Association for Information and Image Management
1100 Wayne Avenue, Suite 1100
Silver Spring, Maryland 20910
301/587-8202

Centimeter

Inches

MANUFACTURED TO AIIM STANDARDS
BY APPLIED IMAGE, INC.
U.S. Army Aviation Epidemiology Data Registry: Incidence and Outcomes of Aviator Flying Evaluation Boards

By

Kevin T. Mason

and

Samuel G. Shannon

Aircrew Protection Division

October 1993

United States Army Aeromedical Research Laboratory
Fort Rucker, Alabama 36362-0577
Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Reviewed:

JOHN V. BARSON
LTC, MC, SFS
Director, Aircrew Protection Division

Released for publication:

ROGER W. WILSEY, O.D., Ph.D.
Chairman, Scientific Review Committee

DAVID H. KARNEY
Colonel, MC, SFS
Commanding
The Aviation Epidemiology Data Registry (AEDR) is a family of databases storing history and physical information on Army aircrew members. The AEDR lacks some aviation career endpoints, one being the outcome of flying evaluation boards (FEBs) for nonmedical disqualifications. The outcomes of 170 new FEB actions from 1985 through 1992 in active duty and U.S. Army Reserve aviators were reviewed. The overall incidence was 1.13 per 1,000 aviator-years. Aviators aged 25 through 39 were twice as likely to undergo FEB actions. The likelihood of restoration to flying duties after FEB was significantly lower if the FEB was for habits, character, and motivation, than if the FEB was for poor flying proficiency or failure to follow flight rules. Many nonmedical disqualifications leading to FEB require medical evaluation to rule out underlying mental disorders.
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>3</td>
</tr>
<tr>
<td>Flying evaluation board process</td>
<td>3</td>
</tr>
<tr>
<td>Methods</td>
<td>5</td>
</tr>
<tr>
<td>Results</td>
<td>5</td>
</tr>
<tr>
<td>Discussion</td>
<td>9</td>
</tr>
<tr>
<td>Summary and conclusions</td>
<td>10</td>
</tr>
<tr>
<td>References</td>
<td>12</td>
</tr>
</tbody>
</table>

List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. AR 600-105 categories of nonmedical disqualifications as grounds</td>
<td>4</td>
</tr>
<tr>
<td>2. Possible flying evaluation board outcomes</td>
<td>4</td>
</tr>
<tr>
<td>3. Incidence of flying evaluation board actions for active duty and</td>
<td>6</td>
</tr>
<tr>
<td>USAR aviators</td>
<td></td>
</tr>
<tr>
<td>4. Age-specific rates of new flying evaluation board actions</td>
<td>7</td>
</tr>
<tr>
<td>5. Flying evaluation board outcomes by cause of nonmedical</td>
<td>8</td>
</tr>
<tr>
<td>disqualification</td>
<td></td>
</tr>
<tr>
<td>6. Major causes for FEB and likelihood of restoration to flying</td>
<td>8</td>
</tr>
<tr>
<td>duties</td>
<td></td>
</tr>
<tr>
<td>7. Comparison of likelihood for restoration to flying duties between</td>
<td>9</td>
</tr>
<tr>
<td>Group A and Group B</td>
<td></td>
</tr>
</tbody>
</table>
This page left blank intentionally.
Background

Aviators may have medical and nonmedical disqualifications during their careers. Evaluation of these disqualifications may result in medical or nonmedical suspension from flying duties. Medical terminations from aviation service are managed by the aeromedical board process through the flight surgeon’s office, the U.S. Army Aeromedical Activity, and the appointed aviation command waiver authorities. Nonmedical terminations from aviation service are evaluated using the flying evaluation board (FEB) process through the local aviation commander and the approval authorities. Sociobehavioral factors affecting adaptability or suitability for aviation service may result in concurrent medical and nonmedical evaluations.

Adverse FEB outcomes result in premature aviation career endpoints. The outcomes of active duty (AD) and U.S. Army Reserve (USAR) FEBs for aviators have not been studied. This report summarizes FEB outcomes during the period 1985 to 1992, which represents about 114,000 person-years of aviator experience.

Flying evaluation board process

Methods for convening and conducting FEBs are outlined in Army Regulation 600-105, Aviation Service (Department of the Army, 1984). Table 1 lists the AR 600-105 categories of nonmedical disqualifications that may be grounds for a FEB. FEBs are convened when officers in aviation service are not professionally qualified or have marginal potential for continued aviation service. It is an administrative process that is conducted in a legal hearing format. The board examines the aviator’s qualifications by review of records and testimony, evaluates the potential for continued aviation service, and forwards recommendations to the approval authority. Local flight surgeons conduct medical evaluations and consultation. The flight surgeon may be called to give testimony and/or may serve as a nonvoting member of FEBs for aviators. FEBs do not replace legal actions for criminality.

Table 2 lists possible FEB outcomes with the status in the Aviation Epidemiology Data Register (AEDR) and the AEDR history code for the outcome. These history codes do not conflict with current codes used in the AEDR following the International Classification of Diseases, 9th revision, clinical modification, ICD-9-CM (Karaffa, 1993). They are provided for the reference of others working with the AEDR and for possible standardization with other AEDR coding systems.
Table 1.
AR 600-105 categories of nonmedical disqualifications as grounds for flying evaluation boards.

Flight proficiency
Poor proficiency affecting flying
Failure to maintain minimum qualifications
Failure to pass written examinations

Violation of flight rules
Poor judgment or proficiency in following flight rules
Flagrant violation of flight rules

Undesirable habits or traits of character
Unstable or undesirable personality traits affecting flying
Illegal use of drugs
Alcohol abuse

Insufficient motivation
Conscious fear of flying
Refusal to fly assigned aircraft or mission
Self-imposed deficiency affecting flying duties
Administrative failure to maintain medical certification

Request for voluntary disqualification from aviation service

Table 2.
Possible flying evaluation board outcomes.

<table>
<thead>
<tr>
<th>FEB outcome</th>
<th>AEDR status</th>
<th>AEDR Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not specified</td>
<td>Disqualified</td>
<td>M7110</td>
</tr>
<tr>
<td>Disqualified, may be reconsidered</td>
<td>Suspension granted</td>
<td>M7111</td>
</tr>
<tr>
<td>Permanent disqualification, aviator skill badge retained</td>
<td>Suspension granted</td>
<td>M7112</td>
</tr>
<tr>
<td>Permanent disqualification, aviation skill badge taken</td>
<td>Suspension granted</td>
<td>M7113</td>
</tr>
<tr>
<td>Restored to aviation service</td>
<td>Qualified, information only</td>
<td>M7114</td>
</tr>
</tbody>
</table>
Methods

The U.S. Army Personnel Command forwarded a list of active duty and USAR FEB actions from 1985 to 1992. Army National Guard (ARNG) aviators were not included since the ARNG Aviation Operations Center has not computerized their FEB cases at this time. The list was put into a Clipper 5.2 database (Computer Associates International, 1993). AEDR records were matched to the FEB database Social Security number index. An AEDR history and physical summary sheet was generated for each unique Social Security number. Summary sheets list outcomes of all flying duty medical examinations (FDMEs) and aeromedical board actions by disqualifying diagnosis and outcome. AEDR summary sheets and the FEB database were evaluated. The degree of flight surgeon involvement in each FEB case was unknown.

One assumption was that an aviator undergoing a FDME in a given calendar year represented an aviator working for the entire year. The number of person-years was derived from the number of FDMEs done on individual aviators in that year. The person-years are from now on called "aviator-years." The total aviator-years for each age group was found in U.S. Army aviator age distribution tables (Mason, 1993). An exception for the study period is that the total number of active duty and USAR aviators serving in 1985 is unknown in the AEDR system.

Results

During the study period of 1985 through 1992, no aviator had more than one FEB action. One-hundred and seventy new FEB actions were reported.

The overall incidence for flying duty suspension due to FEB was 1.13 per 1,000 aviator-years (1985 through 1992). Table 3 shows the incidence of FEB actions per 1000 aviator-years by calendar year and outcome.

Table 4 shows the age-specific rates of new FEBs per 1,000 aviator-years. For the 17 FEB actions in 1985, the aviators' ages were unknown and are excluded from this calculation. Each age group was divided into 5-year intervals. There was about a two-fold increase in the age-specific rates for the age groups ranging from 25 through 39 years of age, compared to the 24 years of age or younger and the 40 years of age or older.
Table 3.
Incidence of flying evaluation boards actions for active duty and USAR aviators.

<table>
<thead>
<tr>
<th>Year and FEB outcome</th>
<th>Active duty</th>
<th>USAR</th>
<th>Total FEB cases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=</td>
<td>N=</td>
<td>N=</td>
</tr>
<tr>
<td></td>
<td>Incidence*</td>
<td>Incidence</td>
<td>Incidence</td>
</tr>
<tr>
<td>1985</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspension</td>
<td>10</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Restored</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>1986</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspension</td>
<td>26</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>Restored</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>4</td>
<td>33</td>
</tr>
<tr>
<td>1987</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspension</td>
<td>19</td>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td>Restored</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>5</td>
<td>29</td>
</tr>
<tr>
<td>1988</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspension</td>
<td>11</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Restored</td>
<td>10</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>1989</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspension</td>
<td>10</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Restored</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspension</td>
<td>13</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Restored</td>
<td>5</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>1991</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspension</td>
<td>12</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Restored</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspension</td>
<td>10</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Restored</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>0</td>
<td>13</td>
</tr>
</tbody>
</table>

* Incidence is the number of new FEB cases per 1,000 aviator-years in each calendar year.
** Suspension is nonmedical termination from aviation service.
*** Population data for 1985 is unknown.
Table 4.

Age-specific rates of new flying evaluation board actions for the period 1986 through 1992.

<table>
<thead>
<tr>
<th>Age group</th>
<th>Total aviator-years of exposure</th>
<th>Aviators with new FEB action from 1986-1992</th>
<th>Age-specific rate of new FEB per 1,000 aviator-years</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-24</td>
<td>9,562</td>
<td>7</td>
<td>0.73</td>
</tr>
<tr>
<td>25-29</td>
<td>25,592</td>
<td>51</td>
<td>1.99</td>
</tr>
<tr>
<td>30-34</td>
<td>21,749</td>
<td>42</td>
<td>1.93</td>
</tr>
<tr>
<td>35-39</td>
<td>20,391</td>
<td>33</td>
<td>1.62</td>
</tr>
<tr>
<td>40-44</td>
<td>15,876</td>
<td>16</td>
<td>1.01</td>
</tr>
<tr>
<td>45-49</td>
<td>4,914</td>
<td>4</td>
<td>0.81</td>
</tr>
<tr>
<td>50 or greater</td>
<td>1,085</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Totals</td>
<td>99,169</td>
<td>153</td>
<td></td>
</tr>
</tbody>
</table>

* Active duty and USAR only

Tables 5 and 6 show FEB outcomes by major cause of nonmedical disqualification. The frequency of outcomes is shown in Table 5. Table 6 shows the frequency of the major causes for FEB and likelihood for restoration to flying duties as a FEB outcome. Poor flying proficiency and failure to follow flight rules resulted in 54.1 percent (92/170) of FEBs, compared to 45.9 percent (78/170) of FEBs for undesirable traits/character or poor motivation for flying duties. Aviators with poor proficiency and failure to follow flight rules were restored more often to flying duties, 34.8 percent (32/92), than for traits or motivation, 12.8 percent (10/78).

A similarity in the likelihood for restoration to flying duties after FEB was noted for two groupings. Group A included FEB actions for flying proficiency and violation of flying rules. Group B included FEB actions for habits and traits of character, and poor motivation. Tables 6 and 7 show there is no significant difference between the likelihood of restoration within the subgroups of both Group A and Group B. There is a significant difference in the likelihood of restoration between Group A and Group B.
Table 5.

Flying evaluation board outcomes by cause of nonmedical disqualification.

<table>
<thead>
<tr>
<th>Reason</th>
<th>Outcome -></th>
<th>DQ</th>
<th>PDQ</th>
<th>PDQ/BDG</th>
<th>Restored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flying proficiency</td>
<td>14</td>
<td>28</td>
<td>6</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Violation flying rules</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Habits/character</td>
<td>8</td>
<td>25</td>
<td>10</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Poor motivation</td>
<td>4</td>
<td>20</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Totals (N=170)</td>
<td>32</td>
<td>78</td>
<td>18</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>

* "DQ" is disqualified.
** "PDQ" is permanent nonmedical disqualification with retention of the aviator skill badge.
*** "PDQ/BDG" is permanent nonmedical disqualification without retention of the aviator skill badge.

Table 6.

Major causes for FEB and likelihood of restoration to flying duties.

<table>
<thead>
<tr>
<th>Causes</th>
<th>Outcomes-→</th>
<th>Restored to flying duties</th>
<th>Not restored to flying duties</th>
<th>Likelihood restoration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flying proficiency</td>
<td>27</td>
<td>48</td>
<td></td>
<td>36.0%</td>
</tr>
<tr>
<td>Violation of flying rules</td>
<td>5</td>
<td>12</td>
<td></td>
<td>29.4%</td>
</tr>
<tr>
<td>Group B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Habits/character</td>
<td>7</td>
<td>43</td>
<td></td>
<td>14.0%</td>
</tr>
<tr>
<td>Poor motivation</td>
<td>3</td>
<td>25</td>
<td></td>
<td>10.7%</td>
</tr>
</tbody>
</table>

* Within Group A, not significant, odds ratio=1.35, 95 percent C.I. 0.3835, 4.968.
** Within Group B, not significant, Fisher’s Exact test, p=0.485.
Table 7.
Comparison of likelihood for restoration to flying duties between Group A and Group B.

<table>
<thead>
<tr>
<th>Causes</th>
<th>Outcomes→ Restoration to flying duties</th>
<th>Not restored to flying duties</th>
<th>N=</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A*</td>
<td>32</td>
<td>60</td>
<td>92</td>
</tr>
<tr>
<td>Group B</td>
<td>10</td>
<td>68</td>
<td>78</td>
</tr>
<tr>
<td>N=</td>
<td>42</td>
<td>128</td>
<td>170</td>
</tr>
</tbody>
</table>

* Between groups, significant, odds ratio = 3.63, 95 percent. C.I. 1.550, 8.656

Discussion

The AEDR is a family of databases storing history and physical parameters of Army aircrew members. The AEDR is missing certain aircrew member career endpoints.

Some missing endpoints are medical. The number of aircrew members suspended from flying duties due to medical conditions that are evaluated and reported by flight surgeons is well documented in the AEDR. We do not know how many aircrew members die in accidents, die suddenly at home or work, are medically retired from a medical center without flight surgeon participation, commit suicide, or retire or separate from the service. We only know that they are no longer sending their annual flying duty medical examinations for review.

Some missing endpoints are nonmedical. These include flying evaluation boards, court martial, voluntary and involuntary separation, and retirement.

The overall incidence rate of nonmedical termination from aviation service following FEB was 1.13 per 1000 aviator-years during the period 1986 to 1992. As a comparison, the incidence of medical suspension from flying duties was 15.3 per 1,000 aviator-years during the year 1989 (Mason, 1989). The average annual rate of attrition due to all causes is still under study. However, among a cohort of 23,300 trained Army aviators flying in 1987, 9,703 were lost to followup by 1992 (Shannon et al., 1993).
The highest age-specific rates of FEB actions were in the age groups ranging from 25 through 39 years of age. Some aviators are less likely to undergo FEBs than others based on age. The differences in incidence rates may be related to the number of aviators in each age group exposed to the responsibility of functioning as the pilot-in-command, and/or the effects of the career selection process.

Before age 24, many aviators are students or in training to become pilots-in-command. By age 40, those less motivated to make aviation a career should have left the service or voluntarily requested removal from aviation service.

After age 40, many aviators are in command or administrative positions, flying none or few hours per year, and often not as pilot-in-command. Others over age 40 are selected by the career process to be instructor, standardization, and safety leaders. These standard-bearers and successful aviators are likely at less risk for FEB.

Of the aviators undergoing FEB for lack of flying proficiency and violation of flight rules, 34.8 percent were restored to flying duties. Either the FEB decided the charges were unfounded or the aviator could be retrained to acceptable proficiency. Only 12.8 percent (10/58) of FEBs for undesirable habits/traits or poor motivation resulted in restoration to flying duties. The difference between these two groupings of causes was significant (Table 7).

Many aviators in the poor motivation category voluntarily requested nonmedical termination from aviation service due to fear of flying or other personal reasons. The chance for rehabilitation in the case of poor motivation might be lower than for poor proficiency or flight rule violation. With poor motivation, many aviators do not want to be restored to flying. In Group A, despite poor proficiency or flight rule violations, the aviator has not asked to be removed from flying duties. All these cases require further evaluation by a flight surgeon and mental health consultants since the observed psychosocial behaviors may be expressions of underlying mental health disorders.

Summary and conclusions

The AEDR lacks some aviator career endpoints, especially for nonmedical causes of attrition. A comparison of databases provided the AEDR with 170 new aviation career endpoints related to the outcome of FEB proceedings for nonmedical disqualifications of U.S. Army aviators.
The overall incidence for flying duty suspension after FEB was 1.13 per 1,000 aviator-years from 1986 to 1992. The age-specific rates were two-fold higher in age groups ranging from 25 through 39 than those in younger or older age groups. Aviators undergoing FEB for undesirable traits or poor motivation were less likely to be restored to flying duties than those undergoing FEB for flight proficiency or failure to follow flight rules.

Although FEB actions are for nonmedical disqualifications, medical evaluations are recommended since nearly half the cases involve a question of psychosocial behavior (traits and motivation). These behaviors might indicate underlying mental health disorders. Poor flying proficiency and failure to follow flight rules are administrative problems. It is possible these circumstances may be caused by medical problems, such as undiagnosed learning disabilities or personality disorders with poor impulse control. If so, flight surgeon involvement in all FEB actions might be justified.
References

Commander and Director
USAE Waterways Experiment Station
ATTN: CEWES-IM-MI-R
Alfreda S. Clark, CD Department
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Commanding Officer
Naval Biodynamics Laboratory
P.O. Box 24907
New Orleans, LA 70189-0407

Assistant Commandant
U.S. Army Field Artillery School
ATTN: Morris Swott Technical Library
Fort Sill, OK 73503-0312

Mr. Peter Seib
Human Engineering Crew Station
Box 266
Westland Helicopters Limited
Yeovil, Somerset BA20 2YB UK

U.S. Army Dugway Proving Ground
Technical Library, Building 5330
Dugway, UT 84022

U.S. Army Yuma Proving Ground
Technical Library
Yuma, AZ 85364

AFFTC Technical Library
6510 TW/TSTL
Edwards Air Force Base, CA 93523-5000

Commander
Code 3431
Naval Weapons Center
China Lake, CA 93555

Aeromechanics Laboratory
U.S. Army Research and Technical Labs
Ames Research Center, M/S 215-1
Moffett Field, CA 94035

Sixth U.S. Army
ATTN: SMA
Presidio of San Francisco, CA 94129

Commander
U.S. Army Aeromedical Center
Fort Rucker, AL 36362

Strughold Aeromedical Library
Document Service Section
2511 Kennedy Circle
Brooks Air Force Base, TX 78235-5122

Dr. Diane Damos
Department of Human Factors
ISSM, USC
Los Angeles, CA 90089-0021

U.S. Army White Sands
Missile Range
ATTN: STEWS-IM-ST
White Sands Missile Range, NM 88002

U.S. Army Aviation Engineering
Flight Activity
ATTN: SAVTE-M (Tech Lib) Stop 217
Edwards Air Force Base, CA 93523-5000

Ms. Sandra G. Hart
Ames Research Center
MS 262-3
Moffett Field, CA 94035

Commander, Letterman Army Institute of Research
ATTN: Medical Research Library
Presidio of San Francisco, CA 94129
Commander
U.S. Army Medical Materiel
Development Activity
Fort Detrick, Frederick, MD 21702-5009

Commander
U.S. Army Health Services Command
ATTN: HSOP-SO
Fort Sam Houston, TX 78234-6000

U.S. Army Research Institute
Aviation R&D Activity
ATTN: PERI-IR
Fort Rucker, AL 36362

Commander
U.S. Army Safety Center
Fort Rucker, AL 36362

U.S. Army Aircraft Development
Test Activity
ATTN: STEBG-MP-P
Cairns Army Air Field
Fort Rucker, AL 36362

Commander, U.S. Army Medical Research
and Development Command
ATTN: SGRD-PLC (COL Schnakenberg)
Fort Detrick, Frederick, MD 21702

TRADOC Aviation LO
Unit 21551, Box A-209-A
APO AE 09777

Netherlands Army Liaison Office
Building 602
Fort Rucker, AL 36362

British Army Liaison Office
Building 602
Fort Rucker, AL 36362

Italian Army Liaison Office
Building 602
Fort Rucker, AL 36362

Directorate of Training Development
Building 502
Fort Rucker, AL 36362

Chief
USAHEL/USAAVNC Field Office
P. O. Box 716
Fort Rucker, AL 36362-5349

Commander, U.S. Army Aviation Center
and Fort Rucker
ATTN: ATZQ-CG
Fort Rucker, AL 36362

Chief
Test & Evaluation Coordinating Board
Cairns Army Air Field
Fort Rucker, AL 36362

MAJ Terry Newman
Canadian Army Liaison Office
Building 602
Fort Rucker, AL 36362

German Army Liaison Office
Building 602
Fort Rucker, AL 36362

French Army Liaison Office
USAAVNC (Building 602)
Fort Rucker, AL 36362-5021

Australian Army Liaison Office
Building 602
Fort Rucker, AL 36362
Dr. Garrison Rapmund
6 Burning Tree Court
Bethesda, MD 20817

Commander, U.S. Army Missile Command
Redstone Scientific Information Center
ATTN: AMSMI-RD-CS-R
/ILL Documents
Redstone Arsenal, AL 35898

Commandant, Royal Air Force
Institute of Aviation Medicine
Farnborough, Hampshire GU14 6SZ UK

Director
Army Personnel Research Establishment
Farnborough, Hants GU14 6SZ UK

Dr. Eugene S. Channing
7985 Schooner Court
Frederick, MD 21701-3273

Commander, U.S. Army Foreign Science and Technology Center
AIFRTA (Davis)
220 7th Street, NE
Charlottesville, VA 22901-5396

COL John F. Glenn
U.S. Army Medical Research & Development Command
SGRD-ZC
Fort Detrick, Frederick, MD 21702-5012

Dr. H. Dix Christensen
Bio-Medical Science Building, Room 753
Post Office Box 26901
Oklahoma City, OK 73190

Dr. A. Kornfield, President
Biosearch Company
3016 Revere Road
Drexel Hill, PA 29026

NVESD
AMSEL-RD-NV-ASID-PST
(Attn: Trang Bui)
10221 Burbeck Road
Fort Belvoir, VA 22060-5806