>
<td>25</td>
<td>AERIAL PHOTOGRAPHY</td>
<td>ANCHOR</td>
</tr>
<tr>
<td>51</td>
<td>AFFINITY</td>
<td>ANCHOR</td>
</tr>
<tr>
<td>58</td>
<td>AGE</td>
<td>ANCHOR</td>
</tr>
<tr>
<td>59</td>
<td>AGE</td>
<td>ANCHOR</td>
</tr>
<tr>
<td>60</td>
<td>AGE</td>
<td>ANCHOR</td>
</tr>
<tr>
<td>62</td>
<td>AGE</td>
<td>ANCHOR</td>
</tr>
<tr>
<td>64</td>
<td>AGE</td>
<td>ANCHOR</td>
</tr>
<tr>
<td>126</td>
<td>AIR-SEA INTERACTION</td>
<td>AIRY WAVES</td>
</tr>
<tr>
<td>134</td>
<td>AIR-SEA INTERFACE TEMPERATURE FLUCTUATION</td>
<td>AIRCRAFT OBSERVATIONS</td>
</tr>
<tr>
<td>90</td>
<td>AIRCRAFT OBSERVATIONS</td>
<td>AIRPHOTO ANALYSIS</td>
</tr>
<tr>
<td>25</td>
<td>AIRPHOTO ANALYSIS</td>
<td>AIRY WAVES</td>
</tr>
<tr>
<td>83</td>
<td>AIRY WAVES</td>
<td>ALASKA PLANE COORDINATE SYSTEM</td>
</tr>
<tr>
<td>113</td>
<td>ALASKA PLANE COORDINATE SYSTEM</td>
<td>ALATORE MIGUEL ANGEL</td>
</tr>
<tr>
<td>6</td>
<td>ALATORE MIGUEL ANGEL</td>
<td>ALBACORE</td>
</tr>
<tr>
<td>59</td>
<td>ALBACORE</td>
<td>ALBEMARLE SOUND</td>
</tr>
<tr>
<td>26</td>
<td>ALBEMARLE SOUND</td>
<td>ALBEOD</td>
</tr>
<tr>
<td>87</td>
<td>ALBEOD</td>
<td>ALBERS EQUAL AREA CCNIC PROJECTION</td>
</tr>
<tr>
<td>110</td>
<td>ALBERS EQUAL AREA CCNIC PROJECTION</td>
<td>ALCT</td>
</tr>
<tr>
<td>22</td>
<td>ALCT</td>
<td>ALERS PERRY B</td>
</tr>
<tr>
<td>120</td>
<td>ALERS PERRY B</td>
<td>ALERT</td>
</tr>
<tr>
<td>103</td>
<td>ALERT</td>
<td>ALERT</td>
</tr>
<tr>
<td>126</td>
<td>ALIGN</td>
<td>ALERT</td>
</tr>
<tr>
<td>22</td>
<td>ALKALINITY</td>
<td>ALPHAS</td>
</tr>
<tr>
<td>6</td>
<td>ALPHAS</td>
<td>AMBROSIOI NESTOR LOPEZ CAPITAN DE FRAGATA</td>
</tr>
<tr>
<td>151</td>
<td>ALBOSAS</td>
<td>AMBROSIOI NESTOR LOPEZ CAPITAN DE FRAGATA</td>
</tr>
<tr>
<td>26</td>
<td>AMBROSIOI NESTOR LOPEZ CAPITAN DE FRAGATA</td>
<td>AMEIN MICHAEL</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Astronomical Tide Prediction</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Astronomical Tides</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Atlas</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Atlantic Wind Waves/Shells</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Atmospheric Pressure</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Atmospheric Water Content Model</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Atwood Donald K</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Augur</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Alt cov</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>Autocov</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>Alto</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>Autocovariance</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Autocorrelation</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Autocorrelation</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>Autocorrelation</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>Autocovariance</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Autocovariance</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>Automated Contour</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>Autopley</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>Autoregressive Average</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Autoregressive integrated moving average model</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>Autoregressive integrated moving average model</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>Average</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>Averages unweighted</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Axial Strain</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Axis</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Axis Depth</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>Azimut</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Azimuth Method</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Azimuth</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Azimuth</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Azimuth</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Azimuth</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Azimuth</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Azimuthal Equidistant Projection</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Azimuthal Equidistant Projection</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Bicarbonate Alkalinity</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Bicarbonate Alkalinity</td>
<td></td>
</tr>
<tr>
<td>8528</td>
<td>BCF</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>BCP Extraction</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Backus</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Bait Boats</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Balfini Refraction Model</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>Band Width</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Bandwidth</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Bar Graph</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Bar Migration</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Barnett</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Barnett & LCSR</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Barometric Pressure</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Barronites Celso S</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Barringer Proton Magnetometer</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Baprcn John L</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Barron John L</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Bartlett's Three Group Method</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Bartlett's Curve Fitting</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Basin Bottom Profile</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Bass P B</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Bathymetric Chart</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Bathymetric profiles</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Bathymetry</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Bathymetry</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Bathymetry</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Bathymetry</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Bathymetry</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>Bathymetry</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Bathymetry Annotation</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Bathymetry Digitization</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Bathymeterograph</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>Bathymeterograph</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>Bathymeterograph See also Bathymeters</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Bathythermographs</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Bauer H R</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Bay Chesapeake Model</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Bayliff W F</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>EAYS Model</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>BCF</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Beach and Nearshore Maps</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Beach Simulation Model</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Beckman-Whitley Radiometer</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Bell Laboratories</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Bell Th</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Bennett Andrew</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Bergstrom</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Berninghausen William</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Berude Catherine L</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Berude Catherine L</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Berude Catherine L</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Best Dennis</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Bevertone-Mot Yield Equation</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Bevertone P J H</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Bevertone R J H</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Bevertone R J H</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>Bevery W H</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Beach and Nearshore Maps</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Bills G</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>Bingham C</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Binomial Smoothing</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Binomial Distribution</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Bicassay</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Bigdal Shipboard Logging System</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Biological Oxygen Demand</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Bicm</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Biomass</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Biomass</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Biometry</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>Birtley W Thomas</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Bisset-Berman</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Bit-Reversing</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>Blacky</td>
<td></td>
</tr>
</tbody>
</table>

156
<table>
<thead>
<tr>
<th>Page</th>
<th>Column 1</th>
<th>Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>BLATSTEIN IRA M</td>
<td>34</td>
</tr>
<tr>
<td>13</td>
<td>BLISS KENNETH A</td>
<td>36</td>
</tr>
<tr>
<td>29</td>
<td>BLUMBERG ALAN FRED</td>
<td>37</td>
</tr>
<tr>
<td>147</td>
<td>BADO FORMAT</td>
<td>74</td>
</tr>
<tr>
<td>147</td>
<td>BADO FORMAT</td>
<td>37</td>
</tr>
<tr>
<td>26</td>
<td>BOD</td>
<td>37</td>
</tr>
<tr>
<td>20</td>
<td>BOICOURT WILLIAM</td>
<td>37</td>
</tr>
<tr>
<td>111</td>
<td>BOLTEN R A</td>
<td>31</td>
</tr>
<tr>
<td>109</td>
<td>BOLTEN R A</td>
<td>30</td>
</tr>
<tr>
<td>110</td>
<td>BOLTEN RCNALD</td>
<td>30</td>
</tr>
<tr>
<td>109</td>
<td>BOLTEN RCNALD M</td>
<td>45</td>
</tr>
<tr>
<td>134</td>
<td>BONH</td>
<td>14</td>
</tr>
<tr>
<td>34</td>
<td>BCKERANG CCER</td>
<td>48</td>
</tr>
<tr>
<td>124</td>
<td>BORKOWSKI MARILYNN</td>
<td>143</td>
</tr>
<tr>
<td>112</td>
<td>BORQUIN LARRY</td>
<td>12</td>
</tr>
<tr>
<td>51</td>
<td>BERTHICK PATRICK W</td>
<td>23</td>
</tr>
<tr>
<td>82</td>
<td>BCTON STRESS</td>
<td>83</td>
</tr>
<tr>
<td>92</td>
<td>BCTON REFLECTIVITY</td>
<td>112</td>
</tr>
<tr>
<td>95</td>
<td>BCTON REFLECTION COEFFICIENTS</td>
<td>114</td>
</tr>
<tr>
<td>100</td>
<td>BCTON TOPOGRAPHY</td>
<td>150</td>
</tr>
<tr>
<td>15</td>
<td>BCUYANCE-FREQUENCY</td>
<td>150</td>
</tr>
<tr>
<td>132</td>
<td>BCXCAR WINDOW</td>
<td>153</td>
</tr>
<tr>
<td>133</td>
<td>BDX GEP</td>
<td>153</td>
</tr>
<tr>
<td>22</td>
<td>BRACKISH WATER</td>
<td>84</td>
</tr>
<tr>
<td>75</td>
<td>BRAINCON CURRENT METER</td>
<td>84</td>
</tr>
<tr>
<td>79</td>
<td>BRAINCON CURRENT METER</td>
<td>7</td>
</tr>
<tr>
<td>145</td>
<td>BRAINCON 316 CURRENT METER</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>BRANCH D</td>
<td>22</td>
</tr>
<tr>
<td>117</td>
<td>BRANCH D</td>
<td>49</td>
</tr>
<tr>
<td>134</td>
<td>BRAY T</td>
<td>52</td>
</tr>
<tr>
<td>73</td>
<td>BRILLOUIN</td>
<td>23</td>
</tr>
<tr>
<td>138</td>
<td>BROWN HELVIN O</td>
<td>49</td>
</tr>
<tr>
<td>8</td>
<td>BRLNT-VAISALA FREQUENCY</td>
<td>22</td>
</tr>
<tr>
<td>16</td>
<td>BRLNT-VAISALA FREQUENCY</td>
<td>52</td>
</tr>
<tr>
<td>17</td>
<td>BRLNT-VAISALA FREQUENCY</td>
<td>54</td>
</tr>
<tr>
<td>14</td>
<td>BT</td>
<td>78</td>
</tr>
<tr>
<td>17</td>
<td>BT</td>
<td>78</td>
</tr>
<tr>
<td>20</td>
<td>BT</td>
<td>16</td>
</tr>
<tr>
<td>90</td>
<td>BT PREDICTED</td>
<td>50</td>
</tr>
<tr>
<td>133</td>
<td>BTGEOIV</td>
<td>56</td>
</tr>
<tr>
<td>153</td>
<td>BTLISTC</td>
<td>57</td>
</tr>
<tr>
<td>48</td>
<td>BULK WET DENSITY</td>
<td>59</td>
</tr>
<tr>
<td>33</td>
<td>BUDY</td>
<td>63</td>
</tr>
<tr>
<td>35</td>
<td>BUOY DRIFT</td>
<td>62</td>
</tr>
<tr>
<td>37</td>
<td>BUOYS SUBSURFACE</td>
<td>23</td>
</tr>
<tr>
<td>40</td>
<td>BYRO WILLIAM E JR</td>
<td>126</td>
</tr>
<tr>
<td>4</td>
<td>C 18 A 18 X</td>
<td>126</td>
</tr>
<tr>
<td>4</td>
<td>C 18 A 23 X</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td>C 18 A 32 X FO</td>
<td>53</td>
</tr>
<tr>
<td>22</td>
<td>CO2 AND D.O. SAT</td>
<td>14</td>
</tr>
<tr>
<td>22</td>
<td>CO2 FREE</td>
<td>113</td>
</tr>
<tr>
<td>6</td>
<td>CO4 SAL</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>C44 TETA</td>
<td>62</td>
</tr>
<tr>
<td>6</td>
<td>C46 SGNH</td>
<td>23</td>
</tr>
<tr>
<td>30</td>
<td>CABANA</td>
<td>105</td>
</tr>
<tr>
<td>30</td>
<td>CABLE</td>
<td>116</td>
</tr>
<tr>
<td>32</td>
<td>CABLE</td>
<td>150</td>
</tr>
<tr>
<td>33</td>
<td>CABLE</td>
<td>150</td>
</tr>
<tr>
<td>124</td>
<td>DVR 10</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>DVRSTY</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>DYAMOM</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>DYE PATCH MOVEMENTS</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>EEMPIG</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DYNAMIC DEPTH</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>DYNAMIC DEPTH ANOMALY</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>DYNAMIC DEPTH ANOMALY</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DYNAMIC HEIGHT</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>DYNAMIC HEIGHT</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>DYNAMIC HEIGHT</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>DYNAMIC HEIGHT</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>DYNAMIC HEIGHT</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>DYNAMIC HEIGHT</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DYNAMIC HEIGHT ANOMALY</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>DYNAMIC STRESS RESPONSE</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>DYNAMIC TENSION</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>DYNAMICAL FIELDS</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>DYNAMICS ESTUARINE</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>DYNHT</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>DYSSEN</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>EAPES M C</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>EARTH CURVATURE CORRECTIONS</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>EARTH MODELS</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>EARTH SPHERICAL</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>EARTH SPHERICAL SUBROUTINES</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>EARTHQUAKES MICRO</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>EAST COAST STORM SURGE</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Eaton A G</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>EBRPLT</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>ECPROD</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>ECOSTAT</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>EDDY</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>EDIST</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>EDIT</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>EDITQ</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>EDO-WESTERN PRECISION DEPTH RCDR</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>EFFICIENCY</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>EFFORT</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>EM VALUES</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>EIGEN FUNCTIONS</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>EIGEN FUNCTIONS</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>EIGEN FUNCTIONS</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>EIGEN RAYS</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>EIGEN VALUES</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>EIGENVALUES</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>EIGENVALUE</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>EIGENVALUES</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>EIGENVECTORS ORTHOGONAL</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>EINSTEIN L T</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>EKMAN CURRENT METER</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EKMAN TRANSPORT</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>EKMAN VM</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>ELASTICITY CABLE</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>ELECTRO MECHANICAL CABLE</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ELEUTERIUS</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>ELONGATION</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>EM LSU</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>EMPIG</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>END CONSTRAINTS</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>END MOMENT</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>END RESPONSES</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>END ROTATION</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ENERGY ANOMALY POTENTIAL</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ENERGY POTENTIAL</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>ENERGY WAVE AND CURRENT</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>ENERGY FLUXES</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>ENERGY SPECTRUM</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>ENGINEERING INDEX OF CORE SAMPLES</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>ENGRAULID STOCKS</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>ENGRSEP</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>ENVIR</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>ENVIRONMENTAL DYNAMICS</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>ENVIRONMENTAL CHANGES EFFECT ON SEA ICE</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>ETVOS CORRECTION</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>ETVOS CORRECTION</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>ETVOS CORRECTION</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>ETVOS CORRECTION</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>EPPELEY PYRHELIOMETER</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>EQUAL AREA SINUSOIDAL PROJECTION</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>EQUALITY OF MEANS TEST</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>EQUILIBRIUM APPROXIMATION</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>EQUILIBRIUM YIELD</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>ERCISION BEACH</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>ESTEC</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>ESTCH</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>ESTPAC</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>ESTPL</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>ESTUARY</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>ESTUARY</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>ESTUARY</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>EULER METHOD</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>EULER METHOD</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>EUMETRIC YIELD</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>EUREKA</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>EUREKA</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>EUROPEAN CATUM</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>EVAPORATIVE HEAT EXCHANGE</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>EXCES</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>EXCITATION</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>EXCITATION BY CURRENTS</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>EXCITATION STROHAL</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>EXPENDABLE EATHYHERMOGRAPH</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>EXSMD</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>EYSMD</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>EXTENDED NORMAL SEPARATOR</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>F3</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>FAA PLOT</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>FAGER E W</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>FARRELL J</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>FASC</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>FASHAM M</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>FASHAM M</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>FAST FIELD</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>FAST FOURIER TRANSFORM</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>FAST FOURIER TRANSFORM</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>FAST FOURIER TRANSFORM</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>FAST FOURIER TRANSFORM</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>FAST FOURIER TRANSFORM</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>FATCA</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>FATCRM</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>FATG</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>FATMPR</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>FAUNAL BREAKS</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>FECHER MICHAEL</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>FEE EVERETT J</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>FEEDBACK OCEAN-ATMOSPHERE</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>FFlN</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>FFT</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>FFTS</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>FFT</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>FFTCNPC</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>FFTCVPY</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>FFFTPS</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>FFTSPC</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>FICKIAN DIFFUSION EQUATION</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>FILTER</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>FILTER 1</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>FILTER ARBITRARY</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>FILTER DESIGN</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>FILTERS NON-RECURSIVE DIGITAL</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>FINGLAY D J</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>FINITE-DIFFERENCE EQUATION</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>FINITE DIFFERENCE</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>FINITE ELEMENT SCHEME</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>FINITE DIFFERENCE</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>FINN EDWARD J</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>FINNEY DJ</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>FISHER'S EXACT TEST</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>FISHER'S DISTRIBUTION</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>FISZ MAREK</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>FITIT</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>FITZGERALD JAMES H</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>FIVE T'S METHOD</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>FIVET</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>FIXED THIN LINE ARRAY</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>FIXED THIN LINE ARRAY DYNAMICS</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>FLANAGAN MICHAEL</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>FLANAGAN MICHAEL</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>FLAT POLAR EQUAL AREA SINUSOIDAL PROJECTION</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>FLAT POLAR EQUAL AREA SINUSOIDAL PROJECTION</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>FLEMING M</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>FLIP</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>FLESHET</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>FLOOD LEVELS</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>FLOW</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>FLOW VELOCITIES</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>FLUORESCENCE</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>FLUX CONDUCTIVE</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Author/Title</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Geostrophic Current</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Geostrophic Transport</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Geostrophic Velocity</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Geostrophic Velocity</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Geostrophic Wind</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Geos</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Giese 0+</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Gillespie Leilonie D</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Gleason</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Gleason Robert R</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Glib</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>GLMIG</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Gammonic Projection</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>Godfrey N</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Godfrey Paul J</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Godfrey Paul J</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>Godfrey Paul J</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Gertzels Method</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Gertzels Method</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Goldman C R</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>Goldstein</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>Goldstein Marvin J</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>GCOC a J</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>GCOC a J</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>Gordon J</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Gordon Jeffrey</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>GSSHER LCDR John</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>GCULD W J</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Grain Size</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Grain Size</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Grain Size</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Gram Plot Method</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>Granger C W J</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Grant AB</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Graph 2</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Graph Bar</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Grass</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Grav</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Gravity</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Gravity</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Gravity</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Gravity</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Gravity</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Gravity</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Gravity</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>Gravity</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>Gravity Variations</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Gray Barbara</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Great Circle</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Great Circle</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Green Liaka S</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Gregory CCNG</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Grid Plot</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>Gridit</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>Gridsq</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Griffin Gary T</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Griffin Gary T</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Griffin Gary T</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Griffin Gary T</td>
<td></td>
</tr>
</tbody>
</table>
147 LSTA 1142
31 LUMP MASS
32 LUMP MASS
33 LUMP MASS
34 LUMP MASS
37 LUMP MASS
80 LUNAR SEMIDIURNAL CONSTITUENT M2
80 LUNAR TIDAL FORCE
138 M CURVE
121 MACHINE PLOTTING
59 MACKETT D J
28 MACKO STEPHEN A
55 MACKO STEPHEN A
153 MACKO STEPHEN A
39 MAG2D
107 MAGFI
59 MAGNAVOX 706 SATELLITE NAVIGATION
39 MAGNETIC ANOMALY
42 MAGNETIC ANOMALY PROFILES
41 MAGNETIC FIELD
107 MAGNETIC FIELD COMPONENTS
120 MAGNETIC SIGNATURES
39 MAGNETICS
40 MAGNETICS
41 MAGNETICS
45 MAGNETICS
47 MAGNETICS
145 MAGNETICS
108 MAGNETICS CHART
120 MAGNETOMETER
77 MAGPACK
120 MAGPLOT
148 MAILER
148 MAILING LABELS
152 MAKE120
78 MALTAIS JOHN A
118 MALTAIS JOHN A
56 MANAGEMENT FISHERIES
57 MANAGEMENT FISHERIES
50 MANAGEMENT POLICY
57 MANAGEMENT WATER RESOURCES
38 MANTLE EARTH
146 MANTYLA NCRMA
103 MAP
122 MAP PLOTS
104 MAP PROJECTION DISTORTIONS
115 MAP SUBROUTINE
22 MAPLOT
52 MARGALEF
73 MARGALEF
20 MARK II CYCLESONDE
59 MARKET MEASUREMENT
72 MARKOV WIND MODEL
87 MARKOV WIND MODEL
40 MARQUART DOPPLER SONAR 2015A
134 PARSAGLIS G
99 MARSH
101 MARSH PHILIP
26 PASCNBOC INLET
72 MASS ADOPTION
126 MASS BALANCE EQUATION
91 MASS CHANGES ICE
1 MASS TRANSPORT
15 MASSEY ALAN T
142 MASSEY ALAN T
47 MASSINGILL JAMES V
107 MASSINGILL JAMES V
146 MASTER
121 MASTRACK
149 MATRIX
20 MATRIX
142 MATRIX
97 MATTHEW'S TABLES
57 MATURATION
63 MATURATION
15 MAXIMA REJECTION
102 MAY J
91 MAYKUT G A
22 MAYS MICHAEL E
28 MCALICE B J
55 MCALICE B J
154 MCALICE B J
116 MCCAMN
122 MCHENDRICE GRAIS
83 MCHONE JOHN
7 MCELLEW
7 MCMATH RLTH
8 MCMATH RLTH
103 MCMATH RUTH
147 MCMATH RUTH
134 MCPILLAN JOHN G
106 MEAN POLE COMPUTATION
128 MEAN TREND
136 MEANS
88 MEDITERRANEAN
118 MEDS FORMAT
117 MEDS PLOT
17 MEDSST
3 MERCATOR
14 MERCATOR
39 MERCATOR
48 MERCATOR
103 MERCATOR
106 MERCATOR
107 MERCATOR
108 MERCATOR
119 MERCATOR
121 MERCATOR
122 MERCATOR
124 MERCATOR
106 MERCATOR DIGITIZATION
105 MERCATOR GRID

167
<table>
<thead>
<tr>
<th>Page</th>
<th>Term</th>
<th>Page</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>MERCATOR PROJECTION</td>
<td>106</td>
<td>MOORE MICHAEL</td>
</tr>
<tr>
<td>115</td>
<td>MERCATOR PROJECTION</td>
<td>107</td>
<td>MCRE MICHAEL</td>
</tr>
<tr>
<td>109</td>
<td>MERCATOR SEE ALSO TRANSVERSE</td>
<td>142</td>
<td>MOORE MICHAEL</td>
</tr>
<tr>
<td>122</td>
<td>MERCATOR TRANSVERSE PROJECTION</td>
<td>145</td>
<td>MCRE MICHAEL</td>
</tr>
<tr>
<td>1</td>
<td>MERIDIONAL TRANSPORT</td>
<td>34</td>
<td>MCREING</td>
</tr>
<tr>
<td>68</td>
<td>MERISTIC VARIATES</td>
<td>35</td>
<td>MCREING</td>
</tr>
<tr>
<td>20</td>
<td>MET FLX</td>
<td>18</td>
<td>MCRAWSKI WALTER</td>
</tr>
<tr>
<td>80</td>
<td>MEXICO GULF OF</td>
<td>20</td>
<td>MCRAWSKI WALTER</td>
</tr>
<tr>
<td>56</td>
<td>MGEAR</td>
<td>150</td>
<td>MCRAWSKI WALTER</td>
</tr>
<tr>
<td>17</td>
<td>NEWTON-RAPHSON APPROXIMATION</td>
<td>150</td>
<td>MCRAWSKI WALTER</td>
</tr>
<tr>
<td>79</td>
<td>MICHELSENS CONTAINER DATA</td>
<td>27</td>
<td>MORISHIMA D L</td>
</tr>
<tr>
<td>25</td>
<td>MICHIGAN LAKE</td>
<td>51</td>
<td>MORTALITY</td>
</tr>
<tr>
<td>40</td>
<td>MICRO TECHNICA GYROCOMPASS</td>
<td>56</td>
<td>MORTALITY</td>
</tr>
<tr>
<td>121</td>
<td>MICROFILM PLOTS</td>
<td>57</td>
<td>MORTALITY</td>
</tr>
<tr>
<td>123</td>
<td>MICROFILM PLOTS</td>
<td>62</td>
<td>MORTALITY</td>
</tr>
<tr>
<td>89</td>
<td>M13 SCATTERING THEORY</td>
<td>63</td>
<td>MORTALITY</td>
</tr>
<tr>
<td>124</td>
<td>MILLER FORREST</td>
<td>64</td>
<td>MORTALITY</td>
</tr>
<tr>
<td>103</td>
<td>MILLER PROJECTION</td>
<td>34</td>
<td>MOTION EQUATIONS OF</td>
</tr>
<tr>
<td>110</td>
<td>MILLER PROJECTION</td>
<td>36</td>
<td>MOTION EQUATIONS OF</td>
</tr>
<tr>
<td>115</td>
<td>MILLER PROJECTION</td>
<td>36</td>
<td>MOTION EQUATIONS OF</td>
</tr>
<tr>
<td>38</td>
<td>MINERALOGIC ANALYSIS</td>
<td>37</td>
<td>MOTION EQUATIONS OF</td>
</tr>
<tr>
<td>15</td>
<td>MINIMA REJECTION</td>
<td>39</td>
<td>MUV</td>
</tr>
<tr>
<td>102</td>
<td>PININGHAM R</td>
<td>91</td>
<td>MVEMENT OF GEA ICE</td>
</tr>
<tr>
<td>107</td>
<td>MINUTE - PROJECTION</td>
<td>77</td>
<td>MFIANTO</td>
</tr>
<tr>
<td>30</td>
<td>MISSION SCENARIO</td>
<td>97</td>
<td>MICOR</td>
</tr>
<tr>
<td>32</td>
<td>MISSION RADIUS</td>
<td>116</td>
<td>MUPPAK</td>
</tr>
<tr>
<td>150</td>
<td>MIXED LAYER</td>
<td>83</td>
<td>MURHEAD CHARLES R</td>
</tr>
<tr>
<td>12</td>
<td>MIXED LAYER DEPTH</td>
<td>135</td>
<td>MULDA</td>
</tr>
<tr>
<td>88</td>
<td>MIXED LAYER DEPTH ANALYSIS</td>
<td>67</td>
<td>MULTIPLE-REGRESSION ANALYSIS</td>
</tr>
<tr>
<td>20</td>
<td>MX2CAL</td>
<td>136</td>
<td>MULTIPLE DISCRIMINANT ANALYSIS</td>
</tr>
<tr>
<td>99</td>
<td>PK48 TORPEDO ACOUSTICS</td>
<td>82</td>
<td>MUNK SVERDRUP-MUNK WAVE</td>
</tr>
<tr>
<td>51</td>
<td>MCBLEY CURTIS</td>
<td>63</td>
<td>NAVIGATION FORECASTING SYSTEM</td>
</tr>
<tr>
<td>93</td>
<td>MODE SHAFFES</td>
<td>28</td>
<td>MURPHY CATCP EQUATION</td>
</tr>
<tr>
<td>92</td>
<td>MULTIPLE DISCRIMINANT ANALYSIS</td>
<td>89</td>
<td>MYERS MARY E</td>
</tr>
<tr>
<td>24</td>
<td>MODEL BAY</td>
<td>35</td>
<td>NAFI</td>
</tr>
<tr>
<td>51</td>
<td>MODEL BAY</td>
<td>151</td>
<td>NAMES</td>
</tr>
<tr>
<td>28</td>
<td>MODEL CHESAPEAKE BAY</td>
<td>5</td>
<td>NANSSEN BOTTLES</td>
</tr>
<tr>
<td>28</td>
<td>MODEL COASTAL UPWELLING</td>
<td>39</td>
<td>NAVIGATION C</td>
</tr>
<tr>
<td>24</td>
<td>MODEL CANTILENE</td>
<td>40</td>
<td>NAVIGATION C</td>
</tr>
<tr>
<td>51</td>
<td>MODEL CE SYSTEM</td>
<td>43</td>
<td>NAVIGATION C</td>
</tr>
<tr>
<td>24</td>
<td>MODEL CE SYSTEM</td>
<td>44</td>
<td>NAVIGATION C</td>
</tr>
<tr>
<td>28</td>
<td>MODEL CHESAPEAKE BAY</td>
<td>145</td>
<td>NAVIGATION C</td>
</tr>
<tr>
<td>28</td>
<td>MODEL CHESAPEAKE BAY</td>
<td>76</td>
<td>NAVIGATION ERROR FACTORS</td>
</tr>
<tr>
<td>24</td>
<td>MODEL CHESAPEAKE BAY</td>
<td>108</td>
<td>NAVIGATION PLOT</td>
</tr>
<tr>
<td>28</td>
<td>MODEL CHESAPEAKE BAY</td>
<td>109</td>
<td>NAVIGATION REAL TIME</td>
</tr>
<tr>
<td>28</td>
<td>MODEL CHESAPEAKE BAY</td>
<td>120</td>
<td>NAVIGATION WITH OTHER DATA PLOT</td>
</tr>
<tr>
<td>24</td>
<td>MODEL CHESAPEAKE BAY</td>
<td>28</td>
<td>NAVIGATE WITH OTHER DATA PLOT</td>
</tr>
<tr>
<td>24</td>
<td>MODEL CHESAPEAKE BAY</td>
<td>168</td>
<td>NAVICE</td>
</tr>
<tr>
<td>115</td>
<td>MOLLWEIDE HOMOLOGRAPHIC PROJECTION</td>
<td>77</td>
<td>NAVIVC</td>
</tr>
<tr>
<td>110</td>
<td>MOLLWEIDE HOMOLOGRAPHIC PROJECTION</td>
<td>144</td>
<td>NDAYW</td>
</tr>
<tr>
<td>66</td>
<td>MOMENT</td>
<td>52</td>
<td>NEILSEN</td>
</tr>
<tr>
<td>94</td>
<td>MONOCROMATIC STURCLE</td>
<td>111</td>
<td>NELSON MERLE L</td>
</tr>
<tr>
<td>56</td>
<td>MONTE CARLO SIMULATION</td>
<td>133</td>
<td>NELSON CHARLES R</td>
</tr>
<tr>
<td>72</td>
<td>MONTE CARLO SPILL TRACKER</td>
<td>53</td>
<td>NET SAMPLES</td>
</tr>
<tr>
<td>2</td>
<td>MONTGOMERY</td>
<td>26</td>
<td>NEUSE ESTARY</td>
</tr>
<tr>
<td>150</td>
<td>NCMTMEO</td>
<td>138</td>
<td>NEWFIT</td>
</tr>
<tr>
<td>20</td>
<td>MOODERS CHRISTOPHER N K</td>
<td>93</td>
<td>NEWMAN</td>
</tr>
<tr>
<td>21</td>
<td>MOODERS CHRISTOPHER N K</td>
<td>121</td>
<td>NGODC FORMAT</td>
</tr>
<tr>
<td>105</td>
<td>MOORE MICHAEL</td>
<td>28</td>
<td>MINIGRET PCNC</td>
</tr>
</tbody>
</table>
NISKIN CURRENT ARRAY
74
NITRATE
6
NITRATE
7
NITRATE
8
NITRATE
28
NITRATE
2
NITRITE
28
NITRITE
90
NITRIDE
14
NITRIDE
73
NCYCLIC SOURCE
7
NCDC FORMAT
9
NCDC FORMAT
102
NCDC FORMAT
146
NCDC FORMAT
148
NCDC FORMAT
151
NCDC FORMAT
151
NCDCSO
132
NOISE
120
NCISE GECAMAGNETIC BACKGROUND
129
NOISE WHITE
129
NOISE
70
NCYCLIC ADDITIVITY
93
NORMAL MODES
93
NORMOC
136
NCYCLIC SOURCE
111
NORTH AMERICAN DATUM
113
NOS SCIENTIFIC SUBROUTINE SYSTEM
7
NOWLIN
76
NOSR
39
NUMBER
42
NUMBER
149
NUMBERING OF DECK
3
NUTRIENT
153
NUTRIENT CHEMISTRY
144
NAT
144
NAT
109
OBLIQUE MERCATOR PROJECTION
110
OBLIQUE MERCATOR PROJECTION
107
OSTRIEN ROBERT A JR
108
OSTRIEN ROBERT A JR
124
OSTRIEN ROBERT A JR
8
OBVFRQ
9
CCOMP
28
OCE02007
108
OCEAN
15
OCEAN DATA
13
OCEAN LIE
4
OCEANS V
50
OEP
99
OFFICER
74
CIL
72
OIL SPILLS
102
OILSTKD C
109
OMEGA
114
OMEGA
105
OMEGA CONVERSION
11
OPLOT
147
OSTECH FORMAT
30
ORTHOGONAL CELLLOCATION
130
ORTHOGONAL PLOTONIAL
121
OSBORN RUGER T
121
OVERLAY PLOTTING
23
OXIDATION POTENTIAL CALIBRATIONS
23
OXIDE
1
OXYGEN
4
OXYGEN
7
OXYGEN
8
OXYGEN
11
OXYGEN
2
OXYGEN ANOMALY
22
OXYGEN DISSOLVED
26
OXYGEN DISSOLVED
28
OXYGEN DISSOLVED
51
OXYGEN DIURNAL CURVE METHOD
52
OXYGEN DIURNAL MEASURES
11
OXYGEN PERCENT SATURATION
22
OXYGEN PERCENT SATURATION
124
OXYGEN PHOSPHATE DENSITY PLOTS
146
OXYGEN SATURATION
2
OXYGEN SATURATION
6
OXYGEN SATURATION
7
OXYGEN SATURATION PERCENT
6
OXYGEN UTILIZATION APPARENT
52
OXYGEN
138
OXYGEN UTILIZATION APPARENT
12
PACIFIC TROPICAL
92
PACIFIC WIND WAVES/SWELLs
84
PAGN EILEEN
74
PAIRWISE CORRELATION DRIFT BOTTLE RECOVERY
72
PALOS VILES SHELF
26
PANICO SCUNO
57
PANDALID SHRIMP
109
PARAMETRIC MAP
127
PARAMETER ESTIMATION
132
PARAMETER ESTIMATION
109
PARKINEL C J
111
PARKINEL C J
25
PARTICLE TRAJECTORIES
133
PARKEN E
132
PARKEN SPECTRAL WINDOW
95
PATTERN FUNCTION
33
PATTON KIRK T
35
PATTON KIRK T
63
PAULIK G J
64
PAULIK G J
30
PAYLOAD
118
PAYNE RICHARD E
119
PAYNE RICHARD E
3
PEAKS
66
PEARSON PRODUCT-MOMENT CORRELATION COEFFICIENT
72
PEERSKIN L B
65
PELLA J
9
PEN
19
PENDLETON DAVE
138
PENDLETON DAVE
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADIUS OF MISSION</td>
<td>32</td>
</tr>
<tr>
<td>RAMSC</td>
<td>31</td>
</tr>
<tr>
<td>RAMSC</td>
<td>31</td>
</tr>
<tr>
<td>RANDOM</td>
<td>130</td>
</tr>
<tr>
<td>RANDOM NUMBERS</td>
<td>130</td>
</tr>
<tr>
<td>RANDOM SAMPLE</td>
<td>132</td>
</tr>
<tr>
<td>RANDOM SHOCK</td>
<td>32</td>
</tr>
<tr>
<td>RANGE</td>
<td>93</td>
</tr>
<tr>
<td>RAY DENSITY</td>
<td>102</td>
</tr>
<tr>
<td>RAY DIAGRAMS</td>
<td>99</td>
</tr>
<tr>
<td>RAY EQUIVALENTS</td>
<td>101</td>
</tr>
<tr>
<td>RAY SORT</td>
<td>102</td>
</tr>
<tr>
<td>RAY TRACING</td>
<td>112</td>
</tr>
<tr>
<td>RAYDIST</td>
<td>93</td>
</tr>
<tr>
<td>RAYLEIGH - MORSE</td>
<td>95</td>
</tr>
<tr>
<td>RAYMOR</td>
<td>102</td>
</tr>
<tr>
<td>RAYTRACE</td>
<td>130</td>
</tr>
<tr>
<td>REEDTP</td>
<td>146</td>
</tr>
<tr>
<td>REED TAPE</td>
<td>74</td>
</tr>
<tr>
<td>RECOVERY CRIT BOTTLE</td>
<td>57</td>
</tr>
<tr>
<td>RECREATION</td>
<td>54</td>
</tr>
<tr>
<td>RECRUITMENT</td>
<td>57</td>
</tr>
<tr>
<td>RECRUITMENT</td>
<td>58</td>
</tr>
<tr>
<td>RECTIFIED SKW ORTHORMORPHIC</td>
<td>110</td>
</tr>
<tr>
<td>PROJECTION</td>
<td>12</td>
</tr>
<tr>
<td>REACTIVITY INDEX</td>
<td>2</td>
</tr>
<tr>
<td>REDFIELD</td>
<td>23</td>
</tr>
<tr>
<td>REDCX REACTION</td>
<td>6</td>
</tr>
<tr>
<td>REDUCTION</td>
<td>145</td>
</tr>
<tr>
<td>REDUCTION AND DISPLAY OF DATA</td>
<td>138</td>
</tr>
<tr>
<td>ACQUIRED AT SEA</td>
<td></td>
</tr>
<tr>
<td>REDUCTION TECHNIQUE CURVE COEFFICIENTS</td>
<td>87</td>
</tr>
<tr>
<td>REED R K</td>
<td>95</td>
</tr>
<tr>
<td>REEVES J C</td>
<td>85</td>
</tr>
<tr>
<td>REFLECTANCE COEFFICIENTS</td>
<td>94</td>
</tr>
<tr>
<td>REFLECTANCE WIDE-ANGLE</td>
<td>39</td>
</tr>
<tr>
<td>REFRACTION</td>
<td>89</td>
</tr>
<tr>
<td>REFRACTION</td>
<td>94</td>
</tr>
<tr>
<td>REFRACTION COEFFICIENTS WAVE</td>
<td>83</td>
</tr>
<tr>
<td>REFRACTION MODELS</td>
<td>112</td>
</tr>
<tr>
<td>REFRACTION SEISMIC</td>
<td>39</td>
</tr>
<tr>
<td>REGIONAL FIELD</td>
<td>45</td>
</tr>
<tr>
<td>REGRESSIVE ANALYSIS</td>
<td>51</td>
</tr>
<tr>
<td>REGRESSIVE SEISMIC ANALYSIS</td>
<td>134</td>
</tr>
<tr>
<td>REGRESSION LINEAR</td>
<td>65</td>
</tr>
<tr>
<td>REGRESSION STATISTICAL SCREENING</td>
<td>126</td>
</tr>
<tr>
<td>REGRESSIVE MOVING AVERAGE</td>
<td>121</td>
</tr>
<tr>
<td>REDGROUP</td>
<td>51</td>
</tr>
<tr>
<td>REINIGER R</td>
<td>3</td>
</tr>
<tr>
<td>REINIGER R F</td>
<td>118</td>
</tr>
<tr>
<td>REINSCHIS TECHNIQUE</td>
<td>141</td>
</tr>
<tr>
<td>REPRODUCTIVE SUCCESS</td>
<td>97</td>
</tr>
<tr>
<td>REPRODUCTION OF DECK</td>
<td>149</td>
</tr>
<tr>
<td>RESCUE</td>
<td>76</td>
</tr>
<tr>
<td>RESERVOIR</td>
<td>57</td>
</tr>
<tr>
<td>RESIDUAL MAGNETIC ANOMALY</td>
<td>45</td>
</tr>
<tr>
<td>RESPIRATION</td>
<td>52</td>
</tr>
<tr>
<td>RESPON</td>
<td>130</td>
</tr>
<tr>
<td>RESPONSE SURFACE</td>
<td>135</td>
</tr>
<tr>
<td>RETRIEVAL</td>
<td>151</td>
</tr>
<tr>
<td>RETRIEVAL</td>
<td>153</td>
</tr>
<tr>
<td>RETRIEVAL</td>
<td>101</td>
</tr>
<tr>
<td>REVERBERATION</td>
<td>99</td>
</tr>
<tr>
<td>REVERBERATION INDEX</td>
<td>94</td>
</tr>
<tr>
<td>REVERBERATION INDEX</td>
<td>95</td>
</tr>
<tr>
<td>REVERS</td>
<td>130</td>
</tr>
<tr>
<td>KEYTE F K</td>
<td>138</td>
</tr>
<tr>
<td>RICKER W E</td>
<td>58</td>
</tr>
<tr>
<td>RICKER W E</td>
<td>64</td>
</tr>
<tr>
<td>RICKER YIELD EQUATION</td>
<td>56</td>
</tr>
<tr>
<td>RITTE</td>
<td>91</td>
</tr>
<tr>
<td>RITTER O WALTER</td>
<td>66</td>
</tr>
<tr>
<td>RITTER O WALTER</td>
<td>47</td>
</tr>
<tr>
<td>RITTER O WALTER</td>
<td>66</td>
</tr>
<tr>
<td>RITTER O WALTER</td>
<td>69</td>
</tr>
<tr>
<td>RITTER O WALTER</td>
<td>70</td>
</tr>
<tr>
<td>RITTER O WALTER</td>
<td>71</td>
</tr>
<tr>
<td>RIVER FLOWING INTO ESTUARY</td>
<td>24</td>
</tr>
<tr>
<td>RODD JAMES M</td>
<td>133</td>
</tr>
<tr>
<td>ROBSON O S</td>
<td>62</td>
</tr>
<tr>
<td>ROSS C K</td>
<td>112</td>
</tr>
<tr>
<td>RUCHE LOUIS</td>
<td>130</td>
</tr>
<tr>
<td>RMPAS</td>
<td>20</td>
</tr>
<tr>
<td>RUNGE-KUTTA ALGORITHM</td>
<td>33</td>
</tr>
<tr>
<td>RUNGE-KUTTA ALGORITHM</td>
<td>34</td>
</tr>
<tr>
<td>RUNGE-KUTTA ALGORITHM</td>
<td>35</td>
</tr>
<tr>
<td>RUNGE-KUTTA ALGORITHM</td>
<td>36</td>
</tr>
<tr>
<td>RUNGE-KUTTA ALGORITHM</td>
<td>37</td>
</tr>
<tr>
<td>Page</td>
<td>Section</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>6</td>
<td>SIGMA-TP</td>
</tr>
<tr>
<td>1</td>
<td>SIGMA-T</td>
</tr>
<tr>
<td>2</td>
<td>SIGMA-T</td>
</tr>
<tr>
<td>4</td>
<td>SIGMA-T</td>
</tr>
<tr>
<td>5</td>
<td>SIGMA-T</td>
</tr>
<tr>
<td>6</td>
<td>SIGMA-T</td>
</tr>
<tr>
<td>7</td>
<td>SIGMA-T</td>
</tr>
<tr>
<td>8</td>
<td>SIGMA-T</td>
</tr>
<tr>
<td>10</td>
<td>SIGMA-T</td>
</tr>
<tr>
<td>12</td>
<td>SIGMA-T</td>
</tr>
<tr>
<td>13</td>
<td>SIGMA-T</td>
</tr>
<tr>
<td>26</td>
<td>SIGMA-T</td>
</tr>
<tr>
<td>15</td>
<td>SIGMA-T INVERSION REMOVAL</td>
</tr>
<tr>
<td>10</td>
<td>SIGMAT</td>
</tr>
<tr>
<td>13</td>
<td>SIGMAT</td>
</tr>
<tr>
<td>18</td>
<td>SIGMAT</td>
</tr>
<tr>
<td>7</td>
<td>SILICATE</td>
</tr>
<tr>
<td>8</td>
<td>SILICATE</td>
</tr>
<tr>
<td>8</td>
<td>SILICATE</td>
</tr>
<tr>
<td>8</td>
<td>SILICATE</td>
</tr>
<tr>
<td>8</td>
<td>SILICATE</td>
</tr>
<tr>
<td>22</td>
<td>SILLLEN</td>
</tr>
<tr>
<td>48</td>
<td>SILT</td>
</tr>
<tr>
<td>136</td>
<td>SIMILARITY MATRIX</td>
</tr>
<tr>
<td>73</td>
<td>SIPPSON</td>
</tr>
<tr>
<td>25</td>
<td>SIMUDEL</td>
</tr>
<tr>
<td>69</td>
<td>SIMULTANEOUS TEST PROCEDURE</td>
</tr>
<tr>
<td>71</td>
<td>SIMULTANEOUS TEST PROCEDURE</td>
</tr>
<tr>
<td>135</td>
<td>SINE FOURIER TRANSFORM</td>
</tr>
<tr>
<td>134</td>
<td>SINGLETON</td>
</tr>
<tr>
<td>130</td>
<td>SINGA</td>
</tr>
<tr>
<td>103</td>
<td>SINEUSIODAL EQUA AREA PROJECTION</td>
</tr>
<tr>
<td>64</td>
<td>SIZE</td>
</tr>
<tr>
<td>48</td>
<td>SIZE DISTRIBUTION</td>
</tr>
<tr>
<td>93</td>
<td>SKEWNESS</td>
</tr>
<tr>
<td>32</td>
<td>SKOW/P'S METHOD</td>
</tr>
<tr>
<td>26</td>
<td>SLCTTA L S</td>
</tr>
<tr>
<td>106</td>
<td>SPPA CIRCLE FIT</td>
</tr>
<tr>
<td>83</td>
<td>SMITH BSL</td>
</tr>
<tr>
<td>126</td>
<td>SMITH S D</td>
</tr>
<tr>
<td>130</td>
<td>SP</td>
</tr>
<tr>
<td>13</td>
<td>SMOOTH STD DATA</td>
</tr>
<tr>
<td>130</td>
<td>SMOOTH</td>
</tr>
<tr>
<td>15</td>
<td>SMOOTHED DENSITY PROFILE</td>
</tr>
<tr>
<td>126</td>
<td>SMOOTHED SERIES</td>
</tr>
<tr>
<td>130</td>
<td>SMOOTHED SERIES</td>
</tr>
<tr>
<td>15</td>
<td>SMOOTHING BICULAR</td>
</tr>
<tr>
<td>141</td>
<td>SMOOTHING CUBIC SPLINE</td>
</tr>
<tr>
<td>15</td>
<td>SMOOTHING LOCAL</td>
</tr>
<tr>
<td>131</td>
<td>SMOOTHING SPECTRAL ESTIMATES</td>
</tr>
<tr>
<td>121</td>
<td>SMOTHEKS L A</td>
</tr>
<tr>
<td>31</td>
<td>SNAP LOAS</td>
</tr>
<tr>
<td>31</td>
<td>SNAPLO</td>
</tr>
<tr>
<td>7</td>
<td>SNARKI</td>
</tr>
<tr>
<td>43</td>
<td>SNDCP</td>
</tr>
<tr>
<td>51</td>
<td>SAGM</td>
</tr>
<tr>
<td>104</td>
<td>SCDANO ES</td>
</tr>
<tr>
<td>1 '2</td>
<td>SCDANO INVERSE</td>
</tr>
<tr>
<td>110</td>
<td>SCDANO INVERSE METHOD</td>
</tr>
<tr>
<td>114</td>
<td>SCDANO METHOD</td>
</tr>
<tr>
<td>114</td>
<td>SCGIN</td>
</tr>
<tr>
<td>114</td>
<td>SCOPN</td>
</tr>
<tr>
<td>30</td>
<td>SCIL TEST</td>
</tr>
<tr>
<td>66</td>
<td>SCKAL ROBERT R</td>
</tr>
<tr>
<td>67</td>
<td>SCKAL ROBERT R</td>
</tr>
<tr>
<td>6F</td>
<td>SCKAL ROBERT R</td>
</tr>
<tr>
<td>69</td>
<td>SCKAL ROBERT R</td>
</tr>
<tr>
<td>70</td>
<td>SCKAL ROBERT R</td>
</tr>
<tr>
<td>12</td>
<td>SCLENOIDAL VALUES</td>
</tr>
<tr>
<td>98</td>
<td>SOLID SAMPLE SOUND VELOCITY</td>
</tr>
<tr>
<td>4</td>
<td>SEMERS H</td>
</tr>
<tr>
<td>101</td>
<td>SCHAR IN REFRACTIVE WATER</td>
</tr>
<tr>
<td>14</td>
<td>SCINC LAYER DEPTH</td>
</tr>
<tr>
<td>97</td>
<td>SCIVEL</td>
</tr>
<tr>
<td>13</td>
<td>SCUND</td>
</tr>
<tr>
<td>94</td>
<td>SCUND REFRACTION</td>
</tr>
<tr>
<td>93</td>
<td>SCUND SCATTERING</td>
</tr>
<tr>
<td>1</td>
<td>SCNAD VELOCITY</td>
</tr>
<tr>
<td>4</td>
<td>SCNAD VELOCITY</td>
</tr>
<tr>
<td>6</td>
<td>SCNAD VELOCITY</td>
</tr>
<tr>
<td>7</td>
<td>SCNAD VELOCITY</td>
</tr>
<tr>
<td>14</td>
<td>SCNAD VELOCITY</td>
</tr>
<tr>
<td>97</td>
<td>SCNAD VELOCITY</td>
</tr>
<tr>
<td>100</td>
<td>SCNAD VELOCITY</td>
</tr>
<tr>
<td>97</td>
<td>SCNAD VELOCITY DEPTH CORRECTION</td>
</tr>
<tr>
<td>58</td>
<td>SCNAD VELOCITY HARPCNIC PEAK</td>
</tr>
<tr>
<td>58</td>
<td>SCNAD VELOCITY T-REUCC SOLID SAMPLE</td>
</tr>
<tr>
<td>97</td>
<td>SCWEL</td>
</tr>
<tr>
<td>33</td>
<td>SPARK-ARRAY DYNAMICS</td>
</tr>
<tr>
<td>33</td>
<td>SPAR-ENJOY DYNAMICS</td>
</tr>
<tr>
<td>153</td>
<td>SPARKS CHARLOTTE</td>
</tr>
<tr>
<td>56</td>
<td>SPARKER-RECRUIT CURVE</td>
</tr>
<tr>
<td>56</td>
<td>SPARNING STOCK</td>
</tr>
<tr>
<td>130</td>
<td>SPEC</td>
</tr>
<tr>
<td>50</td>
<td>SPECIES</td>
</tr>
<tr>
<td>51</td>
<td>SPECIES</td>
</tr>
<tr>
<td>52</td>
<td>SPECIES</td>
</tr>
<tr>
<td>54</td>
<td>SPECIES ABUNDANCE</td>
</tr>
<tr>
<td>54</td>
<td>SPECIES BIWSS</td>
</tr>
<tr>
<td>55</td>
<td>SPECIES DENSITY</td>
</tr>
<tr>
<td>53</td>
<td>SPECIES DIRECTORY</td>
</tr>
<tr>
<td>73</td>
<td>SPECIES DISTRIBUTION</td>
</tr>
<tr>
<td>2</td>
<td>SPECIFIC GRAVITY ANOMALY</td>
</tr>
<tr>
<td>48</td>
<td>SPECIFIC GRAVITY OF SOLIDS</td>
</tr>
<tr>
<td>12</td>
<td>SPECIFIC HEAT</td>
</tr>
<tr>
<td>11</td>
<td>SPECIFIC VOLUME</td>
</tr>
<tr>
<td>1</td>
<td>SPECIFIC VOLUME ANOMALY</td>
</tr>
<tr>
<td>2</td>
<td>SPECIFIC VOLUME ANOMALY</td>
</tr>
<tr>
<td>4</td>
<td>SPECIFIC VOLUME ANOMALY</td>
</tr>
<tr>
<td>7</td>
<td>SPECIFIC VOLUME ANOMALY</td>
</tr>
<tr>
<td>8</td>
<td>SPECIFIC VOLUME ANOMALY</td>
</tr>
<tr>
<td>9</td>
<td>SPECIFIC VOLUME ANOMALY</td>
</tr>
<tr>
<td>8</td>
<td>SPECTRA</td>
</tr>
<tr>
<td>130</td>
<td>SPECT 1</td>
</tr>
<tr>
<td>130</td>
<td>SPECT 2</td>
</tr>
<tr>
<td>34</td>
<td>SPECTRA</td>
</tr>
<tr>
<td>Page</td>
<td>Text</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>117</td>
<td>SULLIVAN</td>
</tr>
<tr>
<td>138</td>
<td>SULLIVAN JERRY</td>
</tr>
<tr>
<td>49</td>
<td>SUM OF SQUARE STP</td>
</tr>
<tr>
<td>15</td>
<td>SUMMARY</td>
</tr>
<tr>
<td>91</td>
<td>SUPER A D CCF</td>
</tr>
<tr>
<td>132</td>
<td>SUPERSEL</td>
</tr>
<tr>
<td>83</td>
<td>SURF PREDICTION</td>
</tr>
<tr>
<td>78</td>
<td>SURFACE CURRENT</td>
</tr>
<tr>
<td>91</td>
<td>SURFACE CURRENT</td>
</tr>
<tr>
<td>25</td>
<td>SURFACE ELEVATION</td>
</tr>
<tr>
<td>31</td>
<td>SURFACE EXCITATION</td>
</tr>
<tr>
<td>17</td>
<td>SURFACE TEMPERATURE MODEL</td>
</tr>
<tr>
<td>64</td>
<td>SURFACE WAVE PAYS</td>
</tr>
<tr>
<td>34</td>
<td>SURGE</td>
</tr>
<tr>
<td>62</td>
<td>SURVIVAL</td>
</tr>
<tr>
<td>28</td>
<td>SUSQUEHANNA RIVER</td>
</tr>
<tr>
<td>9</td>
<td>SVANOM</td>
</tr>
<tr>
<td>97</td>
<td>SVELFS</td>
</tr>
<tr>
<td>62</td>
<td>SYHRAKMK</td>
</tr>
<tr>
<td>75</td>
<td>SWERS N E</td>
</tr>
<tr>
<td>82</td>
<td>SWELL</td>
</tr>
<tr>
<td>134</td>
<td>SWITZER PAUL</td>
</tr>
<tr>
<td>89</td>
<td>SWOP II</td>
</tr>
<tr>
<td>146</td>
<td>SYNOP</td>
</tr>
<tr>
<td>39</td>
<td>SYMBOL</td>
</tr>
<tr>
<td>42</td>
<td>SYMBOL</td>
</tr>
<tr>
<td>130</td>
<td>SYPMET</td>
</tr>
<tr>
<td>67</td>
<td>SYNOP</td>
</tr>
<tr>
<td>9</td>
<td>TABATA</td>
</tr>
<tr>
<td>10</td>
<td>TABATA</td>
</tr>
<tr>
<td>11</td>
<td>TABATA</td>
</tr>
<tr>
<td>61</td>
<td>TAG DATA</td>
</tr>
<tr>
<td>38</td>
<td>TALWINI PAHIA</td>
</tr>
<tr>
<td>40</td>
<td>TALWINI</td>
</tr>
<tr>
<td>145</td>
<td>TALWINI</td>
</tr>
<tr>
<td>131</td>
<td>TAUUTCPLT</td>
</tr>
<tr>
<td>31</td>
<td>TAUCAC</td>
</tr>
<tr>
<td>53</td>
<td>TAXONOMIC DIRECTION</td>
</tr>
<tr>
<td>138</td>
<td>TCF</td>
</tr>
<tr>
<td>146</td>
<td>TCHK1</td>
</tr>
<tr>
<td>146</td>
<td>TCHK2</td>
</tr>
<tr>
<td>146</td>
<td>TCHK3</td>
</tr>
<tr>
<td>131</td>
<td>TGOWPLT</td>
</tr>
<tr>
<td>58</td>
<td>TCPA1</td>
</tr>
<tr>
<td>58</td>
<td>TCPA2</td>
</tr>
<tr>
<td>58</td>
<td>TCPA3</td>
</tr>
<tr>
<td>59</td>
<td>TCPB1</td>
</tr>
<tr>
<td>59</td>
<td>TCPB2</td>
</tr>
<tr>
<td>59</td>
<td>TCPB3</td>
</tr>
<tr>
<td>60</td>
<td>TCPC1</td>
</tr>
<tr>
<td>60</td>
<td>TCPC2</td>
</tr>
<tr>
<td>60</td>
<td>TCPC3</td>
</tr>
<tr>
<td>64</td>
<td>TCPD4</td>
</tr>
<tr>
<td>64</td>
<td>TCPG5</td>
</tr>
<tr>
<td>61</td>
<td>TCPD1</td>
</tr>
<tr>
<td>62</td>
<td>TCPD2</td>
</tr>
<tr>
<td>63</td>
<td>TCPF1</td>
</tr>
<tr>
<td>63</td>
<td>TCPF2</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>12</td>
<td>VOLUME FLOW</td>
</tr>
<tr>
<td>19</td>
<td>VOLUME TRANSPORT</td>
</tr>
<tr>
<td>56</td>
<td>VCN BERTALANFFY</td>
</tr>
<tr>
<td>60</td>
<td>VCN BERTALANFFY</td>
</tr>
<tr>
<td>61</td>
<td>VCN BERTALANFFY</td>
</tr>
<tr>
<td>64</td>
<td>VCN BERTALANFFY</td>
</tr>
<tr>
<td>10</td>
<td>WTR</td>
</tr>
<tr>
<td>95</td>
<td>VX METHOD</td>
</tr>
<tr>
<td>40</td>
<td>WALKER ELECTRIC LOG</td>
</tr>
<tr>
<td>52</td>
<td>WALLIN MARSHA</td>
</tr>
<tr>
<td>27</td>
<td>WALS J J</td>
</tr>
<tr>
<td>28</td>
<td>WANG HSIM-PANG</td>
</tr>
<tr>
<td>115</td>
<td>WARD JHN D</td>
</tr>
<tr>
<td>130</td>
<td>WARDEN JAMES S</td>
</tr>
<tr>
<td>153</td>
<td>WASHINGTON ROSA T</td>
</tr>
<tr>
<td>73</td>
<td>WASTE WATER</td>
</tr>
<tr>
<td>88</td>
<td>WATER CONTENT ATMESHERIC</td>
</tr>
<tr>
<td>48</td>
<td>WATER CONTENT SOIL/SEDIMENT</td>
</tr>
<tr>
<td>26</td>
<td>WATER QUALITY IN ESTUARY</td>
</tr>
<tr>
<td>133</td>
<td>WATTS D G</td>
</tr>
<tr>
<td>83</td>
<td>WAVE BOTTOM VELOCITY</td>
</tr>
<tr>
<td>31</td>
<td>WAVE CONDITIONS</td>
</tr>
<tr>
<td>24</td>
<td>WAVE ELEVATION</td>
</tr>
<tr>
<td>82</td>
<td>WAVE FORECASTS</td>
</tr>
<tr>
<td>20</td>
<td>WAVE INTERNAL</td>
</tr>
<tr>
<td>63</td>
<td>WAVE MODEL FRENCH SPECTR-ANGULAR</td>
</tr>
<tr>
<td>83</td>
<td>WAVE PREDICTION</td>
</tr>
<tr>
<td>83</td>
<td>WAVE RAY PATHS</td>
</tr>
<tr>
<td>84</td>
<td>WAVE RAYS SURFACE</td>
</tr>
<tr>
<td>94</td>
<td>WAVE Recorder SHIPborne</td>
</tr>
<tr>
<td>94</td>
<td>WAVE REFRACTION</td>
</tr>
<tr>
<td>85</td>
<td>WAVE TEACHING AIDS</td>
</tr>
<tr>
<td>44</td>
<td>WAVE-CURRENT INTERACTION</td>
</tr>
<tr>
<td>15</td>
<td>WAVES INTERNAL</td>
</tr>
<tr>
<td>34</td>
<td>WAVES SHIP RESPONSE TO</td>
</tr>
<tr>
<td>9</td>
<td>WEBSTER JACQUELINE</td>
</tr>
<tr>
<td>38</td>
<td>WEBSTER</td>
</tr>
<tr>
<td>12</td>
<td>WEEKPLOT</td>
</tr>
<tr>
<td>136</td>
<td>WEIBUL</td>
</tr>
<tr>
<td>136</td>
<td>WEIBULL</td>
</tr>
<tr>
<td>50</td>
<td>WEIGHT</td>
</tr>
<tr>
<td>63</td>
<td>WEIGHT</td>
</tr>
<tr>
<td>58</td>
<td>WEIGHT-LENGTH</td>
</tr>
<tr>
<td>132</td>
<td>WEIGHTING KERNEL</td>
</tr>
<tr>
<td>59</td>
<td>WEINBERG H</td>
</tr>
<tr>
<td>73</td>
<td>WEINSTEIN BRUCE</td>
</tr>
<tr>
<td>25</td>
<td>WEISE H G</td>
</tr>
<tr>
<td>133</td>
<td>WELCH P D</td>
</tr>
<tr>
<td>133</td>
<td>WELCH P G</td>
</tr>
<tr>
<td>116</td>
<td>WEININGER</td>
</tr>
<tr>
<td>5</td>
<td>WEST MARY</td>
</tr>
<tr>
<td>2</td>
<td>WET</td>
</tr>
<tr>
<td>17</td>
<td>WET BULB</td>
</tr>
<tr>
<td>17</td>
<td>WETBULB</td>
</tr>
<tr>
<td>134</td>
<td>WHALE SPECTRAL ANALYSIS OF CALL</td>
</tr>
<tr>
<td>26</td>
<td>WHITE LOIS</td>
</tr>
<tr>
<td>54</td>
<td>WHITE LOIS</td>
</tr>
<tr>
<td>143</td>
<td>WHITE LOIS</td>
</tr>
<tr>
<td>129</td>
<td>WHITE NOISE</td>
</tr>
<tr>
<td>131</td>
<td>WHITENESS DEPARTURES FROM</td>
</tr>
<tr>
<td>95</td>
<td>WHITTAKER R</td>
</tr>
<tr>
<td>133</td>
<td>WICHERN DEAN A</td>
</tr>
<tr>
<td>32</td>
<td>WILCOX J D</td>
</tr>
<tr>
<td>111</td>
<td>WILDEMS ROBERT M</td>
</tr>
<tr>
<td>76</td>
<td>WILLIAMS GERALD</td>
</tr>
<tr>
<td>77</td>
<td>WILLIAMS GERALD</td>
</tr>
<tr>
<td>5</td>
<td>WILSON SOUND VELOCITY</td>
</tr>
<tr>
<td>16</td>
<td>WILSON SOUND VELOCITY</td>
</tr>
<tr>
<td>99</td>
<td>WILSON SOUND VELOCITY</td>
</tr>
<tr>
<td>97</td>
<td>WILSON'S PERKULA</td>
</tr>
<tr>
<td>58</td>
<td>WILSON'S FORMULA</td>
</tr>
<tr>
<td>82</td>
<td>WIND</td>
</tr>
<tr>
<td>89</td>
<td>WIND</td>
</tr>
<tr>
<td>87</td>
<td>WIND DIRECTION</td>
</tr>
<tr>
<td>91</td>
<td>WIND DRIFT</td>
</tr>
<tr>
<td>76</td>
<td>WIND EFFECTS</td>
</tr>
<tr>
<td>91</td>
<td>WIND FIELD</td>
</tr>
<tr>
<td>83</td>
<td>WIND GEOSTRPHIC</td>
</tr>
<tr>
<td>90</td>
<td>WIND MIXING</td>
</tr>
<tr>
<td>90</td>
<td>WIND MIXING</td>
</tr>
<tr>
<td>72</td>
<td>WIND MODEL MARKOV</td>
</tr>
<tr>
<td>67</td>
<td>WIND MODEL MARKOV</td>
</tr>
<tr>
<td>87</td>
<td>WIND SPEED</td>
</tr>
<tr>
<td>89</td>
<td>WIND STRESS</td>
</tr>
<tr>
<td>87</td>
<td>WIND TRANSITION MATRIX</td>
</tr>
<tr>
<td>134</td>
<td>WIND VELOCITY</td>
</tr>
<tr>
<td>131</td>
<td>WINDOW</td>
</tr>
<tr>
<td>132</td>
<td>WINDOW</td>
</tr>
<tr>
<td>132</td>
<td>WINDOW 1</td>
</tr>
<tr>
<td>132</td>
<td>WINDOW BOX CAR</td>
</tr>
<tr>
<td>132</td>
<td>WINDOW CGSINE</td>
</tr>
<tr>
<td>132</td>
<td>WINDOW LANCZCS</td>
</tr>
<tr>
<td>132</td>
<td>WINDOW PARZEN LAG</td>
</tr>
<tr>
<td>78</td>
<td>WINDOW PERFECT DANIEL FREQUENCY</td>
</tr>
<tr>
<td>132</td>
<td>WINDOW RECTANGULAR</td>
</tr>
<tr>
<td>132</td>
<td>WINDOW TRIANGLE</td>
</tr>
<tr>
<td>132</td>
<td>WINDOW TUKEY</td>
</tr>
<tr>
<td>100</td>
<td>WINGER C M</td>
</tr>
<tr>
<td>100</td>
<td>WINGER C M</td>
</tr>
<tr>
<td>31</td>
<td>WIRE HELICAL</td>
</tr>
<tr>
<td>116</td>
<td>WIRTH DAVID</td>
</tr>
<tr>
<td>15</td>
<td>WITCOMB</td>
</tr>
<tr>
<td>97</td>
<td>WLSND</td>
</tr>
<tr>
<td>85</td>
<td>WMAXI</td>
</tr>
<tr>
<td>153</td>
<td>WMC</td>
</tr>
<tr>
<td>85</td>
<td>WFTI</td>
</tr>
<tr>
<td>103</td>
<td>WMGK S K</td>
</tr>
<tr>
<td>118</td>
<td>WMGK S K</td>
</tr>
<tr>
<td>146</td>
<td>WMCW K</td>
</tr>
<tr>
<td>1</td>
<td>WMCW SK</td>
</tr>
<tr>
<td>98</td>
<td>WODGBURY PETER B</td>
</tr>
<tr>
<td>48</td>
<td>WOODGLEY PETER B</td>
</tr>
<tr>
<td>116</td>
<td>WOODBURY PETER B</td>
</tr>
<tr>
<td>106</td>
<td>WOODING CHRISTINE</td>
</tr>
<tr>
<td>2</td>
<td>MORTHINGTON LV</td>
</tr>
<tr>
<td>38</td>
<td>WERZEL LAMAR</td>
</tr>
<tr>
<td>85</td>
<td>WTPAXI</td>
</tr>
<tr>
<td>65</td>
<td>WINFIL</td>
</tr>
</tbody>
</table>
X-RAY DIFFRACTION ANALYSIS

XBEVALU
XBFNWC
XBFNWSUM
XBGEOSUM
XBFNINV
XBBSELECT
XBT DATA
XBTCONV
XBTOKOUT
XGDER
XPORT
XTAL
YARIT
YAVNER JUDY
YAVNER JUDY
YIELD
YIELD
YIELD
YIELD
YIELD PER RECRUIT
YIELD PER RECRUIT
YCNG MARIAN Y Y
YSTOY
Z TRANSFORM
Z LIST
ZEDIT
ZERO CROSSINGS
ZERO PRESSURE
ZMCE
ZCOPLAN KTCN CEEP OCEAN
ZUBDV
ZWIBEL H S
LANGUAGE INDEX

ALGCL
- **2** ALGOL B 6700 Static Data Retrieval Hydrosearch
- **142** ALGOL B 6700 Interactive Calculations DSDP/Calc
- **90** ALGOL B 6700 Sound Velocity Through Solid Samples DSDP/Son
- **148** ALGOL B 6700 Mailing Labels
- **48** ALGOL B 6700 Sand Silt and Clay Fractions DSDP/Grain
- **134** ALGOL B 6700 Spectral Analysis of Time Series
- **12** ALGOL B 6700 Constants for Magnetic Synthesis Mean Sea Temp

ASSEMBLER
- **152** ASSEMBLER IBM 360/65 XORDER
- **152** ASSEMBLER IBM 360/65 XBTCCUNT
- **153** ASSEMBLER IBM 360/65 RETXBT
- **153** ASSEMBLER IBM 360/65 RETBT
- **153** ASSEMBLER IBM 360/65 BTLISTC
- **18** ASSEMBLER IBM 360/65 Potential Temp and Density Potential
- **20** ASSEMBLER IBM 360/65 Temperature Difference Calculations
- **78** ASSEMBLER IBM 360/65 Surface Current Summary Surface
- **150** ASSEMBLER IBM 360/65 File Independent Gen App Sys Gas GASTHERM
- **150** ASSEMBLER IBM 360/65 File Independent Gen App Sys Gas INDATA
- **150** ASSEMBLER IBM 360/65 File Independent Gen App Sys Gas CREATE
- **150** ASSEMBLER IBM 360/65 File Independent Gen App Sys Gas MONTH80
- **150** ASSEMBLER IBM 360/65 File Independent Gen App Sys Gas DEPTH80
- **150** ASSEMBLER IBM 360/65 File Independent Gen App Sys Gas LATLON80
- **150** ASSEMBLER IBM 360/65 File Independent Gen App Sys Gas GASCRDR
- **151** ASSEMBLER IBM 360/65 SDRETV
- **151** ASSEMBLER IBM 360/65 SD2TOSD1
- **152** ASSEMBLER IBM 360/65 SDPRT2
- **152** ASSEMBLER IBM 360/65 SPESELECT
- **152** ASSEMBLER IBM 360/65 SD2HCSTC
- **152** ASSEMBLER IBM 360/65 SD2APP
- **152** ASSEMBLER IBM 360/65 MAKE120
- **152** ASSEMBLER IBM 360/65 DEPTH
- **152** ASSEMBLER IBM 360/65 CRUCON
- **152** ASSEMBLER IBM 360/65 CODECCNV
- **152** ASSEMBLER IBM 360/65 SUPERSEL
- **152** ASSEMBLER IBM 360/65 SDPASS
- **124** ASSEMBLY HP 2100S PLOTTER COMMANDS PLOT DOTRIO

BASIC
- **31** BASIC HP 9830A Unmanned Free-Swimming Submersible Plot
- **32** BASIC HP 9830A Unmanned Free-Swimming Submersible Hotel Load
- **32** BASIC HP 9830A Unmanned Free-Swimming Submersible
- **13** BASIC IBM 360 Environmental Dynamics Subroutines OCEANLIB
- **13** BASIC IBM 360 Geostrophic Current

COBOL
- **4** COBOL IBM 360/50 Consistency of Physical and Chemical Data
- **4** COBOL IBM 360/50 Data Mgt Sys for Phys Chem Data OCEAN5V
- **4** COBOL IBM 360/50 Calculation of Thermomeric Values
- **4** COBOL IBM 360/50 Static Data System Final Values
<table>
<thead>
<tr>
<th>FORTRAN</th>
<th>CDC 3300/CS3 TIME SERIES ARAND ARMAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND AUTO</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND AUTOPLT</td>
</tr>
<tr>
<td>FORTRANS</td>
<td>CDC 3300/CS3 TIME SERIES ARAND AXISL</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND CLFFT</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND CORR</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND COMPLT</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND CONFIO</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND CONFIO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND CONFIOE</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND CTZ</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UATPLT</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD2</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND LEMOD3</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300/CS3 TIME SERIES ARAND UETRO1</td>
</tr>
<tr>
<td>Line</td>
<td>Text</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND MVERS</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND KPLACE</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND KVERS</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND SARI</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND SERGEN</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND SHAPE</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND SINT</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND SMC</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND SPEC</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND SPECT1</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND SPECT2</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND TAOOPLT</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND TCOOPLT</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND TCROPLT</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND TCORPLT</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND TCORA2</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND TIMSPC</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND ILOGPLT</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND TNOIZT</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND TPLTFRQ</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND JPLTSPC</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND IRISMO</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND ISGEN</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND TSPEC</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND TSPECT2</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND TRANFR</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND TRANFRM</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND TTYCCN</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND TTYVHM</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND ULEAV</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND USES</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND LSFC</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND UJIC</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND USPE</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND WINDOW</td>
</tr>
<tr>
<td>10</td>
<td>FORTRAN CDC 3300/053 TIME SERIES ARAND WINDOW1</td>
</tr>
<tr>
<td>25</td>
<td>FORTRAN IBM 370/155 ESTUARINE CURRENTS AND SALINITY</td>
</tr>
<tr>
<td>110</td>
<td>FORTRAN IBM 360 DENDRGRAPH</td>
</tr>
<tr>
<td>110</td>
<td>FORTRAN IBM 370 DENDRGRAPH</td>
</tr>
<tr>
<td>142</td>
<td>FORTRAN IBM 1600 TRIGONOMETRY SUBROUTINES ASSUB SAS ASA</td>
</tr>
<tr>
<td>149</td>
<td>FORTRAN IBM 1600 FORMAT FREE INPUT SUBROUTINE QREAD</td>
</tr>
<tr>
<td>149</td>
<td>FORTRAN IBM 1600 METERS VS FATHMS MATBL</td>
</tr>
<tr>
<td>144</td>
<td>FORTRAN IBM 1600 DATE CALCULATIONS LAYNK</td>
</tr>
<tr>
<td>144</td>
<td>FORTRAN IBM 1600 DATE CALCULATIONS WNDAT</td>
</tr>
<tr>
<td>144</td>
<td>FORTRAN IBM 1600 DATE CALCULATIONS XTDY</td>
</tr>
<tr>
<td>144</td>
<td>FORTRAN IBM 1600 DATE CALCULATIONS YSTHY</td>
</tr>
<tr>
<td>145</td>
<td>FORTRAN IBM 1600 JULIAN DAY SUBROUTINES CLEJL</td>
</tr>
<tr>
<td>145</td>
<td>FORTRAN IBM 1600 JULIAN DAY SUBROUTINES CLJUL</td>
</tr>
<tr>
<td>145</td>
<td>FORTRAN IBM 1600 SUM CONVERSION DTME</td>
</tr>
<tr>
<td>105</td>
<td>FORTRAN IBM 1600 PLOTS MERCATOR GRID CHART</td>
</tr>
<tr>
<td>105</td>
<td>FORTRAN IBM 1600 NAVIGATIONAL SATELLITE PASSES ALRTX</td>
</tr>
<tr>
<td>106</td>
<td>FORTRAN IBM 1600 LORAN FIX LPFIX</td>
</tr>
<tr>
<td>106</td>
<td>FORTRAN IBM 1600 PLAN COARSE AND SCHEDE CRUIS</td>
</tr>
<tr>
<td>106</td>
<td>FORTRAN IBM 1600 EARTH SPHERICAL SUBROUTINES ESTCH ESTC2 ESTPL</td>
</tr>
<tr>
<td>107</td>
<td>FORTRAN IBM 1600 DEGREE CONVERSIONS DEGFR DEPI</td>
</tr>
<tr>
<td>107</td>
<td>FORTRAN IBM 1600 MERCATOR DEGREES DMDT</td>
</tr>
<tr>
<td>107</td>
<td>FORTRAN IBM 1600 MAGNETIC FIELD CCPHENTS MAGFI</td>
</tr>
<tr>
<td>51</td>
<td>FORTRAN CDC 3600 SPECIES AFFINITIES REGROUP</td>
</tr>
<tr>
<td>116</td>
<td>FORTRAN CDC 3600 X-Y FICTS MUCPAK</td>
</tr>
<tr>
<td>253</td>
<td>FORTRAN IBM 370 REFORMATTED STATION OUTPUT IBM 1</td>
</tr>
<tr>
<td>55</td>
<td>FORTRAN IBM 370 CHLOREPHILL CHLCR</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 360/40</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>B 6700</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>HP 2115A</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>HP 2115A</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>HP 2115A</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>B 6700</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CCE 6400</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CCE 6400</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CCE 6400</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 360/65</td>
</tr>
</tbody>
</table>
FORTRAN IBM 360/65: SALINITY FROM CONDUCTIVITY TO SALINE

VOLUME TRANSFER FUNCTION 0FUN.

FORTRAN IBM 360: CO2 AND O2 SAT.

FORTRAN IBM 360/65: SOUND VELOCITY WILSON'S FORMULA WLSND.

SOUND VELOCITY WILSON'S FORMULA WELFS.

FORTRAN CDC 3300: VERTICAL BAR GRAPH.

FORTRAN IBM 360/50: CONSISTENCY OF PHYSICAL AND CHEMICAL DATA.

FORTRAN: CALCULATION OF THEORETICAL VALUES.

RAY TRACING KLEER/MAY USER LANGUAGE.

FORTRAN IBM 7090: FOURIER ANALYSIS.

FORTRAN IBM 360/65: SCIENTIFIC DATA SYSTEM FINAL VALUES.

FORTRAN IBM 360: RAY TRACING KLEER/MAY USER LANGUAGE.

FORTRAN CDC 3100: SECTION PLOTTING.

FORTRAN CDC 3150: CURRENT METER DATA PROCESSING SYSTEM TITLE.

FORTRAN IBM 7074: LEAST SQUARES PLOT.

FORTRAN UNIVAC 1108: TEMPERATURE SALINITY CORRECTIONS CURVEFIT NS5512.

FORTRAN IBM 7074: BARTLETT'S CURVE FITTING.

FORTRAN IBM 187: SEDIMENT SIZE.

FORTRAN IBM 7074: DENSITY DISPLACEMENT.

FORTRAN IBM 1108: DISTANCE AND AZIMUTH.

FORTRAN IBM 3800: INTERPOLATION FOR GEOPHYSICAL DATA.

FORTRAN CDC 3200: CURRENT METER DATA CREATE-

FORTRAN CDC 3300: CURRENT METER DATA CURRENT.

FORTRAN CDC 3300: CURRENT METER DATA CURVE.

FORTRAN CDC 3300: CURRENT METER DATA SPECTRUM.

FORTRAN CDC 6400: HORIZONTAL RANGE.

FORTRAN CDC 3800: LINE PRINTER PLCTS.

FORTRAN CDC 3800: INTERNAL GRAVITY WAVES OBSERVATION.
107 FORTRAN CDC 3800 ANNOTATED TRACK ON STEREOSGROPHIC PROJECTION
49 FORTRAN CDC 3800 PIE SCATTERING COMPUTATIONS
17 FORTRAN CDC 3600 PLCTS TRACK AND DATA PROFILE TRACK
47 FORTRAN CDC 3600 PLCTS TRACK AND DATA PROFILE TRACK
47 FORTRAN CDC 3600 SCFDATA
47 FORTRAN CDC 3600 GECD 360
47 FORTRAN CDC 3600 MAGNETIC SIGNATURES MAGPLOT
47 FORTRAN CDC 3600 MAGNETIC SIGNATURES MAGPLOT
107 FORTRAN CDC 3600 ANNOTATED TRACK ON STEREOSGROPHIC PROJECTION
125 FORTRAN UNIVAC 1108 SPECTRAL ANALYSIS SUBROUTINES
47 FORTRAN UNIVAC 1108 TRUE OCEAN DEPTH FROM
142 FORTRAN CDC 3300 SOLVE ALGEBRAIC EQUATIONS MATRIX
121 FORTRAN CDC 3300 PHYSICAL DATA PLCT FRAME
94 FORTRAN CDC 3300 ACOUSTIC PERFORMANCE AND EVALUATION
94 FORTRAN CDC 3300 SOUND REFRACTION CORRECTIONS FITIT
15 FORTRAN CDC 3300 SIGMA-I INVERSE
15 FORTRAN CDC 3300 STD PROCESSING CCEANDATA
15 FORTRAN CDC 3300 INTERNAL WAVES WITCMMB
84 FORTRAN IBM 360/165 WAVE INTERACTION WITH CURRENT CAPGRAY
24 FORTRAN IBM 370/165 ESTUARINE #CELL MODEL
26 FORTRAN CDC 6400 LFELLING CSFLLFWL
126 FORTRAN CDC 3300/C53 TIME SERIES APAND ACFFT
126 FORTRAN CDC 3300/C53 TIME SERIES APAND ACCRR
126 FORTRAN CDC 3300/C53 TIME SERIES APAND AL-PRT
126 FORTRAN CDC 3300/C53 TIME SERIES APAND ALIGN
126 FORTRAN CDC 3300/C53 TIME SERIES APAND APPACO
1 FORTRAN I IBM 1620 TRANSPORT COPP TATIONS FROM ATMOSPHERIC PRESSURE
146 FORTRAN I IBM 7094 STATION DATA ACQUISITION SYMNP
9 FORTRAN II PDP 8E MASS TRANSPORT AND VELOCITIES GCMASS
79 FORTRAN II IBM 1620 PROCESSES CURRENT INSTRUMENT OBSERVATIONS
94 FORTRAN II UNIVAC 1108 BCTTCP REFLECTIVITY
148 FORTRAN II CDC 1604 FORTRAN ACCESS TO SCIENTIFIC DATA PADS
48 FORTRAN II IBM 1620 SOIL AND SEDIMENT ENGINEERING TEST DATA
145 FORTRAN II IBM 1130 REDUCTION AND DISPLAY OF DATA ACQUIRED AT SEA
101 FORTRAN II IBM 7050 ACOUSTIC RAY TRACING
138 FORTRAN II CDC 3100 LEAST SQUARES CURVE FITTING 2 3 & 4 DIMENSIONS
139 FORTRAN II GE 225 CURVE FITTING CRVF
2 FORTRAN II CDC 3100 SALINITY ANOMALY ISATBP
3 FORTRAN II CDC 3100 OXYGEN SATURATION OXYGEN ANOMALY ISATBP
3 FORTRAN II CDC 3100 PLCT AMBIENT CURVES
3 FORTRAN II CDC 3100 PLCT AMBIENT CURVES
3 FORTRAN II CDC 3100 PLCTS STATLCH POSITIONS
3 FORTRAN II CDC 3100 PLCTS STATLCH POSITIONS
3 FORTRAN II CDC 3159 NUTRIENT CONCENTRATION PEAKS
91 FORTRAN II CDC 160A ICE DRIFT ANALYSIS/FORECAST
110 FORTRAN II IBM 7074 INDIVIDUAL PREFERENCE GENERATOR FOR MAP PROJECTIONS
111 FORTRAN II IBM 7074 INDIVIDUAL PREFERENCE GENERATOR FOR MAP PROJECTIONS
35 FORTRAN IV CDC 3300 GEODESY DATA REDUCTION AND PLOTTING
39 FORTRAN IV CDC 3300 PROCESSING/CISPLAY MARINE GEODESY DATA
39 FORTRAN IV CDC 3300 MARINE SEISMIC DATA ACQUISITION AND ANALYSIS
39 FORTRAN IV CDC 3300 A HIERARCHY OF GEODESY SOFTWARE GLIB
7 FORTRAN IV IBM 360/65 REAC CALC INTER STATION DATA CAPRICORN
7 FORTRAN IV IBM 360/65 STATION DATA CALCULATIONS F3
8 FORTRAN IV IBM 360/65 PLCTS STATLCH DATA PLCRTS
8 FORTRAN IV IBM 360/65 PLCTS STATLCH DATA PLCRTS
103 FORTRAN IV IBM 360/65 CALCULATES STATION DATA SECS
8 FORTRAN IV IBM 360/65 PLCTS STATLCH DATA PLCRTS
5 FORTRAN IV IBM 360 OCEANOGRAPHY STATLCH COMPUTER PROGRAM
25 FORTRAN IV IBM 360 OCEANOGRAPHY STATLCH COMPUTER PROGRAM
83 FORTRAN IV IBM 360/75 WAVE BCTTCP VELOCITY
91 FORTRAN IV IBM 7050-94 SEA ICE STUDIES VAMIT
91 FORTRAN IV IBM 7050-94 SEA ICE STUDIES FLIP
51 FORTRAN IV IBM 7090-94 SEA ICE STUDIES SALTAP
FORTRAN IV	CDC 6500	OCEAN-ATMOSPHERE FEEDBACK MODEL
FORTRAN IV	CDC 6500	TIDES IN THE OPEN SEA
FORTRAN IV	CDC 6500	VARIANCE AND STANDARD DEVIATION SUMMARY
FORTRAN IV	UNIVAC 1108	SCALAR IN REFRACTIVE WATER
FORTRAN IV	UNIVAC 1108	SCALAR IN REFRACTIVE WATER
FORTRAN IV	UNIVAC 1108	SORTS SCF IN RAY DATA RAY SORT
FORTRAN IV	UNIVAC 1108	PATTERN FUNCTION CALCULATIONS
FORTRAN IV	UNIVAC 1108	SCMCPLING DATA USING THE CUBIC SPLINE
FORTRAN IV	UNIVAC 1108	PROPAGATION LSSE FAST FIELD PROGRAM
FORTRAN IV	CDC 6500	OCEANOGRAFIC DATA COMPUTATION TPCGMV
FORTRAN IV	IBM 360/65	EXTENDED ACMEAL SEPARATOR PROGRAM ENCRMSEP
FORTRAN IV	IBM 360/65	OXYGEN PHOSPHATE DENSITY PLOTS
FORTRAN IV	IBM 360/65	GENERAL MERCATOR PLOT
FORTRAN IV	IBM 360/65	ADJUSTS A STATE PLANE COORDINATE TRAVERSE
FORTRAN IV	IBM 360/65	NCSC SCIENTIFIC SUBROUTINE SYSTEM ANALIS
FORTRAN IV	IBM 360/65	NOS SCIENTIFIC SUBROUTINE SYSTEM APOCM
FORTRAN IV	IBM 360/65	NOS SCIENTIFIC SUBROUTINE SYSTEM ACM
FORTRAN IV IBM 360/65
ASTRACOMIC position azimuth method
22 FORTRAN IV IBM 360/65
PERCENTAGE SATURATION OF OXYGEN IN ESTUARY
23 FORTRAN IV IBM 360/65
WATER CHEMISTRY DIELECTRIC CONSTANT
30 FORTRAN IV IBM 360/65
GRAVITATIONAL ATTRACTION TRIPLE-DIMENSIONAL BODIES
35 FORTRAN IV IBM 360/65
X-RAY DIFFRACTION ANALYSIS
36 FORTRAN IV IBM 360/65
MAGNETIC ANOMALIES 36X20
122 FORTRAN IV IBM 360/65
PROFILE PLOTS TIME AXIS PROFIT
122 FORTRAN IV IBM 360/65
PROFILE PLOTS DISTANCE AXIS PROFLOT
122 FORTRAN IV IBM 360/65
PAP PLOTS MAPPLT
38 FORTRAN IV IBM 360/65
SEDIMENT GRAIN SIZE ANALYSIS
117 FORTRAN IV IBM 360/65
REDUCTION DISPLAY STORAGE GEOPHYSICAL DATA
117 FORTRAN IV IBM 360/65
PLCTS HYDROCAST DATA PLOG
117 FORTRAN IV IBM 360/65
PLCTS TEMPERATURE-SALINITY PSAL 1
1 FORTRAN IV IBM 360/65
TRANSPORT COMPUTATIONS FROM ATMOSPHERIC PRESSURE
1 FORTRAN IV IBM 360/65
STC COMPUTATIONS STP2
1 FORTRAN IV IBM 360/65
HYDROCAST COMPUTATIONS
42 FORTRAN IV UNIVAC 1108
LISTS RAW DATA LIST
42 FORTRAN IV UNIVAC 1108
PLCTS TRACKLINE CRCDRAW
42 FORTRAN IV UNIVAC 1108
PLCTS COUNTING CROSSING INTERVALS CUCHLX
42 FORTRAN IV UNIVAC 1108
PLCTS GEOPHYSICAL DATA PLCT2
43 FORTRAN IV UNIVAC 1108
LISTS EVERY MILECRETH VALUE SHOW
43 FORTRAN IV UNIVAC 1108
NAVIGATION COMPUTATIONS TPNAV
43 FORTRAN IV UNIVAC 1108
EDITS GEOPHYSICAL DATA ZEDIT
43 FORTRAN IV UNIVAC 1108
GEOPHYSICAL DATA CLAVERSION HANDY
44 FORTRAN IV UNIVAC 1108
LISTS GEOPHYSICAL DATA LISTP
44 FORTRAN IV UNIVAC 1108
CONVERTS GEOPHYSICAL DATA PHONEY
44 FORTRAN IV UNIVAC 1108
COURSES, SPEED, EOTVCS CORRECTION LCXNAV
44 FORTRAN IV UNIVAC 1108
CONVERTS DIGITIZER DATA DIGNAV
44 FORTRAN IV UNIVAC 1108
SCALES SCOTICITY VARIATION AND NAVIGATION FATHOP
45 FORTRAN IV UNIVAC 1108
GEOSIGMA SERIES CURPLT6
45 FORTRAN IV UNIVAC 1108
REDUCE GEOPHYSICAL DATA EDIT
45 FORTRAN IV UNIVAC 1108
CONVERTS DIGITIZER DATA DIGNAV
125 FORTRAN IV CCC 6400
SCALAR TYPE SERIES TEMPLT7
78 FORTRAN IV CCC 6400
VECTER TYPE SERIES CURPLT6
51 FORTRAN IV IBM 360
TCXICITY ECASSAY RATEIT ANALYSIS
139 FORTRAN IV IBM 360/65
FFTS POLYCAKIAL PCTERM
142 FORTRAN IV IBM 360/65
CHECKS ANGLES TAKPI
142 FORTRAN IV CDC 6600
CHECKS ANGLES TAKPI
42 FORTRAN IV IBM 360/65
PLCTS SCATTERGRAM SCGMS SSCGMS
123 FORTRAN IV CDC 6600
X-Y PLOTS EBPLT
148 FORTRAN IV CDC 6600
REPRODUCE AKE SERIALIZE DECK DUPE
146 FORTRAN IV IBM 360/65
FLAGS SUSPICIOUS DATA VALUES EDITO
146 FORTRAN IV IBM 360/65
JULIAN DAY CCVERSION JOAYWK
144 FORTRAN IV IBM 360/65
JULIAN DATE CCVERSION ROUTINES JOLDAY
144 FORTRAN IV IBM 360/65
JULIAN DATE CCVERSION ROUTINES JULIAN
144 FORTRAN IV IBM 360/65
JULIAN DATE CCVERSION ROUTINES JULIAN
144 FORTRAN IV IBM 360/65
JULIAN DATE CCVERSION ROUTINES JULYAN
144 FORTRAN IV IBM 360/65
JULIAN DATE CCVERSION ROUTINES JULSEC
144 FORTRAN IV IBM 360/65
JULIAN DATE CCVERSION ROUTINES CESUJ
144 FORTRAN IV IBM 360/65
DAY OF THE WEEK NCAYWK
17 FORTRAN IV CDC 6500
WET BBLB TEMPERATURE NETBLA
41 FORTRAN IV IBM 360/65
MARINE GEOPHYSICAL DATA REDUCTION
41 FORTRAN IV IBM 360/65
PLCTS PROFILES OF DATHMETRY AND MAGNETIC
153 FORTRAN IV IBM 360/65
XBSSELECT
153 FORTRAN IV IBM 360/65
XBPSINV
153 FORTRAN IV IBM 360/65
XBSOSUM
153 FORTRAN IV IBM 360/65
XBCOSUM
153 FORTRAN IV IBM 360/65
CANNPC
154 FORTRAN IV IBM 360/65
DYNAMIC DEPTA AND TAYAN DYNACK
15 FORTRAN IV IBM 360/65
POTENTIAL TEMP AND DENSITY RODENS
15 FORTRAN IV IBM 360/65
VOLUME TRANSFERT VLLTRN
19 FORTRAN IV IBM 360/65
CONPUTES PRESSURE PRESSR
115 FORTRAN IV IBM 360/65 COMPUTE GREY CMGCL PATH GCLRC
115 FORTRAN IV IBM 360/40 PAP PROJECTS ANG GRIDS MAP
54 FORTRAN IV IBM 360 PIGMENT RATIC
54 FORTRAN IV IBM 360 SUCCESSION
54 FORTRAN IV IBM 360 SPECIES ABUNDANCE
138 FORTRAN IV IBM 360/65 FITS SMOOTH CURVE
141 FORTRAN IV IBM 360/65 CALCULATES SPLINE COEFFICIENT SPLCOF
141 FORTRAN IV IBM 360/65 INTERPOLATING BY CUBIC SPLINE
150 FORTRAN IV IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASIPES
150 FORTRAN IV IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASSAMP
150 FORTRAN IV IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASINV
150 FORTRAN IV IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASSCI
150 FORTRAN IV IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASVPT
150 FORTRAN IV IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GVAERFM
150 FORTRAN IV IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GVAERM
150 FORTRAN IV IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GVAEINS
151 FORTRAN IV IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GVAECIRC
151 FORTRAN IV IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASDIP
151 FORTRAN IV IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASDIPH
151 FORTRAN IV IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASDIPS
151 FORTRAN IV IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASDIPS
151 FORTRAN IV IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASSCQ
151 FORTRAN IV IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS NAMES
151 FORTRAN IV IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS SD2 GAS
11 FORTRAN IV CDC 3300 OXYGEN CPLCT
11 FORTRAN IV CDC 3300 CHLOROPHYLL CHLO
11 FORTRAN IV CDC 3300 SALINITY SALTY
11 FORTRAN IV CDC 3300 TEMPERATURE CATIONS
12 FORTRAN IV CDC 3300 THERMOCENTER COOL CORR
12 FORTRAN IV CDC 3300 TRANSPORT XPCI
91 FORTRAN IV CDC 3300 ICEBERG DRIFT ICE-PILOT
143 FORTRAN IV IBM 360 AREAL CCENTRATION INTEGRATE
143 FORTRAN IV IBM 360 WEIGHTED AVERAGES AVERAGE
84 FORTRAN IV UNIVAC 1108 STORM SURGE
84 FORTRAN IV UNIVAC 1108 WAVE REFRACTION
26 FORTRAN IV IBM 360/40 MATHEMATICAL MODEL OF COASTAL UPWELLING
3 FORTRAN IV HP 2100A STD TABLES AND PLCTS STD
22 FORTRAN IV CDC 3150 ALKALINITY ALCT
47 FORTRAN IV CDC 3150 GEOPHYSICAL DATA STORAGE AND RETRIEVAL GEOFILE
46 FORTRAN IV UNIVAC 1108 BOTPET RECEPIENT DISTRIBUTION PLOT
93 FORTRAN IV CDC 6500 NORMAL POLE CALCULATIONS ACRMOD 0
16 FORTRAN IV HP 2100S THERMOMETRIC DEPTCH CALCULATION CAST
16 FORTRAN IV HP 2100S THERMOMETER DATA FILE HANDLER THERMO
16 FORTRAN IV CDC 3200 SEA SURFACE TEMPERATURES ANALYSIS
107 FORTRAN IV HP 2100S ANNCETES CHART
106 FORTRAN IV HP 2100S BATHYPETRIC CR MAGNETICS CHART PROFIL
108 FORTRAN IV HP 2100S MERCATCR CH-ART DIGITIZATION ANTRK
108 FORTRAN IV HP 2100S BATHYMETRIC CHART DIGITIZATION ODBTH
107 FORTRAN IV HP 2100S PLCTS ON STEREGRAPHIC CHART ANNTCT
108 FORTRAN IV HP 2100S PLCTS NAVIGATION DATA CEEIN
109 FORTRAN IV HP 2100S LONG BASE LINE ACCLSTIC TRACKING
10 FORTRAN IV XDS SIGMA 7 ADIABATIC TEMPERATURE GRADIENT ATG
16 FORTRAN IV XDS SIGMA 7 POTENTIAL TEMPERATURE PTEPM
10 FORTRAN IV XDS SIGMA 7 SPECIFIC VOLUPME SPVCL
136 FORTRAN IV XDS SIGMA 7 STATISTICS FROM WORL FORMATUS STATS
105 FORTRAN IV HP 2100S LORAN OR CMGQA CONVERSION GEPOM
150 FORTRAN IV IBM 3100A CRUISE TRACK TPERE
105 FORTRAN IV XDS SIGMA 7 TRANSFORMAMICA OF SPHERICAL COORDINATES ROTGUT
106 FORTRAN IV XDS SIGMA 7 SUM OF FINITE ROTATIONS ON A SPHERE SUMRT
41 FORTRAN IV XDS SIGMA 7 GEOMAGNETIC FIELD HFIELD
50 FORTRAN IV XDS SIGMA 7 WHCI BICLGY SERIES FTAPE
50 FORTRAN IV XDS SIGMA 7 WHCI BICLGY SERIES FPLSHAFT
50 FORTRAN IV XDS SIGMA 7 WHCI BICLGY SERIES CKSPIT
50 FORTRAN IV XDS SIGMA 7 WHCI BICLGY SERIES SELECT
191
<table>
<thead>
<tr>
<th>Compilation</th>
<th>Program Name</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORTRAN 63</td>
<td>COC 3800</td>
<td>GRASS UNDERWATER ACOUSTICS PREDICTION</td>
</tr>
<tr>
<td>FORTRAN 63</td>
<td>COC 3800</td>
<td>GRASS UNDERWATER ACOUSTICS PREDICTION</td>
</tr>
<tr>
<td>ANS FORTRAN</td>
<td>IBM 340</td>
<td>ECOLOGICAL STATISTICAL PROGRAMS</td>
</tr>
<tr>
<td>PS FORTRAN</td>
<td>CCC 6400</td>
<td>TIME SERIES ANALYSIS PROGRAMS</td>
</tr>
<tr>
<td>MS FORTRAN</td>
<td>CCC 3150</td>
<td>TIME SERIES ANALYSIS PROGRAMS</td>
</tr>
<tr>
<td>MS FORTRAN</td>
<td>CCC 3150</td>
<td>TIME SERIES ANALOG TO DIGITAL A/D</td>
</tr>
</tbody>
</table>

PL/1

<table>
<thead>
<tr>
<th>Compilation</th>
<th>Program Name</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>74 PL/1</td>
<td>IBM 360/168</td>
<td>DRIFT BOTTLE/STATISTICS</td>
</tr>
<tr>
<td>74 PL/1</td>
<td>IBM 360/168</td>
<td>DRIFT BOTTLE PLOTS</td>
</tr>
<tr>
<td>74 PL/1</td>
<td>IBM 360/166</td>
<td>RECPCPFAT AND SCAT DRIFT BOTTLE DATA</td>
</tr>
<tr>
<td>4 PL/1</td>
<td>IBM 360/165</td>
<td>DATA PGT SYS FCR PHYS CHEM DATA OCEANSY</td>
</tr>
<tr>
<td>72 PL/1</td>
<td>IBM 370/168</td>
<td>MCTE CAPTIC SPILL TRACKER</td>
</tr>
<tr>
<td>67 PL/1</td>
<td>IBM 370/100</td>
<td>MARKOVIAN ANALYSIS OF TDF-14 WIND DATA</td>
</tr>
<tr>
<td>151 PL/1</td>
<td>IBM 360/65</td>
<td>SD2CHAR</td>
</tr>
<tr>
<td>152 PL/1</td>
<td>IBM 360/65</td>
<td>SDGECIV</td>
</tr>
<tr>
<td>152 PL/1</td>
<td>IBM 360/65</td>
<td>XBEVALU</td>
</tr>
<tr>
<td>152 PL/1</td>
<td>IBM 360/65</td>
<td>XBCCNV</td>
</tr>
<tr>
<td>152 PL/1</td>
<td>IBM 360/65</td>
<td>XBFHCW</td>
</tr>
<tr>
<td>152 PL/1</td>
<td>IBM 360/65</td>
<td>XBTNSUP</td>
</tr>
<tr>
<td>153 PL/1</td>
<td>IBM 360/65</td>
<td>DSGEOV</td>
</tr>
<tr>
<td>153 PL/1</td>
<td>IBM 360/65</td>
<td>SCMINE</td>
</tr>
<tr>
<td>153 PL/1</td>
<td>IBM 360/65</td>
<td>SCMULTI</td>
</tr>
<tr>
<td>153 PL/1</td>
<td>IBM 360/65</td>
<td>DRYLAND</td>
</tr>
<tr>
<td>141 PL/1</td>
<td>IBM 360/65</td>
<td>LINEAR INTERCATION LININT</td>
</tr>
<tr>
<td>141 PL/1</td>
<td>IBM 360/65</td>
<td>LAGRANGIAN TRIPLE POINT INTERPOLATION LAG3PT</td>
</tr>
<tr>
<td>150 PL/1</td>
<td>IBM 360/65</td>
<td>FILE INDEPENDENT GEN APP SYS GAS GAS THERM</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

<table>
<thead>
<tr>
<th>Compilation</th>
<th>Program Name</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>104 MAD</td>
<td>IBM 7090</td>
<td>GENERAL MAP PROJECTION</td>
</tr>
<tr>
<td>104 MAD</td>
<td>IBM 7090</td>
<td>SINGLE MAP PROJECTION DISTORTIONS</td>
</tr>
<tr>
<td>80 MAD</td>
<td>IBM 7090</td>
<td>THEORETICAL RACIAL TIDAL FORCE</td>
</tr>
<tr>
<td>53 MAD</td>
<td>IBM 7094</td>
<td>PHYTOPLANKTON NUMBERS VOLUME SURFACE AREA</td>
</tr>
<tr>
<td>114 SPS</td>
<td>IBM 1620</td>
<td>COMPUTES GEOGRAPHIC POSITICANS</td>
</tr>
<tr>
<td>114 SPS</td>
<td>IBM 1620</td>
<td>LORAN C VERSION2</td>
</tr>
</tbody>
</table>

193
<table>
<thead>
<tr>
<th>HARDWARE INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>61 FORTRAN B 6700</td>
</tr>
<tr>
<td>61 FORTRAN B 6700</td>
</tr>
<tr>
<td>71 FORTRAN B 67CC</td>
</tr>
<tr>
<td>60 FORTRAN B 6700</td>
</tr>
<tr>
<td>60 FORTRAN B 6700</td>
</tr>
<tr>
<td>60 FORTRAN B 6700</td>
</tr>
<tr>
<td>70 FORTRAN B 67CC</td>
</tr>
<tr>
<td>70 FORTRAN B 6700</td>
</tr>
<tr>
<td>70 FORTRAN B 6700</td>
</tr>
<tr>
<td>64 FORTRAN B 6700</td>
</tr>
<tr>
<td>64 FORTRAN B 6700</td>
</tr>
<tr>
<td>64 FORTRAN B 6700</td>
</tr>
<tr>
<td>58 FORTRAN B 6700</td>
</tr>
<tr>
<td>58 FORTRAN B 6700</td>
</tr>
<tr>
<td>58 FORTRAN B 6700</td>
</tr>
<tr>
<td>68 FORTRAN B 6700</td>
</tr>
<tr>
<td>68 FORTRAN B 6700</td>
</tr>
<tr>
<td>68 FORTRAN B 67CC</td>
</tr>
<tr>
<td>57 FORTRAN B 6700</td>
</tr>
<tr>
<td>57 FORTRAN B 6700</td>
</tr>
<tr>
<td>65 FORTRAN B 6700</td>
</tr>
<tr>
<td>52 FORTRAN B 6700</td>
</tr>
<tr>
<td>52 FORTRAN B 6700</td>
</tr>
<tr>
<td>52 FORTRAN B 6700</td>
</tr>
<tr>
<td>55 FORTRAN B 6700</td>
</tr>
<tr>
<td>55 FORTRAN B 6700</td>
</tr>
<tr>
<td>55 FORTRAN B 6700</td>
</tr>
<tr>
<td>65 FORTRAN B 67CC</td>
</tr>
<tr>
<td>66 FORTRAN C 6700</td>
</tr>
<tr>
<td>50 FORTRAN B 6700</td>
</tr>
<tr>
<td>56 FORTRAN B 6700</td>
</tr>
<tr>
<td>56 FORTRAN C 6700</td>
</tr>
<tr>
<td>66 FORTRAN B 6700</td>
</tr>
<tr>
<td>66 FORTRAN B 6700</td>
</tr>
<tr>
<td>62 FORTRAN B 6700</td>
</tr>
<tr>
<td>62 FORTRAN B 6700</td>
</tr>
<tr>
<td>12 ALGOL C 6700</td>
</tr>
<tr>
<td>65 FORTRAN B 6700</td>
</tr>
<tr>
<td>65 FORTRAN B 6700</td>
</tr>
<tr>
<td>65 FORTRAN B 6700</td>
</tr>
<tr>
<td>63 FORTRAN B 6700</td>
</tr>
<tr>
<td>77 FORTRAN B 6700</td>
</tr>
<tr>
<td>67 FORTRAN B 6700</td>
</tr>
<tr>
<td>56 ALGOL B 6700</td>
</tr>
<tr>
<td>148 ALGOL B 6700</td>
</tr>
<tr>
<td>46 ALGOL B 6700</td>
</tr>
<tr>
<td>67 FCRTAA B 6700</td>
</tr>
<tr>
<td>67 FCRTAA B 6700</td>
</tr>
<tr>
<td>67 FCRTAA B 6700</td>
</tr>
<tr>
<td>2 ALGOL B 6700</td>
</tr>
<tr>
<td>142 ALGOL B 6700</td>
</tr>
</tbody>
</table>
GCNTRCL DATA CCPATION

91 FORTRAN II CDC 160A ICE DRIFT ANALYSIS/FORECAST
92 FORTRAN IV CDC 160A MACHINE PLOTTING ON MERCATOR PROJECTION
93 FORTRAN IV CDC 160A SCUOD SCATTERING BY ORGANISMS SKAT
89 FORTRAN CDC 160A WIND COMPUTATION FROM SHIP OBSERVATIONS TRU WIND
72 FORTRAN CDC 160A THERMAL PCLLLTICl MODEl
75 FORTRAN CDC 160A MEAN DRIFT ROUTINE
97 FORTRAN CDC 160A SQUAD SPEED COMPUTATION MODEL SOVEL
67 FORTRAN CDC 160A OCEAN CLIMATOLOGY ANALYSIS MODEL ANALYS
146 FORTRAN II CDC 1604 FORTRAN ACCESS TO SCIENTIFIC DATA ASO
138 FORTRAN IV CDC 1604 LEAST SQUARES CURVE FITTING 2,3,4 DIMENSIONS
118 FORTRAN CDC 1604 MEAN DRIFT ROUTINE
97 FORTRAN CDC 1604 SOUND SPEED COMPUTATION MODEL SOVEL
87 FORTRAN CDC 1604 OCEAN CLIMATE ANALYSIS POLICY
168 FORTRAN IV CDC 1604 ATMOSPHERIC WATER CONTENT MODEL
3 FORTRAN II CDC 1604 OXYGEN SATURATION GAYMOLY ISATBP
3 FORTRAN II CDC 1604 PLCT THETA-S CURVES
3 FORTRAN II CDC 1604 PLOTS STATIC POSITIONS
83 FORTRAN IV CDC 1604 SURF PREDICTION MODEL
83 FORTRAN CDC 1604 SINGULAR WAVE PREDICTION MODEL
2 FORTRAN II CDC 1604 SALINITY ANALYSIS ISALBP
72 FORTRAN CDC 1604 DANISH ADVECTION PROGRAM
112 FORTRAN CDC 1604 SCUNOY PLCT
75 FORTRAN CDC 1604 OPTIMIZED MULTI-LAYER WM MODEL
125 FORTRAN V CDC 1604 TIME SERIES FITTING
97 FORTRAN CDC 1604 SCUOD SPEED COMPUTATION MODEL SOVEL
112 FORTRAN CDC 1604 SODAC INVERSE
125 MS FORTRAN CDC 1604 TIME SERIES ANALYSIS PROGRMS TSAP
47 FORTRAN IV CDC 1604 GEOPHYSISL DATA STORAGE AND RETRIEVAL GEOFILE
126 PS FORTRAN CDC 1604 TIME SERIES-ANALOG TO DIGITAL A TO D
22 FORTRAN IV CDC 1604 ALKALINITY ALT
79 FORTRAN CDC 1604 CURRENT METER DATA PROCESSING SYSTEM TICE
12 FORTRAN IV CDC 1604 NUTRIENT CONCENTRATION PEAKS
63 FORTRAN IV CDC 1604 SINGULAR WAVE PREDICTION MODEL
16 FORTRAN IV CDC 1604 SEA SURFACE TEMPERATURE ANALYSIS
15 FORTRAN CDC 1604 INTERPOLATION FOR OCEANOGRAPHIC DATA
97 FORTRAN CDC 1604 SCUOD SPEED COMPUTATION MODEL SOVEL
11 FORTRAN IV CDC 1604 OXYGEN CPLCT
11 FORTRAN IV CDC 3300 CHLOROPHYLL CL-CL
11 FORTRAN IV CDC 3300 SIALITY SALTY
11 FORTRAN IV CDC 3300 TEMPERATURE SALINITY CLASS TEMPERATURE TSVOL
9 FORTRAN IV CDC 3300 ICEBERG DRIFT ICE-PLCT
12 FORTRAN IV CDC 3300 THERMOMETER CORRECTION THEQZ
12 FORTRAN IV CDC 3300 TRANSPORT APERT
142 FORTRAN CDC 3300 SOLVE ALGEBRAIC EQUATIONS MATRIX
116 FORTRAN CDC 3300 VERTICAL EAR GRAPHS
75 FORTRAN CDC 3300 CURRENT METER DATA CREATE-C
75 FORTRAN CDC 3300 CURRENT METER DATA CURRENT
75 FORTRAN CDC 3300 CURRENT METER DATA CURRPLT
75 FORTRAN CDC 3300 CURRENT METER DATA SPECTRUM
39 FORTRAN IV CDC 3300 GEOPHYSICAL DATA REDUCTION AND PLOTTING
39 FORTRAN IV CDC 3300 PROCESSING/DISPLAY MARINE GEOPHYSICAL DATA
39 FORTRAN IV CDC 3300 MARINE SEISMIC DATA REDUCTION AND ANALYSIS
39 FORTRAN IV CDC 3300 A LIBRARY OF GEOPHYSICAL SUBROUTINES GLIB
94 FORTRAN CDC 3300 SOUND REFRACTION CORRECTIONS FITIT
95 FORTRAN CDC 3300 ACOUSTIC PERFORMANCE AND EVALUATION
121 FORTRAN CDC 3300 PHYSICAL DATA PLOT FRAME
131 FORTRAN CDC 3300/CS5 TIME SERIES PLOT FRAME
131 FORTRAN CDC 3300/CS5 TIME SERIES PLOT FRAME
<table>
<thead>
<tr>
<th>107 FORTRAN 63 CDC 3800</th>
<th>GRASS UNDERWATER ACOUSTICS PREDICTION SERPENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 FORTRAN 63 CDC 3800</td>
<td>GRASS UNDERWATER ACOUSTICS PREDICTION SERPENT</td>
</tr>
<tr>
<td>09 FORTRAN 63 CDC 3800</td>
<td>MIE SCATTERING COMPUTATIONS</td>
</tr>
<tr>
<td>06 FORTRAN 63 CDC 3800</td>
<td>INTERNAL GRAVITY WAVES DISPER</td>
</tr>
<tr>
<td>07 FORTRAN 63 CDC 3800</td>
<td>ANNOTATED TRACK ON STEREOSCOPIC PROJECTION</td>
</tr>
<tr>
<td>05 FORTRAN 63 CDC 3800</td>
<td>ZT TS TRACK AND DATA PROFILE TRACK</td>
</tr>
<tr>
<td>04 FORTRAN 63 CDC 3800</td>
<td>GECCATA</td>
</tr>
<tr>
<td>03 FORTRAN 63 CDC 3800</td>
<td>MAGNETIC SIGNATURE MAGPLCT</td>
</tr>
<tr>
<td>02 FORTRAN 63 CDC 3800</td>
<td>DATA PTYS FCR PHYS CHEM DATA OCEANV</td>
</tr>
<tr>
<td>01 FORTRAN 63 CDC 3800</td>
<td>VECTOR TIME SERIES CURVES</td>
</tr>
<tr>
<td>00 FORTRAN 63 CDC 3800</td>
<td>HORIZONTAL RANGE</td>
</tr>
<tr>
<td>09 FORTRAN 63 CDC 3800</td>
<td>UPHOLLING CASTLENW</td>
</tr>
<tr>
<td>08 FORTRAN 63 CDC 3800</td>
<td>TIME SERIES ANALYSIS PROGRAMS TSAP</td>
</tr>
<tr>
<td>07 FORTRAN 63 CDC 3800</td>
<td>THREE-DIMENSIONAL SIMULATION PACKAGE AUGUR</td>
</tr>
<tr>
<td>06 FORTRAN 63 CDC 3800</td>
<td>VPRAMETER AND RADIOMETER TIME SERIES RAD</td>
</tr>
<tr>
<td>05 FORTRAN 63 CDC 3800</td>
<td>TCPREDITED CHLOROPHYLL AND PRODUCTIVITY</td>
</tr>
<tr>
<td>04 FORTRAN 63 CDC 3800</td>
<td>MULTI-LAYER HYDRO_DYNAMIC-NUMERICAL MODEL</td>
</tr>
<tr>
<td>03 FORTRAN 63 CDC 3800</td>
<td>HURRICANE HEAT POTENTIAL MODEL</td>
</tr>
<tr>
<td>02 FORTRAN 63 CDC 3800</td>
<td>SINGLE LARGE HYDRO_DYNAMIC-NUMERICAL MODEL</td>
</tr>
<tr>
<td>01 FORTRAN 63 CDC 3800</td>
<td>OCEANOGRAPHIC DATA COMPUTATION TPdCov</td>
</tr>
<tr>
<td>00 FORTRAN 63 CDC 3800</td>
<td>FRENCH SPECTRE-ANGULAR WAVE MODEL</td>
</tr>
<tr>
<td>09 FORTRAN 63 CDC 3800</td>
<td>NORMAL MODE CALCULATIONS ROMDIO 3</td>
</tr>
<tr>
<td>08 FORTRAN 63 CDC 3800</td>
<td>SEARCH AND RESCUE PLANNING RSAR</td>
</tr>
<tr>
<td>07 FORTRAN 63 CDC 3800</td>
<td>THERMAL POLLUTION MODEL</td>
</tr>
<tr>
<td>06 FORTRAN 63 CDC 3800</td>
<td>MEAN CRITIC ROUTINE</td>
</tr>
<tr>
<td>05 FORTRAN 63 CDC 3800</td>
<td>VARIANCE AND STANDARD DEVIATION SUMMARY</td>
</tr>
<tr>
<td>04 FORTRAN 63 CDC 3800</td>
<td>OBJECTIVE THERMALINE ANALYSIS</td>
</tr>
<tr>
<td>03 FORTRAN 63 CDC 3800</td>
<td>OCEAN-ATMOSPHERE FEEDBACK MODEL</td>
</tr>
<tr>
<td>02 FORTRAN 63 CDC 3800</td>
<td>NET DILIO TEMPERATURE WETSLA</td>
</tr>
<tr>
<td>01 FORTRAN 63 CDC 3800</td>
<td>DYNAMIC RESPONSE OF CABLE SYSTEM SNAPLG</td>
</tr>
<tr>
<td>00 FORTRAN 63 CDC 3800</td>
<td>CHANGES IN ELECTROMECANICAL CABLE RAMS C</td>
</tr>
<tr>
<td>09 FORTRAN 63 CDC 3800</td>
<td>ENH RESPONSES IN ELECTROMECANICAL CABLE TACAC</td>
</tr>
<tr>
<td>08 FORTRAN 63 CDC 3800</td>
<td>HARMONIC ANALYSIS OF DATA AT TIDAL FREQUENCYS</td>
</tr>
<tr>
<td>07 FORTRAN 63 CDC 3800</td>
<td>DEEP OCEAN LOCAL HANDLING SYSTEMS PLCNS</td>
</tr>
<tr>
<td>06 FORTRAN 63 CDC 3800</td>
<td>LOCAL MOTION AND CABLE STRESSES CAE</td>
</tr>
<tr>
<td>05 FORTRAN 63 CDC 3800</td>
<td>SCIL TEST DATA TIXAX</td>
</tr>
<tr>
<td>04 FORTRAN 63 CDC 3800</td>
<td>DYNAMIC STRESS RESPONSE OF LIFTING LINES CABAAA</td>
</tr>
<tr>
<td>03 FORTRAN 63 CDC 3800</td>
<td>REPRODUCED AND SEPARATED DECK DUPE</td>
</tr>
<tr>
<td>02 FORTRAN 63 CDC 3800</td>
<td>A GENERALIZED EXPLOITIC POPULATION SIMULATOR</td>
</tr>
<tr>
<td>01 FORTRAN 63 CDC 3800</td>
<td>X-Y PLOTS DBPLT</td>
</tr>
<tr>
<td>00 FORTRAN 63 CDC 3800</td>
<td>DISPLAYS VHRR SATELLITE DATA Y5DPD</td>
</tr>
<tr>
<td>09 FORTRAN 63 CDC 3800</td>
<td>HYDROGRAPHIC DATA REDUCTION TWO FIVE</td>
</tr>
<tr>
<td>08 FORTRAN 63 CDC 3800</td>
<td>CHECK ANGLES TMOP1</td>
</tr>
<tr>
<td>07 FORTRAN 63 CDC 3800</td>
<td>HURRICANE STORM SURGE FORECASTS SPLASH 1</td>
</tr>
<tr>
<td>06 FORTRAN 63 CDC 3800</td>
<td>HURRICANE STORM SURGE FORECASTS SPLASH 2</td>
</tr>
<tr>
<td>05 FORTRAN 63 CDC 3800</td>
<td>GENERALIZED STORM PRODUCTIVE MODEL PMDFIT</td>
</tr>
<tr>
<td>04 FORTRAN 63 CDC 3800</td>
<td>CONVECTION INVARIALE VISCOSITY VISCO GH VOVNC</td>
</tr>
<tr>
<td>03 FORTRAN 63 CDC 3800</td>
<td>INTERNAL WAVE OSCILLATIONS 2MODE</td>
</tr>
<tr>
<td>02 FORTRAN 63 CDC 3800</td>
<td>STANDARD DATA PROCESSING</td>
</tr>
<tr>
<td>01 FORTRAN 63 CDC 3800</td>
<td>SPECIES DIVERSITY JCB</td>
</tr>
<tr>
<td>00 FORTRAN 63 CDC 3800</td>
<td>PRODUCTIVITY ECCPRLD</td>
</tr>
<tr>
<td>09 FORTRAN 63 CDC 3800</td>
<td>MULTII-LAYER HYDRO_DYNAMIC-NUMERICAL MODEL</td>
</tr>
<tr>
<td>08 FORTRAN 63 CDC 3800</td>
<td>FRENCH SPECTRE-ANGULAR WAVE MODEL</td>
</tr>
<tr>
<td>07 FORTRAN 63 CDC 3800</td>
<td>OPTIMIZED MULTI-LAYER MN MODEL</td>
</tr>
<tr>
<td>06 FORTRAN 63 CDC 3800</td>
<td>INTERNAL WAVE OSCILLATIONS 2MODE</td>
</tr>
<tr>
<td>05 FORTRAN 63 CDC 3800</td>
<td>X-Y PLOTS IN A FLEXIBLE FCRPAT MEAGPLCT</td>
</tr>
<tr>
<td>04 FORTRAN 63 CDC 3800</td>
<td>DAILY SEAMASTER OBSERVATIONS</td>
</tr>
<tr>
<td>Company</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>DIGITAL EQUIPMENT CORPORATION</td>
<td>125 FORTRAN 32 PDP-8 TIME SERIES PLOTTING</td>
</tr>
<tr>
<td></td>
<td>3 FORTRAN II PDP-8 PLOTS STATIC POSITIONS</td>
</tr>
<tr>
<td></td>
<td>3 FORTRAN II PDP-8 PLOT THETA-S CURVES</td>
</tr>
<tr>
<td></td>
<td>118 FORTRAN PDP-8 SECTION PLOTTING</td>
</tr>
<tr>
<td></td>
<td>9 FORTRAN II PDP-8 MASS TRANSPORT AND VELOCITIES GEOMASS</td>
</tr>
<tr>
<td></td>
<td>139 FORTRAN PDP-9 ARTLETT'S CURVE FITTING</td>
</tr>
<tr>
<td></td>
<td>9 FORTRAN IV PDP-10 STATIC DATA THIRP</td>
</tr>
<tr>
<td></td>
<td>5 FORTRAN IV PDP-10 THERMOMETER CORRECTION THERMOMETRIC DEPTH</td>
</tr>
<tr>
<td></td>
<td>20 FORTRAN PDP-11 GENERAL PURPOSE EDITOR OMSEC</td>
</tr>
<tr>
<td></td>
<td>20 FORTRAN PDP-11 TIME SERIES INTO PKCFILES CMSCHP</td>
</tr>
<tr>
<td></td>
<td>20 FORTRAN PDP-11 CURRENT PROFILE DATA MK2CAL</td>
</tr>
<tr>
<td></td>
<td>20 FORTRAN PDP-11 APPENDS NEW DATA TO FILE DERIVE</td>
</tr>
<tr>
<td>GENERAL ELECTRIC</td>
<td>139 FORTRAN II GE 225 CURVE FITTING CRVF</td>
</tr>
<tr>
<td>HELLETT-PACKARC</td>
<td>143 FORTRAN HP 2100 THERMOMETER CORRECTION DEPTH COMP HYD1</td>
</tr>
<tr>
<td></td>
<td>8 FORTRAN IV HP 2100 STATIC DATA HYD2</td>
</tr>
<tr>
<td></td>
<td>6 FORTRAN IV HP 2100A SIC TABLES AND PLOTS STD</td>
</tr>
<tr>
<td></td>
<td>10 FORTRAN IV HP 2100S THERMOMETER DATA FILE HANDLER THERMC</td>
</tr>
<tr>
<td></td>
<td>105 FORTRAN IV HP 2100S LCDAN CR POLCA CONVERSION GEOS</td>
</tr>
<tr>
<td></td>
<td>107 FORTRAN IV HP 2100S ANNCETES CHART</td>
</tr>
<tr>
<td></td>
<td>108 FORTRAN IV HP 2100S BATHYMETRIC CR MAGNETICS CHART PKCFL</td>
</tr>
<tr>
<td></td>
<td>108 FORTRAN IV HP 2100S MERCATOR CHART DIGITIZATION DBTH</td>
</tr>
<tr>
<td></td>
<td>108 FORTRAN IV HP 2100S BATHYMETRIC CHART DIGITIZATION DBTH</td>
</tr>
<tr>
<td></td>
<td>108 FORTRAN IV HP 2100S PLCTS ON STEREOSMATIC CHART AMNT</td>
</tr>
<tr>
<td></td>
<td>108 FORTRAN IV HP 2100S PLCTS NAVIGATICA DATA CCEAN</td>
</tr>
<tr>
<td></td>
<td>16 FORTRAN IV HP 2100S THERMOMETRIC DEPTH CALCULATION CAST</td>
</tr>
<tr>
<td></td>
<td>124 ASSEMBLY HP 2100S PLOTER COMPANS PKT DVRIC</td>
</tr>
<tr>
<td></td>
<td>109 FORTRAN IV HP 2100S CR ANG EASE LINE ACALSTIC TRACKING</td>
</tr>
<tr>
<td></td>
<td>2 FORTRAN HP 2115A SIC PROCESSING NET</td>
</tr>
<tr>
<td></td>
<td>1 FORTRAN HP 2115A DIGITIZES SIC DATA CEEP</td>
</tr>
<tr>
<td></td>
<td>105 FORTRAN IV HP 2100A CRUDE TRACKE THERC</td>
</tr>
<tr>
<td></td>
<td>120 FORTRAN IV HP MINI PLCTS NAVIGATICA WITH ANY OTHER DATA TYPE CEEP</td>
</tr>
<tr>
<td>IBM</td>
<td>51 FORTRAN IV IBM 360 TECOTOXICITY PICASAY PPCBIB ANLAYSIS</td>
</tr>
<tr>
<td></td>
<td>54 FORTRAN IV IBM 360 SUCCESS</td>
</tr>
<tr>
<td></td>
<td>54 FORTRAN IV IBM 360 SPECIES RELATION</td>
</tr>
<tr>
<td></td>
<td>134 FORTRAN IV IBM 360 TIME SERIES ANALYSIS BLACKY</td>
</tr>
<tr>
<td></td>
<td>24 FORTRAN IV IBM 360 SINGLE LARGE HYDRODYNAMICAL-MEANICAL PCKELES</td>
</tr>
<tr>
<td></td>
<td>143 FORTRAN IV IBM 360 AVERA CONCENTRATION INTEGRATE</td>
</tr>
<tr>
<td></td>
<td>143 FORTRAN IV IBM 360 SPECIES RELATION</td>
</tr>
<tr>
<td></td>
<td>73 FORTRAN IBM 360 ECOLOGICAL STATISTICAL PROGRAMS ECCSTAT</td>
</tr>
<tr>
<td></td>
<td>26 FORTRAN IV IBM 360 PATHOPATHIC WATER QUALITY PCKELES FOR ESTUARIES</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>26</td>
<td>IBM 360</td>
</tr>
<tr>
<td>26</td>
<td>IBM 360</td>
</tr>
<tr>
<td>114</td>
<td>IBM 360</td>
</tr>
<tr>
<td>35</td>
<td>IBM 360</td>
</tr>
<tr>
<td>54</td>
<td>IBM 360</td>
</tr>
<tr>
<td>13</td>
<td>IBM 360</td>
</tr>
<tr>
<td>13</td>
<td>IBM 360</td>
</tr>
<tr>
<td>22</td>
<td>IBM 360</td>
</tr>
<tr>
<td>12</td>
<td>IBM 360</td>
</tr>
<tr>
<td>17</td>
<td>IBM 360</td>
</tr>
<tr>
<td>112</td>
<td>IBM 360/30</td>
</tr>
<tr>
<td>28</td>
<td>IBM 360/40</td>
</tr>
<tr>
<td>86</td>
<td>IBM 360/40</td>
</tr>
<tr>
<td>86</td>
<td>IBM 360/40</td>
</tr>
<tr>
<td>86</td>
<td>IBM 360/40</td>
</tr>
<tr>
<td>135</td>
<td>IBM 360/40</td>
</tr>
<tr>
<td>85</td>
<td>IBM 360/40</td>
</tr>
<tr>
<td>115</td>
<td>IBM 360/40</td>
</tr>
<tr>
<td>4</td>
<td>IBM 360/50</td>
</tr>
<tr>
<td>79</td>
<td>IBM 360/50</td>
</tr>
<tr>
<td>122</td>
<td>IBM 360/61</td>
</tr>
<tr>
<td>122</td>
<td>IBM 360/61</td>
</tr>
<tr>
<td>122</td>
<td>IBM 360/61</td>
</tr>
<tr>
<td>150</td>
<td>IBM 360/65</td>
</tr>
<tr>
<td>20</td>
<td>IBM 360/65</td>
</tr>
<tr>
<td>120</td>
<td>IBM 360/65</td>
</tr>
<tr>
<td>144</td>
<td>IBM 360/65</td>
</tr>
<tr>
<td>144 FORTRAN IV IBM 360/65</td>
<td>JULIAN DATE CONVERSION ROUTINES JULYAN</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>144 FORTRAN IV IBM 360/65</td>
<td>JULIAN DATE CONVERSION ROUTINES JULYSEC</td>
</tr>
<tr>
<td>144 FORTRAN IV IBM 360/65</td>
<td>JULIAN DATE CONVERSION ROUTINES CESLUJ</td>
</tr>
<tr>
<td>124 FORTRAN IV IBM 360/65</td>
<td>DAY OF THE WEEK NDAYWK</td>
</tr>
<tr>
<td>124 FORTRAN IV IBM 360/65</td>
<td>CAYCEN</td>
</tr>
<tr>
<td>124 FORTRAN IV IBM 360/65</td>
<td>GENERAL MEPCATCR PLAG</td>
</tr>
<tr>
<td>114 FORTRAN IV IBM 360/65</td>
<td>NOS SCIENTIFIC SUBROUTINE SYSTEM LCRRA</td>
</tr>
<tr>
<td>114 FORTRAN IV IBM 360/65</td>
<td>NCS SCIENTIFIC SUBROUTINE SYSTEM CPOEA</td>
</tr>
<tr>
<td>114 FORTRAN IV IBM 360/65</td>
<td>NCS SCIENTIFIC SUBROUTINE SYSTEM SCCIN</td>
</tr>
<tr>
<td>114 FORTRAN IV IBM 360/65</td>
<td>NOS SCIENTIFIC SUBROUTINE SYSTEM SCPNP</td>
</tr>
<tr>
<td>114 FORTRAN IV IBM 360/65</td>
<td>NCS SCIENTIFIC SUBROUTINE SYSTEM TPFIX</td>
</tr>
<tr>
<td>114 FORTRAN IV IBM 360/65</td>
<td>NGS SCIENTIFIC SUBROUTINE SYSTEM UTCMD</td>
</tr>
<tr>
<td>130 FORTRAN IV IBM 360/65</td>
<td>FITS A SMOOTH CURVE</td>
</tr>
<tr>
<td>10 ASSEMBLER IBM 360/65</td>
<td>POTENTIAL TEMP AND/OR DENSITY POTDEN</td>
</tr>
<tr>
<td>10 FORTRAN IV IBM 360/65</td>
<td>SIGMAT</td>
</tr>
<tr>
<td>10 FORTRAN IV IBM 360/65</td>
<td>DYNAMIC DEPTH AACHALY CYANH</td>
</tr>
<tr>
<td>10 FORTRAN IV IBM 360/65</td>
<td>SALINITY FRLX CONDUCTIVITY T P SALINE</td>
</tr>
<tr>
<td>70 ASSEMBLER IBM 360/65</td>
<td>SURFACE CURRENT SUMMARY SUCUR</td>
</tr>
<tr>
<td>146 FORTRAN IV IBM 360/65</td>
<td>FLAGS SUSPICIOUS DATA VALUES EDITQ</td>
</tr>
<tr>
<td>38 FORTRAN IV IBM 360/65</td>
<td>GRAVITATIONAL ATTRACTION TWODIMENSIONAL BODIES</td>
</tr>
<tr>
<td>153 ASSEMBLER IBM 360/65</td>
<td>RETET</td>
</tr>
<tr>
<td>153 ASSEMBLER IBM 360/65</td>
<td>XBTCXCV</td>
</tr>
<tr>
<td>153 ASSEMBLER IBM 360/65</td>
<td>RETET</td>
</tr>
<tr>
<td>153 ASSEMBLER IBM 360/65</td>
<td>BTGEICV</td>
</tr>
<tr>
<td>153 ASSEMBLER IBM 360/65</td>
<td>XBSELECT</td>
</tr>
<tr>
<td>153 FORTRAN IV IBM 360/65</td>
<td>XPSINV</td>
</tr>
<tr>
<td>153 FORTRAN IV IBM 360/65</td>
<td>XBGEOSSP</td>
</tr>
<tr>
<td>153 FORTRAN IV IBM 360/65</td>
<td>CANPAC</td>
</tr>
<tr>
<td>153 PL/I IBM 360/65</td>
<td>BTGECIV</td>
</tr>
<tr>
<td>153 PL/I IBM 360/65</td>
<td>SCMPKINE</td>
</tr>
<tr>
<td>153 PL/I IBM 360/65</td>
<td>SCMPULI</td>
</tr>
<tr>
<td>153 FORTRAN IV IBM 360/65</td>
<td>DRYLAND</td>
</tr>
<tr>
<td>103 FORTRAN IV IBM 360/65</td>
<td>ASTRONOMIC POSITION AZIMUTH METHOD</td>
</tr>
<tr>
<td>23 FORTRAN IV IBM 360/65</td>
<td>WATER CHEMISTRY DILECTRIC CONSTANT</td>
</tr>
<tr>
<td>113 FORTRAN IV IBM 360/65</td>
<td>NCS SCIENTIFIC SUBROUTINE SYSTEM ANGLE</td>
</tr>
<tr>
<td>113 FORTRAN IV IBM 360/65</td>
<td>NOS SCIENTIFIC SUBROUTINE SYSTEM ANLIS</td>
</tr>
<tr>
<td>113 FORTRAN IV IBM 360/65</td>
<td>NCS SCIENTIFIC SUBROUTINE SYSTEM APCCN</td>
</tr>
<tr>
<td>113 FORTRAN IV IBM 360/65</td>
<td>NCS SCIENTIFIC SUBROUTINE SYSTEM CPAWH</td>
</tr>
<tr>
<td>113 FORTRAN IV IBM 360/65</td>
<td>NCS SCIENTIFIC SUBROUTINE SYSTEM APDLY</td>
</tr>
<tr>
<td>113 FORTRAN IV IBM 360/65</td>
<td>NGS SCIENTIFIC SUBROUTINE SYSTEM CGSSPC</td>
</tr>
<tr>
<td>113 FORTRAN IV IBM 360/65</td>
<td>NCS SCIENTIFIC SUBROUTINE SYSTEM CUBIC</td>
</tr>
<tr>
<td>113 FORTRAN IV IBM 360/65</td>
<td>NGS SCIENTIFIC SUBROUTINE SYSTEM EXCEB</td>
</tr>
<tr>
<td>113 FORTRAN IV IBM 360/65</td>
<td>NCS SCIENTIFIC SUBROUTINE SYSTEM GMLIC</td>
</tr>
<tr>
<td>113 FORTRAN IV IBM 360/65</td>
<td>NCS SCIENTIFIC SUBROUTINE SYSTEM HIFIX</td>
</tr>
<tr>
<td>19 FORTRAN IV IBM 360/65</td>
<td>VOLUME TRANSFER FUNCTION CFUN</td>
</tr>
<tr>
<td>19 FORTRAN IV IBM 360/65</td>
<td>POTENTIAL TEMP AND CONDUCTIVITY PCEN</td>
</tr>
<tr>
<td>19 FORTRAN IV IBM 360/65</td>
<td>VOLUME TRANSFER VLTRAN</td>
</tr>
<tr>
<td>19 FORTRAN IV IBM 360/65</td>
<td>COMPUTES PRESSURE PRRSSR</td>
</tr>
<tr>
<td>159 FORTRAN IV IBM 360/65</td>
<td>FITS POLYNOMIAL P3 TERM</td>
</tr>
<tr>
<td>134 FORTRAN IV IBM 360/65</td>
<td>EXTENDED NRCPAL SEPARATOR PROGRAM ENCRRSEP</td>
</tr>
<tr>
<td>25 FORTRAN IV IBM 360/65</td>
<td>MOL SALINITY INTRUSION PROGRAM</td>
</tr>
<tr>
<td>103 FORTRAN IV IBM 360/65</td>
<td>PLTS MAPS GRIDS TRACKS MAP</td>
</tr>
<tr>
<td>152 ASSEMBLER IBM 360/65</td>
<td>SDPTZ</td>
</tr>
<tr>
<td>152 ASSEMBLER IBM 360/65</td>
<td>SDSELECT</td>
</tr>
<tr>
<td>152 ASSEMBLER IBM 360/65</td>
<td>SD2SIFT</td>
</tr>
<tr>
<td>152 ASSEMBLER IBM 360/65</td>
<td>SD2SSAP</td>
</tr>
<tr>
<td>152 ASSEMBLER IBM 360/65</td>
<td>MAKE120</td>
</tr>
<tr>
<td>152 ASSEMBLER IBM 360/65</td>
<td>DEPTH</td>
</tr>
<tr>
<td>152</td>
<td>ASSEMBLER</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>152</td>
<td>ASSEMBLER</td>
</tr>
<tr>
<td>152</td>
<td>FORTRAN</td>
</tr>
<tr>
<td>152</td>
<td>PL/1</td>
</tr>
<tr>
<td>152</td>
<td>FORTRAN IV</td>
</tr>
<tr>
<td>22</td>
<td>FORTRAN IV</td>
</tr>
<tr>
<td>25</td>
<td>FORTRAN IV</td>
</tr>
<tr>
<td>115</td>
<td>FORTRAN IV</td>
</tr>
<tr>
<td>144</td>
<td>FORTRAN IV</td>
</tr>
<tr>
<td>144</td>
<td>FORTRAN IV</td>
</tr>
<tr>
<td>7</td>
<td>FORTRAN IV</td>
</tr>
<tr>
<td>7</td>
<td>FORTRAN IV</td>
</tr>
<tr>
<td>147</td>
<td>FORTRAN IV</td>
</tr>
<tr>
<td>8</td>
<td>FORTRAN IV</td>
</tr>
<tr>
<td>8</td>
<td>FORTRAN IV</td>
</tr>
<tr>
<td>97</td>
<td>FORTRAN</td>
</tr>
<tr>
<td>97</td>
<td>FORTRAN</td>
</tr>
<tr>
<td>97</td>
<td>FORTRAN</td>
</tr>
<tr>
<td>141</td>
<td>PL/1</td>
</tr>
<tr>
<td>141</td>
<td>PL/1</td>
</tr>
<tr>
<td>141</td>
<td>FORTRAN IV</td>
</tr>
<tr>
<td>141</td>
<td>FORTRAN IV</td>
</tr>
<tr>
<td>151</td>
<td>ASSEMBLER</td>
</tr>
<tr>
<td>151</td>
<td>ASSEMBLER</td>
</tr>
<tr>
<td>151</td>
<td>PL/1</td>
</tr>
<tr>
<td>41</td>
<td>FORTRAN IV</td>
</tr>
<tr>
<td>83</td>
<td>FORTRAN IV</td>
</tr>
<tr>
<td>4</td>
<td>COBOL</td>
</tr>
<tr>
<td>4</td>
<td>PL/1</td>
</tr>
<tr>
<td>84</td>
<td>FORTRAN</td>
</tr>
<tr>
<td>74</td>
<td>PL/1</td>
</tr>
<tr>
<td>74</td>
<td>PL/1</td>
</tr>
<tr>
<td>80</td>
<td>FORTRAN IV</td>
</tr>
<tr>
<td>80</td>
<td>FORTRAN 6C</td>
</tr>
<tr>
<td>123</td>
<td>FORTRAN</td>
</tr>
<tr>
<td>82</td>
<td>FORTRAN IV</td>
</tr>
<tr>
<td>82</td>
<td>FORTRAN IV</td>
</tr>
<tr>
<td>28</td>
<td>FORTRAN IV</td>
</tr>
<tr>
<td>73</td>
<td>ANS FORTRAN</td>
</tr>
<tr>
<td>116</td>
<td>FORTRAN</td>
</tr>
<tr>
<td>136</td>
<td>FORTRAN IV</td>
</tr>
<tr>
<td>50</td>
<td>FORTRAN IV</td>
</tr>
<tr>
<td>56</td>
<td>FORTRAN IV</td>
</tr>
</tbody>
</table>
55 FORTRAN IBM 370 CHLOROPHYLL CHLOR
55 FORTRAN IBM 370 PHYTOPLANKTON POPULATION DENSITY
55 FORTRAN IBM 370 SPECIES DIVERSITY
55 FORTRAN IBM 370 OPTIMAL ECO SYSTEM POLICIES CEP
28 FORTRAN IBM 370/155 MODELING AN OCEAN POND
25 FORTRAN IBM 370/155 ESTUARINE DENSITY CURRENTS AND SALINITY
24 FORTRAN IBM 370/165 ESTUARINE MECelon ACALANA
72 PL/I IBM 370/168 MONTe CARlo SPILL TRACKER
67 PL/I IBM 370/180 MARKOVIAN ANALYSIS OF TDF-14 WIND DATA
117 FORTRAN IV IBM 1130 PLOTS HYDROCAST DATA PLOG
117 FORTRAN IV IBM 1130 PLOTS STD DATA STPCG
134 FORTRAN IV IBM 1130 REDUCTION AND DISPLAY OF DATA ACQUIRED AT SEA
135 FORTRAN IV IBM 1130 ANALYSIS OF ACN-LINEAR RESPONSE SURFACE
135 FORTRAN IV IBM 1130 MULTIPLE DISCRIMINANT ANALYSIS MUDA
146 FORTRAN VI IBM 1130 THERMOMETER CORRECTION TCHK2
25 FORTRAN IV IBM 1130 BEACH SIMULATION MODEL
24 FORTRAN IV IBM 1130 BEACH AND BEACHMORSE MAPS AS
18 FORTRAN IV IBM 1130 BEACH SIMULATION MODEL
116 FORTRAN IV IBM 1130 REDUCTION DISPLAY STORAGE GEOPHYSICAL DATA
1 FORTRAN IV IBM 1130 STD COMPUTATIONS SIPO2
1 FORTRAN IV IBM 1130 HYDROCAST COMPUTATIONS
1 FORTRAN IV IBM 1130 TRANSPORT COMPUTATIONS FROM ATMOSPHERIC PRESSURE
103 FORTRAN IV IBM 1130 SATELLITE RISE AND SET TIMES ALERT ASORT
134 FORTRAN IV IBM 1401 2-DIMENSIONAL AUTOCORRELATION
91 FORTRAN 60 IBM 1604 WIND DRIFT AND CONCENTRATION OF SEA ICE ICEGRID
1 FORTRAN I IBM 1620 TRANSPORT COMPUTATIONS FROM ATMOSPHERIC PRESSURE
15 FORTRAN IV IBM 1620 INTERPOLATION FOR I CECANOGRAPHIC DATA
124 SPS IBM 1623 COMPUTES GEOPHYSICAL POSITIONS
114 SPS IBM 1620 LORAN C VERSION2
79 FORTRAN II IBM 1620 PROCESSES CURRENT INSTRUMENT OBSERVATIONS
48 FORTRAN II IBM 1620 SOIL AND SEDIMENT ENGINEERING TEST DATA
149 FORTRAN IBM 1800 FOPPAT FREE INPUT SUBROUTINE READ
149 FORTRAN IBM 1800 METERS VS PATHWAYS MATBL
134 FORTRAN IV IBM 1800 GENERATES ARIETARY FILTER HIL0W
84 FORTRAN IV IBM 1800 SHIPBOARD WAVE RECORDER ANALYSIS SBWR0
104 FORTRAN IV IBM 1800 LORAN/DECCA COORDINATES CALCULATION MAVAL
104 FORTRAN IV IBM 1800 LORAN/DECCA FILE INITIALIZATION MV1
104 FORTRAN IV IBM 1800 GEODENTIC DISTANCE AND AZIMUTH SDANG
37 FORTRAN IV IBM 1800 CABLE CONFIGURATION
14 FORTRAN IBM 1800 DATE CALCULATIONS DAYMK
144 FORTRAN IBM 1800 DATE CALCULATIONS ADAY
144 FORTRAN IBM 1800 DATE CALCULATIONS ACY
144 FORTRAN IBM 1800 DATE CALCULATIONS YSTDY
103 FORTRAN IBM 1800 SATELLITE NAVIGATION
135 FORTRAN IBM 1800 BARTLETT'S CURVE FITTING
136 FORTRAN IBM 1800 CLUSTER ANALYSIS
106 FORTRAN IBM 1800 LORAN FIX LRFIX
106 FPATRA IBM 1800 PLAN COURSE AND SCHEDULE CRUISE
106 FORTRAN IBM 1800 EARTH SPHERICAL SUBROUTINES ESTRC2 ESTC3 PL
105 FORTRAN IBM 1800 PLCTS MERCATOR GRAL CHART
105 FORTRAN IBM 1800 NAVIGATIONAL SATELLITE PASSES ALRTX
145 FORTRAN IBM 1800 JORDAN DYN ROUTINES CLEJL
145 FORTRAN IBM 1800 JULIAN DYN ROUTINES CJUL
145 FORTRAN IBM 1800 TIME CONVERSION DTIME
142 FORTRAN IV IBM 1800 GPS DEPTH SIZING SUBROUTINE ASSUB SAS ASA

203
<table>
<thead>
<tr>
<th>Software</th>
<th>IBM 1800</th>
<th>Degree Conversions Deg'r Deg'i</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORTRAN</td>
<td>IBM 1800</td>
<td>Mercator Degrees DMCT</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 1800</td>
<td>Magnetic Field Components Magfi</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>Light and Scale Instruction B</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>Scanning Plct</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>Single Integration</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>Single Integration</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>Light and Scale Instruction D</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>Seamount Magnetization</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>Observation Craping Gravity</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>Current Meter Turbulence</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>Least Squares Plot</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>Solar Radiation Conversion</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>Wind Stress</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>TEC-Dimensional Power Spectrum For Tom II</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>Bathymetric Data Reduction</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>Monthly Scale Layer Depth</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>Vertical Temperature Gradien</td>
</tr>
<tr>
<td>FORTRAN IV</td>
<td>IBM 7074</td>
<td>Computation and Plotting of Magnetic Anomalies</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>Critical Acoustic Ratic</td>
</tr>
<tr>
<td>FORTRAN II</td>
<td>IBM 7074</td>
<td>Individual Point Generator For Map Projections</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>Precipitation of Vertical Temperature Change</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>Cloud Cover and Daily Sea Temperature</td>
</tr>
<tr>
<td>FORTRAN II</td>
<td>IBM 7074</td>
<td>Individual Point Generator For Distance</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>Geocetic Catm Redction</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>Geocetic Position Computation and Plct</td>
</tr>
<tr>
<td>FORTRAN II</td>
<td>IBM 7074</td>
<td>Static Data Reduction Synop</td>
</tr>
<tr>
<td>FORTRAN IV</td>
<td>IBM 7074</td>
<td>Concentrations Per Square Meter of Surface</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>Fourier Analysis Lloj</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 7090</td>
<td>TEC-Dimensional Auicccrelation</td>
</tr>
<tr>
<td>MAD</td>
<td>IBM 7090</td>
<td>General Map Projection</td>
</tr>
<tr>
<td>MAD</td>
<td>IBM 7090</td>
<td>Finite Map Projection Distrcions</td>
</tr>
<tr>
<td>MAD</td>
<td>IBM 7090</td>
<td>Theoretical Tidal Force</td>
</tr>
<tr>
<td>FORTRAN IV</td>
<td>IBM 7090-94</td>
<td>Sea Ice Studies Yanit</td>
</tr>
<tr>
<td>FORTRAN IV</td>
<td>IBM 7090-94</td>
<td>Sea Ice Studies Flip</td>
</tr>
<tr>
<td>FORTRAN IV</td>
<td>IBM 7090-94</td>
<td>Sea Ice Studies Salpr</td>
</tr>
<tr>
<td>FORTRAN IV</td>
<td>IBM 7090-94</td>
<td>Sea Ice Studies Rite</td>
</tr>
<tr>
<td>FORTRAN IV</td>
<td>IBM 7094</td>
<td>Static Data Reduction Synop</td>
</tr>
<tr>
<td>FORTRAN IV</td>
<td>IBM 7094</td>
<td>Phytoplankton Numbers Volume Surface Area</td>
</tr>
<tr>
<td>MAP</td>
<td>IBM 7094</td>
<td>Phytoplankton Numbers Volume Surface Area</td>
</tr>
<tr>
<td>FORTRAN II</td>
<td>IBM 7090</td>
<td>Acoustic Ray Tracing</td>
</tr>
</tbody>
</table>

UNIVAC

<table>
<thead>
<tr>
<th>Software</th>
<th>UNIVAC</th>
<th>Fitting A Least Squares Distance Hyperplane</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1126</td>
<td>Appendcs New Catc TC File Derive</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>UNIVAC 1106</td>
<td>Concatenates Sorts Segments Outputs DM narrative</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>UNIVAC 1106</td>
<td>Interplicates TC UNIFCPR Grid Matrix 01</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>UNIVAC 1106</td>
<td>Time Series Stc Or Pcm Profiles Plsac</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>UNIVAC 1106</td>
<td>Internal Waves Ineg</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>UNIVAC 1106</td>
<td>Dynamical Fields Internal Wave Rays Chrsec</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>UNIVAC 1106</td>
<td>Auto Anc Crss Spectra Tukey Method</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>UNIVAC 1106</td>
<td>Auto And Cress Spectra Polarized Form Cxspc</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>UNIVAC 1106</td>
<td>Amplitudes P-ases Least Squares Tides54</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>UNIVAC 1106</td>
<td>Meteorological Fluxes Metflx</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>UNIVAC 1106</td>
<td>Crss Ccvarience Matrix Empeigi</td>
</tr>
<tr>
<td>FORTRAN IV</td>
<td>UNIVAC 1108</td>
<td>Sonar In Refractive Water</td>
</tr>
<tr>
<td>FORTRAN IV</td>
<td>UNIVAC 1108</td>
<td>Sonar In Refractive Water</td>
</tr>
</tbody>
</table>
FORTRAN V UNIVAC 1108 Rayleigh-Morise bottom reflection coefficients
45 FORTRAN V UNIVAC 1108 Propagation loss
45 FORTRAN V UNIVAC 1108 AMOS propagation loss
115 FORTRAN UNIVAC 1108 Spectral analysis subroutines
35 FORTRAN V UNIVAC 1108 Fixed Th-In line array steady state configuration
35 FORTRAN V UNIVAC 1108 Marine corer dynamics
35 FORTRAN V UNIVAC 1108 Steady-state buoy system configurations
45 FORTRAN IV UNIVAC 1108 Regional field residual magnetic anomaly gamma
45 FORTRAN IV UNIVAC 1108 Gravity gal
45 FORTRAN IV UNIVAC 1108 Propagation loss
27 FORTRAN V UNIVAC 1108 Plots-profiles of geophysical data display
37 FORTRAN V UNIVAC 1108 Steady-state cable laying
37 FORTRAN V UNIVAC 1108 Towed array configurations
47 FORTRAN UNIVAC 1108 True Ccean depth fatner
97 FORTRAN UNIVAC 1108 Sound velocity for marine sediments
77 FORTRAN V UNIVAC 1108 Current meter print
77 FORTRAN V UNIVAC 1108 Current meter plot
77 FORTRAN V UNIVAC 1108 Convert current meter tape
119 FORTRAN IV UNIVAC 1108 Curve fitting velocity profile newfit
48 FORTRAN IV UNIVAC 1108 Sediment size
46 FORTRAN IV UNIVAC 1108 Bedtop sediment distribution plot

XERCX DATA SYSTEMS
42 FORTRAN IV XDS SIGMA 7 Geomagnetic field afiel
10 FORTRAN IV XDS SIGMA 7 Reacs statica data
10 FORTRAN IV XDS SIGMA 7 Geostrophic velocity difference vel
10 FORTRAN IV XDS SIGMA 7 Volume transport vir
10 FORTRAN IV XDS SIGMA 7 Sigma-T signat and csigt
10 FORTRAN IV XDS SIGMA 7 Adiabatic temperature gradient atg
10 FORTRAN IV XDS SIGMA 7 Potential temperature potent
10 FORTRAN IV XDS SIGMA 7 Specific volume spnc
50 FORTRAN IV XDS SIGMA 7 WHCI BICLGY SERIES TAPE
50 FORTRAN IV XDS SIGMA 7 WHCI BICLGY SERIES FLISHT
50 FORTRAN IV XDS SIGMA 7 WHCI BICLGY SERIES SELECT
50 FORTRAN IV XDS SIGMA 7 WHCI BICLGY SERIES cpamin
50 FORTRAN IV XDS SIGMA 7 WHCI BICLGY SERIES PRELTOG
50 FORTRAN IV XDS SIGMA 7 WHCI BICLGY SERIES PLOTSPECG
50 FORTRAN IV XDS SIGMA 7 WHCI BICLGY SERIES STATAB
119 FORTRAN IV XDS SIGMA 7 Plgt cf frequency distribution thisto
119 FORTRAN IV XDS SIGMA 7 Velocity vector averages vectav
119 FORTRAN IV XDS SIGMA 7 Progressive vectors provec
119 FORTRAN IV XDS SIGMA 7 Plots data along track
119 FORTRAN IV XDS SIGMA 7 Profile versus time or distance
9 FORTRAN IV XDS SIGMA 7 Dynamic height dynmt
9 FORTRAN IV XDS SIGMA 7 Potential energy anomaly pen
9 FORTRAN IV XDS SIGMA 7 Variables parameters from station data CCCMP
9 FORTRAN IV XDS SIGMA 7 Specific vclume anomaly svanom
9 FORTRAN IV XDS SIGMA 7 Pressure subculture press
38 FORTRAN IV XDS SIGMA 7 X-ray diffraction analysis
39 FORTRAN IV XDS SIGMA 7 Magnetic anomalies magzo
136 FORTRAN IV XDS SIGMA 7 Statistics print whci format stats
105 FORTRAN IV XDS SIGMA 7 Sum of finite rotations on a sphere sumpt
105 FORTRAN IV XDS SIGMA 7 Transformation of spherical coordinates rectog
143 FORTRAN IV XDS SIGMA 7 Thermometer correction tcple
6 FORTRAN IV XDS SIGMA 7 Flexible system biq phys chem data sedhyp
<table>
<thead>
<tr>
<th>FORTRAN IV</th>
<th>XDS SIGMA 7</th>
<th>SUBROUTINES PHYS CHEM BIO PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 FORTRAN IV XDS SIGMA 7 INTERPOLATION SUBROUTINES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97 FORTRAN IV XDS SIGMA 7 SOUND VELOCITY SUBROUTINES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97 FORTRAN IV XDS SIGMA 7 DEPTH CORRECTION SUBROUTINES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77 FORTRAN IV XDS SIGMA 7 CURRENT METER CLOCK SEQUENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118 FORTRAN IV XDS SIGMA 7 CURRENT METER CALIBRATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118 FORTRAN IV XDS SIGMA 7 PRINT CURRENT METER CALIBRATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>148 FORTRAN IV XDS SIGMA 7 EDITING FORTRAN SCRUB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 FORTRAN IV XDS SIGMA 7 BRUNT-VAISALA FREQUENCY OBTAIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78 FORTRAN IV XDS SIGMA 7 CURRENT METER CALIBRATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78 FORTRAN IV XDS SIGMA 7 CURRENT METER DATA RECEPTION AND EDITING DATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>147 FORTRAN IV XDS SIGMA 7 CONVERTS DATA TO BNOF FORMAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>147 FORTRAN IV XDS SIGMA 7 CONVERTS DATA TO BNOF FORMAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>147 FORTRAN IV XDS SIGMA 7 READS BNOF FORMAT LSTA 1142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102 FORTRAN IV XDS SIGMA 7 PROCESSES STC AND CTD DATA SEOSTD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAYTRACE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

207
INSTITUTION INDEX

ARMLY CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, FORT BELVOIR, VA

64 FORTRAN IV UNIVAC 1108 STOPP STURGE
84 FORTRAN IV UNIVAC 1108 WAVE REFRACTIA

ARTHUR O LITTLE, INC, CAPPBRIDGE, MA

101 FORTRAN II IBM 7050 ACOUSTIC RAY TRACING
134 FORTRAN IBM 7090 TWO-DIMENSIONAL AUTOCORRELATION
134 FORTRAN IBM 1401 TWO-DIMENSIONAL AUTOCORRELATION

BCO NACIONAL DE CACOS OCEANOGRAPICCS, BRASIL

28 FORTRAN IV IBM 360/40 MATHEMATICAL MODEL OF COASTAL UPWELLING

BNOO, CENTRE NATIONAAL FOR L'EXPLOITATION DES OCEANS, FRANCE

147 FORTRAN IV XDS SIGMA 7 CONVERTS XDS FORMAT DATA TO BNOO FORMAT TRANSCOD
147 FORTRAN IV XDS SIGMA 7 READS BNOO FORMAT DATA LST TO 1142
6 FORTRAN IV XDS SIGMA 7 FLEXIBLE SYSTEM BIG PHYS CHEM DATA SEDMOY
6 FCOTRAN IV XDS SIGMA 7 SUBRoutines PHYS CHEM BIO PARAMETERS
6 FORTRAN IV XDS SIGMA 7 INTERPOLATION SUBRoutines
7 FORTRAN IV XDS SIGMA 7 PROCESSES STD AND LTD DATA SEOSTD

BEEFORD INSTITUTE OF OCEANOGRAPHY, CANADA

138 FORTRAN II CDC 3100 LEAST SQUARES CURVE FITTING 2 3 & 4 DIMENSIONS
139 FORTRAN II GE 225 CURVE FITTING CRVF
118 FCOTRAN CDC 3100 SECTIONS PLCTTNG
118 FORTRAN POP-8 SECTIONS PLOTTING
2 FORTRAN II CDC 3100 SALINITY ANOMALY ISATBP
3 FCOTRAN II CDC 3100 OXYGEN SATURATION OXYGEN ANOMALY ISATBP
3 FCOTRAN II CDC 3100 OXYGEN SATURATION OXYGEN ANOMALY ISATBP
3 FCOTRAN II CDC 3100 PLOTS STATIC PLOTICS
3 FCOTRAN II CDC 3100 PLOTS STATIC PLOTICS
3 FCOTRAN II CDC 3150 NUTRIENT CONCENTRATION PEAKS
3 FORTRAN IV HP 2100A STD TABLES ARC PLCTIS STD
125 FORTRAN 32 CDC 3100 TIME SERIES PLOTTS
125 FCOTRAN 32 POP-8 TIME SERIES FLCTTTING
125 MS FORTRAN CDC 6400 TIME SERIES ANALYSIS PROGRAMS TSAP
125 MS FORTRAN CDC 3150 TIME SERIES ANALYSIS PROGRAMS TSAP
126 MS FORTRAN CDC 3150 TIME SERIES ANALOG TO DIGITAL A TC C
22 FORTRAN IV CDC 3150 ALKALINITY ALC
47 FCOTRAN IV CDC 3150 GEOPHYSICAL DATA SITRACE ARC RETRIEVAL GECFILE
79 FORTRAN CDC 3150 CURRENT METE DATA PROCESING SYSTEM TIDE

CALIFORNIA DEPARTMENT OF WATER RESOURCES, SACRAMENTO, CA

116 FORTRAN CDC 3300 VERTICAL BAR GRAPHS

208
CENTRO ARGENTINO DE DATOS OCEANOGRÁFICOS, ARGENTINA

4 COBOL IBM 360/50 CALCULATION OF THERMOMETRIC VALUES
4 COBOL IBM 360/50 CONSISTENCY OF PHYSICAL AND CHEMICAL DATA
4 FORTAN IBM 360/50 CONSISTENCY OF PHYSICAL AND CHEMICAL DATA
4 FORTAN IBM 360/50 CALCULATION OF THERMOMETRIC VALUES
4 COBOL IBM 360/50 STATIC DATA SYSTEM FINAL VALUES
4 FORTAN IBM 360/50 STATIC DATA SYSTEM FINAL VALUES

COAST GUARD OCEANOGRAPHIC UNIT, WASHINGTON, DC

11 FORTAN IV CDC 3300 OXYGEN CONTENT
11 FORTAN IV CDC 3300 CHLOROPHYLL CONTENT
11 FORTAN IV CDC 3300 SALINITY CONTENT
11 FORTAN IV CDC 3300 TEMPERATURE CONTENT VOLUME TSVOL
12 FORTAN IV CDC 3300 THERMOMETER CORRECTION THERZ
12 FORTAN IV CDC 3300 TRANSPORT XPERT

COAST GUARD, ICE PATROL, NEW YORK, NY

91 FORTAN IV CDC 3300 ICEBERG DRIFT ICE-PLCT

COLUMBIA UNIVERSITY, HUDSON LABORATORIES, CCEES FERRY, NY

102 FORTAN RAY TRACING KLERER-PAY USER LANGUAGE

COLUMBIA UNIVERSITY, LAMONT-DOHERTY GEOLICAL OBSERVATORY, PALISADES, NY

145 FORTRAN II IBM 1130 REDUCTION AND DISPLAY OF DATA ACQUIRED AT SEA
155 FORTRAN II IBM 7090 FOURIER ANALYSIS L101

CORNELL UNIVERSITY, ITHACA, NY

143 FORTRAN IV IBM 360 AREAL CONCENTRATION INTEGRATE
143 FORTRAN IV IBM 360 UNWEIGHTED AVERAGE AVERAGE
22 FORTAN IBM 360 CO2 AND DC SAT
54 FORTAN IV IBM 360 PIGMENT RATIO
54 FORTAN IV IBM 360 SPECIES ABUNDANCE

ENVIRONMENTAL DATA SERVICE, NATIONAL OCEANOGRAPHIC DATA CENTER, WASHINGTON, DC

136 FORTRAN IV IBM 360/65 FITS A SMOOTH CURVE
141 PL/I IBM 360/65 LINEAR INTERPOLATION LINTER
141 PL/I IBM 360/65 LAGRANGIAN THREE FLINT INTERPOLATION LAC3PT
141 FORTRAN IV IBM 360/65 CALCULATES SPLINE EFFICIENT SPLICEF
141 FORTRAN IV IBM 360/65 INTERPOLATING BY CELIC SPICE
97 FORTRAN IBM 360/65 SOUND VELOCITY WILSONS FORMULA WLSND
97 FORTRAN IBM 360/65 SOUND VELOCITY WILSONS FORMULA WSWLF
97 FORTRAN IBM 360/65 SCLAD VELOCITY WILSONS FORMULA VELPS
150 FORTAN IV IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASSIP
150 FORTAN IV IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASSIP
150 FORTAN IV IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASSIP
150 FORTAN IV IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASSIP
<table>
<thead>
<tr>
<th>Environment</th>
<th>Language</th>
<th>Machine</th>
<th>Program/Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVIRONMENTAL CATA SERVICE</td>
<td>FORTRAN IV</td>
<td>IBM 360/65</td>
<td>Marine Geophysical Data Reduction</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>IBM 360/65</td>
<td>Plots Profiles of Bathymetry and Magnetic</td>
</tr>
<tr>
<td>CENTER, BOULDER, CO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVIRONMENTAL CATA SERVICE, CENTER FOR EXPERIMENT DESIGN AND DATA ANALYSIS,</td>
<td>FORTRAN IV</td>
<td>IBM 360/65</td>
<td>Fits Polynomial P3TERM</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>IBM 360/65</td>
<td>Checks Angles TODP1</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>CDC 6600</td>
<td>Checks Angles TODP1</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>IBM 360/65</td>
<td>Plots Scattergram SCGM4 SCGM5</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>CDC 6600</td>
<td>X-Y Plots EDTPLT</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>CDC 6600</td>
<td>Reproduce and Serialize Deck DUPE</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>IBM 360/65</td>
<td>Flags Suspicious Data Values EDITQ</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>IBM 360/65</td>
<td>Julian Date Conversion Routines JULDAY</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>IBM 360/65</td>
<td>Julian Date Conversion Routines JULIAN</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>IBM 360/65</td>
<td>Julian Date Conversion Routines JULYAN</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>IBM 360/65</td>
<td>Julian Date Conversion Routines JULSEC</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>IBM 360/65</td>
<td>Day of the Week NCAYWK</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>CDC 6500</td>
<td>Wet Bulb Temperature WTBLA</td>
</tr>
<tr>
<td>ENVIRONMENTAL PROTECTION AGENCY, GULF BREEZE, FL</td>
<td>FORTRAN IV</td>
<td>IBM 360</td>
<td>Toxicity Eicassay PAcbit Analysis</td>
</tr>
<tr>
<td>ENVIRONMENTAL RESEARCH LABORATORIES, PACIFIC MARINE ENVIRONMENTAL LABORATORY,</td>
<td>FORTRAN IV</td>
<td>CDC 6400</td>
<td>Scalar Time Series TEMPLT7</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>CDC 6400</td>
<td>Pyranometer and Radiometer Time Series RAD</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>CDC 6400</td>
<td>Vector Time Series CURPLT6</td>
</tr>
<tr>
<td>ENVIRONMENTAL RESEARCH LABORATORIES, ATLANTIC GEONAGRAPHIC AND METEOROLOGICAL</td>
<td>FORTRAN IV</td>
<td>UNIVAC 1108</td>
<td>Internal Wave Oscillations ZMODE</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>UNIVAC 1108</td>
<td>Lists Raw Data LIST</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>UNIVAC 1108</td>
<td>Plots Trackline GCRQA</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>UNIVAC 1108</td>
<td>Plots Contour Crossing Intervals COURLX</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>UNIVAC 1108</td>
<td>Plots Geophysical Data PL0T2</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>UNIVAC 1108</td>
<td>Lists Every Uncorrected Value SNOCP</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>UNIVAC 1108</td>
<td>Navigation CCPITUATICS TNAV</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>UNIVAC 1108</td>
<td>Edits Geophysical Data EDIT</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>UNIVAC 1108</td>
<td>Geophysical Data Conversion MANDY</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>UNIVAC 1108</td>
<td>Lists Geophysical Data LISTP</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>UNIVAC 1108</td>
<td>Course, Speed, Ectvcs Correction LCNAN</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>UNIVAC 1108</td>
<td>Converts Geophysical Data PHONEY</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>UNIVAC 1108</td>
<td>Sound Velocity Variation and Navigation PATHO</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>UNIVAC 1108</td>
<td>Regional Field Residual Magnetic Anomaly GAMMA</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>UNIVAC 1108</td>
<td>Gravity GPS</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>UNIVAC 1108</td>
<td>Plots Profiles Of Geophysical Data DISPLAY</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>UNIVAC 1108</td>
<td>Converts Digitizer Data DYGT</td>
</tr>
<tr>
<td></td>
<td>FORTRAN IV</td>
<td>UNIVAC 1108</td>
<td>Edits Reduced Geophysical Data EDIT</td>
</tr>
</tbody>
</table>
117 FORTRAN IV IBM 1130 PLOTS HYCRO CAST DATA PLOG
117 FORTRAN IV IBM 1130 PLOTS STO DATA STPG1
118 FORTRAN IV IBM 1130 PLOTS TEMPERATURE-SALINITY PSAL 1
146 FORTRAN IV IBM 1130 THERMOMETER CORRECTION TCHM2
1 FORTRAN IV IBM 1620 TRANSPORT COMPUTATIONS FROM ATMOSPHERIC PRESSURE
1 FORTRAN IV IBM 1130 TRANSPORT COMPUTATIONS FROM ATMOSPHERIC PRESSURE
1 FORTRAN IV IBM 1130 STO TEMPERATURE-SALINITY STP1
1 FORTRAN IV IBM 1130 HYDRO CAST COMPUTATIONS
2 FORTRAN IV HP 2115A DIGITIZES STE CATA DEEP
2 FORTRAN HP 2115A STO PROCESSING NET
135 FORTRAN IV IBM 1130 ANALYSIS OF KCN-LINEAR RESPONSE SURFACE
135 FORTRAN IV IBM 1130 MULTIPLE DISCRIMINANT ANALYSIS MULCA
135 FORTRAN IV IBM 1130 SATELLITE RISE AND SET TIMES ALERT ASORT
54 FORTRAN IV IBM 1130 YIELD PER RECRUIT HYLC BICH

GEOLOGICAL SURVEY, NATIONAL CENTER, RESTON, VA
103 FORTRAN IV IBM 360/65 ASTRONOMIC POSITION AZIMUTH METHOD
22 FORTRAN IV IBM 360/65 PERCENTAGE SATURATION OF OXYGEN IN ESTUARY
23 FORTRAN IV IBM 360/65 WATER CHEMISTRY DIELECTRIC CONSTANT
38 FORTRAN IV IBM 360/65 GRAVITATIONAL ATTRACTION TWO-DIMENSIONAL BODIES

GEOLOGICAL SURVEY, WOODS HOLE, MA
38 FORTRAN IV XDS SIGMA 7 X-RAY DIFFRACTION ANALYSIS
39 FORTRAN IV XDS SIGMA 7 MAGNETIC ANOMALIES MAG20

GEOLOGICAL SURVEY, MENLO PARK, CA
122 FORTRAN IV IBM 360/61 PROFILE PLOTS TIME AXIS PROFL3
122 FORTRAN IV IBM 360/61 PROFILE PLOTS DISTANCE AXIS PFLDST
122 FORTRAN IV IBM 360/61 PAP PLOTS PAPPLT

GEOLOGICAL SURVEY, CORPUS CHRISTI, TX
38 FORTRAN IV IBM 1130 SEDIMENT GRAIN SIZE ANALYSIS

INSTITUTE OF OCEANOGRAPHIC SCIENCES, WALES
40 FORTRAN IV IBM 1130 RECUSSION DISPLAY STOPEGE GEOPHYSICAL DATA

INTER-AMERICAN TROPICAL TUNA COMMISSION, LA JOLLA, CA
58 FORTRAN B 6700 KERURAL DISTRIBUTION SEPARATOR TCPA1
58 FORTRAN B 6700 SPAWNER-RECRUIT CURVE FITTING TCPA2
56 FORTRAN B 6700 HEIGHT-LENGTH CURVE FITTING TCPA3
59 FORTRAN B 6700 AGE COMPOSITION ESTIMATION TCPB1
55 FORTRAN B 6700 ESTIMATE CATCH NUMBERS PERCENT WEIGHT
55 FORTRAN B 67CC LENGTH-FREQUENCY DISTRIBUTION
60 FORTRAN B 6700 VON BERTALANFFY GROWTH CURVE FITTING TCPA1
60 FORTRAN B 6700 VON BERTALANFFY GROWTH UNEQUAL AGE INTERVAL
60 FORTRAN B 6700 VON BERTALANFFY GROWTH EQUAL AGE INTERVAL
61 FORTRAN B 6700 VON BERTALANFFY GROWTH CURVE FITTING TCPA4
64 FORTRAN B 67CC ESTIMATION OF LINEAR GROWTH
61 FORTRAN B 6700 FISHING POWER ESTIMATION TCPD1

212
<table>
<thead>
<tr>
<th>Code</th>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>FORTRAN B 6700 SURVIVAL RATE ESTIMATION TCPE1</td>
</tr>
<tr>
<td>63</td>
<td>FORTRAN B 6700 FISHING MORTALITIES ESTIMATION TCPE2</td>
</tr>
<tr>
<td>64</td>
<td>FORTRAN B 6700 RELATIVE YIELD PER RECRUIT</td>
</tr>
<tr>
<td>65</td>
<td>FORTRAN B 6700 YIELD CURVES WITH CONSTANT RATES TCPEF</td>
</tr>
<tr>
<td>66</td>
<td>FORTRAN B 6700 SIMULTANEOUS YIELD TCPEF</td>
</tr>
<tr>
<td>67</td>
<td>FORTRAN B 6700 PIECEWISE INTEGRATION OF YIELD CURVES TCPEF</td>
</tr>
<tr>
<td>68</td>
<td>FORTRAN B 6700 PIECEWISE INTEGRATION OF YIELD CURVES TCPEF</td>
</tr>
<tr>
<td>69</td>
<td>FORTRAN B 6700 CONSTANTS IN SCHAFFER'S MODEL TCPEF</td>
</tr>
<tr>
<td>70</td>
<td>FORTRAN B 6700 SCHAFFER LOGISTICS MODEL OF FISH PRODUCTION</td>
</tr>
<tr>
<td>71</td>
<td>FORTRAN B 6700 FITS CANTILEVERED STOCK PRODUCTION MODEL TCPEF</td>
</tr>
<tr>
<td>72</td>
<td>FORTRAN B 6700 BICEDUMENTS LINEAR REGRESSION</td>
</tr>
<tr>
<td>73</td>
<td>FORTRAN B 6700 LINEAR REGRESSION, BOTH VARIABLES</td>
</tr>
<tr>
<td>74</td>
<td>FORTRAN B 6700 BICEDUMENTS-NUMERICAL REGRESSION</td>
</tr>
<tr>
<td>75</td>
<td>FORTRAN B 6700 CDUCLEY-LONNES MULTIPLE-REGRESSION</td>
</tr>
<tr>
<td>76</td>
<td>FORTRAN B 6700 BICEDUMENTS-ECCEOUS LF FIT</td>
</tr>
<tr>
<td>77</td>
<td>FORTRAN B 6700 BICEDUMENTS-EASY STATISTICAL FOR UNGROUPED DATA</td>
</tr>
<tr>
<td>78</td>
<td>FORTRAN B 6700 BICEDUMENTS-EASY STATISTICAL FOR GROUPED DATA</td>
</tr>
<tr>
<td>79</td>
<td>FORTRAN B 6700 BICEDUMENTS-SINGLE CLASSIFICATION ANOVA</td>
</tr>
<tr>
<td>80</td>
<td>FORTRAN B 6700 BICEDUMENTS-FACTRIAL ANOVA TCSD2</td>
</tr>
<tr>
<td>81</td>
<td>FORTRAN B 6700 BICEDUMENTS-SUM OF SQUARES STP TCSD3</td>
</tr>
<tr>
<td>82</td>
<td>FORTRAN B 6700 BICEDUMENTS-STUDENT-AVERAGE-KEULS TEST TCSD4</td>
</tr>
<tr>
<td>83</td>
<td>FORTRAN B 6700 BICEDUMENTS-TEST OF HOMOGENEITY</td>
</tr>
<tr>
<td>84</td>
<td>FORTRAN B 6700 BICEDUMENTS-TEST OF HOMOGENEITY</td>
</tr>
<tr>
<td>85</td>
<td>FORTRAN B 6700 BICEDUMENTS-TEST OF INDEPENDENCE</td>
</tr>
</tbody>
</table>

Johns Hopkins University, Baltimore, MD

29 | FORTRAN | NUMERICAL PCL ESTUARY DYNAMICS & KINEMATICS |

Los Angeles City Sanitation Department, Los Angeles, CA

73 | A8S FORTRAN IBM 360 | ECOLLOGICAL STATISTICAL PROGRAMS ECCEAST |

Marine Environmental Data Service, Canada

117 | FORTRAN | CDC CYBER X-Y FLEETS IN A FLEXIBLE FORTRAN MEDICAL CT |

Massachusetts Institute of Technology, Cambridge, MA

72 | PCL | IBM 370/168 WATER CARL'S SHELF TRACER |

135 | FORTRAN IV | IBM 360/40 SPECTRA PROGRAMS GETRAN AUTOCCV CRSCCCV FCURTR |

85 | FORTRAN | IBM 360/40 WATER WAVES TEACHING AIDS UPAX1 |

86 | FORTRAN | IBM 360/40 WATER WAVES TEACHING AIDS UPAX1 |

87 | FORTRAN | IBM 360/40 WATER WAVES TEACHING AIDS UPAX1 |

88 | FORTRAN | IBM 360/40 WATER WAVES TEACHING AIDS UPAX1 |

89 | FORTRAN | IBM 360/40 WATER WAVES TEACHING AIDS UPAX1 |

90 | FORTRAN | IBM 360/40 WATER WAVES TEACHING AIDS UPAX1 |

91 | FORTRAN | IBM 360/40 WATER WAVES TEACHING AIDS UPAX1 |

92 | FORTRAN | IBM 360/40 WATER WAVES TEACHING AIDS UPAX1 |

93 | FORTRAN | IBM 360/40 WATER WAVES TEACHING AIDS UPAX1 |

213
<table>
<thead>
<tr>
<th>Page</th>
<th>FORTRAN/PL/1</th>
<th>IBM 360/40</th>
<th>WATER WAVE TEACHING AIDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>FORTRAN/IBM</td>
<td>360/40</td>
<td>WATER WAVE TEACHING AIDS</td>
</tr>
<tr>
<td>85</td>
<td>FORTRAN/IBM</td>
<td>360/40</td>
<td>WATER WAVE TEACHING AIDS</td>
</tr>
<tr>
<td>85</td>
<td>FORTRAN/IBM</td>
<td>360/40</td>
<td>WATER WAVE TEACHING AIDS</td>
</tr>
<tr>
<td>85</td>
<td>FORTRAN/IBM</td>
<td>360/40</td>
<td>WATER WAVE TEACHING AIDS</td>
</tr>
<tr>
<td>85</td>
<td>FORTRAN/IBM</td>
<td>360/40</td>
<td>WATER WAVE TEACHING AIDS</td>
</tr>
<tr>
<td>86</td>
<td>FORTRAN/IBM</td>
<td>360/40</td>
<td>WATER WAVE TEACHING AIDS</td>
</tr>
<tr>
<td>86</td>
<td>FORTRAN/IBM</td>
<td>360/40</td>
<td>WATER WAVE TEACHING AIDS</td>
</tr>
<tr>
<td>87</td>
<td>P/L/1 FORTRAN</td>
<td>370/180 IBM</td>
<td>MARKOVIAN ANALYSIS OF TDF-14 WIND DATA</td>
</tr>
<tr>
<td>74</td>
<td>PL/1 FORTRAN</td>
<td>360/168 IBM</td>
<td>DRIFT BOTTLE/STATISTICS</td>
</tr>
<tr>
<td>74</td>
<td>PL/1 FORTRAN</td>
<td>360/168 IBM</td>
<td>DRIFT BOTTLE PLCTS</td>
</tr>
</tbody>
</table>

National Environmental Satellite Service, Rockville, MD

| 123 FORTRAN | CDC 6600 | DISPLAYS VHRS SATELLITE DATA V5PDP |
| 123 FORTRAN | IBM 360/195 | MICROFILM PLCTS OF VHRS SATELLITE DATA |

National Institute of Oceanography, England

139 FORTRAN	IBM 1800	BARTLETT'S CURVE FITTING
145 FORTRAN	IBM 1800	CURRENT METER DATA RECULATION
37 FORTRAN	IBM 1800	CABLE CONFIGURATION
134 FORTRAN	IBM 1800	GENERATES ARBITRARY FILTER HILTON
136 FORTRAN	IBM 1800	CLUSTER ANALYSIS
84 FORTRAN	IBM 1800	SHIPBORNE WAVE RELEADER ANALYSIS SBWRG
103 FORTRAN	IBM 1800	SATELLITE NAVIGATION
104 FORTRAN	IBM 1800	Loran/Decca Coordinates Calculation NAV
104 FORTRAN	IBM 1800	Loran/Decca File Initialization MNVI
104 FORTRAN	IBM 1800	GCCETIC DISTANCE AND AZIMUTH SDANO

National Marine Fisheries Service, Southwest Fisheries Center, La Jolla, CA

123 FORTRAN	CDC 3400	VERTICALLY ANALYZED CONTOURS VACCTS
12 FORTRAN	B 6700	PLOT TEMP LIST FIXED LAYER DEPTH WEEKPLCT
12 ALGOL	B 6700	CONSTANTS FOR WARM PACIFIC SYNTHESES MEAN SEA TEMP
12 FORTRAN	CDC 3600	VERTICAL SECTION PLOTS ESTPAC
13 FORTRAN	CDC 3600	CONVERTS STC DATA MECSTP
13 FORTRAN	CDC 3600	CORRECTS STD DATA IPMCD
56 FORTRAN	B 6700	LENGTH FREQUENCY ANALYSIS LENFRE
56 FORTRAN	B 6700	YIELD PER RECLIT FOR MULTI-GEAR FISHERIES
57 FORTRAN	B 6700C	A GENERALIZED EXPLICIT POPULATION SIMULATOR
57 FORTRAN	CDC 6600	A GENERALIZED EXPLICIT POPULATION SIMULATOR
57 FORTRAN	CDC 6600	GENERALIZED STOCK PRODUCTIVE MODEL PRCDFIT
57 FORTRAN	B 6700	GENERALIZED STOCK PRODUCTION MODEL PRCDFIT
57 FORTRAN	B 6700	SUMMARIZES WEATHER REPORTS

National Marine Fisheries Service, Southwest Fisheries Center, Honolulu, HI

| 136 FORTRAN | IBM 360/65 | EXTENDED ACPPAL SEPARATOR PROGRAM ENCPSEP |
NATIONAL MARINE FISHERIES SERVICE, SOUTHEAST FISHERIES CENTER, MIAMI, FL
124 FORTRAN IV IBM 360/65 CYGNET PESOFTWARE CONSIDER PLGTS
124 FORTRAN IV IBM 360/65 GENERAL MERCATOR PLGTS

NATIONAL OCEAN SURVEY, ROCKVILLE, MD
112 FORTRAN IV IBM 360/30 ADJUSTS A STATE PLANE COORDINATE TRAVERSE
113 FORTRAN IV IBM 360/65 NGS SCIENTIFIC SUBROUTINE SYSTEM ANGLE
113 FORTRAN IV IBM 360/65 NGS SCIENTIFIC SUBROUTINE SYSTEM AKERIS
113 FORTRAN IV IBM 360/65 NGS SCIENTIFIC SUBROUTINE SYSTEM APCRN
113 FORTRAN IV IBM 360/65 NGS SCIENTIFIC SUBROUTINE SYSTEM APOLY
113 FORTRAN IV IBM 360/65 NGS SCIENTIFIC SUBROUTINE SYSTEM CGSPC
113 FORTRAN IV IBM 360/65 NGS SCIENTIFIC SUBROUTINE SYSTEM CUBIC
113 FORTRAN IV IBM 360/65 NGS SCIENTIFIC SUBROUTINE SYSTEM ECEB
113 FORTRAN IV IBM 360/65 NGS SCIENTIFIC SUBROUTINE SYSTEM GMIC
113 FORTRAN IV IBM 360/65 NGS SCIENTIFIC SUBROUTINE SYSTEM HIPI
113 FORTRAN IV IBM 360/65 NGS SCIENTIFIC SUBROUTINE SYSTEM LORAN
113 FORTRAN IV IBM 360/65 NGS SCIENTIFIC SUBROUTINE SYSTEM DBER
114 FORTRAN IV IBM 360/65 NGS SCIENTIFIC SUBROUTINE SYSTEM SCGTO
114 FORTRAN IV IBM 360/65 NGS SCIENTIFIC SUBROUTINE SYSTEM SCPOP
114 FORTRAN IV IBM 360/65 NGS SCIENTIFIC SUBROUTINE SYSTEM TFPX
114 FORTRAN IV IBM 360/65 NGS SCIENTIFIC SUBROUTINE SYSTEM UMT
114 FORTRAN IV IBM 1620 COMPUTES GEOPHYSICAL POSITIONS
114 FORTRAN IV IBM 1620 LORAN C VERSION 2
80 FORTRAN IV CDC 6600 HARMONIC ANALYSIS OF DATA AT TIDAL FREQUENCIES

NATIONAL WEATHER SERVICE, TECHNIQUES DEVELOPMENT LABORATORY, SILVER SPRING, MD
82 FORTRAN IV CDC 6600 HURRICANE STORM FORECASTS SPLASH I
82 FORTRAN IV CDC 6600 HURRICANE STORM FORECASTS SPLASH II
82 FORTRAN IV IBM 360/155 EAST COAST STORM FORECASTS
82 FORTRAN IV IBM 360/155 WAVE FORECASTS
80 FORTRAN IV IBM 360/155 ASTROGRAPHICAL ICE PREDICTION

NAVY, CIVIL ENGINEERING LABORATORY, PORT HUERFANE, CA
30 FORTRAN IV CDC 6600 DEEP OCEAN LCAC MACROVE SYSTEMS DQLLS
30 FORTRAN IV CDC 6603 LCAC METIC AND CABLE STRESSES CABLES
30 FORTRAN IV CDC 6600 SOIL TEST DATA TRIAX
30 FORTRAN IV CDC 6600 DYNAMIC STRESS RESPONSE OF LIFTING LINES CABLES
31 FORTRAN IV CDC 6600 DYNAMIC RESPONSE OF CABLE SYSTEM SNAPGLC
31 FORTRAN IV CDC 6600 CHANGES IN ELECTROMECHANICAL CABLE RACAC
31 FORTRAN IV CDC 6600 END RESPONSES IN ELECTROMECHANICAL CABLE RACAC
48 FORTRAN II IBM 1620 SOIL AND SEDIMENT ENGINEERING TEST DATA

NAVY, NAVAL POSTGRADUATE SCHOOL, MCATERYEY, CA
17 FORTRAN IV IBM 360 OBJECTIVE THERMODYNAMICS ANALYSIS
17 FORTRAN IV CDC 6500 OBJECTIVE THERMODYNAMICS ANALYSIS
97 FORTRAN 60 IBM 360/64 WIND ERGIS AND CONCENTRATION OF SEA ICE ICEGRID
97 FORTRAN CDC 3100 SOUND SPEED COMPUTATION MODEL SOVEL
97 FORTRAN CCC 3200 SCALD SPEED COMPUTATION MODEL SOVEL
97 FORTRAN CCC 3100 SCALD SPEED COMPUTATION MODEL SCV
97 FORTRAN CCC 3200 SCALD SPEED COMPUTATION MODEL SCV
97 FORTRAN CCC 3100 SCALD SCATTERING BY CARGOES SKAT
72 FORTRAN IV CDC 6500 THERMAL PELLITUTION MODEL
72 FORTRAN IV CCC 1604 THERMAL PELLITUTION MODEL

215
<table>
<thead>
<tr>
<th>Year</th>
<th>Language</th>
<th>Model Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>FORTRAN</td>
<td>CDC 3100</td>
</tr>
<tr>
<td>134</td>
<td>FORTRAN</td>
<td>CDC 3100</td>
</tr>
<tr>
<td>83</td>
<td>FORTRAN</td>
<td>CDC 6500</td>
</tr>
<tr>
<td>83</td>
<td>FORTRAN</td>
<td>CDC 7600</td>
</tr>
<tr>
<td>83</td>
<td>FORTRAN</td>
<td>CDC 3100</td>
</tr>
<tr>
<td>83</td>
<td>FORTRAN</td>
<td>CDC 3200</td>
</tr>
<tr>
<td>22</td>
<td>FORTRAN</td>
<td>IBM 360</td>
</tr>
<tr>
<td>24</td>
<td>FORTRAN</td>
<td>CDC 6500</td>
</tr>
<tr>
<td>24</td>
<td>FORTRAN</td>
<td>CDC 7600</td>
</tr>
<tr>
<td>24</td>
<td>FORTRAN</td>
<td>IBM 360</td>
</tr>
<tr>
<td>87</td>
<td>FORTRAN</td>
<td>CDC 1604</td>
</tr>
<tr>
<td>24</td>
<td>FORTRAN</td>
<td>CDC 6500</td>
</tr>
<tr>
<td>88</td>
<td>FORTRAN</td>
<td>CDC 3100</td>
</tr>
<tr>
<td>88</td>
<td>FORTRAN</td>
<td>CDC 6500</td>
</tr>
<tr>
<td>88</td>
<td>FORTRAN</td>
<td>CDC 3100</td>
</tr>
<tr>
<td>24</td>
<td>FORTRAN</td>
<td>IBM 360</td>
</tr>
<tr>
<td>24</td>
<td>FORTRAN</td>
<td>CDC 6500</td>
</tr>
<tr>
<td>24</td>
<td>FORTRAN</td>
<td>CDC 7600</td>
</tr>
<tr>
<td>24</td>
<td>FORTRAN</td>
<td>IBM 360</td>
</tr>
<tr>
<td>75</td>
<td>FORTRAN</td>
<td>CDC 3100</td>
</tr>
<tr>
<td>75</td>
<td>FORTRAN</td>
<td>CDC 6500</td>
</tr>
<tr>
<td>75</td>
<td>FORTRAN</td>
<td>CDC 1604</td>
</tr>
<tr>
<td>80</td>
<td>FORTRAN</td>
<td>IBM 360/195</td>
</tr>
</tbody>
</table>

NAVY, FLEET NUMERICAL WEATHER CENTRAL, MONTEREY, CA

<table>
<thead>
<tr>
<th>Year</th>
<th>Language</th>
<th>Model Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>148</td>
<td>FORTRAN</td>
<td>CDC 1604</td>
</tr>
<tr>
<td>76</td>
<td>FORTRAN</td>
<td>CDC 6500</td>
</tr>
</tbody>
</table>

NAVY, NAVAL UNDSEA RESEARCH AND DEVELOPMENT CENTER, SAN DIEGO, CA

<table>
<thead>
<tr>
<th>Year</th>
<th>Language</th>
<th>Model Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>FORTRAN</td>
<td>CDC 1604</td>
</tr>
<tr>
<td>14</td>
<td>FORTRAN</td>
<td>CDC 6500</td>
</tr>
<tr>
<td>15</td>
<td>FORTRAN</td>
<td>CDC 6500</td>
</tr>
</tbody>
</table>

NAVY, NAVAL ELECTRONICS LABORATORY, SAN DIEGO, CA

<table>
<thead>
<tr>
<th>Year</th>
<th>Language</th>
<th>Model Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>FORTRAN</td>
<td>IBM 360/65</td>
</tr>
</tbody>
</table>

NAVY, NAVAL UNDSEA SYSTEMS CENTER, NEW LONDON, CT

<table>
<thead>
<tr>
<th>Year</th>
<th>Language</th>
<th>Model Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>138</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>101</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>101</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>101</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>45</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>45</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
</tbody>
</table>

NAVY, NAVAL UNDERWATER SYSTEMS CENTER, NEW LONDON, CT

<table>
<thead>
<tr>
<th>Year</th>
<th>Language</th>
<th>Model Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>138</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>141</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>99</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>95</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>93</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>94</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
</tbody>
</table>

NAVY, FLEET NUMERICAL WEATHER CENTRAL, MONTEREY, CA

<table>
<thead>
<tr>
<th>Year</th>
<th>Language</th>
<th>Model Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>148</td>
<td>FORTRAN</td>
<td>CDC 1604</td>
</tr>
<tr>
<td>76</td>
<td>FORTRAN</td>
<td>CDC 6500</td>
</tr>
</tbody>
</table>

NAVY, NAVAL UNDSEA RESEARCH AND DEVELOPMENT CENTER, SAN DIEGO, CA

<table>
<thead>
<tr>
<th>Year</th>
<th>Language</th>
<th>Model Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>FORTRAN</td>
<td>CDC 1604</td>
</tr>
<tr>
<td>14</td>
<td>FORTRAN</td>
<td>CDC 6500</td>
</tr>
<tr>
<td>15</td>
<td>FORTRAN</td>
<td>CDC 6500</td>
</tr>
</tbody>
</table>

NAVY, NAVAL ELECTRONICS LABORATORY, SAN DIEGO, CA

<table>
<thead>
<tr>
<th>Year</th>
<th>Language</th>
<th>Model Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>FORTRAN</td>
<td>IBM 360/65</td>
</tr>
</tbody>
</table>

NAVY, NAVAL UNDSEA SYSTEMS CENTER, NEW LONDON, CT

<table>
<thead>
<tr>
<th>Year</th>
<th>Language</th>
<th>Model Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>138</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>141</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>99</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>95</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>93</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>94</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
</tbody>
</table>

NAVY, FLEET NUMERICAL WEATHER CENTRAL, MONTEREY, CA

<table>
<thead>
<tr>
<th>Year</th>
<th>Language</th>
<th>Model Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>148</td>
<td>FORTRAN</td>
<td>CDC 1604</td>
</tr>
<tr>
<td>76</td>
<td>FORTRAN</td>
<td>CDC 6500</td>
</tr>
</tbody>
</table>

NAVY, NAVAL UNDSEA RESEARCH AND DEVELOPMENT CENTER, SAN DIEGO, CA

<table>
<thead>
<tr>
<th>Year</th>
<th>Language</th>
<th>Model Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>FORTRAN</td>
<td>CDC 1604</td>
</tr>
<tr>
<td>14</td>
<td>FORTRAN</td>
<td>CDC 6500</td>
</tr>
<tr>
<td>15</td>
<td>FORTRAN</td>
<td>CDC 6500</td>
</tr>
</tbody>
</table>

NAVY, NAVAL ELECTRONICS LABORATORY, SAN DIEGO, CA

<table>
<thead>
<tr>
<th>Year</th>
<th>Language</th>
<th>Model Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>FORTRAN</td>
<td>IBM 360/65</td>
</tr>
</tbody>
</table>

NAVY, NAVAL UNDSEA SYSTEMS CENTER, NEW LONDON, CT

<table>
<thead>
<tr>
<th>Year</th>
<th>Language</th>
<th>Model Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>138</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>141</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>99</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>95</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>93</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>94</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
</tbody>
</table>

NAVY, FLEET NUMERICAL WEATHER CENTRAL, MONTEREY, CA

<table>
<thead>
<tr>
<th>Year</th>
<th>Language</th>
<th>Model Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>148</td>
<td>FORTRAN</td>
<td>CDC 1604</td>
</tr>
<tr>
<td>76</td>
<td>FORTRAN</td>
<td>CDC 6500</td>
</tr>
</tbody>
</table>

NAVY, NAVAL UNDSEA RESEARCH AND DEVELOPMENT CENTER, SAN DIEGO, CA

<table>
<thead>
<tr>
<th>Year</th>
<th>Language</th>
<th>Model Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>FORTRAN</td>
<td>CDC 1604</td>
</tr>
<tr>
<td>14</td>
<td>FORTRAN</td>
<td>CDC 6500</td>
</tr>
<tr>
<td>15</td>
<td>FORTRAN</td>
<td>CDC 6500</td>
</tr>
</tbody>
</table>

NAVY, NAVAL ELECTRONICS LABORATORY, SAN DIEGO, CA

<table>
<thead>
<tr>
<th>Year</th>
<th>Language</th>
<th>Model Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>FORTRAN</td>
<td>IBM 360/65</td>
</tr>
</tbody>
</table>

NAVY, NAVAL UNDSEA SYSTEMS CENTER, NEW LONDON, CT

<table>
<thead>
<tr>
<th>Year</th>
<th>Language</th>
<th>Model Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>138</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>141</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>99</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>95</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>93</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>94</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
<td>PROPAGATION LCSS FAST FIELD PROGRAM</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>BOTTCP REFLECTIVITY</td>
</tr>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>PROPAGATION LCSS</td>
</tr>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>AMOS PROPAGATION LCSS</td>
</tr>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>TOWED SYSTEM DYNAMICS</td>
</tr>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>TRAPEZOIDAL ARRAY DEPLOYMENT DYNAMICS</td>
</tr>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>STEADY STATE CABLE LAYING</td>
</tr>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>TOWED ARRAY CONFIGURATIONS</td>
</tr>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>TRAPEZOIDAL ARRAY DYNAMICS</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
<td>SPECTRAL ANALYSIS SUBRoutines</td>
</tr>
<tr>
<td>FORTRAN IV</td>
<td>UNIVAC 1108</td>
<td>GENERATES ZOCLPLANATION TAXONOMIC DIRECTRY</td>
</tr>
<tr>
<td>FORTRAN IV</td>
<td>UNIVAC 1108</td>
<td>DEEP ZOCLPLANATION DISTRIBUTION</td>
</tr>
<tr>
<td>FORTRAN IV</td>
<td>UNIVAC 1108</td>
<td>DEEP ZOCLPLANATION POPULATION STATISTICS</td>
</tr>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>TO-S/V DATA 52049</td>
</tr>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>STEADY STATE TRAPEZOIDAL ARRAY CONFIGURATIONS</td>
</tr>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>ANCHOR LAST-PLCY SYSTEM DEVELOPMENT DYNAMICS</td>
</tr>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>CABLE FIXED-PLCY CONFIGURATIONS IN A TUNI</td>
</tr>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>FREE-FLOATING SPAR-ARRAY DYNAMICS</td>
</tr>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>FREE-FLOATING SPAR-BUCY DYNAMICS</td>
</tr>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>SHIP SUSPENDED ARRAY DYNAMICS</td>
</tr>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>BCCPERAG CPER DESCENT/ASCENT TRAJECTORIES</td>
</tr>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>BUOY-SHIP DYNAMICS</td>
</tr>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>BUOY-SYSTEM DYNMICS</td>
</tr>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>FIXED THIN LINE ARRAY DYNAMICS</td>
</tr>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>FIXED THIN LINE ARRAY STEADY STATE CONFIGURATION</td>
</tr>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>MARINE CPER DYNMICS</td>
</tr>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>STEADY-STATE BUCY SYSTEM CONFIGURATIONS</td>
</tr>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>STEADY-STATE SUBSURFACE BUCY SYSTM CONFIGURATIONS</td>
</tr>
<tr>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>TOWED ARRAY DYNMICS</td>
</tr>
</tbody>
</table>

NAVY, NAVAL UNDERWATER SYSTEMS CENTER, NEWPORT, RI

<table>
<thead>
<tr>
<th>FORTRAN</th>
<th>CDC 3300</th>
<th>SOLVE ALGEBRAIC EQUATIONS MATRIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORTRAN</td>
<td>CDC 3300</td>
<td>PHYSICAL DATA PLOT FRAME</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300</td>
<td>ACUSTIC PERFORMANCE AND EVALUATION</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300</td>
<td>SQUAD REFRACTION CORRECTIONS FITIT</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300</td>
<td>SIGMA-T INVREJ</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300</td>
<td>STD PROCESSING OCEANDATA</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300</td>
<td>INTERNAL WAVES WITCAB</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3200</td>
<td>INTERPOLATION FOR OCEANOGRAHIC DATA</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>IBM 1620</td>
<td>INTERPOLATION FOR OCEANOGRAHIC DATA</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300</td>
<td>CURRENT METEOR DATA CREATE-C</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300</td>
<td>CURRENT METEOR DATA CURRENT</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300</td>
<td>CURRENT METEOR DATA CURPLOT</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC 3300</td>
<td>CURRENT METEOR DATA SPECTRUM</td>
</tr>
</tbody>
</table>

NAVY, NAVAL SURFACE WEAPONS CENTER, SILVER SPRING, MD

| FORTRAN IV | CDC 6500 | NORMAL MUSE CALCULATIONS NORMAL 3 |
| FORTRAN IV | CDC 6400 | HORIZONTAL RANGE |

NAVY, NAVAL RESEARCH LABORATORY, WASHINGTON, DC

| FORTRAN | CDC 3800 | LINE PRINTER PLCTS |

217
<table>
<thead>
<tr>
<th>124</th>
<th>ASSEMBLY</th>
<th>HP 2100S</th>
<th>PLGITER CCMANCS PLCT CVRIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>FORTRAN 63</td>
<td>CDC 3800</td>
<td>GRASS UNDERWATER ACoustICS PREDICTION DTSTOV</td>
</tr>
<tr>
<td>100</td>
<td>FORTRAN 63</td>
<td>CDC 3800</td>
<td>GRASS UNDERWATER ACoustICS PREDICTION VFC</td>
</tr>
<tr>
<td>100</td>
<td>FORTRAN 63</td>
<td>CDC 3800</td>
<td>GRASS UNDERWATER ACoustICS PREDICTION CTGT</td>
</tr>
<tr>
<td>100</td>
<td>FORTRAN 63</td>
<td>CDC 3800</td>
<td>GRASS UNDERWATER ACoustICS PREDICTION PFFPLT</td>
</tr>
<tr>
<td>101</td>
<td>FORTRAN 63</td>
<td>CDC 3800</td>
<td>GRASS UNDERWATER ACoustICS PREDICTION SERPENT</td>
</tr>
<tr>
<td>101</td>
<td>FORTRAN 63</td>
<td>CDC 3800</td>
<td>GRASS UNDERWATER ACoustICS PREDICTION PAFCT</td>
</tr>
<tr>
<td>16</td>
<td>FORTRAN IV</td>
<td>HP 2100S</td>
<td>THERMOMETRIC DEPTH CALCULATION CAST</td>
</tr>
<tr>
<td>16</td>
<td>FORTRAN IV</td>
<td>HP 2100S</td>
<td>THERMOMETER DATA FILE HANDLER THEPROM</td>
</tr>
<tr>
<td>16</td>
<td>FORTRAN IV</td>
<td>CDC 3300</td>
<td>INTERNAL GRAVITY WAVES DISPER</td>
</tr>
<tr>
<td>31</td>
<td>BASIC</td>
<td>HP 9830A</td>
<td>UNMANNED FREE-SWIMMING SUBMERSIBLE PLCT</td>
</tr>
<tr>
<td>32</td>
<td>BASIC</td>
<td>HP 9830A</td>
<td>UNMANNED FREE-SWIMMING SUBMERSIBLE HOTEL LCAD</td>
</tr>
<tr>
<td>107</td>
<td>FORTRAN 63</td>
<td>CDC 3800</td>
<td>ANNOTATED TRACK ON STEREOGRAPHIC PROJECTION</td>
</tr>
<tr>
<td>107</td>
<td>FORTRAN IV</td>
<td>HP 2100S</td>
<td>ANNOTES CHART</td>
</tr>
<tr>
<td>108</td>
<td>FORTRAN IV</td>
<td>HP 2100S</td>
<td>BATHYMETRIC OR MAGNETICS CHART PRGFL</td>
</tr>
<tr>
<td>108</td>
<td>FORTRAN IV</td>
<td>HP 2100S</td>
<td>MERCATOR CHART DIGITIZATION ANTRK</td>
</tr>
<tr>
<td>108</td>
<td>FORTRAN IV</td>
<td>HP 2100S</td>
<td>BATHYMETRIC CHART DIGITIZATION GDBTH</td>
</tr>
<tr>
<td>108</td>
<td>FORTRAN IV</td>
<td>HP 2100S</td>
<td>PLCTS ON STEREOGRAPHIC CHART ANNOT</td>
</tr>
<tr>
<td>108</td>
<td>FORTRAN IV</td>
<td>HP 2100S</td>
<td>PLCTS NAVIGATIONAL DATA OCEAN</td>
</tr>
<tr>
<td>109</td>
<td>FORTRAN IV</td>
<td>HP 2100S</td>
<td>LONG BASE LINE ACoustIC TRACKING</td>
</tr>
<tr>
<td>89</td>
<td>FORTRAN</td>
<td>CDC 3800</td>
<td>ME SCATTERING COMPUTATIONS</td>
</tr>
<tr>
<td>47</td>
<td>FORTRAN</td>
<td>CDC 3600</td>
<td>PLCTS TRACK AND DATA PROFILE TRACK</td>
</tr>
<tr>
<td>47</td>
<td>FORTRAN</td>
<td>CDC 3800</td>
<td>PLCTS TRACK AND DATA PROFILE TRACK</td>
</tr>
<tr>
<td>47</td>
<td>FORTRAN</td>
<td>CDC 3800</td>
<td>GECDATA</td>
</tr>
<tr>
<td>47</td>
<td>FORTRAN</td>
<td>CDC 3600</td>
<td>GEDDATA</td>
</tr>
<tr>
<td>47</td>
<td>FORTRAN</td>
<td>CDC 3600</td>
<td>MAGNETIC SIGNATURES MAGPLOT</td>
</tr>
<tr>
<td>47</td>
<td>FORTRAN</td>
<td>CDC 3600</td>
<td>MAGNETIC SIGNATURES MAGPLOT</td>
</tr>
<tr>
<td>107</td>
<td>FORTRAN</td>
<td>CDC 3600</td>
<td>ANNOTATED TRACK ON STEREOGRAPHIC PROJECTION</td>
</tr>
</tbody>
</table>

NAVY, FLEET WEATHER FACILITY, SUITLANE, MD

91 FORTRAN II CDC 160A ICE DRIFT ANALYSIS/PREDICTION

NAVY, NAVAL OCEANOGRAPHIC OFFICE, WASHINGTON, DC

<table>
<thead>
<tr>
<th>139</th>
<th>FORTRAN</th>
<th>IBM 7074</th>
<th>LEAST SQUARES PLOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>139</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
<td>TEMPERATURE SALINITY CORRECTIONS CURVEFIT NISS12</td>
</tr>
<tr>
<td>139</td>
<td>FORTRAN</td>
<td>PDP-9</td>
<td>BARTLETT’S CURVE FITTING</td>
</tr>
<tr>
<td>121</td>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>REFERPATS DATA PLOTS TRACK CHART PASTRACK</td>
</tr>
<tr>
<td>121</td>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>PRODUCES CCATCR CHARTS GECITE</td>
</tr>
<tr>
<td>121</td>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>PRODUCES CCATCR CHARTS AUTOMATED CCATCR</td>
</tr>
<tr>
<td>100</td>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>CRITICAL ACUSTIC KATIC</td>
</tr>
<tr>
<td>97</td>
<td>FORTRAN</td>
<td>UNIVAC 1108</td>
<td>SCAT VELOCITY FCAR PARINE SEDIMENTS</td>
</tr>
<tr>
<td>98</td>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>LIGHT AND SCANT INSTRUCTION B</td>
</tr>
<tr>
<td>144</td>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>LIGHT AND SCANT INSTRUCTION D</td>
</tr>
<tr>
<td>14</td>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>BATHYMETRIC DATA REDUCTION</td>
</tr>
<tr>
<td>14</td>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>MCMANLY SCWIC LAYEK DEPTH</td>
</tr>
<tr>
<td>14</td>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>VERTICAL TEMPERATURE GRADIENTS</td>
</tr>
<tr>
<td>14</td>
<td>FORTRAN V</td>
<td>UNIVAC 1108</td>
<td>WATER CLARITY</td>
</tr>
<tr>
<td>137</td>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>SINGLE INTEGRATION</td>
</tr>
<tr>
<td>110</td>
<td>FORTRAN II</td>
<td>IBM 7074</td>
<td>INDIVIDUAL POINT GENERATOR FCAR MAP PROJECTIONS</td>
</tr>
<tr>
<td>111</td>
<td>FORTRAN II</td>
<td>IBM 7074</td>
<td>INDIVIDUAL POINT GENERATOR FOR DISTANCE</td>
</tr>
<tr>
<td>111</td>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>GEODETIC CHART REPLICATION</td>
</tr>
<tr>
<td>111</td>
<td>FORTRAN</td>
<td>IBM 7074</td>
<td>GEODETIC POSITION COMPUTATION AND PLCT</td>
</tr>
</tbody>
</table>

218
FORTRAN ASTRONOMIC LATITUDE
FORTRAN COC 3100 SOUNCING PLCT
FORTRAN IBM 7074 SOUNCING PLCT
FORTRAN IBM 7074 SINGLE INTEGRATION
FORTRAN CDC 3100 SODANC INVERSE
FORTRAN IBM 7074 SOLAR RADIATION CONVERSION
FORTRAN IBM 7074 WAVE STRESS
FORTRAN IBM 7074 TW-DIMENSIONAL POWER SPECTRUM FOR SWIP II
FORTRAN IBM 7074 PREC.ITION CF VERTICAL TEMPERATURE CHANGE
FORTRAN IBM 7074 CLOUD COVER AND DAILY SEA TEMPERATURE
FORTRAN IBM 7074 SEAMOUNT MAGNETIZATION
FORTRAN IBM 7074 OBSERVATIONAL CRAPIN OR GRAVITY
FORTRAN IBM UNIVAC 1108 SEDIMENT SIZE
FORTRAN IBM UNIVAC 1108 BOTTOM SEDIMENT DISTRIBUTION PLOT
FORTRAN IBM 7074 CURRENT METER TURBULENCE
FORTRAN IBM UNIVAC 1108 IN-SITU CURRENT
FORTRAN IBM UNIVAC 1108 WATER DISPLACEMENT DISPLA
FORTRAN IBM UNIVAC 1108 CURRENT METER PRINT
FORTRAN IBM UNIVAC 1108 CURRENT METER PLOT
FORTRAN IBM UNIVAC 1108 CONVERT CURRENT METER TAPE
FORTRAN IBM UNIVAC 1108 CURRENT METER DATA PRINT

NAVY DEFENSE MAPPING AGENCY HYDROGRAPHIC CENTER, WASHINGTON, DC

FORTRAN UNIVAC 1108 FAA FLCT
FORTRAN UNIVAC 1108 DISTANCE ARC AZIMUTH CIRAZD
FORTRAN UNIVAC 1108 PARAMETRIC MAP
FORTRAN UNIVAC 1108 LORAN TC GEGRAPHIC AND/GEOGRAPHIC TC LCRAN
FORTRAN UNIVAC 1108 LORAN COORDINATE COMPUTATION
FORTRAN UNIVAC 1108 LORAN SKymeVE CORRECTION

NAVY, NAVAL ACADEMY, ANNAPOLIS, MD

BASIC IBM 360 ENVIRONMENTAL DYNAMICS SUBROUTINES OCEANLIB
BASIC IBM 360 GEOSTROPHIC CURRENT

NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NC

FORTRAN IBM 360/165 WAVE INTERACTION WITH CURRENT CAPRAY
FORTRAN IBM 370/165 ESTUARINE MODEL AGILA
FORTRAN CDC 6400 UPHOLLING CSTLUPCL
FORTRAN IBM 360 MATHEMATICAL WATER QUALITY MODEL FOR ESTUARIES
FORTRAN IBM 360 COMPLTATION OF FLGm THROUGH MASONBCRC SLET NC
FORTRAN IBM 360 CIRCULATION IN PAMLCC SOUND

OREGON STATE UNIVERSITY, CORVALLIS, OR

FORTRAN CDC 3300/CS3 TIME SERIES ARAND ACFF
FORTRAN CDC 3300/CS3 TIME SERIES ARAND ACRR
FORTRAN CDC 3300/CS3 TIME SERIES ARAND ACRFL
FORTRAN CDC 3300/CS3 TIME SERIES ARAND ALIGN
FORTRAN CDC 3300/CS3 TIME SERIES ARAND APPACO
FORTRAN CDC 3300/CS3 TIME SERIES ARAND APPAP
FORTRAN CDC 3300/CS3 TIME SERIES ARAND AUTO
FORTRAN CDC 3300/CS3 TIME SERIES ARAND AUTCFLT

219
126 FORTRAN CDC 3300/0S3 TIME SERIES ARAND AXISSL
126 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CFFT
127 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CORR
127 FORTRAN CDC 3300/C3 TIME SERIES ARAND CCNPLY
127 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CCMPLT
127 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CCNFFID
127 FORTRAN CDC 3300/C3 TIME SERIES ARAND CCNMODE
127 FORTRAN CDC 3300/C3 TIME SERIES ARAND CPEES
127 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CCSTR
127 FORTRAN CDC 3300/C3 TIME SERIES ARAND CCSP
127 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CCSTR
127 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CCE
128 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CFTRAN
128 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CFFT
128 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CCORR
128 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CCMPLT
128 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CCNFFID
128 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CCNMODE
128 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CCSP
128 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CCE
129 FORTRAN CDC 3300/0S3 TIME SERIES ARAND 126 FORTRAN CDC 3300/0S3 TIME SERIES ARAND AXISSL
129 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CFFT
129 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CORR
129 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CCNPLY
129 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CCMPLT
129 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CCNFFID
129 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CCNMODE
129 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CCSP
129 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CCE
130 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CFTRAN
130 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CFFT
130 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CCORR
130 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CCMPLT
130 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CCNFFID
130 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CCNMODE
130 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CCSP
130 FORTRAN CDC 3300/0S3 TIME SERIES ARAND CCE
<table>
<thead>
<tr>
<th>FORTRAN</th>
<th>CDC</th>
<th>TIME SERIES</th>
<th>ARAND</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORTRAN</td>
<td>CDC</td>
<td>3300/0S3</td>
<td>ARAND</td>
<td>AKVERS</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>CDC</td>
<td>3300/0S3</td>
<td>ARAND</td>
<td>ARAND</td>
</tr>
</tbody>
</table>

RANOC CORPORATION, SANTA MONICA, CA

91 FORTRAN IV IBM 7090-94 SEA ICE STUDIES YARI
91 FORTRAN IV IBM 7090-94 SEA ICE STUDIES FLAP
91 FORTRAN IV IBM 7090-94 SEA ICE STUDIES SALPR
91 FORTRAN IV IBM 7090-94 SEA ICE STUDIES RITE

RICE UNIVERSITY, HOUSTON, TX

30 FORTRAN IV CDC 6600 CONVECTION INVARIALE VISCOITY FLUID CONVEC

SCRIPPS INSTITUTION OF OCEANOGRAPHY, LA JOLLA, CA

142 FORTRAN IBM 1600 TRIGONOMETRY SUBROUTINES ASSUB SAS ASA
116 FORTRAN IV CDC 3660 PLOTTING PAOPAP PCIeL

221
149 FCRTRAN IBM 1800 FORMAT FREE INPUT SUBROUTINE QREAD
149 FCRTRAN IBM 1800 METERS VS TIME HMS PATRI
144 FORTAN IBM 1800 DATE CALCULATIONS AMAT
144 FORTAN IBM 1800 DATE CALCULATIONS AMAT
144 FORTAN IBM 1800 DATAT CALCULATIONS AMAT
144 FORTAN IBM 1800 DATE CALCULATIONS AMAT
145 FORTAN IBM 1800 JULIAN DAY SUBROUTINES MIEJL
145 FORTAN IBM 1800 JULIAN DAY SUBROUTINES MIEJL
145 FORTAN IBM 1800 TIME CONVERSION DTME
144 FORTAN 63 CDC 6600 HYDROGRAPHIC DATA REDUCTION TWO FIVE
105 FORTAN CDC 6600 PLOTS PERCATCH GRIL CHART
105 FORTAN CDC 6600 NAVIGATIONAL SATELLITE PASSES ALRTX
105 FORTAN IBM 1800 SITE FIX LRFX
106 FORTAN IBM 1800 PLAN CELLURE ANE SCHEDULE CALIS
106 FORTAN IBM 1800 EARTH SPHERICAL SUBROUTINES ESTCH ESTC2 ESTPL
107 FORTAN IBM 1800 DEGREE CONVERSIONS GEGFR DEP1
107 FORTAN IBM 1800 PERCATCH ECE Famous NARCT
107 FORTAN IBM 1800 MAGNETIC FIELD COMPONENTS MAGFI
51 FORTAN CDC 3600 SPECIES AFFINITIES REGGROUP
116 FORTAN CDC 3600 X-Y PLOTS MELPAR
2 ALGOL B 670C STATIC DATA RETRIEVAL MERCRED
142 ALGOL B 670C INTERACTIVE CALCULATIONS DOSP/CALC
48 ALGOL B 670C SELLAC VELOCITY THP SELL SAMPLES DOSC/SEC
48 ALGOL B 670C SELLAC SILL AK CLAY FRACTIONS DOSP/GRAN

SOUTHWESTERN COLLEGE, SCUTTHAMPTO, NY

25 FORTRAN IV IBM 360/65 MIT SALINITY INTRUSION PROGRAM

TEXAS A&M UNIVERSITY, COLLEGE STATION, TX

7 FORTRAN IV IBM 360/65 REAL CALC Interp STATION DATA CAPRICKRA
7 FORTRAN IV IBM 360/65 STATION DATA CALCULATIONS F3
8 FORTRAN IV IBM 360/65 PLCTS STATION DATA PLTECT
8 FORTRAN IV IBM 360/65 CALCULATES STATION DATA SECPG
103 FORTRAN IV IBM 360/65 PLCTS PAPER GRIDS TRACKS MAP

UNIVERSIDAD N A CE MEXICO, MEXICO, DF

5 FORTRAN IV B 670C CEANOGRAPHY STATION COMPUTER PROGRAM

UNIVERSITY OF BERGEN, NORWAY

79 FORTRAN IV IBM 1620 PROCESSSE S CLIPDATA INSTRUMENT OBSERVATIONS

UNIVERSITY OF DELAWARE, DEWE, DE

25 FORTRAN IV IBM 360 DYNAMIC DETERMINISTIC SIMULATION SIMDOLL

UNIVERSITY OF HAWAI, HONOLULU, HI

116 FORTAN IBM 360 GEOWGRAP
116 FORTAN IBM 360 GEOWGRAP

222
UNIVERSITY OF ILLINOIS, URBANA, IL

83 FORTRAN IV IBM 360/75 WAVE BEACH VELOCITY

UNIVERSITY OF MAINE, WALPOLE, ME

153 FORTRAN IBM 370 RECORPPATED STATION OUTPUT IBM 1
28 FORTRAN IV IBM 370 ESTUARINE C-PhYST MRI MYACHED
28 FORTRAN IV IBM 370 ESTUARINE TIDES
55 FORTRAN IBM 370 CHLOROPHYLL CHLOR
55 FORTRAN IBM 370 PHYTOPANKTON POPULATION DENSITY
55 FORTRAN IBM 370 SPECIES DIVERSITY

UNIVERSITY OF MARYLAND, COLLEGE PARK, MD

24 FORTRAN IV UNIVAC 1108 THREE DIMENSIONAL ESTUARINE CIRCULATION MODEL
50 FORTRAN IV UNIVAC 1108 INVERSE PROBLEM IN ECOSYSTEM ANALYSIS

UNIVERSITY OF MIAMI, MIAMI, FL

20 FORTRAN PDP-11 GENERAL PURPOSE EDITOR CMSEC
20 FORTRAN PDP-11 TIME SERIES ITC PROFILES CMSEC
20 FORTRAN PDP-11 AIRPLANE CURRENT METER DATA MAGER
20 FORTRAN PDP-11 CURRENT METER DATA MAGER
20 FORTRAN PDP-11 APPEXES NEW DATA TO FILE DERIVE
20 FORTRAN UNIVAC 1106 APPEXES NEW DATA TO FILE DERIVE
20 FORTRAN UNIVAC 1106 CONCATENATES SECTIONS SEGMENTS OUTPUT CMSEC
20 FORTRAN UNIVAC 1106 INTERPOLATES TO UNIFORM GRID MATRIX 001
20 FORTRAN UNIVAC 1106 TIME SERIES STC OR PCM PROFILES PLSAC
20 FORTRAN UNIVAC 1106 INTERNAL WAVES IWEG
20 FORTRAN UNIVAC 1106 CYLINDRICAL FIELDS INTERNAL WAVE RAYS CMSEC
20 FORTRAN UNIVAC 1106 AUTOC AND CROSS SPECTRA SPECTRA TUNKEY METHCC
20 FORTRAN UNIVAC 1106 AUTOC AND CROSS SPECTRA SPECTRA POLARIZED CMPSPC
20 FORTRAN UNIVAC 1106 AMPLITUDES PHASES EAST SQUARES TIDES54
20 FORTRAN UNIVAC 1106 METEOROLOGICAL FLUXES PLSAC
20 FORTRAN UNIVAC 1106 CROSS CORRELATION MATRIX ENPEIGI

UNIVERSITY OF MICHIGAN, ANN ARBOR, MI

104 MAC IBM 7090 GENERAL MAP PROJECTION
104 MAC IBM 7090 FINITE MAP PROJECTION DISTORTIONS

UNIVERSITY OF PITTSBURGH, PITTSBURGH, PA

60 MAC IBM 7090 THEORETICAL PACIFIC TIDAL FORCE

UNIVERSITY OF RHODE ISLAND, KINGSTON, RI

28 FORTRAN IBM 370/155 MODELING AN OCEAN POND

223
Universities and their computing resources:

United States:
- University of Puerto Rico, Mayaguez, PR
 - **FORTRAN II POP 8E** Mass transport and velocities geomass
 - **FORTRAN IV POP 10** Station data THIRP
 - **FORTRAN IV POP 10** Thermometer correction thermometric depth

- University of Texas, Port Aransas, TX
 - **FORTRAN IV POP 10** Static NCC data tape
 - **FORTRAN IV POP 10** Productivity Cxygea
 - **FORTRAN IV POP 10** Species diversity job
 - **FORTRAN IV CDC 6600** Productivity ECPmCD

- University of Washington, Seattle, WA
 - **FORTRAN II IBM 360/45** Static data reduction SYNOP
 - **FORTRAN IV CDC 6600** Three-dimensional simulation package AUGUR
 - **FORTRAN IV IBM 7094** Concentrations per square meter of surface
 - **FORTRAN IV CDC 6600** Combined CHLOROPHYLL and productivity
 - **FORTRAN IV IBM 7094** Phytoplankton numbers volume surface area
 - **FORTRAN IV IBM 7094** Phytoplankton numbers volume surface area

- University of Wisconsin, Milwaukee, WI
 - **FORTRAN IV UNIVAC 1108** Spectral analysis of time series
 - **ALGOL B 67C0** Spectral analysis of time series

- Virginia Polytechnic Institute and State University, Blacksburg, VA
 - **FORTRAN IV IBM 370** Probability distribution WEIBUL
 - **FORTRAN IV IBM 370** Resources allocation in fisheries MGT PISCES
 - **FORTRAN IV IBM 370** Water resources teaching game DAM
 - **FORTRAN IV IBM 370** Optimal ecosystem policies CEP

- Williams College, Williamstown, MA
 - **FORTRAN IV IBM 1130** Beach simulation model
 - **FORTRAN IV IBM 1130** Beach and nearshore maps A-S

- Woods Hole Oceanographic Institution, Woods Hole, MA
 - **FORTRAN IV XDS SIGMA 7** Horizontal histograms HISTO
 - **FORTRAN IV XDS SIGMA 7** Printer plots LISPLQ
 - **FORTRAN IV XDS SIGMA 7** Plot of frequency distribution THIST
 - **FORTRAN IV XDS SIGMA 7** Velocity vector averages VECTAV
 - **FORTRAN IV XDS SIGMA 7** Progressive vectors PRCVEC
 - **FORTRAN IV XDS SIGMA 7** Plots data along track
 - **FORTRAN IV XDS SIGMA 7** Profile versus time or distance
 - **FORTRAN IV HP MINI** Plots navigation with any other data type DEPP6
 - **FORTRAN IV XDS SIGMA 7** Scand velocity SDONEL

The list continues with information on other universities and their computing resources.
FEDERAL INFORMATION PROCESSING STANDARD SOFTWARE SUMMARY

<table>
<thead>
<tr>
<th>01. Summary date</th>
<th>02. Summary prepared by (Name and Phone)</th>
<th>03. Summary action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yr.</td>
<td>No.</td>
<td>Day</td>
</tr>
<tr>
<td>04. Software data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr.</td>
<td>No.</td>
<td>Day</td>
</tr>
<tr>
<td>05. Software title</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06. Short title</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07. Internal Software ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>08. Software type</th>
<th>09. Processing mode</th>
<th>10. General Application area</th>
<th>Specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automated Data System</td>
<td>Interactive</td>
<td>Computer Systems</td>
<td>Management/ Other</td>
</tr>
<tr>
<td>Computer Program</td>
<td>Batch</td>
<td>Support/Utility</td>
<td>Business</td>
</tr>
<tr>
<td>Subroutine/Module</td>
<td>Combination</td>
<td>Scientific/Engineering</td>
<td>Process Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bibliographic/Textual</td>
<td></td>
</tr>
</tbody>
</table>

| 11. Sub: Writing organization and address |
| | |

| 12. Technical contact(s) and phone |
| | |

| 13. Narrative |
| |

| 14. Keywords |
| |

<table>
<thead>
<tr>
<th>15. Computer manuf/ and model</th>
<th>16. Computer operating system</th>
<th>17. Programming language(s)</th>
<th>18. Number of source program statements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 23. Other operational requirements |
| | |

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Available</td>
<td>Available</td>
</tr>
<tr>
<td>Limited</td>
<td>Inadequate</td>
</tr>
<tr>
<td>In-house only</td>
<td></td>
</tr>
</tbody>
</table>

| 26. FOR SUBMITTING ORGANIZATION USE |
| | |

Standard Form 188
1974 July
U.S. Dept. of Commerce—NBS
(FIPS Pub. 50)
INSTRUCTIONS

61. Summary Date: Enter date summary prepared. Use Year, Month, Day format: YYYYMMDD.

62. Summary Prepared By: Enter name and phone number (including area code) of individual who prepared this summary.

63. Summary Action: Mark the appropriate box for new summary, replacement summary or deletion of summary. If this software summary is a replacement, enter under “Previous Internal Software ID” the internal software identification as reported in item 07 of the original summary, and enter the new internal software identification as reported in item 07 of this form; complete all other items as for a new summary. If a software summary is to be deleted, enter under “Previous Internal Software ID” the internal software identification as reported in item 07 of the original summary; complete only items 01, 02, 03 and 15 on this form.

64. Software Date: Enter date software was completed or last updated. Use Year, Month, Day format: YYYYMMDD.

65. Software Title: Make title as descriptive as possible.

66. List This: (Optional) Enter commonly used abbreviation or acronym which identifies the software.

67. Internal Software ID: Enter a unique identification number or code.

68. Software Type: Mark the appropriate box for an Automated Data System (set of computer programs), Computer Program, or Subroutine/Module, whichever best describes the software.

69. Processing Goals: Mark the appropriate box for an Interactive, Batch, or Combination mode, whichever best describes the software.

70. Application Area: General: Mark the appropriate box which best describes the general area of application from among: Computer Systems Support/Utility, Process Control, Management/Businees, Scientific/Engineering, Other.

71. Identifying Organization and Address: Identify the organization responsible for the software as completely as possible, to the Branch or Division level, including Agency, Department (Bureau/Division), Service, Corporation, Commission, or Council. Fill in complete mailing address, including street, city, state, and ZIP code.

72. Technical Contact(s) and Phone: Enter persons(s) or office(s) to be contacted for information about matter and/or operational aspects of software, including name and mailing address, if different from that in item 12.

73. Narrative: Describe concisely the problem addressed and methods of solution. Include significant factors such as special operating system modifications, security concerns, relationships to other software, input and output media, virtual memory requirements, and unique hardware features. Cite references, if appropriate.

74. Keywords: Use significant words or phrases which reflect the functions, applications and features of the software. Separate entries with semicolons.

75. Computer Manufacturer and Model: Identify mainframe computer(s) on which software is operational.

76. Computer Operating Systems: Enter name, number, and release under which software is operating. Identify enhancements in the Narrative (item 13).

77. Programming Language(s): Identify the language(s) in which the software is written, including version; e.g., ANS COBOL, FORTRAN, SISSCRIPT II, ISLETH II.

78. Number of Source Program Statements: Include statements in the software, separate macros, called subroutines, etc.

79. Computer Memory Requirements: Enter minimum internal memory necessary to execute software, exclusive of memory required for the operating system. Specify words, bytes, characters, etc., and number of bits per unit. Identify virtual memory requirements in the Narrative (item 13).

80. Tape Drives: Identify number needed to operate software. Specify, if critical, manufacturer, model, tracks, recording density, etc.

81. Disk/Drum Units: Identify number and size (in same units as “Memory”—item 19) needed to operate software. Specify, if critical, manufacturer, model, etc.

82. Terminals: Identify number of terminals required. Specify, if critical, type, speed, character set, screen/line size, etc.

83. Other Operational Requirements: Identify peripheral devices, support software, or related equipment not indicated above, e.g., optical character devices, facsimile, computer output microfilm, graphic plotters.

84. Software Availability: Mark the appropriate box which best describes the software availability from among: Available to the Public, Limited Availability (e.g., for government use only), and For In-House Use Only. If the software is “Available”, include a mail or phone contact point, as well as the price and form in which the software is available, if possible.

85. Documentation Availability: Mark the appropriate box which best describes the documentation availability from among: Available to the Public, Inadequate for Distribution, and For In-House Use Only. If documentation is “Available”, include a mail or phone contact point, as well as the price and form in which the documentation is available, if possible. If documentation is presently “Inadequate”, show the expected availability date.

86. For Submitting Organization Use: This area is reserved for the use of the organization submitting this summary. It may contain any information deemed useful for internal operation.

229