Bibliography of Remote Sensing Techniques Used in Wetland Research

by Janet L. Lampman
The following two letters used as part of the number designating technical reports of research published under the Wetlands Research Program identify the area under which the report was prepared:

<table>
<thead>
<tr>
<th>Task</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>Critical Processes</td>
</tr>
<tr>
<td>DE</td>
<td>Delinention & Evaluation</td>
</tr>
</tbody>
</table>

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
Bibliography of Remote Sensing Techniques Used in Wetland Research

by Janet L. Lampman
Environmental Laboratory
U.S. Army Corps of Engineers
Waterways Experiment Station
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Final report
Approved for public release; distribution is unlimited

Prepared for U.S. Army Corps of Engineers
Washington, DC 20314-1000
Waterways Experiment Station Cataloging-in-Publication Data

Lampman, Janet L.
Bibliography of remote sensing techniques used in wetland research / by Janet L. Lampman ; prepared for U.S. Army Corps of Engineers.
174 p. : ill. ; 28 cm. — (Technical report ; WRP-SM-2)
Includes bibliographical references.
TA7 W34 no.WRP-SM-2
Remote Sensing Applications for Wetlands

Bibliography of Remote Sensing Techniques Used in Wetland Research (TR WRP-SM-2)

ISSUE:
Remote sensing techniques have proven to be cost-effective methods for inventorying the present condition of a wetland, and for detecting changes in a wetland using historical remote sensing data. The extensive research conducted in this area is valuable when remote sensing applications are being considered for use in further wetland research.

RESEARCH:
The Bibliography of Remote Sensing Techniques Used in Wetland Research provides listings of some of the published works available for reference. This bibliographical search was conducted as part of a WRP work unit on characterizing changes to wetlands. The results were used to guide research efforts on the use of remote sensing technology for wetland change detection and assessment.

SUMMARY:
The bibliography will aid in literature reviews conducted on the past uses of remote sensing techniques in wetland research. All of the citations are in three listings organized by wetland type, sensor type, and author.

AVAILABILITY OF REPORT:
The report is available on Interlibrary Loan Service from the U.S. Army Engineer Waterways Experiment Station (USAEWES) Library, telephone (601) 634-2355.

To purchase a copy, call the National Technical Information Service (NTIS) at (703) 487-4650. For help in identifying a title for sale, call (703) 487-4780.

NTIS report numbers may also be requested from the WES librarians.

About the Author:
The bibliography was compiled by Ms. Janet L. Lampman, a physical scientist at the WES Environmental Laboratory. Point of contact is Ms. Lampman, USAE Waterways Experiment Station, ATTN: CEWES-EN-C, 3909 Halls Ferry Road, Vicksburg, MS 39180-6199, Phone: (601) 634-3962.

Please reproduce this page locally, as needed.
Contents

Preface .. iv

1—Introduction .. 1

2—Bibliography Organization 2

Appendix A: Citations Organized by Wetland Type A-1

- Tidal Salt Marsh A-1
- Tidal Freshwater Marsh A-17
- Mangrove .. A-31
- Inland Freshwater Marsh A-32
- Northern Peatland A-45
- Southern Deepwater Swamp A-46
- Riparian Wetland A-48
- Submerged Aquatic Vegetation A-53
- Regional Wetland Mapping A-54
- General Information A-59
- Unknown Wetland Type A-63

Appendix B: Citations Organized by Sensor Type B-1

- Black-and-White Photography B-1
- True-Color Photography B-4
- False-Color Infrared Photography B-7
- Landsat Multispectral Scanner (MSS) B-18
- Landsat Thematic Mapper (TM) B-36
- Satellite Pour l’Observation de la Terre (SPOT) B-41
- Radar .. B-43
- Aircraft Multispectral B-46
- Ground-based Radiometer B-50
- General Information B-52
- Unknown Sensor Type B-57
- Other Sensor Types B-65

Appendix C: Citations Organized by Author C-1
Preface

The work described in this report was authorized by the Headquarters, U.S. Army Corps of Engineers (HQUSACE), as part of the Stewardship and Management Task Area of the Wetlands Research Program (WRP). The work was performed under Work Unit 32762, "Techniques for Characterizing Changes to Wetlands." Principal Investigator was Mr. Mark R. Graves of the Environmental Laboratory (EL), U.S. Army Engineer Waterways Experiment Station (WES). Ms. Denise White (CECW-ON) was the HQUSACE WRP Technical Monitor for this work.

Mr. Jesse A. Pfeiffer, Jr. (CERD-C), was the WRP Coordinator at the Directorate of Research and Development, HQUSACE; Dr. William L. Klesch (CECW-PO) served as the WRP Technical Monitor's Representative; Dr. Russell F. Theriot, WES, was the Wetlands Program Manager. Mr. James W. Teaford, Wetlands Branch, EL, was the Task Area Manager.

This report was prepared by Ms. Janet L. Lampman, under the general supervision of Mr. H. Wade West, Chief, Environmental Characterization Branch, Mr. J. L. Decell, Acting Chief, Natural Resources Division, and Dr. John Harrison, Director, EL, and under the direct supervision of Dr. M. Rose Kress.

At the time of publication of this report, Director of WES was Dr. Robert W. Whalin. Commander was COL Leonard G. Hassell, EN.

This report should be cited as follows:

1 Introduction

The Wetlands Research Program (WRP) is a critical part of the U.S. Army Corps of Engineers' commitment to wetland research. The WRP is divided into five task areas, each with its own specific mission in an important part of wetland research. A work unit under the Stewardship and Management Task Area, "Techniques for Characterizing Changes to Wetlands," is investigating the application of remote sensing technology for detecting changes in wetland environments.

This report documents a bibliographical search conducted as part of the "Techniques for Characterizing Changes to Wetlands" work unit on applications of remote sensing techniques in wetland research. The search was conducted as the initial step in examining the evolution of this technology in terms of sensor and platform development and the refinement of data processing and analysis techniques. It is a nonexhaustive search of publications from 1968 to 1990. Results were used to guide research efforts on the use of remote sensing technology for wetland change detection and assessment. The search was conducted through the WES Research Library.
2 Bibliography Organization

The citations are presented in three appendixes. Appendix A organizes citations by the following wetland types: (1) tidal salt marsh; (2) tidal freshwater marsh; (3) mangrove; (4) inland freshwater marsh; (5) northern peatland; (6) southern deepwater swamp; (7) riparian wetlands; (8) submerged aquatic vegetation; (9) regional wetland mapping; and (10) general information. Citations that could not be categorized based on the available information were placed in the group "Unknown Wetland Type."

Appendix B groups the citations by sensor type: (1) black-and-white photography; (2) true-color photography; (3) false-color infrared photography; (4) Landsat Multispectral Scanner (MSS); (5) Landsat Thematic Mapper (TM); (6) Satellite Pour l'Observation de la Terre (SPOT); (7) radar; (8) aircraft multispectral; (9) ground-based radiometer; (10) general information; and (11) other. Citations that could not be categorized based on the available information were placed in the group "Unknown Sensor Type."

Appendix C organizes the citations alphabetically by author. Within Appendixes A and B, a citation may appear in more than one category. The numbers of citations in each category in each appendix are summarized in Table 1.

Table 1
Number of Citations by Category

<table>
<thead>
<tr>
<th>Category</th>
<th>Number of Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A—Wetland Types</td>
<td></td>
</tr>
<tr>
<td>Tidal salt marsh</td>
<td>154</td>
</tr>
<tr>
<td>Tidal freshwater marsh</td>
<td>137</td>
</tr>
<tr>
<td>Mangrove</td>
<td>9</td>
</tr>
<tr>
<td>Inland freshwater marsh</td>
<td>128</td>
</tr>
<tr>
<td>Northern peatland</td>
<td>8</td>
</tr>
<tr>
<td>Southern deepwater swamp</td>
<td>13</td>
</tr>
<tr>
<td>Riparian wetland</td>
<td>43</td>
</tr>
<tr>
<td>Submerged aquatic vegetation</td>
<td>9</td>
</tr>
<tr>
<td>Regional wetland mapping</td>
<td>41</td>
</tr>
<tr>
<td>General information</td>
<td>46</td>
</tr>
<tr>
<td>Unknown wetland types</td>
<td>77</td>
</tr>
<tr>
<td>Appendix B—Sensor Types</td>
<td></td>
</tr>
<tr>
<td>Black-and-white photography</td>
<td>28</td>
</tr>
<tr>
<td>True-color photography</td>
<td>27</td>
</tr>
<tr>
<td>False-color infrared photography</td>
<td>105</td>
</tr>
<tr>
<td>Landsat MSS</td>
<td>169</td>
</tr>
<tr>
<td>Landsat TM</td>
<td>47</td>
</tr>
<tr>
<td>SPOT</td>
<td>13</td>
</tr>
<tr>
<td>Radar</td>
<td>27</td>
</tr>
<tr>
<td>Aircraft multispectral</td>
<td>33</td>
</tr>
<tr>
<td>Ground-based radiometer</td>
<td>13</td>
</tr>
<tr>
<td>General information</td>
<td>54</td>
</tr>
<tr>
<td>Unknown sensor type</td>
<td>76</td>
</tr>
<tr>
<td>Other sensor type</td>
<td>25</td>
</tr>
<tr>
<td>Appendix C—By Author</td>
<td>494</td>
</tr>
</tbody>
</table>

Chapter 2 Bibliography Organization
Appendix A
Citations Organized by Wetland Type

Tidal Salt Marsh

Conrod, A. C. 1973. Digital data processing of ERTS-1 imagery of Delaware Bay. Symposium on significant results obtained from the Earth Resources Technology Satellite-1; March 5-9, 1973; New Carrollton, Maryland. Greenbelt, Maryland: Goddard Space Flight Center, National Aeronautics and Space Administration; 1973: 1641-1647.

de Jesus Parada, N., and de Morrison Valeriano, D. 1982. Application of remote sensing data to land use and land cover assessment in the Tubarao River coastal plain, Santa Catarina, Brazil. Sao Jose dos Campos, Brazil: Instituto de Pesquisas Espaciais.

Appendix A Citations Organized by Wetland Type

Klemas, V., and Sma, R. 1973. Applicability of ERTS-1 imagery to the study of suspended sediment and aquatic fronts. Symposium on significant results obtained from the Earth Resources Technology Satellite-1; March 5-9, 1973; New Carrollton, Maryland. Greenbelt, Maryland: Goddard Space Flight Center, National Aeronautics and Space Administration. 1275-1290.

Nayak, S., Gupta, M. C., Chauhan, H. B. et al. 1986. The application of Landsat data for coastal zone monitoring: a case study on the west coast of India. Proceedings of the regional seminar on the application of remote sensing techniques to coastal zone management and environmental monitoring; November 18-26, 1986; Dhaka, Bangladesh. 320-327.

Rousseau, J. 1984. Remote sensing applications for coastal/marine planning and management in developing countries. Proceedings of the eighteenth meeting of the Association of Island Marine Laboratories of the Caribbean; August 13, 1984; St. James, Trinidad. 3.

Williams, R. S., Jr. 1973. Coastal and submarine features on MSS imagery of southeastern Massachusetts: comparison with conventional maps. Proceedings of the symposium on significant results obtained from the Earth Resources Technology Satellite-1; March 5-9, 1973; New Carrollton, Maryland. Greenbelt, Maryland: Goddard Space Flight Center, National Aeronautics and Space Administration. 1413-1422.

Tidal Freshwater Marsh

Conrod, A. C. 1973. Digital data processing of ERTS-1 imagery of Delaware Bay. Symposium on significant results obtained from the Earth Resources Technology Satellite-1; March 5-9, 1973; New Carrollton, Maryland. Greenbelt, Maryland: Goddard Space Flight Center, National Aeronautics and Space Administration. 1641-1647.

de Jesus Parada, N., and de Morrison Valeriano, D. 1982. Application of remote sensing data to land use and land cover assessment in the Tubarao River coastal plain, Santa Catarina, Brazil. Sao Jose dos Campos, Brazil: Instituto de Pesquisas Espaciais.

Klemas, V., and Sma, R. 1973. Applicability of ERTS-1 imagery to the study of suspended sediment and aquatic fronts. Symposium on significant results obtained from the Earth Resources Technology Satellite-1; March 5-9, 1973; New Carrollton, Maryland. Greenbelt, Maryland: Goddard Space Flight Center, National Aeronautics and Space Administration. 1275-1290.

Nayak, S., Gupta, M. C., Chauhan, H. B. et al. 1986. The application of Landsat data for coastal zone monitoring: a case study on the west coast of India. Proceedings of the regional seminar on the application of remote sensing techniques to coastal zone management and environmental monitoring; November 18-26, 1986; Dhaka, Bangladesh. 320-327.

Rousseau, J. 1984. Remote sensing applications for coastal/marine planning and management in developing countries. Proceedings of the eighteenth meeting of the Association of Island Marine Laboratories of the Caribbean; August 13, 1984; St. James, Trinidad. 3.

Williams, R. S., Jr. 1973. Coastal and submarine features on MSS imagery of southeastern Massachusetts: comparison with conventional maps. Proceedings of the symposium on significant results obtained from the Earth Resources Technology Satellite-I; March 5-9, 1973; New Carrollton, Maryland. Greenbelt, Maryland: Goddard Space Flight Center, National Aeronautics and Space Administration. 1413-1422.

Mangrove

Inland Freshwater Marsh

Jensen, J. R., Hodgson, M. E., Christensen, E. J. et al. 1984. Multispectral remote sensing of inland wetlands in South Carolina: selecting the appropriate sensor. Tenth international symposium on machine processing of remotely sensed data with special emphasis on Thematic Mapper data and geographic information systems; June 12-14, 1984; Purdue University. West Lafayette, Indiana: Purdue University. 144-152.

Keller, M. 1983. The application of remote sensing to wetland delineation for the planning function and regulatory functions in the Memphis District. US Army Corps of Engineers remote sensing symposium; November 7-9, 1983; Reston, Virginia. 437-438.

Mergerson, J. W. 1981. Crop area estimation using ground-gathered and sampled Landsat data. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 45-51.

Wadsworth, J. R., Jr. 1983. Quantitative analysis of a subtle terrace bordering Okefenokee Swamp. Proceedings of the 32nd annual meeting, Southeastern Section, Geological Society of America; with the Southeast Section of the National Association of Geology Teachers and the Southeastern Section of the Paleontological Society; Tallahassee, Florida. Geological Society of America. 56.

Northern Peatland

Southern Deepwater Swamp

Keller, M. 1983. The application of remote sensing to wetland delineation for the planning function and regulatory functions in the Memphis District. US Army Corps of Engineers remote sensing symposium; November 7-9, 1983; Reston, Virginia. 437-438.

Riparian Wetland

Chase, P. E., Reed, L., and Smith, V. E. 1973. Utilization of ERTS-1 data to monitor and classify eutrophication of inland lakes. Symposium on significant results obtained from the Earth Resources Technology Satellite-1; March 5-9, 1973; New Carrollton, Maryland. Greenbelt, Maryland: Goddard Space Flight Center, National Aeronautics and Space Administration. 1597-1604.

Keller, M. 1983. The application of remote sensing to wetland delineation for the planning function and regulatory functions in the Memphis District. US Army Corps of Engineers remote sensing symposium; November 7-9, 1983; Reston, Virginia. 437-438.

Submerged Aquatic Vegetation

Regional Wetland Mapping

Sellman, B. 1973. Land resources survey for the state of Michigan. Proceedings of the symposium on significant results obtained from the Earth Resources Technology Satellite-I; March 5-9, 1973; New Carrollton, Maryland. Greenbelt, Maryland: Goddard Space Flight Center, National Aeronautics and Space Administration. 1083-1090.

Appendix A Citations Organized by Wetland Type
Wood, B. L., and Beck, L. H. 1982. Geographic information system for Colusa County, California. Proceedings of the eighth international symposium on machine processing of remotely sensed data with special emphasis on crop inventory and monitoring; Purdue University. West Lafayette, Indiana: Purdue University. 374-401.
General Information

Applications of remote sensing to water resources. 1977. Gambrills, Maryland: ECOsystems International, Inc.

Cooper, S., Buckelew, T. D., McKim, H. L. et al. 1977. Landsat follow-on investigation no. 22510: the use of the Landsat data collection system and imagery in reservoir management and operation. Greenbelt, Maryland: Goddard Space Flight Center, National Aeronautics and Space Administration.

Driscoll, R. S. 1981. Remote sensing: its role in meeting information needs. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 2-6.

Erickson, J. D., and Thomson, F. J. 1974. Recent advancements in information extraction methodology and hardware for earth resources survey systems. Conference record of the IEEE International Conference on Communications; June 17-19, 1974; Minneapolis, Minnesota. New York: IEEE. Paper 32B.

Unknown Wetland Type

Dudding, M. L. 1981. Monitoring land conversions from forest/wetland to agriculture. Second eastern regional remote sensing applications conference; Danvers, Massachusetts. 139-146.

Fellows, J. D., and Hoffer. 1981. A georeferenced information system for real time hydrologic modeling. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University.

Gallo, K. P., and Daughtry, C. S. T. 1981. Spectrally derived inputs to crop yield models. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 52-65.

Hegyi, F., and Quenet, R. V. 1981. Applications of remote sensing techniques to update the forest inventory data base in British Columbia. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 7.

Hixson, M. M. 1981. Techniques for evaluation of area estimates. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 84-90.

Jensen, J. R. 1987. The use of pattern recognition in biophysical remote sensing. Proceedings of the sixtieth annual meeting of the South Carolina Academy of Science; Columbia, South Carolina. 76.

Olson, C. E., Jr. 1981. A case for standardized test sites. Seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 20-23.

Pollara, V. J., Vanderbilt, V. C., and Daughtry, C. S. T. 1981. A technique to determine which crop development stages can be estimated from spectral data. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 66-75.

Richardson, K. A. 1984. Wetlands classification using Landsat Thematic Mapper data unsupervised classification approach. Proceedings of the tenth international symposium on machine processing of remotely sensed data with special emphasis on Thematic Mapper data and geographic information systems; June 12-14, 1984; Purdue University. West Lafayette, Indiana: Purdue University. 154-158.

Roller, N. E. G. 1981. Strategies for information - directed wetlands. Proceedings of the seventh international symposium on machine processing of remotely sensed data with special emphasis on range, forest, and wetlands assessment; Purdue University. West Lafayette, Indiana: Purdue University. 230-239.

Sadowski, F. G. 1981. Alternative approaches for utilizing Landsat data to address forest and range applications. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 19.

Takahashi, H. 1981. A lineament enhancement technique for active fault analysis. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 103-112.

Xu, S. R., Li, C.-C., and Flint, N. K. 1981. Extraction of geological lineaments from Landsat imagery by using local variance and gradient trend. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 113-123.
Appendix B
Citations Organized by Sensor Type

Black-and-White Photography

Keller, M. 1983. The application of remote sensing to wetland delineation for the planning function and regulatory functions in the Memphis District. US Army Corps of Engineers remote sensing symposium; November 7-9, 1983; Reston, Virginia. 437-438.

True-Color Photography

Jensen, J. R., Hodgson, M. E., Christensen, E. J. et al. 1984. Multispectral remote sensing of inland wetlands in South Carolina: selecting the appropriate sensor. Tenth international symposium on machine processing of remotely sensed data with special emphasis on Thematic Mapper data and geographic information systems; June 12-14, 1984; Purdue University. West Lafayette, Indiana: Purdue University. 144-152.

False-Color Infrared Photography

10-year change in land use and waterfowl habitat from digitized aerial photo-
maps. Proceedings of the fifth Canadian symposium on remote sensing; August
1978; Victoria, British Columbia. Ottawa: Canadian Aeronautics and Space
Institute. 415-426.

Anderson, J. R., and Witmer, R. E. 1975. The National land use data pro-
resources survey symposium; June 9-12, 1975. Houston, Texas: National
Aeronautics and Space Administration. 1609-1615.

Anderson, P. H. 1977. Delineation of deciduous wetland forests in north-

in eastern Connecticut: their transition zones and delineation. Water Resources
Bulletin. 248-255.

Application of remote sensing technology to land evaluation, planning utili-
ization of land resources, and assessment of wildlife areas in eastern South
Dakota: semiannual progress report, 1 July - 31 December 1975. Brookings,
South Dakota: South Dakota State University, Remote Sensing Institute.

of workshop on management of aquatic weeds and mosquitoes in impound-
ments; March 14-15, 1989; University of North Carolina at Charlotte. Raleigh,
North Carolina: Water Resources Research Institute of the University of North
Carolina. 133-136.

impact in the coastal zone. Joint Proceedings of the ASP/ACSM Fall Technical
Meeting; September 17-20, 1979; Sioux Falls, South Dakota. Falls
Church, Virginia: American Congress on Surveying and Mapping. 237-250.

photography to identify and classify wetlands in the Lake Dakota Plain of
eastern South Dakota. Brookings, South Dakota: South Dakota State
University.

Best, R. G., and Moore, D. G. 1977. Inventory of wetland habitat using
remote sensing for the proposed Oahe irrigation unit in eastern South Dakota.
Brookings, South Dakota: South Dakota State University.

de Jesus Parada, N., and de Morrison Valeriano, D. 1982. Application of remote sensing data to land use and land cover assessment in the Tubarao River coastal plain, Santa Catarina, Brazil. Sao Jose dos Campos, Brazil: Instituto de Pesquisas Espaciais.

Keller, M. 1983. The application of remote sensing to wetland delineation for the planning function and regulatory functions in the Memphis District. US Army Corps of Engineers remote sensing symposium; November 7-9, 1983; Reston, Virginia. 437-438.

Appendix B Citations Organized by Sensor Type

Landsat Multispectral Scanner (MSS)

Chase, P. E., Reed, L., and Smith, V. E. 1973. Utilization of ERTS-1 data to monitor and classify eutrophication of inland lakes. Symposium on significant results obtained from the Earth Resources Technology Satellite-1; March 5-9, 1973; New Carrollton, Maryland. Greenbelt, Maryland: Goddard Space Flight Center, National Aeronautics and Space Administration. 1597-1604.

Conrod, A. C. 1973. Digital data processing of ERTS-1 imagery of Delaware Bay. Symposium on significant results obtained from the Earth Resources Technology Satellite-I; March 5-9, 1973; New Carrollton, Maryland. Greenbelt, Maryland: Goddard Space Flight Center, National Aeronautics and Space Administration. 1641-1647.

Cooper, S., Buckelew, T. D., McKim, H. L. et al. 1977. Landsat follow-on investigation no. 22510: the use of the Landsat data collection system and imagery in reservoir management and operation. Greenbelt, Maryland: Goddard Space Flight Center, National Aeronautics and Space Administration.

de Jesus Parada, N., and de Morrison Valeriano, D. 1982. Application of remote sensing data to land use and land cover assessment in the Tubarao River coastal plain, Santa Catarina, Brazil. Sao Jose dos Campos, Brazil: Instituto de Pesquisas Espaciais.

Fellows, J. D., and Hoffer, R. M. 1981. A georeferenced information system for real time hydrologic modeling. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University.

Gallo, K. P., and Daughtry, C. S. T. 1981. Spectrally derived inputs to crop yield models. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 52-65.

Hegyi, F., and Quenet, R. V. 1981. Applications of remote sensing techniques to update the forest inventory data base in British Columbia. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 7.

Hixson, M. M. 1981. Techniques for evaluation of area estimates. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 84-90.

Jensen, J. R., Hodgson, M. E., Christensen, E. J. et al. 1984. Multispectral remote sensing of inland wetlands in South Carolina: selecting the appropriate sensor. Tenth international symposium on machine processing of remotely sensed data with special emphasis on Thematic Mapper data and geographic information systems; June 12-14, 1984; Purdue University. West Lafayette, Indiana: Purdue University. 144-152.

Klemas, V., and Sma, R. 1973. Applicability of ERTS-1 imagery to the study of suspended sediment and aquatic fronts. Symposium on significant results obtained from the Earth Resources Technology Satellite-1; March 5-9, 1973; New Carrollton, Maryland. Greenbelt, Maryland: Goddard Space Flight Center, National Aeronautics and Space Administration. 1275-1290.

Mergerson, J. W. 1981. Crop area estimation using ground-gathered and sampled Landsat data. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 45-51.

Nayak, S., Gupta, M. C., Chauhan, H. B. et al. 1986. The application of Landsat data for coastal zone monitoring: a case study on the west coast of India. Proceedings of the regional seminar on the application of remote sensing techniques to coastal zone management and environmental monitoring; November 18-26, 1986; Dhaka, Bangladesh. 320-327.

Sadowski, F. G. 1981. Alternative approaches for utilizing Landsat data to address forest and range applications. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 19.

Sellman, B. 1973. Land resources survey for the state of Michigan. Proceedings of the symposium on significant results obtained from the Earth Resources Technology Satellite-1; March 5-9, 1973; New Carrollton, Maryland. Greenbelt, Maryland: Goddard Space Flight Center, National Aeronautics and Space Administration. 1083-1090.

Takahashi, H. 1981. A lineament enhancement technique for active fault analysis. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 103-112.

Williams, R. S., Jr. 1973. Coastal and submarine features on MSS imagery of southeastern Massachusetts: comparison with conventional maps. Proceedings of the symposium on significant results obtained from the Earth Resources Technology Satellite-1; March 5-9, 1973; New Carrollton, Maryland. Greenbelt, Maryland: Goddard Space Flight Center, National Aeronautics and Space Administration. 1413-1422.

Xu, S. R., Li, C.-C., and Flint, N. K. 1981. Extraction of geological lineaments from Landsat imagery by using local variance and gradient trend. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 113-123.
Landsat Thematic Mapper

Jensen, J. R., Hodgson, M. E., Christensen, E. J. et al. 1984. Multispectral remote sensing of inland wetlands in South Carolina: selecting the appropriate sensor. Tenth international symposium on machine processing of remotely sensed data with special emphasis on Thematic Mapper data and geographic information systems; June 12-14, 1984; Purdue University. West Lafayette, Indiana: Purdue University. 144-152.

Nayak, S., Gupta, M. C., Chauhan, H. B. et al. 1986. The application of Landsat data for coastal zone monitoring: a case study on the west coast of India. Proceedings of the regional seminar on the application of remote sensing techniques to coastal zone management and environmental monitoring; November 18-26, 1986; Dhaka, Bangladesh. 320-327.

Richardson, K. A. 1984. Wetlands classification using Landsat Thematic Mapper data unsupervised classification approach. Proceedings of the tenth international symposium on machine processing of remotely sensed data with special emphasis on Thematic Mapper data and geographic information systems; June 12-14, 1984; Purdue University. West Lafayette, Indiana: Purdue University. 154-158.

Satellite Pour l’Observation de la Terre (SPOT)

Radar

Aircraft Multispectral

Jensen, J. R., Hodgson, M. E., Christensen, E. J. et al. 1984. Multispectral remote sensing of inland wetlands in South Carolina: selecting the appropriate sensor. Tenth international symposium on machine processing of remotely sensed data with special emphasis on Thematic Mapper data and geographic information systems; June 12-14, 1984; Purdue University. West Lafayette, Indiana: Purdue University. 144-152.

Ground-Based Radiometer

General Information

Driscoll, R. S. 1981. Remote sensing: its role in meeting information needs. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 2-6.

Jensen, J. R. 1987. The use of pattern recognition in biophysical remote sensing. Proceedings of the sixtieth annual meeting of the South Carolina Academy of Science; Columbia, South Carolina. 76.

Roller, N. E. G. 1981. Strategies for information-directed wetlands. Proceedings of the seventh international symposium on machine processing of remotely sensed data with special emphasis on range, forest, and wetlands assessment; Purdue University. West Lafayette, Indiana: Purdue University. 230-239.

Unknown Sensor Type

Applications of remote sensing to water resources. 1977. Gambrills, Maryland: ECOsystems International, Inc.

Dudding, M. L. 1981. Monitoring land conversions from forest/wetland to agriculture. Second eastern regional remote sensing applications conference; Danvers, Massachusetts. 139-146.

Erickson, J. D., and Thomson, F. J. 1974. Recent advancements in information extraction methodology and hardware for earth resources survey systems. Conference record of the IEEE International Conference on Communications; June 17-19, 1974; Minneapolis, Minnesota. New York: IEEE. Paper 32B.

Pollara, V. J., Vanderbilt, V. C., and Daughtry, C. S. T. 1981. A technique to determine which crop development stages can be estimated from spectral data. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 66-75.

Rousseau, J. 1984. Remote sensing applications for coastal/marine planning and management in developing countries. Proceedings of the eighteenth meeting of the Association of Island Marine Laboratories of the Caribbean; August 13, 1984; St. James, Trinidad. 3.

Wadsworth, J. R., Jr. 1983. Quantitative analysis of a subtle terrace bordering Okefenokee Swamp. Proceedings of the 32nd annual meeting, Southeastern Section, Geological Society of America; with the Southeast Section of the National Association of Geology Teachers and the Southeastern Section of the Paleontological Society; Tallahassee, Florida. Geological Society of America. 56.

Wood, B. L., and Beck, L. H. 1982. Geographic information system for Colusa County, California. Proceedings of the eighth international symposium on machine processing of remotely sensed data with special emphasis on crop inventory and monitoring; Purdue University. West Lafayette, Indiana: Purdue University. 374-401.

Other Sensor Types

Wood, B. L., and Beck, L. H. 1982. Geographic information system for Colusa County, California. Proceedings of the eighth international symposium on machine processing of remotely sensed data with special emphasis on crop inventory and monitoring; Purdue University. West Lafayette, Indiana: Purdue University. 374-401.
Appendix C
Alphabetical Listing

Applications of remote sensing to water resources. 1977. Gambrills, Maryland: ECOsystems International, Inc.

Chase, P. E., Reed, L., and Smith, V. E. 1973. Utilization of ERTS-1 data to monitor and classify eutrophication of inland lakes. Symposium on significant results obtained from the Earth Resources Technology Satellite-1; March 5-9, 1973; New Carrollton, Maryland. Greenbelt, Maryland: Goddard Space Flight Center, National Aeronautics and Space Administration. 1597-1604.

Conrod, A. C. 1973. Digital data processing of ERTS-1 imagery of Delaware Bay. Symposium on significant results obtained from the Earth Resources Technology Satellite-1; March 5-9, 1973; New Carrollton, Maryland. Greenbelt, Maryland: Goddard Space Flight Center, National Aeronautics and Space Administration. 1641-1647.
Cooper, S., Buckelew, T. D., McKim, H. L. et al. 1977. Landsat follow-on investigation no. 22510: the use of the Landsat data collection system and imagery in reservoir management and operation. Greenbelt, Maryland: Goddard Space Flight Center, National Aeronautics and Space Administration.

de Jesus Parada, N., de Morrison Valeriano, D. 1982. Application of remote sensing data to land use and land cover assessment in the Tubarao River coastal plain, Santa Catarina, Brazil. Sao Jose dos Campos, Brazil: Instituto de Pesquisas Espaciais.

Driscol, R. S. 1981. Remote sensing: its role in meeting information needs. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 2-6.

Dudding, M. L. 1981. Monitoring land conversions from forest/wetland to agriculture. Second eastern regional remote sensing applications conference; Danvers, Massachusetts. 139-146.

Erickson, J. D., and Thomson, F. J. 1974. Recent advancements in information extraction methodology and hardware for earth resources survey systems. Conference record of the IEEE International Conference on Communications; June 17-19, 1974; Minneapolis, Minnesota. New York: IEEE. Paper 32B.

Fellows, J. D., and Hoffer, R. M. 1981. A georeferenced information system for real time hydrologic modeling. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University.

Gallo, K. P., and Daughtry, C. S. T. 1981. Spectrally derived inputs to crop yield models. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 52-65.

Hegyi, F., and Quenet, R. V. 1981. Applications of remote sensing techniques to update the forest inventory data base in British Columbia. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 7.

Hixson, M. M. 1981. Techniques for evaluation of area estimates. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 84-90.

Jensen, J. R. 1987. The use of pattern recognition in biophysical remote sensing. Proceedings of the sixtieth annual meeting of the South Carolina Academy of Science; Columbia, South Carolina. 76.

Jensen, J. R., Hodgson, M. E., Christensen, E. J. et al. 1984. Multispectral remote sensing of inland wetlands in South Carolina: selecting the appropriate sensor. Tenth international symposium on machine processing of remotely sensed data with special emphasis on Thematic Mapper data and geographic information systems; June 12-14, 1984; Purdue University. West Lafayette, Indiana: Purdue University. 144-152.

Keller, M. 1983. The application of remote sensing to wetland delineation for the planning function and regulatory functions in the Memphis District. US Army Corps of Engineers remote sensing symposium; November 7-9, 1983; Reston, Virginia. 437-438.

Klemas, V., and Sma, R. 1973. Applicability of ERTS-1 imagery to the study of suspended sediment and aquatic fronts. Symposium on significant results obtained from the Earth Resources Technology Satellite-1; March 5-9, 1973; New Carrollton, Maryland. Greenbelt, Maryland: Goddard Space Flight Center, National Aeronautics and Space Administration. 1275-1290.

Mergerson, J. W. 1981. Crop area estimation using ground-gathered and sampled Landsat data. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 45-51.

Nayak, S., Gupta, M. C., Chauhan, H. B. et al. 1986. The application of Landsat data for coastal zone monitoring: a case study on the west coast of India. Proceedings of the regional seminar on the application of remote sensing techniques to coastal zone management and environmental monitoring; November 18-26, 1986; Dhaka, Bangladesh. 320-327.

Olson, C. E., Jr. 1981. A case for standardized test sites. Seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 20-23.

wetland delineation by remote sensing. Photogrammetric Engineering. 40(2):
75-78.

Pollara, V. J., Vanderbilt, V. C., and Daughtry, C. S. T. 1981. A technique to
determine which crop development stages can be estimated from spectral data.
Proceedings of the seventh international symposium on machine processing of
remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue
University. 66-75.

Practical applications of space systems, supporting paper 7: environmental

communities of the Choctawhatchee River flood plain, Northwest Florida.

Quattrochi, D. A. 1983. An initial analysis of Landsat-4 Thematic Mapper
data for the discrimination of agricultural, forested wetland, and urban land
covers. J. Barker, editor. Proceedings of the Landsat-4 early results sympos-
ium and the Landsat science characterization workshop; February 22-24, 1983
and December 6, 1983; Greenbelt, Maryland. Greenbelt, Maryland: Goddard
Space Flight Center and National Aeronautics and Space Administration.
111-112.

analysis of selected landscape parameters: the Nebraska Sandhills. Proceedings
of the international symposium on remote sensing of environment; Colorado
Springs, Colorado. Ann Arbor, Michigan: Environmental Research Institute of
Michigan. 303-313.

Journal of the Surveying and Mapping Division, American Society of Civil
Engineers. 87-92.

satellite data for mapping aquatic areas in north-eastern Finland. Aquatic

Ramsey, E. W., III, and Jensen, J. R. 1988. The derivation and verification of
surface reflectances using airborne MSS data and a radiative transfer model.
Technical papers of the 1988 fall technical meeting of the American Society of
Photogrammetry and Remote Sensing; September 11-16, 1988; Virginia Beach,
Virginia.

Richardson, K. A. 1984. Wetlands classification using Landsat Thematic Mapper data unsupervised classification approach. Proceedings of the tenth international symposium on machine processing of remotely sensed data with special emphasis on Thematic Mapper data and geographic information systems; June 12-14, 1984; Purdue University. West Lafayette, Indiana: Purdue University. 154-158.

Roller, N. E. G. 1981. Strategies for information-directed wetlands. Proceedings of the seventh international symposium on machine processing of remotely sensed data with special emphasis on range, forest, and wetlands assessment; Purdue University. West Lafayette, Indiana: Purdue University. 230-239.

Rousseau, J. 1984. Remote sensing applications for coastal/marine planning and management in developing countries. Proceedings of the eighteenth meeting of the Association of Island Marine Laboratories of the Caribbean; August 13, 1984; St. James, Trinidad. 3.

Sadowski, F. G. 1981. Alternative approaches for utilizing Landsat data to address forest and range applications. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 19.

Sellman, B. 1973. Land resources survey for the state of Michigan. Proceedings of the symposium on significant results obtained from the Earth Resources Technology Satellite-I; March 5-9, 1973; New Carrollton, Maryland. Greenbelt, Maryland: Goddard Space Flight Center, National Aeronautics and Space Administration. 1083-1090.

Takahashi, H. 1981. A lineament enhancement technique for active fault analysis. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 103-112.

Wadsworth, J. R., Jr. 1983. Quantitative analysis of a subtle terrace bordering Okefenokee Swamp. Proceedings of the 32nd annual meeting, Southeastern Section, Geological Society of America; with the Southeast Section of the National Association of Geology Teachers and the Southeastern Section of the Paleontological Society; Tallahassee, Florida. Geological Society of America. 56.

Williams, R. S., Jr. 1973. Coastal and submarine features on MSS imagery of southeastern Massachusetts: comparison with conventional maps. Proceedings of the symposium on significant results obtained from the Earth Resources Technology Satellite-I; March 5-9, 1973; New Carrollton, Maryland. Greenbelt, Maryland: Goddard Space Flight Center, National Aeronautics and Space Administration. 1413-1422.

Wood, B. L., and Beck, L. H. 1982. Geographic information system for Colusa County, California. *Proceedings of the eighth international symposium on machine processing of remotely sensed data with special emphasis on crop inventory and monitoring; Purdue University.* West Lafayette, Indiana: Purdue University. 374-401.

Xu, S. R., Li, C. C., Flint, N. K. 1981. Extraction of geological lineaments from Landsat imagery by using local variance and gradient trend. Proceedings of the seventh international symposium on machine processing of remotely sensed data; Purdue University. West Lafayette, Indiana: Purdue University. 113-123.

1. Title and Subtitle

Bibliography of Remote Sensing Techniques Used in Wetland Research

2. Report Date

January 1993

3. Report Type and Dates Covered

Final report

5. Funding Numbers

WU 32762

6. Author(s)

Janet L. Lampman

7. Performing Organization Name(s) and Address(es)

U.S. Army Engineer Waterways Experiment Station, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180-6199

8. Performing Organization Report Number

9. Sponsoring/Monitoring Agency Name(s) and Address(es)

U.S. Army Corps of Engineers, Washington, DC 20314-1000

11. Supplementary Notes

Available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

12a. Distribution/Availability Statement

Approved for public release; distribution is unlimited.

13. Abstract (Maximum 200 words)

Within the Wetlands Research Program, a work unit under the Stewardship and Management Task Area, "Techniques for Characterizing Changes to Wetlands," is investigating the application of remote sensing technology for detecting changes in wetland environments. This report documents a bibliographic search conducted as part of that work unit on applications of remote sensing techniques in wetland research. Results were used to guide research efforts on the use of remote sensing technology for wetland change detection and assessment. The citations are presented in three appendixes, organized by wetland type, sensor type, and author.

14. Subject Terms

- Change detection
- Remote sensing
- Wetland assessment
- Wetlands

15. Number of Pages

174

16. Price Code

Standard Form 298 (Rev 2-89) Prescribed by ANSI Std Z39-18

17. Security Classification of Report

UNCLASSIFIED

18. Security Classification of This Page

UNCLASSIFIED

19. Security Classification of Abstract

UNCLASSIFIED

20. Limitation of Abstract

UNCLASSIFIED