DISASTER PREPAREDNESS PLANNING AND FACILITY CONTINGENCY OPERATIONS FOR PUBLIC WORKS

BY

DAVID J. MAJOR

A REPORT PRESENTED TO THE GRADUATE COMMITTEE OF THE DEPARTMENT OF CIVIL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING

UNIVERSITY OF FLORIDA

FALL 1993
DISASTER PREPAREDNESS PLANNING AND FACILITY CONTINGENCY OPERATIONS FOR PUBLIC WORKS

BY

DAVID J. MAJOR

A REPORT PRESENTED TO THE GRADUATE COMMITTEE OF THE DEPARTMENT OF CIVIL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING

UNIVERSITY OF FLORIDA

FALL 1993
Dedication

To Mary, Matt and Baby-to-be:

I love you and thank you for the time, space and patience you set aside to allow me to complete this paper.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1-8</td>
</tr>
<tr>
<td>Purposes and Objectives</td>
<td></td>
</tr>
<tr>
<td>Potential Disaster Sources</td>
<td></td>
</tr>
<tr>
<td>Hostile Action</td>
<td></td>
</tr>
<tr>
<td>Natural Disasters</td>
<td></td>
</tr>
<tr>
<td>Man-caused Disasters</td>
<td></td>
</tr>
<tr>
<td>Public Works Organization</td>
<td></td>
</tr>
<tr>
<td>Emergency Operations and Organization Concepts</td>
<td></td>
</tr>
<tr>
<td>Emergency Command Center Operations</td>
<td>9-13</td>
</tr>
<tr>
<td>General Concept</td>
<td></td>
</tr>
<tr>
<td>Emergency Operations Phase Requirements</td>
<td></td>
</tr>
<tr>
<td>Emergency Command Center Staff Organization</td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>14-19</td>
</tr>
<tr>
<td>General Concept</td>
<td></td>
</tr>
<tr>
<td>Emergency Broadcast System</td>
<td></td>
</tr>
<tr>
<td>Telephone/Fax/Beeper</td>
<td></td>
</tr>
<tr>
<td>Hand-held/Portable Radio Networks</td>
<td></td>
</tr>
<tr>
<td>Military Affiliated Radio System</td>
<td></td>
</tr>
<tr>
<td>Amateur Radio Service</td>
<td></td>
</tr>
<tr>
<td>Citizens Radio Service</td>
<td></td>
</tr>
<tr>
<td>Messengers</td>
<td></td>
</tr>
<tr>
<td>Media Networks</td>
<td></td>
</tr>
<tr>
<td>Reporting Requirements</td>
<td></td>
</tr>
<tr>
<td>OPREP-3 Special Incident Reporting</td>
<td></td>
</tr>
<tr>
<td>Tempest Reporting</td>
<td></td>
</tr>
<tr>
<td>Availability of Forces Reporting</td>
<td></td>
</tr>
<tr>
<td>Disaster Preparedness and Logistical Support</td>
<td>20-37</td>
</tr>
<tr>
<td>General Concept</td>
<td></td>
</tr>
<tr>
<td>Manpower Planning, Protection and Support</td>
<td></td>
</tr>
<tr>
<td>Personal Protection</td>
<td></td>
</tr>
<tr>
<td>Billeting/Shelter</td>
<td></td>
</tr>
<tr>
<td>Messing Facilities</td>
<td></td>
</tr>
<tr>
<td>Facility Planning</td>
<td></td>
</tr>
<tr>
<td>Facility Requirements</td>
<td></td>
</tr>
<tr>
<td>Facility Prioritization</td>
<td></td>
</tr>
<tr>
<td>Facility Hardening and Protection</td>
<td></td>
</tr>
<tr>
<td>Camouflage/Tone Down</td>
<td></td>
</tr>
<tr>
<td>Airfield Protection</td>
<td></td>
</tr>
<tr>
<td>Utility Contingency Planning</td>
<td></td>
</tr>
<tr>
<td>Power Contingency Plan</td>
<td></td>
</tr>
<tr>
<td>Heat Contingency Plan</td>
<td></td>
</tr>
<tr>
<td>Water Contingency Plan</td>
<td></td>
</tr>
<tr>
<td>Gas Contingency Plan</td>
<td></td>
</tr>
<tr>
<td>Waste Water Contingency Plan</td>
<td></td>
</tr>
<tr>
<td>Waste Contingency Planning</td>
<td></td>
</tr>
<tr>
<td>Solid Waste Contingency Plan</td>
<td></td>
</tr>
<tr>
<td>Hazardous Waste Contingency Plan</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Disaster Preparedness and Logistical Support (cont)</td>
<td>20-37</td>
</tr>
<tr>
<td>Contract Considerations</td>
<td></td>
</tr>
<tr>
<td>Transportation Planning</td>
<td></td>
</tr>
<tr>
<td>Road Systems</td>
<td></td>
</tr>
<tr>
<td>Airport Facilities</td>
<td></td>
</tr>
<tr>
<td>Rail Systems</td>
<td></td>
</tr>
<tr>
<td>Docking Facilities</td>
<td></td>
</tr>
<tr>
<td>Material, Equipment and Storage</td>
<td></td>
</tr>
<tr>
<td>Dispersal Operations</td>
<td></td>
</tr>
<tr>
<td>Base Denial</td>
<td></td>
</tr>
<tr>
<td>Damage Assessment</td>
<td>38-51</td>
</tr>
<tr>
<td>General Concept</td>
<td></td>
</tr>
<tr>
<td>Damage Assessment Techniques</td>
<td></td>
</tr>
<tr>
<td>Damage Reconnaissance Methods</td>
<td></td>
</tr>
<tr>
<td>Types of Damage Assessment</td>
<td></td>
</tr>
<tr>
<td>Airfield Damage Assessment</td>
<td></td>
</tr>
<tr>
<td>Pavement Damage Types</td>
<td></td>
</tr>
<tr>
<td>Airfield Damage Reporting</td>
<td></td>
</tr>
<tr>
<td>MOS Selection</td>
<td></td>
</tr>
<tr>
<td>Airfield Pavement Repair Estimating</td>
<td></td>
</tr>
<tr>
<td>Facility Damage Assessment</td>
<td></td>
</tr>
<tr>
<td>Facility Damage Reporting</td>
<td></td>
</tr>
<tr>
<td>Facility Repair Estimating</td>
<td></td>
</tr>
<tr>
<td>Rapid Runway Repair Organization</td>
<td>52-68</td>
</tr>
<tr>
<td>General Concept</td>
<td></td>
</tr>
<tr>
<td>Emergency Operations Phase Requirements</td>
<td></td>
</tr>
<tr>
<td>RRR Organization</td>
<td></td>
</tr>
<tr>
<td>Pavement Damage Preparation</td>
<td></td>
</tr>
<tr>
<td>Foreign Object Debris Cover Methods</td>
<td></td>
</tr>
<tr>
<td>Crushed Stone w/o a FOD Cover</td>
<td></td>
</tr>
<tr>
<td>Precast Concrete Slab</td>
<td></td>
</tr>
<tr>
<td>Regulated Set Concrete Utilizing a Cretemobile</td>
<td></td>
</tr>
<tr>
<td>Fiber Reinforced Polyester Matting</td>
<td></td>
</tr>
<tr>
<td>AM-2 Matting</td>
<td></td>
</tr>
<tr>
<td>Spall Repair</td>
<td></td>
</tr>
<tr>
<td>Airfield Marking</td>
<td></td>
</tr>
<tr>
<td>Runway Lighting System</td>
<td></td>
</tr>
<tr>
<td>Mobile Aircraft Arresting System</td>
<td></td>
</tr>
<tr>
<td>Base Damage Repair and Transportation Support Organization</td>
<td>69-75</td>
</tr>
<tr>
<td>General Concept</td>
<td></td>
</tr>
<tr>
<td>Emergency Operations Phase Requirements</td>
<td></td>
</tr>
<tr>
<td>BDR/TS Organization</td>
<td></td>
</tr>
<tr>
<td>Work Accomplishment Resources</td>
<td></td>
</tr>
<tr>
<td>Support Functions</td>
<td></td>
</tr>
<tr>
<td>Repair Actions</td>
<td></td>
</tr>
<tr>
<td>Conclusions and Recommendations</td>
<td>76-77</td>
</tr>
<tr>
<td>Appendix A: Key Terms and Warnings</td>
<td>78-80</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Appendix C: Sample Operational Reports</td>
<td>103-105</td>
</tr>
<tr>
<td>Appendix D: NASKEF Utility Contingency Plans</td>
<td>106-109</td>
</tr>
<tr>
<td>Appendix E: MOS Selection Kit</td>
<td>110-118</td>
</tr>
<tr>
<td>Appendix F: NASKEF Public Works Threat Condition Support Plan</td>
<td>119-121</td>
</tr>
<tr>
<td>Bibliography</td>
<td>122-123</td>
</tr>
</tbody>
</table>
## LIST OF FIGURES AND TABLES

### Figures

| Figure | Description | Page |
The---|-------------|-----|
| 1.1   | Typical Public Works Organization | 6   |
| 1.2   | Typical Emergency Operations Organization | 8   |
| 2.1   | Emergency Command Center Staff Organization | 13  |
| 5.1   | Pavement Damage Categories | 43  |
| 6.1   | Crushed Stone FOD Repair | 59  |
| 6.2   | Precast Panel Form Plan and Detail | 60  |
| 6.3   | Typical Mark-out and Removal Plan | 60  |
| 6.4   | Precast Slab FOD Repair | 62  |
| 6.5   | Top View of Cretmobile | 63  |
| 6.6   | RSC Utilizing a Cretmobile FOD Repair | 64  |
| 6.7   | FRP FOD Repair | 65  |

### Tables

| Table | Description | Page |
The---|-------------|-----|
| 1.1   | USAA Catastrophe History - 1992 | 3   |
| 3.1   | NASKEF BSRCC Directory (Partial List) | 17  |
| 4.1   | Military Construction Standards | 23  |
| 4.2   | Facility Priority Listing and Hardening Requirements | 26  |
| 4.3   | Camouflage/Tone Down Methods | 27  |
| 4.4   | Icelandic Air Transportation Facilities (Partial List) | 33  |
| 4.5   | Icelandic Ports | 34  |
| 4.6   | RRR Material Availability Matrix Format | 35  |
| 4.7   | Rapid Runway CESE Availability Matrix | 36  |
| 6.1   | NMCB Air Detachment or Small Detachment CESE Allowance | 56  |
| 6.2   | Recommended HES Mix Design | 62  |
CHAPTER 1
INTRODUCTION

Purpose and Objectives

A recent history study will reveal that war (Desert Storm), civil disturbance (LA riots, NYC World Trade Center Bombing), natural disasters (Typhoon Omar and Hurricanes Andrew and Iniki) and industrial catastrophes (Valdez Oil Spill) are all too often commonplace. These events costs millions to billions of dollars for facility and infrastructure repair and clean-up, countless loss of lives, damage to the environment and dislocation of families and businesses. Because of the unpredictability as to where and when a disaster will occur, sound fundamental facility and infrastructure preparedness planning and management must be conducted to reduce the effects of these incidents.

Common sense dictates that this document can not cover all the circumstances which public works departments will deal with or be subject to reply to during the preparation, assessment and recovery operations following a hostile action, natural disaster or man-caused disaster. It is intended to provide a starting point for military and civilian public works departments in developing an emergency operations doctrine to handle any predictable incidents based on factors such as their military mission, economical importance, geographical location, and personal and public safety. The organization, preparedness plans and facility contingency operations are essential for the public works staff to quickly react and minimize the life loss, property damage and environmental impact while sustaining operational and business services.
Potential Disaster Sources

Hostile Actions

Hostile actions have the basic objective of killing people, destroying facilities and infrastructure and reducing the operational capability of the civilian business sector or military operational function. Large civilian economical and information centers and military air and naval bases supporting combat or contingency operations present lucrative targets for such actions. Attacks may include one or a combination of full and limited scale conventional operations, chemical/biological operations, nuclear operations, terrorism and/or domestic violence. Not only can direct attacks on key operational facilities (i.e., runways, piers) be anticipated, but attacks on resources critical to the operation (i.e., utilities, lines of communication, transportation avenues) can be just as effective in negating operational capability. To successfully sustain the capability to generate combat or economical power despite attacks, a high degree of infrastructure operability must be achieved and maintained. This must include defending the area from attack, minimizing the effectiveness of the attacking force that penetrates the area, rapidly repairing any damage inflicted and continuing services despite the threat or occurrence of an incident.

Natural Disasters

The most unpredictable damage is caused by natural disasters. "Mother Nature" made 1992 the highest ranked year for catastrophic facility loss damages in the United States and its territories history. Table 1.1 provides a listing of natural disaster events for 1992. As evident in Table 1.1, there are very few areas of the country that have not been affected by one type or another of natural disaster.
The natural disasters which public works directors should be concerned with and aware of are:

- Hurricanes/Typhoons - Installations and civilian sectors located near the Gulf of Mexico, the Atlantic Ocean seaboard and Pacific islands are subject to hurricane/typhoon damage annually. Even those areas located inland may be subject to severe weather from tropical lows that support hurricanes as they move inland. Severe weather associated with hurricanes may include tornadoes, heavy rains and flooding.

- Tornadoes - Tornadoes may be classified as the most violent weather phenomena known and the top natural disaster killer in the United States. Although the damage is centralized by funneled shaped clouds 1/4 to 1/3 miles wide and 16 miles long, the rotating velocities of the winds may reach 500 mph. Tornadoes are severally difficult to provide any early warning of their occurrence. Severe weather associated with tornadoes may include hail storms, heavy rains and flooding.

<table>
<thead>
<tr>
<th>DATE</th>
<th>DESCRIPTION</th>
<th>DATE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/9</td>
<td>Glendale, CA FLOOD</td>
<td>7/2</td>
<td>Illinois/Indiana HAIL</td>
</tr>
<tr>
<td>3/3</td>
<td>Orlando, FL HAIL</td>
<td>7/5</td>
<td>New York HAIL</td>
</tr>
<tr>
<td>3/8</td>
<td>Kileen, TX HAIL</td>
<td>7/6</td>
<td>Central States HAIL</td>
</tr>
<tr>
<td>3/24</td>
<td>Orlando, FL HAIL</td>
<td>8/24</td>
<td>Florida/Louisiana HAIL</td>
</tr>
<tr>
<td>3/28</td>
<td>San Antonio, TX HAIL</td>
<td>8/28</td>
<td>Guan TYPHOON OMAR</td>
</tr>
<tr>
<td>4/10</td>
<td>Kansas City, MO HAIL</td>
<td>9/5</td>
<td>Wichita, KS HAIL</td>
</tr>
<tr>
<td>4/19</td>
<td>Texas/Louisiana/Mississippi HAIL</td>
<td>9/11</td>
<td>Hawaii HURRICANE INIKI</td>
</tr>
<tr>
<td>4/28</td>
<td>Arlington, TX HAIL</td>
<td>10/3</td>
<td>Tampa, FL TORNADO</td>
</tr>
<tr>
<td>5/10</td>
<td>Oklahoma City, OK HAIL</td>
<td>10/7</td>
<td>Texas/Oklahoma TORNADOES</td>
</tr>
<tr>
<td>5/22</td>
<td>New Mexico/Texas HAIL</td>
<td>10/10</td>
<td>Mississippi TORNADO</td>
</tr>
<tr>
<td>6/6</td>
<td>Texas/Oklahoma HAIL</td>
<td>10/15</td>
<td>Texas HAIL</td>
</tr>
<tr>
<td>6/14</td>
<td>Illinois/Indiana HAIL</td>
<td>11/3</td>
<td>Shreveport, LA HAIL</td>
</tr>
<tr>
<td>6/19</td>
<td>Wichita, KS HAIL</td>
<td>11/12</td>
<td>Kentucky/Ohio/PA WINTER STORM</td>
</tr>
<tr>
<td>6/24</td>
<td>Col Springs,CO/Dallas,TX HAIL</td>
<td>11/21</td>
<td>Central States HAIL</td>
</tr>
<tr>
<td>6/24</td>
<td>Florida FLOODS</td>
<td>12/1</td>
<td>Alaska WINTER STORM</td>
</tr>
<tr>
<td>6/28</td>
<td>Big Bear, CA EARTHQUAKE</td>
<td>12/10</td>
<td>Northeast WINTER STORM</td>
</tr>
</tbody>
</table>

(USAA, 1992, 21)
• Floods - Floods are the most common and widespread of all natural hazards. Flooding may occur from any accumulation or rise in the water table. Flooding, caused by heavy rains, snow melts, tropical storms, hurricanes, and seismic activity, can effect areas located within the 100-year flood plane and all low lying areas. Severe weather associated with flooding may include snow storms, heavy rains, tornados, earthquakes and volcanic eruptions.

• Blizzards, Severe Cold and Snow Storms - Normally associated with the winter season, blizzards, severe cold and snow storms may bring many activities to a stand still by bringing transportation to a halt and disrupting utility services. Severe weather associated with winter storms may include flooding.

• Volcanic eruptions - Even though the east cost is not currently subject to volcanic eruptions, various portions of the country are subject to damage related from eruptions. Mount Saint Helens, in 1980, proved that even dormant or inactive volcanoes must be considered a potential disaster source. Severe weather associated with volcanic eruptions include flooding and global weather/cooling changes.

• Earthquakes - Earthquakes may occur on both coasts are subject to earthquakes and tremors associated with plate tectonics shifts. They are very unpredictable and have the potential to inflict the greatest loss of life and property. Severe conditions associated with earthquakes may include flooding and landslides.

**Man-Caused Disasters**

Other potential harm may be caused by man-made and technological disasters such as:
• Fire - Even though not all fires are man generated, the majority of fires start as a result of human action or ignorance. Fires may be grouped into two types: fires to facilities and infrastructure and fires to forests and grasslands.

• Explosions - Explosions present a danger as a result of blast force, flying debris, intense heat and fire they produced.

• Transportation Accidents - Aircraft, ship, and surface transportation to any major transportation means can cause temporary isolation to areas. Particular concern should be placed on accidents involving potential damage to environment and people from petroleum and hazardous material spills.

• Radiological Emergencies - Accidents involving nuclear power and weapons and hospital materials could cause various health and environmental problems.

• Hazardous Material/Waste Emergencies - Spills or existing site locations may be subject to all natural and man-made occurrences resulting in harm or potential dangers to people and the environment. Particular areas of concern should be gas and chemical leaks.

Public Works Organization

"Public Works are the physical structures and facilities that are developed or acquired by public agencies to house governmental functions and provide water, power, waste disposal, transportation, and similar services to the public..." (Burnett, 1986, 3)

The Burnett definition is a standard definition and listing of services which a public works department manages. A typical organization will consist of administrative, technical and operational divisions, Figure 1.1. Administrative functions include general administrative, fiscal control,
material and housing support functions. Technical functions include master planning and real estate, facility maintenance, design engineering and contract support functions. Operational functions include maintenance, utility, transportation and telecommunication support functions.

Figure 1.1. Typical Public Works Organization

*Telecommunications functions are currently being transferred to Naval Communications and Telecommunication Command. This has been completed, except for a few OUTCONUS locations.

Emergency Operations and Organization Concepts

The unpredictability of disasters and the fact that public works service functions impact more areas than any other single organization, including fire and law enforcement, dictate the critical need for the director to establish an innovative response doctrine. The department might also be operating in an environment which the standard operating procedures may no longer apply. Therefore, a proper organization is critical to maintaining command and control and efficiently executing any contingency operation. As such, the public works director needs to develop a standing emergency organization as part of the overall department's operational plan. The organization needs to
be structured such that existing public works assets are utilized to the maximum extent possible to accomplish all phases of the repair effort while being flexible enough to work in close coordination with any and all construction and/or engineering forces which may deploy to the area.

Once a warning has been received or an accident has occurred, the public works manager must take immediate actions to minimize the effects of the impending incident and following such an event, restore facilities/infrastructures to full operating condition. These actions consist of three phases: survival, assessment and recovery operations, Figure 1.2.

Emergency Control Center (Chapter 2) The center is responsible for organizing and directing all facility and infrastructure operations. The ECC should act as the central point for damage inputs and directs the damage response based on the established priorities. The center has overall control of the survival, assessment and recovery operations.

Survival Operations (Chapters 3.4) Survival operations are responsible for providing the logistical support, disaster preparedness planning and protection, communication and contract management necessary to support, protect and defend the specified area.

Damage Assessment (Chapter 5) Damage Assessment Teams (DATs) are responsible for providing the initial and continuing assessment of airfield and facility/utility structures and surfaces and repair estimates for airfield and facility repairs. Damage information will be relayed from the field to the ECC.

Recovery Operations (Chapters 7,8) Upon notification of damage, repair parties will be dispatched to remediate damage and/or minimize the operational impact the damage has caused. The recovery operation may be broken down into rapid runway repair (RRR), base damage repair (BDR) and transportation.
support (TS) operations. The RRR Organization is responsible for completing and maintaining all expedient and permanent repairs to airfield surfaces. The BDR Organization is responsible for completing the expedient repairs to all damaged base facilities other than the airfield pavements and maintaining operation of utility systems. The TS Organization is responsible for providing transportation support, vehicle dispatch and maintenance and repair services to the ECC organizational units.

Figure 1.2. Typical Emergency Operations Organization
CHAPTER 2
EMERGENCY COMMAND CENTER OPERATIONS

General Concept
The public works department should be converted into an emergency command center (ECC) to maintain command and control of the varying players involved in disaster/emergency operations for facility and utility services. The center will be established to oversee and direct all actions related to the support and repair of facility and infrastructure damage, support the construction and military augmentation forces and support and service the public. An alternate emergency command center (AECC) may be required for repetitive actions, security and command and control. The AECC is of particular importance in a hostile action situation. The center mission statement should include:

a. maintain a 24-hour control center operation to provide continuous damage assessment and repair operation coordination;

b. provide logistical support to all construction and engineering resources;

c. maintain continuous communication within the organization and with higher authority concerning damage repair efforts;

d. direct maintenance/construction efforts to minimize the vulnerability to damage;

e. direct the individual Damage Assessment Teams (DAT) to reconnoiter and survey the airfield and station facilities to identify, locate, report, and assess the extent of damage;

f. direct the efforts of the Rapid Runway Repair (RRR) Organization based on operational guidance provided by higher authority;
j. maintain base utility system operation or provide point contact and liaison to company owned utility system;

h. direct the efforts of the Base Damage Repair (BDR) Organization based on repair priorities and the availability of personnel, equipment, materials and funding;

i. direct the recall, dispatch, repair and maintenance of vehicle assets through the Transportation Support Organization.

Emergency Operations Phase Requirements

Emergency operations may be broken down into four phases; survival, assessment, recovery and restoration operations. The following is a listing of minimum Emergency Command Center phase requirements:

a. Survival Phase

(1) Muster organization. Brief all personnel on current situation. Review all operational plans and all associated instructions. Review dispersal and recall procedures.

(2) Establish ECC and AECC, if necessary. Inventory maps, RRR MOS Kit and status boards.

(3) Make all logistical arrangements.

(4) Set up and test communications (include coordination with explosive ordnance disposal (EOD) for ordnance removal support, fire department for fire fighting support and hospitals for emergency medical support).

(5) Issue personal protective gear and equipment, if necessary.

(6) Determine existing contract outcome. All existing contracts should be determined to be either completed, accelerated or terminated.
b. Assessment Phase, details provided in the damage assessment chapter, Chapter 5.

(1) Establish assessment assignments and vantage points.

Dispatch damage assessment teams following incident.

(2) Calculate and report Minimum Operating Strip (MOS) estimates and recommendations.

(3) Prioritize and report repair accomplishment from damage assessment reports.

c. Recovery Phase, details provided in the recovery operations, Chapters 6 and 7.

(1) Direct repair efforts.

(2) Report damage and status updates.

d. Restoration Phase.

(1) Submit final operational report.

(2) Return to normal operations.

ECC Staff Organization

The ECC staff organization, Figure 2.1, will maintain a 24-hour watch in a centralized location. The staff provides administrative assistance to the ECC Watch Officer and other members of the ECC Team. Each staff section should consist, at a minimum, of the following:

ECC Watch Officer/Chief. The ECC Watch Officer/Chief is responsible for the overall supervision of the ECC staff and serves as the ECC OIC during the watch. The Watch Officer is responsible for maintaining control over all damage assessment and repair operations. The Watch Officer will dispatch and direct the DATs, determine the priority of repair actions based on operational guidance and technical advice, determine possible MOSs based on ADAT.
information, dispatch and provide overall direction to the repair teams, and report the status of repair efforts to higher authority.

**Administrative Watch Officer/Chief.** The administrative watch officer/chief is responsible for the overall supervision and oversight of the logistical support required for all operations and report all logistical information and status updates.

**MOS Watch Officer/Chief.** The MOS Watch Officer/Chief is responsible for the direct supervision of the MOS staff members, review of all section incoming and outgoing communications, recommend and estimate minimum airfield operating strips, ensure the timely update of the status boards, and provide technical advice to the ECC Watch Officer and repair teams.

**Facility Watch Officer/Chief.** The Facility Watch Officer/Chief is responsible for the direct supervision of the facility staff members, review of all section incoming and outgoing communications, ensure the timely update of the BDR/Utility status boards, and provide technical advice to the ECC Watch Officer and repair/utility teams.

**Communicator.** The communicator is responsible for the direct supervision of the damage assessment teams (DATs), maintaining continuous communication with the DATs, the individual repair and support teams, and higher authority both by any and all means of communications available. The communicator will maintain a hard-copy log report of all communications.

**Damage Plotter.** The damage plotter(s) is responsible for plotting any reported damage on airfield and facility/utility maps in the ECC as directed by the respective Watch Officer/Chief. The damage plotter will work with the communicator to ensure a smooth flow of communication occurs within the control center.
Runners. The runners are responsible for shuttling messages and other information as directed by the Watch Officer or Watch Chief.

Support Organizations. All primary support organizations (NMCB, fire, law, hospital, air operations, etc.) should have a liaison member attached to the staff to provide the necessary coordination between organizations.

Rapid Runway Repair Organization. Repair teams responsible for the adequate repair of airfield pavement surfaces to launch and recover aircraft.

Base Damage Repair Organization. Repair team responsible for the adequate repair of all facilities and utilities to support overall mission.

Transportation Support Organization. The transportation support team is responsible to provide essential vehicles to conduct recovery operations, issue vehicles, provide vehicle maintenance and repair, refueling operations and heavy equipment support and operations.

Figure 2.1. Emergency Command Center Staff Organization
CHAPTER 3
COMMUNICATIONS

General Concept

An essential element of any organization is its means to communicate. The Emergency Command Center is no different and must have capability to communicate both internally with its damage assessment and repair crews and externally with other agencies and operational leaders. As a result, a detailed communications plan must be developed which has multi-dimensional communication link capabilities and methods and be expandable as augmenting construction assets are simulated into the organization. The plan is also important because communication capabilities may be disrupted by flying debris, weather related damages and are primary targets for hostile action.

At a minimum, the plan should address all the following communications lines:

a. Emergency Broadcast System
b. Telephone/Fax/Beeper Systems
c. Handheld Portable Radio Networks
d. Military Affiliated Radio System
e. Amateur Radio Service
f. Citizen Band Radio Services
g. Messengers
h. Media Networks

Emergency Broadcast System

The Emergency Broadcast System (EBS) is a network of designated commercial radio stations operated on a voluntary basis under Federal Communications Commission (FCC) direction. Many of the stations may have emergency shelter capability. The stations programming includes links with
local and state government emergency centers and when activated will broadcast a common program of emergency information. In the event of an emergency, the station may be contacted and a message broadcast over the airwaves, based on message priority and content (i.e., recall, reporting requirements, etc.).

Even though many of the potential disaster sources cannot be foreseen, early warning systems via the EBS to alert the population of impending hostilities, natural disasters or man-caused disasters is essential. These early warnings and alerts allow both individuals and agencies to take the necessary steps in reducing the damage and injuries resulting from these incidents. Key governmental agency players include the Federal Emergency Management Agency (FEMA), Emergency Broadcast System Networks, National Weather Service, US. Geological Survey Earthquake Information Center, Nuclear Regulatory Agency, Environmental Protection Agency and military/civilian intelligence agencies. Appendix A provides key terms and warning signals commonly used.

Telephone/Fax/Beeper

The primary means of communication is by telephone line. Because of their element exposure and high use rate, telephone lines may be subject to damage and could be an unreliable communications source. Telephones are readily available and with the advent of the beeper and fax machines can be very powerful tools in the survival, assessment and recovery operations. A telephone, fax and beeper directory for the Emergency Command Center must be established.

Various military portable telephone communication systems (TA-312/PT and TA-1/PT) and switchboard (SB-22/PT) may be used over short distances. These lines should only be used under extreme field conditions and are not
recommended for use. Cellular phones may also be used but have varying degrees problems such as distance, obstacles, transmission loss and cost.

Hand-held/Portable Radio Networks

Another primary communications resource is the hand-held or portable radio networks used by most public works departments. All radios must be checked to ensure that they are compatible and can operate on the prescribed frequencies. This can be critical once augmenting personnel are incorporated into the ECC (i.e., Naval Mobile Construction Battalions normally carry PRC-77s, PRC-68s and/or PRC-104s radios). A directory should be established and show the anticipated radio networks to be encountered, including assigned radios, call signs, and frequencies.

At a minimum, the following organizations should be accounted for in the telephone/fax/beeper and radio network communications plans. To simplify the list and include all parties, all data should be placed in one database, Table 3.1, printed within the plan and updated on a yearly basis.

Table 3.1

1. Personnel Recall, including head official numbers
2. Operation Center Listing
3. Military Engineering Commands, see Appendix B for list.
4. Emergency Management Offices (federal, state, local), see Appendix B for list.
5. Contractor Numbers, with specialization, see Appendix B for list.
6. Supplier Numbers, with specialization
7. Command Centers
8. Customer/Activity Numbers
9. Duty Offices
10. Military/National Guard/Coast Guard Installations
11. Environmental Protection Agency (federal, regional, state, local), see Appendix B for regional numbers.
12. Fire Departments
13. Emergency Medical Service
14. Law Enforcement
15. Public Affairs Offices
16. Radio Stations, including EBS station(s)
17. Television Stations
18. National Weather Service
Table 3.1. NASKEF BSRCC Directory (Partial Listing)

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Number</th>
<th>Call Sign</th>
<th>Frequency</th>
<th>Pri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Works</td>
<td>X4898</td>
<td>BASE Alpha</td>
<td>MT5000 Net</td>
<td>1140</td>
<td>l</td>
</tr>
<tr>
<td>AF Light Vault</td>
<td>Kjartan</td>
<td>X4222</td>
<td>Lightning</td>
<td>MT5000 Net</td>
<td>1000</td>
</tr>
<tr>
<td>PWO</td>
<td>CDR Eckels</td>
<td>X2137</td>
<td>60</td>
<td>1140</td>
<td>1 A</td>
</tr>
<tr>
<td>APWO</td>
<td>LT Belanger</td>
<td>X6123</td>
<td>60 Alpha</td>
<td>1140</td>
<td>1A</td>
</tr>
<tr>
<td>SHOPS ENG</td>
<td>LT Major</td>
<td>X6100</td>
<td>60 Bravo</td>
<td>1140/1000</td>
<td>1</td>
</tr>
</tbody>
</table>

(Major, 1992)

**Military Affiliated Radio System (MARS)**

Military Affiliated Radio System (MARS) is a Department of Defense supported amateur radio network capable of long-range voice communication.

**Amateur Radio Service (HAMS)**

Amateur Radio Service (HAMS) is a network of privately owned and operated amateur radios licensed by the FCC capable of long-range two-way voice communication. Amateur radio operators are required to hold an FCC operator license and a station license. Personnel should be surveyed to find available HAMS licenses and those individuals requested to volunteer their equipment and expertise should they be required.

**Citizen Band Radio Service (CBs)**

Citizen Band (CB) Radio Service is a privately owned and operated amateur radios which are approved by the FCC capable of short-range two-way voice communication. No licenses are required to operate on the network. The service has may be of little use during an emergency because of the unrestricted access to the limited channels and the ability of high wattage base stations to overpower the frequency channels of other transmitters. Therefore, CBs should be used only as a last resort.
**Messengers**

Should both radio and land line communication fail, communication should be maintained using a messenger or runner system. This requires a great demand on manpower and reliance on clearly written instructions to the receiver and verbal instructions to the messenger.

**Media Networks**

Television and Radio services may be used to pass information to the public on damaged and hazardous areas. It is recommended that the department use affiliated Public Affairs Officers and/or media coordinators in all such broadcasts and contacts.

**Reporting Requirements**

There are no known civilian reporting requirements outside the declaration of disaster zones. However, military units are required to submit varying reports in support of disasters. Examples of reports are shown in Appendix C. Direct information on each should be directed to the report specified instruction.

**OPREP-3 Special Incident Reporting**

There are two types of operational reports with the OPREP-3 category: OPREP-3 Pinnacle and OPREP-3 Navy Blue. The pinnacle reports are submitted for occurrences having national interest which may change or seriously change current operations or involve natural or man-made disasters (i.e., participation in disaster relief operations during major disasters). Navy Blue reports are submitted for incidents of military, political or press interest which are of high Navy vice national interest (i.e., assistance requested or rendered in connection with minor disasters of Naval interest).
Initial voice reporting is required within 5 minutes of proper notification and message reporting within 20 minutes. OPNAVINST 3100.6(series) and local requirements should be checked prior to initiating such operational reports.

**Tempest Reports**

There are three types of tempest reports: Tempest Rapid, Garden Plot, and Tempest Cider. Tempest Rapid reports are submitted for civil emergency reporting. Garden Plot reports are submitted for civil disturbance reporting. Tempest Cider reports are submitted for civil defense reporting. OPREP-3 reporting may be required along with tempest report. Voice and message reporting is required. DOD Directive 3025.1(series), OPNAVINST 3440.16(series) and local requirements should be checked prior to initiating any reports.

**Availability of Forces for Civil Defense (FORSCOM Form 161-R)**

Availability of forces reporting is required to provide the Army with a listing of DOD forces located within respective areas of responsibility which may be available to support the civil defense mission. Submission is required on an annual basis.
CHAPTER 4
DISASTER PREPAREDNESS PLANNING AND LOGISTICAL SUPPORT

General Concept

The objective of disaster preparedness planning (survival) operations is to minimize the vulnerability of the area to damage. The actions are based on protecting manpower, facilities, materials and equipment and organizing the available engineering forces to begin Emergency Command Center (ECC) operations, as soon as possible, after the incident occurs. The initial action is the development of a detailed, workable, and flexible plan. To achieve this, the public works organization may need to perform the following types of planning and logistical considerations:

- a. Manpower Planning and Logistical Support
- b. Facility Planning and Protection
- c. Utility Contingency Planning
- d. Waste Contingency Planning
- e. Contract Considerations
- f. Materials, Equipment and Storage
- g. Transportation Support Planning
- h. Dispersal Operation Planning
- i. Base Denial

Manpower Planning, Protection and Support

Because of the unpredictability of a disaster source striking your area, all plans should be based on a non-augmented manpower scheme. Manpower requirements should include all military, civilian and military ready reserves employed or assigned to the location. Additional manpower/engineering support for the military can be provided by local Naval Facilities Engineering
Commands by request, if available. Personnel offices may authorize a hiring overallowance through the recovery period.

Additional resources can only be provided if the governor issues a Declaration of State Disaster and formally requests that the President issue a Declaration of National Disaster. Once this process is completed, the Federal Emergency Management Agency (FEMA) can move to provide national resources for emergency response and recovery. There is legislation that authorizes the Army, Corps of Engineers, upon written request from the governor, to provide assistance for ten (10) days while awaiting a Presidential Declaration of National Disaster. Several policy changes are currently being discussed in Washington and vary from restructuring FEMA to eliminating FEMA and detailing the Department of Defense (DOD) the disaster recovery mission. A combination of the above would be recommended to allow DOD to provide immediate response with FEMA relieving once the quality of life services have been operationally restored.

**Personnel Protection**

Hostile attacks situations may include the use of chemical and biological weapons and/or anti-personnel munitions. As a result, the personnel in the recovery operation need to have protection from chemical and biological weapons as well as bomb fragments. Therefore, if the threat warrants, Chemical/Biological Suits and Flak Jackets should be distributed to personnel. Additional personal protection can be provided by issuing weapons, ammunition, and ammunition pouches.

**Billeting/Shelters**

Prior to the augmentation of troops it is assumed, a military non-combatant evacuation order (NEO) and/or civilian evacuation will have been enacted. The emergency command center should assist in the preparation of the
beddown reception plan. Primary troop beddown locations should be in family housing, bachelor quarter areas, local hotels and tent cities. All assigned augmenting forces should have predetermined beddown locations. A general map of billeting facilities currently available and listing of local housing, hotel, and motel locations with telephone numbers should be made to all personnel. The emergency command center will provide all housing support for construction/engineering forces.

The Red Cross, FEMA and local governments will also establish local shelters for dislocated personnel. Tent cities may also be required. This includes building, maintaining and servicing these emergency centers. Personnel should also be informed of their locations and support capabilities. Many shelters have limited space and amenities.

Messing Facilities

A local messing plan should be developed and utilized to mess all construction and engineering personnel. Half hour feeding schedules should be established with the ECC coordinating all food service requirements through the local supply and morale, welfare and recreation officials. Military "meals ready to eat" (MREs) may be viable messing source if sit down meals are not viable or available. Local maps and telephone numbers of military and civilian eating establishments should be provided to all personnel.

Facility Planning

The public works director should be responsible for the completion of all facility planning and requirements. The plan must closely coordinated with both higher authority plans, areas Master Plans, area Exterior Architecture Plans and the plans of deploying engineering units. It must be
remembered, that since no place is the same, each plan must be adjusted to
local conditions, personnel and equipment availability.

**Facility Requirements**

A close examination of the existing facilities and infrastructure should
be conducted to determine the shortfalls and the plan include the additional
facility requirements. Additional facilities should be acquired using the
following criteria and Table 4.1 (Joint Pub 4-04,1992,II-2-10):

**Table 4.1. Military Construction Standards**

<table>
<thead>
<tr>
<th>Construction</th>
<th>Initial</th>
<th>Temporary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Preparation</td>
<td>Clearing and grading for facility sites, including drainage, revetments for POL, ammo storage and aircraft parking, aggregate for heavily used hardstands and soil stabilization.</td>
<td>Engineering site preparation including pavement for vehicle traffic areas and aircraft parking, building foundations and concrete floor slabs.</td>
</tr>
<tr>
<td>Housing, Dining, Admin/Op Structures</td>
<td>Tents (may be wood frame and flooring).</td>
<td>Wood frame structures; relocatable structures.</td>
</tr>
<tr>
<td>Electricity</td>
<td>Tactical generators; high and low voltage distribution.</td>
<td>Non-tactical and/or high voltage distribution.</td>
</tr>
<tr>
<td>Water</td>
<td>Water points.</td>
<td>Limited distribution to hospitals, dining halls and other large users.</td>
</tr>
<tr>
<td>Cold Storage</td>
<td>Portable reefer with freezer units for medical, food service and maintenance storage.</td>
<td>Refrigeration installed in temporary structures.</td>
</tr>
<tr>
<td>Sanitation</td>
<td>Organic equipment, evaporative ponds, pit or burnout latrines, lagoons for hospitals and sewage lift stations.</td>
<td>Waterborne to austere treatment facility. Priority: Hospitals, dining halls, bath houses, decontamination sites and other high-volume water users.</td>
</tr>
<tr>
<td>Airfield Pavement</td>
<td>Tactical surfacing including matting, aggregate and soil stabilization.</td>
<td>Conventional pavement.</td>
</tr>
<tr>
<td>Fuel Storage</td>
<td>Bladders</td>
<td>Bladders and steel tanks.</td>
</tr>
</tbody>
</table>

a. Use existing or altering existing facilities which are owned, occupied or leased;

b. Use relocatable buildings which are owned, occupied or leased;

c. Acquire facilities from a commercial vendor. Real estate acquisitions include determining requirements; selecting property; acquiring
property; disposing of property; processing claims; and maintaining accurate records.

d. Construct facilities using the criteria provided in Table 4.1 which is a generic military construction standard for initial and temporary structures.

Facility Prioritization

The facility plan should detail the facility priority listing. Because of site specifications, location, requirements and mission differences there is no specific guidance on exact facility priority. Table 4.2 provides a good starting point in the development of the local facility priority listing.

Facility Hardening and Protection

Facilities hardening and protection may be required based on the disaster source threat. Hardening is best undertaken through permanent measures either during the facility's construction or during rehabilitation and usually involve the use of proper citing and reinforced concrete. However, as permanent hardening is costly and requires fund programming, the public works organization must be prepared to take expedient measures to harden facilities identified by the Area Commander or which may require additional protection from the hazard(s) expected. These expedient measures include the use of sandbags, earthen berm, and revetments, see Table 4.2.

a. Sandbags are normally considered an expedient method of hardening existing structures and their effectiveness depends on the type of fill material used.

b. Earthen berms can be constructed for existing facilities, but care need to be taken to ensure that the external walls of the facility can support the lateral load of the berm. If the berm is to be used as a retaining wall
to hold back water or other liquids, the structural integrity of the berms must be inspected regularly to ensure they are safe.

c. Revetments are generally used to protect parked aircraft and essential facilities from the effects of enemy ordnance. The type of revetment to be constructed depends on the facility to be protected, the layout of the aircraft parking areas, material availability, and the risk location of the area.

A hardened facility listing should be established and contain information on facility number, location, type of hardening and any other requirements. An additional listing should be prepared of facilities which will require hardening. This listing should include drawings for hardening requirements, engineering and material estimates and any other pertinent information which may assist the Emergency Command Center Officer-in-Charge in prioritizing the work.

**Camouflage/Tone Down**

An additional means to protect facilities is by camouflaging or toning down a facility. Camouflage and tone down is a means by which a facilities visual and thermal signatures are altered by making them more compatible with and less conspicuous on the natural landscape. The process includes and may be accomplished by using camouflage nets, natural materials, berms, or various painting schemes. As with facility hardening, tone down is best accomplished during facility construction. Similar to hardening a list of facilities which require tone down should be established and estimates prepared for the ECC. Summary of methods is shown in Table 4.3.

**Airfield Protection**

Airfield runways, taxiways and surfaces are key areas which when damaged can minimize the ability to project operations. Therefore, protection means
must be devised to ensure that the damage is negligible. Besides the methods shown in Tables 4.2 and 4.3, aircraft decoys may be constructed and dispersed to divert enemy attention away from principal facilities. Smoke screens may be used to obscure portions of the airfield. Liquid foam may also be placed on the runway to obscure runway or painting markers. Additional work which may be beneficial is the installation of a runway marking system of the tarmac area to assist the damage assessment team and pilots in determining the precise damaged areas.

Table 4.2. Facility Priority Listing and Hardening Requirements

<table>
<thead>
<tr>
<th>Pri</th>
<th>Facility/Function</th>
<th>Threat Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AIRCRAFT SHELTERS</td>
<td>SH, CWP, SC</td>
</tr>
<tr>
<td>2</td>
<td>COMMAND AND CONTROL CENTERS</td>
<td>SH, CWP, SP</td>
</tr>
<tr>
<td>3</td>
<td>COMMUNICATIONS/DATA</td>
<td>SH, CWP, SP</td>
</tr>
<tr>
<td>4</td>
<td>OPERATION AND INTEL SUPPORT</td>
<td>SH, CWP, SC</td>
</tr>
<tr>
<td>5</td>
<td>CRITICAL MAINTENANCE AREAS</td>
<td>SH, CWP, SC</td>
</tr>
<tr>
<td>6</td>
<td>POL STORAGE &amp; DISTRIBUTION</td>
<td>SH, CWP, SC</td>
</tr>
<tr>
<td>7</td>
<td>MUNITIONS STORAGE, ASSEMBLY, AND LOADING</td>
<td>SH, CWP, SC</td>
</tr>
<tr>
<td>8</td>
<td>UTILITY GENERATION AND DISTRIBUTION</td>
<td>SP, SC</td>
</tr>
<tr>
<td>9</td>
<td>CRITICAL SUPPLY STORAGE</td>
<td>SH, CWP, SC</td>
</tr>
<tr>
<td>10</td>
<td>CRITICAL SECURITY POINTS</td>
<td>SH, CWP, SC</td>
</tr>
<tr>
<td>11</td>
<td>FIRE/CRASH FACILITY</td>
<td>SH, CWP, SC</td>
</tr>
<tr>
<td>12</td>
<td>CRITICAL BASE RECOVERY AREAS</td>
<td>SH, CWP, SC</td>
</tr>
<tr>
<td>13</td>
<td>COLLECTIVE PROTECTION</td>
<td>SH, CWP, SC</td>
</tr>
<tr>
<td>14</td>
<td>MEDICAL TREATMENT</td>
<td>SH, CWP, SC</td>
</tr>
<tr>
<td>15</td>
<td>OTHER MAINTENANCE AREAS</td>
<td>SH, CWP, SC</td>
</tr>
<tr>
<td>16</td>
<td>DINING HALLS</td>
<td>SP, SC, SC</td>
</tr>
<tr>
<td>17</td>
<td>LIVING AREAS</td>
<td>SP, SC, SC</td>
</tr>
<tr>
<td>18</td>
<td>OTHER FACILITIES</td>
<td>SP, SC, SC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HD</th>
<th>HARDENED</th>
<th>Protected from effects of direct hit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH</td>
<td>SEMIHARDENED</td>
<td>Protected from effects of specific sizes and types of weapons detonated at specific distances.</td>
</tr>
<tr>
<td>SP</td>
<td>SPLINTER PROTECTION</td>
<td>Protected from weapons fragments, small arms fire and magnification of blast pressure reflected off vertical surfaces.</td>
</tr>
<tr>
<td>SC</td>
<td>SITING CONSIDERED</td>
<td>No conventional hardening protection.</td>
</tr>
<tr>
<td>CWP</td>
<td>CHEMICAL PROTECTION</td>
<td>(AFESC, Volume 1: Pre-Disaster Planning, 3-35-37)</td>
</tr>
</tbody>
</table>
Table 4.3. Camouflage/Tone Down Methods

<table>
<thead>
<tr>
<th></th>
<th>Visible Function</th>
<th>Thermal Function</th>
<th>Applications</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earthwork</td>
<td>Hide structures; change shape; blend into background</td>
<td>Change shape; hide structures; reduce thermal contrast; use with vegetation for blending</td>
<td>POL, ammo storage, aircraft shelters, command and control shelters, distinct areas of pavement</td>
<td>Permanent</td>
</tr>
<tr>
<td>Vegetation</td>
<td>Hide structure by screening; blend installation into surrounding field patterns; disrupt shadows</td>
<td>Hide structures by screening; blend installation into surrounding patterns; disrupt shadows; reduce solar radiation falling on adjacent buildings</td>
<td>Wide area patterning for areas adjacent to runways, taxiways; screen aircraft shelters &amp; vert structures; negate shadows on bunkers and vertical structures</td>
<td>Permanent</td>
</tr>
<tr>
<td>Water</td>
<td>No impact; could increase gloss; makes light surfaces dark and dark surfaces lighter.</td>
<td>Reduce contrast by cooling; blend into background by creating patterns to disrupt shape of target.</td>
<td>Paved areas; concrete structures; flat gravel roofs; large metal structures.</td>
<td>Expedition</td>
</tr>
<tr>
<td>Nets</td>
<td>Hide structures by shape disruption; color matching to vegetation.</td>
<td>Hide structures near ambient temps; blend by shape disruption; create thermal patterns</td>
<td>Vertical walls of large structures; aircraft shelters; cover small structures.</td>
<td>Expedition</td>
</tr>
<tr>
<td>Coatings: Visual</td>
<td>Color matching background; pattern to blend complex background/disrupt shape</td>
<td>Little impact; dark colors may increase contrast by increasing solar absorption</td>
<td>All vertical walls; aircraft shelters; horizontal paved surfaces; towers and POL tanks</td>
<td>Permanent Expedition possible</td>
</tr>
<tr>
<td>Low Solar Absorption</td>
<td>As for visual coating with matching extended into near infrared</td>
<td>Some thermal contrast reduction on sunny days by reducing solar energy absorption</td>
<td>All vertical walls; aircraft shelters; paved surfaces; towers and POL tanks</td>
<td>Permanent Expedition possible</td>
</tr>
<tr>
<td>Low Emissivity</td>
<td>As for visual coating but color selection may be restricted</td>
<td>Reduce thermal contrast for warm and hot targets; create deliberate thermal patterns; disguise by generating false shapes, patterns</td>
<td>All vertical walls on heated structures with poor insulating hot surfaces and exhaust stacks; generator buildings; POL storage facilities</td>
<td>Permanent Expedition possible</td>
</tr>
<tr>
<td>Textured Surfaces</td>
<td>Good color match to grass; low gloss surface for tone down</td>
<td>Provides some thermal contrast reduction except for hours of high solar energy loads; better if used with water in daytime</td>
<td>Pave surfaces; roof tops; aircraft shelters</td>
<td>Permanent or Expedition</td>
</tr>
<tr>
<td>Mats</td>
<td>Tone down achieved by use with nets</td>
<td>Provide external insulation to reduce contrast</td>
<td>Vertical walls; large roofs of heated structures with poor insulation; exhaust vents</td>
<td>Expedition</td>
</tr>
<tr>
<td>Shields</td>
<td>Hides structures; color matching possible</td>
<td>Hide structures; some contrast reduction by screening target</td>
<td>Use similar to nets</td>
<td>Expedition Permanent possible</td>
</tr>
</tbody>
</table>

(AFESC, Volume 1: Pre-Disaster Planning, 3-30-31)
Utility Contingency Planning

Utility contingency planning is the most critical phase of the emergency recovery operation. It provides the bare requirements which must be supported to each and every facility under the direction of the public works director. If a supporting utility is provided by a private company, it is imperative that input is provided and included in the emergency operational plan. It is highly recommended that private utility directors and coordinators have a liaison support representative in the emergency command center to handle respective service request information, status updates and inquiries. At a minimum, power, heat, water, gas and wastewater contingency plans should be incorporated into the plan, see Appendix D for plans developed at Naval Air Station, Keflavik, Iceland.

Power Contingency Plan

In today's society, little, if anything, will operate without electricity. Therefore, the power contingency plan is critical to all military/civilian operations and personal quality of life. The plan should describe the normal commercial power supply and distribution system. Facility power sources, isolated generator plants and portable generator plants should be listed with wattage/voltage output capabilities, fuel capacity and fuel run times as back-up power sources. The fuel capacity and run times are key in that it allows the logistical personnel to front order fuel to keep the back-up power operational.

Electrical lines (feeders) should be prioritized based on mission critical facilities which they service, load requirement and potential service disruption. Service disruptions may be caused by line slap caused by the wind, arcing caused by heavy rains and/or salt built up on electrical
connections, lighting strikes, transformer losses, and/or line breaks cause by snow weight or flying debris.

All information should be built into a feeder/facility data base and updated as system requirement changes take place. Facility feeder diagrams, switch gear locations and generator operations should be included in package.

**Heat Contingency Plan**

Heat and hot water, although not a necessity in certain parts of the country, can be a major concern. Quality of life suffers significantly without it and additional facility damage can be incurred by freezing pipes bursting. The plan should include all hot water generating facilities, capacity, rate, temperature, pressure, line size and insulation qualities and pumping stations, if known. Facility requirements should also be established. Asbestos insulation should be expected on all hot water or steam lines, if not marked appropriately.

There are few commercial large transportable boilers available or in existence, especially on short notice. Small transportable "donkey" boilers should be procured to assist in heating only mission critical, food service and emergency shelter facilities.

**Water Contingency Plan**

Water is also a precious resource. All water must be treated to Safe Drinking Water Standards. Local health officials should be contacted to assure all water breaks are repaired and sanitized correctly. Most areas are supplied by commercial water and have many built in redundancies. Other systems have individuals wells to provide resources and treat their water. Additional wells may be considered. Water tanker trucks and 500 gallon water buffaloes should be listed or procured.
The planning document should show all water resources with associated line locations, sizes and valves. Storage tanks should also be depicted with control system documentation, if available.

**Gas Contingency Plan**

Gas leaks can be extremely hazardous and may cause vast amounts of secondary damage if not repaired or shut off quickly. The planning document should show all gas resources with associated line locations, sizes and valves. If known, all working and non-working valves should be listed.

*(NOTE: Appendix D does not provide for NASKEF Gas Contingency Plan. No pressurized gas system existed on station.)*

**Waste Water Contingency Plan**

Waste water contamination of an area can lead to an outbreak of intestinal diseases such as typhoid, dysentery and diarrhea. Therefore, it is critical for health reasons that a waste water contingency plan be developed. Sanitary conditions must be maintained for a healthy environment, no matter how severe the damage. Contingency plan should include distribution location, line size, pumping station and lift station diagrams and power requirements along with any treatment facility specifications. Potential waste water holding areas should be identified in the plan also. The primary goal should be to keep waste water out of the water distribution system to avoid contamination.

The plan should list and specify location and availability and points of contact of local vendors of portable toilets and chemicals. Locations should also be identified for the installation of latrines on site. *(NOTE: Appendix D does not provide for a NASKEF Waste Water Contingency Plan. The sewer system on base is an untreated direct flow system into the ocean.)*
Waste Contingency Planning

Solid Waste Contingency Plan

Once a disaster does occur, vast amounts of solid waste is generated from the destruction of housing and environmental (primarily trees) systems. The solid waste must not only be moved to allow for area access but disposed of in proper landfills. A listing of area landfills with specifications on type and amount of material receipt allowed should be developed. Additional removal methods are by incineration on or off site or grinding and chipping material should be included in the planning process. Particular attention should be paid to any staging area and right of way requirements when establishing the contingency solid waste disposal plan. Solid waste should be inspected in order that no hazardous substances are disposed of by non-hazardous means.

Hazardous Waste Contingency Plan

A listing of all facilities that contain hazardous materials should be developed. No one should enter those buildings without the proper protection. Local safety, environmental and respective substance users should be coordinated with to ensure the safety of your personnel and the public.

A listing should also be prepared of manufacturers and transporters who treat, store and dispose of hazardous waste materials. It should be stressed that this list should contain the individual company's EPA identification number. Emergency plans required by law (Resource Conservation Recovery Act) should be available and updated. These plans should be incorporated into the overall emergency operations plan, if the site is located and overseen by local jurisdiction.
Contract Considerations

If a disaster does cause extensive damage to an area, existing contracts must be evaluated. The evaluation process must determine if the contract is to be completed, accelerated or terminated for convenience (i.e., the building is blown away). Recommendations vary as to what option should be selected. The underlining decision should be based on the importance each contract supplies to the mission and survivability of the area. Service and supply contracts should be viewed in the same manner as construction contracts.

An additional consideration will have to be made once repairs are being conducted as to whether the work should be completed "in-house" or contracted out. Contract support should be used based on time, personnel requirements, personnel technical skills, scope of work, contract methods available and fund availability.

Transportation Planning

Transportation modes and access routes to your area are critical for maintaining operations and survivability. This holds not only for receipt of manpower, materials and equipment but also evacuation routes for personnel should it be necessary.

Road System

A detail map and listing of pavement access routes should be provided. This will be the primary and most accessible personnel, material and equipment transportation mode. Road details should include construction details, if available; bridge information and details; any weather restriction (i.e., road closure during winter season); and any other details which may affect the system. A secondary use for the road systems may be as an expeditionary
runway or landing surface. Scandinavian countries use this method very effectively; however little documentation is available.

**Airport Facilities**

A listing of all available air transportation facilities should be developed to assist in personnel and flight operations. Data provided could assist in the recommendations provided for minimum operating strip recommendations. Table 4.4 provides an example. Although the information was not available in the table, additional information to the table development should include all aircraft navigational devices and any other pertinent information which may assist in logistical and operational decisions.

Military use of civilian airports should only be done under approval or an emergency.

Table 4.4. Icelandic Air Transportation Facilities (Partial Listing)

<table>
<thead>
<tr>
<th>Airport</th>
<th>MSL Elevation</th>
<th>Runway Length</th>
<th>NAV AIDS</th>
<th>Surface Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKUREYRI</td>
<td>6 FT</td>
<td>6365 FT</td>
<td>Not Available</td>
<td>ASPHALT/GRAVEL</td>
</tr>
<tr>
<td>HOFN</td>
<td>30 FT</td>
<td>3832 FT</td>
<td>Not Available</td>
<td>GRAVEL</td>
</tr>
<tr>
<td>REYKJAVIK</td>
<td>45 FT</td>
<td>5738 FT</td>
<td>Not Available</td>
<td>ASPHALT</td>
</tr>
<tr>
<td>KEFLAVIK</td>
<td>168 FT</td>
<td>10028 FT</td>
<td>Not Available</td>
<td>ASPHALT</td>
</tr>
<tr>
<td>VESTMANNAEYJAR</td>
<td>328 FT</td>
<td>3900 FT</td>
<td>Not Available</td>
<td>GRAVEL</td>
</tr>
<tr>
<td>SAUDAARKROKUR</td>
<td>8 FT</td>
<td>6600 FT</td>
<td>Not Available</td>
<td>GRAVEL</td>
</tr>
</tbody>
</table>

ROAD SURFACES: SEE ROAD MAP
ONLY AIR DROP
FIELD SURFACES: SEE BASE MAP
ONLY AIR DROP

(Major, 1992)

**Rail System**

A detail map and listing of rail services should be provided. Rail service will be the secondary material and equipment transportation mode. Rail details should include construction details, if available; bridge information and details; any weather restriction (i.e. rail closure during winter season); and any other details which may affect the system.
Docking Facilities

A listing of all available water transportation facilities should be developed to assist in personnel and pier operations. Data provided could assist in the recommendations provided for equipment and fueling considerations. Table 4.5 provides an example. Additional information to the table development should include all pier and off-loading capabilities and any other pertinent information which may assist in logistical and operational decisions.

<table>
<thead>
<tr>
<th>Port</th>
<th>Entry Width</th>
<th>Depth (MNL)</th>
<th>Length</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKUREYRI</td>
<td>2464 FT</td>
<td>25-154 FT</td>
<td>2460 FT</td>
<td>25 FT</td>
</tr>
<tr>
<td>SEYDISFJORDUR</td>
<td>6500 FT</td>
<td>20-120 FT</td>
<td>480 FT</td>
<td>20 FT</td>
</tr>
<tr>
<td>HAFNARFJORDUR</td>
<td>485 FT</td>
<td>18-26 FT</td>
<td>UNAV</td>
<td>19 FT</td>
</tr>
<tr>
<td>REYKJAVIK</td>
<td>328 FT</td>
<td>20-23 FT</td>
<td>11000 FT</td>
<td>21 FT</td>
</tr>
<tr>
<td>KEFLAVIK</td>
<td>480 FT</td>
<td>20-45 FT</td>
<td>220 FT</td>
<td>36 FT</td>
</tr>
<tr>
<td>VESTMANNAEYJAR</td>
<td>439 FT</td>
<td>20-33 FT</td>
<td>672 FT</td>
<td>20 FT</td>
</tr>
<tr>
<td>STRAUMSVIK</td>
<td>650 FT</td>
<td>33-36 FT</td>
<td>780 FT</td>
<td>36 FT</td>
</tr>
<tr>
<td>GRUNDARTANGI</td>
<td>60-75 FT</td>
<td>423 FT</td>
<td>UNAV</td>
<td>48 FT</td>
</tr>
<tr>
<td>HVALFJORDUR</td>
<td>6000 FT</td>
<td>78-144 FT</td>
<td>200 FT</td>
<td>50 FT</td>
</tr>
</tbody>
</table>

(Major, 1992)

Material, Equipment and Storage

The amount and type of materials and equipment available is critical to the expedition with which the area can recover. A thorough listing of materials and stock items should be provided and on hand from Departmental Material Branch. Additional requirements based on the facility and personnel requirements will require immediate processing. A listing of all area and specialist material supply vendors should be completed in order that expedient material procurement can take place.

Studies and damage assessment based on the hostile action threat for rapid runway repair requirements should be conducted and in coordination with
Commander, Construction Battalions, Atlantic or Pacific, and the Naval Civil Engineering Laboratory (NCEL). Once the study has been conducted, prepositioning of Rapid Runway Repair material, equipment and storage areas should be funded and be brought to the sight. RRR material availability and equipment availability matrixes should be kept on file and updated as material and/or equipment is used or put out of service, see Tables 4.6 and 4.7 for examples.

Storage facilities must be considered when developing the equipment and material requirements. Various material and equipment can not be stored outside, require refrigeration or are hazardous in nature. All materials will have to be carefully containerized, checked and monitored closely.

Table 4.6. RRR MATERIAL AVAILABILITY MATRIX FORMAT

<table>
<thead>
<tr>
<th>MATERIAL TYPE</th>
<th>STOCK</th>
<th>REQUIRED</th>
<th>SHORT FALL</th>
<th>ORDER NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRUSHED STONE REPAIR:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ballast Rock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stone Fill:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crushed Stone:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOD COVER:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRP Mats</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM-2 Mats</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precast Concrete Slabs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPALL REPAIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulated Set Cement:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pea Gravel:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REGULATED SET CONCRETE REPAIRS:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulated Set Cement:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregate:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HES CONCRETE: PERMANENT REPAIRS:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HES Cement:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregate:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(COMCBPAC/COMCBLANT OPLAN 9000, 1990)
Table 4.7 RAPID RUNWAY CESE AVAILABILITY MATRIX

<table>
<thead>
<tr>
<th>EQUIPMENT TYPE</th>
<th>STATION</th>
<th>CONTRACTOR</th>
<th>HMCB</th>
<th>REQUIRE</th>
<th>SHORT FALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOADERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOZERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUMPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRADERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIB ROLLER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAILER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRACTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5 T TRUCKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUEL TRUCK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WATER DIST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWEEPER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAG SWEEPER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIGHT PLANT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPRESSOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORKLIFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 GPM PUMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRETENMOBILE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALS:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(COMCBPAC/COMCBPAC OPLAN 9000, 1990)

**Dispersal Operations**

Dispersal is the relocation of forces, equipment, or materials for the purpose of increasing survivability. Dispersal activities include identifying dispersal locations, assets and methods; loading vehicles with equipment, materials, and fuel; and organizing convoys to preposition civil engineering support equipment (CESE) and material at dispersal sites (COMCBLANT/COMCBPAC OPLAN 9000, 1990, C-I-1/2).

a. CESE Guidance - Dispersal area should be 1,000 feet from runways/taxiways, parking aprons, hangars, POL facilities, command post, communication stations or ordnance areas. Utilize natural cover such as ditches and hillsides, improved by constructing berm, trenches and sandbags. Sites should be accessible in inclement weather and consider mud, snow and icy inclines prior to selecting sites.

b. Personnel Guidance - Areas should be selected away from bomb impact.
areas. Utilize natural cover improved by constructing trenches, bunkers, berms or under equipment.

c. Material Guidance - Preposition material near runway to minimize MOS repair time.

Base Denial

Denial plans should be established to make the area unusable to enemy or hostile factions. Denial plans include destroying utility systems, tearing up transportation modes and making facilities unsafe/unusable. The best way to accomplish this plan is by reversing the recovery contingency plans.
CHAPTER 5
DAMAGE ASSESSMENT

General Concept

Before any repairs can be accomplished following a disaster incident, it is essential that an effective damage assessment operation be completed. Damage repair teams must know what specific areas are damaged, the extent of the damage, and the approximate repair estimate. Initial damage reports may be made by airborne aircraft, flight line personnel, security police, fire department personnel and the public. An initial estimate of damage can be obtained by observations from good vantage points in specified areas. A more detailed assessment of damage requires the dispersal of damage assessment teams (DATs) to evaluate specific damage. A complete listing of facility repair priorities, following the guidance provided previously, must be established.

The area prioritization in general will be:

a. Runways and taxiways, aircraft maintenance, reloading, sortie generation and refueling areas.

b. Pier and port facility areas.

c. Base command and control, and communications facilities.

d. Key utility substations or facilities.

e. Medical and decontamination facilities.

f. POL storage and distribution facilities.

g. Other logistical support facilities.

Damage Assessment Techniques

The damage assessment operation should be conducted in a two-phase evolution: initial reconnaissance and detailed damage assessment. In Phase I,
the DATs mobilize to conduct an initial gross assessment of damage from pre-designated or assigned areas of the station to quickly locate areas of damage and unexploded ordnance (UXOs). The results of this preliminary survey helps the ECC quickly direct the assessment teams to those areas requiring detailed damage assessment. In detailed damage assessment, Phase II, the DATs are dispatched or reassigned to areas requiring more detailed damage assessment via a route directed by the ECC.

**Initial Damage Reconnaissance (Phase I)**  As stated, the purpose of Phase I, initial reconnaissance, is to quickly assess the environment to identify the areas of damage. Precise damage locations or extent is not expected because most of the Phase I observations may be made at some distance from the damaged area. The initial reconnaissance should be made from preselected observation posts by personnel trained in damage and pattern recognition. Examples of observation posts are the control tower, airbase point defense positions, aircraft shelters, airborne aircraft, or other specific points that provide facility vantage points. When hostilities/natural disaster are imminent, personnel should be assigned to the vicinity of all unmanned observation posts. After the incident, these individuals make visual observations and report the size and location of all damage as quickly and accurately as possible. Reporting procedures will depend on preincident instructions and available communications to the ECC.

**Detailed Reconnaissance (Phase II).** Phase II damage assessment may be extremely hazardous and time consuming, depending on the level of damage. DAT assignments should be made prior to the incident. To ensure the DATs survive the incident and are capable of deploying after the event has ended, the DATs should be dispersed to protected locations on the base before the event. Immediately after the incident, the ECC will relay damage assessment
instructions to each team. This message will most likely be transmitted via radio and will include initial reconnaissance information, assigned damage assessment routes, and any special instructions necessary to define the task.

**DAT Reconnaissance Methods**

**Manual Damage Assessment.** During manual damage assessment, the base is surveyed by DATs on foot. Team members will walk specified areas of the assigned area identifying and locating damage and unexploded ordnance (UXO). If possible, measurements are made by pacing distances from known locations, by estimating damages and by visually determining UXO identifying features. Although manual damage assessment is the most accurate damage assessment method, it is extremely time consuming and exposes team members to hazardous elements.

**Vehicle Damage Assessment.** Whereas manual damage assessment is a slow and potentially hazardous method, vehicular damage assessment offers increased speed and protection to the DAT. With vehicular damage assessment, an armored or hardened vehicle could be used to transport the team between damage and UXO locations which provides protection from hazards. These benefits are not provided without some cost to system effectiveness. Normal visibility from inside the vehicle is restricted and any vehicle hardening can further restrict visibility. This means that the DAT must locate and identify damage and UXOs from greater distances, possibly with binoculars. This limitation contributes to errors in reporting the size, position, and identification.

The accuracy of this method will vary from person to person based on distance, weather conditions, time of observation (night or day) and other human factors, such as fatigue or fear. The best travel route will be along any pavement centerline. This route gives equal visibility and allows team
personnel to visually sweep the area with binoculars forward and to the sides of the vehicle. Obviously, a meandering path may have to be taken to avoid damage. Because the vehicle is used for protection, the team members should remain in the vehicle except for extreme cases where the level of damage has destroyed the reference system. In this case, the members would have to measure the distance from the closest remaining reference marker to assure the required accuracy.

Vertical Transportation. Whereas manual and vehicle damage assessment is accomplished from the ground, vertical transportation assessment is conducted from the air. When available, this method provides expedience but limits the accuracy of information without vertical reference points.

Types of Damage Assessment

Damage assessment activities can be separated into two distinct areas, airfield and facility damage assessment. Airfield damage assessment involves the assessment of damage to runway, taxiway, and aircraft parking apron surfaces. Facility damage assessment includes assessment of damage to all other remaining area facilities and utilities. Resources permitting, all damage assessment operations should be conducted simultaneously. To shorten flight/pier operations restoration time, the damage assessment operations and Explosive Ordnance Disposal (EOD)/UXO operations should be accomplished jointly. Thus, the airfield/pier damage assessment teams are organized to conduct ground assessments of UXO or bomb damage. As EOD personnel will have additional responsibilities other than damage assessment, the base damage assessment teams (BDAT) may not be directly supported by EOD.
Airfield Damage Assessment

Airfield damage assessment is the vital first step toward restoring an operational runway after an emergency. During damage assessment, the locations, types and quantity of UXO, and airfield damage are determined and reported to the ECC. The ECC uses this information to determine and estimate potential minimum operating strips (MOS). The potential MOS list with repair estimates are relayed to the operational command center which selects the minimum airfield operating strip (MAOS) that must be cleared and repaired in order to restore flight operations. The MAOS consists of the MOS and the supporting taxiways, access routes, and parking aprons needed to launch and recover aircraft. Since major airfield recovery tasks cannot be started until airfield damage assessment and MAOS selection are complete, speed and accuracy during damage assessment are essential.

The airfield damage assessment teams (ADATs) should normally consist of one EOD technician and two Public Works/SEABEE representatives to aid the assessment, record information and communicate data to the ECC. The individual ADAT members should work together to locate and identify UXO and pavement damage, to include the location and size of craters, spall fields, and other runway damage. The EOD expertise is needed to accurately identify and classify UXO and oversee the activities of the ADAT in the hazardous UXO environment. The ranking member of the team will normally be the team leader. However, regardless of rank, the EOD technician takes charge and directs the team's movement through areas of UXO.

Pavement Damage Types

There are two types of airfield pavement damage which may occur as a result of an airfield attack. Pavement craters result from aircraft bomb
r missiles exploding damaging both the airfield pavement surface and the surface. Pavement spalling results from aircraft cannon fire, bombnel, or exploding area denial mines damaging only the airfield pavementce. Figure 5.1 provides typical pavement damage categories and probableions which caused the damage.

Figure 5.1 Pavement Damage Categories (20th NCR, 1993, 1.3-8)

Field Damage Reporting:

If the damage is assessed, it must be recorded and immediatelyo the ECC for damage plotting and MOS estimated and selected, see for details. The speed of reporting depends on the completeng of the information being relayed and strict adherence to radio by the DAT personnel. Reported damage will be kept forpurposes when the DAT returns to the command center.

MCPAC OPLAN 9000, 1990.

Identification code or call sign
me of report
mage assessment data
(1) **Individual Damage Data Reporting.** The format for reporting damage assessment data for individual craters, UXO, or spalls is:

T-YYYY-Z-MM-D-000

(a) T is the type of damage being reported:

- "C" - Crater
- "X" - UXO
- "S" - Spalls

(b) YYYY is the distance from the end of the runway/taxiway or other fixed point.

(c) Z denotes whether the damage is left or right of the surface centerline.

- "R" - Right
- "L" - Left

(d) MM denotes the distance to the center of the damage from the centerline.

(e) D denotes the diameter of the crater or indicates the size of a crater with a UXO inside.

(f) 000 denotes the apparent diameter size of the crater.

(2) **Area Data Damage Reporting.** Spall damage and UXO damage may cover a large area, making the format for individual craters and spalls cumbersome and time consuming. The format for area damage is as follows:

T-YYYY1-Z1-MM11-W-PPP1-F-YYYY2-Z2-MM21-W-PPP2-N

(a) T denotes damage type, see above for codes.

(b) YYYY denotes distance down a surface area. YYYY1 denotes the distance for the starting point of the damage. YYYY2 denotes the distance for the ending point of the damage.

(c) Z denotes right or left of centerline. Z1 denotes the centerline starting point position. Z2 denotes the centerline ending point position.

(d) MM1 denotes the distance from the centerline. MM11 is the distance for the starting point. MM21 is the distance for the
ending point. Note: if a width is called the distance used is to the center of the damage.

(e) W denotes the width.

(f) PPP denotes the width in feet of the apparent damage. PPP1 indicates the width of the starting point. PPP2 indicates the width of the ending point.

(g) F denotes the beginning point of the information for the ending point of the damaged area.

(h) N denotes the number of estimated spalls or UXOs in the area.

An example is attached.

<table>
<thead>
<tr>
<th>Code</th>
<th>Code</th>
<th>Code</th>
<th>Type of Damage (C-Crater, X-UXO, S-Spall)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>200</td>
<td>150</td>
<td>Distance Down Pavement</td>
</tr>
<tr>
<td>R</td>
<td>L</td>
<td>R</td>
<td>Direction L or R of Center Line</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>100</td>
<td>Distance Left or Right</td>
</tr>
<tr>
<td>D</td>
<td>W</td>
<td></td>
<td>Diameter or Width</td>
</tr>
<tr>
<td>30</td>
<td>20</td>
<td></td>
<td>Size of Diameter or Width</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td>Field Identifier</td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
<td>Distance Down Pavement</td>
</tr>
<tr>
<td>L</td>
<td></td>
<td></td>
<td>Direction L or R of Center Line</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td>Distance Left or Right</td>
</tr>
<tr>
<td>W</td>
<td></td>
<td></td>
<td>Width</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td>Size of Diameter or Width</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td>Number Identifier</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td>Number of Spalls or UXOs</td>
</tr>
</tbody>
</table>

**MOS Selection (COMCBPAC/COMCBPAC OPLAN 9000, 1990)**

The minimum operating surface (MOS) is the smallest section of runway required for launching and recovering an aircraft. Based on the damage assessment after an attack of the air base, it is possible to select a section...
of runway which requires the least apparent amount of time and effort to repair. The ECC may recommend possible MOS location alternative to the area command center but the area command center will determine its final location. Currently the minimum dimension of the MOS for fighter aircraft is approximately 50 feet by 5,000 feet long with 25 foot wide taxiways and for cargo aircraft 100 feet by 7,000 feet with 100 foot wide taxiways. The actual MOS length requirements are based on existing conditions and can be obtained from individual aircraft surface roughness charts.

A MOS may be located on the main runway, on a parallel taxiway, on an aircraft parking apron, or even on an alternate launch and recovery surface on or off base (i.e. wide, flat, straight roads). The MOS location can affect launch or recovery operations by restricting the flight approach of aircraft or by limiting air traffic control and access.

In order to get aircraft to and from a MOS, access routes are required. Access routes from aircraft shelters or parking areas to the MOS must be restored and maintained to the aircraft's minimum widths. The access route must be a smooth surface free of debris in order not to foul engines. AM-2 matting, FRP matting, or compacted crushed stone are excellent expedients which can serve to maintain and repair access routes.

The following should be considered when determining possible MOS alternatives:

a. The number and location of craters. The primary MOS should be selected in an area with as few bomb craters as possible to minimize the amount of work and time required to establish the MOS.

b. The amount, location, and severity of airfield pavement spalling. The primary MOS should be selected in an area with as few spalls as possible to minimize the amount of work and time required to establish the MOS.
c. **The amount and location of UXO.** The primary MOS should be selected in the area with the least amount of UXOs. As explosive ordnance disposal personnel are limited, UXOs may be a greater problem to the ECC operation than bomb craters or spalls. Therefore a more heavily damaged area may have to be selected over a less damaged one containing UXO if EOD assets are not available.

d. **The amount of bomb crater and spall damage to taxiways and/or access routes to the MOS.** Given several possible MOS locations with equivalent damage, the one with the least damaged access routes should be selected to minimize the total repair time of the primary MOS and access routes.

**Airfield Pavement Repair Estimates**

There are currently three different methods developed to determine MOS and repair times: manual, portable computer-assisted manual method, and automated method.

a. **Manual Method.** The manual method includes the use of 1"-100' airfield surface map, a crater template, aircraft surface roughness charts and various forms and charts to estimate repair time and quality, see Appendix E for MOS Selection Kit examples. The method is very time consuming but can used with no electrical power. For this reason, it is recommended that this method be used as the primary method for assigning repair qualities and estimating repairs.

b. **Portable Computer-Assisted Manual Method.** Damage is plotted manually using crater template. A computer is used to assign repair qualities and estimates individual crater repair times. The system is still currently in the development and testing phase.

c. **Automated Method.** The automated method handles all plotting, repair quality and repair estimates. Data is entered directly into the computer and
information is generated on a digitized board with an associated plotter. The system is still in development.

**Facility Damage Assessment**

The concepts and principles used to conduct airfield damage assessment also apply to facility and infrastructure damage assessment. The specific make-up of the base DATs will depend on the type of facilities to be investigated, as well as the number of qualified personnel available. The BDATs are dispatched by the ECC to specific areas to evaluate the extent of the damage, make repair estimates, and assist in the coordination of recovery efforts and as the damage assessment is completed, assist in the repair operations. (Johnson, 1990)

The BDATs will inspect the highest priority facilities first. Following an attack or natural disaster, structures may be weakened, live electrical lines may be down, and gas lines may be ruptured releasing explosive vapors. These potentially hazardous conditions require that the BDATs be very careful in their initial evaluation. In many cases, the BDATs will be the first persons venturing into an area following an incident. Consequently, the teams must ensure that the area is safe before beginning assessment activities. For example, if a building looks unsound, the team should not enter to make more specific observations until a determination is made that the structure will not collapse. Broken electrical wires present another hazard that should be avoided by team members. Potentially life-threatening situations are reported immediately so that crews can be dispatched to isolate the danger. The BDATs next responsibility is to determine the feasibility of repairing the facility. Those facilities which are beyond repair should be considered for demolition.
If the structure or utility does not present an immediate danger, it may be left for destruction at a later time.

In general, the BDATs should have at least one utility and one structural representative. The BDATs should be manned by experienced, Public Works Department civilian/military personnel. The minimum number of persons necessary to evaluate damage, normally two, will be assigned to each team.

**Facility Damage Reporting**

The actual repair of damaged facilities usually cannot be started immediately upon its discovery; therefore, the determination of the damage extent as well as the personnel, materials, and equipment necessary to complete the repair can involve some time. It is most important for the BDATs to rapidly survey the damaged areas to determine the full extent of the damage to mission essential facilities and utilities. This information must be reported to the ECC in sufficient detail to allow the ECC OIC to evaluate and prioritize his technical support and repair team responses.

Facility/infrastructure data cards should be prepared and include the following information:

- **a. Identification code or call sign**
- **b. Time of report**
- **c. Damage assessment data**
  - (1) Structural Component Damage - Damage reported to exterior walls, frame (general), frame members and connections, roof and floors, etc.
  - (2) Non-structural Components and Building Systems - Damage reported to interior walls, partitions, stairs, mechanical supports, elevators, glass/glazing, plumbing, electrical, mechanical systems, etc.
Site Component - Damage reported to trees, soil, paving, landscaping, walkways, parking areas, etc.

Geological Problems Noted - Note any settlement, liquefaction, landslide, faulting or other foundation and geological problems.

Degree of Damage - Determination of hazardous condition, repairability, habitability, safety, re-inspection, etc.

Dollar Estimate of Damage - Estimation of percentage facility damage to the components and total damage.

Supporting Documents - Provide supporting data such as photos, plans and sketches with a short narrative description.

Unexploded ordnance (UXO) that may influence operations must also be accurately located, reported, and recorded in sufficient detail for the ECC to determine the risk to operations. All UXOs within 300 feet of repair operations or aircraft operating surfaces must be identified. Holes of entry for subsurface UXO must also be reported. Report details should include:

1. Location
2. Size
3. Color
4. Fuse type and condition
5. Quantity
6. Shape
7. Distinctive markings

Base Repair Estimates

A very important tasking for the BDATs is the repair estimate. Repair estimates should include the required labor, materials, and equipment. The accuracy of these estimates will be crucial if the ECC is to do its best in
allocating limited repair personnel, material, equipment and funding resources.
General Concept

The mission of the Rapid Runway Repair (RRR) operations is to repair adequate airfield pavement to launch or recover mission essential aircraft. Airfield pavement includes runways, taxiways, and aircraft parking aprons. In order for the Emergency Command Center (ECC) organization to direct its resources to the most critical requirements first, the following should be the established airfield repair priorities:

a. Establishment of a primary minimum operating strip.

b. Repair of adequate taxiway and aircraft parking apron pavement to allow aircraft access on or off the primary minimum operating strip (MOS), commonly known as the minimum airfield operating strip (MAOS).

c. Establishment of secondary, redundant MOSs and MAOSs.

d. Permanent repairs to the primary MOSs, secondary MOSs, taxiways and parking aprons.

RRR operations should be considered one of the prime missions of the ECC after an incident and thus should apply its full resources to accomplish the RRR mission. However, due to the limited amount heavy equipment and civil engineering support equipment (CESE) available, the ECC should be prepared to accomplish base damage repair simultaneously. After the RRR mission is complete, all of the center's available construction assets can be applied to the repair of non-airfield facilities.

Emergency Operations Phase Requirements

RRR operations can be broken down into several distinct phases with each phase containing several supplements. These phases are:
a. Survival Phase.

(1) Review RRR Plan.

(2) Coordinate with Air Operations and Fire Department for Airfield procedures and support.

(3) Test communications.

(4) Inspect stockpiles and local routes. Inventory quantity of material available and report inventory to ECC. Disperse materials, if time permits, and restock mineral products as close as possible to runways and taxiways.

(5) Inventory FOD cover material. Advise ECC of current inventory.

(6) Reconnoiter airfield complex. Install additional runway and taxiway markers to allow for easy damage assessment recording and reporting.

(7) Construct MOS edge and "distance to go" markers.

(8) Check or construct an expedient runway lighting system.

(9) Prepare CESE for operations. Load and disperse equipment.

(10) Disperse personnel.

b. Assessment Phase. See damage assessment chapter for details, Chapter 5.

(1) Conduct damage assessment

(2) UXO Sweep/Explosive Ordnance Disposal

(3) MOS Estimate/Selection/Layout

c. Recovery Phase.

(1) RRRT Mobilization

(2) Crater Repair Operations

(3) Spall Repair Operations
d. **Airfield Restoration.** This phase provides permanent repairs to airfield facilities. Permanent repairs should not be conducted until:

1. Primary and several secondary MOSs established.
2. Sufficient taxiway and parking apron is available.
3. Threat of airfield attack is no longer imminent.

**RRR Organization**

Proper organization is critical to maintaining command and control and efficiently executing RRR operations. Non-augmenting and augmented RRR organizations and plans must be developed. RRR training and exercises should be conducted to execute this organization. The organization should field as many hauling, runway clearing and crater repair crews as the on-site CESE, material and personnel will support. As a result, each member of the RRR organization should understand the entire RRR operation, organizational function and assigned task accomplishment.

**Emergency Command Center (ECC).** Oversees and directs the overall Station recovery actions including facilities operations.

**NMCB RRR Command Center.** Oversees and directs efforts of the Battalion/Detail RRR organization. Will report to or be part of the Station ECC per operational control direction.

**Damage Assessment Team (DAT).** Responsible for reconnoitering and surveying the airfield and station facilities to identify, locate, report, and assess the extent of attack damage. See Chapter 4 for detailed DAT process.
Minimum Operating Strip (MOS) Team. Responsible for plotting and recording DAT information and make recommendations and estimations to the ECC OIC at prospective MOSs.

RRR OIC/AOIC. Directs the in-the-field RRR operations.

Crater Repair Crews. Responsible for removing damaged pavement surrounding or in the crater and backfilling the crater. Includes engineering capability to determine actual crater diameter vice apparent crater diameter, as required.

Hauling Crew. Responsible for stockpile operations and hauling crushed stone or ballast rock fill for use in backfilling craters.

Runway Clearing Crews. Responsible for clearing and sweeping the runway of debris.

Crater Support Crew. Provides refueling and water distribution (for compaction) services to crater repair crews. Provides mechanic/equipment repair services to crater repair, hauling, and runway clearing crews.

Spall Repair Crews. Responsible for repairing bomb and cannon spall damage.

FOD Cover Crews. Responsible for installation of FRP mats, concrete slabs or regulated set/high early strength concrete utilizing a cretemobile. Personnel from other crews should be available to form or augment the FOD cover crews.

Minimum Operating Strip (MOS) Marking Crew. Marks the perimeter of the MOS to delineate from the rest of the runway.

MOS Lighting Crew. Sets up expedient airfield lighting system for the MOS and repairs the existing runway lighting system.

Mobile Aircraft Arresting System (MAAS) Crew. Installs and sets up a mobile aircraft arresting system.
The assignment of civil engineering support equipment (CESE) and other RRR equipment is dependent on availability, personnel and RRR organizational structure. A major constraining factor in the RRR organization is CESE availability. Table 6.1 provides the recommended CESE listing for NMCB air detachment or small detachment.

Table 6.1. NMCB Air Detachment or Small Detachment CESE

<table>
<thead>
<tr>
<th>RRR CREW</th>
<th>CESE ASSIGNMENT</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRR OIC/AOIC</td>
<td>3/4 T UTILITY TRUCK</td>
<td>1 EA</td>
</tr>
<tr>
<td>DAT</td>
<td>ARMORED VEHICLE</td>
<td>1 EA</td>
</tr>
<tr>
<td>HAULING CREW</td>
<td>5 T TRACTOR W/35 T TILT DECK ECC:060701/086231</td>
<td>1 EA</td>
</tr>
<tr>
<td></td>
<td>10 T DUMP TRUCKS ECC:064401</td>
<td>2/CREW</td>
</tr>
<tr>
<td></td>
<td>5.5 CY WHL LOADER ECC:453152</td>
<td>1 EA</td>
</tr>
<tr>
<td>RUNWAY CLEARING CREW</td>
<td>GRADER ECC:442001</td>
<td>1 EA</td>
</tr>
<tr>
<td></td>
<td>TRACTOR/SWEEPER ECC:487501</td>
<td>1 EA</td>
</tr>
<tr>
<td></td>
<td>MAGNETIC SWEEPER ECC:571011</td>
<td>1 EA</td>
</tr>
<tr>
<td>CRATER REPAIR CREW</td>
<td>LOADER ECC:453031/453152</td>
<td>1 CREW</td>
</tr>
<tr>
<td></td>
<td>DOZER ECC:485021</td>
<td>1 CREW</td>
</tr>
<tr>
<td></td>
<td>COMPACTOR, VIBRATORY ECC:463523</td>
<td>1 CREW</td>
</tr>
<tr>
<td></td>
<td>FLOODLIGHT TRAILER ECC:511022</td>
<td>1 CREW</td>
</tr>
<tr>
<td></td>
<td>COMPRESSOR, 250 CEM ECC:313501</td>
<td>1 CREW</td>
</tr>
<tr>
<td>SPALL REPAIR CREW</td>
<td>2 1/2 T CARGO TRUCK</td>
<td>1 CREW</td>
</tr>
<tr>
<td>CREATEMOBILE CREW</td>
<td>UTILIZE CRATER REPAIR CREW CESE ECC:VARIOUS</td>
<td>1 CREW</td>
</tr>
<tr>
<td></td>
<td>CREATEMOBILE ECC:242501</td>
<td>1 CREW</td>
</tr>
<tr>
<td></td>
<td>RT FORKLIFT OR CRANE</td>
<td>1 CREW</td>
</tr>
<tr>
<td></td>
<td>FORKLIFT</td>
<td>1 EA</td>
</tr>
<tr>
<td>MOS LIGHTING CREW</td>
<td>2 1/2 T CARGO TRUCK ECC:036031</td>
<td>1 CREW</td>
</tr>
<tr>
<td>MOS MARKING CREW</td>
<td>2 1/2 T CARGO TRUCK ECC:036031</td>
<td>1 CREW</td>
</tr>
<tr>
<td>MAAS INSTALLATION CREW</td>
<td>5 T TRACTOR ECC:064512</td>
<td>1 CREW</td>
</tr>
</tbody>
</table>

*(COMCBPAC/COMCELANT OPLAN 9000, 1990)*

**Damage Preparation**

**Crater Preparation**

Crater repairs consist of clearing debris from the crater, removing damaged pavement, backfilling the crater and installing a Foreign Object Debris (FOD) cover. The debris clearing, pavement removal, and backfilling procedures are generally the same regardless of the FOD cover method utilized. Crater preparation is required prior to the installation of the FOD cover.
Each FOD cover method might require various preparation degrees and compaction. A typical preparation is as follows:

a. Clearing debris from the airfield.
b. Determining actual verses apparent crater diameter.
c. Removal of upheaval pavement.
d. Removal of large ejecta from inside the crater.
e. Backfilling the crater with ballast rock, fill and clean ejecta.
f. Backfilling the crater with crushed stone.
g. Compacting the crushed stone.

**Spall Preparation**

Spalling creates large areas of the runway unusable due to the excessive surface roughness. Spall preparation is required prior to filling spall area.

a. Clearing debris from the airfield.
b. Removal of all water and/or ice in cavity.

**Foreign Object Debris (FOD) Cover Methods**

There is a debate over the optimum FOD cover to be utilize to repair aircraft road surfaces, because each FOD cover system has advantages and disadvantages. No optimum repair method exists and a "menu" approach is recommended to determine the repair method(s) to be used. The actual method combination will depend on the materials, personnel and CESE available, as well as the weather conditions. The methods described are only provided for a basic understanding of the method and installation procedures. The Naval Construction Training Center FOD Cover Instructional Course and the Air Force Engineering and Service Center Course materials provide information on a much greater detail.
Crushed Stone Without a FOD Cover, Figure 6.1

The FOD cover consists of compacted crushed stone over a compacted subbase. This method should only be used if none of the other FOD cover methods are feasible or time does not permit a more permanent repair to be conducted. "Crushed Stone" refers to a well graded, high quality crushed stone meeting gradation, hardness, and abrasion requirements of NAVFAC GUIDESPEC NFGS-02233, Graded Crushed Stone Aggregate Base Course for Flexible Pavement. Repair operations should take the following steps:\(^1\):

1. Clear debris and determine upheaval.
2. Remove upheaval after determination is made as to extent of damaged area.
3. Place geotextile fabric in the bottom of crater, if available. Begin fill procedures using stone fill or ejecta, not greater than 12 inches in size. Crater should be filled and compacted to approximately 18 inches below grade. Compaction should be completed with at least two or three passes of a bulldozer or grader.
4. Place a geotextile fabric, if available, on top of the debris or ballast rock to prevent water inflow into the aggregate fill and prevent the higher quality stone from settling into the ejecta or ballast rock.
5. Backfill in two 10-12 inch lifts using crushed stone. Pack first lift to 95% and the second to 100% in accordance with ASTM D1557.
6. All excess material should be scraped off and the crater level should be flush with the surrounding pavement.

\(^1\) Repair sequence is established using 20th NCR Student Handbook, CBLANT/CBPAC OPLAN 9000 and experience in method placement from military tour in Iceland. Other subbase methods may be used, but will not be provided, see references for further details.
(7) Conduct a final surface roughness check to ensure that the surface does not exceed tolerances. If it is not within tolerances, the repair is unacceptable. Repair the unacceptable areas using the procedures outlined above.

(8) Sweep around the crater and continue sweeping the airfield until the pavement surface is free of all debris.

(9) A permanent repair using high early strength concrete should be made as soon as flight operations will allow. Until this takes place the patch should be inspected at a minimum of every 50 passes.

Figure 6.1 Crushed Stone FOD Repair

Precast Concrete Slabs, Figure 6.4

The precast concrete slab FOD cover method consists of precast concrete slabs (2m x 2m x 15cm) over a compacted stone subbase. The method is preferred by the United States Air Force, Europe. The advantages of this method include low cost and long shelf life. The disadvantages of this method include equipment and labor intensive.

The slabs are formed and poured prior to the attack and stored on-site. Concrete steel design diagram is shown in Figure 6.2.
Repair operations should take the following steps²:

a. Clear debris and determine upheaval. Mark out for a whole number of slabs in order that no slabs will be required to be cut to install cover, see Figure 6.3.

Figure 6.3 Typical Mark Out and Removal Plan (20th NCR, 1993, 1.62-4)

---

²Repair sequence is established using 20th NCR Student Handbook, AFESC Volumes I and II, CBLANT/CBPAC OPLAN 9000 and experience in method placement from military tour in Iceland. Other subbase methods may be used, but will not be provided, see references for further details.
b. Remove the upheaval after determination is made as to extent of damaged area.

c. Place geotextile fabric in the bottom of crater, if available. Begin fill procedures using stone fill or ejecta, not greater than 12 inches in size. Crater should be filled and compacted to 10-12 inches below grade mark.

d. Place a geotextile fabric, if available, on top of the debris or ballast rock to prevent water inflow into the aggregate fill and prevent the higher quality stone from settling into the ejecta or ballast rock.

e. Backfill with 3/8 inch gravel or crushed stone (NAVFAC GuideSpec NFGS-02233, Graded Crushed Stone for Flexible Pavement) to 4 to 5 inches thick. Pack lift to 100% in accordance with ASTM D1557.

f. Screed or skim crater to 5 1/2 inches below grade level. Level area with sand.

g. Place and install slabs using a screed beam or other lifting device using the slab built in key ways. Settle the slabs by rolling heavy equipment over them.

h. Conduct a final surface roughness check to ensure that the surface does not exceed tolerances. If it is not within tolerances, the repair is unacceptable. Repair the unacceptable areas by repeating procedures f and g outlined above. The final repair should look like Figure 6.4.

i. Sweep around the crater and continue sweeping the airfield until the pavement surface is free of all debris.

j. A permanent repair using high early strength concrete or asphaltic-concrete should be made as soon as flight operations will allow. Until this takes place the patch should be inspected at a minimum of every 50 passes for concrete failure and/or upheaval of slabs.
Regulated Set Concrete Utilizing a Cretemobile, Figure 6.6

The regulated set concrete utilizing a cretemobile FOD cover method consists of a pore of regulated set or high early strength (HES) concrete using a cretemobile over a compacted stone base. The repair is a permanent repair. Table 6.2 provides the recommended HES mix design for airfield pavement repairs:

Table 6.2 Recommended HES Mix Design (CBPAC/CBLANT OPLAN 9000, 1990, C-VI-C-1/2)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SPECIFICATION</th>
<th>AMOUNT/TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEMENT</td>
<td>ASTM C150 TYPE III</td>
<td>752 LBS (8 BAGS)</td>
</tr>
<tr>
<td>COARSE AGGREGATE</td>
<td>ASTM C33 NO. 57</td>
<td>1900 LBS SATURATED</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- SURFACE DRY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ABSORPTION - 0.6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- SPGR - 2.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- UNIT WEIGHT - 107 LB/CF</td>
</tr>
<tr>
<td>FINE AGGREGATE</td>
<td>ASTM C33</td>
<td>916 LBS SATURATED</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- SURFACE DRY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ABSORPTION - 0.6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- FM - 2.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- SPGR - 2.62</td>
</tr>
<tr>
<td>WATER</td>
<td>POTABLE</td>
<td>32.5 GALLONS</td>
</tr>
<tr>
<td>WATER REDUCER</td>
<td>ASTM C494 TYPE A,E,F,G</td>
<td>37.6 OZS - MASTER BUILDERS POZZOLITH LL960</td>
</tr>
<tr>
<td>ACCELERATOR</td>
<td>ASTM C494 TYPE C</td>
<td>120.0 OZS - MASTER BUILDERS POZZOLITH 122-HE</td>
</tr>
<tr>
<td>AIR ENTRAINER</td>
<td>ASTM C260</td>
<td>TEMPERATURE DEPENDENT - OPTIONAL</td>
</tr>
</tbody>
</table>

A cretemobile is a mobile concrete unit which carries unmixed materials (sand, cement, aggregate, water, additives) to the site where it mixes the
concrete to design specifications. The unit may be resupplied for continuous concrete manufacture, if necessary. A typical cretemobile is shown in Figure 6.5.

Figure 6.5 Top View of Cretemobile (20th NCR, 1993, 1.65-7)

Repair operations should take the following steps:

a. Clear debris and determine upheaval. Unlike the precast method, the only restriction for mark out is the extent of damage.

b. Remove upheaval after determination is made as to extent of damaged area.

c. Place geotextile fabric in the bottom of crater, if available.

Begin fill procedures using stone fill or ejecta, not greater than 12 inches in size. Crater should be filled and compacted to the 18-24 inches below grade. Compaction should be completed with at least two or three passes of a bulldozer or grader.

d. Place a geotextile fabric on top of the debris or ballast rock to prevent water inflow into the aggregate fill and prevent the higher quality

---

3Repair sequence is established using 20th NCR Student Handbook, CBLANT/CBPAC OPLAN 9000 and experience in method placement from military tour in Iceland. Other subbase methods may be used, but will not be provided, see references for further details.
stone from settling into the ejecta or ballast rock, if available.

e. Backfill in using 10-12 inch lifts of either 3" minus ballast rock or crushed stone to 6-12 inches below grade. Compact last lift to 100%. Place a geotextile on top, if available.

f. Pour HES or Regulated Set Crete using the cretemobile. Finish concrete to meet surface roughness required. Figure 6 provides finished product appearance.

g. Sweep around the crater and continue sweeping the airfield until the pavement surface is free of all debris.

h. Even though the cretemobile method is a permanent repair the area should be inspected at a minimum of every 100 aircraft passes after the initial 50 passes.

Figure 6.6 RSC Utilizing a Cretemobile FOD Repair (20th NCR, 1993, 1..6-2)

Fiber Reinforced Polyester (FRP) Matting, Figure 6.7

The FOD cover consists of fiber reinforced polyester matting over a compacted stone base. Repair operations should take the following steps:

4Repair sequence is established using 20th NCR Student Handbook, AFESC Volumes I and II, and CBLANT/CBPAC OPLAN 9000. Other subbase methods such as sand grid, choked-ballast and cheap-ballast methods may be used, but will not be provided or presented. See References for further details.
(1) Perform Steps 1-6 of Compacted Crushed Stone Method
(2) Assemble mats adjacent to the site and tow to crater.
(3) Cover crater and secure mats to surface.
(4) Conduct a final surface roughness check to ensure that the surface does not exceed tolerances. If it is not within tolerances, the repair is unacceptable. Repair the unacceptable areas using the procedures outlined above.
(8) Sweep around the crater and continue sweeping the airfield until the pavement surface is free of all debris.
(9) A permanent repair using high early strength concrete should be made as soon as flight operations will allow. Until this takes place the patch should be inspected at a minimum of every 50 passes.

Figure 6.7 FRP FOD Repair

AM-2 Matting
The FOD cover consists of a steel matting over a compacted stone base. AM-2 matting is to be only used on taxiway, ramp areas and/or expeditionary airfields. It is unsuitable for use on runway repairs. The same placement methods used for FRP mats are used for AM-2 matting.
Spall Repair

The FOD cover to repair spalled areas is primarily a using rapid setting cements and pea gravel over existing runway surfaces. Current Naval Civil Engineering Laboratory (NCEL) recommendations to repair spall areas is to use a combination of rapid setting cements and pea gravel. Recommended rapid setting cements are5:

- Regulated Set Cement (REG SET)
- Magnesium Phosphate Cement (SET 45)
- High Early Strength Type Cement (PYRAMENT)

The spall should be filled by a combination of pea gravel and cement grout. The spall must be floated or trawled to produce a smooth, flush repair surface. Ensure manufacturer's instructions are read prior to repairs, paying particular attention to temperature and weather constraints.

Airfield Marking

Airfield marking is the identification of the MOS. Marking procedures include the obliteration of existing marking which conflict and installing new markings on the MOS. Edge markers are used to identify the boundaries of the MOS. If possible, a centerline should be shown as a painted broken of the MOS. All existing runway markings that could cause confusion regarding the MOS location should be eliminated by painting over them. Distance-to-go markers should also be installed.

There currently is no standard MOS marking system. Once the system is developed, procured, and prepositioned, improvised systems will be utilized. Edge markers can be constructed of reflective painted, plywood structure,

---

5Repair method and recommendations are established using 20th NCR Student Handbook and CBLANT/CBPAC OPLAN 9000. See references for further details.
secured with sandbags. Distance-to-go markers will be similarly constructed. Improvised systems should be constructed during the survival phase if time and materials permit.

Runway Lighting Systems

Power must be supplied to the existing or expedient runway light system. The primary and back-up feeder for airfield lighting must be laid out and understood. Emergency back-up generators with one day fuel supply, at a minimum, should be part of the lighting system circuitry. Airfield lighting controls should be capable of being controlled from either the control tower or directly from the lighting vault. Portable generator capability should calculated and supplied for any expedient lighting system.

It is likely that a section(s) of the distribution airfield lighting cable will be cut or disrupted. Repairs to the existing system by splicing around breaks should be attempted first for expedience. However, if the lighting system is extensively damaged, a new lighting system will have to be installed. Power should be supplied from either the lighting vault or emergency generators, whichever is more practical.

When the existing runway lighting system cannot be utilized because of damage, an expedient or emergency airfield lighting system must be deployed. There currently is no standardized system. Once the system is developed, procured, and prepositioned, an improvised system will have to be utilized.

Mobile Aircraft Arresting Systems

Mobile aircraft arresting systems (MAAS) are capable of being rapidly deployed and installed. The Navy is currently developing an improved MAAS.
The existing system, M-21, has limited mobility and requires frequent maintenance.  

---

6 According to COMCBLANT/COMCBPAC OPLAN 9000.
CHAPTER 6
BASE DAMAGE REPAIR AND TRANSPORTATION SUPPORT ORGANIZATION

General Concept

The mission of Base Damage Repair (BDR) operations is to operate utility systems and repair damaged mission-critical facilities and utility systems. The Transportation Support (TS) operations is to support recovery operations by vehicle dispatch, purchase and issue, refueling, material clearing and grounds maintenance operations. Unlike the rapid runway repair organization, BDR and TS operation are extension of services provided during normal operations. In order for the ECC organization to direct its resources to the most critical requirements first, the following should be the established facility/transportation repair priorities:

a. Clearing emergency access routes.
b. Support mass casualty and emergency shelter operations.
c. Utilities restoration and emergency utility support.
d. Facility dry-in.
e. Debris removal and disposal.
f. Facility restoration.

Emergency Operations Phase Requirements

BDR/TS operations can be broken down into several distinct phases with each phase containing several supplements.

a. Survival Phase.
   (1) Review Utility contingency plans, facility priority list, and facility hardening/camouflage list. Begin work to reduce infrastructure damage per priorities established by the ECC.
(2) Review contingency support plans.
(3) Test communications. Coordinate with Fire Department for base fire fighting support.
(4) Inspect material stockpiles and local routes. Inventory quantity of materials available and report inventory to ECC. Disperse materials and restock if possible and time permits.
(5) Reconnoiter base complex.
(6) Prepare CESE for operations. Load and disperse equipment.
(7) Assist in evacuation of personnel.
(8) Disperse personnel.

b. Assessment Phase.
(1) Damage Assessment
(2) UXO Sweep/Explosive Ordnance Disposal
(3) In-house/Contract Decision.
(4) Contract Documentation and approval.

c. Recovery Phase.
(1) Clear access routes
(1) BDRT Mobilization
(2) Utilities Repair
(3) Structural Repair
(4) Emergency Contract Repair

d. Station Restoration. During this phase permanent repairs to station facilities and utility systems are made. Permanent repairs will be conducted per the facilities priority putting emphasis on critical operating facilities over all others.
BDR/TS Organization

Proper organization is critical to maintaining command and control and efficiently executing BDR/TS operations. Non-augmenting and augmented BDR organizations and plans must be developed. BDR training and exercises should be conducted to execute this organization. The organization should field utility operation crews and as many repair crews as the onsite manpower, materials and equipment will support. As a result, each member of the organization should understand the BDR/TS operation, organizational function and assigned task accomplishment.

Emergency Command Center (ECC) Oversees and directs the overall Station recovery actions including facilities operations.

NMCB Command Center Oversees and directs efforts of the Battalion/Detail organization. Will report to or be part of the Station Emergency Command Center.

Damage Assessment Team (DAT) Responsible for reconnoitering and surveying the airfield and station facilities to identify, locate, report, and assess the extent of attack damage.

Facility Assessment Team Responsible for plotting and recording DAT information and make recommendations/estimations to the ECC OIC at prospective facility repairs and utility systems status.

BDR OIC/AOIC Directs the in-the-field facility repair operations.

Utility OIC/AOIC Directs the in-the-field utility repair operations.

Base Damage Repair Crews Responsible for repairing damaged facilities and utility systems. Includes engineering capability to determine actual damage vice apparent damage, as required.

Utility Operating Crew Responsible for operating the electrical, water, and heat plants on the station and outlying sites.
TS OIC/AOIC. Directs the in-the-field transportation support operations.

Transportation Assessment Team. Responsible for dispatch and tracking information of all transportation assets. Includes estimating equipment repairs.

Transportation Support Repair Crews. Responsible for operating heavy equipment in assistance to the repairs of damaged facilities and utility systems. Includes demolition capability, as required.

Transportation Equipment Repair Crews. Responsible for transportation equipment repairs.

Work Accomplishment Resources

Once the damage has been incurred to the facilities and the assessment process has established a damage assessment data base, the work must be prioritized for completion. The organization must determine who will accomplish the work required. The work can be completed by in-house workforces, augmenting forces, or by contract. The decision should be based on availability, expertise and time.

In-house Public Works Forces. The in-house work force will be the first forces on site to restore essential utility services, minimize facility damage and protect the public from hazards. It must be remembered that they are the local expertise and have the core knowledge of the existing facilities and infrastructure systems and condition of such systems. They also will remain to carry on the repairs and take equipment ownership after the emergency ends and augmenting troops leave the area.

Seabees/NCEL/NEESA. Forces should be used for expedient facility dry in, power restoration and mobile power sources and clearing operations.
Service Contracts. Existing service contracts may be expanded.

Maintenance service contracts listing should be developed for use. Types of contracts which should be used are roofing, ground maintenance, paving (road access clearing and waste removal), custodial (interior water cleanup), refuse collection and disposal. Small purchase contracts can take up some of the remaining work load.

Letter Contracts. Authority must be approved to use other than full and open competition. Primary use should be considered in roof dry in and repair, power poles. Bidders lists are prepared and work announcements posted. Following work commencement the scope and price were defined and negotiated.

Job Order Contracts. Job orders are cut to contractors similar to in-house job orders. The work is accomplished on a unit price per type job order.

Firm-fixed price Contracts. Larger contracts should still be conducted under firm-fixed price contracts. Large reroofing, paving, fencing and piling work is not recommended for use with the other contract methods.

Military Construction Contracts. Contracts should be used to replace facilities or major utility systems replacement.

Vehicle and Real Estate Leases. Vehicle and real estate leases may be required to obtain the necessary vehicles to support augmenting troops and real estate to support emergency shelters, material staging areas and augmentation beddown. Respective Naval Facilities Engineering Commands and/or local planning and real estate officials should be contacted for lease expertise.

Support Functions

The organization will be responsible for support of other higher authority support functions. These functions may include:
Mass Casualty. Various disaster sources may cause not only property
damage but loss of life. The organization may be called upon to provide
vehicle transportation, heavy equipment operators, establishing field
hospitals, and emergency center support.

Threat Condition. Different threat conditions caused by hostile actions
may require various actions by the organization to support law enforcement
actions and personnel and facility safety. Appendix F provides an example of
Public Works support plan for threat conditions.

Non-combatant Evacuation or Civilian Evacuation. Military or civilian
evacuation may require various support ranging from transportation to setting
up emergency evacuation centers.

Repair Actions

A minimum of temporary repairs should be made. It is realized that it
is impossible not to make temporary repairs, but when the choice between a
temporary repair and permanent repair is minor the permanent repair should
always be chosen. This can be a key time saver to the organization, because
the less amount of rework in an emergency operations situation the better the
organization can priority remaining work without the added burden of doing
work twice (parallel to everyday operations).

The manner by which repairs are made should also be discussed
thoroughly. Repairing or restoring to previous condition may be building
problems for the future. Examples include:

a. Overhead utility lines should be considered to be place underground,
if feasible. Many choices are based on current cost. However, if a hurricane
hits your area on the average of every 10 years, the cost benefit analysis
should show a definite cost savings by installing underground lines now. This
provides a greater service to the customer and decreases the chances of damage in the future.

b. Building reconstruction should use the most stringent building codes available. Building to substandard code or design requirements is placing undo burdine on the facility user, your maintenance personnel and have reduced lifetime expectancy. This is not to mention the cost of repairing the facility everytime above average weather conditions approach the area.
CHAPTER 7
CONCLUSION

This document is intended to provide a starting point for military and civilian public works departments in developing an emergency operations doctrine to handle any predictable incidents based on factors such as their mission, economical importance, geographical location, and personal and public safety. It deals with common circumstances which public works departments will be required to deal with or be subject to reply to during the preparation, assessment and recovery operations following a hostile action, natural disaster or man-caused disaster. The organization, preparedness plans and facility contingency operations are essential for the public works staff to quickly react and minimize the life loss, property damage and environmental impact while sustaining operational and business services.

If it done correctly, limited service operations are only disrupted in localized areas for short periods of time and the news coverage is about the personal losses. However, if it is done incorrectly, the city or base is without a major service (i.e., water distribution) for an extended period of time slowing and bogging down the repair efforts and the news coverage is about the lack of services provided to the area residents already suffering from the tragedy personally. Disaster preparedness can not and should not be taken lightly. All major infrastructure systems should be examined, requirements known and documented, back-up operating procedures established and incorporated into everyday operations. This system will provide the public works director with the knowledge and competence necessary to handle all emergencies and support higher authority when called upon to react. It is unreasonable to think that the document will provide the answers for every
problem, but it will provide a starting point for the assessment, recovery and restoration of infrastructure problems in a quick logical manner.
APPENDIX A

KEY TERMS AND WARNINGS

HOSTILE ACTION

Alarm System - A series of bells, sirens, whistles, horns or other devices used to warn of impending action or safety. Most alarm systems consist of the following conditions

- All Clear - No impending threat.
- Condition Yellow - Probable attack.
- Condition Red - Imminent attack or attack in progress.
- Condition Black - After attack.

Mission-Oriented Protective Posture (MOPP) Operations - MOPP levels are determined by the threat of chemical, nuclear, or biological weapons use by the enemy.

THREATCON ALPHA: A general warning of possible terrorist activity, the nature and extent of which are unpredictable.

THREATCON BRAVO: This condition is declared when there is increased and more predictable threat of terrorist activity even though no particular target is identified.

THREATCON CHARLIE: This condition is declared when an incident occurs or when intelligence is received indicating that some form of terrorist action against installations and personnel is imminent.

THREATCON DELTA: A terrorist attack has occurred or intelligence has been received that terrorist actions against a specific location is likely.

HURRICANES

Tropical Disturbance - First stage of unstable weather that may develop into a hurricane.
Tropical Depression - The tropical activity has a low pressure area that could become a hurricane. Highest wind speed is 38 mph.

Tropical Storm - Wind speed of 39-73 mph. Low pressure area is well-defined by rotating circulation.

Tropical Storm Watch - An announcement that a tropical storm poses a threat within 36 hours.

Tropical Storm Warning - Tropical storm is expected within 24 hours.

Hurricane - Once a tropical storm's constant wind speed reaches 74 mph.

Hurricane Watch - An announcement that a hurricane is expected within 36 hours.

Hurricane Warning - A hurricane is expected within 24 hours, however, because of uncertainty in hurricane path the time could be only hours.

<table>
<thead>
<tr>
<th>CAT</th>
<th>WIND VELOCITY</th>
<th>BARO PRESSURE</th>
<th>STORM SURGE</th>
<th>DAMAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONE</td>
<td>74-95 MPH</td>
<td>28.94&quot; or more</td>
<td>4-5'</td>
<td>Minimal</td>
</tr>
<tr>
<td>TWO</td>
<td>96-110 MPH</td>
<td>28.5&quot;-28.93&quot;</td>
<td>6-8'</td>
<td>Moderate</td>
</tr>
<tr>
<td>THREE</td>
<td>110-130 MPH</td>
<td>27.91&quot;-28.49&quot;</td>
<td>9-12'</td>
<td>Extensive</td>
</tr>
<tr>
<td>FOUR</td>
<td>131-155 MPH</td>
<td>27.17&quot;-27.90&quot;</td>
<td>13-16'</td>
<td>Extreme</td>
</tr>
<tr>
<td>FIVE</td>
<td>OVER 155 MPH</td>
<td>Less than 27.17&quot;</td>
<td>Over 18'</td>
<td>Catastrophic</td>
</tr>
</tbody>
</table>

Source: National Hurricane Center

TORNADO

Tornado Watch - Tornado, severe thunderstorms, or both are possible.

Tornado Warning - Tornado sighted.

WINTER STORM

Traveler's Advisory - An announcement issued when enough ice and snow are expected to hinder travel but the anticipated conditions are not serious enough to require warnings.
Freezing Rain - Forecast when expected rain is likely to freeze as soon as it strikes the ground, creating a coating of ice on roads and walkways.

Sleet - Small particles of ice mixed with rain.

Winter Storm Warning - Heavy snow, sleet or freezing rain are expected.

Winter Storm Watch - Severe winter weather possible.

Blizzard Warning - Heavy snow and winds of 35 mph or more are expected.

Severe Blizzard Warning - Very heavy snow is expected with winds over 45 mph, temperatures below 10 degrees and visibility reduced.
Army Corps of Engineers (The Military Engineer, 1993)
ALABAMA

Alabama Emergency Management
Clanton, AL 35045-5160
Contact: Phillip Hicks
Phone: (205) 380-2200
FAX: (205) 280-2606

Blackburn & Associates, Inc.
Lawrenceburg, AL 34752
Contact: Lynn Davis Blackburn
Phone: (205) 265-2920
FAX: (205) 265-2920
Capabilities: EFIT 1 3 12

Bleustein Inc.
Montgomery, AL 36101-0949
Contact: Danny Crowder
Phone: (205) 264-4000
FAX: (205) 271-5790
Capabilities: EFIT 1 3 12

Brown & Root Inc.
Mobile, AL 36616
Contact: Jim Grover
Phone: (205) 450-7295
FAX: (205) 450-7247
Capabilities: PHIT 1 3 10

Carr & Associates Engineers, Inc.
Pelham, AL 35124
Contact: Ben F. Carr, Jr.
Phone: (205) 664-8480
FAX: (205) 664-9653
Capabilities: PI L T I 3 5

Echols Services Inc.
Huntsville, AL 35805
Contact: Jack J. Dunlap
Phone: (205) 830-6100
FAX: (205) 830-1991
Capabilities: M I R S 3 8 10

Hayes, Sexy, Masters & Masters, Inc.
Mobile, AL 36691
Contact: Donald M. Loper
Phone: (205) 343-9713
FAX: (205) 343-9717
Capabilities: FT 1 3 5

ISSI Unexploited Ordinance, Inc.
Huntsville, AL 35805
Contact: Robert T. Fos, Sr.
Phone: (205) 536-4446
FAX: (205) 536-9395
Capabilities: H I R T 7 9 10

P.E. LaMerrette Associates, Inc.
Tuscumbia, AL 35603
Contact: Robert W. Carwell
Phone: (205) 752-5543
FAX: (205) 752-4043
Capabilities: F I O 1 3 1 0

Law Companies Group, Inc.
Huntsville, AL 35801
Contact: G. Patrick Harris
Phone: (205) 355-9755
FAX: (205) 355-9756
Capabilities: EF I L 1 3 1 0

Livingston Design Inc.
Birmingham, AL 35205
Contact: LaHayne Livngston
Phone: (205) 933-0383
FAX: (205) 933-9118
Capabilities: 3

Mid-South Testing, Inc.
Decatur, AL 35501
Contact: Ron Stringer or Vernon Lane
Phone: (205) 350-0866
FAX: (205) 350-9967
Capabilities: H O 3 10

Optoeay & Energy
Huntsville, AL 35805
Contact: Richard Grace
Phone: (205) 539-3616
FAX: (205) 539-3674
Capabilities: H O 3 10

Puent-Davis RY Engineers, Inc.
Huntsville, AL 35801
Contact: Thomas T. "Tom" Cawthon
Phone: (205) 551-0222
FAX: (205) 551-0436
Capabilities: F T 3

Peugh, Wright & Assoc., Inc.
Decatur, AL 35602
Contact: Joel N. Peugh
Phone: (205) 353-3937
FAX: (205) 350-2285
Capabilities: FT 3

Rusty International Corp.
Birmingham, AL 35242
Contact: Lawrence G. Michalove
Phone: (205) 395-7537
FAX: (205) 395-6740
Capabilities: H R I O 3 1 5 10

Sharpless, Smith and Adams, Inc.
Montgomery, AL 36111
Contact: Roland H. Voughn
Phone: (205) 263-6481
FAX: (205) 264-6500
Capabilities: I O 1 3 1 2

Ursan Construction Co., Inc.
Huntsville, AL 35824
Contact: J.R. Glover
Phone: (205) 461-0568
FAX: (205) 461-6731
Capabilities: FT 3 5

U.S. Army Engineer District, AL
Huntsville, AL 35802-0100
Contact: Robert R. Wenzel
Phone: (205) 359-6139
FAX: (205) 359-2011
Capabilities: FT 3 5 7

Ray F. Wenzel, Inc.
Asheville, NC 28807
Contact: Vern Varone
Phone: (205) 824-6100
FAX: (205) 824-8232
Capabilities: EF I O 1 2 3 5 10

ALASKA

Alaska Division of Emergency Services
Fairbanks, AK 99705-0870
Address: Ermie Poul Maxton
Phone: (907) 456-7800
FAX: (907) 456-7800

Anchorage Municipal Light & Power
Anchorage, AK 99501
Contact: Bob Price (Col., USAF, Ret.)
Phone: (907) 263-7265
FAX: (907) 276-2691
Capabilities: E S 1 1 2

Collins Engineers
Anchorage, AK 99501
Contact: Harold Holts
Phone: (907) 276-2664
FAX: (907) 276-5642
Capabilities: E S 3

Dumas & Moore
Anchorage, AK 99501
Contact: Michael L. Foster, PE
Phone: (907) 542-2266
FAX: (907) 542-2297
Capabilities: ER H O 1 3 1 5 10

Dwyt Engineers
Anchorage, AK 99503
Contact: William F. Henson
Phone: (907) 456-3500
FAX: (907) 456-3593
Capabilities: ER H O 1 3 1 5 10

Tryall, Hynans, Hayas, Inc.
Anchorage, AK 99501
Contact: Ted Tedbud
Phone: (907) 279-0243
FAX: (907) 276-7679
Capabilities: EP I 3

UREB, INC.
Anchorage, AK 99503-2709
Contact: Les von Schub, Jr.
Phone: (907) 276-4243
FAX: (907) 276-4633
Capabilities: EP I 3 5

UREB, INC.
Tuscaloosa, AL 35403
Contact: Robert W. Carwell
Phone: (205) 752-5543
FAX: (205) 752-4043
Capabilities: FHIO 1 3 1 0

Wexco Engineers
Huntsville, AL 35801
Contact: Philip R. Metz
Phone: (205) 359-4119
FAX: (205) 359-2011
Capabilities: FT 3 5 7

A.R.I.
Phoenix, AZ 85008
Contact: William B. Lockwood
Phone: (602) 331-9245
FAX: (602) 331-6245

ATL, Inc.
Phoenix, AZ 85017
Contact: David P. Hayes
Phone: (602) 241-1097
FAX: (602) 234-0699
Capabilities: E H 1

Carano Turley Scott, Inc.
Phoenix, AZ 85008
Contact: Elizabeth Scarrino
Phone: (602) 275-1999
FAX: (602) 392-0949
Capabilities: E F I 1 3 5

Collin Barry Associates
Tucson, AZ 85711
Contact: Frederick M. Parks
Phone: (602) 730-1077
FAX: (602) 730-7670
Capabilities: F I I 3 4

Germs, Inc.
Tucson, AZ 85720
Contact: Charles Lowrie, P.E.
Phone: (602) 887-100C
FAX: (602) 887-3648
Capabilities: FT 1 3 5

Matthew Engineering & Architecture, Inc.
Phoenix, AZ 85006
Contact: William D. Matthews, PE
Phone: (602) 244-2644
FAX: (602) 275-3220
Capabilities: EF I 3 9

Menden Engineering, Inc.
Consulting Engineers, Tuscon, AZ 85719
Contact: Lawrence E. Menden
Phone: (602) 894-0405
FAX: (602) 894-0406
Capabilities: F I 3 1 2

Robert/Bianes Associates
Phoenix, AZ 85008
Contact: Frank K. Roberts
Phone: (602) 275-4430
FAX: (602) 275-4431
Capabilities: EF I 1 3 5

SEA Engineers, Inc.
Phoenix, AZ 85015
# Emergency Capability Listing

## Arizona

<table>
<thead>
<tr>
<th>Contact</th>
<th>Phone</th>
<th>FAX</th>
<th>Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boyle Engineering Corp.</td>
<td>(714) 745-7400</td>
<td>(714) 745-7400</td>
<td>E F L T 1 3 5 12</td>
</tr>
<tr>
<td>J. C. Chang &amp; Associates, Inc.</td>
<td>(310) 212-2522</td>
<td>(310) 212-2522</td>
<td>E F T 1 1 3 5 5</td>
</tr>
</tbody>
</table>

## Arkansas

<table>
<thead>
<tr>
<th>Contact</th>
<th>Phone</th>
<th>FAX</th>
<th>Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Governor, State of Arkansas</td>
<td>(501) 377-3629</td>
<td>(501) 377-3629</td>
<td>E F L T 1 3 5</td>
</tr>
</tbody>
</table>

## California

<table>
<thead>
<tr>
<th>Contact</th>
<th>Phone</th>
<th>FAX</th>
<th>Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Science &amp; Engineering, Inc.</td>
<td>(714) 568-5323</td>
<td>(714) 568-5323</td>
<td>E H L 3 1 0</td>
</tr>
<tr>
<td>Geocon Inc.</td>
<td>(310) 275-9292</td>
<td>(310) 275-9292</td>
<td>H O T 3 5 8</td>
</tr>
<tr>
<td>Geographic Consultants, Inc.</td>
<td>(714) 568-4185</td>
<td>(714) 568-4185</td>
<td>E F T 1 1 3 5 9</td>
</tr>
<tr>
<td>Global Associates</td>
<td>(714) 568-4185</td>
<td>(714) 568-4185</td>
<td>E F T 1 1 3 5 9</td>
</tr>
</tbody>
</table>

## Contact Information

- **Boyle Engineering Corp.**
  - Contact: Henry W. Haselkorn
  - Phone: (714) 724-2114
  - FAX: (714) 724-2114
  - Capabilities: E F T 1 3

- **Brown & Caldwell Consultants**
  - Contact: Jerry C. Chang
  - Phone: (310) 212-7644
  - FAX: (310) 212-7644
  - Capabilities: E F H L 1 3 3 5 5

- **Brown & Caldwell Consultants**
  - Contact: Michael Brandman
  - Phone: (510) 254-8259
  - FAX: (510) 254-8259
  - Capabilities: E F L 1 3 5 8

- **Brown & Rees Services, Inc.**
  - Contact: Byron K. Brown
  - Phone: (510) 364-7641
  - FAX: (510) 364-7641
  - Capabilities: E F T 1 3 5

- **BRI Consultants, Inc.**
  - Contact: Daniel York
  - Phone: (714) 455-1200
  - FAX: (714) 455-1200
  - Capabilities: E F L 1 3 5

- **Cash & Associates Engineers**
  - Contact: Elliott H. Boone
  - Phone: (714) 955-1297
  - FAX: (714) 955-1297
  - Capabilities: E 3

- **Cash & Associates Engineers**
  - Contact: Dr. A. W. Loves
  - Phone: (818) 440-6195
  - FAX: (818) 440-6195
  - Capabilities: E F T 1 3 10

- **Census Bureau, Washington, D.C.**
  - Contact: Dr. John J. Boyle
  - Phone: (714) 955-1297
  - FAX: (714) 955-1297
  - Capabilities: E 3

- **Converse Commissary, Island Empires**
  - Contact: Steven C. Heffrich
  - Phone: (714) 798-0144
  - FAX: (714) 798-0144
  - Capabilities: E H L 1 3 1 0

- **Converse Commissary, Island Empires**
  - Contact: Michael Brandman
  - Phone: (510) 254-8259
  - FAX: (510) 254-8259
  - Capabilities: E F L 1 3 5 8
Emergency Capability Listing

California

Jaymes Engineers, Inc.
San Ramon, CA 94583
Contact: Roland Miller
Phone: (916) 924-6618
FAX: (916) 924-6670
Capabilities: E H I O 1 3 7 10

Koller Johnson
San Francisco, CA 94103
Contact: Richard W. Koller
Phone: (510) 986-3070
FAX: (510) 986-3170
Capabilities: E H I O 1 3 7 10

Johnson, Western Granite Company
San Leandro, CA 94577
Contact: Larry Totten
Phone: (510) 987-8112
FAX: (510) 987-8101
Capabilities: E F L 3 9 10

Keller & Gassen
San Francisco, CA 94103
Contact: Robert A. Faucain
Phone: (415) 457-1189
FAX: (415) 456-3841
Capabilities: E F H T 3 5 10 12

Klaasenfield, Inc.
Walnut Creek, CA 94596
Contact: Edward E. Klaasen
Phone: (510) 939-5610
FAX: (510) 939-5419
Capabilities: E H I O 1 3 7 10

Law/Crandall, Inc.
San Diego, CA 92121
Contact: John R. Thieussen, G.E.
Phone: (619) 456-9279
FAX: (619) 458-0541
Capabilities: E F H L 3 5 10

Leach Meurer Architects
Ventura, CA 93003
Contact: Howard Leach
Phone: (805) 656-3522
FAX: (805) 658-2926
Capabilities: E F L 3

Leedhalls-Herkenhoff, Inc.
San Diego, CA 92121
Contact: Charles R. Bras
Phone: (619) 455-7787
FAX: (619) 455-0029
Capabilities: E F J 3

Leighto and Associates, Inc.
Woodland Hills, CA 91367
Contact: Frederick Gebhardt
Phone: (818) 387-9470
FAX: (818) 387-9484
Capabilities: E F H L 3 5 10

Leighto and Associates, Inc.
Irvine, CA 92714-4906
Contact: Dr. Jalal Vakili
Phone: (714) 250-1421
FAX: (714) 250-1114
Capabilities: E H L O 1 3 10 12

Liberi, McColl & Assocs.
Los Angeles, CA 90067
Contact: Gary Liberi
Phone: (213) 263-3127
FAX: (213) 266-5139
Capabilities: E F L 1 3 5

The Marsh Group, Construction
San Diego, CA 92101
Contact: Charles Pound
Phone: (619) 233-7835
FAX: (619) 233-9780
Capabilities: E F H I 3 5 10

M&T Agri, Inc.
Atascadero, CA 93420
Contact: Brian Command
Phone: (805) 779-2591
FAX: (805) 779-8377
Capabilities: E H I O 1 3 5

San Francisco, CA 94105
Contact: Terry Michelson
Phone: (415) 777-0188
FAX: (415) 777-3003
Capabilities: E F H L 3 5 10

Ponce de León Architects
San Mateo, CA 94402
Contact: Stanley W. Ponce
Phone: (415) 571-9100
FAX: (415) 571-9302
Capabilities: E F H L 1 3 5 9

Ppirit Corporation
San Francisco, CA 94111-1422
Contact: Joe E. P pirai
Phone: (415) 981-8880
FAX: (415) 392-7271
Capabilities: E F H I 5

PBC Env. Mgmt., Inc.
San Francisco, CA 94105
Contact: Daniel T. Chow
Phone: (415) 543-4880
FAX: (415) 543-5480
Capabilities: H 3 10

Professional Service Industries, Inc.
San Francisco, CA 94469
Contact: Paul Bazlroch, Jr.
Phone: (510) 284-3070
FAX: (510) 284-3154
Capabilities: E F H I 3 5 10

Radian Corporation
Irvine, CA 92714
Contact: Richard B. Booshegan
Phone: (714) 261-8611
FAX: (714) 261-4505
Capabilities: H O R 3 5 10

Ratherrfurd & generous, Consulting
San Francisco, CA 94107
Contact: Peter F. Sank
Phone: (415) 591-9300
FAX: (415) 591-3917
Capabilities: E F H I 3 5 10

USC Consultants, Inc.
Sacramento, CA 95824
Contact: Gary Pendegran
Phone: (916) 923-2346
FAX: (916) 923-7236
Capabilities: E F H I 3 5 10

USC Consultants, Inc.
San Francisco, CA 94411
Contact: R. Martin Curtwell
Phone: (415) 776-3700
FAX: (415) 726-1179
Capabilities: E H L 3 10

Vander Custer, Management, Inc.
Sacramento, CA 95821
Contact: Wayne Goodenough
Phone: (916) 525-2072
FAX: (916) 221-2918
Capabilities: E 3

Veels, Inc.
Alameda, CA 94501
Contact: Dan R. Lefford
Phone: (510) 748-4444
FAX: (510) 748-4444
Capabilities: H I O R 10

Wayland Woodard, Inc.
Woodland Hills, CA 91367
Contact: John Accardi
Phone: (818) 596-4900
FAX: (818) 596-4970
Capabilities: E F H I O 1 3 5 7 10

Wheeler & Kelly, Consulting
Engineers
San Francisco, CA 94105
Contact: Theodore H. Purcell
Phone: (415) 546-9900
FAX: (415) 546-9007
Capabilities: E F H L 1 3 9 12

THE MILITARY ENGINEER, NO. 556
Emergency Capability Listing

California

Woodward-Clyde Consultants
Oakland, CA 94607
Contact: Ulrich Lachner
Phone: (510) 874-3200
FAX: (510) 874-3268
Capabilities: E L O 3 5 10

Woodward-Clyde Consultants
San Diego, CA 92108-2901
Contact: Ed Gabrielson
Phone: (619) 296-6400
FAX: (619) 292-7920
Capabilities: E L O 3 5 10

COLORADO

Office of Emergency Management
Golden, CO 80401-3997
Contact: Leonard A. Bonora
Phone: (303) 775-1632
FAX: (303) 775-1795

Deurrant Fleckinger, Inc.
Colorado Springs, CO 80903
Contact: Tracy Nelson
Phone: (719) 633-3003
FAX: (719) 633-2265
Capabilities: E F I T 3 5

Deurrant Fleckinger, Inc.
Denver, CO 80209
Contact: Dennis L. Thompson
Phone: (303) 377-2900
FAX: (303) 377-0821
Capabilities: E F T 3

EMC Engineers, Inc.
Denver, CO 80227
Contact: Eric Young, PE
Phone: (303) 968-2951
FAX: (303) 968-2327
Capabilities: E F I T 3 5 10 12

GE Government Services
Fort Carson, CO 80913
Contact: J. E. McDavid
Phone: (719) 546-9460
FAX: (719) 527-9129
Capabilities: H O S I 3 7 10

Global Associates-Futenma AFB
Futenma AFB, CO 80912-5000
Contact: Russ Gross
Phone: (719) 550-4970
FAX: (719) 683-3943
Capabilities: R S H 1 3 10 7 12

RBD, Inc. Engineering Consultants
Ft. Collins, CO 80525
Contact: Ted A. Bonsall
Phone: (303) 226-4915
FAX: (303) 226-4971
Capabilities: F I 3

United Engineers & Constructors
Denver, CO 80217
Contact: Susan L. Massiahadze, PE
Phone: (303) 843-2385
FAX: (303) 843-2034
Capabilities: E F H I 1 3 5 7

URS Consultants, Inc.
Englewood, CO 80111
Contact: John D. Chamin
Phone: (303) 794-9700
FAX: (303) 796-2221
Capabilities: E F H I T 1 3 5 10

Ray F. Westover, Inc.
Denver, CO 80228-1842
Contact: Mike Witt
Phone: (303) 980-6800
FAX: (303) 980-1622
Capabilities: E F H I O 2 3 5 7 10

Wilson & Company
Colorado Springs, CO 80903
Contact: Ward K. Cooper
Phone: (719) 520-5900
FAX: (719) 222-0408
Capabilities: E F T 1 3

CONNECTICUT

Office of Emergency Management
Hartford, CT 06106
Contact: James S. Soula, III
Phone: (203) 366-3185/4338
FAX: (203) 367-6646

Gremmer, Inc.
Wallingford, CT 06492
Contact: Stuart Stulf, PE
Phone: (203) 265-6741
FAX: (203) 265-4748
Capabilities: F I T 1 3 5

Storey Engineers
Rocky Hill, CT 06067
Contact: Michael D'Ambrosio
Phone: (203) 229-7727
FAX: (203) 721-7213
Capabilities: F H O I 3 10

DIST. OF COLUMBIA

Office of Emergency Preparedness
Washington, DC 20009
Contact: Stephanie E. Blackmon
Phone: (202) 727-3190
FAX: (202) 672-2290

Frank E. Brenti, Inc.
Washington, DC 20005
Contact: Mr. Dru J. Blaschak
Phone: (202) 835-1203
FAX: (202) 836-1310
Capabilities: E F I T 3

CANADA

Cannex
Washington, DC 20007
Contact: William C. Baker
Phone: (202) 337-4022
FAX: (202) 337-4029
Capabilities: E F 3

Marine Spill Response Corp.
Washington, DC 20005
Contact: Alan D. Brennan
Phone: (202) 408-3900
FAX: (202) 377-0401
Capabilities: O I T 5 2

The Ralph M. Parsons Company
Washington, DC 20003
Contact: Robert K. Gogal
Phone: (202) 775-6010
FAX: (202) 775-6005
Capabilities: E F I O I 3 5 7

RJKL Associates, Inc.
Washington, DC 20036
Contact: John M. Delgusa
Phone: (202) 853-6400
FAX: (202) 877-5186
Capabilities: E F I T 3 5 12

3M Company Federal Systems
Washington, DC 20005
Contact: Ray C. Smith
Phone: (202) 331-6998
FAX: (202) 331-6991
Capabilities: E F H O I 3 4 5 10

Waste Management Env. Svcs. Inc.
Washington, DC 20054
Contact: Paul Kevane
Phone: (202) 467-6448
FAX: (202) 872-8963
Capabilities: F H O I R 1 3 10

Ray F. Westover, Inc.
Washington, DC 20024
Contact: Tim Dary
Phone: (202) 444-8856
FAX: (202) 444-8210
Capabilities: E F H O I 3 5 7 10

FLORIDA

Division of Emergency Management
Tallahassee, FL 32399
Contact:
Phone: (904) 488-1998
FAX: (904) 488-6250

Aerial Cartographics of America
Orlando, FL 32809
Contact: Marielle Clapp
Phone: (407) 851-7820
FAX: (407) 855-8250
Capabilities: E F 3

Blemings, Beef & Lee
Orlando, FL 32822
Contact: D. T. Contrell, PE
Phone: (407) 856-5502
FAX: (407) 246-6220
Capabilities: F H I O I 3 10

Ball Bearings America, Inc.
Pensacola, FL 32501
Contact: John Tice
Phone: (904) 436-5444
FAX: (904) 432-5208
Capabilities: F H I R 3

Delta Research Corp.
Naperville, IL 60540
Contact: Leslie A. Ross
Phone: (312) 897-5150
FAX: (312) 897-5388
Capabilities: F 3 5

Earth Resources Corporation
Oceans, FL 34761
Contact: Norman J. Abraham
Phone: (407) 877-6877
FAX: (407) 877-7643
Capabilities: H I 3 10

ENPAC Corporation
Janesville, FL 32554
Contact: Chris Hilly
Phone: (904) 448-8870
FAX: (904) 448-8829
Capabilities: H 3 10

Env. Sciences & Engineering
Gainesville, FL 32602
Contact: George Amano
Phone: (800) 874-7772
FAX: (904) 332-8097
Capabilities: H 0 10

EDS World Services, Inc.
P. O. Box 25407
Contact: E. L. McDonald
Phone: (904) 864-3454
FAX: (904) 864-1922
Capabilities: H 1 10

Geo & Jenner Engineers Architects
Placentia, Inc.
P. O. Box 25407
Contact: W. Paul Smith
Phone: (714) 683-3301
FAX: (714) 677-3892
Capabilities: F T 1 3 5

Global Associates—Mayport Naval Complex
Mayport Naval Complex, FL 32228
Contact: Bill Schmidt
Phone: (904) 247-0390
FAX: (904) 247-2002
Capabilities: E F I O I 3 1 0 12

Greiner, Inc.
Tampa, FL 33607

THE MILITARY ENGINEER, MAY-JUNE, 1993
## Emergency Capability Listing

### Florida

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Contact</th>
<th>Phone(s)</th>
<th>Fax(s)</th>
<th>Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jehasen Controls</td>
<td>Fred Walker</td>
<td>(813) 286-1711</td>
<td>(813) 286-6587</td>
<td>FL O 1 3 5 10</td>
</tr>
<tr>
<td>Hansen Lindy Mayer Inc.</td>
<td>Karen Saalav</td>
<td>(407) 422-7061</td>
<td>(407) 422-7066</td>
<td></td>
</tr>
<tr>
<td>H.G. Hardes &amp; Sea, Inc.</td>
<td>Robert A. Hodges</td>
<td>(904) 874-1300</td>
<td>(904) 871-4469</td>
<td></td>
</tr>
<tr>
<td>Johnson Controls World Services</td>
<td>Paul R. Roundy</td>
<td>(407) 784-7100</td>
<td>(407) 784-7146</td>
<td></td>
</tr>
<tr>
<td>Law Companies Group</td>
<td>James Tucker</td>
<td>(904) 944-9772</td>
<td>(904) 944-9463</td>
<td></td>
</tr>
<tr>
<td>Law Engineering, Inc.</td>
<td>Jim Horton</td>
<td>(904) 396-5733</td>
<td>(904) 396-5703</td>
<td></td>
</tr>
<tr>
<td>LIVS Associates</td>
<td>W. Prentiss Taylor</td>
<td>(305) 846-3061</td>
<td>(305) 846-3885</td>
<td></td>
</tr>
<tr>
<td>Motevat &amp; Eddy</td>
<td>Stuart, FL 33325</td>
<td>(305) 925-9964</td>
<td>(305) 925-9721</td>
<td></td>
</tr>
<tr>
<td>Marcos Diesel</td>
<td>George Alber</td>
<td>(813) 642-5004</td>
<td>(813) 642-4086</td>
<td></td>
</tr>
<tr>
<td>Pest, Beckley, Seibab &amp; Jerragran</td>
<td>Robert S. Harris</td>
<td>(800) 735-7275</td>
<td>(805) 245-9206</td>
<td></td>
</tr>
<tr>
<td>Reynolds, Smith &amp; Hills, Inc.</td>
<td>Henry Luke</td>
<td>(904) 279-2114</td>
<td>(904) 279-2491</td>
<td></td>
</tr>
<tr>
<td>C. Vargas &amp; Associates, Ltd.</td>
<td>Clark Vargas, PE</td>
<td>(904) 725-7131</td>
<td>(904) 726-4749</td>
<td></td>
</tr>
<tr>
<td>ZEA Inc.</td>
<td>F. Donald Nagle</td>
<td>(407) 825-3587</td>
<td>(407) 825-3591</td>
<td></td>
</tr>
<tr>
<td>GEORGIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Georgia Emergency Management</td>
<td>Gary W. McConnell</td>
<td>(404) 624-7800</td>
<td>(404) 624-7289</td>
<td></td>
</tr>
<tr>
<td>Castell, Marks International</td>
<td>Christopher F. Soffe</td>
<td>(404) 951-2921</td>
<td>(404) 953-9508</td>
<td></td>
</tr>
<tr>
<td>Henry International, Inc.</td>
<td>Richard D. Scharf</td>
<td>(404) 881-9800</td>
<td>(404) 878-1283</td>
<td></td>
</tr>
<tr>
<td>Hoffman &amp; Company, Inc.</td>
<td>Irving Hoffman</td>
<td>(404) 435-2241</td>
<td>(404) 435-3017</td>
<td></td>
</tr>
<tr>
<td>Love Engineers</td>
<td>William T. Berrson</td>
<td>(404) 399-6400</td>
<td>(404) 393-9406</td>
<td></td>
</tr>
<tr>
<td>Nita, Mann and Associates</td>
<td>Stuart Aylesworth</td>
<td>(404) 873-2300</td>
<td>(404) 892-5823</td>
<td></td>
</tr>
<tr>
<td>Southeastern Power Administration</td>
<td>Jim Lloyd</td>
<td>(706) 283-9924</td>
<td>(706) 283-9928</td>
<td></td>
</tr>
<tr>
<td>Hawaii</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Defense</td>
<td>Vance K. Jones</td>
<td>(904) 944-9772</td>
<td>(904) 944-9795</td>
<td></td>
</tr>
<tr>
<td>Harding Lawson Associates</td>
<td>Stanley T. Dai</td>
<td>(800) 856-871</td>
<td>(800) 961-9237</td>
<td></td>
</tr>
<tr>
<td>Limestone Scott &amp; Kales Inc.</td>
<td>Fred Kolesnik</td>
<td>(306) 536-1737</td>
<td>(306) 537-5829</td>
<td></td>
</tr>
<tr>
<td>Magruder Group Inc.</td>
<td>K. Rappold</td>
<td>(800) 948-6200</td>
<td>(800) 949-6004</td>
<td></td>
</tr>
<tr>
<td>Persson Hawaii</td>
<td>J. Lopes</td>
<td>(800) 523-5464</td>
<td>(800) 545-7838</td>
<td></td>
</tr>
</tbody>
</table>

### Illinois

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Contact</th>
<th>Phone(s)</th>
<th>Fax(s)</th>
<th>Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDAHO</td>
<td>Darrell G. Waller</td>
<td>(208) 334-3480</td>
<td>(208) 334-1222</td>
<td></td>
</tr>
<tr>
<td>CH3M Hill, Inc.</td>
<td>Dennis Smith</td>
<td>(208) 345-5102</td>
<td>(208) 345-5101</td>
<td></td>
</tr>
<tr>
<td>Power Energy, Inc.</td>
<td>Tim Manos</td>
<td>(208) 788-3456</td>
<td>(208) 788-2082</td>
<td></td>
</tr>
<tr>
<td>ILLINOIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illinois Emergency Management</td>
<td>Bob Miller</td>
<td>(207) 782-2798</td>
<td>(207) 782-2595</td>
<td></td>
</tr>
<tr>
<td>Berrn, Cheney &amp; Associates, P.C.</td>
<td>Thomas B. Bera</td>
<td>(217) 348-1144</td>
<td>(217) 384-3355</td>
<td></td>
</tr>
<tr>
<td>Boecker Associates, Inc.</td>
<td>Fairview Hts., IL 62208</td>
<td>(207) 348-1144</td>
<td>(207) 384-3355</td>
<td></td>
</tr>
<tr>
<td>Caterpillar Inc.</td>
<td>Jim Mcllhenin</td>
<td>(309) 675-6938</td>
<td>(309) 675-6951</td>
<td></td>
</tr>
<tr>
<td>PGM Architects-Engineers</td>
<td>Edward J. Rosenberger</td>
<td>(708) 574-8300</td>
<td>(708) 574-9292</td>
<td></td>
</tr>
</tbody>
</table>
Emergency Capability Listing

Illinois

Haase Engineers Inc.
Spraguefield, IL 62703
Contact: Sergio "Satch" Piccon
Phone: (217) 788-2450
FAX: (217) 788-2503
Capabilities: E F H L 1 2 3 10

Heron & Shifflin, Inc.
Belleville, IL 62220
Contact: Thomas G. Thompson
Phone: (618) 397-1065
FAX: (618) 397-1056
Capabilities: E F I L 3 5

Instraumid Midwest Inc.
Lemont, IL 60439
Contact: Terry Sosen
Phone: (800) 633-6333
FAX: (312) 345-9786
Capabilities: E F H L 3 0 1 2

KJWV Engineering Consultants
Rock Island, IL 61201
Contact: Vernon M. Wegger
Phone: (309) 788-0673
FAX: (309) 786-9567
Capabilities: E F I 3 0 1 2

Lester B. Knight & Assoc., Inc.
Chicago, IL 60661
Contact: Stephen C. Mitchell
Phone: (312) 346-2100
FAX: (312) 346-9223
Capabilities: E F I 3 5 1 2

Kidron & Associates, Ltd.
Chicago, IL 60606
Contact: Frank Kidron
Phone: (312) 738-1522
FAX: (312) 738-9792
Capabilities: I 3 7 1 0

Mileman, Stanley & Associates, P.C.
Rock Island, IL 61201
Contact: Kevin L. Koski
Phone: (309) 788-7644
FAX: (309) 788-7791
Capabilities: E F I 3 5 7 7

Parsons De Loew, Inc.
Chicago, IL 60601
Contact: Red Bebee
Phone: (312) 930-5140
FAX: (312) 930-0018
Capabilities: E F I 3 0 1 3

Stanley Consultants, Inc.
Chicago, IL 60631
Contact: Dale S. Deffel
Phone: (312) 693-9741
FAX: (312) 693-7690
Capabilities: H 3 4

Ray F. Weston, Inc.
Vernon Hills, IL 60061
Contact: Jack Thoisen
Phone: (708) 918-4102
FAX: (708) 918-4055
Capabilities: E F H L O 2 3 5 7 10

Wight & Company
Downers Grove, IL 60515
Contact: Michael E. Pyrz, PE
Phone: (708) 969-7000
FAX: (708) 969-7979
Capabilities: E H O T I 3 5 1 0

IOWA

Iowa Emergency Mgmt. Division
Des Moines, IA 50319
Contact: Ellen M. Gordon
Phone: (515) 281-3221
FAX: (515) 281-7539

Durrant Construction Mgmt.
Dubuque, IA 52004
Contact: G.L. Guy, Greg Hutchison
Phone: (319) 583-9313
FAX: (319) 583-9078
Capabilities: F I T 3 0 1 2

Durrant Engineers, Inc.
Dubuque, IA 52004
Contact: Charles R. Marder, PE
Phone: (319) 583-9313
FAX: (319) 557-9078
Capabilities: F I T 3 0 1 2

Indeke, Inc.
Bettendorf, IA 52722
Contact: Paul H. Schwartz
Phone: (319) 359-5451
FAX: (319) 359-4318
Capabilities: F H I T

The Schmermer Assoc., Inc., A.E.P.
Davenport, IA 52801
Contact: Dale Christiansen
Phone: (319) 391-0885
FAX: (319) 391-8635
Capabilities: E F I T 3 5 7

Stanley Consultants, Inc.
Muscatine, IA 52761
Contact: Lynn Pruit
Phone: (319) 264-6600
FAX: (319) 264-6638
Capabilities: E F H I 3 1 0 1 2

KANSAS

Division of Emergency Preparedness
Topeka, KS 66601
Contact: Dean E. Karr
Phone: (913) 266-1000
FAX: (913) 266-1109

CDM Federal Programs Corporation
Lenexa, KS 66214
Contact: William A. Kosk, PE
Phone: (913) 492-8181
FAX: (913) 492-5619
Capabilities: H 10

Geness Livingstone Associates, Inc.
Wichita, KS 67202
Contact: Thomas R. Gossen, AIA/PE
Phone: (316) 265-9367
FAX: (316) 265-5646
Capabilities: I T 3

KENTUCKY

Kentucky Disaster and Emergency Services
Frankfort, KY 40601-4108
Contact: James M. Everett
Phone: (502) 564-8682
FAX: (502) 564-8614

Howard K. Bell Consulting Engineers, Inc.
Hopkinsville, KY 42241
Contact: Robert J. Cole, II
Phone: (502) 886-5466
FAX: (502) 886-5122
Capabilities: E F H I 3 1 0 1 2

CTI Environmental
Louisville, KY 40299
Contact: Darrell L. Hawkins, PE
Phone: (502) 266-7743
FAX: (502) 266-7743
Capabilities: F H O 3 5 1 0

LOUISIANA

Office of Emergency Preparedness
Baton Rouge, LA 70804-0117
Contact: Bill J. Croft
Phone: (504) 343-0470
FAX: (504) 343-0770

Barger Barnard & Thomas, Inc.
Baton Rouge, LA 70806
Contact: David A. Moyer, Jr.
Phone: (504) 762-8356
FAX: (504) 924-6461
Capabilities: F L 3 1 2

Brown & Butler, Inc.
Baton Rouge, LA 70806
Contact: Charles L. Comer
Phone: (504) 924-0235
FAX: (504) 924-1687
Capabilities: F L 3 5

THE MILITARY ENGINEER, MAY-JUNE, 1993

198
Emergency Capability Listing

Louisiana

Contact: George C. Klemperer, Jr.
Phone: (504) 488-5901
FAX: (504) 488-1714
Capabilities: E F L T 1 3 5

John E. Chase & Associates, Inc.
Lafayette, LA 70506
Contact: Wade Junouville
Phone: (318) 268-3291
FAX: (318) 260-0372
Capabilities: 3

Gates Inc.
Baton Rouge, LA 70801
Contact: Robert A. Guillaume
Phone: (504) 766-5358
FAX: (504) 766-5879
Capabilities: F L T 1 3

Frederic R. Harris, Inc.
New Orleans, LA 70113
Contact: Tony Broccolo
Phone: (504) 529-4533
FAX: (504) 522-2085
Capabilities: E F L T 1 3 9 12

IT Corporations
Port Allen, LA 70767
Contact: Bob Lewis
Phone: (504) 344-8530
FAX: (504) 343-8673
Capabilities: H I O 1 0

Medjens & Masters, Inc.
New Orleans, LA 70110
Contact: W. B. Conroy
Phone: (504) 535-4534
FAX: (504) 561-1229
Capabilities: E F L T 1 3 5

Waldemar S. Nelson & Co., Inc.
New Orleans, LA 70103
Contact: Tom Wells
Phone: (504) 533-9281
FAX: (504) 533-5878
Capabilities: F H I O 3

NTI, Inc.
Shreveport, LA 71101
Contact: Albert J. Bergamini, PE
Phone: (318) 226-9199
FAX: (318) 221-1288
Capabilities: E F L T 1 3 12

Parsons Britcher & Kunde & Douglas
Metairie, LA 70002
Contact: Dale R. McDaniell
Phone: (504) 830-0070
FAX: (504) 830-0071
Capabilities: E F L T 1 3 5

Pyburn & Odom, Inc.
Baton Rouge, LA 70820
Contact: Tom Elshar, P.E.
Phone: (504) 766-6330
FAX: (504) 769-7400
Capabilities: F I 3 10

URS Consultants, Inc.
Metairie, LA 70002
Contact: Vincent Provenza
Phone: (504) 837-6526
FAX: (504) 311-8860
Capabilities: E F L T I 3 5 10

Vailes, Haydel & Associates, Inc.
New Orleans, LA 70130
Contact: William E. Ray
Phone: (504) 586-8111
FAX: (504) 522-0554
Capabilities: E F L T 1 3 5 7

Massachusetts

MAINE

Maine Emergency Mgmt. Agency
Augusta, ME 04333
Contact: David B. Brown
Phone: (207) 289-4088
FAX: (207) 289-4079

T.Y. Lin International
Falmouth, ME 04105
Contact: Henry C. C. Davies
Phone: (207) 781-4721
FAX: (207) 781-4753
Capabilities: E F L T 1 3 5

MARYLAND

Emergency Management Agency
Pittsville, MD 21280
Contact: David A. McMillan
Phone: (301) 486-4422
FAX: (301) 486-1067

Henry Adams, Inc.
Baltimore, MD 21204
Contact: Charles A. Meyer
Phone: (301) 296-6505
FAX: (301) 296-3156
Capabilities: E F L T 3 1 2

Allied Contractors, Inc.
Baltimore, MD 21202
Contact: J. Hey Pecora, PE
Phone: (301) 539-6727
FAX: (301) 332-6594
Capabilities: E F L T 1 3 7 10

AHD Technologies, Inc.
Rockville, MD 20853
Contact: Alan J. Shepherd
Phone: (301) 948-0400
FAX: (301) 948-6094
Capabilities: H O 3 1 1 0

Boyle Engineering Corporation
Landover, MD 20785-5326
Contact: Stephen J. Spence
Phone: (301) 925-2700
FAX: (301) 925-4783
Capabilities: 3

Century Engineering, Inc.
Towson, MD 21204
Contact: Richard O. Rees
Phone: (410) 823-8709
FAX: (410) 823-2184
Capabilities: E F H L I 3 5

Energy Systems Engineering, Inc.
Kensington, MD 20895
Contact: John A. Ratt
Phone: (301) 946-6160
FAX: (301) 946-5746
Capabilities: F I 3 1 2

Greiner, Inc.
Timonium, MD 21093
Contact: Ed Trojan, PE
Phone: (410) 561-0100
FAX: (410) 561-9649
Capabilities: F I 3 1 5

KCI Technologies, Inc.
Baltimore, MD 21286
Contact: Jack Kistemaker
Phone: (410) 321-5500
FAX: (410) 383-7940
Capabilities: E F L T 1 3 5 10

Kennedy & Eddy
Cherry Chase, MD 20815
Contact: Marilyn C. Branch
Phone: (301) 654-7853
FAX: (301) 652-0817
Capabilities: E F L T 1 3 5 10

Perdue and Johnson
Baltimore, MD 21202
Contact: C. W. Weise, Jr.
Phone: (410) 837-7519
FAX: (410) 837-3431
Capabilities: F I 3

RJN Environmental Associates, Inc.
College Park, MD 20740
Contact: R. B. Fernandez, PE
Phone: (301) 864-5400
FAX: (301) 864-4908
Capabilities: E F L T 3 5 7

RKL Associates, Inc.
Baltimore, MD 21202
Contact: Harold L. Adams, FAIA
Phone: (410) 528-8600
FAX: (410) 385-2455
Capabilities: E F L T 3 5 1 2

Raymond Klepper & Kahl
Baltimore, MD 21217
Contact: Robert J. Hubert, PE
Phone: (410) 126-2900
FAX: (410) 728-2992
Capabilities: H I 1 0

Schafer-Codrey, Inc.
Bartholomew, MD 20814
Contact: Robert S. Godfrey
Phone: (301) 657-8420
FAX: (301) 656-4217
Capabilities: 3 3

Shadelina Associates, Inc.
Rockville, MD 20851
Contact: Col. Paul J. Theria
Phone: (301) 590-1393
FAX: (301) 948-7174
Capabilities: E F L T 1 3 5 10

SMC/Sperry, Steven & McCay Inc.
Baltimore, MD 21286
Contact: John Hendrick, PE
Phone: (410) 494-0500
FAX: (410) 296-2080
Capabilities: H I 1 0

Snyder & Assoc., A/E/P.
Lansdowne, MD 20706
Contact: Eugene J. Kasperzak
Phone: (301) 644-0096
FAX: (301) 731-0751
Capabilities: E F L T 1 3

Waterlight Engineering, Inc.
Baltimore, MD 20814
Contact: Archie B. Wainwright
Phone: (301) 307-2877
FAX: (301) 561-1984
Capabilities: E F L T 1 3 5 10

Well H, Montgomery and Associates
Leesburg, VA 20175
Contact: John Wallace
Phone: (301) 494-9009
FAX: (301) 825-2714
Capabilities: E F L T 1 3 5

Whitney, Bailey, Cox & Magness
Timonium, MD 21093
Contact: Alexander Whitney, Jr.
Phone: (301) 293-0600
FAX: (301) 561-1984
Capabilities: E F L T 1 3

MASSACHUSETTS

Massachusetts Emergency Management Agency
Purcell Building, MA 01781-8317
Contact: A. David Reifhaber
Phone: (508) 830-2800
FAX: (508) 830-2830

Architectural Resources Cambridge, MA 02138
Contact: Colin L. Smith, FAIA
Phone: (617) 347-2200

THE MILITARY ENGINEER, NO. 556

199
Emergency Capability Listing

Massachusetts

Bryant Associates, Inc.
Boston, MA 02114
Contact: Jack D. Bryant
Phone: (617) 248-0100
FAX: (617) 248-0212
Capabilities: E F 1 3

Th. Capabilities:
200

camp Drae £ MaKe. I...

Contact:
Lakeville, MA 02347 FAX:
Capebdiitse:
FAX; (617) 236-1233

The BSC Group
Boston, MA 02210
Contact: Charles A. Kalamazeka, PE
Phone: (617) 330-5300
FAX: (617) 345-8008
Capabilities: F 3 3

Camp Dresser & McKee Inc.
Cambridge, MA 02142
Contact: Paul Sorensen
Phone: (617) 621-8181
FAX: (617) 577-7501
Capabilities: H 10

Caie & Gevotte, Inc.
Cambridge, MA 02139
Contact: Hal Gevotte
Phone: (617) 491-5662
FAX: (617) 492-0856
Capabilities: F T 3 4

Fay, Spofford & Thorpe, Inc.
Lexington, MA 02173
Contact: Robert Catan
Phone: (617) 865-6300
FAX: (617) 861-6915
Capabilities: F I L T I 3 5 12

The Geotechnical Group, Inc.
Needham, MA 02194
Contact: Stan Murphy
Phone: (617) 449-6450
FAX: (617) 499-1283
Capabilities: E F H L 1 3 5 10

Howard Needles Tammen & Bergesqueff
Boston, MA 02199
Contact: Gordon H. Stines, Jr.
Phone: (617) 267-6710
FAX: (617) 266-1223
Capabilities: F 1 3 5

Klevot Construction Company
Southborough, MA 01772
Contact: Bob Holsater
Phone: (508) 485-1761
FAX: (508) 485-5499
Capabilities: E F L 1 3

Paul E.K. Lu & Associates
Belmont, MA 02178
Contact: Paul E.K. Lu
Phone: (617) 484-4022
FAX: (617) 484-6976
Capabilities: E S 1 3

SAIC Engineering, Inc.
Lakeline, MA 02347
Contact: Paul King
Phone: (617) 547-7222
Capabilities: 3

Phone: (508) 946-3500
FAX: (508) 946-3500
Capabilities: H O R L 1 3 5 10

Sykes & Hansen, Inc.
Cambridge, MA 02138
Contact: Joseph F. Manfredi
Phone: (617) 668-1500
FAX: (617) 668-8012
Capabilities: E F I 1 2 12

Universal Engineering Corporation
Boston, MA 02116
Contact: Stanley D. Ellerton
Phone: (617) 542-6216
FAX: (617) 423-0373
Capabilities: E F 3 1 0 12

Vanasse Hangen Brumbaugh, Inc.
Wetworth, MA 01072
Contact: Charles C. Crovo
Phone: (617) 924-1770
FAX: (617) 924-2286
Capabilities: F 1 3 5

Veillon Associates
Boston, MA 02216
Contact: Edmund J. Condon
Phone: (617) 451-0044
FAX: (617) 451-3423
Capabilities: E F L 1 3 5

Roc F. Westen, Inc.
Burlington, MA 01803
Contact: Steve Lewis
Phone: (617) 229-2050
FAX: (617) 229-0046
Capabilities: E F H O I 2 3 5 7 10

Weston & Sampson Engineers, Inc.
Peabody, MA 01960
Contact: John D. Jolla
Phone: (508) 532-1900
FAX: (508) 977-0100
Capabilities: H O 3 5 10

MINNESOTA

Department of Public Safety
St. Paul, MN 55155
Contact: James Franklin
Phone: (612) 296-5233
FAX: (612) 296-1499

ICBM
Minneapolis, MN 55401
Contact: Charles Bouton
Phone: (612) 333-7101
FAX: (612) 342-8422
Capabilities: I F S T I 2 3 5

Detector Electronics Corp.
Minneapolis, MN 55438
Contact: K. M. Kleppinger
Phone: (612) 941-5663
FAX: (612) 928-8730
Capabilities: I 4

RE: River Concrete Products, A
Division of The Cross Corp.
Minneapolis, MN 55427
Contact: Larry G. Koenig
Phone: (612) 545-7473
FAX: (612) 545-8399
Capabilities: F H L T 1 3

The Military Engineer, May-June, 1993

MISSISSIPPI

Mississippi Emergency Management Agency
Jackson, MS 39294-4891
Contact: James E. Mosh
Phone: (601) 353-9180
FAX: (601) 382-8314

JAYC0R
Vicksburg, MS 39180
Contact: Dr. Paul F. deMars
Phone: (601) 636-4361
FAX: (601) 636-7775
Capabilities: E F L 1 3

Mapotech Inc.
Jackson, MS 39206
Contact: Sam G. Pessy
Phone: (601) 873-4300
FAX: (601) 820-2000
Capabilities: F L O T 1 3 5 10
Mississippi

State Emergency Management Agency
Jefferson City, MO 65102
Contact: Richard D. Ross
Phone: (314) 735-9677
FAX: (314) 434-7946

J.S. Alberfeld Construction Co., Inc.
St. Louis, MO 63121
Contact: Guy Jeter
Phone: (314) 261-2611
FAX: (314) 261-4225
Capabilities: E F T

Kenneth Bank & Associates, Inc.
St. Louis, MO 63141
Contact: Gary N. Schmidt
Phone: (314) 376-2021
FAX: (314) 576-2075
Capabilities: E F S I 3 5 7

Black & Veatch
Kansas City, MO 64114
Contact: George H. Hirt
Phone: (913) 339-8305
FAX: (913) 339-8297
Capabilities: E F T 1 3 5 12

Booker Associates, Inc.
St. Louis, MO 63101
Contact: T. Roger Pearson
Phone: (314) 421-1476
FAX: (314) 421-7741
Capabilities: F I I 3

Boyd, Brown, Stade, & Cambera, Chartered
Kansas City, MO 64112
Contact: John A. Boyd, Jr.
Phone: (816) 756-1484
FAX: (816) 756-0359
Capabilities: E F I T 1 3 5

Burns & McDonnell
St. Louis, MO 63127
Contact: Robert T. Berry
Phone: (314) 821-9016
FAX: (314) 821-3406
Capabilities: E F O T 3 7 12

NEBRASKA

Nebraska Civil Defense Agency
Lincoln, NE 68508-1090
Contact: Richard L. Semen
Phone: (402) 472-1410
FAX: (402) 473-1453

Law Companies
Kansas City, MO 64153
Contact: Arthur J. Whallon
Phone: (816) 891-9332
FAX: (816) 891-8644
Capabilities: E L O 3 5

Massman Construction Co.
St. Louis, MO 63127
Contact: Paul C. Schaeleben
Phone: (314) 821-0042
FAX: (314) 821-0760
Capabilities: E F O T 1 3 5 7

O'Brien & Gore Engineers, Inc.
St. Louis, MO 63101
Contact: Dean L. Palmer
Phone: (314) 842-4550
FAX: (314) 842-3266
Capabilities: H O R S 3 7 10 12

Peverly Engineering
Omaha, NE 68114
Contact: Michael L. Goertzen
Phone: (402) 443-4661
FAX: (402) 442-3508
Capabilities: F I 3

Kelly Industries, Inc.
Fremont, NE 68025
Contact: Steve Kastiff
Phone: (402) 228-7230
FAX: (402) 727-1363
Capabilities: F I R T 6 7

Kleibert Construction Group, Inc.
Omaha, NE 68131
Contact: Don Wrieth
Phone: (402) 342-2052
FAX: (402) 271-2918
Capabilities: E F L T 1 2 3

New Jersey

Kirtland, Michael & Associates
Omaha, NE 68124
Contact: James Siebert
Phone: (402) 393-5630
FAX: (402) 393-5641
Capabilities: F I T 3

Lamp, Ryansboro & Associates, Inc.
Omaha, NE 68154
Contact: Mike McMeekin
Phone: (402) 496-2498
FAX: (402) 496-2730
Capabilities: F L S T 3

Proehaska & Associates
Omaha, NE 68132
Contact: Roger Wenny
Phone: (402) 493-6800
FAX: (402) 493-7951
Capabilities: E F T 1 3 10 12

Turner Construction Co.
Omaha, NE 68130
Contact: John F. Harrwell
Phone: (402) 330-2202
FAX: (402) 330-7606
Capabilities: H 3 10

Woodward-Clyde Consultants
Omaha, NE 68145
Contact: Kenneth Nuss
Phone: (402) 334-8181
FAX: (402) 334-1984
Capabilities: H L O 3 5 10

New Hampshire

Governor's Office of Emerg. Mgmt.
Concord, NH 03302
Contact: George L. Iverson
Phone: (603) 271-8231
FAX: (603) 225-7541

Vance-Neagoe-Brunetta, Inc.
Bedford, NH 03110
Contact: Donald O'Callaghan
Phone: (603) 644-0882
FAX: (603) 644-2385
Capabilities: E F L T 1 3 5

New Jersey

Office of Emergency Management
West Trenton, NJ 08628-0968
Contact: Carl A. Williams
Phone: (609) 528-6800
FAX: (609) 528-6345

THE MILITARY ENGINEER, NO. 556
Emergency Capability Listing

New Jersey

NEW MEXICO

Emergency Management Bureau
Santa Fe, NM 87504
Contact: R. Keith Leong
Phone: (505) 827-9212
Fax: (505) 827-4356

Greiner, Inc.
Albuquerque, NM 87109
Contact: John F. Thomas
Phone: (505) 345-3090
Fax: (505) 345-8393
Capabilities: E F H L 1 3 4 12

Merrick & Co.
Los Alamos, NM 87544
Contact: Masoud Zarrebey
Phone: (505) 662-2194
Fax: (505) 662-3851
Capabilities: E F L T 3 3 12

Seales & Assoc./KLH Engineering
Albuquerque, NM 87110
Contact: Kenneth H. Karson
Phone: (505) 265-6941
Fax: (505) 266-2003
Capabilities: E F H L 1 3 5

NEW YORK

New York State Emergency Mgmt.
Albany, NY 12216-9600
Contact: (518) 457-9930
Fax: (518) 457-9930

Apollon Waterproofing & Restoration Corp.
Astoria, NY 11103
Contact: Michael P. Downes
Phone: (718) 728-8000
Fax: (718) 728-2365
Capabilities: E F T 1 3

Bergen, Lehman Associates, P.C.
Rye, NY 10580
Contact: Lawrence H. Lehman
Phone: (914) 967-5800
Fax: (914) 967-5263
Capabilities: E 3

Bettigole, Andrews & Clark, Inc.
Buffalo, NY 14203
Contact: Lane K. Hardin
Phone: (716) 854-1181
Fax: (716) 854-1800
Capabilities: E F L T 1 3

E. H. Brunjes & Associates
New York, NY 10016
Contact: Edwin H. Brunjes
Phone: (212) 689-0408
Fax: (212) 869-1798
Capabilities: E F L T 3 5

Leon D. DeMattia Constr. Corp.
Elmont, NY 11003
Contact: A. L. DeMattia
Phone: (516) 283-5500
Fax: (516) 285-4950
Capabilities: E F L S 3 5 7

Ehlers, Giacalone Associates, P.C.
Garden City, NY 11530
Contact: Russell D. Ehlers
Phone: (516) 542-6300
Fax: (516) 542-9052
Capabilities: E F H T 1 3 5 7 11

Fanning, Phillips & Molina
Ronkonkoma, NY 11779
Contact: Gary A. Molina
Phone: (516) 737-6200
Fax: (516) 737-2410
Capabilities: E F H O 1 3 4 10

Federman Construction Consultants
New York, NY 10016
Contact: Paula T. Federman
Phone: (212) 447-9444
Fax: (212) 447-9440
Capabilities: E F I 1 3 5

Fogel & Associates, Inc.
New York, NY 10010
Contact: Irving M. Fogel
Phone: (212) 686-6500
Fax: (212) 686-1487
Capabilities: E F I 1 3

Goldman Copeland Associates, P.C.
New York, NY 10011
Contact: Martin J. Goldman
Phone: (212) 929-0400
Fax: (212) 929-7251
Capabilities: E F I O 1 3 4 5 12

Goodkind & O'Dea, Inc.
New York, NY 10003
Contact: Gary Newworth, Ph.D.
Phone: (212) 305-8585
Fax: (212) 228-6039
Capabilities: E F T 1 3

Haines Landberg Waskler
New York, NY 10003
Contact: Robert A. Djerrajian
Phone: (212) 333-4600
Fax: (212) 333-4666
Capabilities: E 3

Hed-Pederson Associates
New York, NY 10001
Contact: Dennis Pederson
Phone: (212) 736-5466
Fax: (212) 629-4606
Capabilities: E F L O 1 3

Hardy & Hanover
New York, NY 10036
Contact: Henry W. Fischer
Phone: (212) 946-1150
Fax: (212) 391-0297
Capabilities: E F I 3

Henderson & Bedwell Engineering
Planview, NY 11803
Contact: Russell S. Bedwell
Phone: (516) 935-8478
Fax: (516) 935-8760
Capabilities: E F I 3

Hendrichs Bros., Inc.
Valley Stream, NY 11582
Contact: Milton A. Hendrickson
Phone: (516) 825-3249
Fax: (516) 825-3203
Capabilities: E F I 3

Kittrell, Garlick & Associates
Las Vegas, NV 89103
Contact: Kathleen Richards
Phone: (702) 367-1007
Fax: (702) 367-2043
Capabilities: E F I 3

Koren-Dillenta Construction Co. Inc.
New York, NY 10017
Contact: Robert Welner
Phone: (212) 696-3545
Fax: (212) 696-5942
Capabilities: E F I 3

Leckwood Greene Engineers
New York, NY 10001
Contact: Carmina DiIulio
Phone: (212) 613-1601
Fax: (212) 613-1747
Capabilities: E F I 1 3 5 7 12

Leckwood Kosier & Bartlett, Inc.
Syracuse, NY 13210
Contact: John Kolmis
Phone: (315) 686-0600
Fax: (315) 691-6444
Capabilities: E F O 1 2 12

Moser Runtze Consulting Engineers
New York, NY 10017
Contact: Warren H. Anderson
Phone: (212) 490-7100
Fax: (212) 953-5626
Capabilities: E F L T 3 5

O'Brien-Kristichburg
New York, NY 10034
Contact: George Pisk
Phone: (212) 892-8098
Fax: (212) 391-4565
Capabilities: E F L T 3 5

Parruse Britskarovitch Inc.
New York, NY 10119
Contact: James L. Lammie
Phone: (212) 465-5000
Fax: (212) 465-5096
Capabilities: E F L T 3 5 7

Roberts-Endres, Inc.
Buffalo, NY 14206
Contact: John G. Berthoud
Phone: (716) 852-4000
Fax: (716) 852-0824
Capabilities: E F I 3
Emergency Capability Listing

New York

The Sar-Browe Group
Lake Success, NY 11042
Contact: James Noonack, PE
Phone: (516) 358-7270
FAX: (518) 358-2588
Capabilities: E F 1 3

TAMS Consultants, Inc.
New York, NY 10017
Contact: C. Gene Heinzemknecht
Phone: (212) 867-1777
FAX: (212) 697-6354
Capabilities: E F H L 1 2 3 10

Veilmer Associates
New York, NY 10010
Contact: Robert Samson
Phone: (212) 366-5000-112
FAX: (212) 366-5629
Capabilities: E F 1 3

Lev Zettia Associates, Inc.
New York, NY 10011
Contact: Joseph N. Zuliani
Phone: (212) 745-2100
FAX: (212) 675-4052
Capabilities: E F I T 1 3 5

NORTH DAKOTA

North Dakota Division of Emergency Management
Bismarck, ND 58502-5511
Contact: Ronald D. Alford
Phone: (701) 226-2113
FAX: (701) 226-2119

Motead Excavating Inc.
Grand Forks, ND 58201
Contact: Gary Motalad
Phone: (701) 746-5474
FAX: (701) 746-5475
Capabilities: F H S T

Petersen Construction Co., Inc.
Grand Forks, ND 58201
Contact: Clarence O. Peterson
Phone: (701) 746-6446
FAX: (701) 772-1763
Capabilities: F H S T 1 3 9 10

OHIO

Ohio Emergency Mgmt. Agency
Columbus, OH 43229
Contact: Dale W. Skibp
Phone: (614) 897-7190
FAX: (614) 897-7183

Baker Concrete Construction Inc.
Montros, OH 45505
Contact: Mike Schneider
Phone: (513) 539-4000
FAX: (513) 539-4380
Capabilities: I 3

Barge, Waggoner, Seamer, &
Cassens
Dayton, OH 45434
Contact: C. R. "Chuck" Westhart
Phone: (513) 438-0378
FAX: (513) 438-0379
Capabilities: E F I T 1 3 5 10

Burgess & Niple, Limited
Columbus, OH 43220
Contact: Frank C. Agin
Phone: (614) 459-2050
FAX: (614) 451-1385
Capabilities: E F H T 1 2 3 10

THE MILITARY ENGINEER, NO. 556
Emergency Capability Listing

Oklahoma

- Contac-t: Lon Spencer
  - Phone: (405) 354-6679
  - FAX: (405) 354-4927
  - Capabilities: E F T 1 3

FBC, Inc.
- Tulsa, OK 74135-6374
- Contact: Tony Barok, PE
- Phone: (918) 663-7300
- FAX: (918) 665-6269
- Capabilities: E F T 1 3

Pea & Associates, Inc.
- Tulsa, OK 74147
- Contact: Joe H. Pitts
- Phone: (918) 665-8500
- FAX: (918) 665-6076
- Capabilities: K F L T 1 3

Pennon Associates, Inc.
- Oklahoma City, OK 73112-1499
- Contact: C. Leroy James, AIA
- Phone: (405) 942-7337
- FAX: (405) 948-1281
- Capabilities: E F T 2 3 5

Roberts/Schorback & Associates, Inc.
- Norman, OK 73072
- Contact: Ken Senour
- Phone: (405) 321-3895 ext. 163
- FAX: (405) 364-1708
- Capabilities: H O R 3 10

Standard Testing & Engineering
- Oklahoma City, OK 73105
- Contact: M-k Byrd
- Phone: (405) 328-0541
- FAX: (405) 328-0559
- Capabilities: F H O 3 5

Willsons Butler Engineers, Inc.
- Tulsa, OK 74136
- Contact: Walt Liedemann
- Phone: (918) 496-0400
- FAX: (918) 491-8346
- Capabilities: E F OT 3 5 7 12

Pennsylvania

- Pennsylvania Emergency Management Agency
  - Harrisburg, PA 17106-3321
  - Contact: Robert L. LaFluer
  - Phone: (717) 763-8016
  - FAX: (717) 763-7393

Benassi Associates
- Camp Hill, PA 17011
  - Contact: Richard M. Miller
  - Phone: (717) 763-7391
  - FAX: (717) 763-7397
  - Capabilities: F H O 3 5

Brajean, Kamin & Associates, Inc.
- Harrisburg, PA 17102
  - Contact: Tom Finner
  - Phone: (717) 233-4502
  - FAX: (717) 233-0633
  - Capabilities: E F T 3 12

Bechert-Hera, Inc.
- York, PA 17405
  - Contact: Peter R. Richter
  - Phone: (717) 843-5561
  - FAX: (717) 843-3703
  - Capabilities: E F H O 3 5 10

Capitol Engineering Corp.
- Dillsburg, PA 17019
  - Contact: Edward W. Beals
  - Phone: (717) 432-9628
  - FAX: (717) 432-2781
  - Capabilities: F I L 1 3

Chartier Environmental, Inc.
- Cornell, PA 15108
  - Contact: Bruce A. Fletcher
  - Phone: (412) 289-5827
  - FAX: (412) 289-5849
  - Capabilities: D 3 10

Coffman Environmental, Inc.
- Pittsburgh, PA 15205
  - Contact: Dennis Morgan
  - Phone: (412) 788-1133
  - FAX: (412) 788-6750
  - Capabilities: F H O 1 3 9 10

Dish & Zimmerman, Inc.
- Philadelphia, PA 19103
  - Contact: Edward D. McGinnis
  - Phone: (215) 299-8476
  - FAX: (215) 299-8446
  - Capabilities: E F T 1 3 5 7

Emergency Management Agency
- Columbia, SC 29281-3702
  - Contact: Paul L. Landenbarg
  - Phone: (803) 734-0820
  - FAX: (803) 734-0803

Lockwood Greene Engineers, Inc.
- Spartanburg, SC 29304
  - Contact: James M. Anderson
  - Phone: (803) 845-3302
  - FAX: (803) 399-0436
  - Capabilities: F H F 1 2 3 12

LSJ Architects, Ltd.
- Charleston, SC 29401
  - Contact: Vice R. Pannall
  - Phone: (803) 577-4444

OREGON

Emergency Management Division
- Salem, OR 97310
- Contact: Don G. Lee
- Phone: (503) 378-6134
- FAX: (503) 588-1378

Corserth Consultants, Inc.
- Portland, OR 97223
- Contact: Derek H. Carnforth
- Phone: (503) 452-1100
- FAX: (503) 452-1528
- Capabilities: L E B 3

URS Consultants, Inc.
- Portland, OR 97222
- Contact: Thomas A. Riport
- Phone: (503) 238-7050

SOUTH CAROLINA

Emergency Preparedness Division
- Columbia, SC 29201-3782
- Contact: Paul L. Landenbarg
  - Phone: (803) 734-0820
  - FAX: (803) 734-0803

Continental Engineering, Inc.
- Memphis, TN 38116
- Contact: Gerald Lawson
  - Phone: (901) 345-3480
  - FAX: (901) 396-8733
  - Capabilities: E F H I 3 5 10

SOUTH DAKOTA

Division of Emergency Management
- Pierre, SD 57501-0800
- Contact: Gary N. Whitney
  - Phone: (605) 775-3331
  - FAX: (605) 775-3300

TENNESSEE

Emergency Management Agency
- Nashville, TN 37204
- Contact: David L. Davidson
  - Phone: (615) 554-1500
  - FAX: (615) 255-6572
  - Capabilities: T E P H 1 2 3 10

Colonna Corp., Service Contractors
- Arnold AFB, TN 37768-4930
- Contact: J. N. Pannall
  - Phone: (615) 655-3101
  - FAX: (615) 399-3506
  - Capabilities: I H O 5

Continental Engineering, Inc.
- Memphis, TN 38116
- Contact: Gerald Lawson
  - Phone: (901) 345-3480
  - FAX: (901) 396-8733
  - Capabilities: E F H I 3 5 10

TENNESSEE
Tennessee

Tennessee

Texas

Structural Affiliates International, Inc.
Nashville, TN 37212
Contact: Robert P. Beall
Phone: (615) 269-0090
FAX: (615) 383-0911
Capabilities: F 13

Sverdone Corporation
Nashville, TN 37222
Contact: Alan Arau
Phone: (615) 331-9223
FAX: (615) 823-8328
Capabilities: E F H I 2 3 5 10

Environmental Protection Systems, Inc.
Brentwood, TN 37027
Contact: Russell Prizer, PE
Phone: (615) 373-8821
FAX: (615) 373-7976
Capabilities: H I O 3 5 10

Espey, butler & Annes, Inc.
Nashville, TN 37216
Contact: Wayne R. Long
Phone: (615) 885-0290
FAX: (615) 391-4606
Capabilities: E F H I O 3 5 10

Gresham, Smith and Partners
Nashville, TN 37202
Contact: Robert L. Sylar, PE
Phone: (615) 385-3310
FAX: (615) 266-8142
Capabilities: F H L S I 3 8 10

IT Corporation
Knoxville, TN 37923
Contact: Don Ewig
Phone: (615) 690-1211
FAX: (615) 690-3226
Capabilities: H O 3 10

Neal-Schaffer, Inc.
Nashville, TN 37210
Contact: Richard Riggins
Phone: (615) 254-4257
FAX: (615) 254-4261
Capabilities: F

PDR Engineers, Inc.
Memphis, TN 38103-5135
Contact: Frank Gissetti
Phone: (901) 523-9500
FAX: (901) 523-9502
Capabilities: E F H I 3 5 12

Picketing Inc.
Memphis, TN 38104
Contact: Joe Emerson
Phone: (901) 726-0810
FAX: (901) 722-6911
Capabilities: F H L 3 5 10 12

Smith Seckman Reid, Inc.
Nashville, TN 37203
Contact: Stephen C. Lane
Phone: (615) 383-1113
FAX: (615) 386-8469
Capabilities: E F H I 3 5 12

Structural Affiliates International, Inc.
Nashville, TN 37212
Contact: Robert P. Beall
Phone: (615) 269-0090
FAX: (615) 383-0911
Capabilities: F 13

Cartor & Bergaas, Inc.
Fort Worth, TX 76102
Contact: Russell A. Karr, PE
Phone: (817) 335-2611
FAX: (817) 877-5646
Capabilities: F H I 3 5

Dames & Moore
San Antonio, TX 78232
Contact: Gary Atchue
Phone: (512) 496-7911
FAX: (512) 496-1504
Capabilities: H O 3 10

Ferro & Nichols, Consulting Engineers
Fort Worth, TX 76109
Contact: Joe Paul Jones
Phone: (817) 336-7161
FAX: (817) 877-6277
Capabilities: F H I 3 5

Freiberg Associates, Inc., Consulting Engineers
Fort Worth, TX 76113-2080
Contact: Bob Alexander
Phone: (817) 336-0543
FAX: (817) 429-0119
Capabilities: F H I 3 5

Greiner Engineering, Inc.
Irving, TX 75039
Contact: William Killings, PE
Phone: (214) 869-1001
FAX: (214) 869-3111
Capabilities: E F H I 3 5

Greiner, Inc.
Fort Worth, TX 76133
Contact: L. Darrell Thompson, PE
Phone: (817) 543-0534
FAX: (817) 543-0534
Capabilities: F H I 3 5

Ground Technology, Inc.
Houston, TX 77081
Contact: Russ Ackers
Phone: (713) 664-0226
Capabilities: E F I 3

Hance & Associates, Inc.
Dallas, TX 75248
Contact: Richard G. Jakos
Phone: (214) 458-9040
FAX: (214) 458-7721
Capabilities: F H I 3 5 7

HNTB Corporation
Dallas, TX 75240
Contact: Daniel F. Becker, PE
Phone: (214) 661-5626
FAX: (214) 661-5614
Capabilities: F H I 3 5

Pickering Inc.
Memphis, TN 38104
Contact: Joe Emerson
Phone: (901) 726-0810
FAX: (901) 722-6911
Capabilities: F H L 3 5 10 12

Smith Seckman Reid, Inc.
Nashville, TN 37203
Contact: Stephen C. Lane
Phone: (615) 383-1113
FAX: (615) 386-8469
Capabilities: E F H I 3 5 12

THE MILITARY ENGINEER, NO. 556
Texas

Contact: Joseph J. Scalabrini
Phone: (214) 871-8877
FAX: (214) 871-7022
Capabilities: E F H I 3 1 2

SeaLand Engineering Company
Houston, TX 77042
Contact: Orlando J. Torga
Phone: (713) 952-5150
FAX: (713) 952-5188
Capabilities: E 3

Texas Industries, Inc.
Dallas, TX 75247
Contact: Rod S. Bond
Phone: (214) 647-3802
FAX: (214) 647-3877
Capabilities: E H L R 3 7 10

Viland + Associates, Inc.
Dallas, TX 75240
Contact: William Villand, AIA
Phone: (214) 934-8890
FAX: (214) 458-2323
Capabilities: E F L T 1 2 3 8

Ray F. Westoea, Inc.
Houston, TX
Contact: John DiFilippo
Phone: (713) 621-1620
FAX: (713) 621-6959
Capabilities: E F H O 2 3 5 7 10

Ed A. Wilcox, Inc.
Fort Worth, TX 76110
Contact: Mel Burdorff
Phone: (817) 926-0231
FAX: (817) 926-0961
Capabilities: E F J 3

H. B. Zachry Company
San Antonio, TX 78221
Contact: Bob Kalt
Phone: (210) 922-1213
FAX: (210) 927-8000
Capabilities: E F L T 1 3

UTAH

Division of Comprehensive
Emergency Management
Salt Lake City, UT 84114
Contact: Loreynn Frank
Phone: (801) 539-3400
FAX: (801) 339-3770

CRDM Hill
Salt Lake City, UT 84107
Contact: Michael Collins, PE
Phone: (801) 269-0110
FAX: (801) 269-1115
Capabilities: E F H O 1 3 10 12

Industrial Health Inc.
Salt Lake City, UT 84106
Contact: Donald E. Marano
Phone: (801) 466-2223
FAX: (801) 466-9616
Capabilities: E H O 3 5 8 10

VIRGINIA

State Co-ordinator, Office of
Emergency Services
Richmond, VA 23225-6491
Contact: Addison E. Slayton, Jr.
Phone: (804) 674-2489
FAX: (804) 674-2490

Air Survey Corporation
Sterling, VA 20166-6702
Contact: John E. Combs
Phone: (703) 471-4150
FAX: (703) 471-4810
Capabilities: E F L T 1 3

Alpha Corporation
Sterling, VA 20164
Contact: R. H. Davis, PE
Phone: (703) 799-2206
FAX: (703) 799-0643
Capabilities: E F L T 1 3

American Standard Inc.
Arlington, VA 22201
Contact: Michael Weise
Phone: (703) 525-4015
FAX: (703) 525-0375
Capabilities: E F L T 3 4

Atkinson Dredging Company
Chesapeake, VA 23301
Contact: Thomas J. Wright
Phone: (804) 482-2141
FAX: (804) 482-1022
Capabilities: F 3

Michael Baker Corp.
Alexandria, VA 22304
Contact: Thomas P. Yoder
Phone: (703) 950-8800
FAX: (703) 950-9125
Capabilities: E F H L 1 3 5 10 12

BDM International
McLean, VA
Contact: Dr. Guy P. York
Phone: (914) 286-5677
FAX: (914) 286-5768
Capabilities: H 1 4 5 7 10

Bairley, Magnussen & King, P.C.
Alexandria, VA 22314
Contact: H. (Skip) Magnussen
Phone: (703) 548-0460
FAX: (703) 549-3327
Capabilities: E F J 3

Bowman, Foster & Associates, P.C.
Virginia Beach, VA 23462
Contact: Ron Foster
Phone: (804) 499-5292
FAX: (804) 499-8128
Capabilities: F 3 12

Bohart-Horn, Inc.
Williamsburg, VA 23185
Contact: W. Ben Burton, PE
Phone: (804) 229-3731
FAX: (804) 229-3721
Capabilities: E F H O 1 3 5 10

CDM Federal Programs Corporation
Fairfax, VA 22033
Contact: Jason crowds
Phone: (703) 968-9090
FAX: (703) 968-0915
Capabilities: H 10

Contex-Simpson Construction Co., Inc.
Fairfax, VA 22030
Contact: James D. Burden
Phone: (703) 273-3111
FAX: (703) 934-5320
Capabilities: E F I T 3

Dowberry & Davis
Fairfax, VA 22031
Contact: William G. Fry
Phone: (813) 849-0321
FAX: (813) 849-0648
Capabilities: E F L T 1 3 5 10

DryCorp
Reston, VA 22091
Contact: Kevin W. Olson
Phone: (703) 264-9213
FAX: (703) 264-9359
Capabilities: E F H O 3 5 10 12

Ecology and Environment, Inc.
Arlington, VA 22209
Contact: Troy M. Trowbridge
Phone: (703) 522-0655
FAX: (703) 559-7950
Capabilities: H 1 0 R 5 10

The Environmental Company
Charlottesville, VA 22905
Contact: Jack E. Wilson, PE
Phone: (804) 294-4444
FAX: (804) 293-5533
Capabilities: E F H O 3 5 8 10

Env. Science & Engineering, Inc.
Herndon, VA
Contact: Jon Byrons
Phone: (703) 318-9900
FAX: (703) 318-0411
Capabilities: H 1 0 3 5 10

Esprey, Huxton & Associates, Inc.
Williamsburg, VA 23185
Contact: Len Greger
Phone: (804) 253-2858
FAX: (804) 253-5622
Capabilities: E F H T 3 10

Global Associates
McLean, VA 22102
Contact: Edward P. Geaney
Phone: (703) 893-5800
FAX: (703) 893-0592
Capabilities: O H 3 5 7 8

Global Associates (Global Phillips Cartner)
Williamsburg, VA 23187
Contact: Craig O. Meffert
Phone: (804) 887-7402
FAX: (804) 887-0478
Capabilities: E F I T 6

Hartz Equipment Rental Corp.
Alexandria, VA 22305
Contact: Jim Bach
Phone: (703) 683-9138
FAX: (703) 683-9142
Capabilities: E F S T 1 3 10 12

Intergraph Corporation
Reston, VA 22091
Contact: Rick Grady
Phone: (703) 264-5600
FAX: (703) 264-7121
Capabilities: E F H O 3 5 10

ITT Federal Services Corp.
Hampton, VA 23666
Contact: Daryl Land
Phone: (804) 764-1400
FAX: (804) 764-1400
Capabilities: H 1 O 3 2 3 10

Law Engineering, Inc.
Chantilly, VA 22021
Contact: Joseph P. Klein, III
Phone: (703) 968-4700
FAX: (703) 968-4778
Capabilities: F L O 1 3 5 10

Law Engineering, Inc.
Charlottesville, VA 22832
Contact: Jack Turner
Phone: (804) 467-0717
FAX: (804) 467-0717
Capabilities: E F H O 3 5 10

M2C Industries, Inc.
Reston, VA 20290
Contact: Forrest T. Gay, III
Phone: (703) 318-1900
FAX: (703) 318-9321
Capabilities: E F I T 6

THE MILITARY ENGINEER, MAY-JUNE, 1993
Emergency Capability Listing

Virginia

James M. Montgomery, Consulting Engineers
Herndon, VA 22070
Contact: Gerald B. Edwards, P.G.
Phone: (703) 478-3400
FAX: (703) 478-3375
Capabilities: H 0 3 10

J.W. Morris, Ltd.
Arlington, VA 22203
Contact: J.W. Morris
Phone: (703) 525-4875
FAX: (703) 525-8324
Capabilities: F T S

Malcolm Pirnie, Inc.
Newport News, VA 23606
Contact: Dr. Bruce W. Schwennemaker
Phone: (804) 873-8700
FAX: (804) 873-8723
Capabilities: L O R 3 10

Seema, Inc.
Hampton, VA 23666
Contact: Makeeh B. Shah, PE
Phone: (804) 845-0061
FAX: (804) 867-9338
Capabilities: 3

Skriver & Holland Associates
Norfolk, VA 23510
Contact: Donald L. Whitehill
Phone: (804) 627-6525
FAX: (804) 627-8228
Capabilities: 3

Tailor Group, Ltd.
Virginia Beach, VA 23452
Contact: Richard Bowe
Phone: (804) 340-0322
FAX: (804) 498-1043
Capabilities: E F H I 3 10

3D/International Inc.
Alexandria, VA 22314
Contact: Dick Cowan
Phone: (703) 683-6700
FAX: (703) 683-6701
Capabilities: F H 3 5 10

Tidewater Construction Corp.
Norfolk, VA 23501
Contact: J.E. Davis III
Phone: (804) 420-1100
FAX: (804) 420-3551
Capabilities: F 1 3

Vertco Corporation
Norfolk, VA 23509
Contact: Robert H. Walls
Phone: (804) 557-5307
FAX: (804) 557-5099
Capabilities: F I T S 1 3 7

VW Internationale, Inc.
Alexandria, VA 22306
Contact: James M. Arkin
Phone: (703) 768-6265
FAX: (703) 768-6272
Capabilities: E I 4 5 7

Virginia Beach, VA 23462
Contact: James W. Holton, Jr.
Phone: (804) 490-1691
FAX: (804) 490-1348
Capabilities: E F H L 3

R. Kenneth Weeks Engineers
Norfolk, VA 23202
Contact: R. Kenneth Weeks
Phone: (804) 625-0399
FAX: (804) 623-0399
Capabilities: F E O 1 3 5

Roy F. Weston, Inc.
Virginia Beach, VA 23462
Contact: Mr. Anning Farmer
Phone: (804) 473-9729
FAX: (804) 473-9746
Capabilities: H O 3 10

Wilber Smith Associates
Falls Church, VA 22042
Contact: Carlos C. Villacarcel
Phone: (703) 573-3850
FAX: (703) 573-1854
Capabilities: F T I 3 5 7

Wiley & Wilson
Lynchburg, VA 24501
Contact: Albert L. Nichols, Jr.
Phone: (804) 949-1901
FAX: (804) 949-1744
Capabilities: F H O 3 5 10

WISCONSIN

Washington

Department of Emergency Management
Olympia, WA 98504-8346
Contact: Kate Halsema
Phone: (206) 587-8001
FAX: (206) 587-8009
Capabilities: E H L 3 10

McLaren Peterson Assoc., Inc.
Seattle, WA 98109-5129
Contact: Ron Martineau
Phone: (206) 623-4020
FAX: (206) 623-4021
Capabilities: E I L S 1 3

Monaco Engineering
Spokane, WA 99216
Contact: Gary Moore
Phone: (509) 242-0777
FAX: (509) 242-0778
Capabilities: H 1 4 7

NBBJ Architects
Seattle, WA 98104
Contact: Dave Kepuch
Phone: (206) 225-5555
FAX: (206) 225-5555
Capabilities: E 3

Pareena, Brinknerhoff, Quade & Douglas, Inc.
Seattle, WA 98104
Contact: Robert J. Berg
Phone: (206) 382-9200
FAX: (206) 382-9202
Capabilities: E F T I 3 5

WISCONSIN

Divisions of Emergency Government Madison, WI 53797
Contact: Robert M. Thompson
Phone: (608) 266-3232
FAX: (608) 266-3233

Durrant Architects Inc.
Madison, WI 53704
Contact: Jerold W. Damor, AIA
Phone: (608) 241-3340
FAX: (608) 241-1031
Capabilities: E F T I 3 5
Emergency Capability Listing

Wisconsin

Derrant Engineers, Inc.
Madison, WI 53704
Contact: William F. Bantemar, PE
Phone: (608) 261-3340
FAX: (608) 261-3340
Capabilities: IT 1 2 3 12

Fitch & Van Dyke
Green Bay, WI 54304
Contact: Ray Kopf
Phone: (414) 497-2500
FAX: (414) 497-8316
Capabilities: H 3 10

Mead & Hunt, Inc.
Madison, WI 53710
Contact: Mike Shinumaki
Phone: (608) 273-6390
FAX: (608) 273-6390
Capabilities: F1 S T 1 3 12

WEST VIRGINIA

Office of Emergency Services
Charleston, WV 25305
Contact: Carl L. Bradford
Phone: (304) 558-5300
FAX: (304) 346-4533

The Chestner Engineers
Huntington, WV 25701
Contact: J. Gregory Memari
Phone: (304) 525-0120

INTERNATIONAL

Andrews Kent & Stone
Oxford, England
Contact: David Copeland
Phone: 865-240071
FAX: 865-248006
Capabilities: E F T H 1 3

DMMT Int'l. Desgni Facility
Tokyo, Japan
Contact: William G. Bryant
Phone: 427-35-3505
FAX: 427-88-2247
Capabilities: E F T H O 1 3 5 10

Hannah Reed and Associates
Cambridge, England
Contact: G. H. Hannah
Phone: 223-820000
FAX: 223-881888
Capabilities: F L 1 3 5

J.B. Jones Architects, AIA, Inc.
Tansing, Guam
Contact: Jack A. Jones, FAIA
Phone: 671-649-2728
FAX: 671-649-2728
Capabilities: E F T H 1 3 5

Kajitaka Engineering Co., Inc.
Minato-Ku, Tokyo, Japan
Contact: Takashi Fukasawa
Phone: 3-3478-3181, ext. 278
FAX: 3-3478-3380
Capabilities: E F L 3

Leadbetter Construction
Eysham Oxford, UK
Contact: Robert Rendell
Phone: 865-880099
FAX: 865-880343
Capabilities: 3

L.U.B. Lang-Uswee-Betolig
D-6000 Frankfurt, Germany
Contact: J.M. Mueller
Phone: 69-5808-3885
FAX: 69-5808-2745
Capabilities: H 1 0

The Oxford Architects Partnership
Oxford, OX1 3BS Great Britain
Contact: Alan Hobbs
Phone: 44-865-326032
FAX: 44-865-326022
Capabilities: 3

Samyang Heavy Industries Co., Ltd.
Seoul, Korea
Contact: Bok Kook, KOO
Phone: 822-728-5245
FAX: 822-728-6900
Capabilities: F I L S 1 3

Seolwan Corporation
Seoul, Korea
Contact: Yoon-Kwong Cho
Phone: 822-740-2315
FAX: 822-744-0608
Capabilities: E F L 1 2 3 12

Speedang Poyang Co.
Seoul, Korea
Contact: Francis Dupuis
Phone: 822-732-8194
FAX: 822-729-0360
Capabilities: F L 3

Vero (Vennell, Brown & Reest)
Ankara, Turkey
Contact: MG William Klaus (Ret.)
Phone: 904-285-2061
FAX: 904-285-2061
Capabilities: H O S 1 4 5 10

Yale Techik AS
Ankara, Turkey
Contact: Mr. Temre Ekin
Phone: 4667-0990
FAX: 4626-7779
Capabilities: E F L O 1 3 4

Explanation of Capability Codes

Each company in this directory selected up to four Experience and Support Codes from the following list:

Experience Codes
E..........................Earthquakes
F........................Floods and Hurricanes
H........................Hazardous Materials
I..........................Discharge
L..........................Explosions, Fires
T..........................Landslides
O..........................Oil Spills
R..........................Radiation Leaks
A..........................Snow Removal
R..........................Tornadoes

Support Codes
1. Transportation: highways, streets, bridges, railroads, airports, marine
2. Communications: telecommunications assets
3. Public Works & Engineering: restoration, engineering, planning, designing, construction, and demolition
4. Fire Fighting: management, coordination, detection, and suppression
5. Information and Planning: collection, evaluation, and processing
6. Mass Care: shelter, feeding, first aid, information, and bulk distribution
7. Resource Support: evaluation, location, procurement of material resources, stock surplus
8. Health & Medical Services: public health response, triage, treatment, transportation, and evacuation of patients
9. Urban Search & Rescue: immediate lifesaving response, use of specialized equipment and teams, coordination of federal aircraft
10. Hazardous Materials: coordinate response to potential HAZMAT discharges; prevent/mitigate/mitigate threats to public health, welfare, or the environment
11. Food: obtain through loan, donation, or direct acquisition; arrange for transportation to staging areas
12. Energy: Coordinate provision of emergency power and fuel to support response operations; assess energy system damage, energy supply, demand, and requirements to restore systems

208 THE MILITARY ENGINEER, MAY-JUNE, 1993
<table>
<thead>
<tr>
<th>REGION</th>
<th>LOCATION</th>
<th>PHONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>BOSTON, MA</td>
<td>(617) 223-7210</td>
</tr>
<tr>
<td>II</td>
<td>NEW YORK, NY</td>
<td>(212) 264-2525</td>
</tr>
<tr>
<td>III</td>
<td>PHILADELPHIA, PA</td>
<td>(215) 597-9814</td>
</tr>
<tr>
<td>IV</td>
<td>ATLANTA, GA</td>
<td>(404) 347-4727</td>
</tr>
<tr>
<td>V</td>
<td>CHICAGO, IL</td>
<td>(312) 353-2000</td>
</tr>
<tr>
<td>VI</td>
<td>DALLAS, TX</td>
<td>(214) 767-2600</td>
</tr>
<tr>
<td>VII</td>
<td>KANSAS CITY, MO</td>
<td>(816) 374-5493</td>
</tr>
<tr>
<td>VIII</td>
<td>DENVER, CO</td>
<td>(303) 844-3895</td>
</tr>
<tr>
<td>IX</td>
<td>SAN FRANCISCO, CA</td>
<td>(415) 974-8153</td>
</tr>
<tr>
<td>X</td>
<td>SEATTLE, WA</td>
<td>(206) 442-5810</td>
</tr>
</tbody>
</table>
APPENDIX C
SAMPLE OPERATIONAL REPORTS

1. OPREP-3 Pinnacle Example:

| FROM: | CNO WASHINGTON DC  
| NAVFAECNGCOM ALEXANDRIA VA  
| NMCC WASHINGTON DC |
| TO: | NAVFAECNGCOM ALEXANDRIA VA  
| NAVFAECNGCOM ALEXANDRIA VA  
| CNO OP ZERO ONE WASHINGTON DC  
| CDR USATWO ATLANTA GA  
| NAVOPINTCEN SUITLAND MD |
| INFO: | NAVY JAG ALEXANDRIA VA  
| CNO OP ZERO ONE WASHINGTON DC  
| CDR USATWO ATLANTA GA  
| NAVOPINTCEN SUITLAND MD |
| SECRET (CLASSIFIED FOR ILLUSTRATION PURPOSES ONLY) |
| MSG/OPREP-3/ /001/FEB// |
| FLAGWORD/PINNACLE/-/ |
| TIMELOC/ / / |
| GENTEXT/NATURAL DISASTER/6.5 MAGNITUDE EARTHQUAKE CALIFORNIA/ GEOGRAPHICAL EXTENT OF EARTHQUAKE UNKNOWN// |
| APM/DAMAGE TO MILITARY INSTALLATIONS UNKNOWN/NAVY CASUALTIES UNKNOWN/MODERATE DAMAGE TO CIVILIAN MUNICIPALITIES APPEARS EVIDENT// |
| RMKS/AMPLIFYING INFO TO FOLLOW/VOICE REPORT SENT /COMMANDING OFFICER ESTIMATE: I ANTICIPATE ADVERSE IMPACT ON READINESS TO NAVAL INSTALLATIONS AND CALL FOR ASSISTANCE FROM CIVILIAN AUTHORITIES// |
| DECL/OADR// |

2. OPREP-3 Navy Blue Example:

| FROM: | CNO WASHINGTON DC  
| NAVFAECNGCOM ALEXANDRIA VA  
| NMCC WASHINGTON DC |
| TO: | NAVFAECNGCOM ALEXANDRIA VA  
| NAVFAECNGCOM ALEXANDRIA VA  
| CNO OP ZERO ONE WASHINGTON DC  
| CDR USATWO ATLANTA GA  
| NAVOPINTCEN SUITLAND MD |
| INFO: | NAVY JAG ALEXANDRIA VA  
| CNO OP ZERO ONE WASHINGTON DC  
| CDR USATWO ATLANTA GA  
| NAVOPINTCEN SUITLAND MD |
| SECRET (CLASSIFIED FOR ILLUSTRATION PURPOSES ONLY) |
| MSG/OPREP-3/ /001/FEB// |
| FLAGWORD/NAVY BLUE/-/ |
| TIMELOC/ / / |
| GENTEXT/NATURAL DISASTER/6.5 MAGNITUDE EARTHQUAKE CALIFORNIA/ GEOGRAPHICAL EXTENT OF EARTHQUAKE UNKNOWN// |
| APM/DAMAGE TO MILITARY INSTALLATIONS UNKNOWN/NAVY CASUALTIES UNKNOWN/MODERATE DAMAGE TO CIVILIAN MUNICIPALITIES APPEARS EVIDENT// |
| RMKS/AMPLIFYING INFO TO FOLLOW/VOICE REPORT SENT /COMMANDING OFFICER ESTIMATE: I ANTICIPATE ADVERSE IMPACT ON READINESS TO NAVAL INSTALLATIONS AND CALL FOR ASSISTANCE FROM CIVILIAN AUTHORITIES// |
| DECL/OADR// |
3. Tempest Rapid - Civil Emergency Reporting Example:

**PRECEDEENCE: IMMEDIATE. (MINIMIZE CONSIDERED)**

**FROM:**

**TO:** DA WASHINGTON DC/DAMO-ODS//
CDR USATWO (X ATLANTA GA)//AFKC-OP-OR//

**INFO:** CNO WASHINGTON DC//OP-64//
CMC WASHINGTON DC//POC//
NAVFACENGCOM ALEXANDRIA VA
Applicable Disaster Preparedness Group Coordinator

**CLASSIFICATION:** AS APPLICABLE

**SUBJ:** INITIAL/DAILY/INTERIM/REPORT, CIVIL EMERGENCY ASSISTANCE REC:DD-COMP (AR) 114 (3440) (TEMPEST RAPID) XXX-II-XX-XXX

1. Nature of emergency, location, extent of damage and estimated duration.
2. Number of Navy-Marine Corps, other military and civilian personnel committed and nature of actions in which they are employed, if any.
3. Amount and types of Navy-Marine Corps equipment and supplies committed.
4. Degree to which civil agencies have committed their resources.
5. Source of request for assistance.
6. Number of casualties, injuries, and fatalities of both military and civilian personnel.
7. Acreage and location of real property committed.

4. Tempest Cider - Civil Defense Reporting Example:

**PRECEDEENCE: IMMEDIATE. (MINIMIZE CONSIDERED)**

**FROM:**

**TO:** AREA COORDINATOR

**INFO:** CNO WASHINGTON DC//OP-64//
CMC WASHINGTON DC//POC//
NAVFACENGCOM ALEXANDRIA VA
Applicable Disaster Preparedness Group Coordinator

**CLASSIFICATION:** AS APPLICABLE

**SUBJ:** INITIAL/DAILY/REPORT, CIVIL DEFENSE (TEMPEST CIDER) REPORT AS OF XXX-II-XX-XXX

1. Nature of emergency, location, extent of damage and estimated duration.
2. Number of Navy-Marine Corps, other military and civilian personnel committed and nature of actions in which they are employed, if any.
3. Amount and types of Navy-Marine Corps equipment and supplies committed.
4. Degree to which civil agencies have committed their resources.
5. Source of request for assistance.
6. Number of casualties, injuries, and fatalities of both military and civilian personnel.
7. Degree to which the Federal Emergency Management Agency (FEMA) and state and local authorities have assumed responsibilities and are operating in the affected area.
5. Garden Plot - Civil Disturbance Reporting Example:

<table>
<thead>
<tr>
<th>PRECEDENCE: IMMEDIATE. (MINIMIZE CONSIDERED)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FROM:  DA WASHINGTON DC/DAMO-ODS//</td>
</tr>
<tr>
<td>CDR USATWO (X ATLANTA GA)//AFKC-OP-OR//</td>
</tr>
<tr>
<td>TO:   INFO:  CNO WASHINGTON DC//OP-64//</td>
</tr>
<tr>
<td>CMC WASHINGTON DC//POC//</td>
</tr>
<tr>
<td>NAVFACENGCOM ALEXANDRIA VA</td>
</tr>
<tr>
<td>Applicable Disaster Preparedness Group Coordinator</td>
</tr>
</tbody>
</table>

CLASSIFICATION: AS APPLICABLE

SUBJ: INITIAL/DAILY/INTERIM/REPORT, CIVIL DISTURBANCE, RCS: DD-COM P (AR) 1112 (3440) (GARDEN PLOT) XXX-II-XX-XXX

1. DOD Organization receiving request(s).
2. Place of the actual or anticipated civil disturbance.
3. Name and title of requesting official.
4. Date/time group of request for assistance.
5. Scope of the disturbance or the threat of such a disturbance existing at the time of the request.
6. Type, group, and quantities of assistance requested.
7. Purpose for which assistance was requested.
8. Number of control personnel (civil police) available for employment.
9. Anticipated impact on local community relations resulting from approval/disapproval of the request.
10. Statement as to whether the request was granted or denied and level at which the decision was made.
11. Reasons for denying or referring the request to higher headquarters.
12. If request is referred to higher headquarters, provide a recommendation and comments, as appropriate, for approval or denial based upon knowledge of the facts at hand.
13. If appropriate, provide additional information on emergency fire fighting assistance provided in civil disturbance situations.
14. Other pertinent information.
APPENDIX D
NASKEF UTILITY CONTINGENCY PLANS (PARTIAL LISTINGS)

(Source NASKEF OPLAN 9000 (DRAFT), July 1992)

POWER CONTINGENCY PLAN:

Commercial:
Power Source: Burfell Hydroelectric Plant
Distribution: Reykjavik and Njardvik overhead lines
Feeder: 66 KV line at 50 cycle
Back-up: None

Base:
Power Source: Building 864
Distribution: 14 circuits-overhead and inground lines
Feeder: Rockville/West End - 13.5 KV/60 cycle
Grindavik - 33 KV/60 cycle
Base - (11) 4.16 KV/60 cycle
Back-up: Diesel engines at Bldg 864
Portable generators
Distribution backfeed on 4.6KV circuits

Drawings: N62467- - : NASKEF FEEDER DRAWINGS (1"-500')
FEEDER LINE DRAWINGS (1"-500')

Generator Operational Data: Available at site.

Facility Power Plants: (PARTIAL LISTING)

<table>
<thead>
<tr>
<th>BLDG</th>
<th>LOCATION</th>
<th>NO GEN</th>
<th>OUTPUT</th>
<th>FUEL</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>864</td>
<td>BASE POWER PLANT</td>
<td>7</td>
<td>11.25 MW</td>
<td>75,000</td>
<td>6</td>
</tr>
<tr>
<td>1650</td>
<td>DYE-5 POWER PLANT</td>
<td>4</td>
<td>3.6 MW</td>
<td>34,000</td>
<td>20</td>
</tr>
<tr>
<td>2608</td>
<td>GRINDAVIK POWER PLANT</td>
<td>3</td>
<td>1.5 MW</td>
<td>20,000</td>
<td>10</td>
</tr>
</tbody>
</table>

Portable Emergency Generators: (PARTIAL LISTING)

<table>
<thead>
<tr>
<th>TYPE</th>
<th>ECC</th>
<th>OUTPUT</th>
<th>LOCATION</th>
<th>FUEL</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onan</td>
<td>#51-178</td>
<td>5 KW</td>
<td>SHOP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Libby</td>
<td>#51-15805</td>
<td>30 KW</td>
<td>SHOP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freemont</td>
<td>#6115-119-1243</td>
<td>60 KW</td>
<td>SHOP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detroit</td>
<td>#40B6910A</td>
<td>100 KW</td>
<td>1650/DYE-5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Feeder Priority Listing: (PARTIAL LISTING)

<table>
<thead>
<tr>
<th>FEEDER BUILDINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3                WESTEND, TOWER, AIRFIELD LIGHTING</td>
</tr>
<tr>
<td>1                BLDG 831, 789, 790</td>
</tr>
</tbody>
</table>

Feeder/Facility Listing:

<table>
<thead>
<tr>
<th>FACILITY NO</th>
<th>PRI</th>
<th>NAME</th>
<th>FEEDER NO</th>
<th>ELECTRICAL REQUIREMENTS</th>
<th>TRANS</th>
<th>EMERGENCY BACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>4</td>
<td>NBS</td>
<td>6</td>
<td>SINGLE</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
WATER CONTINGENCY PLAN

Commercial:

- Source: Sudurnes Water Works: GJA Fissure
- Distribution: Bldg 988 - 3x1365 gpm booster pumps thru under ground lines
- Treatment: Flourine and Chlorine
- Power Source: Commercial
- Pump Power: Commercial

Base:

- Source: 11 Water wells and storage tanks via 750,000 gall storage tank Bldg 516
  500,000 gall elevated tank bldg 875
- Distribution: Bldg 516 - 3x1400gpm booster pumps thru under ground lines
- Treatment: Flourine and Chlorine
- Power Source: Commercial with emerg gen back-up
- Pump Power: Commercial

Drawings: Water Line Distribution System (1"-500')
- Valve Location and Status Drawing (1"-500')

### Water Wells

<table>
<thead>
<tr>
<th>WELL</th>
<th>LOCATION</th>
<th>CAPACITY</th>
<th>DEPTH</th>
<th>POWER</th>
<th>FUEL</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Bldg 177</td>
<td>145 GPM</td>
<td>163.0 FT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Bldg T621</td>
<td>130 GPM</td>
<td>159.5 FT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Bldg T2302</td>
<td>175 GPM</td>
<td>124.0 FT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Isolated Water Wells

<table>
<thead>
<tr>
<th>BLDG</th>
<th>LOCATION</th>
<th>CAPACITY</th>
<th>DEPTH</th>
<th>POWER</th>
<th>FUEL</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1756</td>
<td></td>
<td>10 GPM</td>
<td>130 FT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1793</td>
<td></td>
<td>20 GPM</td>
<td>156 FT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1683</td>
<td></td>
<td>10 GPM</td>
<td>50 FT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HEAT CONTINGENCY PLAN

Commercial: Source: Svartsengi (Blue Lagoon)
Distribution: Above ground lines
Type: 24" insulated steel pipe
Back-up: None

Base: Source: Pumping station at Fitjar
Distribution: Under ground lines
Type: 20"-2" insulated steel pipe
Temp/Press: 202 F/96 C at 60 lbs

Drawings: Steam Distribution/Valve Drawings

Base Sectors

<table>
<thead>
<tr>
<th>AREA</th>
<th>MAX DOMESTIC (BTU/HR)</th>
<th>MAX HEATING (BTU/HR)</th>
<th>FLOW (L/M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE - E</td>
<td>1,329,319</td>
<td>8,862,129</td>
<td>936</td>
</tr>
<tr>
<td>BASE - G</td>
<td>7,370,873</td>
<td>49,139,155</td>
<td>5166</td>
</tr>
<tr>
<td>BASE - H1</td>
<td>1,367,229</td>
<td>9,114,862</td>
<td>941</td>
</tr>
<tr>
<td>BASE - H2</td>
<td>1,004,904</td>
<td>6,699,360</td>
<td>699</td>
</tr>
<tr>
<td>TOTAL</td>
<td>24,666,494</td>
<td>164,443,295</td>
<td>17,288</td>
</tr>
</tbody>
</table>

Active Non-geothermal Units

<table>
<thead>
<tr>
<th>BLDG</th>
<th>LOCATION</th>
<th>HAZ CODE</th>
<th>AMOUNT</th>
<th>TYPE</th>
<th>CAPACITY</th>
<th>FUEL</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>632</td>
<td>LAUNDRY</td>
<td>2</td>
<td>BOIL</td>
<td>6,694 BTU</td>
<td>3,000</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1639</td>
<td>TORPEDO SHOP</td>
<td>1</td>
<td>BOIL</td>
<td>1,329 BTU</td>
<td>3,000</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>1680</td>
<td>NAVFAC</td>
<td>1</td>
<td>BOIL</td>
<td>7,000 BTU</td>
<td>25,000</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Stand-by Boiler Units

<table>
<thead>
<tr>
<th>BLDG</th>
<th>LOCATION</th>
<th>HAZ CODE</th>
<th>AMOUNT</th>
<th>TYPE</th>
<th>CAP</th>
<th>FUEL</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>710</td>
<td>HOSPITAL</td>
<td>2</td>
<td>BOIL</td>
<td>3,348 BTU</td>
<td>1,000</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2578</td>
<td>H-1 OPS</td>
<td>1</td>
<td>BOIL</td>
<td>4,347 BTU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>781</td>
<td>COR CONTROL</td>
<td>1</td>
<td>BOIL</td>
<td>1,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>271</td>
<td>CHILD CENTER</td>
<td></td>
<td>BOIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>286</td>
<td>NATO SATCOM BLDG</td>
<td>1</td>
<td>BOIL</td>
<td>3,000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Units Requiring Preparation

<table>
<thead>
<tr>
<th>BLDG</th>
<th>LOCATION</th>
<th>HAZ CODE</th>
<th>AMOUNT</th>
<th>TYPE</th>
<th>CAP</th>
<th>FUEL</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>794</td>
<td>FLIGHT PODS</td>
<td>a</td>
<td>1</td>
<td>BOIL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>910</td>
<td>HIGH SCHOOL</td>
<td>a,f</td>
<td>2</td>
<td>BOIL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>782</td>
<td>AIR OPS BLDG</td>
<td>o</td>
<td></td>
<td>BOIL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BOIL - BOILER   HA - HOT AIR FURNACE   CAPACITY - KBTU
FLOW - LITERS/MIN   FUEL - GALLONS   TIME - REPAIR DAYS
a - ASBESTOS CONTAM ROOM
f - FUEL TANKS REMOVED
o - MAJOR OVERHAUL

Facility Listing (NOT PROVIDED): A listing of all building heating and
domestic hot water requirements is shown in Attachment A. The system can be
isolated into sectors shown in paragraph a. It is possible, to connect a High
Temperature - Hot Water (HTHW) Boiler to replace geothermal system in
applicable sectors. "Donkey" Boiler connection is possible in all buildings currently connected to geothermal system.
Appendix E
MOS Selection Kit

The normal MOS Selection Kit contains the following charts and graphs (AFESC, Volume II, Post-Disaster Procedures):

- Airfield Complex Map (1"=500'), No example provided.
- Airfield Runway Maps (1"=100'), No example provided.
- Crater Template, No example provided.
- Density Ratio Charts
- MOS Selection Form
- Aircraft Surface Roughness Selection Charts
- Surface Roughness Charts
- Crater Time Worksheets for Chemical and Nonchemical Environments
- Spall Time Worksheets for Chemical and Nonchemical Environments
Figure B-3. Density Ratio Graph
MOS SELECTION FORM
(CIRCLE CONDITIONS THAT APPLY, FILL IN APPLICABLE BLANKS)

<table>
<thead>
<tr>
<th>AIRCRAFT</th>
<th>TAKEOFF</th>
<th>LANDING</th>
<th>EVACUATION</th>
<th>BARRIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-4 C/D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-4 E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-141</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RCR:  DRY  WET  ICY

RSC:  GOOD (NO SLUSH OR STANDING WATER)
      POOR (SLUSH OR STANDING WATER)

TEMPERATURE: ________________________

PRESSURE ALTITUDE: __________________

DENSITY RATIO: ____________________

DIRECTION:  UNIDIRECTIONAL (HEADING = ____________ )  BIDIRECTIONAL

SURFACE ROUGHNESS CHART NUMBERS:

MOS LENGTH _______ MOS WIDTH _______ TAKEOFF WIDTH _______

<table>
<thead>
<tr>
<th>MOS 1</th>
<th>MOS 2</th>
<th>MOS 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.O.</td>
<td>L.O.</td>
<td>L.O.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISTANCE FROM MOSS (MOS TO OTHER MOS) | DISTANCE FROM MOSS (MOS TO OTHER MOS) | DISTANCE FROM MOSS (MOS TO OTHER MOS)

REPAIR QUALITY | REPAIR QUALITY | REPAIR QUALITY

NO. OF SPALLS | NO. OF SPALLS | NO. OF SPALLS

RECOVERY TIME | RECOVERY TIME | RECOVERY TIME

Figure B-4. MOS Selection Form
**Table B-3. Taxiway Criteria**

<table>
<thead>
<tr>
<th>AIRCRAFT</th>
<th>REPAIRED WIDTH (FEET)</th>
<th>CLEARED WIDTH (FEET)</th>
<th>SWEEP WIDTH (FEET)</th>
<th>90° TURN WIDTH (FEET)</th>
<th>180° TURN WIDTH (FEET)</th>
<th>MINIMUM CRATER SPACING* (FEET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-4</td>
<td>25</td>
<td>35</td>
<td>35</td>
<td>30</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>C-130</td>
<td>30</td>
<td>135</td>
<td>100</td>
<td>60</td>
<td>100</td>
<td>66</td>
</tr>
<tr>
<td>C-141</td>
<td>50</td>
<td>170</td>
<td>85</td>
<td>75</td>
<td>140</td>
<td>NONE</td>
</tr>
<tr>
<td>F-15</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-16</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-10</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-111</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-5A</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC-10</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC-747</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*FOR MINIMUM SPACING INDICATED, 4.5-INCH REPAIR QUALITY WITH MAXIMUM TAXI SPEED OF 10 KNOTS IS ALLOWED. WHEN SPACING IS LESS, UPGRADE REPAIR QUALITY TO 3 INCHES OR REDUCE MAXIMUM TAXI SPEED TO 5 KNOTS.*

**Table B-3. F-4E**

(TAKEOFF WEIGHT ≤ 57,000 POUNDS)  
(LANDING WEIGHT ≤ 38,000 POUNDS)

<table>
<thead>
<tr>
<th>CHART NUMBER</th>
<th>OPERATION MODE</th>
<th>RUNWAY CONDITION</th>
<th>DENSITY RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TAKEOFF</td>
<td>LANDING</td>
<td>EVACUATION</td>
</tr>
<tr>
<td>101</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 4-4. Surface Roughness Charts 408 and 409 (Overlaid)

4.5" 3" 1.5" 1" FLUSH

Figure 4-5. Upheaval Key

1,065, 1,600, and 4,280 feet. By observing the lowest repair quality for each zone, a repair quality of 1.5 inches or better is necessary to the left of the 1,056-foot mark, while 4.5 inches or better is needed to the right. This process helps you to choose an MOS that has no craters to repair in those zones which require a high repair quality (1 inch or flush).
RRR TIME WORKSHEET FOR NONCHEMICAL ENVIRONMENT

MOS IDENTIFICATION:
USE THE SMALLEST NUMBERS IN PARENTHESES FOR AS MANY WHOLE CRATERS AS THERE ARE REPAIR TEAMS.
USE THE SECOND NUMBER FOR ALL OTHER WHOLE CRATERS.
USE 3/4 OF THE SECOND NUMBER (x .75) FOR PARTIAL CRATERS.

<table>
<thead>
<tr>
<th>APPARENT DIAMETER</th>
<th>10 FEET</th>
<th>20 FEET</th>
<th>30 FEET</th>
<th>40 FEET</th>
<th>50 FEET</th>
<th>TIME (MINUTES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 INCH TIME/REPAIR NUMBER</td>
<td>(120) 60</td>
<td>(230) 140</td>
<td>(330) 210</td>
<td>(410) 288</td>
<td>(510) 366</td>
<td>(610) 444</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0 INCH TIME/REPAIR NUMBER</td>
<td>(100) 50</td>
<td>(165) 100</td>
<td>(225) 150</td>
<td>(285) 180</td>
<td>(345) 210</td>
<td>(405) 240</td>
</tr>
<tr>
<td>SUBLTOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0 INCH TIME/REPAIR NUMBER</td>
<td>(180) 60</td>
<td>(135) 80</td>
<td>(205) 125</td>
<td>(275) 150</td>
<td>(345) 175</td>
<td>(415) 200</td>
</tr>
<tr>
<td>SUBLTOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0 INCH TIME/REPAIR NUMBER</td>
<td>(80) 40</td>
<td>(105) 60</td>
<td>(165) 120</td>
<td>(225) 150</td>
<td>(285) 180</td>
<td>(345) 210</td>
</tr>
<tr>
<td>SUBLTOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0 INCH TIME/REPAIR NUMBER</td>
<td>(80) 40</td>
<td>(90) 60</td>
<td>(125) 125</td>
<td>(150) 150</td>
<td>(175) 175</td>
<td>(200) 200</td>
</tr>
<tr>
<td>SUBLTOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL CRATER REPAIR TIME =
FROM SPALL TABLE
DIVIDE BY NUMBER OF TEAMS
RRR TIME =

Figure B-8. RRR Time Worksheet for Nonchemical Environment
**RRR Time Worksheet for Chemical Environment**

**MOS Identification:**

Use the smallest numbers in parentheses for as many whole craters as there are repair teams. Use the second number for all other whole craters. Use 3/4 of the second number (e.g., 0.75) for partial craters.

<table>
<thead>
<tr>
<th>APPARENT DIAMETER</th>
<th>10 FEET</th>
<th>20 FEET</th>
<th>30 FEET</th>
<th>40 FEET</th>
<th>50 FEET</th>
<th>TIME (MINUTES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 INCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME/REPAIR</td>
<td>(156)</td>
<td>(315)</td>
<td>(460)</td>
<td>(670)</td>
<td>(930)</td>
<td>445</td>
</tr>
<tr>
<td>NUMBER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0 INCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME/REPAIR</td>
<td>(130)</td>
<td>(225)</td>
<td>(325)</td>
<td>(486)</td>
<td>(766)</td>
<td>325</td>
</tr>
<tr>
<td>NUMBER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 INCHES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME/REPAIR</td>
<td>(125)</td>
<td>(186)</td>
<td>(220)</td>
<td>(380)</td>
<td>(620)</td>
<td>366</td>
</tr>
<tr>
<td>NUMBER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0 INCHES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME/REPAIR</td>
<td>(108)</td>
<td>(140)</td>
<td>(330)</td>
<td>(470)</td>
<td>(635)</td>
<td>400</td>
</tr>
<tr>
<td>NUMBER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5 INCHES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME/REPAIR</td>
<td>(108)</td>
<td>(120)</td>
<td>(306)</td>
<td>(410)</td>
<td>(510)</td>
<td>330</td>
</tr>
<tr>
<td>NUMBER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**TOTAL CRATER REPAIR TIME**

FROM SPALL TABLE

DIVIDE BY NUMBER OF TEAMS

RRR TIME =

---

*Figure B-9. RRR Time Worksheet for Chemical Environment*
## Table B-12. Spall Table for Nonchemical Environment

<table>
<thead>
<tr>
<th>CRATER REPAIR TIME (MINUTES)</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOTAL NUMBER OF SPALLS</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
</tbody>
</table>

*Spall Table for Nonchemical Environment*
### Table B-13. Spall Table for Chemical Environment

#### SPALL TABLE FOR CHEMICAL ENVIRONMENT

<table>
<thead>
<tr>
<th>Spall Time (Minutes)</th>
<th>Number of Spalls</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>4383 4898 4897 5116 5494 5792 6091 6390 6688 6986 7284 7580</td>
</tr>
<tr>
<td>3800</td>
<td>4200 4498 4797 5096 5394 5692 5991 6290 6588 6886 7184 7480</td>
</tr>
<tr>
<td>3600</td>
<td>4100 4398 4697 4996 5294 5592 5891 6190 6488 6786 7082 7378</td>
</tr>
<tr>
<td>3400</td>
<td>4000 4298 4597 4896 5194 5492 5791 6089 6388 6686 6984 7282</td>
</tr>
<tr>
<td>3200</td>
<td>3900 4198 4497 4796 5094 5392 5691 5989 6288 6586 6884 7182</td>
</tr>
<tr>
<td>3000</td>
<td>3800 4098 4397 4696 4994 5292 5591 5889 6188 6486 6784 7082</td>
</tr>
<tr>
<td>2800</td>
<td>3700 3898 4197 4496 4794 5092 5391 5690 5988 6286 6584 6882</td>
</tr>
<tr>
<td>2600</td>
<td>3600 3798 4097 4396 4694 4992 5291 5589 5887 6185 6483 6781</td>
</tr>
<tr>
<td>2400</td>
<td>3400 3599 3898 4197 4496 4794 5092 5391 5690 5988 6286 6584</td>
</tr>
<tr>
<td>2200</td>
<td>3200 3399 3699 3998 4296 4595 4894 5192 5491 5789 6087 6385</td>
</tr>
<tr>
<td>2000</td>
<td>3000 3199 3499 3798 4097 4396 4695 4993 5291 5589 5887 6185</td>
</tr>
<tr>
<td>1800</td>
<td>2900 3099 3399 3698 3997 4296 4595 4893 5191 5489 5787 6085</td>
</tr>
<tr>
<td>1600</td>
<td>2800 2990 3299 3598 3897 4196 4495 4793 5091 5389 5687 5985</td>
</tr>
<tr>
<td>1400</td>
<td>2700 2890 3199 3498 3797 4096 4394 4693 4991 5289 5587 5885</td>
</tr>
<tr>
<td>1200</td>
<td>2600 2790 3099 3398 3697 3996 4295 4593 4892 5190 5488 5786</td>
</tr>
<tr>
<td>1000</td>
<td>2500 2690 2999 3298 3597 3896 4195 4493 4792 5090 5388 5686</td>
</tr>
<tr>
<td>800</td>
<td>2400 2590 2890 3199 3498 3797 4096 4394 4693 4991 5289 5587</td>
</tr>
<tr>
<td>600</td>
<td>2300 2490 2790 3099 3398 3697 3996 4295 4593 4892 5190 5488</td>
</tr>
<tr>
<td>400</td>
<td>2200 2390 2690 2999 3298 3597 3896 4195 4493 4792 5090 5388</td>
</tr>
<tr>
<td>200</td>
<td>2100 2290 2590 2890 3199 3498 3797 4096 4394 4693 4991 5289</td>
</tr>
</tbody>
</table>

#### TOTAL NUMBER OF SPALLS

<table>
<thead>
<tr>
<th>Spall Time (Minutes)</th>
<th>Total Number of Spalls</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>600 698 987 1276 1564</td>
</tr>
<tr>
<td>400</td>
<td>600 698 987 1276 1564</td>
</tr>
<tr>
<td>600</td>
<td>600 698 987 1276 1564</td>
</tr>
<tr>
<td>800</td>
<td>600 698 987 1276 1564</td>
</tr>
<tr>
<td>1000</td>
<td>600 698 987 1276 1564</td>
</tr>
<tr>
<td>1200</td>
<td>600 698 987 1276 1564</td>
</tr>
<tr>
<td>1400</td>
<td>600 698 987 1276 1564</td>
</tr>
<tr>
<td>1600</td>
<td>600 698 987 1276 1564</td>
</tr>
<tr>
<td>1800</td>
<td>600 698 987 1276 1564</td>
</tr>
<tr>
<td>2000</td>
<td>600 698 987 1276 1564</td>
</tr>
<tr>
<td>2200</td>
<td>600 698 987 1276 1564</td>
</tr>
<tr>
<td>2400</td>
<td>600 698 987 1276 1564</td>
</tr>
<tr>
<td>2600</td>
<td>600 698 987 1276 1564</td>
</tr>
<tr>
<td>2800</td>
<td>600 698 987 1276 1564</td>
</tr>
<tr>
<td>3000</td>
<td>600 698 987 1276 1564</td>
</tr>
<tr>
<td>3200</td>
<td>600 698 987 1276 1564</td>
</tr>
<tr>
<td>3400</td>
<td>600 698 987 1276 1564</td>
</tr>
<tr>
<td>3600</td>
<td>600 698 987 1276 1564</td>
</tr>
<tr>
<td>3800</td>
<td>600 698 987 1276 1564</td>
</tr>
<tr>
<td>4000</td>
<td>600 698 987 1276 1564</td>
</tr>
</tbody>
</table>
Appendix F
NASKEF PUBLIC WORKS THREAT CONDITION SUPPORT PLAN

Ref: (a) NASKEFINST 5530.1C

1. The Commanding Officer, Naval Air Station, Keflavik is responsible for the security of the agreed area. The establishment of threat conditions provides a smooth transition from normal to expanded security.

2. Threat Conditions. Threat condition (THREATCONS) and measures which shall be considered for implementation are:
   a. THREATCON ALPHA: A general warning of possible terrorist activity, the nature and extent of which are unpredictable.
      1. Notify all officers, chief petty officers and division directors of the change in THREATCON. Brief all personnel of the THREATCON and initiate checklist completion. Remind personnel to be suspicious and inquisitive about strangers, particularly those carrying suitcases or other containers. Watch for unidentified vehicles on the NATO Base. Watch for abandoned parcels or suitcases and any unusual activity. Notify NAS Security of anything out of the ordinary.
      2. Review building plans available to the PWD Duty Section and BSRCC and ensure they have access to a complete set for all facilities in case of evacuation of any area is required. Coordinate with PWD Engineering to obtain access to additional plans, if required. Current location of the PWO, APWO, Operations Officer and Transportation Officer should be known to the PWD Duty Section at all times. Review Recall Bill for accuracy.
      3. Secure all buildings, rooms and storage areas not in regular use.
      4. Increase security spot checks of vehicles.
      5. Assist Security in limiting access points for vehicles and personnel, as needed.
      6. As a deterrent, apply the following measures individually and randomly:
         (a) Secure and regularly inspect all buildings, rooms and storage areas not in use.
         (b) At the beginning and end of each workday, and at other regular and frequent intervals, inspect the interior and exterior of buildings in regular use for suspicious activities or packages.
      7. Review Facility Contingency Plan and prepare to take actions to enhance security, survivability and recovery of key facilities. Review all plans, orders, personnel details and logistic requirements related to the introduction of higher THREATCONS. Review Mass Casualty and Bomb Threat procedures.
      8. Coordinate with NAS Security and AFI-DE for any heavy equipment assistance required.
      9. Report to NAS Security when all appropriate actions have been initiated.
   b. THREATCON BRAVO: This condition is declared when there is increased and more predictable threat of terrorist activity even though no particular target is identified.
      1. Repeat Measure 1 and warn all personnel.
2. PWO, APWO, Operations Officer and Transportation are to be reachable at all times via telephone or radio.

3. Check plans for implementation of next THREATCON conditions.

4. Move all vehicles and large objects at least 25 meters from key base facilities. Assist where necessary in moving dumpsters and other large objects.

5. Secure and regularly inspect all buildings, rooms and storage areas not in daily use.

6. At the beginning and end of each workday, and at other regular and frequent intervals, inspect the interior and exterior of buildings in regular use for suspicious activities or packages.

7. Examine all mail.

8. Remove signs from all facilities.

9. Make staff and family members aware of the general situation to stop rumors and prevent unnecessary alarm.

10. Remind personnel traveling off-base to exercise additional care and ensure all personnel lock their vehicles when not in use or under their direct observation. All vehicles should be checked for unidentified objects before being operated. All military vehicles traveling on official business off or between agreed areas are required to phone Security upon departure and return.

11. Erect barriers to control traffic flow. Coordinate with Security on assistance required.

12. Report to NAS Security when all appropriate actions have been initiated.

c. THREATCON CHARLIE: This condition is declared when an incident occurs or when intelligence is received indicating that some form of terrorist action against installations and personnel is imminent.

1. Review and check all THREATCON ALPHA and BRAVO actions. Report all outstanding actions to Security.

2. All officers, chief petty officers and division directors will be on call. Augment PWD Duty Section, including one officer and chief, to ensure quick response to several simultaneous emergencies.

3. Limit access points to all critical facilities to one entrance only and control entry.

4. Man all critical facilities 24 hours per day. Conduct security checks of the exterior of all facilities every 30 minutes.

5. Coordinate with Security for obtaining security guards for critical facilities.

6. Cancel all regular bus runs, including school buses, and be prepared to provide additional support to base commands.

7. Check plans for the implementation of THREATCON DELTA.

8. Report to NAS Security when all appropriate actions have been initiated.

d. THREATCON DELTA: A terrorist attack has occurred or intelligence has been received that terrorist actions against a specific location is likely

1. Review and check all THREATCON conditions actions. Report all outstanding actions to Security.

2. Activate a BSRCC. Begin around the clock operations.

3. Require positive identification from all personnel entering facilities. Check all mail, briefcases, packages, etc., for explosives and weapons.
4. Ensure at least two personnel respond to each job. Maintain a continuous check on the location of all PWD personnel responding to trouble calls.

5. Suspend all minor, specific and PMI work and concentrate on emergency calls as much as possible. Minimize all administrative journeys and visits.

6. Report to NAS Security when all appropriate actions have been initiated.
Bibliography


Air Force Engineering and Services Center, Contingency Response Procedures (93-12), HQ AFESC/DEO, Tyndall, FL, undated.

Air Force Engineering and Services Center, Volume 1: Pre-Disaster Planning, HQ AFESC/DEO, Tyndall, FL, undated.

Air Force Engineering and Services Center, Volume 2: Post-Disaster Planning, HQ AFESC/DEO, Tyndall, FL, undated.

Air Force Engineering and Services Center, Volume 3: Bare Base Conceptual Planning Guide (DRAFT), HQ AFESC/DEO, Tyndall, FL, undated.

Boudra, William F., "Engineers Restore Hope", The Military Engineer, No. 557, July 1993, pp 4-9


"HURRICANE Preparedness Guide", The Gainesville Sun, 29 June 1993


Murray, Thomas D., "Disaster Decision", The Military Engineer, No. 557, July 1993, pp 31-33.


United States, Department of Defense, Department of the Navy, *OPNAVINST 3100.6(saries)*, U.S. Navy, Washington, undated.
