IMPROVED METHODOLOGY FOR SIZING OF NAVAL ELECTRICAL POWER PLANTS

by

JAMES JEFFREY McGLOTIHN

Submitted to the Department of Ocean Engineering on April 15, 1993, in partial fulfillment of the requirements for the Degrees of Naval Engineer and Master of Science in Electrical Engineering and Computer Science.

Abstract

Electrical power plants onboard ships of the United States Navy have traditionally been sized according to empirical methods. These methods have resulted in satisfactory plants but have not been updated to reflect recent improvements in equipment and analysis methods. Developing technologies under consideration for future ships, particularly integrated electric propulsion with propulsion derived ships service electrical power, will bring significantly different demands for electrical power. There is very little recent design experience to fall back on when designing a ship employing such technologies. In addition, current fiscal restraints demand that excess equipment and capacity be severely restricted in order to minimize procurement costs, manning, and maintenance costs. A methodology is proposed to evaluate candidate electric plant configurations (i.e. number and sizes of generating units) in terms of the probability that the required loads can be supplied. The alternatives can then be compared in terms of cost, weight, number of units, and total installed capacity to determine which is most cost effective. The methodology has been coded into a program which can be used to easily do the system comparisons. Several shipboard systems are analyzed to demonstrate the usefulness of the program.

Thesis Advisor: Dr. James L. Kirtley, Jr.
Title: Professor of Electrical Engineering and Computer Science
IMPROVED METHODOLOGY FOR SIZING OF NAVAL ELECTRICAL POWER PLANTS

by

JAMES JEFFREY McGLOTHIN

B.S. Electrical Engineering, University of Tennessee

(1982)

Submitted to the Department of

OCEAN ENGINEERING

and the Department of

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

in Partial Fulfillment of the

Requirements for the Degrees of

NAVAL ENGINEER

and

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

AND COMPUTER SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MAY 1993

© James Jeffrey McGlothin 1993

The author hereby grants to the U.S. Government and the Massachusetts Institute of Technology permission to reproduce and to distribute publicly copies of this thesis document in whole or in part.

Signature of Author

James J. McGlothin

Department of Ocean Engineering

7 May 1993

Certified by

James L. Kirtley, Jr.

Professor James L. Kirtley, Jr.

Department of Electrical Engineering and Computer Science

Thesis Supervisor

Certified by

A. Douglas Carmichael

Professor A. Douglas Carmichael

Department of Ocean Engineering

Thesis Reader

Certified by

Campbell L. Searle

Professor Campbell L. Searle

Departmental Graduate Committee

Department of Electrical Engineering and Computer Science

Accepted by

A. Douglas Carmichael

Professor A. Douglas Carmichael

Departmental Graduate Committee

Department of Ocean Engineering
Electrical power plants onboard ships of the United States Navy have traditionally been sized according to empirical methods. These methods have resulted in satisfactory plants but have not been updated to reflect recent improvements in equipment and analysis methods. Developing technologies under consideration for future ships, particularly integrated electric propulsion with propulsion derived ships service electrical power, will bring significantly different demands for electrical power. There is very little recent design experience to fall back on when designing a ship employing such technologies. In addition, current fiscal restraints demand that excess equipment and capacity be severely restricted in order to minimize procurement costs, manning, and maintenance costs. A methodology is proposed to evaluate candidate electric plant configurations (i.e. number and sizes of generating units) in terms of the probability that the required loads can be supplied. The alternatives can then be compared in terms of cost, weight, number of units, and total installed capacity to determine which is most cost effective. The methodology has been coded into a program which can be used to easily do the system comparisons. Several shipboard systems are analyzed to demonstrate the usefulness of the program.
Acknowledgments

It would be impossible for me to thank everyone I would like to thank on this page. However, I will thank those I can without becoming too wordy, sentimental, or boring:

To the United States Navy, for giving me the opportunity to continue my education in a manner in which I certainly could not afford otherwise.

To Professors Kirtley and Carmichael, for allowing me to pursue a topic in which I was interested, for the help and guidance when it was necessary and the free rein when it wasn't.

To Captains Brooks and Brown and Commander Celotto, for reminding me on occasion that I am first and foremost a Naval Officer and should conduct all my affairs, including academic, as such.

To my mother and sister, who have shown me by example the true meaning of courage and persistence, and how to keep ones sense of humor in the worst of times. You are the bravest people I know.

To Ivy, Millie, and Curt, for their dedication to education, their unswerving loyalty and love, and their outstanding examples of how to live.

To Pop & Katie, for sticking together all these years. Happy 66th, and I hope the weather never breaks!

To my in-laws, Allen, Carole and Steve, who haven't been in-laws at all.

To Brenton, for your unconditional love and the periodic bursts of joy that always accompany your visits. Here's hoping you're as lucky in life as your Uncle JF, who loves you very much.

To those who have gone, Dad, Glen and Gracie, who counsel without speaking, listen without hearing, and guide without touching. I miss you.

To my wife Suzanne, for pestering, pushing and phoning; typing, touching and tugging; caring, cleaning and crying; shopping, sharing and shoveling; loving, living, and leaving me alone when I had to be; and being bored and lonely too much of the time. I couldn't have done it without you!

Most of all, to God, for through Him, all things are possible.

"Apply your heart to instruction and your ears to words of knowledge (Proverbs 23:12)."
Table of Contents

Chapter 1. Introduction ... 7
 Objective .. 8
 Background .. 8
 Existing Analysis Tools ... 10
 Program Development ... 14

Chapter 2. Electric System Sizing Concepts 16
 Reliability Concepts .. 16
 Utility Company Sizing Methods 18
 Naval Ship Electric Load Estimation 19

Chapter 3. SMOKEY Development 23
 Philosophy .. 23
 Methodology .. 27
 Validation .. 30

Chapter 4. SMOKEY Program Operation 32
 Installation .. 32
 Using SMOKEY ... 33
 Subroutine Description .. 34
Chapter 1. Introduction

Some of the earliest decisions which must be made during the design of a Navy ship concern the propulsion plant. How many and what type of engines and transmissions are to be used and how much electrical generation capacity is needed must be decided early. These decisions have major consequences, for the propulsion plant is one of the heaviest and most voluminous components of a ship. Secondary effects, such as the amount of fuel which must be carried and the intake and exhaust volume required, are substantial. Tools are needed to help a designer evaluate candidate configurations early in the design process so that unnecessarily large plants are not selected. An oversize plant causes the entire ship to be larger, and thus more costly, than necessary. To date, Naval electrical plants have been designed which have operated satisfactorily. However, the existing design methodology is clearly defined only for ships that do not have integrated electric propulsion (propulsion power and ships electric power derived from separate systems). The Navy is currently working toward ships which make use of integrated electric drive technology (both propulsion power and ships electric power derived from the same source). However, there is currently no clearly defined methodology for determining the electrical generating capacity for such a ship. If the current methodology is used with the propulsion loads simply added in, the result could be an oversize, unnecessarily expensive plant.
Objective

The objective of this thesis is to develop a new method for sizing naval ship electric plants based on statistical reliability methods. Such a method would replace the empirical methods currently used, and allow designers to decide on the number and size of generators based on what would be considered an acceptable reliability level (or, alternately, an acceptable risk that power demands could not be met). The method would take into account whether the ship is electric drive and, if so, whether ships service power is propulsion derived or separately generated.

Background

Major changes are occurring in the nature of electrical systems onboard U.S. naval ships, both in the nature of the loads present and the generating equipment used. These changes include (but are not limited to):

- Power electronics and other solid state devices replacing machinery such as motor generator sets.
- Integrated electric drive propulsion (i.e. electrical power for propulsion and electrical power for other ship functions are derived from the same prime movers).
- Pulsed power weapons systems.
- Automated propulsion and ship service electric power system controls.
The above will have significant effects on the current ship design process. Among them:

- Propulsion shafting runs will be much shorter since the propeller will be driven by an electric motor rather than a turbine. This will allow much more flexibility in the locations of the major components of the engineering plant.
- Increased automation of systems will reduce the necessary manning. This will reduce the living space required and thereby make more room available for other functions (or reduce the ship size for the same capability).
- The demands on the electric power generating and distribution system will be much more complex.

The last change requires some explanation. Current ship designs have functionally separate systems for providing propulsion power and electrical power. While it is true that some electrical power is required for the propulsion plant (e.g. for electric powered seawater cooling pumps), the above statement is true from a conceptual standpoint. Electrical power is distributed throughout the ship and used for a variety of purposes, including combat systems, navigational systems, and "hotel" loads (cooking, heating and cooling, lighting, etc.). The demands on the electrical generating and distribution system are relatively simple. Most major variations in electric power demands are produced by the state of the combat system (whether or not weapons are being fired, which sensors are in operation, etc.) and not by the maneuvers (i.e. changes in speed and direction) of the ship. With the changes noted above come the added
demands of providing large amounts of power in short bursts for pulsed power weapons, as well as significant variations in electrical power demands with ship maneuvering. Since many missions require significant maneuvering (search and rescue, submarine hunting, etc.), the demands on the electrical system become much more complex and unpredictable.

In addition to the above, current fiscal conditions are forcing changes in ship design philosophy. No longer is capability the driving force. Cost has become the major player, and affordability the chief consideration when design decisions are made. This new design philosophy is forcing designers to reevaluate how much excess capacity should be installed on ships, since every extra component (or larger or more capable component) requires more space and weight, as well as more personnel to run, maintain and repair it. These effects add to the initial cost of the component itself. Therefore, a concerted effort must be made to minimize excess design margins and excess installed capacities.

Existing Analysis Tools

Naval electrical power plants differ greatly from the utility power grid [Refs 1, 2, and 3]. First, once a ship is built, the electric plant is virtually impossible to expand due to space and weight constraints. This is in contrast to the utilities, who can simply add generation facilities if current resources prove insufficient. Second, cable runs are short, limited basically to the length of the ship. This means that transmission line dynamics
are insignificant and the cable runs can be ignored in analyzing the behavior of the system. Third, since the components of the system are all located on the ship, they are in relatively close proximity. Information can be passed between them very rapidly. Fourth, because of cost, space, and weight constraints, the installed capacity and rotational inertia of the system generators are much smaller in magnitude when compared to the size of the loads than the commercial counterpart. This has two important consequences:

- The time constants of the prime movers are on the same order of magnitude as those of the major electrical loads. This makes time scale separation assumptions often made in commercial system analyses invalid. This is discussed in detail in Chapter 2 of Reference [1] and Chapter 2 of Reference [2].
- Since the electrical loads on a ship are relatively large and dynamically applied, the voltage and frequency excursions that can be produced are large compared to commercial systems. For example, Reference [4] allows the electrical frequency to vary plus or minus 3% from the nominal value, and the voltage to vary plus or minus 5% during normal conditions. Much larger variations (even system shutdown) are allowed for short periods during emergency conditions. Therefore, the "infinite bus" assumption often made in commercial system analyses is invalid.

The above factors make analysis of Naval shipboard electrical power systems quite difficult. The tools in general use by the commercial electric power industry are unsuitable for shipboard power system analysis due to the differences mentioned above
This, coupled with new developments in electric drive propulsion, etc., have led the Navy to begin developing its own analysis tools. Reference [1] details the first step in the development of an analysis tool called WAVESIM, suitable for the dynamic analysis of shipboard electric power systems. Reference [2] developed a stability analysis method compatible with WAVESIM. Reference [3] developed an analysis tool for assessment of the steady state generating and distribution capabilities of shipboard electric power systems with battle damage. These tools, when fully developed and proven for general Navy use, will allow the designer to simulate different conditions and choose between candidate electric plants (locations and types of generators, as well as control systems and distribution equipment) based on the simulated responses.

The Navy also uses analysis tools which are not specifically for electrical systems. The principle ship design tool used currently is called ASSET (Advanced Surface Ship Evaluation Tool). ASSET is a computer synthesis tool which allows a designer to construct a computer model of a ship and analyze the feasibility of the design, comparing it to current design practices and constraints and past designs. Reference [5] is the manual for TIGER, the Navy's reliability and availability analysis tool. TIGER calculates reliability and availability information using Monte Carlo methods.

The tools discussed above allow a relative assessment of the merits of alternative overall power plant designs. However, the initial decisions on how much generating capacity and the number of generators required onboard a ship are still based on
empirical methods which have not been updated to reflect current technological advances.

The current methodology does not provide the designer with a means for assessing the relative merits of candidate generator configurations during the early phases of design. That is, how many generators should be installed? How much benefit is actually obtained by installing an additional generator? Is a system consisting of several small generators really much more reliable than one consisting of fewer but larger generators? ASSET can be used for load estimation, but the question of generating system adequacy is not addressed from a reliability standpoint. TIGER could be used for some of these evaluations, but it has several important limitations:

• First, it is difficult to use. TIGER is a FORTRAN program which requires input in the form of text files. These files have complicated formats which require information on each component and operating rules for the system be placed in specific lines and columns in the file.

• Second, it evaluates systems based on operating rules (e.g. two of three subsystems must be operational for the system to be considered operational) and therefore is difficult to use to analyze systems made up of generators of different sizes.

• Third, the output consists of a text file for each run. Comparisons between configurations must then be made by extracting the pertinent information from each output file and comparing the data manually.
Once the number and sizes of generators are determined, the tools already
developed could be employed. For example, the damage model [Ref 3] could be used to
determine optimum locations for the generators and other electrical equipment from a
survivability standpoint. WAVESIM [Ref 1] and the stability methods of Reference [2]
could then be used to simulate the system to determine transient responses and overall
system electrical stability for control purposes.

Program Development

The new methodology is coded as a personal computer (PC) based program
called SMOKEY (since BEAVER was already taken, the author named the program after
the mascot at the University of Tennessee where his undergraduate work was done.
Smokey is the name of the blue tick hound dog that is the school mascot). The program
is Windows based for ease of use. An installation program was also written to reduce
startup time and ensure proper operation for inexperienced users.

The niche occupied by SMOKEY is as a preliminary design tool. SMOKEY
allows the designer to evaluate several generator configurations in terms of availability.
The selected configuration can then be evaluated in detail later in the ship design process
when equipment locations, control system strategies, and distribution paths have been
established using the tools previously mentioned.
The ability to compare configurations in terms of cost and weight early in the design process is the primary innovation of SMOKEY. The program allows a designer to easily evaluate the benefits of adding additional generators, enlarging generators, etc. based only on the anticipated loads. Since the loads can be estimated based on the mission of the ship and the weapons systems to be included, the electric generating plant can be decided on with a great degree of certainty very early in the design process. This is especially important in electric drive ships since the electric plant is the propulsion plant. Unnecessarily large plants mean larger and more expensive ships, which can no longer be tolerated.
Chapter 2. Electric System Sizing Concepts

Before beginning a description of the proposed improved methodology for sizing Naval electric power plants, it is appropriate to review some of the basic concepts of reliability analysis. In addition, this chapter will describe the basics of utility company reliability evaluation and sizing, and the current sizing methodology used during Naval ship design.

Reliability Concepts

The Standard Handbook for Electrical Engineers [Ref 6] defines the reliability of a power system as a measure of its "ability to serve all power demands made by all customers without failure over long periods of time." Availability is defined as the "percent of time that a unit is available to produce power whether needed by the system or not. It is a measure of overall unit reliability." Availability is easy to quantify. However, reliability is a harder concept to get a handle on. As stated in Reference [7]:

It should be noted that the term reliability has a very wide range of meaning and cannot be associated with a single specific definition such as that often used in the mission-oriented sense. It is therefore necessary to recognize its extreme generality and to use it to indicate, in
a general rather than specific sense, the overall ability of the system to perform its function.

Reference [7] goes on to state that reliability is made up of two basic aspects: adequacy and security. Adequacy is basically having enough resources to supply the load demand at any given time. Security relates to the systems ability to respond to disturbances. Since this project focuses on sizing methods and not control systems, it is the question of system adequacy that is dealt with in this thesis.

The basic parameter used in static capacity evaluation is the unit availability (the probability of the unit being operational at a given time) or, alternately, unavailability (the probability of the unit not being operational). These quantities are defined [Ref 8] as follows:

\[\text{AVAILABILITY} = A = \frac{MTBF}{MTBF + MTTR} \]

and

\[\text{UNAVAILABILITY} = U = \frac{MTTR}{MTBF + MTTR} = 1 - A \]

where \(MTBF = \text{Mean Time Between Failures} \) and \(MTTR = \text{Mean Time To Repair} \).

MTBF and MTTR are determined from actual failure and repair data for each component. In a simple series system (i.e. a system in which each component must be available for the system to be available), the availability of the system is the product of the availabilities of the individual components. In a simple parallel system (i.e. a system
in which one component must be available for the system to be available), the availability of the system is 1 minus the product of the individual component unavailabilities. The proofs of these statements are straightforward, and so are not repeated here.

Utility Company Sizing Methods

Commercial power systems are most frequently analyzed by assigning generator units and loads to nodes interconnected by transmission lines (and transformers, circuit breakers, etc.). The transmission lines are modeled as single lines, and the sources and loads as providers and users of power (as opposed to voltages, currents, impedances, etc.). This is commonly called the power distribution "grid." Historical data is used to produce probabilistic models of the generators and loads. Availabilities for each generating unit are determined, then the probabilities that various generating capacities will be unavailable are combined to form the capacity outage probability table. The capacity outage probability table is simply an array of possible capacity levels (for example, in a system with two 1 kW generators, the possible capacities are 0, 1, and 2 kW) and the associated probabilities of existence. In the simple case where all units are the same capacity, the probabilities can be calculated using the binomial distribution [Ref 8]. When the system is comprised of generators with different capacities, a recursive technique, such as the one shown in Reference [9], is generally used to calculate the probabilities.
The capacity outage probability table is then combined [Ref 7] with the load model using probabilistic techniques to produce a system risk index. The most common load model is called the daily peak load variation curve. It is simply the system daily peak loads arranged in descending order. One of the most common risk indexes is the Loss of Load Expectation (LOLE), which is simply the expected number of days in the specified period in which the daily peak load will exceed the available generating capacity. The system is said to have adequate reliability if the LOLE is below a certain specified value. If the LOLE is unacceptably high, additional generating capacity is added to the system (This is a simple case for an isolated utility. In the real world, other alternatives are available, such as buying power from other utilities during peak load periods. Incidentally, this process is called "wheeling," and is discussed in detail in Reference [10]. Obviously, wheeling is not an option onboard a ship.). Of course, the procedure is complicated if the grid is such that not all power generated can be distributed to all loads.

Naval Ship Electric Load Estimation

Shipboard power systems are different in several ways that complicate analysis. Commercial power loads usually vary daily and seasonally. More power is demanded during the day, and when the temperature is at the extremes. The demand also varies relatively slowly, due simply to the high number of loads on the system "averaging out" over time. Shipboard loads vary rapidly, with a relatively low number of loads on the system. The number of generators is small (usually only three or four), and large
increases in demand have to be tolerated with little or no advance warning (as during battle). Often additional generators are required to be brought on line rapidly and at unplanned times. Therefore, the load cannot be modeled using the daily peak load method discussed above and Loss of Load Expectation is not a valid risk index.

The installed generating capacity of naval electric plants is currently determined using the following or a similar procedure [Refs 11 and 12]:

1. The maximum connected load is determined by simply adding all possible electric loads present on the ship. In the case of a new design, this is an estimated total load based on existing ship designs.

2. The maximum expected load is estimated for several ship conditions (e.g. at anchor, peacetime cruising, battle) by multiplying each individual load by a load factor [Ref 13]. The load factors represent roughly the percentage of time during each condition the load is physically on, and are used to account for the fact that not all loads are present at all times (the basis for these factors are past practice, and the origins of most have been lost in the mist of time).

3. The largest resulting load is termed the maximum functional load.

4. The maximum functional load is multiplied by a factor of 1.2, then again by another factor of 1.2 to obtain the maximum functional load "with margin." The 20% margins are for "acquisition" (growth in the electrical loads during design and construction of the ship) and "service life" (growth in the electrical loads during the life of the ship after initial construction).
5 The size of the installed generators is obtained by dividing the maximum functional load with margin by the factor \([0.9 \ (n-1)]\), where \(n\) is the number of generators and 0.9 is a margin for generator control. The factor \((n-1)\) is used to allow one generator to be out of service and still supply all electrical loads.

It should be obvious that if the above methodology is used on a ship with integrated electric drive and/or pulsed power weapons systems, the result could be an extremely large electric plant. This could make the ship larger and more expensive than necessary, potentially with very little benefit in overall system reliability. Several questions arise:

- What load factors should be used for the pulsed power and electric propulsion systems?
- Is it necessary to be able to supply enough power to go full speed and fire all weapons simultaneously?
- Is it necessary to be able to go full speed and fire all weapons simultaneously with one generator off line?

In addition, the above method does not address the adequacy or reliability of the system in any quantitative fashion. For example, a plant consisting of two generators, each large enough to carry the entire load, would meet the above criteria. This plant is very likely less reliable than one consisting of three or more smaller generators. The proposed improved methodology will address the issue of system adequacy. The issue of
security is not addressed since the control systems aspects of Naval shipboard electrical
plants are beyond the scope of this project.
Chapter 3. SMOKEY Development

The proposed improved methodology for sizing Naval ship electric plants has been incorporated into a computer program called SMOKEY. SMOKEY will not make a decision for the designer, but it will provide the information necessary to allow the designer to make a sound engineering decision based on reliability considerations. This chapter discusses the philosophy behind the program, as well as the numerical techniques embedded in the code.

Philosophy

In order to determine the "optimum" configuration for an electric plant, the designer must understand clearly what "optimum" means. The optimum plant for one ship will not necessarily be so for another. Obviously, the designer wishes to provide the most reliable plant possible. However, the constraints will vary from project to project. The total weight of the generators will be much more critical in a frigate design than a cruiser design, since the cruiser is so much larger. Cost is always an issue, but may not be as important on some projects as other factors.

Therefore, SMOKEY has been coded to compute and display reliability information as a function of total installed generating capacity, the total number of generators, total cost, and total weight. This allows the designer to optimize the plant
configuration as required by the design constraints important to the particular design. Fuel weight was not considered because the amount of fuel required to be carried on board a ship is a complex function of the ship's mission, specified endurance range and speed, the shape of the tanks, engine specific fuel consumption, expected electrical load, and numerous other factors. Since this would greatly complicate the development of the program, as well as increase the amount of information needed to run the program and potentially make it harder to learn to use, the fuel consumption was not included as a parameter in the first version of SMOKEY.

SMOKEY was initially conceived as a design tool for use during the earliest phases of ship design. During these early phases, the design changes rapidly. A Navy ship design is a study in compromise; no ship is optimum in all respects. Therefore, many tradeoff studies are conducted to help the ship designers, managers, policy makers, ship builders, politicians, and other government officials involved in the process decide on the characteristics of the ship. In this environment, the designer of the electric plant is required to evaluate numerous potential configurations of generators and loads. The most important consideration for the program, then, was that it be easy to learn and use. If the program is not easy to use, it would not be used no matter how good it was (witness the proliferation of so-called "shelfware" in most offices). In addition, the program should be able to run on a personal computer, since a mainframe would not always be available.
Interest in the issue of sizing electric plants was brought about by the work currently being done on electric drive. However, it would be narrow minded to think that only electric drive ships will be built in the future. It was considered important, then, to make SMOKEY usable for non-electric drive ships as well. This is accomplished easily, and is a matter of simply inputting the proper loads. This point will become clear as the program is described in detail later in this chapter.

Based on the above discussion, it was decided the program should allow the user to input load information, then several potential generator configurations (capacity, availability, weight, and cost of each generator). The program would compute a reliability index for each configuration, and display the information graphically so that the user could see which configuration was best in terms of the parameter (cost, weight, etc.) of most significance. This would also allow cost-benefit analyses to be performed easily, as the user could see graphically the point at which the addition of more capacity (another generator, or larger generators, for example) produces a marginal increase in reliability.

The problem then became one of developing a suitable reliability index. Generator information for each configuration could be manipulated into a capacity outage probability table. As discussed previously, the utilities would then combine the load model with the table to determine the reliability index. The Navy equivalent of the daily peak load variation curve would be a load curve based on a ship operating profile. That is, an operating profile would be postulated (transits at certain speeds, battle
engagements, etc.), then the electrical loads for each operating condition calculated to produce an “electric load operating profile.” This load profile would be combined with the capacity outage probability table to produce an index similar to the LOLE. However, there are several problems inherent in this type analysis:

1. What operating profile should be used? Shipboard electric loads vary greatly with temperature, and so would vary greatly with time of year and operating area. Since the United States Navy operates all over the world year round, the operating profile would have to be very specific and complex. Furthermore, the missions of ships tend to change over their twenty to thirty year lives (for example, the recent breakup of the Soviet Union has changed the entire focus of Navy ships from open-ocean superpower conflict to shallow-water coastal warfare and humanitarian missions). Therefore, the development of an accurate operating profile would be a complicated matter indeed!

2. Development of an accurate load profile would require detailed analysis of the loads which would be time consuming at best; not possible at worst.

3. What would the index mean? An index similar to the LOLE would provide an expected number of days (or hours, etc.) that the ship could not supply the expected electrical load. That is, you would be telling the Captain that he has a ship that cannot perform its specified mission for some portion of the time. The last thing the Captain wants to hear is that his ship is expected to not be able to perform, particularly in the heat of battle!
Therefore, it was decided that an appropriate index would be a simple one: the probability that the plant could supply given percentages of the loads at any random time (for example, the probability that the plant could provide 75% of propulsion power, 50% of weapons power, and all vital loads). This could easily be computed from the capacity outage probability table given the total load in question. The problem then became one of how to input the loads, and what the percentages should be.

Based on the experience of the author, review of several ship electric load analyses and reports [Refs 14, 15, and 16], and discussions with Navy ship design engineers, it was decided to group loads into four categories: vital loads (loads that must be supplied at all times), weapons systems loads, propulsion loads, and damage control loads. Also, since the percentages of interest would be different for different ships, it was decided to let the user select the percentages. This provides the additional benefit of allowing the user to evaluate several possible operating conditions for each potential generator configuration.

Methodology

Because of the desire to run SMOKEY on a personal computer and make it easy to use, it seemed natural to write the program as a Windows application. The graphical user interface (GUI) would greatly enhance usability, and the popularity of the Windows operating system would ensure the program could be used by virtually anyone in need of it. These factors, combined with the authors familiarity with the BASIC language (not to
mention total unfamiliarity with the "C" family, the other popular Windows programming language system), conspired to force the selection of VISUAL BASIC for WINDOWS [Ref 17] as the language to be used in developing SMOKEY. In addition, the recent release of VISUAL BASIC for DOS would allow SMOKEY to be compiled nearly unchanged for use as a DOS application, complete with a GUI, should that be necessary.

The methodology of SMOKEY is simple and straightforward. The user is prompted for all input, which is entered using the keyboard and/or mouse (or other pointing device). Electric loads are input in four groups as described above. The percentages of weapons, propulsion, and damage control loads to be considered are then selected. The total load to be used to enter the capacity outage probability table is calculated as the sum of the given percentages of those loads plus 100% of the vital loads. The generator information is then entered, and the capacity outage probability table computed. The total load is compared to the table, and the reliability index computed and displayed. The user can then input additional generator configurations, compute the indices, and display plots as described earlier. Printed output of the plots can be obtained by selecting "Print" from the menu of the desired graph.

Perhaps the most interesting aspect of SMOKEY is the method used to compute the capacity outage probability table. Reference [9] provides a recursive method for this computation. However, this method proved difficult to code. Instead, a method based on Z-transforms was used. This requires some explanation.
A probability mass function (PMF) is a function for a random variable x, say $p_x(x_0)$, defined [Ref 18] as follows:

$$p_x(x_0) = \text{probability that the experimental value of random variable } x \text{ is equal to } x_0.$$

Since each generator is modeled as either available or not available (no derated states are allowed on Navy ships), the PMF for each generator is simply an impulse at the rating point of magnitude A (where A is the availability of the generator), and an impulse at zero of magnitude $(1-A)$.

The Z-transform is defined [Ref 18] as:

$$P_T(z) = \sum_{x_0} x_0^z p_x(x_0)$$

The Z-transform for each generator PMF then becomes:

$$p_T(z) = (1-A) + A z^{kW}$$

where kW is the rating point of the generator.

When two or more generators are added, the combined PMF (which is, basically, the capacity outage probability table) is the convolution of the separate generator PMFs (assuming statistical independence, which is a valid assumption here since the availability of each generator is independent of all the others), which is a complicated
series of infinite integrals. However, the Z-transform of the combined PMF is the
product of the Z-transforms of the separate generator PMFs, which is a much simpler
operation. SMOKEY computes the capacity outage probability table by computing the
product of the Z-transforms of the separate generator PMFs.

Validation

The computations made by SMOKEY were validated in three ways:

1. Comparison to examples presented in Reference [9].
2. Comparison to hand computations using the binomial distribution of Reference [8]. This is valid when the generators are identical.
3. Comparison to results produced by TIGER. The TIGER runs are provided as Appendix (B), and are for the following cases: 1 of 2 identical generators necessary to supply the load, 2 of 3 identical generators necessary, and 2 of 4 generators necessary. The appropriate numbers for comparison from the TIGER runs are the average availabilities and estimated long-term availabilities for the system. TIGER outputs much more information which is not necessarily useful in this case. Also, it should be noted that TIGER outputs a parameter called "reliability." This parameter is defined by Reference [5] specifically for the TIGER simulations, and is not appropriate for use here.
The computations made by SMOKEY were exact for 1 and 2 above, and within 3% for 3. The differences in the SMOKEY and TIGER runs are attributed to the different methods of calculation employed. SMOKEY uses deterministic methods, while TIGER used Monte Carlo methods, as discussed previously. Based on the above, the operation of SMOKEY is considered validated.
Chapter 4. SMOKEY Program Operation

SMOKEY is an interactive program which takes all input from the keyboard and outputs to the screen. Plots can be printed if desired. The source code for SMOKEY is included as Appendix (A). This chapter describes the code in detail and explains the operation of the program.

Installation

In order to ensure proper setup of the program and make installation as easy as possible, an installation program was developed for SMOKEY. The installation program is also a Windows application. Therefore, Windows must be running during the installation process. Installation of SMOKEY is performed as follows:

1. The SMOKEY disk should be inserted in the appropriate disk drive. From the Program Manager, select the File menu, then the Run command. In the Run dialog box, type "a:setup" (or "b:setup" if the disk is in the b-drive, etc.) in the Command Line box. This starts the Setup program.

2. The Setup program first checks to ensure the hard disk has enough space to accommodate all the SMOKEY files. If so, it prompts the user for the directory in which to install SMOKEY (the default is c:\smokey). If the selected directory does not exist, the Setup program creates it.
3. The Setup program then copies the executable file SMOKEY.EXE into the specified directory. In addition, several other files are copied into the windows\system subdirectory:

 a. VBRUN200.DLL: This is the Visual Basic 2.0 run-time library, and is required for any program written in Visual Basic 2.0 to run.

 b. GRAPH.VBX, GSWDLL.DLL, and GSW.EXE: These files are from the Visual Basic Toolbox, and are necessary for the graphing subroutines to run.

 The Setup program checks to see if these files are already installed, and only replaces them if the version on the SMOKEY disk is more recent.

4. The Setup program then installs a Program Manager group called SMOKEY, and an icon for SMOKEY in that group. The icon can be moved into any group and the SMOKEY group deleted if desired.

5. SMOKEY can now be started the same way as any other Windows program (by double clicking on the icon, etc.).

Using SMOKEY

Once the installation process is complete, SMOKEY is started in the same way as any other Windows program. The details of how to use the program will be discussed in the next section, which describes the subroutines in detail. Basic familiarity with the
Windows operating system is assumed. Readers unfamiliar with Windows should refer to the Microsoft Windows User's Guide, or any of a number of other Windows references currently available.

Subroutine Description

Each screen in Visual Basic is called a form. Subroutines are then attached to the form (e.g., each button or menu on the form will have an associated subroutine which is executed when the user selects that item). Therefore, the explanation of the program will proceed from form to form for ease of understanding. Since the forms are in color, they cannot be reproduced exactly here. It should be noted that SMOKEY was written for Windows version 3.1. It will run with earlier versions, but the appearance of the forms, especially the text fonts, may differ from those pictured.

General

Forms are manipulated as with any Windows program. Menu items are accessed using the mouse or the keyboard (i.e. ALT+ the underlined menu item letter). Forms may be moved around the screen by "drag and drop" with the mouse.

Each form, with the exception of the startup, error and message forms, has the menu items "File" and "Help" at the top of the form. The "File" menu contains a submenu item "Exit" which will terminate the program when selected. The "Help" menu
contains a submenu item "About," selection of which causes the Figure 1 information form to be displayed.

![Smokey Version 1.0](image)

Figure 1. Information Form

This form displays information about the computer on which SMOKEY is running. In particular, the Windows mode, amount of free memory, and whether a math co-processor is installed in the system are displayed.

Startup Form

When SMOKEY is started, all variables and arrays are set to zero. The Figure 2 startup/copyright form appears.
This form is displayed for approximately two seconds. Then, the timer function associated with this form opens the Load Information Input form and closes the startup form.

Load Information Form

The Figure 3 Load Information Form receives the load information. Loads in each category are input by placing the cursor in the appropriate box (with the mouse or tab key) and entering the load values from the keyboard. If no value is entered into a box, the program assigns a value of zero to that load category.
The OK button causes the load values to be stored. The Reliability Index Selection form is then opened and the Load Information form closed. It should be noted that the Non-Vital Load is not included in the total load calculation. Therefore, no value is required in this input box. The Non-Vital Load box was included for possible use in future revisions of SMOKEY.
Reliability Index Selection Form

The Figure 4 Index Selection Form allows selection of the percentages of each load category for use in the total load calculation.

![Image of Reliability Index Selection Form]

Figure 4. Reliability Index Selection Form

The percentages are selected by manipulation of the scroll bars with the mouse, or by typing the numbers directly into the input boxes. The numbers should be entered as percentages rather than decimals (i.e. 45 for 45%, not 0.45). The OK button causes the total load to be calculated and stored (the total load is the vital load plus the sum of the selected percentages of the other load categories), the Generator Input form to be displayed, and the Index Selection form to be closed.
Generator Input Form

The Generator Input Form does most of the work of SMOKEY, and is shown in Figure 5. The information for each generator is input as with the other forms. It should be noted that the parameter "Reliability" is actually the availability of the generator. The Generator Number box displays the number of the next generator to be input into the configuration (this is displayed by the program and does not have to be input by the user). Each generator is added by selecting the Input button. This causes the weight, cost, and capacity information for the generator to be added to the total for the configuration, and the generator to be added to the capacity output probability table (using the Z-transform method described earlier). When the last generator has been input, the Finished button should be selected. This causes the total weight, cost, capacity, and number of generators for the configuration to be stored in an array. The total load is then compared to the capacity outage probability table, and the reliability index computed. The result is displayed in the box near the bottom of the form and stored in an array. If there is insufficient capacity to supply the load, the error message form shown in Figure 6 is displayed.
The probability that the configuration will be able to supply the loads at any random time is

Figure 5. Generator Information Input Form

Selection of the Next Config button allows another generator configuration to be input in the same way as before. The weight, cost, capacity, and number of generators for each configuration, as well as the reliability indices, are stored for graphical display.

Selection of the Graphs button closes this form and opens the Graph Forms.
As will be discussed later in this chapter, the maximum number of generators which can be input into any configuration is twelve. Therefore, if a twelfth generator is added, the Figure 7 Message form is displayed to inform the user they cannot add more generators to that configuration.
Comparison Plot Forms

The Graphs Forms display total cost, total system capacity, total weight, and total number of generators for each configuration against the selected reliability index. A typical graph is shown in Figure 8. The graphs allow the user to see the point at which addition of capacity does not produce an appreciable increase in system availability.

![Figure 8. Reliability Index Graph Form](image)

The plots can be printed by selecting the Print option under the File menu. The print routine uses the Windows printing functions, so no separate printer drivers are necessary. The program will print to the default printer, as long as it will support graphics printing. The program terminates if all the Graph Forms are closed, or if the Exit option is selected under the File menu of any of the Graph Forms.
Other Subroutines

SMOKEY incorporates some error checking to prevent inappropriate data from being entered. If any inappropriate data are detected (reliability greater than 1.0, etc.), the Figure 9 Error Form is displayed.

![Improper Input Error Form](image)

Figure 9. Improper Input Error Form

Unfortunately, due to time constraints, a separate form was not generated for every possible error. Therefore, the user must figure out which input value on the current form is improper, and change it before being allowed to continue.

Program Limitations

There are several limitations inherent in the operation of SMOKEY which should be mentioned. The limitations, and reason for each, are as follows:
1. The maximum number of generators that can be input into a single configuration is 12. This is due to the fact that the program was originally written in Version 1.0 of Visual Basic, which had an inherent array size limitation. Visual Basic Version 2.0 has no such limit. However, the SMOKEY code has not yet been revised to remove the 12 generator limit.

2. The maximum number of generator configurations which can be compared and plotted is 10. This limit was written into the code to prevent the plots from getting too "busy" to be useful.

3. The individual points on the comparison plots are not labeled. This means the user has to track the results computed by the Generator Input Form well enough to be able to distinguish which point belongs to which configuration. This is due to the fact that the graphing routines built into Visual Basic 2.0 (Professional Edition) were used to save time, rather than writing custom routines. These routines do not allow individual points to be labeled.
Chapter 5. SMOKEY Application

The purpose of this chapter is to demonstrate the application of SMOKEY. Several cases are examined to illustrate the different ways in which SMOKEY can be used. First, the DDG-51 electric plant is examined, and the results compared to the Reference [19] reliability analysis. A hypothetical conversion of the DDG-51 to electric drive is then examined. Two cases are considered: Conversion to electric drive with propulsion derived ships service electric power (integrated electric drive), and conversion to electric drive without propulsion derived ships service power. Finally, to show how the program would be used during design of a new ship (rather than evaluation of an existing design), the propulsion plant of a proposed Heavy Lift Ship is evaluated. This ship is being designed as a graduate student design project in the Ocean Engineering Department at MIT.

Information on several prime mover-generator combinations is summarized in Table 1. These units are used throughout the examples of this chapter. Table 1 is not intended to include all units available for possible use in Naval ships. However, it does represent a reasonable cross-section of available units, and provides enough choices to adequately demonstrate SMOKEY. The examples of this chapter are intended to illustrate the use of SMOKEY and its methodology in making decisions relative to installed electrical generating capacity in Naval ships. They do not represent recommendations on the part of the author for potential ship conversions. Any such
extensive modifications as changes in an existing ship propulsion plant would require much more detailed evaluations (since many secondary effects would have to be considered, such as changes in weight affecting draft, stability and seakeeping characteristics), and are beyond the scope of this chapter.

Table 1. Generator Information

<table>
<thead>
<tr>
<th>Generator</th>
<th>Capacity (kW)</th>
<th>Availability</th>
<th>Cost ($M)</th>
<th>Weight (ltons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allison(^2)</td>
<td>2,500</td>
<td>0.9347</td>
<td>2.3</td>
<td>26.9</td>
</tr>
<tr>
<td>CAT 3612(^3)</td>
<td>3,300</td>
<td>0.9347</td>
<td>1.24</td>
<td>45.54</td>
</tr>
<tr>
<td>LM2500/ED(^4)</td>
<td>18,600</td>
<td>0.9389</td>
<td>8.2</td>
<td>81</td>
</tr>
<tr>
<td>LM2500(^5)</td>
<td>19,500</td>
<td>0.9389</td>
<td>8.6</td>
<td>85</td>
</tr>
<tr>
<td>2.5 Diesel(^6)</td>
<td>2,500</td>
<td>0.9964</td>
<td>2.1</td>
<td>44.4</td>
</tr>
<tr>
<td>3.75 Diesel(^6)</td>
<td>3,750</td>
<td>0.9964</td>
<td>2.5</td>
<td>59</td>
</tr>
</tbody>
</table>

Notes:

1. "Lton" is an abbreviation for "Long Ton," which is 2,240 pounds. This is the common weight unit used in naval architecture.

2. All information from Reference [20], with the exception of availability which was calculated from information in Reference [19].
3. All information from Reference [20], with the exception of availability, which was assumed to be the same as the Allison because of a lack of reliability data on this unit.

4. All information from a preliminary report from the Advanced Surface Machinery Project Office, with the exception of availability which was calculated from Reference [19] (assuming the standard LM2500 with a typical electrical generator). The "ED" designation is for "Electric Drive," to distinguish this unit from the next one in the table.

5. This unit is a standard LM2500 with a larger generator than the previous unit, intended to use more of the available power of the gas turbine. The weight and cost were scaled up from the previous unit, and availability calculated from Reference [19].

6. Cost and weight information taken from a preliminary report from the Advanced Surface Machinery Project Office. Availability assumed to be that of a typical diesel generator provided in Reference [21].

The first four units in Table 1 are gas turbine driven. The third, fifth and sixth units have been defined by the Advanced Surface Machinery Office as "standard modules" for use in Naval propulsion plants as part of the Navy "affordability through commonality" initiative. It should also be noted that Reference [19] identifies some components of the gas turbines as not repairable by ships force. To calculate an availability for the unit, a MTTR of twenty days was assumed for those components.
This assumption is consistent with the logistics delay of twenty days assumed in the Reference [19] analysis for all parts not available on board.

DDG-51 Electric Plant Analysis

The simplest application of SMOKEY is to analyze an existing electric plant. Since a detailed load analysis has been performed and the installed plant proven satisfactory, it is prudent to compare possible configurations in terms of the load used to design the plant originally. The intent here is to evaluate the DDG-51 plant and compare the results obtained using SMOKEY with the Reference [19] analysis (which used the Monte Carlo methods of TIGER [Ref 5]). It should be noted that Reference [19] is very extensive, and the electric plant only one of many systems analyzed. However, the pertinent electric plant information can be extracted for comparison. The current DDG-51 electric plant consists of three 2500 kW Allison gas turbine generators.

Reference [14] calculates a maximum functional load (using the method discussed in Chapter 2) of 3990 kW. This load was used as the design load for the DDG-51 electric plant. Many operating conditions analyzed in Reference [14] require total loads less than 2500 kW and would therefore require only one generator. However, standard practice is to run two of the three generators at all times to prevent the loss of one generator from making the ship "cold and dark." Therefore, the Reference [19] analysis assumed two generators were required at all times.
Reference [19] simulated the electric plant as three Allison gas turbine generators, two of which were required to be running at all times. The availability for the sixty day mission was calculated as 0.98. However, Reference [19] recommended the addition of a fourth generator based on the fact that the gas generator of the gas turbine, which is not repairable by ship's force, accounted for 16% of the unavailability of the ship.

The benefits of adding a fourth generator can easily be analyzed using SMOKEY. By using the design load (3990 kW) as the "vital" load and zeros for the other load categories as inputs, the results produced by SMOKEY become simply the probability the system can supply the design load. This could alternately be considered the overall availability of the system. This probability for the current configuration (3 installed generators) is 0.9878, which compares well with the Reference [19] analysis. The probability with four generators is 0.9989. Therefore, the addition of a fourth generator increases the probability that the system can supply the design load by less than 2%. This is shown graphically in Figure 1 (Note: All graphs in this chapter were produced by SMOKEY).
Figure 1 shows clearly that the addition of a fourth generator is not beneficial enough to warrant the extra cost or weight. However, it should be mentioned that other considerations, such as a damage analysis [Ref 3] considering physical location of each unit, might show additional benefit in the addition of a fourth generator.

Other alternatives can be analyzed. SMOKEY was used to evaluate the potential replacement of the Allison units with other appropriate units of Table 1. The results are provided in Table 2. For simplicity, no mixed cases (i.e. all units were assumed identical) were considered.
Table 2. Probability of Supplying DDG-51 Design Load

<table>
<thead>
<tr>
<th>Number of Generators</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allison</td>
<td>0</td>
<td>0.8737</td>
<td>0.9878</td>
<td>0.9989</td>
<td>0.9999</td>
</tr>
<tr>
<td>CAT 3612</td>
<td>0</td>
<td>0.8737</td>
<td>0.9878</td>
<td>0.9989</td>
<td>0.9999</td>
</tr>
<tr>
<td>2.5 Diesel</td>
<td>0</td>
<td>0.9928</td>
<td>0.9999+</td>
<td>0.9999+</td>
<td>0.9999+</td>
</tr>
<tr>
<td>3.75 Diesel</td>
<td>0</td>
<td>0.9928</td>
<td>0.9999+</td>
<td>0.9999+</td>
<td>0.9999+</td>
</tr>
</tbody>
</table>

Table 2 shows that three is the "correct" number of generators no matter which units are used, since the addition of the fourth produces little benefit in any case. The 2-diesel configurations are not considered correct, even though they are more reliable than the current configuration, since all installed units would be required to be on line at all times (given the current operating practices). Such a situation would make maintenance at sea difficult. Some other observations can be made:

- Increasing the size of the units in itself produces no benefit since none of the units are large enough to carry the design load on one generator.
- Changing to diesel generators increases the reliability of the system due to the higher availability of the diesel.
SMOKEY can also be used to evaluate the 3-Allison system against the 3-2.5 Diesel system. The data from Table 2 show that the diesel plant is slightly more reliable. Also, Figure 2 shows a small cost savings in switching from a gas turbine to a diesel driven plant (the left point is the diesel plant). However, Figure 3 shows the diesel plant to be significantly heavier (the left point is the Allison plant). Therefore, the benefit of changing to diesel is probably more than offset by the disadvantage of increased weight. The installed plant is therefore the "best" available in terms of the design load and the available choices.

Figure 2. Cost Comparison: 3-Allisons vs. 3-2.5 Diesels (cost in $M)
Electric Drive DDG-51 Analysis

The next case to be considered is a hypothetical conversion of the DDG-51 to electric drive. In this instance, the propulsion and ship service electric systems remain separate. That is, the propulsion generators generate electric power only to turn the propellers. There is no propulsion derived ships service (PDSS) power.

A similar study was performed in Reference [22] for the DD-963 Class ships. However, the purpose of the Reference [22] study was to demonstrate the feasibility of using superconducting equipment in an electric drive ship and the benefits of using such an arrangement. Since a detailed design evaluation is beyond the scope of this project and the purpose here is purely illustrative, the following simplifying assumptions (and
the resulting differences between the Reference [22] study and the following example) have been made:

1. The ship hull form and draft, and therefore the amount of power necessary to propel the ship through the water, are assumed constant. The Reference [22] study allowed the ship to change size in response to the size and weight changes in the propulsion plant in order to more accurately access the impact of the electric drive propulsion plant.

2. The propellers are assumed to be the same. Gas turbine driven ships with conventional mechanical drive have propellers which change pitch to vary the amount and direction of thrust (called "controllable reversible pitch," or CRP propellers). This is necessary since gas turbines operate at constant speed and in only one direction. In reality (as assumed in Reference [22]), an electric drive ship could use fixed pitch propellers (since the control system could change the speed and direction of rotation of the propulsion motors independent of the gas turbine speed) which are more efficient and more reliable.

3. Only changes in prime movers and generators are considered. In reality (as considered in Reference [22]), changing from reduction gears, couplings and long shaft runs to generators, motors and relatively short shaft runs would have potentially large effects on the ship.

4. The reliability characteristics of the reduction gears, shafting, propulsion motors, propellers, etc. is ignored. This is an oversimplification, but is appropriate here since the example is for illustrative purposes only.
Table 3 summarizes the calculations made for this example. The numbers in the table represent the probability that the configuration can propel the ship at the indicated speed at any time. The "As-Is" configuration is the present DDG-51 plant: two shafts, each powered by two LM2500 gas turbines coupled through a reduction gear. The following procedure was used in developing Table 3.

1. The "As-Is" numbers were calculated using the availability for the LM2500 only (0.9391, calculated from Reference [19] data), which is slightly higher than the LM2500 of Table 1, since the generator is not present. Both shafts were assumed to be required; one turbine per shaft at a speeds less than 27 knots, two turbines per shaft at speeds above 27 knots. This is technically not true. One shaft could propel the ship at a significant fraction of top speed. However, this situation is not preferred, and is more difficult to analyze. The probabilities were then calculated using the binomial distribution [Ref 8]. The lower speed numbers appear low at first glance. The reason is that the probability is not that at least two of the four gas turbines be available, but that at least one of two for one shaft and at least one of two for the second shaft be available. Of course, the probability for the higher speeds is the probability that four of four gas turbines are available.

2. For the electric drive numbers, the higher power LM2500 unit of Table 1 was used. The required powers were calculated from the Appendix (C) powering information as follows: The effective horsepower provided by ASSET is the power required to push the ship through the water at the indicated speed. The
propulsive coefficient is defined as the effective horsepower divided by the total shaft horsepower (since the propellers are not 100% efficient). The effective horsepower was divided by the propulsive coefficient to determine the required shaft horsepower. This was then divided by 0.9 to approximate the losses in the electrical system between the generators and the propellers. The required power was then used as the vital load input into SMOKEY.

3. Because of the assumptions made and the procedure used for calculating required power, the three LM2500 electric drive ship is unable to go 30 knots. More detailed calculations would be required to access whether this was really true, since this ship would potentially be at least 80 long tons lighter that the others.

It should be noted that the Appendix (C) information is obtained from ASSET, and is not actual DDG-51 data. Rather, it is a computer model that has been matched closely to the existing ship.

Table 3 shows the 4 LM2500 electric drive configuration to be the more reliable propulsion system. The slightly higher numbers for the As-Is configuration at the highest speeds is due to the slightly higher availability of the LM2500 without the generator. Even so, the difference is very small and is more than outweighed by the superiority of the electric drive configuration at the lower speeds. This is due to the fact that power from any of the generators can be distributed to either shaft, unlike the mechanical drive arrangement. As stated previously, the lower top speed of the electric
drive ships is a function of the simplifying assumptions made and would probably not exist should a detailed evaluation be performed.

Table 3. Probability of Making Indicated Speed

<table>
<thead>
<tr>
<th>Speed (knots)</th>
<th>As-Is</th>
<th>Electric Drive 3 LM2500s</th>
<th>Electric Drive 4 LM2500s</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.9926</td>
<td>0.9998</td>
<td>0.9999+</td>
</tr>
<tr>
<td>22</td>
<td>0.9926</td>
<td>0.9998</td>
<td>0.9999+</td>
</tr>
<tr>
<td>24</td>
<td>0.9926</td>
<td>0.9893</td>
<td>0.9991</td>
</tr>
<tr>
<td>26</td>
<td>0.9926</td>
<td>0.9893</td>
<td>0.9991</td>
</tr>
<tr>
<td>28</td>
<td>0.7778</td>
<td>0.8277</td>
<td>0.9794</td>
</tr>
<tr>
<td>30</td>
<td>0.7778</td>
<td>0</td>
<td>0.7771</td>
</tr>
<tr>
<td>31</td>
<td>0.7778</td>
<td>0</td>
<td>0.7771</td>
</tr>
</tbody>
</table>

It is difficult to accurately compare the two electric drive configurations. In all likelihood, the 3-generator ship would be smaller and lighter. This would increase the top speed and change the probabilities listed. However, for the sake of illustration, the following observations can be made:

- The 3-generator ship is very nearly as reliable as the 4-generator ship at speeds below about 28 knots.
• The top speed of the 3-generator ship is somewhat greater than 29 knots, while the top speed of the 4-generator ship is somewhat greater that 31 knots.

• The 3-generator plant would be at least 85 long tons lighter than the 4-generator plant, allowing for 85 long tons more payload.

• The 3-generator plant would be at least $8.6M cheaper than the 4-generator plant.

The ship designer, then, must decide which is more important: higher top speed or more payload and lower cost.

Obviously, the current practice of providing enough generating capacity such that the load can be carried with one generator off line is difficult to apply in the case of electric drive propulsion. Should the load considered be the maximum speed load, or something less? In the above example, a fifth LM2500 would be required if the maximum speed propulsion load were required to be carried with one generator unavailable, making the propulsion plant more reliable (not to mention expensive) than the existing ship. SMOKEY gives the designer a tool for accessing potential configurations in a much more reasonable way.

Integrated Electric Drive DDG-51 Analysis

The next case to be considered is the conversion of the DDG-51 to *integrated* electric drive. That is, electric power from any generator can be distributed to the ship service system and/or the propulsion system. In this example, mixed configurations will
be evaluated (i.e. not all generating units identical). While this type of evaluation is straightforward with SMOKEY, it is very difficult using TIGER or similar analysis tools, since the plant does not operate according to simple operating rules (i.e. two of three generators must be operating, etc.).

The analysis was performed as follows:

1. The design ship service electric load was input as the vital load. That is, the system was required to be able to supply 3990 kW to the ships service system at all times.
2. The 31 knot propulsion load calculated for the previous example (77,537 kW) was input as the propulsion load.
3. Several SMOKEY runs were made with various percentages of the propulsion load selected as the index. The output is then the probability that the electric plant can supply the design ship service load and the selected percentage of the propulsion load.

Several configurations were considered, all using the higher power LM2500s. First, three LM2500s alone, then with one, two, or three Allisons, 2.5 Diesels, or 3.75 Diesels (i.e. 10 combinations). The same combinations were then run again with a fourth LM2500 added. Only the addition of three 3.75 Diesels significantly changed the reliability of the plant. The results are summarized in Table 4. Note the three LM2500
ship again is not as fast as the four LM2500 ship. This is due to the fact that the hull
form and draft were held constant as discussed in the previous example.

Table 4. Probability of Providing Design Ships Service Power and Selected
Percentage of Propulsion Power

<table>
<thead>
<tr>
<th>% Propulsion Load</th>
<th>Approximate Speed (knots)</th>
<th>3 LM2500s</th>
<th>3 LM2500s + 3 3.75 Diesels</th>
<th>4 LM2500s</th>
<th>4 LM2500s + 3 3.75 Diesels</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>30</td>
<td>0</td>
<td>0.8188</td>
<td>0.7771</td>
<td>0.9772</td>
</tr>
<tr>
<td>70</td>
<td>29</td>
<td>0.8277</td>
<td>0.8277</td>
<td>0.9794</td>
<td>0.9794</td>
</tr>
<tr>
<td>60</td>
<td>28</td>
<td>0.8277</td>
<td>0.8277</td>
<td>0.9794</td>
<td>0.9794</td>
</tr>
<tr>
<td>50</td>
<td>27</td>
<td>0.8277</td>
<td>0.9893</td>
<td>0.9794</td>
<td>0.9991</td>
</tr>
<tr>
<td>40</td>
<td>26</td>
<td>0.9893</td>
<td>0.9893</td>
<td>0.9991</td>
<td>0.9991</td>
</tr>
</tbody>
</table>

Table 4 shows the 4 LM2500 plant to be generally more reliable, as would be expected. Also, the addition of the 3 smaller generators is beneficial at some speeds. The question, then, is what is the price of that added benefit? Figure 4 shows the cost, and Figure 5 the weight of the generating plants of Table 4, using the 50% of propulsion power index. In Figure 4, the points are, from left to right, the 3 LM2500 plant, the 3 LM2500+3 Diesel plant, the 4 LM2500 plant, and the 4 LM2500+3 Diesel plant. In Figure 5, the order of the two middle points are reversed.
The following observations can be made from Figures 4 and 5:

- The 4 LM2500 + 3 Diesel plant is the most reliable, but is also the most expensive and heaviest.
• The cost of the 4 LM2500 plant is nearly the same as the 3 LM2500 + 3 Diesel plant, and the latter is slightly more reliable. However, the latter is heavier.

• The 3 LM2500 plant is the cheapest and lightest, but is the least reliable.

Based on the above, the best plant (under the assumptions previously discussed) would be either the 4 LM2500 plant or the 3 LM2500 + 3 Diesel plant, depending on the relative importance of weight and cost. In either case, the total number of generators is reduced (as compared to the current DDG-51) by converting to integrated electric drive.

Again, the "all but one" rule is difficult to apply, especially since the generators are of different sizes. SMOKEY makes this evaluation easily, and gives the designer the information necessary to make a logical decision.

Heavy Lift Ship Concept Design Analysis

The preceding examples have gone from very simple to more involved applications of SMOKEY, in order to introduce the reader to the capabilities of the program. The following example is intended to show how SMOKEY can be used during the early stages of a ship design.

The Heavy Lift Ship, designated HL(X), concept design is a graduate student design project currently in progress in the Ocean Engineering Department at M.I.T. Reference [23] reported on the progress of the design at approximately the halfway point
in the project. The ship is intended to transport and support four mine countermeasures ships to and from a hostile area for mine clearing operations. The ship has a large well deck for this purpose, and enough ballast tankage to allow submergence of the well deck to approximately twenty feet.

Because of the required layout of the ship and various safety factors (discussed in detail in Reference [23]), it was decided early on to use an integrated electric drive propulsion plant. This type plant is quite beneficial for this ship since the major electrical loads occur during different evolutions. The major loads on the plant consist of propulsion, ships service, repair shops, ballasting pumps, and providing power to the ships in dock or alongside. However, these loads do not all occur simultaneously. For example, at sea the load consists of propulsion, ships service loads, and providing power to the ships in dock. During a docking evolution, the load consists of ballast pumps and ships service. Because of the integrated electric drive arrangement, the plant can be designed for the worst case evolution (underway, since the propulsion load is by far the largest), and not for the total combination of all worst case loads.

Since the ship is big and expensive, it was also decided to use the common modules defined as part of the affordability through commonality program mentioned previously to reduce cost. That means the generating units available for use were the third, fifth and sixth units of Table 1.
The evaluation of alternate generator combinations for the selection of the HL(X) propulsion plant was performed as follows:

1. The propulsion load was estimated based on the Appendix (C) ASSET output in the same manner as for the DDG-51 propulsion load discussed earlier. Since the primary mission of the ship is to transport the mine countermeasures ships at a speed of 16 knots, it was considered appropriate to use this load in the reliability calculation. The 16 knot load was calculated to be 18,179 kW, which includes a fixed load of 250 kW for motors, fans, etc. required by the propulsion plant.

2. The total connected ship service loads were calculated in Appendix (D), also based on the Appendix (C) ASSET output.

3. The ships service loads were placed into two groups, depending on the relative importance of supplying them under worst case conditions. Group 1 consists of firemain loads (firemain is the water system used for damage control, etc.), lighting, and ventilation (total connected load=4912 kW). Group 2 consists of heating/cooling loads, fresh water production and heating, and handling and services loads (total connected load=9465 kW).

4. A suitable reliability index was determined to be the probability that the plant could supply the electrical load of the four ships in dock (400 kW), 100% of the 16 knot propulsion load, 65% of the Group 1 ship service load, and 35% of the Group 2 ship service load.

5. SMOKEY was used to calculate the reliability index by inputting the Group 1 load as the Damage Control load, Group 2 as the Combat System load (the ship
has no weapons), the 16 knot propulsion load as the propulsion load, and the 400 kW for the ships in dock as the vital load. Using the percentages previously mentioned, the data of Table 5 was produced.

Table 5. HL(X) Power Plant Comparison

<table>
<thead>
<tr>
<th>Configuration Number</th>
<th>Number of LM2500s</th>
<th>Number of 2.5 MW Diesel Generators</th>
<th>Number of 3.75 MW Diesel Generators</th>
<th>Reliability Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.8815</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0.8815</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0.8815</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0.9950</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0.8815</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0.9954</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0.9963</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0.9893</td>
</tr>
</tbody>
</table>

Based on Table 5, configurations 4, 6, 7, and 8 were chosen for detailed comparison. Because of the size of the ship, weight is not very important. The overriding consideration is cost. Figure 6 shows the system reliability as a function of the cost for the four configurations. The points are, from left to right, configuration 6, 4, 7, and 8. Based on this data, configuration number 6 was selected for the HL(X) propulsion plant.
The above example illustrates the need for the approach of SMOKEY. The current sizing methodology would be difficult if not impossible to apply in this case. For example, since not all the generators are alike, the "all but one" rule is again unclear. SMOKEY allows engineering judgment, combined with knowledge of the mission of the ship, to be used in the selection of the number, type, and size of the generators.
Chapter 6. Conclusions and Recommendations

The current methodology for sizing Naval ship electric plants has produced satisfactorily operating plants. However, there are shortcomings which are eliminated by the methodology proposed here, using SMOKEY:

1. The use of integrated electric drive. There is no "load factor" defined for the propulsion loads. What load should be used? SMOKEY allows the designer to select a proportion of the propulsion load appropriate to the mission of the ship being considered. SMOKEY also allows the reliability at different speeds to be computed for consideration by the designer.

2. The overall reliability of the generating system. The only requirement for reliability of the electrical generating system inherent in the current sizing methodology is the requirement that the plant be able to supply the estimated worst case load with one generator not available. This "all but one" rule is difficult to apply in cases where there is more than one type or size of generator present (such as the heavy lift ship presented in Chapter 5). Also, different types of generators (i.e. gas turbine driven versus diesel driven) have different reliability characteristics, which are not considered in the current methodology. Generators with higher availabilities would make the system more reliable, but might be undesirable for other reasons (heavier or more expensive). SMOKEY allows the designer to evaluate and compare configurations in terms of overall
system availability, cost, weight, and total number of generators (which is a measure of system complexity). SMOKEY also allows the comparisons to be made on systems consisting of different types and sizes of generators.

In conclusion, the methods demonstrated here using SMOKEY are an improvement to the current methodology. However, there are outstanding issues which must be addressed before the method can be implemented wholesale by the Navy:

1. Acceptable percentages of the total loads in the three categories used by SMOKEY (propulsion, combat systems, and damage control) need to be defined. The combat systems and damage control load percentages could be determined by analyzing current ship designs and comparing total connected loads to actual loads during different operating conditions. These would most likely be different for different classes of ships, so the analysis would be time consuming and require extensive amounts of data. The propulsion load percentage would most likely be determined on a case basis, depending on the mission of the ship.

2. A method for accounting for the presence of pulsed-power weapons should be developed. Most likely, this would involve separately analyzing the plant during operation of the weapon (since large amounts of power during some charging time would be required) and without operation of the weapon. In the case of a ship with integrated electric drive propulsion, operation of the weapon might involve a reduction in speed during the charging cycle.
3. Fuel consumption should be addressed earlier in the design process. Currently, the fuel required to be carried on board is based on the fuel consumption of the propulsion and ship service electrical generator engines at a single load value. In a ship with integrated electric drive propulsion, this calculation becomes even more difficult since power from any generator can be used for propulsion and/or ships service electrical loads, causing the operating points to vary. The required fuel calculation method should be reevaluated for electric drive ships.

There are also improvements which can be made to SMOKEY (which the author did not have time to do) which would improve the usability and usefulness of the program:

1. The limit on the number of generators which can be entered into a single configuration should be removed. Some very large ships (such as aircraft carriers) might conceivably require more than twelve generators.

2. The limit on the number of configurations which can be evaluated and plotted in a single run should be removed, since it was an arbitrary limit based on the graphical output. The user should be allowed to try as many plant configurations as desired, then rerun the program with the best candidates if the graphs are too busy.

3. The program should be revised to allow restarting without exiting totally. This would save time (and aggravation on the part of the user) when evaluating several loading cases.
4. The capability to input a ship operating profile rather than a single load index should be considered. This would complicate the program, but would provide the designer an additional basis for comparison between plants with similar reliability characteristics at the single load index chosen. This would probably be most appropriate for auxiliary ships, since their operation is much more predictable than a combatant and a reasonably accurate operating profile could be developed.

5. The program should consider fuel consumption. This is a difficult problem because of the complex way in which fuel requirements are presently calculated. Therefore, this improvement would probably best be made after the fuel requirement calculation method was reevaluated for electric drive ships.

6. The program should consider the area and volume required by the generators, as well as the cross sectional areas of the intakes and exhausts. The total area and volume required by the plant are important factors in the design of a ship, and should also be used when comparing candidate configurations.

Overall, the methodology of SMOKEY is sound and removes some of the weaknesses of the current method. More work is necessary, however, for the program to be made fully applicable and usable for all ships.
References

Appendix A. SMOKEY Source Code

'Smokey 1.0 was originally written in Microsoft Visual Basic 1.0 by J.J. McGlothlin
'as part of a Masters Thesis in Electrical Engineering at MIT
'during the time period November 1992 to January 1993.
'During January 1993, the program was transferred to Visual Basic 2.0 to
'facilitate the addition of the graphing routines.
'Version 1.0 of this program was completed 16 January 1993. Additional effort
'is required to create online help if necessary.
'This program uses the graphing routine supplied with the Professional Version
'of Visual Basic 2.0, and therefore requires the following files (in addition
'to Windows and the executable file SMOKEY.EXE) to run:
' GRAPH.VBX
' GSW.EXE
' GSWDLL.DLL
'These files, as well as the Visual Basic Run-Time Library file (VBRUN200.DLL)
'should be placed in the Microsoft Windows \SYSTEM subdirectory or
'the subdirectory where SMOKEY.EXE is located.

Global WepLoad As Single
Global PropLoad As Single
Global DCLoad As Single
Global VitLoad As Single
Global NVLoad As Single
Global TotLoad As Single
Global M As Integer
Global N As Integer
Global TotCap(1 To 10) As Single
Global TotCost(1 To 10) As Single
Global TotWt(1 To 10) As Single
Global NumGen(1 To 10) As Single
Global Prob(1 To 10) As Single
Global ProbReadout As String * 7

'Memory management functions for determining system information
'displayed in the About Dialog

' Returns the current system configurations flags
Declare Function GetWinFlags Lib "kernel" () As Long

' Returns the number of free bytes in the global heap
Declare Function GetFreeSpace Lib "kernel" (ByVal flag%) As Long

'System configuration flags
Global Const WF_CPU286 = &H2&
Global Const WF_CPU386 = &H4&
Global Const WF_CPU486 = &H8&
Global Const WF_STANDARD = &H10&
Global Const WF_ENHANCED = &H20&
Global Const WF_80x87 = &H400&
Begin Form Copyr
BackColor = &H00C0C0C0&
BorderStyle = 0 'None
Caption = "Smokey"
ControlBox = 0 'False
Height = 2745
Icon = COPYR.FR:0000
Left = 210
LinkMode = 1 'Source
LinkTopic = "Form1"
MaxButton = 0 'False
MinButton = 0 'False
ScaleHeight = 2340
ScaleWidth = 4200
Top = 3150
Width = 4320
Begin Timer Timer1
 Interval = 2000
 Left = 240
 Top = 240
End
Begin Image Image2
 Height = 480
 Left = 3240
 Picture = COPYR.FR:0302
 Top = 1200
 Width = 480
End
Begin Image Image1
 Height = 480
 Left = 480
 Picture = COPYR.FR:0604
 Top = 1200
 Width = 480
End
Begin Label Label2
 BackColor = &H00C0C0C0&
 Caption = "J.J. McGlothin"
 Height = 255
 Left = 1440
 TabIndex = 1
 Top = 1560
 Width = 1335
End
Begin Label Label1
 BackColor = &H00C0C0C0&
 Caption = "Copyright 1993"
 Height = 255
 Left = 1440
 TabIndex = 0
 Top = 1080
 Width = 1335
End
Begin Label Label3

75
This form is the startup form which displays the program name and version and Copyright information. The form is displayed about 2 seconds, then starts the program by loading the load information form.

Sub Command1_Click()
 M = 1
 LOADFRM.Show
 Unload Copyr
End Sub

Sub Timer1_Timer()
 M = 1
 LOADFRM.Show
 Unload Copyr
End Sub
Begin Form Loadfrm
Caption = "Load Information"
Height = 5910
Icon = LOADFIRM.FRX:0000
Left = 1440
LinkMode = 1 'Source
LinkTopic = "Form3"
MaxButton = 0 'False
ScaleHeight = 5220
ScaleWidth = 4815
Top = 1095
Width = 4935

Begin CommandButton Command1
Caption = "OK"
Default = -1 'True
Height = 615
Left = 1440
TabIndex = 6
Top = 4440
Width = 1935

End

Begin TextBox NVText
Height = 495
Left = 2040
TabIndex = 5
Top = 3720
Width = 1815

End

Begin TextBox VitText
Height = 495
Left = 2040
TabIndex = 4
Top = 3000
Width = 1815

End

Begin TextBox DCText
Height = 495
Left = 2040
TabIndex = 3
Top = 2280
Width = 1815

End

Begin TextBox PrpText
Height = 495
Left = 2040
TabIndex = 2
Top = 1560
Width = 1815

End

Begin TextBox WepText
Height = 495
Left = 2040
TabIndex = 1
Top = 840

End
Width = 1815

Begin Label Label6
 Caption = "kw"
 Height = 255
 Left = 4080
 TabIndex = 11
 Top = 3840
 Width = 375
End

Begin Label Label11
 Caption = "Non-Vital"
 Height = 255
 Left = 480
 TabIndex = 16
 Top = 3840
 Width = 855
End

Begin Label Label5
 Caption = "kw"
 Height = 255
 Left = 4080
 TabIndex = 10
 Top = 3120
 Width = 375
End

Begin Label Label10
 Caption = "Vital"
 Height = 255
 Left = 720
 TabIndex = 15
 Top = 3120
 Width = 495
End

Begin Label Label4
 Caption = "kw"
 Height = 255
 Left = 4080
 TabIndex = 9
 Top = 2400
 Width = 375
End

Begin Label Label9
 Caption = "Damage Control"
 Height = 255
 Left = 240
 TabIndex = 14
 Top = 2400
 Width = 1455
End

Begin Label Label3
 Caption = "kw"
 Height = 255
 Left = 4080
TabIndex = 8
Top = 1680
Width = 375
End
Begin Label Label8
Caption = "Propulsion"
Height = 255
Left = 480
TabIndex = 13
Top = 1680
Width = 975
End
Begin Label Label2
Caption = "kw"
Height = 255
Left = 4080
TabIndex = 7
Top = 960
Width = 375
End
Begin Label Label7
Caption = "Combat Systems"
Height = 255
Left = 240
TabIndex = 12
Top = 960
Width = 1455
End
Begin Label Label1
Caption = "Input All Loads in KW"
Height = 255
Left = 1200
TabIndex = 0
Top = 240
Width = 1935
End
Begin Menu File
Caption = "&File"
Begin Menu Exit
Caption = "E&xit"
End
End
Begin Menu Help
Caption = "&Help"
Begin Menu About
Caption = "&About"
End
End
End
'This form inputs the electrical load information.

Sub About_Click()
'Start is the Information form.
frmAbout.Show
Sub Command1_Click()
 'Read in the load in each category
 WepLoad = Val(WepText.Text)
 PropLoad = Val(PropText.Text)
 DCLoad = Val(DCText.Text)
 VitLoad = Val(VitText.Text)
 NVLoad = Val(NVText.Text)
 'Check for an invalid input, and display an error message if necessary.
 If WepLoad < 0 Then
 GoTo 10
 End If
 If PropLoad < 0 Then
 GoTo 10
 End If
 If DCLoad < 0 Then
 GoTo 10
 End If
 If VitLoad < 0 Then
 GoTo 10
 End If
 If NVLoad < 0 Then
 GoTo 10
 End If
 'Load the Index Selection form and unload this form.
 Indec.Show
 Unload loadfrm
 GoTo 11
10 Inerr.Show
11 End Sub

Sub Exit_Click()
 'Exit the program.
 End
End Sub
Text = "Combat Systems"
Top = 1200
Width = 1575
End

Begin TextBox DCReadout
Height = 285
Left = 1920
TabIndex = 6
Top = 2760
Width = 2055
End

Begin HScrollBar DCFrac
Height = 255
LargeChange = 10
Left = 1920
Max = 100
TabIndex = 5
Top = 3000
Width = 2055
End

Begin TextBox PropReadout
Height = 285
Left = 1920
TabIndex = 4
Top = 1920
Width = 2055
End

Begin HScrollBar PropFrac
Height = 255
LargeChange = 10
Left = 1920
Max = 100
TabIndex = 3
Top = 2160
Width = 2055
End

Begin TextBox WepReadout
Height = 285
Left = 1920
TabIndex = 2
Top = 1080
Width = 2055
End

Begin HScrollBar WepFrac
Height = 255
LargeChange = 10
Left = 1920
Max = 100
TabIndex = 1
Top = 1320
Width = 2055
End

Begin TextBox Text1
BorderStyle = 0 'None
This program will compute the probability that the configuration input will be able to supply the selected percentages of the total load:

Sub About_Click ()
 'Display the information form.
 frmAbout.Show
End Sub

Sub Command1_Click ()
 'Compute the total load.
 TempLoad = (WepFrac.Value * WepLoad + PropFrac.Value * PropLoad + DCFrac.Value * DCLoad)
 TotLoad = TempLoad / 100 + VitLoad
 N = 1
 'Display the Generator Input form and unload this form.
 Genfrm.Show
 Unload Indec
End Sub

Sub DCFrac_Change ()
 'Select and display the percentage of Damage Control load to be included in the total load.
 DCRadout.Text = Format$(DCFrac.Value)
End Sub

Sub Exit_Click ()
 'Exit the program.
 End
End Sub

Sub PropFrac_Change ()
 'Select and display the percentage of propulsion load to be included in the total load.
 PropReadout.Text = Format$(PropFrac.Value)
End Sub
Sub WepFrac_Change()
 'Select and display the percentage of combat systems load to be included in the total load.
 WepReadout.Text = Format$(WepFrac.Value)
End Sub
Begin Form Genfrm
 BorderStyle = 1 'Fixed Single
 Caption = "Generator Information"
 Height = 7035
 Icon = GEN.FRX:0000
 Left = 2025
 LinkMode = 1 'Source
 LinkTopic = "Form1"
 MaxButton = 0 'False
 ScaleHeight = 6345
 ScaleWidth = 4665
 Top = 60
 Width = 4785
End

Begin CommandButton Command5
 Caption = "Next Config"
 Height = 615
 Left = 3240
 TabIndex = 19
 Top = 3720
 Width = 1335
End

Begin CommandButton Command4
 Caption = "Graphs"
 Height = 615
 Left = 720
 TabIndex = 18
 Top = 5640
 Width = 3255
End

Begin TextBox ProbReadout
 Height = 375
 Left = 1440
 TabIndex = 17
 Top = 5160
 Width = 1815
End

Begin TextBox Text1
 BorderStyle = 0 'None
 Height = 495
 Left = 240
 MultiLine = -1 'True
 TabIndex = 16
 Text = "The probability that the configuration will be able to supply the loads at any random
time is"
 Top = 4560
 Width = 4095
End

Begin CommandButton Command3
 Caption = "Finished"
 Height = 615
 Left = 1680
 TabIndex = 15
 Top = 3720
 Width = 1335
End
Begin CommandButton Command1
 Caption = "Input"
 Default = -1 'True
 Height = 615
 Left = 120
 TabIndex = 14
 Top = 3720
 Width = 1335
End
Begin TextBox CostText
 Height = 375
 Left = 1800
 TabIndex = 9
 Top = 3120
 Width = 1095
End
Begin TextBox WtText
 Height = 375
 Left = 1800
 TabIndex = 8
 Top = 2400
 Width = 1095
End
Begin TextBox RelText
 Height = 375
 Left = 1800
 TabIndex = 7
 Top = 1680
 Width = 1095
End
Begin TextBox CapText
 Height = 375
 Left = 1800
 TabIndex = 6
 Top = 960
 Width = 1095
End
Begin TextBox NText
 Enabled = 0 'False
 Height = 615
 Left = 2760
 TabIndex = 1
 Top = 120
 Width = 735
End
Begin Label Label9
 Caption = "$\$"
 Height = 255
 Left = 3120
 TabIndex = 13
 Top = 3240
 Width = 735
End
Begin Label Label5
 Caption = "Cost"
 Height = 375
 Left = 240
 TabIndex = 5
 Top = 3120
 Width = 1215
End

Begin Label Label8
 Caption = "LTons"
 Height = 255
 Left = 3000
 TabIndex = 12
 Top = 2520
 Width = 855
End

Begin Label Label4
 Caption = "Weight"
 Height = 375
 Left = 240
 TabIndex = 4
 Top = 2400
 Width = 1215
End

Begin Label Label7
 Caption = "0-1.0"
 Height = 255
 Left = 3000
 TabIndex = 11
 Top = 1800
 Width = 855
End

Begin Label Label3
 Caption = "Reliability"
 Height = 375
 Left = 240
 TabIndex = 3
 Top = 1680
 Width = 1215
End

Begin Label Label6
 Caption = "KW"
 Height = 255
 Left = 3000
 TabIndex = 10
 Top = 1080
 Width = 855
End

Begin Label Label2
 Caption = "Capacity"
 Height = 375
 Left = 240
 TabIndex = 2
 Top = 960
This form receives information about each generator, then computes the desired reliability index.

Dim Cap(0 To 12) As Single
Dim Rel(0 To 12) As Single
Dim Avail(0 To 12) As Single
Dim Wt(1 To 12) As Single
Dim Cost(1 To 12) As Single
Dim CapTable0 As Single
Dim ProbTable0 As Single

Sub About_Click()
 'Display the information form.
 frmAbout.Show
End Sub

Sub CapText_Change()
 NText.Text = Format$(N)
End Sub

Sub Command1_Click()
 'This subroutine reads the capacity, reliability, cost, and weight of each generator.
 Cap(N) = Val(CapText.Text)
 Rel(N) = Val(RelText.Text)
 Avail(N) = 1 - Rel(N)
 'Note: Avail(N) is actually Unavailability.
 Wt(N) = Val(WtText.Text)
 Cost(N) = Val(CostText.Text)
Display an error message if any parameter input is invalid.

If Cap(N) <= 0# Then GoTo 12
If Rel(N) > 1# Then GoTo 12
If Rel(N) <= 0# Then GoTo 12
If Wt(N) < 0# Then GoTo 12
'Display the information.

CapText.Text = Format$(Cap(N))
RelText.Text = Format$(Rel(N))
WtText.Text = Format$(Wt(N))
CostText.Text = Format$(Cost(N))
Increment N by 1 to get ready for the next generator.
N = N + 1
If N = 13 Then
'Display an error message if the max number of generators per configuration (12) is exceeded.
Generr.Show
End If
NText.Text = Format$(N)
GoTo 13
12 Inerr.Show

13 End Sub

Sub Command3_Click()
'This subroutine calculates the reliability index for the configuration input.

Dim As Integer
Dim J As Integer
Dim K As Integer
Dim L As Integer
Dim IR As Integer
Dim Start As Integer
Dim StopLoop As Integer
Dim StopIt As Integer
Dim CapSum As Single
Dim CostSum As Single
Dim WtSum As Single
'Subtract 1 from the number of generators since 1 was added at the end of the input subroutine.
N = N - 1
'Calculate the total capacity, cost, and weight of the configuration input.

Dim Uplimit As Integer
Uplimit = 2 ^ N - 1
ReDim CapTable(0 To Uplimit) As Single
ReDim ProbTable(0 To Uplimit) As Single
For i = 1 To N Step 1
 CapSum = CapSum + Cap(i)
 CostSum = CostSum + Cost(i)
 WtSum = WtSum + Wt(i)
Next i
'Display an error message if you don't have enough capacity.
If TotLoad > CapSum Then Error2.Show
'Store the configuration totals into an array. The subscript M is incremented for each configuration input.

\[\text{TotCap}(M) = \text{CapSum} \]
\[\text{NumGen}(M) = N \]
\[\text{TotCost}(M) = \text{CostSum} \]
\[\text{TotWt}(M) = \text{WtSum} \]

'Compute the capacity outage probability table for the current configuration.

\[\text{CapTable}(0) = 0 \]
\[\text{ProbTable}(0) = 1 \]

For \(i = 1 \) To \(N \)

\[\text{Start} = (2^i - 1) \]
\[\text{StopLoop} = ((2^i) - 1) \]
\[K = 0 \]

For \(J = \text{Start} \) To \(\text{StopLoop} \) Step 1

\[\text{CapTable}(J) = \text{Cap}(i) + \text{CapTable}(K) \]
\[\text{ProbTable}(J) = \text{ProbTable}(K) \times \text{Rel}(i) \]
\[K = K + 1 \]
Next \(J \)

\[\text{Start} = (2^i - 1) - 1 \]

For \(L = 0 \) To \(\text{StopLoop} \) Step 1

\[\text{ProbTable}(L) = \text{ProbTable}(L) \times \text{Avail}(i) \]
Next \(L \)

Next \(i \)

300 'Compare the total load to the table to determine the reliability index.

\[\text{StopLoop} = (2^N) - 1 \]
\[\text{Prob}(M) = 0 \]

For \(i = 0 \) To \(\text{StopLoop} \) Step 1

If \(\text{TotLoad} > \text{CapTable}(i) \) Then

\[\text{Prob}(M) = \text{Prob}(M) \]

ElseIf \(\text{TotLoad} <= \text{CapTable}(i) \) Then

\[\text{Prob}(M) = \text{Prob}(M) + \text{ProbTable}(i) \]

End If
Next \(i \)

'Display the index

\[\text{ProbReadout.Text} = \text{Format}(\text{Prob}(M)) \]

End Sub

Sub Command4_Click()

'Display scatter graphs of all configurations input.

\[\text{CapGraph.CapGraph.NumPoints} = M \]
\[\text{CapGraph.CapGraph.AutoInc} = 1 \]

For \(i = 1 \) To \(M \)

\[\text{CapGraph.CapGraph.XPosData} = \text{TotCap}(i) \]
Next \(i \)

For \(i = 1 \) To \(M \)

\[\text{CapGraph.CapGraph.GraphData} = \text{Prob}(i) \]
Next \(i \)

\[\text{CapGraph.Show} \]
\[\text{NumGenGraph.NumGenGraph.NumPoints} = M \]
\[\text{NumGenGraph.NumGenGraph.AutoInc} = 1 \]

For \(i = 1 \) To \(M \)

\[\text{NumGenGraph.NumGenGraph.XPosData} = \text{NumGen}(i) \]
Next \(i \)
For i = 1 To M
 NumGenGraph.NumGenGraph.GraphData = Prob(i)
Next i
NumGenGraph.Show
TotCostGraph.TotCostGraph.NumPoints = M
TotCostGraph.TotCostGraph.AutoInc = 1
For i = 1 To M
 TotCostGraph.TotCostGraph.XPosData = TotCost(i)
Next i
For i = 1 To M
 TotCostGraph.TotCostGraph.GraphData = Prob(i)
Next i
TotCostGraph.Show
TotWeightGraph.TotWeightGraph.NumPoints = M
TotWeightGraph.TotWeightGraph.AutoInc = 1
For i = 1 To M
 TotWeightGraph.TotWeightGraph.XPosData = TotWt(i)
Next i
For i = 1 To M
 TotWeightGraph.TotWeightGraph.GraphData = Prob(i)
Next i
TotWeightGraph.Show
Unload Genfrm
End Sub

Sub Command5_Click()
 'Increment M and reset N to allow another configuration to be input.
 M = M + 1
 N = 1
 NText.Text = Format$(N)
End Sub

Sub Exit_Click()
 'Exit the program
 End
End Sub

Sub Text2_Change()
 NText.Text = Format$(N)
End Sub

Sub Text3_Change()
 NText.Text = Format$(N)
End Sub

Sub Text4_Change()
 NText.Text = Format$(N)
End Sub

Sub Text5_Change()
 NText.Text = Format$(N)
End Sub
Begin Form CapGraph
 AutoRedraw = -1 'True
 BorderStyle = 1 'Fixed Single
 Caption = "Capacity"
 Height = 5565
 Icon = CAPGRAPH.FRX.0000
 Left = 60
 LinkTopic = "Form1"
 MaxButton = 0 'False
 ScaleHeight = 4875
 ScaleWidth = 7365
 Top = 555
 Width = 7485

Begin GRAPH CapGraph
 BottomTitle = "Total Installed Capacity"
 ColorData = CAPGRAPH.FRX.0302
 DrawMode = 3 'Blit
 ExtraData = CAPGRAPH.FRX.0304
 FontFamily = CAPGRAPH.FRX.0306
 FontSize = CAPGRAPH.FRX.030A
 FontStyle = CAPGRAPH.FRX.0314
 GraphCaption = "Index vs Total Installed Capacity"
 GraphData = CAPGRAPH.FRX.0318
 GraphType = 9 'Scatter
 Height = 4695
 LabelText = CAPGRAPH.FRX.032C
 Left = 120
 LeftTitle = "Index"
 LegendText = CAPGRAPH.FRX.032E
 PatternData = CAPGRAPH.FRX.0330
 RandomData = 0 'Off
 SymbolData = CAPGRAPH.FRX.0332
TabIndex = 0
 Top = 120
 Width = 7095
 XPosData = CAPGRAPH.FRX.0336
 YAxisMax = 1
 YAxisMin = 0.5
 YAxisStyle = 2 'User-defined
 YAxisTicks = 5
 End

Begin Menu File
 Caption = "&File"

Begin Menu Print
 Caption = "&Print"

End

Begin Menu Exit
 Caption = "Exit"

End

Begin Menu Help
 Caption = "&Help"

Begin Menu About
 Caption = "&About"

End
This form displays a scatter graph of the chosen index as a function of the total installed capacity

Sub About_Click()
 'Display the information form
 frmAbout.Show
End Sub

Sub Exit_Click()
 'Exit the program
 End
End Sub

Sub Print_Click()
 'Send this graph to the printer
 PrintForm
End Sub
Begin Form NumGenGraph
AutoRedraw = -1 'True
BorderStyle = 1 'Fixed Single
Caption = "Number of Generators"
Height = 5565
Icon = NUMGENGR.FRX:0000
Left = 150
LinkTopic = "Form1"
MaxButton = 0 'False
ScaleHeight = 4875
ScaleWidth = 7365
Top = 915
Width = 7485
Begin GRAPH NumGenGraph
BottomTitle = "Total Number of Generators"
ColorData = NUMGENGR.FRX:0302
DrawMode = 3 'Blit
ExtraData = NUMGENGR.FRX:0304
FontFamily = NUMGENGR.FRX:0306
FontSize = NUMGENGR.FRX:030A
FontStyle = NUMGENGR.FRX:0314
GraphCaption = "Index vs Total Number of Generators"
GraphData = NUMGENGR.FRX:0318
GraphType = 9 'Scatter
Height = 4695
LabelText = NUMGENGR.FRX:031C
Left = 120
LeftTitle = "Index"
LegendText = NUMGENGR.FRX:031E
PatternData = NUMGENGR.FRX:0320
RandomData = 0 'Off
SymbolData = NUMGENGR.FRX:0322
TabIndex = 0
Top = 120
Width = 7095
XPosData = NUMGENGR.FRX:0324
YAxisMax = 1
YAxisMin = 0.5
YAxisStyle = 2 'User-defined
YAxisTicks = 5
End
Begin Menu File
Caption = "&File"
Begin Menu Print
Caption = "&Print"
End
Begin Menu Exit
Caption = "E&xit"
End
End
Begin Menu Help
Caption = "&Help"
Begin Menu About
Caption = "&About"

94
This form displays a scatter graph of the selected reliability index vs the total number of generators.

Sub About_Click ()
 'Display the Information form.
 frmAbout.Show
End Sub

Sub Exit_Click ()
 'Exit the program.
 End
End Sub

Sub Print_Click ()
 'Send this graph to the printer.
 PRINTFORM
End Sub
Begin Form TotCostGraph
AutoRedraw = -1 'True
BorderStyle = 1 'Fixed Single
Caption = "Cost"
Height = 5565
Icon = TOTCOSTG.FRX:0000
Left = 240
LinkTopic = "Form1"
MaxButton = 0 'False
ScaleHeight = 4875
ScaleWidth = 7365
Top = 1260
Width = 7485

Begin GRAPH TotCostGraph
BottomTitle = "Total Cost"
ColorData = TOTCOSTG.FRX:0302
DrawMode = 3 'Blit
ExtraData = TOTCOSTG.FRX:0304
FontFamily = TOTCOSTG.FRX:0306
FontSize = TOTCOSTG.FRX:030A
FontStyle = TOTCOSTG.FRX:0314
GraphCaption = "Index vs Total Cost"
GraphData = TOTCOSTG.FRX:0318
GraphType = 9 'Scatter
Height = 4695
LabelText = TOTCOSTG.FRX:031C
Left = 120
LeftTitle = "Index"
LegendText = TOTCOSTG.FRX:031E
PatternData = TOTCOSTG.FRX:0320
RandomData = 0 'Off
SymbolData = TOTCOSTG.FRX:0322
TabIndex = 0
Top = 120
Width = 7095
XPosData = TOTCOSTG.FRX:0324
YAxisMax = 1
YAxisMin = 0.5
YAxisStyle = 2 'User-defined
YAxisTicks = 5

End

Begin Menu File
Caption = "&File"
Begin Menu Print
Caption = "&Print"
End
Begin Menu Exit
Caption = "E&xit"
End

Begin Menu Help
Caption = "&Help"
Begin Menu About
Caption = "&About"
This form displays a scatter graph of the selected reliability index vs the total cost of the generators.

Sub About_Click()
 'Display the Information form.
 frmAbout.Show
End Sub

Sub Exit_Click()
 'Exit the program.
 End
End Sub

Sub Print_Click()
 'Send this graph to the printer.
 PrintForm
End Sub
Begin Form TotWeightGraph
 AutoRedraw = -1 'True
 BorderStyle = 1 'Fixed Single
 Caption = "Weight"
 Height = 5565
 Icon = TOTWEIGH.FRX:0000
 Left = 315
 LinkTopic = "Form2"
 MaxButton = 0 'False
 ScaleHeight = 4875
 ScaleWidth = 7365
 Top = 1620
 Width = 7485
End

Begin GRAPH TotWeightGraph
 BottomTitle = "Total Weight"
 ColorData = TOTWEIGH.FRX:0302
 DrawMode = 3 'Blit
 ExtraData = TOTWEIGH.FRX:0304
 FontFamily = TOTWEIGH.FRX:0306
 FontSize = TOTWEIGH.FRX:030A
 FontStyle = TOTWEIGH.FRX:0314
 GraphCaption = "Index vs Total Weight"
 GraphData = TOTWEIGH.FRX:0318
 GraphType = 9 'Scatter
 Height = 4695
 LabelText = TOTWEIGH.FRX:031C
 Left = 120
 LeftTitle = "Index"
 LegendText = TOTWEIGH.FRX:031E
 PatternData = TOTWEIGH.FRX:0320
 RandomData = 0 'Off
 SymbolData = TOTWEIGH.FRX:0322
 TabIndex = 0
 Top = 120
 Width = 7095
 XPosData = TOTWEIGH.FRX:0324
 YAxisMax = 1
 YAxisMin = 0.5
 YAxisStyle = 2 'User-defined
 YAxisTicks = 5
End

Begin Menu File
 Caption = "&File"
End

Begin Menu Print
 Caption = "&Print"
End

Begin Menu Exit
 Caption = "&Exit"
End

Begin Menu Help
 Caption = "&Help"
End

Begin Menu About
 Caption = "&About"
End
This form displays a scatter graph of the selected reliability index vs the total weight of the generators.

Sub About_Click()
 'Display the Information form.
 frmAbout.Show
End Sub

Sub Exit_Click()
 'Exit the program.
 Exit
End Sub

Sub Print_Click()
 'Send this graph to the printer.
 PrintForm
End Sub
Begin Form frmAbout
 BorderStyle = 3 'Fixed Double
 Caption = "About Smokey"
 ControlBox = 0 'False
 Height = 2520
 Icon = ABOUT.FRX:0000
 Left = 915
 LinkTopic = "Form1"
 MaxButton = 0 'False
 MinButton = 0 'False
 ScaleHeight = 2115
 ScaleWidth = 5130
 Top = 1080
 Width = 5250
End

Begin CommandButton Command1
 Cancel = -1 'True
 Caption = "OK"
 Default = -1 'True
 Height = 330
 Left = 4080
 TabIndex = 0
 Top = 225
 Width = 930
End

Begin Label lblCoProcessorInfo
 Height = 195
 Left = 3165
 TabIndex = 6
 Top = 1815
 Width = 1695
End

Begin Label lblModelInfo
 Height = 195
 Left = 885
 TabIndex = 5
 Top = 1350
 Width = 2280
End

Begin Label lblMemoryInfo
 Height = 195
 Left = 3165
 TabIndex = 4
 Top = 1605
 Width = 1725
End

Begin Line Line1
 BorderWidth = 2
 X1 = 900
 X2 = 4725
 Y1 = 1230
 Y2 = 1230
End

Begin Label Label3
 AutoSize = -1 'True
This form displays information about the system and the version of Smokey that is running.

Sub Command1_Click()
 Unload Me
End Sub

Sub Form_Load()
 Dim WinFlags As Long

 ' Center form
 Left = Screen.Width / 2 - Width / 2
 Top = Screen.Height / 2 - Height / 2

 ' Retrieve current Windows system and memory configuration
 WinFlags = GetWinFlags()

 ' Display mode information
 If WinFlags And WF_ENHANCED Then
 lblModelInfo = "386 Enhanced Mode"
 Else
 lblModelInfo = "Standard Mode"
 End If

End Sub
End If

' Display math co-processor information
If WinFlags And WF_80x87 Then
 lblCoProcessorInfo = "Present"
Else
 lblCoProcessorInfo = "Not Present"
End If

' Scan global heap to get memory information
temp = GetFreeSpace(0)
If Sgn(temp) = -1 Then
 FreeSpace = CLng(temp + 1&) Xor &HFFFFFFFF
Else
 FreeSpace = temp
End If

' Divide by 1024 to display info in KB
FreeSpace = FreeSpace / 1024
lblMemoryInfo = Format(FreeSpace, ",,") + " KB Free"

End Sub
Begin Form Inerr
 BackColor = &H0000FFFF&
 BorderStyle = 3 'Fixed Double
 Caption = "Error"
 ControlBox = 0 'False
 Height = 2895
 Left = 1035
 LinkMode = 1 'Source
 LinkTopic = "Form2"
 MaxButton = 0 'False
 MinButton = 0 'False
 ScaleHeight = 2490
 ScaleWidth = 4170
 Top = 1140
 Width = 4290
 Begin CommandButton Command1
 BackColor = &H00C0C0C0&
 Caption = "Try Again"
 Default = -1 'True
 Height = 615
 Left = 360
 TabIndex = 1
 Top = 1440
 Width = 3495
 End
 Begin Label Label1
 BackColor = &H0000FFFF&
 Caption = "Improper Input Value!"
 Height = 255
 Left = 1080
 TabIndex = 0
 Top = 720
 Width = 1935
 End
End

'This form is displayed whenever an improper value (eg reliability > 1) is input.

Sub Command1_Click ()
 'Return to the form where the improper value was input.
 Unload Inerr
End Sub

103
Begin Form Gener
BackColor = &H0000FFFF&
BorderStyle = 1 'Fixed Single
Caption = "Generator Error"
ControlBox = 0 'False
Height = 3105
Left = 1035
LinkMode = 1 'Source
LinkTopic = "Form2"
MaxButton = 0 'False
MinButton = 0 'False
ScaleHeight = 2700
ScaleWidth = 3555
Top = 1140
Width = 3675

Begin CommandButton Command1
Caption = "OK"
Default = -1 'True
Height = 615
Left = 840
TabIndex = 1
Top = 1680
Width = 1935
End

Begin Label Label1
BackColor = &H0000FFFF&
Caption = "You've entered the Maximum Number of Generators Allowable. You must"
"Finish" or "Quit" here."
Height = 855
Left = 360
TabIndex = 0
Top = 240
Width = 2895
End

End

This form is displayed whenever the total number of generators allowable per configuration (12) is exceeded.

Sub Command1_Click ()
' Return to the generator input form
Unload Gener
End Sub
Begin Form Error2
 BackColor = &H00008000&
 BorderStyle = 3 'Fixed Double
 Caption = "Error"
 ControlBox = 0 'False
 Height = 2850
 Left = 1035
 LinkMode = 1 'Source
 LinkTopic = "Form3"
 MaxButton = 0 'False
 MinButton = 0 'False
 ScaleHeight = 2445
 ScaleWidth = 3765
 Top = 1140
 Width = 3885
Begin CommandButton Command1
 Caption = "OK"
 Default = -1 'True
 Height = 735
 Left = 840
 Tablndex = 1
 Top = 1320
 Width = 2055
End
Begin Label Label1
 BackColor = &H00008000&
 Caption = "Load Exceeds Total System Capacity. Add Another Generator or Quit."
 Height = 735
 Left = 240
 Tablndex = 0
 Top = 240
 Width = 3255
End
End
'This form is displayed whenever the total load exceeds the total installed capacity

Sub Command1_Click ()
 'Return to the Generator input form.
 Unload Error2
End Sub
Appendix B. TIGER Output Files

Case 1: 1 of 2 Identical Gas Turbine Generators Required On Line

*** TIGER SIMULATION FOR RELIABILITY, MAINTAINABILITY, AND AVAILABILITY ***

SIMPLIFIED ELECTRICAL GENERATION SYSTEM (2 GTG'S)

++++++ TIGER 8.21 ++++++++ NAVSEA 05MR WASHINGTON, DC 20362-5101 ++++
+++++++ (202) 692-2150 ++++++++ INTIGER

RANDOM SEED IS .0106203800
250 0 .00 1.28 1357 1

TIMELINE

<table>
<thead>
<tr>
<th>SEQUENCE</th>
<th>TYPE</th>
<th>DURATION</th>
<th>CUMULATIVE</th>
<th>CUMULATIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>720.00</td>
<td>720.00</td>
<td>30.00</td>
</tr>
</tbody>
</table>

TIMELINE SUMMARY BY PHASE

<table>
<thead>
<tr>
<th>PHASE TYPE</th>
<th>HOURS</th>
<th>DAYS</th>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>720.00</td>
<td>30.00</td>
<td>100.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>720.00</td>
<td>30.00</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

REPORT SELECTIONS

<table>
<thead>
<tr>
<th>OPTION</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

SIMULATION DIMENSIONAL LIMITS (STANDARD TIGER OR TIGER READER)

MAXCTL MAXEGR MAXEXP MAXGRP MAXID MAXLOC MAXLNK MAXLNX MAXMBR
1000 20 50 1000 19 3 3000 1000 5000
MAXNEQ MAXPH MAXQUE MAXRUL MAXRUN MAXSEQ MAXSHP MAXSTK MAXSUB
500 6 50 1000 9999 100 21 100 31
MAXTYP LUIN LUOUT
200 5 6

PHASE REPAIR

PHASE: 1
0
REPAIR ALLOWED: YES
EQPT TURNED ON: YES

106
MULTIPLIERS SHOP INVENTORY MGMT SPECIAL
MTBF MTTR CAPACITY DELAY TRIGGER SHOPS
1.00 1.00 500 .00 .00 0

INTYPES PAGE

TYPE NOMENCLATURE MTBF MTTR DC ADT1 ADT2 ADT3 SHOP PRI SWB
1 GAS GENERATOR 9300.0 9999.00 1.000 .0 .0 .0 GENL 0
2 POWER TURBINE 50000.0 9999.00 1.000 .0 .0 .0 GENL 0
3 SHIP REP COMP 3000.0 13.00 1.000 .0 .0 .0 GENL 0
4 SS GENERATOR 25000.0 6.00 1.000 .0 .0 .0 GENL 0
5 SW CIRC PUMP 3000.0 8.00 1.000 .0 .0 .0 GENL 0
6 CONTROL PANEL 5000.0 1.90 1.000 .0 .0 .0 GENL 0
7 DAU 25000.0 1.00 1.000 .0 .0 .0 GENL 0

INEQUIP PAGE

TYPE EQUIPMENT ASSIGNED
1 1 2
2 4 5
3 7 8
4 10 11
5 13 14
6 16 17
7 19 20

INSPARES PAGE

SPARES TYPE ORG INTER DEPOT FACTOR
ALL EQUIPMENT TYPES HAVE UNLIMITED SPARES

INCONFIG PAGE

MISSION WILL BE RUN WITH 1 PHASE TYPES IN VARIABLE SEQUENCE.

ELEC 1 1 505
GT GEN 503 .00
7 506 1 4 7 10 13 16 19
7 507 2 5 8 11 14 17 20
2 505 506 507
STRING RULE 1 506
STRING RULE 4 506
STRING RULE 7 506
STRING RULE 10 506
STRING RULE 13 506
STRING RULE 16 506
STRING RULE 19 506
STRING RULE 2 507
STRING RULE 5 507
STRING RULE 8 507
STRING RULE 11 507
STRING RULE 14 507
STRING RULE 17 507
STRING RULE 20 507
STRING RULE 506 507

107
Input Data High Values

<table>
<thead>
<tr>
<th>Duration</th>
<th>Types</th>
<th>Groups</th>
<th>Equip</th>
<th>PH-SEQ</th>
<th>PH-Typ</th>
<th>Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>720.00</td>
<td>7</td>
<td>507</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>250</td>
</tr>
</tbody>
</table>

Reliability for Phase 1
- Reliability: 0.236
- Average Reliability: 0.907
- Time (End of Phase): 720.000

Instant Availability
- Instant Availability at Beginning of Phase: 1.000
- Instant Availability at End of Phase: 0.828

Final Summary Stats

System Figures of Merit After 250 Mission Trials

<table>
<thead>
<tr>
<th>Metric</th>
<th>Mean</th>
<th>Standard Deviation of the Sample Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td>0.236</td>
<td>0.027</td>
</tr>
<tr>
<td>Reliability Lower Precision Limit</td>
<td>0.202</td>
<td></td>
</tr>
<tr>
<td>Instantaneous Availability</td>
<td>0.828</td>
<td>0.024</td>
</tr>
<tr>
<td>Average Availability</td>
<td>0.907</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Estimates of Long-Term Values
- Mean Time Between Failures: 497.9
- Mean Time to Repair: 55.2
- Availibility: 0.900

Mission Performance (Failure & Repair Information Calculated from Tiger Simulation Data):
- Mean Up Time: 538.9
- Mean Down Time: 55.2
- Mean Repair Time: 8.2
- Mean Active Repair Time: 8.2
- Mean Time to First Failure: 520.6

Total No. of System Failures = 303
Average Instant Availability

<table>
<thead>
<tr>
<th>SUBSYSTEM</th>
<th>SEQ</th>
<th>TYPE</th>
<th>TIME IN PHASE</th>
<th>THRU IN PHASE</th>
<th>THRU BEGIN</th>
<th>THRU END</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT GEN</td>
<td>1</td>
<td>1</td>
<td>720.0</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Table Failures Num

EQUIP FAILURE SUMMARY BY EQUIPMENT NUMBER

<table>
<thead>
<tr>
<th>EQUIP. NO.</th>
<th>TYPE NO.</th>
<th>TOTAL EQUIP.</th>
<th>AVG. NO. FAILURES</th>
<th>FGC/EIC FAILURES</th>
<th>PER MISSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>.084</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>16</td>
<td>.064</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>.004</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>.012</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>56</td>
<td>1</td>
<td>.004</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>56</td>
<td>1</td>
<td>.012</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>.024</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>.024</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>40</td>
<td>1</td>
<td>.004</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>52</td>
<td>1</td>
<td>.012</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>29</td>
<td>1</td>
<td>.012</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>17</td>
<td>1</td>
<td>.068</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>.012</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>.012</td>
<td></td>
</tr>
</tbody>
</table>

Table Failures Type

EQUIP FAILURE SUMMARY BY EQUIPMENT TYPE NUMBER

<table>
<thead>
<tr>
<th>TYPE NO.</th>
<th>TOTAL EQUIP.</th>
<th>AVG. NO. FAILURES</th>
<th>MAINTENANCE HOURS</th>
<th>STD. DEV. MAINT. HRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37</td>
<td>.148</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>.016</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>3</td>
<td>112</td>
<td>.448</td>
<td>1420.410</td>
<td>.653</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>.048</td>
<td>43.682</td>
<td>.912</td>
</tr>
<tr>
<td>5</td>
<td>92</td>
<td>.368</td>
<td>716.970</td>
<td>.842</td>
</tr>
<tr>
<td>6</td>
<td>46</td>
<td>.184</td>
<td>82.216</td>
<td>.223</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>.036</td>
<td>11.858</td>
<td>.521</td>
</tr>
</tbody>
</table>

312 1.248

312 1.248 27.220
TABLE SPARES LEVEL

UNLIMITED SPARES

SUMMARY OF SPARES USED

<table>
<thead>
<tr>
<th>ORGANIZATION SPARES</th>
<th>INTERMEDIATE SPARES</th>
<th>DEPOT SPARES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPARE TOTAL USE PER</td>
<td>TOTAL USE PER</td>
<td>TOTAL USE PER</td>
</tr>
<tr>
<td>TYPE STOCK USED</td>
<td>MISSION STOCK USED</td>
<td>MISSION STOCK</td>
</tr>
<tr>
<td></td>
<td>MISSION</td>
<td>MISSION</td>
</tr>
<tr>
<td>1 90000 0 .000</td>
<td>90000 0 .000</td>
<td>90000 0 .000</td>
</tr>
<tr>
<td>2 90000 0 .000</td>
<td>90000 0 .000</td>
<td>90000 0 .000</td>
</tr>
<tr>
<td>3 90000 112 .448</td>
<td>90000 0 .000</td>
<td>90000 0 .000</td>
</tr>
<tr>
<td>4 90000 12 .048</td>
<td>90000 0 .000</td>
<td>90000 0 .000</td>
</tr>
<tr>
<td>5 90000 92 .368</td>
<td>90000 0 .000</td>
<td>90000 0 .000</td>
</tr>
<tr>
<td>6 90000 46 .184</td>
<td>90000 0 .000</td>
<td>90000 0 .000</td>
</tr>
<tr>
<td>7 90000 9 .036</td>
<td>90000 0 .000</td>
<td>90000 0 .000</td>
</tr>
</tbody>
</table>

TABLE UNAVA NUM

SIMPLIFIED ELECTRICAL GENERATION SYSTEM (2 GTG’S)

CRITICAL EQUIPMENT BY EQUIPMENT NUMBER FOR FULL SYSTEM

UNAVAILABILITY AND PERCENT OF UNAVAILABILITY

<table>
<thead>
<tr>
<th>NAME</th>
<th>EQUIP NUMBER</th>
<th>HRS</th>
<th>UNAVA</th>
<th>PERCENT</th>
<th>TYPE</th>
<th>NO.</th>
<th>FGC/EIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAS GENERATOR</td>
<td>8335.8950</td>
<td>.0463</td>
<td>49.84</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GAS GENERATOR</td>
<td>4535.5960</td>
<td>.0252</td>
<td>27.12</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>POWER TURBINE</td>
<td>1531.1360</td>
<td>.0085</td>
<td>9.16</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>SHIP REP COMP</td>
<td>698.2512</td>
<td>.0039</td>
<td>4.18</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>SHIP REP COMP</td>
<td>681.1215</td>
<td>.0038</td>
<td>4.07</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>SW CIRC PUMP</td>
<td>371.7098</td>
<td>.0021</td>
<td>2.22</td>
<td>5</td>
<td>14</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>SW CIRC PUMP</td>
<td>325.5814</td>
<td>.0018</td>
<td>1.95</td>
<td>5</td>
<td>13</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>POWER TURBINE</td>
<td>107.4628</td>
<td>.0006</td>
<td>.64</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CONTROL PANEL</td>
<td>43.6049</td>
<td>.0002</td>
<td>.26</td>
<td>6</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>CONTROL PANEL</td>
<td>38.0814</td>
<td>.0002</td>
<td>.23</td>
<td>6</td>
<td>17</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>SS GENERATOR</td>
<td>25.6171</td>
<td>.0001</td>
<td>.15</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>SS GENERATOR</td>
<td>18.0653</td>
<td>.0001</td>
<td>.11</td>
<td>4</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>DAU</td>
<td>10.0495</td>
<td>.0001</td>
<td>.06</td>
<td>7</td>
<td>19</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>DAU</td>
<td>1.8083</td>
<td>.0000</td>
<td>.01</td>
<td>7</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
Critical Equipment by Equipment Type for Full System

Unavailability and Percent of Unavailability

<table>
<thead>
<tr>
<th>EQUIP NAME</th>
<th>NUMBER HRS</th>
<th>UNAVA</th>
<th>PERCENT</th>
<th>TYPE</th>
<th>FGC/EIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAS GENERATOR</td>
<td>12871.4900</td>
<td>.0715</td>
<td>76.96</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>POWER TURBINE</td>
<td>1638.5980</td>
<td>.0091</td>
<td>9.80</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SHIP REP COMP</td>
<td>1379.3730</td>
<td>.0077</td>
<td>8.25</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SW CIRC PUMP</td>
<td>697.2911</td>
<td>.0039</td>
<td>4.17</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CONTROL PANEL</td>
<td>81.6863</td>
<td>.0005</td>
<td>.49</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>SS GENERATOR</td>
<td>43.6824</td>
<td>.0002</td>
<td>.26</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DAU</td>
<td>11.8578</td>
<td>.0001</td>
<td>.07</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Proportion of Equipment Downtime Responsible for Full System Downtime

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>PERCENT</th>
<th>EQUIP TYPE</th>
<th>PERCENT</th>
<th>FGC/EIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAU</td>
<td>7</td>
<td>.07</td>
<td>12.</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>SS GENERATOR</td>
<td>4</td>
<td>.26</td>
<td>44.</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>CONTROL PANEL</td>
<td>6</td>
<td>.49</td>
<td>82.</td>
<td>99.36</td>
<td></td>
</tr>
<tr>
<td>SW CIRC PUMP</td>
<td>5</td>
<td>4.17</td>
<td>717.</td>
<td>97.26</td>
<td></td>
</tr>
<tr>
<td>SHIP REP COMP</td>
<td>3</td>
<td>8.25</td>
<td>1420.</td>
<td>97.11</td>
<td></td>
</tr>
<tr>
<td>POWER TURBINE</td>
<td>2</td>
<td>9.80</td>
<td>0.</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>GAS GENERATOR</td>
<td>1</td>
<td>76.96</td>
<td>0.</td>
<td>.00</td>
<td></td>
</tr>
</tbody>
</table>
SIMPLIFIED ELECTRICAL GENERATION SYSTEM (2 GTG'S)

CRITICAL EQUIPMENT BY EQUIPMENT NUMBER FOR FULL SYSTEM

UNRELIABILITY AND PERCENT OF MISSION FAILURES

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>NO. FAILURES</th>
<th>UNREL</th>
<th>PERCENT</th>
<th>EQUIP TYPE</th>
<th>EQUIP FGC/EIC NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHIP REP COMP</td>
<td>37.0</td>
<td>.1480</td>
<td>19.37</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>SW CIRC PUMP</td>
<td>34.0</td>
<td>.1360</td>
<td>17.80</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>SHIP REP COMP</td>
<td>30.0</td>
<td>.1200</td>
<td>15.71</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>SW CIRC PUMP</td>
<td>26.0</td>
<td>.1040</td>
<td>13.61</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>GAS GENERATOR</td>
<td>14.0</td>
<td>.0560</td>
<td>7.33</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CONTROL PANEL</td>
<td>14.0</td>
<td>.0560</td>
<td>7.33</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>GAS GENERATOR</td>
<td>10.0</td>
<td>.0400</td>
<td>5.24</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CONTROL PANEL</td>
<td>10.0</td>
<td>.0400</td>
<td>5.24</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>SS GENERATOR</td>
<td>4.0</td>
<td>.0160</td>
<td>2.09</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>DAU</td>
<td>4.0</td>
<td>.0160</td>
<td>2.09</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>DAU</td>
<td>4.0</td>
<td>.0160</td>
<td>2.09</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>SS GENERATOR</td>
<td>3.0</td>
<td>.0120</td>
<td>1.57</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>POWER TURBINE</td>
<td>1.0</td>
<td>.0040</td>
<td>.52</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

TOTAL NO. MISSION TRIALS = 250
TOTAL NO. MISSION FAILURES FOR FULL SYSTEM = 191

SIMPLIFIED ELECTRICAL GENERATION SYSTEM (2 GTG'S)

CRITICAL EQUIPMENT BY EQUIPMENT TYPE FOR FULL SYSTEM

UNRELIABILITY AND PERCENT OF MISSION FAILURES

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>NO. FAILURES</th>
<th>UNREL</th>
<th>PERCENT</th>
<th>EQUIP TYPE</th>
<th>EQUIP FGC/EIC NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHIP REP COMP</td>
<td>67.0</td>
<td>.2680</td>
<td>35.08</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SW CIRC PUMP</td>
<td>60.0</td>
<td>.2400</td>
<td>31.41</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>GAS GENERATOR</td>
<td>24.0</td>
<td>.0960</td>
<td>12.57</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CONTROL PANEL</td>
<td>24.0</td>
<td>.0960</td>
<td>12.57</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>DAU</td>
<td>8.0</td>
<td>.0320</td>
<td>4.19</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>SS GENERATOR</td>
<td>7.0</td>
<td>.0280</td>
<td>3.66</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>POWER TURBINE</td>
<td>1.0</td>
<td>.0040</td>
<td>.52</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL NO. MISSION TRIALS = 250
TOTAL NO. MISSION FAILURES FOR FULL SYSTEM = 191
RESTRICTED ERLANG DISTRIBUTION MODEL

MTBMF = 520.56
2ND MOMENT ABOUT ORIGIN = 351617.80

SHAPE = 4 M1 = 31.84 M2 = 162.91

T R-TIGER R-THEO DIFF DIFSQ

720.00 .236 .208 .028 .001

AVG ABS DIFF = .028 MAX ABS DIFF = .028 SQUARESSUM = .001

DOWNTIME FREQUENCY DISTRIBUTION FOR FULL SYSTEM

<table>
<thead>
<tr>
<th>DT INTERVAL</th>
<th>FREQ</th>
<th>CELL PROB</th>
<th>CUM PROB</th>
</tr>
</thead>
<tbody>
<tr>
<td>.50</td>
<td>21</td>
<td>.0808</td>
<td>.0808</td>
</tr>
<tr>
<td>1.00</td>
<td>25</td>
<td>.0962</td>
<td>.1769</td>
</tr>
<tr>
<td>2.00</td>
<td>29</td>
<td>.1115</td>
<td>.2885</td>
</tr>
<tr>
<td>4.00</td>
<td>46</td>
<td>.1769</td>
<td>.4654</td>
</tr>
<tr>
<td>8.00</td>
<td>59</td>
<td>.2269</td>
<td>.6923</td>
</tr>
<tr>
<td>16.00</td>
<td>38</td>
<td>.1462</td>
<td>.8385</td>
</tr>
<tr>
<td>32.00</td>
<td>34</td>
<td>.1308</td>
<td>.9692</td>
</tr>
<tr>
<td>64.00</td>
<td>6</td>
<td>.0231</td>
<td>.9923</td>
</tr>
<tr>
<td>128.00</td>
<td>2</td>
<td>.0077</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

THERE WAS NO DOWNTIME RECORDED FOR (SUB)SYSTEM GT GEN
Case 2: 2 of 3 Identical Gas Turbine Generators Required On Line

**
**
**** TIGER SIMULATION FOR RELIABILITY, MAINTAINABILITY, AND AVAILABILITY ****
**
**
SIMPLIFIED DDG-51 ELECTRICAL GENERATION SYSTEM

+++++TIGER 8.21 +++++
+++++ NAVSEA 05MR WASHINGTON, DC 20362-5101 ++++
+++++ (202) 692-2150 ++++

INTIGER

RANDOM SEED IS .0106203800
250 0 .00 1.28 1357 1

TIMELINE PAGE

<table>
<thead>
<tr>
<th>Timeline Phase Duration</th>
<th>Cumulative Hours</th>
<th>Cumulative Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>720.00</td>
<td>30.00</td>
</tr>
</tbody>
</table>

TIMELINE SUMMARY BY PHASE

<table>
<thead>
<tr>
<th>Phase Type</th>
<th>Hours</th>
<th>Days</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>720.00</td>
<td>30.00</td>
<td>100.00%</td>
</tr>
<tr>
<td>Total</td>
<td>720.00</td>
<td>30.00</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

REPORT SELECTIONS

<table>
<thead>
<tr>
<th>Option</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

SIMULATION DIMENSIONAL LIMITS (STANDARD TIGER OR TIGER READER)

<table>
<thead>
<tr>
<th>Maxctl</th>
<th>Maxegr</th>
<th>Maxexp</th>
<th>Maxgrp</th>
<th>Maxid</th>
<th>Maxloc</th>
<th>Maxlnk</th>
<th>Maxlnx</th>
<th>Maxmb</th>
<th>Maxne</th>
<th>Maxph</th>
<th>Maxque</th>
<th>Maxrul</th>
<th>Maxrun</th>
<th>Maxseq</th>
<th>Maxshp</th>
<th>Maxstk</th>
<th>Maxsub</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>20</td>
<td>50</td>
<td>1000</td>
<td>19</td>
<td>3</td>
<td>3000</td>
<td>1000</td>
<td>5000</td>
<td>500</td>
<td>6</td>
<td>50</td>
<td>1000</td>
<td>9999</td>
<td>100</td>
<td>21</td>
<td>100</td>
<td>31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maxtyp</th>
<th>Luin</th>
<th>Luout</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

PHASE REPAIR

<table>
<thead>
<tr>
<th>Phase</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

REPAIR ALLOWED: YES
EQPT TURNED ON: YES

MULTIPLIERS SHOP INVENTORY MGMT SPECIAL

<table>
<thead>
<tr>
<th>Mtbf</th>
<th>Mttr</th>
<th>Capacity</th>
<th>Delay</th>
<th>Trigger</th>
<th>Shops</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.00</td>
<td>500</td>
<td>.00</td>
<td>.00</td>
<td>0</td>
</tr>
</tbody>
</table>
INTYPES PAGE

TYPE NOMENCLATURE	MTBF	MTTR	DC	ADT1	ADT2	ADT3	SHOP	PRI	SWB
1 GAS GENERATOR | 9300.0 | 9999.00 | 1.000 | .0 | .0 | .0 | GENL | 0
2 POWER TURBINE | 50000.0 | 9999.00 | 1.000 | .0 | .0 | .0 | GENL | 0
3 SHIP REP COMP | 3000.0 | 13.00 | 1.000 | .0 | .0 | .0 | GENL | 0
4 SS GENERATOR | 25000.0 | 6.00 | 1.000 | .0 | .0 | .0 | GENL | 0
5 SW CIRC PUMP | 3000.0 | 8.00 | 1.000 | .0 | .0 | .0 | GENL | 0
6 CONTROL PANEL | 5000.0 | 1.90 | 1.000 | .0 | .0 | .0 | GENL | 0
7 DAU | 25000.0 | 1.00 | 1.000 | .0 | .0 | .0 | GENL | 0

INEQUIP PAGE

TYPE EQUIPMENT ASSIGNED
1 1 2 3
2 4 5 6
3 7 8 9
4 10 11 12
5 13 14 15
6 16 17 18
7 19 20 21

INSPARES PAGE

SPARES TYPE ORG INTER DEPOT FACTOR
ALL EQUIPMENT TYPES HAVE UNLIMITED SPARES

INCONFIG PAGE

MISSION WILL BE RUN WITH 1 PHASE TYPES IN VARIABLE SEQUENCE.

ELEC 1 1 505
GT GEN 503 .00
7 506 1 4 7 10 13 16 19
7 507 2 5 8 11 14 17 20
7 508 3 6 9 12 15 18 21
2 505 506 507 508
STRING RULE 1 506
STRING RULE 4 506
STRING RULE 7 506
STRING RULE 10 506
STRING RULE 13 506
STRING RULE 16 506
STRING RULE 19 506
STRING RULE 2 507
STRING RULE 5 507
STRING RULE 8 507
STRING RULE 11 507
STRING RULE 14 507
STRING RULE 17 507
STRING RULE 20 507
STRING RULE 3 508
STRING RULE 6 508
STRING RULE 9 508
STRING RULE 12 508
STRING RULE 15 508
STRING RULE 18 508

115
INPUT DATA HIGH VALUES

<table>
<thead>
<tr>
<th>DURATION</th>
<th>TYPES</th>
<th>GROUPS</th>
<th>EQUIPS</th>
<th>PH-SEQ</th>
<th>PH-TYP</th>
<th>TRIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>720.00</td>
<td>7</td>
<td>508</td>
<td>21</td>
<td>1</td>
<td>1</td>
<td>250</td>
</tr>
</tbody>
</table>

OUTTIGER PAGE

RELIABILITY FOR PHASE 1, 1 .864 RELIABILITY THRU PHASE 1 .864
AVERAGE AVAILABILITY AVG. AVAIL. THRU PHASE 1 .987
FOR PHASE 1, 1 .987 TIME (END OF PHASE) 720.000
INSTANT AVAILABILITY INSTANT AVAILABILITY
AT BEGINNING OF PHASE 1.000 AT END OF PHASE .968
FINAL SUMMARY STATS PAGE

SYSTEM FIGURES OF MERIT AFTER 250 MISSION TRIALS

<table>
<thead>
<tr>
<th>AT END OF MISSION:</th>
<th>MEAN</th>
<th>STANDARD DEVIATION OF THE SAMPLE MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELIABILITY</td>
<td>.864</td>
<td>.022</td>
</tr>
<tr>
<td>RELIABILITY LOWER PRECISION LIMIT (BASED ON STANDARD DEVIATION CRITERIA)</td>
<td>.836</td>
<td>.011</td>
</tr>
<tr>
<td>INSTANTANEOUS AVAILABILITY</td>
<td>.968</td>
<td>.011</td>
</tr>
<tr>
<td>AVERAGE AVAILABILITY</td>
<td>.987</td>
<td>.005</td>
</tr>
</tbody>
</table>

ESTIMATES OF LONG-TERM VALUES:
MEAN TIME BETWEEN FAILURES 3513.0
MEAN TIME TO REPAIR 50.6
AVAILABILITY .986

MISSION PERFORMANCE (FAILURE & REPAIR INFORMATION CALCULATED FROM TIGER SIMULATION DATA):
MEAN UP TIME 3779.2 3.890
MEAN DOWN TIME 50.6 3.890
MEAN REPAIR TIME 7.1 1.388
MEAN ACTIVE REPAIR TIME 7.1 1.388
MEAN TIME TO FIRST FAILURE 5013.4 743.141

TOTAL NO. OF SYSTEM FAILURES = 47

116
Subsystem Reliability Analysis

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Seq</th>
<th>Type</th>
<th>Time in Phase</th>
<th>Through In Phase</th>
<th>Average Availability</th>
<th>Instant Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT GEN</td>
<td>1</td>
<td>1</td>
<td>720.0</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Equipment Failure Summary by Equipment Number

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>20</td>
<td>.080</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>18</td>
<td>.072</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>17</td>
<td>.068</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>.012</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>5</td>
<td>.020</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>70</td>
<td>.280</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>50</td>
<td>.200</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>60</td>
<td>.240</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>4</td>
<td>.016</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>5</td>
<td>.020</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>7</td>
<td>.028</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>50</td>
<td>.200</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>52</td>
<td>.208</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>38</td>
<td>.152</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>26</td>
<td>.104</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>33</td>
<td>.132</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>32</td>
<td>.128</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>7</td>
<td>5</td>
<td>.020</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>7</td>
<td>2</td>
<td>.008</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>7</td>
<td>7</td>
<td>.028</td>
<td></td>
</tr>
</tbody>
</table>

Equipment Failure Summary by Equipment Type Number

<table>
<thead>
<tr>
<th>Type</th>
<th>Total Equip. Failures</th>
<th>Avg. No. Failures Per Mission</th>
<th>Maintenance Std. Dev.</th>
<th>FGC/EIC Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>55</td>
<td>.220</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>.032</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>3</td>
<td>180</td>
<td>.720</td>
<td>1950.704</td>
<td>1.099</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>.064</td>
<td>100.236</td>
<td>1.446</td>
</tr>
<tr>
<td>5</td>
<td>140</td>
<td>.560</td>
<td>1402.631</td>
<td>1.243</td>
</tr>
<tr>
<td>6</td>
<td>91</td>
<td>.364</td>
<td>193.537</td>
<td>.260</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>.056</td>
<td>10.736</td>
<td>.239</td>
</tr>
</tbody>
</table>

504 | 2.016 | 30.014

117
UNLIMITED SPARES
SUMMARY OF SPARES USED

<table>
<thead>
<tr>
<th>SPARE TYPE</th>
<th>ORGANIZATION SPARES</th>
<th>INTERMEDIATE SPARES</th>
<th>DEPOT SPARES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL STOCK</td>
<td>TOTAL USE PER MISSION</td>
<td>TOTAL USE PER MISSION</td>
<td>TOTAL USE PER MISSION</td>
</tr>
<tr>
<td>1</td>
<td>90000</td>
<td>0</td>
<td>90000</td>
</tr>
<tr>
<td>2</td>
<td>90000</td>
<td>0</td>
<td>90000</td>
</tr>
<tr>
<td>3</td>
<td>90000</td>
<td>180</td>
<td>.720</td>
</tr>
<tr>
<td>4</td>
<td>90000</td>
<td>16</td>
<td>.064</td>
</tr>
<tr>
<td>5</td>
<td>90000</td>
<td>140</td>
<td>.560</td>
</tr>
<tr>
<td>6</td>
<td>90000</td>
<td>91</td>
<td>.364</td>
</tr>
<tr>
<td>7</td>
<td>90000</td>
<td>14</td>
<td>.056</td>
</tr>
</tbody>
</table>

SIMPLIFIED DDG-51 ELECTRICAL GENERATION SYSTEM
CRITICAL EQUIPMENT BY EQUIPMENT NUMBER FOR FULL SYSTEM

<table>
<thead>
<tr>
<th>EQUIPMENT NAME</th>
<th>EQUIPMENT NUMBER</th>
<th>HOURS</th>
<th>UNAVAILABILITY</th>
<th>PERCENT</th>
<th>TYPE</th>
<th>NO.</th>
<th>FGC/EIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAS GENERATOR</td>
<td>881.3107</td>
<td>.0049</td>
<td>37.07</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAS GENERATOR</td>
<td>573.3938</td>
<td>.0032</td>
<td>24.12</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAS GENERATOR</td>
<td>438.8444</td>
<td>.0024</td>
<td>18.46</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWER TURBINE</td>
<td>310.6342</td>
<td>.0017</td>
<td>13.07</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW CIRC PUMP</td>
<td>69.1658</td>
<td>.0004</td>
<td>2.91</td>
<td>5</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHIP REP COMP</td>
<td>19.2311</td>
<td>.0001</td>
<td>.81</td>
<td>3</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHIP REP COMP</td>
<td>19.0246</td>
<td>.0001</td>
<td>.80</td>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW CIRC PUMP</td>
<td>18.9908</td>
<td>.0001</td>
<td>.80</td>
<td>5</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHIP REP COMP</td>
<td>14.2743</td>
<td>.0001</td>
<td>.60</td>
<td>3</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW CIRC PUMP</td>
<td>14.1480</td>
<td>.0001</td>
<td>.60</td>
<td>5</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWER TURBINE</td>
<td>10.8248</td>
<td>.0001</td>
<td>.46</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTROL PANEL</td>
<td>2.7453</td>
<td>.0000</td>
<td>.12</td>
<td>6</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS GENERATOR</td>
<td>1.7836</td>
<td>.0000</td>
<td>.08</td>
<td>4</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS GENERATOR</td>
<td>1.4147</td>
<td>.0000</td>
<td>.06</td>
<td>4</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTROL PANEL</td>
<td>.9914</td>
<td>.0000</td>
<td>.04</td>
<td>6</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAU</td>
<td>.5433</td>
<td>.0000</td>
<td>.02</td>
<td>7</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAU</td>
<td>.1189</td>
<td>.0000</td>
<td>.01</td>
<td>7</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTROL PANEL</td>
<td>.0317</td>
<td>.0000</td>
<td>.00</td>
<td>6</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

118
Table: Unavailability and Percent of Unavailability

<table>
<thead>
<tr>
<th>Name</th>
<th>Number</th>
<th>Hrs</th>
<th>Unava</th>
<th>Percent</th>
<th>Equip Type</th>
<th>FGC/EIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAS GENERATOR</td>
<td>1893.5490</td>
<td>.0105</td>
<td>79.65</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWER TURBINE</td>
<td>321.4591</td>
<td>.0018</td>
<td>13.52</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW CIRC PUMP</td>
<td>102.3046</td>
<td>.0006</td>
<td>4.30</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHIP REP COMP</td>
<td>52.5300</td>
<td>.0003</td>
<td>2.21</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTROL PANEL</td>
<td>3.7684</td>
<td>.0000</td>
<td>.16</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS GENERATOR</td>
<td>3.1983</td>
<td>.0000</td>
<td>.13</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAU</td>
<td>.6622</td>
<td>.0000</td>
<td>.03</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: Proportion of Equipment Downtime Responsible for Full System Downtime

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Percent Unava</th>
<th>Equip Type Downtime</th>
<th>Percent Respons.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW CIRC PUMP</td>
<td>5</td>
<td>4.30</td>
<td>1403</td>
<td>7.29</td>
</tr>
<tr>
<td>DAU</td>
<td>7</td>
<td>.03</td>
<td>11</td>
<td>6.17</td>
</tr>
<tr>
<td>SS GENERATOR</td>
<td>4</td>
<td>.13</td>
<td>100</td>
<td>3.19</td>
</tr>
<tr>
<td>SHIP REP COMP</td>
<td>3</td>
<td>2.21</td>
<td>1951</td>
<td>2.69</td>
</tr>
<tr>
<td>CONTROL PANEL</td>
<td>6</td>
<td>.16</td>
<td>194</td>
<td>1.95</td>
</tr>
<tr>
<td>GAS GENERATOR</td>
<td>1</td>
<td>.79.65</td>
<td>0</td>
<td>.00</td>
</tr>
<tr>
<td>POWER TURBINE</td>
<td>2</td>
<td>13.52</td>
<td>0</td>
<td>.00</td>
</tr>
</tbody>
</table>
Simplified DDG-51 Electrical Generation System

Critical Equipment by Equipment Number for Full System

Unreliability and Percent of Mission Failures

<table>
<thead>
<tr>
<th>Description</th>
<th>No. Failures</th>
<th>UNREL</th>
<th>Percent</th>
<th>Equip</th>
<th>Equip GC/EIC No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Generator</td>
<td>5.5</td>
<td>.0220</td>
<td>16.18</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Gas Generator</td>
<td>4.5</td>
<td>.0180</td>
<td>13.24</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gas Generator</td>
<td>4.5</td>
<td>.0180</td>
<td>13.24</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Ship Rep Comp</td>
<td>3.5</td>
<td>.0140</td>
<td>10.29</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Ship Rep Comp</td>
<td>3.0</td>
<td>.0120</td>
<td>8.82</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Sw CIRC PUMP</td>
<td>3.0</td>
<td>.0120</td>
<td>8.82</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>Power Turbine</td>
<td>2.5</td>
<td>.0100</td>
<td>7.35</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Ship Rep Comp</td>
<td>2.0</td>
<td>.0080</td>
<td>5.88</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Control Panel</td>
<td>1.5</td>
<td>.0060</td>
<td>4.41</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>Sw CIRC PUMP</td>
<td>1.0</td>
<td>.0040</td>
<td>2.94</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Control Panel</td>
<td>1.0</td>
<td>.0040</td>
<td>2.94</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>Sw CIRC PUMP</td>
<td>.5</td>
<td>.0020</td>
<td>1.47</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Control Panel</td>
<td>.5</td>
<td>.0020</td>
<td>1.47</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>SS GENERATOR</td>
<td>.5</td>
<td>.0020</td>
<td>1.47</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Power Turbine</td>
<td>.5</td>
<td>.0020</td>
<td>1.47</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Total no. mission trials = 250
Total no. mission failures for full system = 34

Simplified DDG-51 Electrical Generation System

Critical Equipment by Equipment Type for Full System

Unreliability and Percent of Mission Failures

<table>
<thead>
<tr>
<th>Description</th>
<th>No. Failures</th>
<th>UNREL</th>
<th>Percent</th>
<th>Equip Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Generator</td>
<td>14.5</td>
<td>.0580</td>
<td>42.65</td>
<td>1</td>
</tr>
<tr>
<td>Ship Rep Comp</td>
<td>8.5</td>
<td>.0340</td>
<td>25.00</td>
<td>3</td>
</tr>
<tr>
<td>Sw CIRC PUMP</td>
<td>4.5</td>
<td>.0180</td>
<td>13.24</td>
<td>5</td>
</tr>
<tr>
<td>Power Turbine</td>
<td>3.0</td>
<td>.0120</td>
<td>8.82</td>
<td>2</td>
</tr>
<tr>
<td>Control Panel</td>
<td>3.0</td>
<td>.0120</td>
<td>8.82</td>
<td>6</td>
</tr>
<tr>
<td>SS GENERATOR</td>
<td>.5</td>
<td>.0020</td>
<td>1.47</td>
<td>4</td>
</tr>
</tbody>
</table>

Total no. mission trials = 250
Total no. mission failures for full system = 34
TABLE REDM PAGE

RESTRICTED ERLANG DISTRIBUTION MODEL

\[
\text{MTBF} = 5013.36 \\
\text{2ND MOMENT ABOUT ORIGIN} = 43910580.00
\]

\[
\text{SHAPE} = 2 \\
\text{M1} = 744.60 \\
\text{M2} = 4268.76
\]

<table>
<thead>
<tr>
<th>T</th>
<th>R-TIGER</th>
<th>R-THEO</th>
<th>DIFF</th>
<th>DIFSQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>720.00</td>
<td>.864</td>
<td>.943</td>
<td>-.079</td>
<td>.006</td>
</tr>
</tbody>
</table>

AVG ABS DIFF= .079 MAX ABS DIFF=.079 SQUARESSUM=.006

TABLE SYS DIST PAGE

DOWNTIME FREQUENCY DISTRIBUTION FOR FULL SYSTEM

<table>
<thead>
<tr>
<th>DT INTERVAL</th>
<th>FREQ</th>
<th>CELL PROB</th>
<th>CUM PROB</th>
</tr>
</thead>
<tbody>
<tr>
<td>.50</td>
<td>4</td>
<td>.1026</td>
<td>.1026</td>
</tr>
<tr>
<td>1.00</td>
<td>5</td>
<td>.1282</td>
<td>.2308</td>
</tr>
<tr>
<td>2.00</td>
<td>6</td>
<td>.1538</td>
<td>.3846</td>
</tr>
<tr>
<td>4.00</td>
<td>5</td>
<td>.1282</td>
<td>.5128</td>
</tr>
<tr>
<td>8.00</td>
<td>7</td>
<td>.1795</td>
<td>.6923</td>
</tr>
<tr>
<td>16.00</td>
<td>5</td>
<td>.1282</td>
<td>.8205</td>
</tr>
<tr>
<td>32.00</td>
<td>6</td>
<td>.1538</td>
<td>.9744</td>
</tr>
<tr>
<td>64.00</td>
<td>1</td>
<td>.0256</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

THERE WAS NO DOWNTIME RECORDED FOR (SUB)SYSTEM GT GEN
Case 3: 2 of 4 Identical Gas Turbine Generators Required On Line

**** TIGER SIMULATION FOR RELIABILITY, MAINTAINABILITY, AND AVAILABILITY ****

SIMPLIFIED ELECTRICAL GENERATION SYSTEM (4 GTG'S)

****************************** TIGER 8.21 ******************************

+++++ NAVSEA 05MR WASHINGTON, DC 20362-5101 ++++

****************************** (202) 692-2150 ******************************

INTIGER

RANDOM SEED IS .0106203800

250 0 .00 1.28 1357 1

TIMELINE PAGE

TIMELINE PHASE DURATION CUMULATIVE CUMULATIVE
SEQUENCE TYPE HOURS HOURS DAYS
1 1 720.00 720.00 30.00

TIMELINE SUMMARY BY PHASE

PHASE TYPE HOURS DAYS PERCENT
1 720.00 30.00 100.00

TOTAL 720.00 30.00 100.00%

REPORT SELECTIONS

OPTION 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1

SIMULATION DIMENSIONAL LIMITS (STANDARD TIGER OR TIGER READER)

MAXCTL MAXEGR MAXEXP MAXGRP MAXID MAXLOC MAXLNK MAXLNX MAXMBR
1000 20 50 1000 19 3 3000 1000 5000
MAXNEQ MAXPH MAXQUE MAXRUL MAXRUN MAXSEQ MAXSHP MAXSTK MAXSUB
500 6 50 1000 9999 100 21 100 31
MAXTYP LUIN LUOUT
200 5 6

PHASE REPAIR

PHASE: 1
0

REPAIR ALLOWED: YES

EQPT TURNED ON: YES

MULTIPLIERS SHOP INVENTORY MGMT SPECIAL
MTBF MTTR CAPACITY DELAY TRIGGER SHOPS
1.00 1.00 500 .00 .00 0

122
INTYPES PAGE

<table>
<thead>
<tr>
<th>Type Nomenclature</th>
<th>MTBF</th>
<th>MTTR</th>
<th>DC</th>
<th>ADT1</th>
<th>ADT2</th>
<th>ADT3</th>
<th>Shop Pri</th>
<th>SWB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Gas Generator</td>
<td>9300.0</td>
<td>9999.0</td>
<td>1.00</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>GENL 0</td>
<td>0</td>
</tr>
<tr>
<td>2 Power Turbine</td>
<td>50000.0</td>
<td>9999.0</td>
<td>1.00</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>GENL 0</td>
<td>0</td>
</tr>
<tr>
<td>3 Ship Rep Comp</td>
<td>3000.0</td>
<td>13.00</td>
<td>1.00</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>GENL 0</td>
<td>0</td>
</tr>
<tr>
<td>4 SS Generator</td>
<td>25000.0</td>
<td>6.00</td>
<td>1.00</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>GENL 0</td>
<td>0</td>
</tr>
<tr>
<td>5 SW Circ Pump</td>
<td>3000.0</td>
<td>8.00</td>
<td>1.00</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>GENL 0</td>
<td>0</td>
</tr>
<tr>
<td>6 Control Panel</td>
<td>5000.0</td>
<td>1.90</td>
<td>1.00</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>GENL 0</td>
<td>0</td>
</tr>
<tr>
<td>7 DAU</td>
<td>25000.0</td>
<td>1.00</td>
<td>1.00</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>GENL 0</td>
<td>0</td>
</tr>
</tbody>
</table>

IN EQUIP PAGE

<table>
<thead>
<tr>
<th>Type Equipment Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

IN SPARES PAGE

<table>
<thead>
<tr>
<th>Spares Type</th>
<th>Org</th>
<th>Inter</th>
<th>Depot</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Equipment Types Have Unlimited Spares</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IN CONFIG PAGE

Mission Will Be Run With 1 Phase Types In Variable Sequence.

ELEC 1 1 505

GT GEN 503 .00

<table>
<thead>
<tr>
<th>String Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 506</td>
</tr>
<tr>
<td>2 507</td>
</tr>
<tr>
<td>3 508</td>
</tr>
<tr>
<td>4 506</td>
</tr>
<tr>
<td>5 507</td>
</tr>
<tr>
<td>6 508</td>
</tr>
<tr>
<td>7 506</td>
</tr>
<tr>
<td>8 507</td>
</tr>
<tr>
<td>9 508</td>
</tr>
<tr>
<td>10 506</td>
</tr>
<tr>
<td>11 507</td>
</tr>
<tr>
<td>12 507</td>
</tr>
<tr>
<td>13 506</td>
</tr>
<tr>
<td>14 507</td>
</tr>
<tr>
<td>15 507</td>
</tr>
<tr>
<td>16 506</td>
</tr>
<tr>
<td>17 507</td>
</tr>
<tr>
<td>18 507</td>
</tr>
<tr>
<td>19 506</td>
</tr>
<tr>
<td>20 507</td>
</tr>
<tr>
<td>21 507</td>
</tr>
<tr>
<td>22 506</td>
</tr>
<tr>
<td>23 507</td>
</tr>
<tr>
<td>24 507</td>
</tr>
<tr>
<td>25 508</td>
</tr>
<tr>
<td>26 507</td>
</tr>
<tr>
<td>27 508</td>
</tr>
<tr>
<td>28 507</td>
</tr>
</tbody>
</table>

123
INPUT DATA HIGH VALUES

DURATION TYPES GROUPS EQUIPS PH-SEQ PH-TYP TRIALS
720.00 7 509 28 1 1 250

OUTTIGER PAGE

RELIABILITY FOR PHASE 1, 1 .980
RELIABILITY THRU PHASE 1 .980
AVERAGE AVAILABILITY AVG. AVAIL. THRU PHASE 1 .999
FOR PHASE 1, 1 .999
TIME (END OF PHASE) 720.000
INSTANT AVAILABILITY INSTANT AVAILABILITY
AT BEGINNING OF PHASE 1.000 AT END OF PHASE .996
FINAL SUMMARY STATS PAGE

SYSTEM FIGURES OF MERIT AFTER 250 MISSION TRIALS

AT END OF MISSION:
RELIABILITY .980 .009
RELIABILITY LOWER PRECISION LIMIT (BASED ON STANDARD DEVIATION CRITERIA) .969
INSTANTANEOUS AVAILABILITY .996 .004
AVERAGE AVAILABILITY .999 .001

ESTIMATES OF LONG-TERM VALUES:
MEAN TIME BETWEEN FAILURES 29218.3
MEAN TIME TO REPAIR 18.2
AVAILABILITY .999

MISSION PERFORMANCE (FAILURE & REPAIR INFORMATION CALCULATED FROM TIGER SIMULATION DATA):
MEAN UP TIME 29981.8 .376
MEAN DOWN TIME 18.2 .376
MEAN REPAIR TIME 3.2 1.954
MEAN ACTIVE REPAIR TIME 3.2 1.954
MEAN TIME TO FIRST FAILURE 35881.0 15725.560

TOTAL NO. OF SYSTEM FAILURES = 6

124
AVERAGE INSTANT PHASE RELIABILITY AVAILABILITY AVAILABILITY AVAILABILITY

<table>
<thead>
<tr>
<th>SUBSYSTEM</th>
<th>SEQ</th>
<th>TYPE</th>
<th>TIME</th>
<th>IN PHASE THRU</th>
<th>IN PHASE THRU</th>
<th>BEGIN</th>
<th>END</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT GEN</td>
<td>1</td>
<td>1</td>
<td>720.0</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

TABLE FAILURES NUM PAGE

EQUIP FAILURE SUMMARY BY EQUIPMENT NUMBER

<table>
<thead>
<tr>
<th>EQUIP. NO.</th>
<th>TYPE NO.</th>
<th>TOTAL EQUIP.</th>
<th>AVG. NO. FAILURES</th>
<th>FGC/EIC FAILURES PER MISSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>13</td>
<td>.052</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>19</td>
<td>.076</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>15</td>
<td>.060</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>5</td>
<td>.020</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>8</td>
<td>.032</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>51</td>
<td>.204</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>53</td>
<td>.212</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>53</td>
<td>.212</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>3</td>
<td>.012</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>7</td>
<td>.028</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>8</td>
<td>.032</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>58</td>
<td>.232</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>50</td>
<td>.200</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>53</td>
<td>.212</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>32</td>
<td>.128</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>28</td>
<td>.112</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>33</td>
<td>.132</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>7</td>
<td>6</td>
<td>.024</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>7</td>
<td>5</td>
<td>.020</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>7</td>
<td>5</td>
<td>.020</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>13</td>
<td>.052</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>4</td>
<td>.016</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>46</td>
<td>.184</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>4</td>
<td>11</td>
<td>.044</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>5</td>
<td>49</td>
<td>.196</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>29</td>
<td>.116</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>7</td>
<td>3</td>
<td>.012</td>
<td></td>
</tr>
</tbody>
</table>

| 660 | 2.640 |

125
TABLE FAILURES TYPE

EQUIP FAILURE SUMMARY BY EQUIPMENT TYPE NUMBER

<table>
<thead>
<tr>
<th>TYPE</th>
<th>TOTAL EQUIP. FAILURES</th>
<th>AVG. NO. FAILURES PER MISSION</th>
<th>MAINTENANCE HOURS</th>
<th>STD. DEV. MAINT. HRS</th>
<th>FGC/EIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60</td>
<td>.240</td>
<td>.000</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>.068</td>
<td>.000</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>203</td>
<td>.812</td>
<td>2433.645</td>
<td>1.159</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>29</td>
<td>.116</td>
<td>165.411</td>
<td>1.446</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>210</td>
<td>.840</td>
<td>1614.073</td>
<td>.658</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>122</td>
<td>.488</td>
<td>206.779</td>
<td>.185</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>19</td>
<td>.076</td>
<td>18.612</td>
<td>.196</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>660</td>
<td>2.640</td>
<td>28.053</td>
<td></td>
</tr>
</tbody>
</table>

TABLE SPARES LEVEL

UNLIMITED SPARES SUMMARY OF SPARES USED

<table>
<thead>
<tr>
<th>SPARE TYPE</th>
<th>TOTAL STOCK USED</th>
<th>USE PER MISSION</th>
<th>INTERMEDIATE STOCK USED</th>
<th>USE PER MISSION</th>
<th>DEPOT STOCK USED</th>
<th>USE PER MISSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90000</td>
<td>0 .000</td>
<td>90000</td>
<td>0 .000</td>
<td>90000</td>
<td>0 .000</td>
</tr>
<tr>
<td>2</td>
<td>90000</td>
<td>0 .000</td>
<td>90000</td>
<td>0 .000</td>
<td>90000</td>
<td>0 .000</td>
</tr>
<tr>
<td>3</td>
<td>90000</td>
<td>203 .812</td>
<td>90000</td>
<td>0 .000</td>
<td>90000</td>
<td>0 .000</td>
</tr>
<tr>
<td>4</td>
<td>90000</td>
<td>29 .116</td>
<td>90000</td>
<td>0 .000</td>
<td>90000</td>
<td>0 .000</td>
</tr>
<tr>
<td>5</td>
<td>90000</td>
<td>210 .840</td>
<td>90000</td>
<td>0 .000</td>
<td>90000</td>
<td>0 .000</td>
</tr>
<tr>
<td>6</td>
<td>90000</td>
<td>122 .488</td>
<td>90000</td>
<td>0 .000</td>
<td>90000</td>
<td>0 .000</td>
</tr>
<tr>
<td>7</td>
<td>90000</td>
<td>19 .076</td>
<td>90000</td>
<td>0 .000</td>
<td>90000</td>
<td>0 .000</td>
</tr>
</tbody>
</table>

TABLE UNAVA NUM

SIMPLIFIED ELECTRICAL GENERATION SYSTEM (4 GTG'S)

CRITICAL EQUIPMENT BY EQUIPMENT NUMBER FOR FULL SYSTEM

<table>
<thead>
<tr>
<th>NAME</th>
<th>NUMBER HRS</th>
<th>UNAVA</th>
<th>PERCENT</th>
<th>EQUIP TYPE</th>
<th>EQUIP NO.</th>
<th>FGC/EIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER TURBINE</td>
<td>35.0497</td>
<td>.0002</td>
<td>32.03</td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>GAS GENERATOR</td>
<td>32.0418</td>
<td>.0002</td>
<td>29.28</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>POWER TURBINE</td>
<td>30.8997</td>
<td>.0002</td>
<td>28.24</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>SHIP REP COMP</td>
<td>4.6163</td>
<td>.0000</td>
<td>4.22</td>
<td>3</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>GAS GENERATOR</td>
<td>4.0150</td>
<td>.0000</td>
<td>3.67</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>GAS GENERATOR</td>
<td>1.3989</td>
<td>.0000</td>
<td>1.28</td>
<td>1</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>SW CIRC PUMP</td>
<td>.6333</td>
<td>.0000</td>
<td>.58</td>
<td>5</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>CONTROL PANEL</td>
<td>.5697</td>
<td>.0000</td>
<td>.52</td>
<td>6</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>CONTROL PANEL</td>
<td>.1959</td>
<td>.0000</td>
<td>.18</td>
<td>6</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Critical Equipment by Equipment Type for Full System

Unavailability and Percent of Unavailability

<table>
<thead>
<tr>
<th>Name</th>
<th>Number</th>
<th>Hours</th>
<th>Unava</th>
<th>Percent</th>
<th>Equip Type</th>
<th>FGC/EIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Turbine</td>
<td>65.9494</td>
<td>94</td>
<td>.0004</td>
<td>60.27</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Gas Generator</td>
<td>37.4557</td>
<td>57</td>
<td>.0002</td>
<td>34.23</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ship Rep Comp</td>
<td>4.6163</td>
<td>63</td>
<td>.0000</td>
<td>4.22</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Control Panel</td>
<td>.7656</td>
<td>58</td>
<td>.0000</td>
<td>.70</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>SW Circ Pump</td>
<td>.6333</td>
<td>52</td>
<td>.0000</td>
<td>.58</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Table Responsiblity Type

Proportion of Equipment Downtime Responsible for Full System Downtime

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Percent</th>
<th>Equip Type</th>
<th>Percent</th>
<th>FGC/EIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Panel</td>
<td>6</td>
<td>.70</td>
<td>207</td>
<td>.37</td>
<td></td>
</tr>
<tr>
<td>Ship Rep Comp</td>
<td>3</td>
<td>4.22</td>
<td>2434</td>
<td>.19</td>
<td></td>
</tr>
<tr>
<td>SW Circ Pump</td>
<td>5</td>
<td>.58</td>
<td>1614</td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td>Power Turbine</td>
<td>2</td>
<td>60.27</td>
<td>0</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>Gas Generator</td>
<td>1</td>
<td>34.23</td>
<td>0</td>
<td>.00</td>
<td></td>
</tr>
</tbody>
</table>

Critical Equipment by Equipment Number for Full System

Unreliability and Percent of Mission Failures

<table>
<thead>
<tr>
<th>Description</th>
<th>No. Failures</th>
<th>Unrel</th>
<th>Percent</th>
<th>Equip Type</th>
<th>Equip No.</th>
<th>FGC/EIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Turbine</td>
<td>1.0</td>
<td>.0040</td>
<td>20.00</td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Gas Generator</td>
<td>1.0</td>
<td>.0040</td>
<td>20.00</td>
<td>1</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Gas Generator</td>
<td>.7</td>
<td>.0027</td>
<td>13.33</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Gas Generator</td>
<td>.7</td>
<td>.0027</td>
<td>13.33</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SW Circ Pump</td>
<td>.3</td>
<td>.0013</td>
<td>6.67</td>
<td>5</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Control Panel</td>
<td>.3</td>
<td>.0013</td>
<td>6.67</td>
<td>6</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Control Panel</td>
<td>.3</td>
<td>.0013</td>
<td>6.67</td>
<td>6</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Power Turbine</td>
<td>.3</td>
<td>.0013</td>
<td>6.67</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Ship Rep Comp</td>
<td>.3</td>
<td>.0013</td>
<td>6.67</td>
<td>3</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>
TOTAL NO. MISSION TRIALS = 250
TOTAL NO. MISSION FAILURES FOR FULL SYSTEM = 5

TABLE UNREL TYPE PAGE

SIMPLIFIED ELECTRICAL GENERATION SYSTEM (4 GTG'S)

CRITICAL EQUIPMENT BY EQUIPMENT TYPE FOR FULL SYSTEM

UNRELIABILITY AND
PERCENT OF MISSION FAILURES

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>NO. FAILURES</th>
<th>UNREL</th>
<th>PERCENT</th>
<th>EQUIP TYPE</th>
<th>FGC/EIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAS GENERATOR</td>
<td>2.3</td>
<td>.0093</td>
<td>46.67</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>POWER TURBINE</td>
<td>1.3</td>
<td>.0053</td>
<td>26.67</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CONTROL PANEL</td>
<td>.7</td>
<td>.0027</td>
<td>13.33</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>SW CIRC PUMP</td>
<td>.3</td>
<td>.0013</td>
<td>6.67</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>SHIP REP COMP</td>
<td>.3</td>
<td>.0013</td>
<td>6.67</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL NO. MISSION TRIALS = 250
TOTAL NO. MISSION FAILURES FOR FULL SYSTEM = 5

TABLE REDM PAGE

RESTRICTED ERLANG DISTRIBUTION MODEL

MTBMF = 35881.03
2ND MOMENT ABOUT ORIGIN = 2523914000.00

SHAPE = 2
M1 = 725.09
M2 = 35155.94

T R-TIGER R-THEO DIFF DIFSQ

720.00 .980 .993 -.013 .000

AVG ABS DIFF=.013 MAX ABS DIFF=.013 SQUARESSEQ=.000

128
DOWNTIME FREQUENCY DISTRIBUTION FOR FULL SYSTEM

<table>
<thead>
<tr>
<th>DT INTERVAL</th>
<th>FREQ</th>
<th>CELL PROB</th>
<th>CUM PROB</th>
</tr>
</thead>
<tbody>
<tr>
<td>.50</td>
<td>1</td>
<td>.2000</td>
<td>.2000</td>
</tr>
<tr>
<td>1.00</td>
<td>1</td>
<td>.2000</td>
<td>.4000</td>
</tr>
<tr>
<td>2.00</td>
<td>2</td>
<td>.4000</td>
<td>.8000</td>
</tr>
<tr>
<td>4.00</td>
<td>0</td>
<td>.0000</td>
<td>.8000</td>
</tr>
<tr>
<td>8.00</td>
<td>0</td>
<td>.0000</td>
<td>.8000</td>
</tr>
<tr>
<td>16.00</td>
<td>1</td>
<td>.2000</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

There was no downtime recorded for (sub)system GT GEN.
Appendix C. ASSET Output Files

DDG-51 Output Files

ADVANCED SURFACE SHIP EVALUATION TOOL (ASSET)
MONOHULL SURFACE COMBATANT PROGRAM (MONOSC)
VERSION 3.3
DATED OCTOBER 23, 1992

ASSET/MONOSC VERSION 3.3 - RESISTANCE MODULE - 3/11/93 11.37.52.

PRINTED REPORT NO. 1 - SUMMARY

<table>
<thead>
<tr>
<th>RESID RESIST IND</th>
<th>TAYLOR</th>
<th>BILGE KEEL IND</th>
<th>PRESENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRICTION LINE IND</td>
<td>ITTC</td>
<td>SHAFT SUPPORT TYPE IND</td>
<td>OPEN STRUT</td>
</tr>
<tr>
<td>ENDUR DISP IND</td>
<td>AVG DISP</td>
<td>PRPLN SYS RESIST IND</td>
<td>CALC</td>
</tr>
<tr>
<td>ENDUR CONFIG IND</td>
<td>NO TS</td>
<td>PROP TYPE IND</td>
<td>CP</td>
</tr>
<tr>
<td>SONAR DRAG IND</td>
<td>HULL</td>
<td>SONAR DOME IND</td>
<td>PRESENT</td>
</tr>
<tr>
<td>SKEG IND</td>
<td>PRESENT</td>
<td>RUDDER TYPE IND</td>
<td>SPADE</td>
</tr>
</tbody>
</table>

FULL LOAD WT, LTON 8314.0 CORR ALW 0.00040
AVG ENDUR DISP, LTON 8013.9 DRAG MARGIN FAC 0.080
USABLE FUEL WT, LTON 1127.6 TRAILSHAFT PWR FAC
NO RUDDERS 2.
NO FIN PAIRS 0. PRPLN SYS RESIST FRAC
PROP TIP CLEAR RATIO 0.16 MAX SPEED 0.146
NO PROP SHAFTS 2. SUSTN SPEED 0.162
PROP DIA, FT 17.00 ENDUR SPEED 0.329

PRINTED REPORT NO. 2 - SPEED-POWER MATRIX

<table>
<thead>
<tr>
<th>RESID RESIST IND</th>
<th>TAYLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENDUR DISP IND</td>
<td>AVG DISP</td>
</tr>
</tbody>
</table>
Full Load Disp

Full Load WT, LTON: 8314.0

<table>
<thead>
<tr>
<th>SPEED (KT)</th>
<th>FRIC</th>
<th>RESID</th>
<th>APPDG</th>
<th>WIND</th>
<th>MARGIN</th>
<th>TOTAL</th>
<th>DRAG (LBF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>5.0</td>
<td>2.0</td>
<td>6.0</td>
<td>0.0</td>
<td>1.0</td>
<td>14.0</td>
<td>2387.0</td>
</tr>
<tr>
<td>4.00</td>
<td>39.0</td>
<td>14.0</td>
<td>40.0</td>
<td>2.0</td>
<td>7.0</td>
<td>101.0</td>
<td>8205.0</td>
</tr>
<tr>
<td>6.00</td>
<td>125.0</td>
<td>46.0</td>
<td>115.0</td>
<td>5.0</td>
<td>23.0</td>
<td>314.0</td>
<td>17029.0</td>
</tr>
<tr>
<td>8.00</td>
<td>287.0</td>
<td>108.0</td>
<td>244.0</td>
<td>13.0</td>
<td>52.0</td>
<td>704.0</td>
<td>28683.0</td>
</tr>
<tr>
<td>10.00</td>
<td>547.0</td>
<td>211.0</td>
<td>440.0</td>
<td>25.0</td>
<td>98.0</td>
<td>1321.0</td>
<td>43060.0</td>
</tr>
<tr>
<td>12.00</td>
<td>928.0</td>
<td>396.0</td>
<td>715.0</td>
<td>43.0</td>
<td>167.0</td>
<td>2249.0</td>
<td>61062.0</td>
</tr>
<tr>
<td>14.00</td>
<td>1451.0</td>
<td>719.0</td>
<td>1081.0</td>
<td>68.0</td>
<td>266.0</td>
<td>3585.0</td>
<td>83439.0</td>
</tr>
<tr>
<td>16.00</td>
<td>2138.0</td>
<td>1143.0</td>
<td>1544.0</td>
<td>101.0</td>
<td>394.0</td>
<td>5320.0</td>
<td>108359.0</td>
</tr>
<tr>
<td>18.00</td>
<td>3009.0</td>
<td>1673.0</td>
<td>2114.0</td>
<td>144.0</td>
<td>555.0</td>
<td>7495.0</td>
<td>135693.0</td>
</tr>
<tr>
<td>20.00</td>
<td>4085.0</td>
<td>2597.0</td>
<td>2815.0</td>
<td>198.0</td>
<td>776.0</td>
<td>10471.0</td>
<td>170607.0</td>
</tr>
<tr>
<td>22.00</td>
<td>5388.0</td>
<td>4521.0</td>
<td>3691.0</td>
<td>264.0</td>
<td>1109.0</td>
<td>14973.0</td>
<td>221778.0</td>
</tr>
<tr>
<td>24.00</td>
<td>6937.0</td>
<td>6615.0</td>
<td>4699.0</td>
<td>342.0</td>
<td>1487.0</td>
<td>20080.0</td>
<td>272637.0</td>
</tr>
<tr>
<td>26.00</td>
<td>8753.0</td>
<td>9773.0</td>
<td>5896.0</td>
<td>435.0</td>
<td>1989.0</td>
<td>26846.0</td>
<td>336467.0</td>
</tr>
<tr>
<td>28.00</td>
<td>10856.0</td>
<td>16671.0</td>
<td>7442.0</td>
<td>543.0</td>
<td>2841.0</td>
<td>38354.0</td>
<td>446364.0</td>
</tr>
<tr>
<td>30.00</td>
<td>13267.0</td>
<td>27524.0</td>
<td>9345.0</td>
<td>668.0</td>
<td>4064.0</td>
<td>54868.0</td>
<td>595992.0</td>
</tr>
<tr>
<td>32.00</td>
<td>16005.0</td>
<td>39700.0</td>
<td>11460.0</td>
<td>811.0</td>
<td>5438.0</td>
<td>73414.0</td>
<td>747600.0</td>
</tr>
<tr>
<td>34.00</td>
<td>19090.0</td>
<td>51115.0*</td>
<td>13681.0</td>
<td>973.0</td>
<td>6789.0</td>
<td>91647.0</td>
<td>878374.0</td>
</tr>
</tbody>
</table>

* DENOTES EXTRAPOLATED VALUE.

Average Endurance Disp

Average Endurance WT, LTON: 8013.9

<table>
<thead>
<tr>
<th>SPEED (KT)</th>
<th>FRIC</th>
<th>RESID</th>
<th>APPDG</th>
<th>WIND</th>
<th>MARGIN</th>
<th>TOTAL</th>
<th>DRAG (LBF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>5.0</td>
<td>2.0</td>
<td>6.0</td>
<td>0.0</td>
<td>1.0</td>
<td>14.0</td>
<td>2363.0</td>
</tr>
<tr>
<td>4.00</td>
<td>38.0</td>
<td>13.0</td>
<td>39.0</td>
<td>2.0</td>
<td>7.0</td>
<td>100.0</td>
<td>8116.0</td>
</tr>
<tr>
<td>6.00</td>
<td>123.0</td>
<td>45.0</td>
<td>114.0</td>
<td>5.0</td>
<td>23.0</td>
<td>310.0</td>
<td>16834.0</td>
</tr>
<tr>
<td>8.00</td>
<td>282.0</td>
<td>106.0</td>
<td>244.0</td>
<td>13.0</td>
<td>52.0</td>
<td>696.0</td>
<td>28346.0</td>
</tr>
<tr>
<td>10.00</td>
<td>538.0</td>
<td>206.0</td>
<td>439.0</td>
<td>25.0</td>
<td>97.0</td>
<td>1306.0</td>
<td>42544.0</td>
</tr>
<tr>
<td>12.00</td>
<td>913.0</td>
<td>387.0</td>
<td>713.0</td>
<td>43.0</td>
<td>165.0</td>
<td>2221.0</td>
<td>60314.0</td>
</tr>
<tr>
<td>14.00</td>
<td>1428.0</td>
<td>700.0</td>
<td>1078.0</td>
<td>68.0</td>
<td>262.0</td>
<td>3536.0</td>
<td>82300.0</td>
</tr>
<tr>
<td>16.00</td>
<td>2103.0</td>
<td>1116.0</td>
<td>1540.0</td>
<td>102.0</td>
<td>389.0</td>
<td>5251.0</td>
<td>106938.0</td>
</tr>
<tr>
<td>18.00</td>
<td>2960.0</td>
<td>1622.0</td>
<td>2107.0</td>
<td>146.0</td>
<td>547.0</td>
<td>7382.0</td>
<td>133643.0</td>
</tr>
<tr>
<td>20.00</td>
<td>4019.0</td>
<td>2425.0</td>
<td>2800.0</td>
<td>200.0</td>
<td>756.0</td>
<td>10200.0</td>
<td>166199.0</td>
</tr>
<tr>
<td>22.00</td>
<td>5301.0</td>
<td>4158.0</td>
<td>3664.0</td>
<td>266.0</td>
<td>1071.0</td>
<td>14460.0</td>
<td>214183.0</td>
</tr>
<tr>
<td>24.00</td>
<td>6825.0</td>
<td>6168.0</td>
<td>4666.0</td>
<td>345.0</td>
<td>1440.0</td>
<td>19444.0</td>
<td>264002.0</td>
</tr>
<tr>
<td>26.00</td>
<td>8612.0</td>
<td>9226.0</td>
<td>5856.0</td>
<td>439.0</td>
<td>1931.0</td>
<td>26064.0</td>
<td>326666.0</td>
</tr>
<tr>
<td>28.00</td>
<td>10681.0</td>
<td>15791.0</td>
<td>7382.0</td>
<td>548.0</td>
<td>2752.0</td>
<td>37154.0</td>
<td>432398.0</td>
</tr>
<tr>
<td>30.00</td>
<td>13053.0</td>
<td>26352.0</td>
<td>9268.0</td>
<td>674.0</td>
<td>3948.0</td>
<td>53294.0</td>
<td>578890.0</td>
</tr>
<tr>
<td>32.00</td>
<td>15747.0</td>
<td>38330.0</td>
<td>11371.0</td>
<td>818.0</td>
<td>5301.0</td>
<td>71566.0</td>
<td>728782.0</td>
</tr>
<tr>
<td>34.00</td>
<td>18782.0</td>
<td>49271.0*</td>
<td>13564.0</td>
<td>981.0</td>
<td>6608.0</td>
<td>89206.0</td>
<td>854978.0</td>
</tr>
</tbody>
</table>

* DENOTES EXTRAPOLATED VALUE.
ASSET/MONOSC VERSION 3.3 - PROPELLER MODULE - 3/11/93 11.38.10.

PRINTED REPORT NO. 1 - SUMMARY

ENDUR CONFIG IND NO TS
PROP TYPE IND CP PROP SERIES IND GIVEN
PROP DIA IND GIVEN PROP LOC IND GIVEN
PROP AREA IND GIVEN PROP ID IND MODEL 4988
SHAFT SUPPORT TYPE IND Rudder Type IND

MAX SPEED, KT 31.24 ENDUR SPEED, KT 20.00
MAX EHP (/SHAFT), HP 33361. ENDUR EHP (/SHAFT), HP 5100.
MAX SHP (/SHAFT), HP 50272. ENDUR SHP (/SHAFT), HP 7166.
MAX PROP RPM 160.4 ENDUR PROP RPM 90.4
MAX PROP EFF 0.699 ENDUR PROP EFF 0.749

SUSTN SPEED, KT 29.90 PROP DIA, FT 17.00
SUSTN EHP (/SHAFT), HP 26958. NO BLADES 5.
SUSTN SHP (/SHAFT), HP 40125. PITCH RATIO 1.72
SUSTN PROP RPM 150.3 EXPAND AREA RATIO 0.784
SUSTN PROP EFF 0.707 CAVITATION NO 1.21

NO PROP SHAFTS 2.0

TOTAL PROPELLER WT, LTON 51.62

PRINTED REPORT NO. 2 - PROPELLER CHARACTERISTICS

PROP ID IND MODEL 4988
NO PROP SHAFTS 2.
PROP DIA, FT 17.00
NO BLADES 5.
PITCH RATIO 1.72
EXPAND AREA RATIO 0.784
THRUST DED COEF 0.055
TAYLOR WAKE FRAC 0.020
HULL EFFICIENCY 0.964
REL ROTATE EFF 0.985

CONDITIONS

<table>
<thead>
<tr>
<th>CHARACTERISTICS</th>
<th>MAXIMUM</th>
<th>SUSTAINED</th>
<th>ENDURANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEED, KT</td>
<td>31.24</td>
<td>29.90</td>
<td>20.00</td>
</tr>
<tr>
<td>RPM</td>
<td>160.4</td>
<td>150.3</td>
<td>90.4</td>
</tr>
<tr>
<td>THRUST/SHAFT, LBF</td>
<td>368287.</td>
<td>310944.</td>
<td>87937.</td>
</tr>
<tr>
<td>EHP/SHAFT, HP</td>
<td>33361.</td>
<td>26958.</td>
<td>5100.</td>
</tr>
<tr>
<td>TORQUE/SHAFT, FT-LBF</td>
<td>1622096.</td>
<td>1381287.</td>
<td>409923.</td>
</tr>
<tr>
<td>SHP/SHAFT, HP</td>
<td>50272.</td>
<td>40125.</td>
<td>7166.</td>
</tr>
<tr>
<td>ADVANCE COEF (J)</td>
<td>1.137</td>
<td>1.161</td>
<td>1.291</td>
</tr>
<tr>
<td>THRUST COEF (KT)</td>
<td>0.310</td>
<td>0.298</td>
<td>0.233</td>
</tr>
<tr>
<td>TORQUE COEF (10KQ)</td>
<td>0.803</td>
<td>0.779</td>
<td>0.638</td>
</tr>
<tr>
<td>OPEN WATER EFFY</td>
<td>0.699</td>
<td>0.707</td>
<td>0.749</td>
</tr>
<tr>
<td>PC</td>
<td>0.664</td>
<td>0.672</td>
<td>0.712</td>
</tr>
</tbody>
</table>

132
ASSET/MONOSC VERSION 3.3 - MACHINERY MODULE - 3/11/93 11.38.36.

PRINTED REPORT NO. 1 - SUMMARY

TRANS TYPE IND
MECH MAX SPEED, KT 31.24
ELECT PRLN TYPE IND
SUSTN SPEED IND CALC
SHAFT SUPPORT TYPE IND OPEN STRUT SUSTN SPEED, KT 29.90
NO PROP SHAFTS 2. ENDUR SPEED IND GIVEN
ENDUR CONFIG IND NO TS ENDUR SPEED, KT 20.00
SEC ENG USAGE IND DESIGN MODE IND FUEL WT
MAX MARG ELECT LOAD, KW 3644. ENDURANCE, NM 3873.
AVG 24 HR ELECT LOAD, KW 2365. USABLE FUEL WT, LTON 1127.6
SWBS 200 GROUP WT, LTON 813.9 SUSTN SPEED POWER FRAC 0.80
SWBS 300 GROUP WT, LTON 394.1

PRINTED REPORT NO. 6 - SHIP SERVICE GENERATORS

SS SYS TYPE IND-SEP
GEN SIZE IND-GIVEN

ELECT LOAD DES MARGIN FAC 0.000
ELECT LOAD SL MARGIN FAC 0.010
ELECT LOAD IMBAL FAC 0.900
MAX MARG ELECT LOAD, KW 3644.1 MAX STANDBY LOAD, KW 2786.1
24 HR AVG ELECT LOAD, KW 2365.2

VSCF SS CYCLOCONVERTERS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>NO</th>
<th>NO</th>
<th>REQ</th>
<th>AVAIL</th>
<th>LOADING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INSTALL</td>
<td>ONLINE</td>
<td>KW/CYCLO</td>
<td>KW/CYCLO</td>
<td>FRAC</td>
</tr>
<tr>
<td>WINTER BATTLE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0.000</td>
</tr>
<tr>
<td>WINTER CRUISE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0.000</td>
</tr>
<tr>
<td>SUMMER CRUISE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0.000</td>
</tr>
<tr>
<td>ENDURANCE(24 HR AVG)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0.000</td>
</tr>
</tbody>
</table>

SEPARATE SS GENERATORS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>NO</th>
<th>NO</th>
<th>REQ</th>
<th>AVAIL</th>
<th>LOADING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INSTALL</td>
<td>ONLINE</td>
<td>KW/GEN</td>
<td>KW/GEN</td>
<td>FRAC</td>
</tr>
<tr>
<td>WINTER BATTLE</td>
<td>3</td>
<td>2</td>
<td>1822.</td>
<td>2500.</td>
<td>0.729</td>
</tr>
<tr>
<td>WINTER CRUISE</td>
<td>3</td>
<td>2</td>
<td>1778.</td>
<td>2500.</td>
<td>0.711</td>
</tr>
<tr>
<td>SUMMER CRUISE</td>
<td>3</td>
<td>2</td>
<td>1499.</td>
<td>2500.</td>
<td>0.600</td>
</tr>
<tr>
<td>ENDURANCE(24 HR AVG)</td>
<td>3</td>
<td>2</td>
<td>1183.</td>
<td>2500.</td>
<td>0.473</td>
</tr>
</tbody>
</table>
TOTALS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQ KW</th>
<th>AVAIL KW</th>
<th>LOADING FRAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>WINTER BATTLE</td>
<td>3644.</td>
<td>5000.</td>
<td>0.729</td>
</tr>
<tr>
<td>WINTER CRUISE</td>
<td>3556.</td>
<td>5000.</td>
<td>0.711</td>
</tr>
<tr>
<td>SUMMER CRUISE</td>
<td>2999.</td>
<td>5000.</td>
<td>0.600</td>
</tr>
<tr>
<td>ENDURANCE (24 HR AVG)</td>
<td>2365.</td>
<td>5000.</td>
<td>0.473</td>
</tr>
</tbody>
</table>

PRINTED REPORT NO. 11 - ELECTRIC LOADS

400 HZ ELECT LOAD FAC 0.200

<table>
<thead>
<tr>
<th>PAYLOAD LOADS</th>
<th>WINTER CRUISE KW</th>
<th>WINTER BATTLE KW</th>
<th>SUMMER CRUISE KW</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMAND AND SURVEILLANCE (60 HZ)</td>
<td>559.1</td>
<td>778.0</td>
<td>559.1</td>
</tr>
<tr>
<td>COMMAND AND SURVEILLANCE (400 HZ)</td>
<td>139.8</td>
<td>194.5</td>
<td>139.8</td>
</tr>
<tr>
<td>ARMAMENT (60 HZ)</td>
<td>119.1</td>
<td>162.1</td>
<td>119.1</td>
</tr>
<tr>
<td>ARMAMENT (400 HZ)</td>
<td>29.8</td>
<td>40.5</td>
<td>29.8</td>
</tr>
<tr>
<td>OTHER PAYLOAD (60 HZ)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>OTHER PAYLOAD (400 HZ)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>SUB-TOTAL</td>
<td>847.8</td>
<td>1175.1</td>
<td>847.8</td>
</tr>
</tbody>
</table>

NON-PAYLOAD LOADS (* INDICATES USER ADJUSTED VALUE)

<table>
<thead>
<tr>
<th>NON-PAYLOAD LOADS</th>
<th>WINTER CRUISE KW</th>
<th>WINTER BATTLE KW</th>
<th>SUMMER CRUISE KW</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROPULSION AND STEERING</td>
<td>801.9*</td>
<td>1037.9*</td>
<td>538.0*</td>
</tr>
<tr>
<td>LIGHTING</td>
<td>170.5*</td>
<td>166.7*</td>
<td>170.5*</td>
</tr>
<tr>
<td>MISCELLANEOUS ELECTRIC</td>
<td>47.0*</td>
<td>64.8*</td>
<td>45.6*</td>
</tr>
<tr>
<td>HEATING</td>
<td>556.2*</td>
<td>326.7*</td>
<td>55.4*</td>
</tr>
<tr>
<td>VENTILATION</td>
<td>389.1*</td>
<td>302.5*</td>
<td>389.1*</td>
</tr>
<tr>
<td>AIR CONDITIONING</td>
<td>318.9*</td>
<td>368.5*</td>
<td>530.5*</td>
</tr>
<tr>
<td>AUXILIARY BOILER AND FRESH WATER</td>
<td>205.2*</td>
<td>23.9*</td>
<td>205.2*</td>
</tr>
<tr>
<td>FIREMAIN</td>
<td>57.8*</td>
<td>92.2*</td>
<td>57.8*</td>
</tr>
<tr>
<td>UNREP AND HANDLING</td>
<td>4.5*</td>
<td>0.2*</td>
<td>4.5*</td>
</tr>
<tr>
<td>MISC AUXILIARY MACHINERY</td>
<td>26.3*</td>
<td>29.3*</td>
<td>26.3*</td>
</tr>
<tr>
<td>SERVICES AND WORK SPACES</td>
<td>103.7*</td>
<td>30.6*</td>
<td>103.7*</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>2681.1</td>
<td>2443.2</td>
<td>2126.5</td>
</tr>
</tbody>
</table>

TOTAL

| TOTAL | **3528.9** | **3618.3** | **2974.3** |

TOTAL (INCLUDING MARGINS)

| TOTAL (INCLUDING MARGINS) | 3556.1 | 3644.1 | 2998.7 |

MAX MARG ELECT LOAD	3644.1		
24 HR AVG ELECT LOAD	2365.2		
CONNECTED ELECT LOAD	9588.6		
ANCHOR ELECT LOAD	2786.1		
VITAL ELECT LOAD	1884.1		
EMERGENCY ELECT LOAD	1076.0		
MAX STBY ELECT LOAD	2786.1		
HL(X) Output Files

AL NCED SURFACE SHIP EVALUATION TOOL (ASSET)
MONOHULL L AND A TYPE SHIPS (MONOLA)
VERSION 1.0
DATED OCTOBER 28, 1992

PRINTED REPORT NO. 1 - SUMMARY

<table>
<thead>
<tr>
<th>RESID RESIST IND</th>
<th>TAYLOR</th>
<th>BILGE KEEL IND</th>
<th>PRESENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRICTION LINE IND</td>
<td>ITTC</td>
<td>SHAFT SUPPORT TYPE IND</td>
<td>POD</td>
</tr>
<tr>
<td>ENDUR DISP IND</td>
<td>FULL LOAD</td>
<td>PRPLN SYS RESIST IND</td>
<td>CALC</td>
</tr>
<tr>
<td>ENDUR CONFIG IND</td>
<td>NO TS</td>
<td>PROP TYPE IND</td>
<td>FP</td>
</tr>
<tr>
<td>SONAR DRAG IND</td>
<td>SONAR DOME IND</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>SKEG IND</td>
<td>NONE</td>
<td>RUDDER TYPE IND</td>
<td>INTEGRAL</td>
</tr>
</tbody>
</table>

FULL LOAD WT, LTON 41170.6 CORR ALW 0.00050
AVG ENDUR DISP, LTON 41170.6 DRAG MARGIN FAC 0.110
USABLE FUEL WT, LTON 4837.4 TRAILSHAFT PWR FAC NO RUDDERS 2.
NO FIN PAIRS 0. PRPLN SYS RESIST FRAC 0.120
PROP TIP CLEAR RATIO 0.10 MAX SPEED 0.127
NO PROP SHAFTS 2. SUSTN SPEED 0.127
PROP DIA, FT 14.14 ENDUR SPEED 0.127

PRINTED REPORT NO. 2 - SPEED-POWER MATRIX

<table>
<thead>
<tr>
<th>RESID RESIST IND</th>
<th>TAYLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENDUR DISP IND</td>
<td>FULL LOAD</td>
</tr>
</tbody>
</table>

SPEED AND POWER FOR FULL LOAD DISP

FULL LOAD WT, LTON 41170.6

<table>
<thead>
<tr>
<th>SPEED</th>
<th>EFFECTIVE HORSEPOWER, HP</th>
<th>DRAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>KT</td>
<td>FRIC</td>
<td>RESID</td>
</tr>
<tr>
<td>2.00</td>
<td>17.</td>
<td>7.</td>
</tr>
<tr>
<td>4.00</td>
<td>125.</td>
<td>55.</td>
</tr>
<tr>
<td>6.00</td>
<td>404.</td>
<td>185.</td>
</tr>
<tr>
<td>10.00</td>
<td>1783.</td>
<td>857.</td>
</tr>
<tr>
<td>12.00</td>
<td>3030.</td>
<td>1481.</td>
</tr>
<tr>
<td>14.00</td>
<td>4746.</td>
<td>2351.</td>
</tr>
<tr>
<td>16.00</td>
<td>7000.</td>
<td>3510.</td>
</tr>
<tr>
<td>18.00</td>
<td>9864.</td>
<td>5059.</td>
</tr>
</tbody>
</table>
Printed Report No. 1 - Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum</th>
<th>Sustained</th>
<th>Endurance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed, KT</td>
<td>16.25</td>
<td>15.00</td>
<td>15.00</td>
</tr>
<tr>
<td>RPM</td>
<td>170.0</td>
<td>157.4</td>
<td>157.4</td>
</tr>
<tr>
<td>Thrust/Shaft, LBF</td>
<td>143253.</td>
<td>123370.</td>
<td>123370.</td>
</tr>
<tr>
<td>EHP/Shaft, HP</td>
<td>7142.</td>
<td>5679.</td>
<td>5679.</td>
</tr>
<tr>
<td>Torque/Shaft, Ft-LBF</td>
<td>349330.</td>
<td>300540.</td>
<td>300540.</td>
</tr>
<tr>
<td>SHP/Shaft, HP</td>
<td>11306.</td>
<td>9005.</td>
<td>9005.</td>
</tr>
</tbody>
</table>

Printed Report No. 2 - Propeller Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prop ID Ind</td>
<td></td>
</tr>
<tr>
<td>No Prop Shafts</td>
<td>2</td>
</tr>
<tr>
<td>Prop Dia, FT</td>
<td>14.78</td>
</tr>
<tr>
<td>No Blades</td>
<td>5</td>
</tr>
<tr>
<td>Pitch Ratio</td>
<td>0.95</td>
</tr>
<tr>
<td>Expand Area Ratio</td>
<td>0.549</td>
</tr>
<tr>
<td>Thrust Ded Coef</td>
<td>0.000</td>
</tr>
<tr>
<td>Taylor Wake Frac</td>
<td>0.000</td>
</tr>
<tr>
<td>Hull Efficiency</td>
<td>1.000</td>
</tr>
<tr>
<td>Rel Rotate Eff</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Conditions

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Maximum</th>
<th>Sustained</th>
<th>Endurance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed, KT</td>
<td>16.25</td>
<td>15.00</td>
<td>15.00</td>
</tr>
<tr>
<td>RPM</td>
<td>170.0</td>
<td>157.4</td>
<td>157.4</td>
</tr>
<tr>
<td>Thrust/Shaft, LBF</td>
<td>143253.</td>
<td>123370.</td>
<td>123370.</td>
</tr>
<tr>
<td>EHP/Shaft, HP</td>
<td>7142.</td>
<td>5679.</td>
<td>5679.</td>
</tr>
<tr>
<td>Torque/Shaft, Ft-LBF</td>
<td>349330.</td>
<td>300540.</td>
<td>300540.</td>
</tr>
<tr>
<td>SHP/Shaft, HP</td>
<td>11306.</td>
<td>9005.</td>
<td>9005.</td>
</tr>
<tr>
<td>Advance Coef (J)</td>
<td>0.655</td>
<td>0.653</td>
<td>0.653</td>
</tr>
<tr>
<td>Thrust Coef (KT)</td>
<td>0.188</td>
<td>0.189</td>
<td>0.189</td>
</tr>
<tr>
<td>Torque Coef (10KQ)</td>
<td>0.310</td>
<td>0.311</td>
<td>0.311</td>
</tr>
<tr>
<td>Open Water Effy</td>
<td>0.632</td>
<td>0.631</td>
<td>0.631</td>
</tr>
<tr>
<td>PC</td>
<td>0.632</td>
<td>0.631</td>
<td>0.631</td>
</tr>
<tr>
<td>LOADS</td>
<td>WINTER CRUISE KW</td>
<td>WINTER BATTLE KW</td>
<td>SUMMER CRUISE KW</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>PROPULSION AND STEERING</td>
<td>199.1</td>
<td>231.0</td>
<td>129.4</td>
</tr>
<tr>
<td>LIGHTING</td>
<td>1178.1</td>
<td>1154.5</td>
<td>1178.1</td>
</tr>
<tr>
<td>MISCELLANEOUS ELECTRIC</td>
<td>46.1</td>
<td>40.1</td>
<td>46.1</td>
</tr>
<tr>
<td>HEATING</td>
<td>7632.8</td>
<td>3892.7</td>
<td>381.6</td>
</tr>
<tr>
<td>VENTILATION</td>
<td>1450.2</td>
<td>1116.7</td>
<td>1450.2</td>
</tr>
<tr>
<td>AIR CONDITIONING</td>
<td>2620.5</td>
<td>2463.3</td>
<td>3911.2</td>
</tr>
<tr>
<td>AUXILIARY BOILER AND FRESH WATER</td>
<td>435.2</td>
<td>322.1</td>
<td>435.2</td>
</tr>
<tr>
<td>FIREFMAIN</td>
<td>573.8</td>
<td>809.1</td>
<td>573.8</td>
</tr>
<tr>
<td>UNREP AND HANDLING</td>
<td>105.5</td>
<td>25.3</td>
<td>105.5</td>
</tr>
<tr>
<td>MISC AUXILIARY MACHINERY</td>
<td>101.9</td>
<td>57.0</td>
<td>101.9</td>
</tr>
<tr>
<td>SERVICES AND WORK SPACES</td>
<td>162.1</td>
<td>53.5</td>
<td>162.1</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>14505.3</td>
<td>10165.3</td>
<td>8475.2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>14505.3</td>
<td>10165.3</td>
<td>8475.2</td>
</tr>
<tr>
<td>TOTAL (INCLUDING MARGINS)</td>
<td>14505.3</td>
<td>10165.3</td>
<td>8475.2</td>
</tr>
<tr>
<td>MAX MARG ELECT LOAD</td>
<td>14505.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 HR AVG ELECT LOAD</td>
<td>6388.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONNECTED ELECT LOAD</td>
<td>38439.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANCHOR ELECT LOAD</td>
<td>11169.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VITAL ELECT LOAD</td>
<td>4391.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMERGENCY ELECT LOAD</td>
<td>3917.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX STBY ELECT LOAD</td>
<td>11169.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Since it was desired to work with the total connected load and not the operating loads, the following procedure was used to estimate the total connected load.

1. The worst case load in each category estimated by ASSET was taken as the starting point. Since the worst case heating load was higher than the worst air conditioning load, the air conditioning load was ignored for this analysis.

2. The loads in each category were changed based on the basis of the estimate as discussed above to determine the actual maximum operating load.

3. The loads in each category were multiplied by 2.65 as an estimate of the total connected load in that category.

4. The total connected loads in each category were then increased by 10% for growth margin.

The above procedure is considered both reasonable and conservative given the nature of the HL(\(X\)). The results are summarized in Table 1.
Table 1. HL(X) Ships Service Load Estimation (All Loads in kW)

<table>
<thead>
<tr>
<th>Load</th>
<th>ASSET Estimation</th>
<th>Basis</th>
<th>HL(X) Maximum Operating</th>
<th>HL(X) Maximum Connected with Margin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighting</td>
<td>1,178</td>
<td>Volume</td>
<td>393</td>
<td>1,041</td>
</tr>
<tr>
<td>Heating</td>
<td>7,633</td>
<td>Volume</td>
<td>2,544</td>
<td>6,742</td>
</tr>
<tr>
<td>Ventilation</td>
<td>1,450</td>
<td>Volume</td>
<td>483</td>
<td>1,280</td>
</tr>
<tr>
<td>Fresh Water</td>
<td>435</td>
<td># Personnel</td>
<td>435</td>
<td>1,153</td>
</tr>
<tr>
<td>Firemain</td>
<td>809</td>
<td>Unchanged</td>
<td>809</td>
<td>2,144</td>
</tr>
<tr>
<td>Handling</td>
<td>106</td>
<td>Unchanged</td>
<td>106</td>
<td>281</td>
</tr>
<tr>
<td>Services</td>
<td>162</td>
<td>Personnel</td>
<td>162</td>
<td>429</td>
</tr>
<tr>
<td>Total</td>
<td>11,773</td>
<td></td>
<td>4,932</td>
<td>13,070</td>
</tr>
</tbody>
</table>

140