Expression and diagnostic utility of hepatitis E virus putative structural proteins expressed in insect cells

Authors: He J; Tam AW; Yarbough PO; Reyes GR; Carl M

Performing Organization: Naval Medical Research Institute
Commanding Officer
8901 Wisconsin Avenue
Bethesda, Maryland 20889-5607

Sponsoring/Monitoring Agency: Naval Medical Research and Development Command
National Naval Medical Center
Building 1, Tower 12
8901 Wisconsin Avenue
Bethesda, Maryland 20889-5606

Abstract:
Reprinted from: Journal of Clinical Microbiology 1993 Aug; Vol.31 No.8 pp. 2167-2173

Availability: Approved for public release; distribution is unlimited.

Subject Terms:
- Hepatitis E
- Virology
- Baculovirus
- Recombinant proteins
- Diagnostic tests

Number of Pages: 7

Security Classification:
- Unclassified

Distribution Code: Unlimited
THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Expression and Diagnostic Utility of Hepatitis E Virus Putative Structural Proteins Expressed in Insect Cells

JUNKUN HE,1 ALBERT W. TAM,2 PATRICE O. YARBOUGH,2 GREGORY R. REYES,2 AND MITCHELL CARL1*

Accelerated Product Development Program, Naval Medical Research Institute, Bethesda, Maryland 20889-5055, and Molecular Virology Department, Genelabs Inc., Redwood City, California 94063

Received 14 January 1993/Accepted 4 May 1993

The full-length putative structural proteins encoded by open reading frame 2 (ORF2) and ORF3 of hepatitis E virus have been cloned and expressed in recombinant baculovirus. Sera obtained from 28 Sudanese pediatric patients with acute hepatitis and 19 pediatric control patients were analyzed for reactivity to hepatitis E virus by using the baculovirus-expressed ORF2 and ORF3 proteins in a Western blot (immunoblot) format. Seventeen of the 18 patients classified as having non-A, non-B hepatitis, without acute antibody markers for hepatitis A, B, or C viruses, Epstein-Barr virus, or cytomegalovirus, were shown to have immunoglobulin M (IgM) antibodies to the recombinant ORF2 protein, as did two patients with chronic hepatitis B, three of seven patients with acute hepatitis A, and one patient with acute hepatitis B. None of the 19 control patients had IgM antibodies against the ORF2 or ORF3 proteins. The Western blot assay using the baculovirus-expressed ORF3 protein did not appear to be as sensitive as the assay based on the ORF2 protein. Only 10 of the patients classified as having non-A, non-B hepatitis had IgM antibodies to the baculovirus-expressed ORF3 protein. We conclude that a Western blot assay which uses a baculovirus-expressed ORF2 protein is both sensitive and specific for diagnosing acute hepatitis E.

MATERIALS AND METHODS

Construction of recombinant transfer plasmids. The plasmid BET8 (26), which contains the entire HEV (Burma strain) ORF3, and a recombinant ß-gal10 bacteriophage (BET1), which contains all of ORF2 except for 19 nucleotides at the 5' end (26), were used as templates in the polymerase chain reaction (PCR) (24), which resulted in the entire ORF2 and ORF3 amplified DNA fragments with flanking XbaI restriction endonuclease cleavage sites. Thirty-five PCR cycles were performed in a 50-μl volume containing each of the two primers at 0.1 μM, PCR buffer (U.S. Biochemicals, Cleveland, Ohio), 25 mM MgCl2, and 1 U of Taq polymerase (U.S. Biochemicals). Each cycle consisted of a denaturation at 95°C for 45 s, primer annealing at 37°C, and primer extension at 72°C for 3 min. Primers used to amplify ORF2 were primer 1, 5'-GCC-GCC-TCT-AGA-ATG-GCG-CGG-CTT-CCT-ATT-TTG-CTG-CTC-ATG-TTT-TTG-CCT-ATG-CTG-CCC-3', corresponding to 54 bases from nucleotide 5146 to 5200, and primer 2, 5'-GCC-GGC-TCT-AGA-CTA-CTA-CAA-CTCG-AGT-TTT-ACC-CAC-CTT-ATT-CTT-AAG-GCC-CTG-AGG-CTC-AGC-GACAGT-3', corresponding to 57 bases from 7072 to 7129 (27). Primer 3, 5'-GCC-GGC-TCT-AGA-ATG-...
The results of the virus were stored at 4°C.

Further details are provided in the text.
Expression of HEV Proteins in Baculovirus

84 kd-
1 2 3

16 kd-

A

B

FIG. 2. (A and B) Immunoblot analysis of cell pellet containing uninfected Sf9 cells (lanes 1), Sf9 cells infected with AcNPV (lanes 2), or Sf9 cells infected with ORF2-rAcNPV (A) or ORF3-rAcNPV (B) (lanes 3). Antibody used was a 1:900 dilution of sera from a patient acutely infected with HEV. (C) Immunoblot reactivities of 19 pooled serum samples obtained from control Sudanese patients without acute hepatitis directed against Sf9 cells (lane 1), Sf9 cells infected with wild-type virus (lane 2), Sf9 cells infected with ORF3-rAcNPV (lane 3), or Sf9 cells infected with ORF2-rAcNPV (lane 5). As controls, reactivities of sera obtained from a patient with acute hepatitis E against ORF2-rAcNPV (lane 4) and ORF2-rAcNPV (lane 6) are shown.

Results

Construction of recombinant transfer plasmids. The PCR-generated ORF2 and ORF3 fragments which included flanking XbaI restriction sites were digested with XbaI, and the resulting 1,988-bp ORF2 fragment and the 378-bp ORF3 fragment were each ligated into the compatible NheI site in the transfer vector pBlue-Bac2 which had been previously digested with XbaI and treated with alkaline phosphatase (Fig. 1). Correct orientation of ORF2 and ORF3 fragments in the transfer vector were confirmed by restriction enzyme analysis. pJKH1, a recombinant plasmid containing the ORF2 fragment, was digested with HindIII, and the correct orientation of the fragment within the plasmid was confirmed by the presence of 928-, 1,512-, and 9,880-bp fragments (27) (data not shown). Similarly, pJKH2, a recombinant plasmid containing the ORF3 fragment, was digested with BamHI and Neol, and the correct orientation of the fragment within the plasmid was confirmed by the presence of 550- and 10,301-bp fragments (27) (data not shown).

Expression of ORF2- and ORF3-encoded proteins in Sf9 cells. Recombinant baculovirus virions (rAcNPV) were obtained by cotransfection of Sf9 cells with either pJKH1 or pJKH2 and wild-type AcNPV DNA as previously described (14). Recombinant plaques were selected and expanded for 48 h in 2 x 10⁶ Sf9 cells, and aliquots of the cell pellets and supernatants were analyzed by Western blot assay using pooled polyclonal human sera previously shown to contain IgM antibodies against a truncated ORF2-mpE fusion protein (6). As shown in Fig. 2, an rAcNPV (ORF2-rAcNPV) expressing an ORF2 protein with a calculated molecular weight (based on amino acid sequence) of approximately 70,900 and an rAcNPV (ORF3-rAcNPV) expressing an
immunofluorescence assay with rabbit polyclonal sera specific for ORF2 or ORF3 as well as the corresponding preimmune sera. As shown in Fig. 3, significant cytoplasmic immunofluorescence was observed when SF9 cells infected with ORF2-rAcNPV were incubated with ORF2-specific polyclonal sera. No such immunofluorescence was observed when the ORF2-rAcNPV-infected cells were incubated with preimmune ORF2 sera or when uninfected or AcNPV-infected SF9 cells were incubated with ORF2-specific sera. Similarly, significant cytoplasmic immunofluorescence was also observed when SF9 cells infected with ORF3-rAcNPV were incubated with ORF3-specific polyclonal sera (Fig. 3). By comparison, no such immunofluorescence was observed when the ORF3-rAcNPV-infected cells were incubated with preimmune ORF3 sera or when uninfected or AcNPV-infected SF9 cells were incubated with ORF3-specific sera.

Use of ORF2- and ORF3-encoded proteins in Western blot assays. The recombinant baculovirus-expressed ORF2 and ORF3 proteins were used as antigens in a diagnostic Western blot assay. Sera were obtained from 28 Sudanese pediatric patients with acute hepatitis as well as from 19 Sudanese pediatric control patients who presented with illnesses other than hepatitis. Immunoreactivity of sera from the acute hepatitis patients with the ORF2 baculovirus-expressed recombinant as determined by Western blot assay is shown in Fig. 4A. Serum samples identified as having IgM antibodies against the baculovirus-expressed ORF2 protein were obtained from 17 of 18 patients (94.4%) with NANB hepatitis (Fig. 4A, lanes 9 to 20, 23 to 25, 27, and 28), 3 of 7 patients (42.9%) with acute hepatitis A (lanes 1, 2, and 8), 2 of 2 patients with chronic hepatitis B (lanes 21 and 22) and 1 patient with acute hepatitis B (lane 1). None of the 19 control serum samples contained IgM antibodies which reacted with the ORF2 baculovirus-expressed protein (Fig. 4B). Of the 18 acute hepatitis patients, 10 patients (55.6%) with NANB hepatitis were identified by immunoblot analysis as having IgM antibodies against the baculovirus-expressed ORF3 protein (Fig. 4C, lanes 9, 11, 12, 16, 19, 20, 22, 23, 25, and 27). Sera from all 10 of these patients also reacted with the ORF2 baculovirus protein as described above (Fig. 4A, lanes 9, 11, 12, 16, 19, 20, 22, 23, 25, and 27). None of the 19 control serum samples contained IgM antibodies which reacted with ORF3 baculovirus-expressed protein (Fig. 4D).

DISCUSSION

In the present study, we have chosen to express the putative structural proteins of HEV in baculovirus. According to a recent review (14), 207 recombinant proteins derived from viruses, bacteria, fungi, plants, and animals have been reported to have been expressed in baculovirus. The advantage of using baculovirus for expression is evident—proteins expressed in insect cells are processed, in most cases, as they would be in mammalian cells, with a resulting authentic, functional protein. Although the limited growth of HEV in a cell culture system has been recently reported (8), quantities of natural HEV proteins sufficient for further studies are not readily available, and it is therefore not known at the present time whether the baculovirus-expressed proteins reported herein are identical to those expressed by HEV.

The Western blot assay using the baculovirus-expressed ORF2 protein described in this article appears to be sensitive and specific for the detection of anti-HEV IgM in human sera. We were able to identify anti-HEV IgM in the sera of 17 of 18 patients with acute NANB hepatitis but not in the
FIG. 4. Immunoblot analysis of sera obtained from 28 (A and C) or 19 (B and D) patients with acute hepatitis. Solubilized SF9 cells infected with ORF2-αAcNPV (A and B) or ORF3-αAcNPV (C and D) were separated by SDS-PAGE, electrophoretically transferred to nitrocellulose membranes, and incubated with an optimal concentration (1:900 [A and B] or 1:300 [C and D]) of patient sera prior to colorimetric detection. In panels B and D, immunoblot analysis of serum from a patient with acute hepatitis E is shown in lane 20.
sera of 19 control patients presenting at the same clinic with illnesses other than acute hepatitis. Because of a lack of significant reactivity against Sf9 proteins, we have been able to use crude cell pellets in this assay without significant background reactivities. At present we are unable to account for the IgM anti-HEV antibodies identified in sera from the single patient with IgM anti-hepatitis B core antibody, and it is not clear whether this represents false positivity or simultaneous (or overlapping) infection. It is easier to understand the presence of IgM antibodies against both hepatitis A virus and HEV in the sera of three patients, since simultaneous infection via the fecal-oral route might readily occur.

In the present study, the recombinant ORF2 protein appears to be far more sensitive as a diagnostic antigen than the ORF3 protein. This may be due to several factors. First, although the same amounts of cellular material infected at approximately the same multiplicity of infection with either ORF2-rAcNPV or ORF3-rAcNPV were used in the assays, it is possible that the cellular expression of the ORF2 recombinant protein is better than that of the ORF3 recombinant protein. Therefore, if equimolar quantities of each of these proteins were used in a diagnostic Western blot assay, it is possible that the ORF3 protein might provide the same sensitivity as the ORF2 protein. Alternatively, the increased sensitivity observed with the ORF2 protein may be due to the presence of many epitopes on the ORF2 protein which are not present on the ORF3 protein. In contrast to the single epitope which is located at the carboxy terminus of the ORF3 protein (11).

Cloned PCR products used in the present study to generate the recombinant baculovirus-expressed ORF2 and ORF3 proteins were derived from the HEV Burma strain (21). Since there appears to be some divergence in the nucleotide sequences of HEV isolates from different geographical regions (21, 29), there may also be differential antibody responses against these isolates. In support of this hypothesis is our preliminary observation that sera derived from patients acutely infected with HEV in Cairo do not react as strongly with the baculovirus-expressed ORF2 protein as do sera from acutely infected patients from the Sudan (data not shown). We are presently using this Burma strain-derived ORF2 protein to screen sera from patients with acute NANB hepatitis from other geographical locations to determine whether this antigen can be universally used for the diagnosis of hepatitis E or whether it will be necessary to express recombinant ORF2 proteins derived from other isolates.

ACKNOWLEDGMENTS

This investigation was supported by the Naval Medical Research and Development Command, Department of the Navy, Research Task Number 3M16278A870 AO208. We thank Craig Hyams for supplying patient sera, Stephanie Grey and William Jones for technical assistance, and Y. H. Kang and Rob Williams for help in preparation of photographs.

REFERENCES

