Microwave Dielectric Behavior of Soils

Report 2
A Unique Coaxial Measurement Apparatus

by John O. Curtis
Environmental Laboratory

Approved For Public Release; Distribution Is Unlimited
The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
Microwave Dielectric Behavior of Soils

Report 2
A Unique Coaxial Measurement Apparatus

by John O. Curtis
Environmental Laboratory
U.S. Army Corps of Engineers
Waterways Experiment Station
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Report 2 of a series

Approved for public release; distribution is unlimited

Prepared for U.S. Army Corps of Engineers
Washington, DC 20314-1000
Waterways Experiment Station Cataloging-In-Publication Data

Curtis, John O.

Microwave dielectric behavior of soils / by John O. Curtis ; prepared for U.S. Army Corps of Engineers.

Contents: Report 1, Summary of related research — Report 2, A unique coaxial measurement apparatus — Report 3, Measurements and modeling

Includes bibliographical references.

1. Soils — Electric properties. 2. Dielectric measurements. 3. Microwave measurements. 4. Remote sensing. I. United States. Army. Corps of Engineers. II. U.S. Army Engineer Waterways Experiment Station. III. Title. IV. Series: Technical report (U.S. Army Engineer Waterways Experiment Station) ; EL-93-25.

TA7 W34 no.EL-93-25
Contents

Preface .. v
1—Introduction .. 1
 Reasons for Studying Electrical Properties of Soils 2
 Soil moisture measurements 2
 Subterranean investigations 3
 Remote sensing of environment 4
 Others .. 5
 Problem Statement ... 5
2—A Coaxial Apparatus for Dielectric Measurements 6
 Measurement System ... 6
 Governing Equation ... 9
 Experimental Procedure 14
 Calibration ... 14
 Sample preparation and measurements 15
3—Sanity Checks ... 17
 Empty Holder ... 17
 Water .. 18
 Ethylene Glycol ... 19
 A Silty Soil ... 23
4—Summary .. 25
References .. 26
Appendix A: Skin Depth Calculations A1
Appendix B: Program Listing and Sample Output B1
SF 298

List of Figures

Figure 1. Experimental measurement system 7
Figure 2. One of the brass, coaxial sample holders 8
Figure 3. Sample geometry and voltage and current notation 9
Figure 4. Calibration and measurement planes 15
Figure 5. Empty sample holder measurements 19
Figure 6. Dispersion curves for water 20
Figure 7. Dispersion measurements of ethylene glycol 21
Figure 8. Preliminary dispersion measurements in a silty soil 24
Figure A1. Skin depth as a function of wavelength, permittivity, and loss tangent .. A4
Figure A2. Skin depth nomograph ... A5
Figure A3. Attenuation in moist soils A6
Preface

The study reported herein was conducted within the facilities of the Environmental Laboratory (EL) of the U.S. Army Engineer Waterways Experiment Station (WES) during the period of May 1991 to June 1992 for Headquarters, U.S. Army Corps of Engineers.

General supervision was provided by Drs. Daniel Cress and Victor Barber, Acting Chiefs, Environmental Systems Division (ESD), EL, Dr. Raymond L. Montgomery, Chief, Environmental Engineering Division, EL, and Dr. John Harrison, Director, EL.

Dr. John O. Curtis developed the experimental procedure reported herein and prepared the report under the direct supervision of Messrs. Malcolm Keown and Kenneth Hall, Chiefs, Environmental Constraints Group, ESD.

At the time of publication of this report, Director of WES was Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.

This report should be cited as follows:

1 Introduction

New and improved methods of remote sensing have increased the understanding of Earth's origins, its resources, and those processes that contribute to its dynamic (on a large time scale) nature. Scientists and engineers from many disciplines are constantly exploring new ways to quantify the Earth's properties for their particular applications. Among these methods are measurements of electromagnetic energy in many different wavelength regimes, both passive and active. The development of small powerful sources and ultrasensitive receivers along with improved data processing capabilities has fostered renewed interest in measurements of the Earth within the microwave region of the spectrum where wavelengths in air range from a few millimeters to several meters.

Natural terrain surfaces consist of bare soils, rocks, vegetation, and water. This study was initiated with the hope of making a meaningful contribution to the understanding of microwave interactions with natural terrain. The first report in this series attempts to summarize what is currently known about the measurement and modeling of the electrical properties of well-characterized soils (Curtis, In Preparation). This report contains a description of a new dielectric property measurement capability recently developed at the U.S. Army Engineer Waterways Experiment Station in Vicksburg, MS, that will be used in the future to establish a comprehensive database of soil properties covering a broad spectrum of soil types, measurement frequencies, sample moisture contents, and sample temperatures. The final report of the series will present some initial measurement results and will discuss two modeling approaches to interpreting those data. Most of the information contained in this series of reports is drawn from a doctoral research program recently completed by the author (Curtis 1992).

In an effort to make each report of this series as self-contained as possible, the rationale for pursuing this research program as well as some supporting information in appendices is included within each document. It is hoped that this will be useful for the individual who might read only one of the reports.
Reasons for Studying Electrical Properties of Soils

Soil moisture measurements

The dominant factor that controls the electrical behavior of soils is the presence of water (Topp, Davis, and Annan 1980). Obviously, one would hope to take advantage of this experimental fact to develop a means of accurately and quickly measuring the moisture in soils without having to collect numerous samples in the field, weigh them, dry them for extended periods of time, and weigh them again to obtain either a gravimetric (weight of water/weight of dry soil) moisture content or a more useful volumetric (volume of water/volume of soil sample) moisture content.

Numerous attempts have been made to develop a useful method for measuring soil moisture content. All have met with varying degrees of success, and none has proven accurate under all conditions. For example, a technique that essentially amounts to burying radar transmit and receive antennas in the soil and relating the measurements of attenuated received signals to moisture content (Birchak et al. 1974) is destructive to the soil fabric (the way in which soil particles are arranged), is very much controlled by the fabric and the size distribution of particles, and precludes the use of the same instrument in multiple locations (nature is not homogeneous) as well as the ability to easily repair defective equipment.

Another approach taken by some researchers for making field measurements of soil moisture (that also has numerous application in the biomedical field) is that of measuring the change in fringe capacitance of an open-ended coaxial probe (Thomas 1966; Brunfeldt 1987; Gabriel, Grant, and Young 1986). When pressed against a soil whose properties are unknown, the resulting change in capacitance produced by the impedance mismatch is related to electrical properties through calibration relationships. Problems arising from these measurements include the need to have proper contact between the probe tip and the soil surface, the fact that the volume of material associated with the fringe capacitance is quite small (1 cm³ or less), and that calibration conditions simply cannot account for all of the dielectric loss mechanisms that exist in natural soils. The losses in moist soils can be highly frequency dependent over a range of several frequency decades on the electromagnetic spectrum. A recent variation on the open-ended probe measurement scheme involves the use of a waveguide section instead of a coaxial device (Parchomchuk, Wallender, and King 1990).

The concern over small sample volumes can be overcome with a redesign of the open-ended coaxial probe that replaces the solid outer conductor with several pointed tines (Campbell 1988) which allows for the probe to be pushed into the surface of soft soils. The volume of soil enclosed by such probes can easily be tens of cubic centimeters. The tined coaxial probes that have been built to date operate in a frequency range that is very much subject to the material-dependent loss mechanisms alluded to above. Research continues that
is directed to better understanding these various mechanisms and to fabricate a probe that operates in a frequency range that is not subject to such material-dependent anomalies.

Subterranean investigations

There are many types of electrical measurements in soils (and rocks) that are used to understand what lies beneath the Earth's surface (Telford et al. 1984). Among these are various schemes for measuring soil resistivity as well as the attenuation of propagating electromagnetic waves.

Resistivity measurements. Resistivity data in soils are collected by injecting known currents (usually of a frequency less than 60 Hz; alternating current required to minimize effects of charge buildup on the probe) into the ground and measuring potential differences across pairs of nearby electrodes. Assuming homogeneous media and uniform resistivity, it is possible to calculate from the potential differences an apparent resistivity of the earth material. These measurements will be affected by the presence of water in the soil or rock, by the presence of mineral compounds that could go into ionic solution with available water, and by the physical structure of the subsurface terrain itself. This being the case, resistivity measurements are useful as a measure of subsurface water volume, the locations of mineral deposits, and subsurface structure.

Electromagnetic wave propagation. Another method of making electrical subsurface measurements involves the transmission of electromagnetic waves into the soil and detection of energy that results from waves reflected from subsurface anomalies. Having the ability to track wave propagation in time, either by pulsing the source or sweeping over a known frequency band in some controlled manner, means that electromagnetic wave propagation methods of subterranean investigations are particularly useful for locating the depth of electrical anomalies such as the water table in sandy soil (Olhoeft 1983; Stewart 1982; Wright, Olhoeft, and Watts 1984), buried pipes or wires, or cavities such as tunnels or caves (Ballard 1983). Other applications include the delineation of stratified media (Lundien 1972) and determination of the thickness of ice and frost layers (Jakkula, Ylinen, and Tiuri 1985, O'Neill and Arcone 1991).

There are some practical bounds on the utility of radio frequency systems to conduct subterranean investigations because of the phenomenon of "skin depth," a measure of the attenuation of the electromagnetic energy as it travels through the medium. For relatively low-frequency sources (approximately 200 MHz), it can be shown that low-loss soils such as dry sands can possess a skin depth of approximately 10 to 15 m, while high-loss soils such as wet silts and clays may have skin depths of only a few centimeters. Modern radio frequency receivers are extremely sensitive devices, often having a dynamic range of 50 to 100 db. The signal at skin depth represents about an 8.7-db loss in power or a two-way loss at the receiver for reflected signals of about
It is certainly not inconceivable that radio frequency receivers should be capable of successfully detecting reflected signals from subterranean anomalies at depths of two to three skin depths or more.

Remote sensing of environment

Virtually all remote sensing of the environment from airborne or spaceborne platforms involves the measurement of electromagnetic radiation from the Earth's surface and/or atmosphere. Passive surveillance involves measurements of emitted radiation and that reflected from natural sources such as the sun, the atmosphere, and surrounding terrain. Active remote sensing measurement systems include a source for illuminating the target of interest. Whether passive or active, visual, thermal infrared, microwave, or millimeter wave sensors are utilized, remote sensing is the collection and interpretation of electromagnetic radiation and, as such, demands an understanding of the dielectric properties of those materials being observed.

Environmental remote sensing applications form a list that grows yearly as electronic components are improved and data collection and processing hardware and software become faster, more reliable, and less costly. For example, satellites can provide worldwide surveys of land-use patterns to monitor the threat of urbanization, waste disposal, and erosion of the land (Colwell 1983). Similar systems (including those mounted in aircraft) can monitor the health of vegetation to keep abreast of such things as loss of forest and the potential for food shortages. Sea traffic in the far northern and southern shipping lanes can be made safer through the use of airborne and spaceborne sensors to detect ice hazards.

One of the more obvious applications for microwave remote sensing devices is that of conducting surface moisture surveys to help predict groundwater availability and the potential for flooding. Attempts have been made to relate soil moisture to both laboratory reflectance data (Lundien 1966) and to airborne sensor backscatter measurements (Ulaby, Cihlar, and Moore 1974; John 1992). Careful airborne sensor measurements might provide a first approximation to the complex dielectric constant of the soil near the surface.

Because of the difference in dielectric behavior of liquid water and various forms of ice, it may be possible to use airborne sensors to detect freezing and thawing (Wegmuller 1990) in remote locations that could be used to predict spring runoff conditions and all that that encompasses for agricultural applications, the effects on the fishing industry, and the anticipation of flooding in built-up areas. Military analysts are concerned about soil moisture conditions because of its impact on trafficability, the ability of vehicles to move effectively over natural terrain.

Another remote sensing application is the mapping of exposed soils and rocks in remote areas of the world from high-flying aircraft or satellites, which might prove useful for geomorphological studies (Swanson et al. 1988).
or even mineral exploration. A less obvious, but recent, application of microwave remote sensing in soils dealt with archaeological surveys in desert areas (Berlin et al. 1986, McCauley et al. 1986).

Others

While the above paragraphs emphasize some of the most obvious and useful applications of a better understanding of soil electrical properties, others have been noted in the literature. For example, some researchers have attempted to relate electrical property measurements to the physical properties of soils (Campbell and Ulrichs 1969, Hayre 1970, Arulanandan and Smith 1973, Madden 1974). Of course, nothing has been said about the military's need to better understand the microwave response of soils that form the backgrounds to military targets, i.e., when and why does clutter become a source of target-like signatures? Outside of the topic of soils, studies of the microwave response of foodstuffs has direct application to quality control concerns in the food industry (Nelson 1975, Nelson 1983).

Another new application of this technology that is closely related to the discussion on soil moisture is that of detecting liquid ground contaminants, either near the surface or at arbitrary depths using a specially fabricated probe. If, as will be argued later, polarizable liquids can be characterized by a unique frequency of peak losses because of the dielectric relaxation phenomenon, then a probe could be designed to measure losses over a frequency span that is broad enough to detect a peak loss frequency and, coupled with the results of a thorough experimental program, to identify the particular contaminant.

Problem Statement

The overall objective of this research is to measure and model the dielectric response of moist soils in ways that will test the current understanding of loss mechanisms over a broad range of moisture levels, frequencies, and material temperatures and perhaps suggest new ways of thinking about losses as a function of these variables.

What is first required to help achieve this objective is an apparatus that will allow for the measurement of attenuation in moist soils over a broad spectrum of frequencies while maintaining a required sample temperature. A methodology must exist for allowing sample moisture to vary in a measurable way. The remainder of this report describes such a device and a methodology and includes measured data that substantiates the algorithm used to compute values of the complex dielectric constant for each set of variables.
2 A Coaxial Apparatus for Dielectric Measurements

The choices for laboratory techniques for making material electrical property measurements include resonant cavity, waveguide, and coaxial, with some new work being done on hybrids of the latter two (Taherian et al. 1991). Resonant cavity applications are limited to small volumes of material, which could present a problem with trying to measure the homogeneous response of substances like sands, which are highly nonhomogeneous at small scales. Waveguide measurements are very sensitive to how the sections are mated (and how repeatable are those connections). While they involve adequate volumes of material, sample preparation is not likely to produce a uniform density for granular materials, as the substance must be poured into one end and tamped to fill the volume. Dielectric seals would be required to provide a plane interface and must be accounted for properly. The literature also indicates that any phase shifts because of nonideal calibrations are nonlinear functions of frequency and must be accounted for during processing of the data. Waveguides also possess a cutoff frequency below which plane waves cannot propagate. As is true for waveguides, the usual coaxial devices (headless air lines) suffer from the problems of uniform sample preparation and, in fact, are best suited to measuring solid cylinders of material that must be precisely machined to provide a snug fit within the measurement cavity. However, coaxial lines allow plane waves to propagate at all frequencies. Given all of these considerations, a unique coaxial sample holder was designed and fabricated for use in these experiments to provide a practical tradeoff among sample volume, repeatability of connections, and the ability to prepare uniform samples.

Measurement System

A schematic of the measurement system used to conduct these experiments is shown in Figure 1. The electronic equipment that was available is not that which would normally be used for making material electrical property measurements, but it was successfully adapted for this use.
The Hewlett-Packard 8510C Vector Network Analyzer (Hewlett-Packard 1991) is a laboratory device designed to measure the magnitude and phase characteristics of electronic networks and/or components. It consists of a detector unit that measures analog signals in up to four different channels, down converts the signals to an intermediate frequency of 100 kHz, performs an analog-to-digital conversion, and sends those data to a data processing unit that provides a display of the desired quantities. The HP 8510C directs the signal source (in this case, an HP 8340B Synthesized Sweeper) to generate a sinusoidal signal at a specific frequency and directs a test set (an HP 8511A Frequency Converter) to act as the receiver for up to four channels of information that undergo a first frequency conversion to about 20 MHz through the process of harmonic mixing before being sent to the detector unit described above.

The combined dual-directional coupler and frequency converter serves as a substitute for a special test set called the S-Parameter Test Set, which is usually used for such measurements (Hewlett-Packard 1985). The S-Parameter Test Set contains power splitters, coupling devices, and means of establishing equal circuit electrical lengths where appropriate that are transparent to the user. An S-Parameter Test Set would make measurements of signals sent through the transmission cell in both directions. As long as one believes that the material response is not dependent on which direction current flows through the sample, then the reverse measurements should be redundant.
Figure 2 is a photograph of one of the two nearly identical sample holders that were fabricated for these measurements. It was made from 4.5-mm brass stock and provides a square cross-sectional coaxial test volume that is 7.5 mm2 and 40 mm long. A piece of copper bus wire was soldered into place as the center conductor, connecting the two 50-ohm SMA-type connectors at each end of the sample holder. The value of sample volume for each holder was estimated, by length measurements, to be 2.21 cm3.

One area of concern with this sample holder deals with the development of higher order transverse modes. Theory says that a coaxial device should support only the transverse electromagnetic mode as long as the wavelength in the material is greater than twice the cavity width (Stratton 1941). Thus, if the cavity is empty, the highest frequency allowed for these measurements would be

\[
(f_{\text{max}})_{nr} = \frac{v}{\lambda} = \frac{c}{n\lambda} = \frac{3 \times 10^{10} \text{ cm/sec}}{\sqrt{1} \times 1.5 \text{ cm/cycle}} = 20 \text{ GHz}
\]

where

- v = wave velocity in the material
- λ = wavelength
- n = index of refraction for the material in the cavity
The speed of light in a vacuum is denoted by c. While for pure water, the maximum frequency is given by

$$f_{\text{max}}_{\text{water}} = \frac{3 \times 10^{10}}{\sqrt{80 \times 1.5}} = 2.24 \text{ GHz} \quad (2)$$

Plane wave conditions for measurements of moist soils should, therefore, exist at some intermediate frequency.

A Caron Model 2065 Circulating Bath was used to provide sample temperature control. The bath was connected to a hollowed aluminum heat source/sink with insulated plastic tubing. As the circulating 50/50 antifreeze solution controlled the physical temperature of the source/sink, it also controlled the temperature of the brass sample holder, which was positioned in a slot in the top of the source/sink and covered with an insulating styrofoam cap.

Governing Equation

Consider the geometry of the coaxial measurement device and the voltages V_i in all regions as shown schematically in Figure 3. A relatively simple governing equation that relates the sample properties and dimension to quantities that can be measured by the network analyzer system can be developed by proper consideration of the boundary conditions.

![Sample geometry and voltage and current notation](image)

Figure 3. Sample geometry and voltage and current notation

Using the customary notation for spatial variation of transverse voltages V_i within the cables and sample and considering a snapshot in time (without loss of generality, let time be zero), one can write
\[V_1 = V_{mp}e^{-ik_1x} + V_1^{-}e^{-ik_1x} \quad x < 0 \]

\[V_2 = V_2^{+}e^{-ik_2x} + V_2^{-}e^{-ik_2x} \quad 0 < x < d \tag{3} \]

\[V_3 = V_3^{+}e^{-ik_3(x-d)} \quad x > d \]

where the \(k \)'s are the complex propagation constants and contain all of the material electrical property information (see Appendix A). Similar expressions for the center conductor current can be written by taking advantage of the definition of the characteristic impedance of the coaxial line as being the ratio of transverse voltage to the conduction current along the center conductor (Stratton 1941).

\[I_1 = \frac{1}{Z_1} \left(+V_{mp}e^{-ik_1x} - V_1^{-}e^{-ik_1x} \right) \quad x < 0 \]

\[I_2 = \frac{1}{Z_2} \left(+V_2^{+}e^{-ik_2x} - V_2^{-}e^{-ik_2x} \right) \quad 0 < x < d \tag{4} \]

\[I_3 = \frac{1}{Z_3} \left(+V_3^{+}e^{-ik_3(x-d)} \right) \quad x > d \]

where the \(Z \)'s are the characteristic impedances within each section of the line.

The boundary conditions that can be applied to the geometry shown in Figure 6 are that the tangential field components at the interfaces are continuous and, from the steady-state continuity relationship, that the currents are also continuous across the interfaces. In equation form, these boundary conditions reduce to
\[V_1 = V_2 \left. @ x = 0 \right| : V_{inp} + V_1^- = V_2^+ + V_2^- \] (5)

\[V_2 = V_3 \left. @ x = d \right| : V_2^+ e^{ikd} + V_2^- e^{-ikd} = V_3^+ \] (6)

\[I_1 = I_2 \left. @ x = 0 \right| : \frac{+V_{inp} - V_1^-}{Z_0} = \frac{+V_2^+ - V_2^-}{Z_s} \] (7)

\[I_2 = I_3 \left. @ x = d \right| : \frac{+V_2^+ e^{ikd} - V_2^- e^{-ikd}}{Z_s} = \frac{+V_3^+}{Z_0} \] (8)

Not being able to measure \(V^+_2 \) or \(V^-_2 \) but certainly being able to obtain a reading on the other voltages, the two voltage amplitudes inside the material can be eliminated by adding together Equations 5 and 7 and by taking their difference:

\[V_2^+ = \frac{1}{2} \left[V_{inp} + V_1^- + \frac{Z_s}{Z_0} (V_{inp} - V_1^-) \right] \] (9)

\[V_2^- = \frac{1}{2} \left[V_{inp} + V_1^- - \frac{Z_s}{Z_0} (V_{inp} - V_1^-) \right] \] (10)

Substituting these results into Equation 6, one has

\[V_3^+ = \frac{1}{2} \left[V_{inp} + V_1^- + \frac{Z_s}{Z_0} (V_{inp} - V_1^-) \right] e^{ikd} \] (11)

\[+ \frac{1}{2} \left[V_{inp} + V_1^- - \frac{Z_s}{Z_0} (V_{inp} - V_1^-) \right] e^{-ikd} \]
Normalizing to V_{inp} and collecting terms,

$$
\left[1 + \frac{V_1^*}{V_{\text{inp}}}\right] \cos (k\delta) + i \left[1 - \frac{V_1^*}{V_{\text{inp}}}\right] \frac{Z_t}{Z_0} \sin (k\delta) = \frac{V_3^*}{V_{\text{inp}}},
$$

Equation (12)

A similar relationship can be written from Equation 8

$$
\left[1 - \frac{V_1^*}{V_{\text{inp}}}\right] \frac{Z_t}{Z_0} \cos (k\delta) + i \left[1 + \frac{V_1^*}{V_{\text{inp}}}\right] \frac{Z_{\text{inp}}}{V_{\text{inp}}} \sin (k\delta) = \frac{Z_t}{Z_0} \frac{V_3^*}{V_{\text{inp}}},
$$

Equation (13)

It is further convenient to eliminate the characteristic impedances by solving each of the last two equations for Z_t/Z_0 and setting the two expressions equal:

$$
\frac{V_3^*}{V_{\text{inp}}} - \left[1 + \frac{V_1^*}{V_{\text{inp}}}\right] \cos (k\delta) + i \left[1 - \frac{V_1^*}{V_{\text{inp}}}\right] \sin (k\delta) = \frac{Z_t}{Z_0} \frac{V_3^*}{V_{\text{inp}}} - \left[1 - \frac{V_1^*}{V_{\text{inp}}}\right] \sin (k\delta)
$$

Equation (14)

Simplifying,

$$
\cos (k\delta) = \frac{1 + \left[\frac{V_3^*}{V_{\text{inp}}}\right]^2 - \left[\frac{V_1^*}{V_{\text{inp}}}\right]^2}{2 \left[\frac{V_3^*}{V_{\text{inp}}}\right]}
$$

Equation (15)

Now, following an appropriate calibration of the measurement apparatus, the network analyzer effectively measures V_t/V_{inp} and V_3/V_{inp}. They are designated, using standard "S", or scattering parameter notation, as S_{11} and S_{21}, respectively. The definition of these "S" parameters requires that there be no current traveling into the sample from the right side of Figure 3. This implies that all circuitry and connectors on the transmission side of the sample are perfectly matched so that no energy is reflected back to the sample. Although this is an assumption for this derivation, the fact that proper equipment was not available for these measurements and that a less than desirable...
calibration technique was used (described in the next section) makes this idealized configuration quite unlikely.

Using the relationships between the propagation constant and material properties (Appendix A) and assuming nonmagnetic materials, one can then write down the final form of the governing equation:

\[
\cos \left(\omega d \frac{\sqrt{\varepsilon}}{c} \right) = \frac{1 + (S_{21})^2 - (S_{11})^2}{2S_{21}} = W_c \tag{16}
\]

This form of the governing equation was reported by Campbell (1990). An earlier derivation, although arriving at a different solution technique, has also been recently discovered (Hewlett-Packard 1985).

The process for calculating values of the complex dielectric constant can now be outlined:

-At a given frequency, measure the complex values of \(S_{11} \) and \(S_{21} \).

\[b. \text{Compute } \cos^{-1} (W_c) = \omega d \frac{\sqrt{\varepsilon}}{c}. \]

- Square both sides of this expression and solve for \(\varepsilon \).

The procedure is not as straightforward as it seems because of a problem with principal values of the \(\cos^{-1} \) function. One method for solving for the \(\cos^{-1} \) function yields the following (Zucker 1972):

\[
\cos^{-1} (W_c) = -i \ln (re^{\theta}) = \theta - i \ln (r) \tag{17}
\]

where

\[re^{\theta} = W_c + \sqrt{(W_c)^2 - 1} \]

A great deal of time was spent developing a calculation procedure for Equation 17 that would yield the correct values of \(\varepsilon \) and \(\varepsilon' \). However, it was later discovered that the calculation routine for the inverse complex cosine function that resides in the HP BASIC compiler within the HP9000 system controller gave exactly the same results. The only difficulty is that, depending on where \(W_c \) lies in complex space, the \(\cos^{-1}(W_c) \) value computed using the available routines returns real and imaginary components that are both
negative, or having opposite signs. A set of rules had to be developed to select the sensible results; namely, those that would yield positive values of \(\varepsilon' \) and \(\varepsilon'' \).

The real part of \(\omega d \sqrt{\varepsilon} / c \) is a measure of the number of wavelengths (expressed in radians) of signal that can be contained within the sample holder at the given radial frequency. The value of \(\theta \) that is returned by the above solution algorithm is a principal value, being bounded by \(\pm \pi \). However, any multiple of \(2\pi \) can be added to \(\theta \) and give the same result. It turns out that there is a sensible way of determining how many multiples of \(2\pi \) to add. One can either estimate the properties of the material to establish the correct value of \(\theta \), or one can use the value of "group delay," which is calculated by the network analyzer to establish the correct value of \(\theta \). Group delay is defined as the signal transit time through a test device (Hewlett-Packard 1991). What the designers of the network analyzer assumed is that the phase for the wave in the material is a term like "\(\omega t \)". Therefore, group delay, or the derivative of phase with respect to radial frequency is a number with dimensions of time and interpreted as the time required to transit the sample. An estimate of the initial value of the number of cycles (multiples of \(2\pi \)) to add to \(\theta \) was taken as the truncated product of group delay and frequency.

Appendix B contains a listing of the HP BASIC code that was developed by the author to control the data collection system, create a permanent data file of amplitude and phase measurements as a function of frequency, and produce a real-time plot of computed complex dielectric constant values.

Experimental Procedure

Calibration

Because of the arrangement and type of measurement apparatus used for these studies, the most appropriate calibration was found to be the One-Path, 2-Port calibration combined with the adapter-switching technique (Hewlett-Packard 1991). During this procedure, reflection and transmission cables were first connected with a thru adapter from an HP85052B, 3.5mm Calibration Kit, and forward transmission and forward match measurements were conducted. Next, an equivalent adapter (male-female) from the same Kit was connected to the input (reflection) cable, and three reflection standards were measured. These standards were an offset short, an offset open, and a broadband load, all from the same Calibration Kit. The net result of the calibration procedure is that the \(S_{11} \) measurement effectively takes place at the bead interface in the SMA connector on the reflection side of the sample holder, and the \(S_{21} \) measurement effectively takes place at the bead interface in the connector on the transmission side of the holder.

Because of the physical separation of the calibration planes and the interface between the sample and the connector on the end of the holder, an
Because of the physical separation of the calibration planes and the interface between the sample and the connector on the end of the holder, an additional phase shift needed to be added to the \(S_{11} \) parameter and subtracted from the \(S_{21} \) parameter to make the measured quantities consistent with what was defined in the earlier derivation of the governing equation. Referring to the sketch in Figure 4, the reflected signal must travel an additional distance of \(2a \) beyond the calibration plane to be recorded in the frequency converter. The transmitted signal travels an additional distance of \(a+b \). For these measurements, \(a = b \), and the required phase shift was found to be about 80 picoseconds from measurements of the empty holder.

![Figure 4. Calibration and measurement planes](image)

Sample preparation and measurements

Test samples can be prepared from any reasonably fine-grained soil or from any liquid that does not chemically interact with the sample holder and/or center conductor. Each soil sample should normally be made as homogeneous as possible by drying, pulverizing, and mixing thoroughly. Samples should then be taken to determine the usual engineering properties of grain-size distribution and plasticity indices.

The normal measurement procedure for solid/liquid mixtures is the following:

- **a.** Lower the temperature of the heat source/sink to the lowest value desired.

- **b.** Carefully weigh the dry, empty sample holder.
c. The sample holder should be filled with a nearly saturated sample of the mixture that has been prepared in an appropriate container (for soil-water mixtures, resealable plastic bags were found to be convenient). The holder can be tapped against a flat, hard surface to uniformly settle the sample.

d. The sample and holder should be carefully weighed, then sealed and connected to the measurement system.

e. The measurement program containing the dielectric property calculation algorithm should then be executed, which will cause the frequency range for the dual directional coupler being used to be stepped through and calculations of \(\varepsilon \) and \(\varepsilon' \) made.

f. The temperature of the sample can then be increased and the measurement program executed again. For each new temperature setting, the sample should be given at least 10 min to reach equilibrium once the bath has reached the desired setting. The 10-min wait was found experimentally to be more than adequate for sample equilibrium to be achieved.

g. At the end of any particular measurement, the holder cover should be loosened to provide a better opportunity for the sample to dry out. The sample and holder should be periodically weighed to determine approximate values of moisture content. When the sample is thought to be at about the desired volumetric moisture content, the holder should be resealed and reconnected, the sample temperature should be taken back to the lowest desired temperature, and the whole measurement sequence should be repeated.

h. After all measurements have been conducted, the sample should be carefully removed, dried, and weighed to determine its original dry density and to facilitate calculations of volumetric moisture.
3 Sanity Checks

To develop confidence in the experimental procedure, materials were measured whose responses are known experimentally or can be modeled very accurately. These measurements also served to confirm the amount of phase shift required to collapse the calibration and measurement planes as discussed in the previous chapter. Data were collected for empty sample holders, samples of distilled water and ethylene glycol (ethanediol), and a sample of silty soil. Each is discussed in the following sections.

Empty Holder

The first question to answer is "How well does this experimental procedure measure the properties of air?" Ideally, the real part of the complex dielectric constant for dry air should be unity, and the imaginary part should be zero.

Figure 5 shows the results of measuring empty sample holders. Considering all of the experimental variables that could have an impact on any measurement such as measurement system drift, connector and connection variability, outer conductor discontinuities created by the sample holder cover, etc., the agreement of empty holder (air) measurements with theoretical predictions is quite remarkable.

The vertical dashed line at 2 GHz separates measurements made in two different frequency ranges. A single dual directional coupler (Figure 1) that covers the entire 50 MHz - 26.5 GHz frequency range that is available from the source does not exist. Two different couplers were used whose ranges of operation overlapped at 2 GHz.

The anomalous behavior centered about 3.75 GHz and 7.5 GHz is associated with the mathematical solution technique. At 3.75 GHz, the empty sample holder should be spanned by about a half of a wavelength; at 7.5 GHz, it should hold about a full wavelength, and so on. The number of wavelengths contained within the sample holder for a material with no loss is proportional to \((\sqrt{\varepsilon}/c)\) or the cosine function argument in Equation 16. A half wavelength in the sample holder will result in the complex vector representing the right-hand side of Equation 16 approaching the negative real axis in complex space. A full wavelength corresponds to the vector having made a
complete revolution in complex space and approaching the positive real axis. But these two conditions are branch cuts for the $\cos^{-1}(z)$ function and are, therefore, inherently unstable. It has been recently discovered that other researchers have experienced this anomalous behavior and that at least one alternative solution technique has been successfully developed (Baker-Jarvis, Vanzura, and Kissick 1990). Future improvements to the measurement and calculation scheme reported herein will probably include one or more of these alternative solutions.

Much of the data that follow in this chapter show the same anomalous behavior whenever integer multiples of half wavelengths exist within the sample holders. The severity of these peaks decreases with increasing frequency, because at low frequencies the computation of ϵ from Equation 16 involves a division by very small numbers. Any inaccuracies are amplified at low frequencies (<1 GHz). This fact also had a negative impact on low-frequency measurement calibrations. Instrumentation drift was often enough to ruin a calibration at the lowest frequencies in just a few hours. Better measurement equipment (namely, an S-parameter test set and a high-quality set of cables and connectors) would help alleviate this low-frequency measurement problem.

Water

Measured values of the complex dielectric constant for samples of distilled, deionized water are shown in Figure 6. For comparison, Ray's (1972) empirical fits to a large amount of pure and freshwater data are duplicated here. Several observations are in order. First of all, the comparison of measured data to the accepted standard is quite good (less than 4 percent difference), especially for the imaginary term. The sample holder volume was evidently not completely filled with water because of the fact that the holder cover must be pressed down upon the water meniscus, causing water to be squeezed from the holder in an unpredictable way. It is also possible that some evaporation of the sample took place during the 2- to 3-hr measurement period. Both of these phenomena could account for the lower measured values of ϵ. The hypothesis that the sample holder was never completely full was supported by weight measurements that indicate the holders were never more than 95 percent full during these tests.

Another observation is that because of the good correlation with idealized data, the impact of higher order modes must be relatively small as one would expect (Stratton 1941). As pointed out at Equation 2, higher order transverse modes should appear above 2.3 GHz for pure water, but these data that extend to 4 to 5 GHz continue to behave well. (Water data are cut off at 4 to 5 GHz because the noise floor of the network analyzer measurement system was reached.) The same anomalies observed at half-wavelength intervals in the empty holders also occur in the water with very little impact being observed beyond one and a half wavelengths.
Figure 5. Empty sample holder measurements

The low-frequency tail on ε' may possibly be associated with the ionic conductivity loss mechanism as a result of either trace quantities of ions that escape the deionization process or as a result of ions that originate from unclean and/or oxidized outer or inner conductor surfaces. The magnitude of low-frequency losses are approximately those associated with freshwater conductivity, but the actual loss mechanism has to be viewed as purely speculative.

Ethylene Glycol

Data were collected on several different alcohols: ethylene glycol (ethanediol), methanol, and ethanol. However, because of surface tension problems and rapid evaporation rates, only the results for ethylene glycol ($\text{HOCH}_2\text{CH}_2\text{OH}$, molecular weight 62.07, specific gravity 1.1088 at 20 °C relative to water at 4 °C, < .05 percent water) are reproduced here (Figure 7). Measured values of both ε' and ε'' are consistently lower than Jordan's (Jordan, Sheppard, and Szwarnowski 1978) results for frequencies greater
Figure 6 Dispersion curves for water

(a) these measurements
(b) Ray's (1972) fit
Figure 7. Dispersion measurements of ethylene glycol (Continued)
Figure 7. (Concluded)
than 1 GHz. This is not a surprising observation in that the experimental procedure does suffer from the shortcoming that it is difficult to completely fill the sample holder volume with liquids because of surface tension problems, and it is difficult to maintain the volume of liquid during the 2- to 3-hr measurement period because of evaporation. Although ethanediol was least affected by these problems, sample weights for the high-frequency measurements indicate that the holder was 90 to 95 percent full during the experiments. At low frequencies, measurements revealed another loss mechanism, most likely ionic conductivity.

In summary, results of measurements of air, water, and ethylene glycol are quite good, resulting in a high degree of confidence in the experimental procedure. Differences between these measurements and more precise measurements reported in the literature can be explained by physical and/or chemical factors. One must conclude, however, that improvements would have to be made to the experimental procedure before it could be used to accurately measure the electrical properties of a variety of fluids. In particular, it would be necessary to find a way to completely fill the sample holder and to maintain that fluid level throughout the measurements. The only current concerns with measurements of heterogeneous mixtures of soil and water are cleanliness of the sample holder and uneven drying of the sample throughout its volume.

A Silty Soil

As an example of how data can look for heterogeneous mixtures such as a moist soil, consider the data shown on Figure 8. These data, representing two volumetric moisture content extremes (11.7 and 43.8 percent), are from measurements made at 20 °C on a sample of very clean and somewhat poorly graded silt. More information on the properties of this soil will be available in the third report of this series.

The results of these measurements are certainly sensible. For example, the real part of the complex dielectric constant should be less than that of pure water, as shown in the previous figure. At the same time, the loss term should contain evidence of the relaxation peak beyond 10 GHz, which it does, and should reveal a much greater direct current conductivity contribution below 1 GHz because of the soil chemistry and the formation of free ions in the soil/water mixture.
Figure 8 Preliminary dispersion measurements in a silty soil
4 Summary

The response of moist soils (or any other moist heterogeneous mixture) to active microwave sensors is controlled by surface geometry and the dielectric properties of the medium. A review of the literature reveals that what data do exist on dielectric properties suffer from a number of shortcomings. In most cases, the soils are simply not properly characterized in terms of their physical parameters such as the distribution of particle sizes, the dry density under which tests were conducted, or the temperature of the soil, all of which have some impact on the dielectric properties. The volumetric moisture content of the soil, which is usually the most important factor controlling dielectric response, is often not specified or is not computable. And, finally, the data are usually collected at a limited number of frequency values.

In an effort to supplement those data on the complex dielectric properties of moist soils that have been adequately documented, a coaxial measurement apparatus was fabricated to allow electrical property measurements in nominally moist soils to frequencies above 10 GHz. Sample temperatures were controlled by an external bath. The algorithm used to calculate the dispersive complex dielectric constant was verified by measuring the response of liquids whose properties are well documented and the response of air (empty sample holder).
References

_______. (1990). Unpublished laboratory studies conducted at Dartmouth College, Hanover, NH.

———. "Microwave dielectric behavior of soils; Report 1, Summary of related research and applications," Technical Report in preparation, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Lundien, J. R. (1966). "Terrain analysis by electromagnetic means; Report 2, Radar responses to laboratory prepared soil samples," TR 3-693, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

_____. (1972). "Determining presence, thickness, and electrical properties of stratified media using swept-frequency radar," TR M-72-4, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Appendix A
Skin Depth Calculations

Obviously, skin depth effects preclude the utility of practical electromagnetic devices to penetrate to distances comparable with acoustic devices, but nevertheless, low-frequency devices have some utility (Berlin et al. 1986; Farr et al. 1986; Schaber et al. 1986). As a means of quantifying the penetration of electromagnetic waves into earth media in terms of the complex dielectric constant of the media, one should consider the following arguments. The one-dimensional propagation of an electromagnetic wave into some medium can be described by an amplitude function such as

\[e^{i \omega \tau} \] \hspace{1cm} (A1)

where

\[i = \text{symbol designating the imaginary quantity } \sqrt{-1} \]

\[k = \text{complex wave number} \]

\[x = \text{distance} \]

\[\omega = \text{radial frequency} \]

\[\tau = \text{time} \]

Furthermore, let

\[k = \beta + i \frac{\alpha}{2} \] \hspace{1cm} (A2)

References cited in this appendix are located at the end of the main text.
where

\[\beta = \text{phase constant and governs how a lossless medium propagates a wave} \]

\[\alpha = \text{attenuation factor and controls how the amplitude of the wave decreases with distance traveled through the medium} \]

Then the amplitude of the wave is

\[e^{i(\beta - \alpha t)}e^{-\left(\frac{x}{\delta}\right)^2} \]

i.e., a traveling wave combined with an attenuation factor.

If skin depth is defined as that distance over which the wave amplitude decreases by a factor of \(1/e\), then the skin depth \(\delta\) is

\[\delta \equiv \frac{2}{\alpha} \] (A4)

But the wave number can also be written

\[k = \frac{\omega}{v} = \frac{\omega N}{c} \] (A5)

where

\[v = \text{phase velocity in the medium} \]

\[c = \text{speed of light} \]

\[N = \text{complex index of refraction} \]

\[= n + in' \]

Thus

\[\delta = \frac{2}{\alpha} = \frac{c}{\omega n''} \] (A6)

or the skin depth is inversely proportional to the imaginary part of the complex index of refraction.

However, this study focuses on the complex dielectric constant \(\varepsilon\) as the measure of soil electrical characteristics.
Following several substitutions and simplifications, one can show that

$$\delta = \frac{\lambda_0}{2\pi} \left[\frac{\varepsilon'}{\sqrt{1 + \left(\varepsilon''/\varepsilon'
ight)^2}} \right]^{1/2} \quad (A8)$$

where λ_0 is the free-space wavelength. A visualization of this equation for the range of values of permittivity ε and loss tangent $\varepsilon''/\varepsilon'$ normally found in soils is provided in Figure A1. This figure does not represent any new science, as the same information has been presented in other forms (von Hippel 1954). It is, however, a more condensed way of visualizing the skin depth that has not been observed elsewhere in the literature. Figure A1 is valid for any interpretation of loss tangent, i.e., whether one is speaking of a loss mechanism because of actual charge migration or one because of dielectric relaxation.

Another useful skin depth relationship found in the literature is the nomograph generated by Albrecht (1966) and reproduced on Figure A2. Albrecht first developed an empirical relationship that associated ground conductivity to gravimetric moisture content and ground temperature at low frequencies. He then related skin depth to wavelength and conductivity by the usual equation for highly conductive materials (assumes that the conductivity phenomenon dominates the loss mechanism in soils at low frequencies):

$$\delta = \frac{\lambda_0}{\sqrt{\pi \mu \sigma}} \quad (A9)$$

where the units used are MKS, and the skin depth is in meters and the ground conductivity is in units of mho/meter. The magnetic permeability was taken to be $4\pi \times 10^7$ Henrys/meter. The way to use this nomograph is to select a moisture content and move on a horizontal line to the appropriate temperature curve. Then move on a vertical line to the appropriate frequency curve. From that point, a horizontal line to the right-hand scale reveals the desired value of skin depth. There is no way to relate Albrecht's results to those of Figure A1, because it begins with an unknown empirical relationship among moisture, temperature, and conductivity.

Hoekstra and Delaney (1974) also published some useful data on plane wave attenuation in moist soils at higher frequencies. These data are shown in Figure A3. They concluded that attenuation was relatively independent of soil fabric and that either passive or active microwave sensors could obtain a measurable response from only about the first 5 cm of ground below the surface.
Figure A1. Skin depth as a function of wavelength, permittivity, and loss tangent.
Figure A2 Skin depth nomograph (from Albrecht (1966))
Figure A3. Attenuation in moist soils (from Hoekstra and Delaney (1974))
Appendix B
Program Listing and Sample Output

The following program, written in the HP BASIC language and executed in an interactive mode on an HP9000 Series 360 system controller, drives the vector network analyzer-based system used to collect complex reflection/transmission parameters, store those data on permanent files, and generate a real-time hard copy output of calculated complex dielectric constant values. An example output sheet is also included.
PROGRAM NAME: EPSILONS

A MULTIPURPOSE CODE FOR 1) COLLECTING COAXIAL REFLECTION AND
TRANSMISSION DATA AND CALCULATING BOTH THE REAL AND IMAGINARY
PARTS OF THE COMPLEX DIELECTRIC CONSTANT, OR 2) DISPLAYING
THE RESULTS OF PREVIOUSLY COLLECTED DATA

THE HIGH FREQUENCY OPTION USES AN HP11692D DIRECTIONAL COUPLER
AND COVERS THE 1.5-17.5 GHz RANGE.

THE LOW FREQUENCY OPTION USES AN HP778D DIRECTIONAL COUPLER
AND COVERS THE 45 MHz TO 2.045 GHz RANGE.

USES THE HP9000 ACS ALGORITHM WITH SIGN ADJUSTMENTS

OPTION BASE 1

COMPLEX S1$(1:801),S2$(1:801),Rha,Lha,Rt,Eps
INTEGER Preamble,Bytes,Phscorr
REAL Binary(1:801,1:2)
DIM Ts$(60),Secline$(60),Ep$(1:801),Epapp(1:801)
ASSIGN @Nwa TO 716
ASSIGN @Nwa_data TO 716;FORMAT OFF
LOCAL @Nwa
PRINTER IS CRT
PLOTTER IS CRT,"INTERNAL"
GRAPHICS ON
FD$=DATE$(TIMEDATE);
FF$=TIMES(TIMEDATE)
CLEAR SCREEN
PRINT FD$,FF$! DATE AND TIME AT BEGINNING
OF MEASUREMENT
BEEP 4000,.2
PRINT
PRINT "INSTRUMENT STATE 1 IS ASSOCIATED WITH THE HIGH FREQUENCY COUPLER"
PRINT "INSTRUMENT STATE 2 IS ASSOCIATED WITH THE LOW FREQUENCY COUPLER"
PRINT
INPUT "WHICH INSTRUMENT STATE DO YOU WANT TO USE?",Ni
F1=4.5E+7
FF=2.045E+9
NP=401
IF Ni=2 THEN GOTO 190
F1=1.5E+9
FF=1.75E+10
NP=801
1
ASSIGN @Hpib TO 7
REMOTE @Hpib
ABORT @Hpib
CLEAR @Nwa
CLEAR 716
OUTPUT @Nwa:"WAIT;RECALLS(N1)";" RECALL INSTRUMENT STATE
E
OUTPUT @Nwa;"WAIT;CHAN1;WAIT;S12;LOCKA1;NUMEB2;DENOAI;REDD;" ! REDEFINE S
22 BECAUSE 1-PATH, 2-PORT CAL IS BEING USED
OUTPUT @Nwa;"WAIT;S22;LOCKA1;NUMEB1;DENOAI;REDD;"
OUTPUT @Nwa;"WAIT;S11;"
OUTPUT @Nwa;"CALSS6VALS(N1)";" ! RECALL CAL SET
201 OUTPUT @Nwa;"WAIT;PRINTTYPECOLOR;" ! PRINT COLORS
202 BEEP 4000,.2
203 PRINT
204 INPUT "ARE YOU COLLECTING NEW DATA (1) OR RESTORING AN EXISTING FILE (2)? Ndf
205 IF Ndf=1 THEN GOTO 246
206 : RETRIEVE AN EXISTING DATA FILE FOR FURTHER ANALYSIS
207 : BEEP 4000,.2
208 PRINT
209 INPUT "ARE YOU COLLECTING NEW DATA (1) OR RESTORING AN EXISTING FILE (2)? Ndf
210 IF Ndf=1 THEN GOTO 246
211 PRINT "PREPARE FOR A DUMMY MEASUREMENT TO PROPERLY RESET THE INSTRUMENT TATE" WHEN YOU ARE READY, PRESS THE 'CONTINUE' KEY
212 PRINT
213 PRINT "WHEN YOU ARE READY, PRESS THE 'CONTINUE' KEY"
214 PAUSE
215 Wtime=80
216 IF N1=2 THEN Wtime=62
217 OUTPUT @Nwa;"SING;"
218 WAIT 3
219 TRIGGER @Nwa
220 TRIGGER @Nwa
221 WAIT Wtime : TIME REQUIRED FOR A SWEEP WITH AVERAGING
222 TRIGGER @Nwa
223 WAIT Wtime
224 TRIGGER @Nwa
225 Wtime=Wtime
226 BEEP 4000,.2
227 PRINT
228 INPUT "WHAT IS THE NAME OF THE EXISTING DATA FILE?",Namef$
229 ASSIGN @F1 TO "DISSDATA/"&Namef$;FORMAT OFF
230 OUTPUT @Nwa;"CHAN1;FORM1;INFURAW1;"
231 ENTER @Fl;Preamble;Bytes
232 OUTPUT @Nwa; "CRAN1;FOR.M3;INFURAW1;"
233 ENTER @Fl;Bytes
234 OUTPUT @Nwa; "WAIT; CHAN2; FORM3; INFURAW2;"
235 ENTER @F1;Bytes
236 OUTPUT @Nwa; "CRAN2;HARAW2;"
237 ENTER @Fl;Bytes
238 OUTPUT @Nwa; "WAIT; CHAN3; FORM3; INFURAW3;"
239 ENTER @F1;Bytes
240 OUTPUT @Nwa; "CRAN3;HARAW3;"
241 ASSIGN @F1 TO "
242 GOTO 30;
243 PREPARE TO MAKE A NEW SET OF MEASUREMENTS
244 GOTO 30;
245 PREPARE TO MAKE A NEW SET OF MEASUREMENTS
246 OUTPUT @Nwa;"OPEP;"
247 Namef$=Fds1[1,2]&Fds[4,6]&Fds[11,11]&Fts[1,2]&Fts[4,5]
248 PRINT
249 PRINT "THE BINARY DAT FILE NAME IS ",Namef$
250 IF N1=1 THEN GOTO 270
251 CREATE BDAT "/DISSDATA/"&Namef$,1,6448 ! CREATE DATA FILE
252 GOTO 271
253 CREATE BDAT "/DISSDATA/"&Namef$,1,12848 ! CREATE DATA FILE
254 ASSIGN @F1 TO "/DISSDATA/"&Namef$;FORMAT OFF
255 Wtime=60
256 IF N1=2 THEN Wtime=62
257 OUTPUT @Nwa;"SING;"
258 WAIT 3
259 TRIGGER @Nwa
260 WAIT Wtime
261 \n
Appendix E Program Listing and Sample Output

B3
Appendix B Program Listing and Sample Output
INPUT "TEST VALUE FOR IMAG(Rhs) IS 0.0 DO YOU WANT ANOTHER VALUE?", Aim$
IF Aim$="N" THEN GOTO 359
INPUT "INPUT THE CUTOFF VALUE", Imrhs
:
FOR I=1 TO Np
Rhs=(1*S21(I)*S21(I)-S11(I)*S11(I))/(2*S21(I))
IF ABS(Rhs)<1.E-6 THEN GOTO 382
IF ABS(IMAG(Rhs))<Imrhs THEN Rhs=CMPLX(REAL(Rhs),0)
Lhs=ACS(Rhs)
Lhs=CMPLX(REAL(Lhs),ABS(IMAG(Lhs)))
IF IMAG(Rhs)<0 THEN Lhs=CMPLX(2*PI-REAL(Lhs),IMAG(Lhs))
Angle=REAL(Lhs)
IF I=1 THEN GOTO 372
IF ABS(Angle-Angle1)<4.5 THEN GOTO 372
N=N+1
Lhs=CMPLX(REAL(Lhs)+N*2*PI,IMAG(Lhs))
: PRINT USING "DDDD,5(2X,SDDD.DDD),2X,DDD';I,Rhs,Lhs,Angle,N
Angle1=Angle
Rhs=Lhs*Lhs
Radfreq=2*PI*(Pi*(I-1)*(Pi/(Np-1))
Fact=C/(Radfreq*D)
Epasp(I)=Fact*Fact*REAL(Rhs)
Epapp(I)=Fact*Fact*IMAG(Rhs)
: PRINT Epasp(I),Epapp(I)
NEXT I
: PLOT THE RESULTS
:
BEEP 4000,.2
PRINT
PRINT "INPUT A TITLE FOR THE PLOT",Tit$
PRINT
PRINT "MAXIMUM VALUE OF EPSSP=",MAX(Epapp(*))
PRINT
PRINT "MAXIMUM VALUE OF EPSSP=",MAX(Epasp(*))
PRINT
PRINT "INPUT THE MINIMUM AND MAXIMUM VALUES OF EPSILON THAT WILL BE PLOTTED",Wmin,Wmax
INPUT "INPUT THE TICK MARK INCREMENT IN UNITS OF EPSILON",Ytick
PRINT "INPUT THE TICK MARK INCREMENT IN UNITS OF EPSILON",Ytick
CLEAR SCREEN
Xmax=100*MAX(1,1/RATIO)
Ymax=100*MAX(1,1/RATIO)
LORG 6
CSIZE 1.7
MOVE Xmax*.3,Ymax
LABEL Tit$
Secline$="FILE: "&Namef$&" N= "&VALS(N1et)&" DELAY= "&VALS(Ed)&" ps"
MOVE Xmax*.3,Ymax*.97
LABEL Secline$
DEG
LDIR 90
MOVE Xmax*.04,Ymax*.87
LABEL "EPS"
MOVE Xmax*.04,Ymax*.67
LABEL "EPS'"
LORG 4
LDIR 0
MOVE Xmax*.3,.55*Ymax
LABEL "FREQUENCY (GHz)"
VIEWPORT .1*Xmax,.5*Xmax,.8*Ymax,.95*Ymax
WINDOW 7.11,Wmin,Wmax
AXES 1,Ytick,7.0,1,1,2
CLIP OFF
CSIZE 1.5,.5
LORG 6
FOR I=8 TO 11
MOVE I,-.2*Ytick
LABEL USING "#,K";(10^-I)/1.E+9
FOR J=2 TO 9
Jtick=LGT(J)
MOVE I-1,Jtick,Wmin
PLOT I-1+Jtick,.04*(Wmax-Wmin),-1
NEXT J
NEXT I
LORG 8
FOR I=Wmin TO Wmax STEP Ytick
MOVE 6.85,1
LABEL USING "#,SDDD.D";I
NEXT I
PENUP
FOR I=1 TO Np
IF ABS(Epspp(I))<.001 THEN GOTO 473
X=LGT(F1+(I-1)*(Ff-Fi)/(Np-1))
PLOT X,Epspp(I)
NEXT I
KEY LABELS OFF
PAUSE
CLEAR SCREEN
KEY LABELS ON
LOCAL $Ww
BEEP 4000,.2
! PRINT
! INPUT "DO YOU WANT TO STORE THIS FILE ON A BACKUP TAPE?",Ans$
482 IF Ans$="N" THEN GOTO 473
483 1. COPY Namef$ TO Namef$&":,703"
484 PRINT "STOP (1), RETRIEVE ANOTHER FILE (2), SELECT ANOTHER DELAY (3)"
485 PRINT "MAKE ANOTHER MEASUREMENT (4)"
486 INPUT Sel1
487 IF Sel1=1 THEN STOP
488 IF Sel1=2 THEN GOTO 222
489 IF Sel1=3 THEN GOTO 317
490 OUTPUT @Nwa;"ENTO;"
491 OUTPUT @Nwa;"WAIT;CHAN2;S21;CHAN1;S11;"
492 Fd$=DATES(TIME$(TIMEDATE))
493 Fts=TIMES(TIMEDATE)
494 GOTO 263
495 END

FILE: [Nov1220] N=0 DELAY=50 ps

SILT/BLUE +20 C

FREQUENCY (GHz)

S11 REF 500.0 mV/lin 100.0 mV/lin A
-12.399 mV -50.346 mV V
-150.0 mV -165.64 mV -165.64 mV

Appendix B Program Listing and Sample Output
Microwave Dielectric Behavior of Soils, Report 2, A Unique Coaxial Measurement Apparatus

U.S. Army Engineer Waterways Experiment Station
Environmental Laboratory
3909 Halls Ferry Road, Vicksburg, MS 39180-6199

U.S. Army Corps of Engineers, Washington, DC 20314-1000

Available from National Technical Information Service, 5285 Fort Royal Road, Springfield, VA 22161.

Approved for public release; distribution is unlimited.

A reflection transmission laboratory apparatus and data collection methodology are described that can be used to measure the complex dielectric response of moist soils over the 100 MHz-18 GHz frequency range. The experimental setup includes a square cross-sectional coaxial sample holder, a vector network analyzer system for signal generation and detection, and an external bath for sample temperature control. Data collected on liquids whose dielectric response is well known verify that the electrical property calculation algorithm functions properly.