Bibliography on Hot Isostatic Pressing (HIP) Technology

B. F. Gilp
P. D. Desai
J. F. Radavich
C. Y. Ho

November 1992

Contract No. DLA900-90-D-0305

Approved for public release: distribution is unlimited.
Title and Subtitle:

Bibliography on Hot Isostatic Pressing (HIP) Technology

Authors:
B. F. Gilp, P. D. Desai, J. F. Radavich, and C. Y. Ho

Performing Organization Name(s) and Address(es):

Metals Information Analysis Center (MIAC)
CINDAS/Purdue University
2595 Yeager Road
West Lafayette, Indiana 47906-1398

Performing Organization Report Number:

MIAC Report 1

Supplementary Notes:

This document is available only from Metals Information Analysis Center (price $95.00)

Abstract:

This report contains an annotated bibliography of 950 documents on the Hot Isostatic Pressing (HIP) Technology dealing with metals, alloys, and intermetallic compounds and covers over 450 materials. Documents published from 1966 to early 1992 are covered. Bibliographic information reported here are divided into three broad categories. The first category includes an annotated bibliography dealing with HIP technology as applied to powder metallurgy. The second category deals with casting and the third deals with miscellaneous materials which either are not properly identified or have a limited number of bibliographic citations. Within each category, bibliographic information is organized according to major alloy groups, e.g., aluminum alloys, beryllium alloys, cobalt alloys, etc., followed by bibliographies for miscellaneous alloys which are alloys either not properly identified or not having enough data to warrant a separate category. Each alloy group is further subdivided into individual commercial alloys, e.g., aluminum alloys AA 2024, AA 7075, AA 7090, etc., followed by miscellaneous aluminum alloys.

Subject Terms:

Bibliography, hot isostatic pressing (HIP), powder metallurgy, castings, metals, alloys, intermetallics, mechanical properties, processing, beryllium alloys, titanium alloys, aluminum alloys, cobalt alloys, refractory alloys, steels.

Number of Pages:

325

Price Code:

UNLIMITED
This MIAC Special Report contains bibliographic information on pertinent documents dealing with hot isostatic processing technology related to metals, alloys, and intermetallics published in the period 1966 to mid-1992.

MIAC is sponsored and administered by the Defense Technical Information Center (DTIC), ATTN: DTIC-AI, Cameron Station, Building 5, Alexandria, Virginia 22304-6145, under the Information analysis Centers Program Management of Dr. Forrest R. Frank currently and Mr. Paul M. Klinefelter previously. MIAC is operated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS), Purdue University, 2595 Yeager Road, West Lafayette, Indiana 47906-1398, under the Defense Logistics Agency (DLA) Contract DLA900-90-D-0305.

MIAC is under the technical direction and monitoring of Mr. Jerome Persh, Staff Specialist for Materials and Structures, Office of the Director of Defense Research and Engineering (Science and Technology), ATTN: ODDR&E (S&T/AT), The Pentagon, Room 3D1089, Washington, DC 20301-3080.

MIAC serves as the DoD's central source of engineering and technical data and research and development information on monolithic metals, metal alloys, intermetallic compounds, and coatings utilized in Defense systems and hardware. Data and information on metal joints, welds, etc. are also covered. Emphasis is placed on those metals, alloys, intermetallic compounds, and coatings used in structural applications and/or in stringent environments.

Subject areas covered by MIAC include metals properties (especially mechanical properties as a function of temperature, and environmental conditions); latest research and development concepts, results, and trends; applications and processing of metals; processing equipment; measurement and testing of metals; test methods; quality control related to metals; corrosion/deterioration detection, prevention and control, and other environmental effects on metals and systems; producers, suppliers, and specifications for metals of concern to the DoD.

MIAC supports the Joint Logistics Commanders/Joint Directors of Laboratories Technology Initiative Panel for Advanced Materials, and provides assistance to or receives guidance from other defense programs and groups as designated by the technical monitor.

One of the authors, J. F. Radavich, is an Associate Professor in the School of Materials Engineering at Purdue University. In addition to MIAC staff who are listed on the cover of this report, MIAC staff Josephine C. F. Chen, Tanya Eurit, Pearnel Wilson, Kris Tomlinson, Greg Wood, and James Payne also contributed to the preparation of this report.
TABLE OF CONTENTS

PREFACE .. iii

INTRODUCTION ... 1

ASSESSMENT AND FUTURE TRENDS OF HIP TECHNOLOGY ... 3

ORGANIZATION ... 7

ANNOTATED BIBLIOGRAPHY ... 9

1. POWDER METALLURGY ... 9

 Aluminum Alloys ... 11
 AA 2024 ... 11
 AA 7075 ... 11
 AA 7090 ... 14
 AA 7091 ... 14
 Miscellaneous Aluminum Alloys .. 15

 Beryllium and Beryllium Alloys .. 21
 Beryllium ... 21
 Beryllium Alloys .. 27

 Cobalt Alloys .. 31
 MAR-M509 .. 31
 Stellite 6 .. 32
 X-40 ... 33
 Miscellaneous Cobalt Alloys ... 34

 Iron Alloys ... 37
 A-286 ... 37
 AISI 316 .. 37
 AISI 4340 .. 39
 M-2 ... 39
 MA 956 .. 40
 MAR-M250 .. 42
 Maraging 300 ... 42
 T-15 ... 44
 Miscellaneous Stainless Steels ... 46
 Miscellaneous Steels ... 48
 Miscellaneous Iron Alloys ... 55

 Nickel Alloys ... 57
 AF 115 .. 57
 AF2-1DA ... 59
 Alloy 713 ... 60
 Hastelloy X .. 61
 Haynes 8077 .. 62
 IN-100 ... 63
2. CASTINGS ... 175

Aluminum Alloys

AA A201 .. 177
AA A357 .. 178

Miscellaneous Aluminum Alloys ... 179

Molybdenum Alloys ... 169

Niobium and Niobium Alloys ... 170

Tantalum and Tantalum Alloys .. 171

Tungsten and Tungsten Alloys .. 171

Miscellaneous Powder Alloys .. 173

2. CASTINGS ... 175

Aluminum Alloys

AA A201 .. 177
AA A356 .. 177
AA A357 .. 178

Miscellaneous Aluminum Alloys ... 179

Titanium and Titanium Alloys .. 129

Titanium .. 129
Corona-5 .. 130
Ti-5Al-2.5Sn ... 131
Ti-6Al-2Sn-4Zr-2Mo ... 131
Ti-6Al-2Sn-4Zr-6Mo ... 132
Ti-6Al-4V .. 133
Ti-6Al-6V-2Sn ... 150
Ti-10V-2Fe-3Al ... 153

Miscellaneous Titanium Alloys .. 154

Intermetallic Compounds .. 159

Ni₃Al .. 159
NiAl .. 160
Ti₃Al .. 161
TiAl .. 162

Miscellaneous Intermetallic Compounds .. 164

Refractory Metals and Alloys .. 169

Molybdenum Alloys .. 169

Niobium and Niobium Alloys ... 170

Tantalum and Tantalum Alloys .. 171

Tungsten and Tungsten Alloys .. 171

Miscellaneous Powder Alloys .. 173

2. CASTINGS ... 175

Aluminum Alloys

AA A201 .. 177
AA A356 .. 177
AA A357 .. 178

Miscellaneous Aluminum Alloys ... 179

Titanium and Titanium Alloys .. 129

Titanium .. 129
Corona-5 .. 130
Ti-5Al-2.5Sn ... 131
Ti-6Al-2Sn-4Zr-2Mo ... 131
Ti-6Al-2Sn-4Zr-6Mo ... 132
Ti-6Al-4V .. 133
Ti-6Al-6V-2Sn ... 150
Ti-10V-2Fe-3Al ... 153

Miscellaneous Titanium Alloys .. 154

Intermetallic Compounds .. 159

Ni₃Al .. 159
NiAl .. 160
Ti₃Al .. 161
TiAl .. 162

Miscellaneous Intermetallic Compounds .. 164

Refractory Metals and Alloys .. 169

Molybdenum Alloys .. 169

Niobium and Niobium Alloys ... 170

Tantalum and Tantalum Alloys .. 171

Tungsten and Tungsten Alloys .. 171

Miscellaneous Powder Alloys .. 173

2. CASTINGS ... 175

Aluminum Alloys

AA A201 .. 177
AA A356 .. 177
AA A357 .. 178

Miscellaneous Aluminum Alloys ... 179
Beryllium and Beryllium Alloys ... 183
Cobalt Alloys .. 185
 MAR-M509 ... 185
 X-40 ... 186
 Miscellaneous Cobalt Alloys .. 186
Iron Alloys ... 189
 17-4PH ... 189
 AISI 4340 ... 189
 MA 956 .. 190
 Miscellaneous Stainless Steels .. 191
 Miscellaneous Steels ... 193
 Miscellaneous Iron Alloys .. 195
Nickel Alloys ... 197
 Alloy 713 .. 197
 B-1900 .. 198
 Hastelloy X .. 199
 IN-100 ... 201
 IN-738 ... 205
 IN-792 ... 210
 IN-939 ... 212
 Incoloy 901 ... 213
 Inconel 625 .. 214
 Inconel 718 .. 215
 Inconel X-750 .. 218
 MAR-M002 ... 219
 MAR-M200 .. 220
 MAR-M246 .. 222
 MAR-M247 .. 222
 MERL 76 .. 223
 Nimonic 90 .. 224
 Nimonic 105 ... 225
 Nimonic 115 ... 226
 PWA 1480 .. 227
 René 80 ... 228
 René 95 .. 229
 René 120 ... 232
 René 150 ... 233
 Udiment 500 .. 234
 Udiment 700 .. 235
 Waspaloy ... 239
 Miscellaneous Nickel Alloys .. 240
Titanium and Titanium Alloys .. 247
 Titanium ... 247
 Ti-6Al-2Sn-4Zr-2Mo .. 247
 Ti-6Al-2Sn-4Zr-6Mo .. 248
 Ti-6Al-4V .. 249
Hot isostatic pressing (HIP) uses a combination of elevated temperature and an inert gas pressure and is carried out in pressure vessels containing internal furnaces. HIP was invented by Sailer et al. 37 years ago at Battelle Columbus Laboratories. An early Battelle report on Hot Isostatic Pressing, by Hanes et al. [1], was first issued in 1977. This report covered the history of HIPping, manufacturing systems, and studies of HIPping applications in the areas of castings, powder consolidation, and rejuvenation of used components. A more recent report in 1982 by Clauer et al. [2] reviewed more recent research dealing with the same subjects covered in the first report. Such studies confirmed the positive benefits of HIPping in a wide range of material compositions. The period of 1972-1982 in the field of HIPping may be considered as the decade of experimentation and confirmation of HIPping as a viable process to be used in the production of material components.

An important short coming of the report was the lack of information on the understanding of the metallurgical reactions which take place during the HIP process. The majority of research results focused on the closure of porosity as it affected mainly LCF and ductility. Many possible structural responses can occur when complex cast superalloys are heated in a temperature range of 1875°F to 2400°F for periods of two to four hours.

It is well known that superalloys have a wide solidification temperature range, i.e. the temperature difference between the liquidus and solidus. As the molten metal slowly solidifies, large grains and primary carbides nucleate and grow while at the same time the larger alloying elements diffuse slowly and segregate in the interdendritic regions. External and internal porosity results when the last liquid cannot fill the intertices.

The presence of surface connected porosity in the large castings prohibits internal porosity closure. Various methods of bridging over the surface porosity prior to HIPping have been tried, but a good coating method is still being sought. Perhaps, new coatings such as new boron nitride lubricant paints may provide a solution to this problem.

The HIP process can close internal casting porosity provided the proper temperature, pressure, and time conditions are selected. At the same time porosity closure is taking place, a certain degree of chemical homogenization is also taking place. However, there are undesirable reactions which can occur depending on the alloy composition. When the HIP temperature is too high, segregated areas are prone to incipient melting which cannot be rectified by thermal treatments. Another detrimental reaction is the breakdown of primary carbides and possible subsequent formation of continuous grain boundary carbide films and resultant embrittlement. In high boron content alloys, borides can also be solutioned and re-precipitated at grain boundaries. In Hf modified superalloys, the Hf can lose its beneficial effect by the formation of HfC.

It has been the authors' observation that when the as-cast gamma prime (γ') phase (the main strengthener in superalloys) is solutioned by high temperatures such as in a HIP process, the reprecipitated γ' phase due to post HIP heat treatments does not have the same composition as the as-cast γ'. The effects on mechanical properties due to the changes in such γ' are overshadowed by the positive improvements in mechanical properties with porosity closure. γ' effects on mechanical properties may be more evident in second generation HIP processing, i.e., first HIP of castings to close porosity and second HIP to rejuvenate properties.
One summation of HIP temperatures, pressures, and times for various superalloys is given by Bouse and Mihalisin [3]. They, too, caution the use of one blanket set of HIP parameters for different alloys without preliminary studies.

The uses of powders in components for high temperature service are mainly for disks and in dual alloy configurations. Powder materials are consolidated by either HIP, extrusion, and/or HIP plus forging/extrusion. Powder compacts exhibit fine grain structures and are more homogeneous in composition than cast/wrought products. The fine grain nature of consolidated powder components makes them suitable for low temperature applications like turbine disks.

Two disadvantages of the powder components are higher costs associated with powder production and the possibility of oxide inclusions being present which act as crack initiation sites for LCF failures. To overcome the problem with oxide inclusions, powder atomization processes are being developed which eliminate or replace the use of ceramic nozzles.

In the field of high temperature materials, HIP rejuvenation is now accepted as a viable method for reclaiming components which otherwise would be scrapped. Engine run components suffer from varying degrees of creep voids, internal cracking, and structural degradation. Used components which still meet all design specifications can be HIP rejuvenated by proper selection of HIP parameters and proper post HIP heat treatments to regenerate mechanical properties. Those blades which suffer from only long time structural degradation can be easily rejuvenated by thermal treatments. Successful use of HIP rejuvenation saves critical elements, reduces cycle replacement time, reduces costs, and saves on energy.

References

ASSESSMENT AND FUTURE TRENDS OF HIP TECHNOLOGY

HIP technology is currently a very mature technology and is being used to consolidate powders of all types, close casting porosity, promote weld integrity, rejuvenate used turbine blades and vanes, etc. After the high cost of HIP equipment, the greatest consideration or deterrent for use of HIPping of materials is the high cost of the cycle time. As the number of parts per HIP run is increased, the cost per unit decreases, but with the need to HIP large castings, the cost per unit remains very high.

A summary of the research activities in the HIP technology for powder and cast components is presented in the following table.

Summary of Research Activities in HIP Technology for Powder and Cast Components

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>6 (0)</td>
<td>6 (0)</td>
<td>4 (0)</td>
<td>21 (2)</td>
<td>8 (7)</td>
<td>3 (3)</td>
<td>54</td>
</tr>
<tr>
<td>Beryllium</td>
<td>3 (0)</td>
<td>23 (0)</td>
<td>26 (0)</td>
<td>8 (0)</td>
<td>3 (0)</td>
<td>0 (0)</td>
<td>63</td>
</tr>
<tr>
<td>Cobalt</td>
<td>0 (0)</td>
<td>11 (2)</td>
<td>4 (2)</td>
<td>7 (2)</td>
<td>3 (3)</td>
<td>2 (0)</td>
<td>36</td>
</tr>
<tr>
<td>Iron</td>
<td>0 (0)</td>
<td>11 (5)</td>
<td>26 (5)</td>
<td>37 (13)</td>
<td>15 (7)</td>
<td>10 (1)</td>
<td>130</td>
</tr>
<tr>
<td>Nickel</td>
<td>0 (0)</td>
<td>25 (4)</td>
<td>72 (37)</td>
<td>84 (61)</td>
<td>41 (53)</td>
<td>5 (7)</td>
<td>389</td>
</tr>
<tr>
<td>Refractories</td>
<td>0 (0)</td>
<td>3 (2)</td>
<td>1 (0)</td>
<td>4 (1)</td>
<td>5 (0)</td>
<td>3 (0)</td>
<td>19</td>
</tr>
<tr>
<td>Titanium</td>
<td>0 (0)</td>
<td>11 (1)</td>
<td>34 (27)</td>
<td>84 (35)</td>
<td>47 (21)</td>
<td>5 (0)</td>
<td>265</td>
</tr>
<tr>
<td>Intermetallics</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (0)</td>
<td>5 (2)</td>
<td>17 (4)</td>
<td>42 (3)</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>3 (0)</td>
<td>90 (14)</td>
<td>168 (71)</td>
<td>250 (116)</td>
<td>139 (95)</td>
<td>70 (14)</td>
<td>1,030</td>
</tr>
</tbody>
</table>

* Number in parentheses are for cast components.
The major thrust of the research in the early to mid-Seventies was to use beryllium to fabricate structural materials by HIPing. Attempts to develop cast and wrought beryllium products resulted in limited commercial success. Powder metallurgy techniques have been used to fabricate components for structural applications. Since beryllium is a relatively expensive material, most of the efforts were on the other cost cutting measures such as machining costs, scrap losses, and development of net shape components. However, interest in using HIPing technology for commercial fabrication of structural components slowly diminished which is evident from the number of documents published in the Eighties. Research activities in this decade were concentrated on nickel (and to a lesser extent, iron) superalloys and titanium alloys. The relative ease to produce near net shape components was the driving force behind acceptance of superalloys. Interests in the intermetallic alloys have increased significantly in the late Eighties and early Nineties.

Superalloys

Large Structural Castings

The development of new aircraft engines requires larger and more complex structural castings. It is estimated that the use of castings will increase by a factor of four before 1994 and the use of castings greater than 40 inches will increase even more substantially.

Currently, large structural components, such as engine cases, rings, frames, and supports, are made of various cast and wrought pieces joined together by welding and/or brazing. If extensive welding is required, distortion, increased costs, and long cycle times result.

An example of one such structural component is the CF6-80A turbine frame made of alloy 718 and weighing over 150 Kg (330 lb.) and 135 cm (53.15 in.) diameter with 61 separate pieces of varying wall thicknesses which must be joined by welding. By producing this component as a single casting, cycle time and distortion is greatly reduced and a $20,000 cost reduction is realized.

Large structural castings are also being made of newer cast alloys such as René-220C, GTD-222, René-108 and IN-939. The trend is to go to Ni base superalloys for higher temperature applications and greater oxidation/sulphidation resistance. However, the structural responses to high temperature thermal treatments like welding repair, HIP, and longtime service needs to be characterized.

In order to successfully HIP fine grain components without grain growth, the HIP temperatures must be lower and the pressures higher. The HIP parameters selected must close porosity, minimize grain growth, and partially homogenize segregation. Generally, fine grain castings are given preHIP thermal treatments to help reduce segregation so as to minimize potential incipient melting.

At this same time, casting vendors have developed new casting techniques to produce fine grains and incorporating a HIP step to close porosity. Advances in wax and mold technologies coupled with the use of robotics for dipping large molds made possible production of large structural castings. Two fine grain casting processes, Grainex and Microcast-X have been developed by the Howmet Corporation, as well as a fine grain process by Precision Castparts.

Two main problems exist in the HIPing of large castings. The first problem is that larger HIP furnaces are required to accommodate the larger structural castings of the future. Currently, HIP furnace manufacturers are developing or have developed furnaces with hot zones up to 60 inches in diameter.

The second critical problem in HIPing is that the cycle time for a HIP run is too long. Because the long cool down in the HIP furnace produces undesirable structures, a post HIP solution heat treatment is necessary before final aging can take place to develop the mechanical properties. Two procedures are currently being explored to reduce cycle time. One method involves the cooling of the pressurizing gas by
external heat exchangers. A process to do this has been developed by ABB Autoclave Systems, Inc. which is called "HIP Quenching." The other method is to cool the pressurizing gas by introduction of cool gas. Both methods are promising but the critical factor is whether the material can be cooled uniformly.

Quick HIP

A recent development to reduce cycle time is a process called Quick HIP. In this process the material is first heated externally to the HIP furnace and then given a quick HIP at high pressures in a pressurized furnace. This technology would reduce the heating and cooling part of the conventional HIP cycle. This is still in the experimental stages for this technology.

Cast Turbine Blades

During the decade of 1982-1992, equiaxed and D. S. turbine blades were being routinely HIPped to close casting porosity. Since most of the blade components are large grain structures, grain growth during HIPping is not a problem. However, in the case of single crystal blades, closure of casting porosity at high temperatures may be accompanied by the formation of areas of small recrystallized grains which are unacceptable for high temperare operation. Opinions are divided over whether to HIP single crystals due to the possibility of producing recrystallized grains; however, more single crystal blades are being HIPped without encountering the recrystallization effect. Since the HIP temperature controls the tendency for the recrystallization process, HIPping of single crystal blades should be done at the lowest possible HIP temperature for porosity closure.

Turbine Disks

Currently some turbine disks are made of powder but the majority of disks are small grain wrought products. Materials being considered for disk applications are conventional alloys but subsolvus (gamma prime) processed to retain fine grain structures. However, when these materials are subsolvus processed, the yield of the final component is so low that the resultant high material cost makes powder disks of the same composition very competitive.

HIP rejuvenation studies of used wrought turbine disks have been unsuccessful since the high temperatures involved in the HIP process produces large grain growth. This would make such disks unacceptable for low temperature applications. However, used powder turbine disks might be amenable to HIP rejuvenation since fine grains in powder components resist grain growth to a much higher temperature than their wrought counterparts.

Titanium Alloys

The strength to density ratio of titanium alloys coupled with their fracture toughness and fatigue properties make them attractive for aeronautical and space applications. First Ti-6Al-4V and later Ti-6Al-2Sn-4Zr-2Mo were used in early gas turbine engines but as the operating temperature increased these were replaced with nickel superalloys. In advanced gas turbine engines, titanium alloys are used mainly as compressor discs and fan blades. Today titanium alloys are more important as structural materials for modern warplanes and spacecraft.

Research on HIPping of titanium alloys focused mainly on fabrication of powder components and near net shape forming. These processes make titanium alloys more economical by increasing low temperature strength and while limiting scrap material and machining cost. This was demonstrated by using P/M near net shaped Ti-6Al-6V-2Sn for fuselage braces on the navy F-14A. Also investigated was increasing the performance of titanium castings as well as repair and rejuvenation of used titanium castings. HIPping of
titanium castings can close cracks and remove the porosity thus increasing the strength and fatigue life. HIPing is essential for castings that are to be machined or welded.

Intermetallics

The main advantages of intermetallic alloys over conventional alloys for high temperature structural applications are high melting points, low density, good high temperature strength and oxidation resistance. While the major disadvantages have been room temperature ductility and fabrication, pursued mainly as aircraft turbine engine materials, the aluminides and silicides have shown the most promise. Particularly, monolithic as well as composites of TiAl, Ti₃Al, Ti₂AlNb, NiAl and MoSi₂ have been considered for both compressor blades, vanes, discs and shafts and turbine blades, discs and nozzles.

Other intermetallic alloys, most noticeably Fe₃Al and Ni₃Al, are already in use as or are being tested for applications such as dies for Fe-B-Nd automotive magnets, automotive turbocharger rotors, roller bearings, hydroturbines and feed water pumps with improved cavitation erosion resistance, heating elements for toasters and clothes dryers, hot gas filters for coal gassification systems and coatings for oxidation and sulfidation resistance.

Recommendations

It is an accepted fact that porosity closure of castings reduces the amount of materials scrapped, but care should be exercised to reject any trend to lower the initial high quality of materials on the premise that HIPing will make poor quality materials good.

In the future more emphasis should be placed on the re-use of engine run components by application of the HIP rejuvenation technologies. In addition, ongoing structural studies coupled with HIP cycles need to be carried out on newer and more complicated cast alloys which are being considered for long time operation at increasingly higher temperatures.
ORGANIZATION

The Bibliography on Hot Isostatic Pressing (HIP) Technology presented here is concerned with HIP of unalloyed metals, metal alloys, and intermetallic compounds. Most of the literature cited deals with structural materials and/or materials designed to perform at high temperatures. The emphasis is placed on HIP techniques, microstructural changes, and effects on creep, fatigue, corrosion, and mechanical properties.

This bibliography contains 950 individual citations published from 1966 to mid-1992 and covers over 450 different materials organized on three hierarchical levels. The first level is the material processing (powder metallurgy, casting, or miscellaneous); the second is material class (nickel alloys, aluminum alloys, intermetallic compounds, and so forth); and the third is the specific alloy (Udimet 700, NiAl, Ti-6Al-4V, and so forth). Within each level, a miscellaneous category contains either undefined materials or specific materials for which there were insufficient entries to warrant a separate category.

The miscellaneous category in the first level contains all materials that could not be properly identified either as powder metallurgy or cast materials. This section also includes citations on HIP equipment, computer simulations, or theoretical models. In the second level, the miscellaneous category includes citations on material classes that do not warrant separate sections and citations that specify the processing condition but not the material class. For example, the "Powder Metallurgy/Miscellaneous" section may include a citation with information on ball milled material without detailing material class as well as a citation for powder metallurgy Mg-5Li-5Si alloy. At the innermost or third level, the miscellaneous category contains those specific materials with only a few citations and materials referred to by material class only. A citation, for example, on cast aluminum alloys which does not specify alloy type would be found in the section for "Cast Materials/Aluminum Alloys/Miscellaneous Materials," along with a citation on cast AA 6061 which has only a few citations. A complete alphabetical list of materials covered in this report, with the pages on which they appear, is included at the end of the report under "MATERIALS LIST." An alphabetical list of the most common keywords is also included in the "INDEX TERMS."

This report is organized so that each section is complete and self-contained. This means that a given citation is listed more than once whenever the cited work covers more than one material. An entry for a journal article on the "Microstructure and Property Improvements in 7075 and 8090 Aluminum Alloys by Spray Forming" will be cited in the section for AA7075 and also will be repeated in the section for AA8090. An entry for a report on the "Mechanical Property Difference Between HIP Powder Metallurgy and HIP Cast Ti-6Al-4V" will be cited in the "Powder Metallurgy" section as well as in the "Castings" section for that material. By organizing the report in this fashion, cross referencing is eliminated: all pertinent entries are listed under every area of coverage, and only the area or areas of interest need to be searched to find the needed information. Citations in each section are listed in reverse chronological order. This should make searches quicker and more efficient.

For alloys that have different commercial designations but the same/similar composition, and are therefore considered the same material, a list of those encountered in the report appears below:

1. Udimet 700, Astroloy, APK1, Nimonic AP1, Rene' 77
2. MA753, IN-853
3. C-103, WC-103
4. Alloy 454, PWA 1480
5. Mar-M250, Maraging (250)
6. Rene 150, PA 101 (low C)
7. Inconel 718, IN-718, Pyromet 718
8. X-40, X-45 (low C)
9. Maraging 300, Vascomax 300
10. HP 9-4-20 steel, 9Ni-4Co
11. A-286, JBK-75
12. IN-100, Rene' 100

To facilitate document acquisition, the appropriate identification numbers are provided: the Defense Technical Information Center (DTIC) AD- number; Department of Defense (DoD) or NASA report number, for government sponsored reports; corporate report number, for items that do not have a government report number; the contract number, when a report number is not available. For reports produced outside of North America, an NTIS number, if available, is cited instead of a report or contract number.
ANNOTATED BIBLIOGRAPHY

1. Powder Metallurgy
ALUMINUM ALLOYS

AA 2024

1. Modern Powder Metallurgy Science and Technology
Lawley, A.
J Met 38 (8), 15-25, 1986 (AD-D136 435)
Key Words: NiAl, IN-100, MAR-M509, RENE’ 95, AA 2024-T6, consolidation, REP, tensile properties, impact toughness

2. Aluminum Powder Metallurgy Technology for High Strength Applications
Pickens, J. R.
J Mater Sci 16 (6), 1437-57, 1981 (AD-D121 608)
Key Words: AA 3003, AA 5083, AA 2024-T4, AA 7075-T6, AA 2024-T3510, AA 7075-T6510, MA67, MA87, IN9051, AA 7075-T73, AA 7475-T651, AA 7475-T7351, AA 7050-T3651, AA 7050-T651, AA 7050-T7351, AA 2124-T851, Al-4Ti, Al-8Fe, degassing, tensile properties, fatigue, fracture toughness, stress corrosion

3. Structure and Property Control through Rapid Quenching of Liquid Metals
Grant, N. J., Pelloux, R. M., Flemings, M. C., Argon, A. S.
Massachusetts Institute of Technology, Center for Materials Science and Engineering, Cambridge, MA
Contract No: DAHC15-70-C-0283, 411 pp., 1973 (AD-775 225)
Key Words: AA 7075, AA 2024, AISI 1045, IN-100, MAR-M509, Maraging 300, tensile properties

4. Liquid-Metal Atomization for Hot Working Preforms
Grant, N. J., Pelloux, R. M.
Massachusetts Institute of Technology, Department of Metallurgy and Materials Science, Cambridge, MA
Key Words: AA 2024-T4, IN-100, MAR-M509, atomization, silicon addition, hafnium addition, tensile properties, fatigue, segregation

5. Specialty Methods of Powder Atomization
Grant, N. J.
Massachusetts Institute of Technology, Cambridge, MA
Proc 18th Sagamore Army Materials Research Conf, Sagamore Conference Center, Raquette Lake, NY, Aug-Sept 71, 13 pp., 1971 (AD-181 533)
Key Words: IN-100, Maraging 300, 18/8 stainless, AA 2024, X-45, AISI 316, REP, microstructure, ultrasonic testing, fatigue, tensile properties

AA 7075

1. Microstructural and Property Improvements in 7075 and 8090 Aluminum Alloys by Spray Forming
Lewis, R. E., Davinroy, Al T., Kaufman, M. J.
Metal Powder Industries Federation, Princeton, NJ
Proc Symp P/M in Aerospace and Defense Technologies 185-92, 1991
Key Words: AA 7075, AA 8090, properties improvements, spray forming, tensile properties, fracture toughness
2. Recent R & D of Aluminum Alloys for Aircraft Applications-- Part 3, Powder Metallurgy Alloys
Yamauchi, S.
Sumitomo Light Metal Technical Reports 29 (1), 69-81, 1988 (AD-D138 979)
Key Words: AA 7091, AA 7090, AA 7064, AA 7075, AA 7050, mechanical alloying, tensile properties, fatigue, fracture toughness

3. Advanced Processing and Properties of High Performance Alloys
Koss, D. A.
Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA
Technical Report Number Six
Contract No: N00014-86-K-0381
41 pp., 1987 (AD-A183 566)
Key Words: titanium, Ti-10Al, AA 7075, AA 1100, erbium addition, porosity, voids, rapid solidification, fatigue, deformation, fracture mechanics

4. Advanced Processing and Properties of High-Performance Alloys
Koss, D. A.
Department of Metallurgical Engineering, Michigan Tech University, Houghton
Technical Report Number Four
Contract No: N00014-85-K-0427
19 pp., 1986 (AD-A167 404)
Key Words: Ti-6Al-4V, AA 7075-T6, AA 1100, AISI 316, fabrication, rapid solidification

5. Advanced Processing and Properties of High-Performance Alloys
Koss, D. A.
Department of Metallurgical Engineering, Michigan Tech University, Houghton
Annual Technical Report Number Three
Contract No: N00014-85-C-0037
19 pp., 1985 (AD-A163 469)
Key Words: Ti-6Al, AA 7075-T6, AA 1100, tensile properties, fatigue, rapid solidification

6. Deformation and Fracture of P/M (Powder/Metallurgy) Titanium Alloys
Koss, D. A.
Department of Metallurgical Engineering, Michigan Tech University, Houghton
Annual Technical Report Number Twenty Seven
Contract No: N00014-76-C-0037
26 pp., 1984 (AD-A148 672)
Key Words: Ti-6Al-4V, AA 7075-T6, porosity, hydrogen embrittlement, tensile properties, fracture

7. Mechanical Property Microstructure Relationships in Alloys
Eylon, D., Kim, Y. W.
Metcut Research Associates Inc., Materials Research Group, Wright-Patterson AFB, OH
Final Report Sep 79-Jan 83
Rept No: AFWAL-TR-83-4131, 54 pp., 1983 (AD-D139 731L)
Key Words: Ti-6Al-4V, AA 7091, IN9051, AA 7075, turbine components, tensile properties, fatigue, bending

8. Forging Technologies for the Aerospace Industry
Gold, R.
Precis Met 40 (11), 81-4, 1982 (AD-D126 118)
Key Words: AA 7075, AA X7090, AA X7091, Boeing 757, aircraft structures, net shape forming
9. **Rapid Solidification of Metallic Particulates**
Grant, N. J.
Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, MA
Contractor Report
Rept No: NASA-CR-169070, 16 pp., 1982 (AD-D126 287)
Key Words: Udiment 700, AA 7075, stainless steel, maraging steel, tensile properties, microstructure, splat quenching

10. **Rapidly Solidified (RS) Aluminum Alloys-Status and Prospects**
Author Anon
National Materials Advisory Board (NAS-NAE), Washington DC
Final Report
Rept No: NMAB-368, 130 pp., 1981 (AD-B058 007L)
Key Words: AA 7475, MA67, MA87, AA 2124, AA 7075, extrusion, rapid solidification, dendrite structure

11. **RSR-A Frontier in Materials**
Tortolano, F. W.
Design News 37 (8), 34-6, 1981 (AD-D121 254)
Key Words: AA 7075-T6, AA 2014, turbine components, creep rupture, tensile properties, fatigue, rapid solidification, cost

12. **Aluminum Powder Metallurgy Technology for High Strength Applications**
Pickens, J. R.
J Mater Sci 16 (6), 1437-57, 1981 (AD-D121 608)
Key Words: AA 3003, AA 5083, AA 2024-T4, AA 7075-T6, AA 2024-T3510, AA 7075-T6510, MA67, MA87, IN9051, AA 7075-T73, AA 7475-T651, AA 7475-T7351, AA 7050-T651, AA 7050-T651, AA 7050-T7351, AA 2124-T851, AI-4Ti, AI-8Fe, degassing, tensile properties, fatigue, fracture toughness, stress corrosion

13. **Powder Metallurgy Production Processes**
Clark, L. P.
AGARD Structures and Materials Panel, 18 pp., 1974 (AD-D102 694)
Key Words: IN-100, AA 7075-T6, IN-792, Ti-6Al-4V, turbine components, nondestructive testing

14. **Structure and Property Control through Rapid Quenching of Liquid Metals**
Grant, N. J., Pelloux, R. M., Flemings, M. C., Argon, A. S.
Massachusetts Institute of Technology, Center for Materials Science and Engineering, Cambridge, MA
Final Technical Report
Contract No: DAHC15-70-C-0283
411 pp., 1973 (AD-775 225)
Key Words: AA 7075, AA 2024, AISI 1045, IN-100, MAR-M509, Maraging 300, tensile properties

15. **Structure and Property Control Through Rapid Quenching of Liquid Metals**
Grant, N. J., Pelloux, R. M., Flemings, M. C., Argon, A. S.
Massachusetts Institute of Technology, Center for Materials Science and Engineering, Cambridge, MA
Semianual Technical Report Number Four, Jan-Jul 1972
Contract No: DAHC15-70-C-0283
140 pp., 1972 (AD-749 679)
Key Words: AA 7075, IN-100, MAR-M509, AISI 1045, Maraging 300, microstructure, fractography, tensile properties
16. **Equipment for Hydrostatic Pressing of Metal Powders**
 Boyer, C. B., Peterson, J. H., Orcutt, F. D.
 Battelle Memorial Institute, Columbus, OH
 Proc 27th National Conf on Fluid Power, Chicago, IL, Oct. 71
 34 pp., 1971 (AD-181 509)
 Key Words: AA 7075, sintering, hot rolling, hot forging

AA 7090

1. **Recent R & D of Aluminum Alloys for Aircraft Applications-- Part 3, Powder Metallurgy Alloys**
 Yamauchi, S.
 Sumitomo Light Metal Technical Reports 29 (1), 69-81, 1988 (AD-D138 979)
 Key Words: AA 7091, AA 7090, AA 7064, AA 7075, AA 7050, mechanical alloying, tensile properties, fatigue, fracture toughness

2. **Powder Metallurgy of Light Metal Alloys for Demanding Applications**
 Froes, F. H., Pickens, J. R.
 Air Force Wright Aeronautical Labs, Wright-Patterson AFB, OH
 Met Rept No: AFWAL-TR-84-4084, 36 (1), 18 pp., 1984 (AD-A142 066)
 Key Words: AA 7090, AA 7091, Ti-6Al-4V, rapid solidification, mechanical attritioning, tensile properties

3. **Powder Metallurgy Gaining Trust of Aero Designers**
 Wigotsky, V.
 Aerospa Amer 22 (3), 90-4, 1984 (AD-D129 541)
 Key Words: Ti-6Al-4V, RENE' 95, AA 7090, AA 7091, Al-8Fe, turbine components, shear properties, compressive properties, net shape forming

4. **The New Frontiers of Powder Metals**
 Vaccari, J. A.
 Amer Mach 127 (5), 121-36, 1983 (AD-D127 193)
 Key Words: AA 7090, AA 7091, IN9052, Ti-6Al-4V, Monel 400, Inconel 600, RENE' 95, Cb291, Udimet 700, IN-100, AF-115, Inconel 625, net shape forming, injection molding, applications, forging

5. **Forging Technologies for the Aerospace Industry**
 Gold, R.
 Precis Met 40 (11), 81-4, 1982 (AD-D126 118)
 Key Words: AA 7075, AA X7090, AA X7091, Boeing 757, aircraft structures, net shape forming

AA 7091

1. **Recent R & D of Aluminum Alloys for Aircraft Applications-- Part 3, Powder Metallurgy Alloys**
 Yamauchi, S.
 Sumitomo Light Metal Technical Reports 29 (1), 69-81, 1988 (AD-D138 979)
 Key Words: AA 7091, AA 7090, AA 7064, AA 7075, AA 7050, mechanical alloying, tensile properties, fatigue, fracture toughness
2. Powder Metallurgy of Light Metal Alloys for Demanding Applications
Froes, F. H., Pickens, J. R.
Air Force Wright Aeronautical Labs, Wright-Patterson AFB, OH
Final Report
Met Rept No: AFWAL-TR-84-4084, 36 (1), 18 pp., 1984 (AD-A142 066)
Key Words: AA 7090, AA 7091, Ti-6Al-4V, rapid solidification, mechanical attritioning, tensile properties

3. Powder Metallurgy Gaining Trust of Aero Designers
Wigotsky, V.
Aerospa Amer 22 (3), 90-4, 1984 (AD-D129 541)
Key Words: Ti-6Al-4V, RENE’ 95, AA 7090, AA 7091, Al-8Fe, turbine components, shear properties, compressive properties, net shape forming

4. Mechanical Property Microstructure Relationships in Alloys
Eylon, D., Kim, Y. W.
Metcut Research Associates Inc., Materials Research Group, Wright-Patterson AFB, OH
Final Report Sep 79-Jan 83
Rept No: AFWAL-TR-83-4131, 54 pp., 1983 (AD-D139 731L)
Key Words: Ti-6Al-4V, AA 7091, IN9051, AA 7075, turbine components, tensile properties, fatigue, bending

5. The New Frontiers of Powder Metals
Vaccari, J. A.
Amer Mach 127 (5), 121-36, 1983 (AD-D127 193)
Key Words: AA 7090, AA 7091, IN9052, Ti-6Al-4V, Monel 400, Inconel 600, RENE’ 95, Cb291, Udimet 700, IN-100, AF-115, Inconel 625, net shape forming, injection molding, applications, forging

6. Forging Technologies for the Aerospace Industry
Gold, R.
Precis Met 40 (11), 81-4, 1982 (AD-D126 118)
Key Words: AA 7075, AA X7090, AA X7091, Boeing 757, aircraft structures, net shape forming

Miscellaneous Aluminum Alloys

1. Preservation of the Metastable Microstructure of Rapidly Solidified Aluminum-Lithium Powder and its Hot Densification
Chen, Z., Jiang, X., Wang, Y., Zhou, D., Huang, P.
Zhongnan Kuangye Xueyuan Xuebao 22 (1), 65-73, 1991
Key Words: Al-2.52Li-1.6Cu-1.2Mg-0.2Zr, rapid solidification, microscopy, microstructure

2. Microstructural and Property Improvements in 7075 and 8090 Aluminum Alloys by Spray Forming
Lewis, R. E., Davinroy, Al T., Kaufman, M. J.
Metal Powder Industries Federation, Princeton, NJ
Proc Symp P/M in Aerospace and Defense Technologies 185-92, 1991
Key Words: AA 7075, AA 8090, properties improvements, spray forming, tensile properties, fracture toughness
3. Fabrication of the D0(22)-Type Intermetallic Compound Al3Ta via Powder Metallurgy Processes and its Characterization
Pak, H. R., Pak, J. S. L., Rigsbee, J. M., Wayman, C. M.
Mater Sci Eng A A128 (1), 129-39, 1990 (AD-D144 120)
Key Words: Al3Ti, aluminum, tantalum, crystal structure, lattice parameters, phase diagram, density, dislocations, grain boundaries, deformation, fabrication

4. Electrochemical Study on HIP Treated Al-Zn-Mg P/M Alloys
Inque, T., Oki, T.
J Jpn Inst Light Metals 39 (12), 907-11, 1989 (AD-D142 902)
Key Words: aluminum alloys, zinc addition, magnesium addition, corrosion, hardness, passivation current

5. Recent R & D of Aluminum Alloys for Aircraft Applications-- Part 3, Powder Metallurgy Alloys
Yamauchi, S.
Sumitomo Light Metal Technical Reports 29 (1), 69-81, 1988 (AD-D138 979)
Key Words: AA 7091, AA 7090, AA 7064, AA 7075, AA 7050, mechanical alloying, tensile properties, fatigue, fracture toughness

6. Production, Compaction and Application of Metal Powders
Kawai, N., Honma, K., Takigawa, H., Iwai, K., Hirano, M.
Met Powder Rept 43 (1), 21-5, 1988 (AD-D139 117)
Key Words: 300M, Waspaloy, Inconel 718, AA 2218, AA 2219, AA 2618, AISI 52100, atomization, rapid solidification, tensile properties, net shape forming

7. Advanced Processing and Properties of High Performance Alloys
Koss, D. A.
Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA
Technical Report Number Six
Contract No: N00014-86-K-0381
41 pp., 1987 (AD-A183 566)
Key Words: titanium, Ti-10Al, AA 7075, AA 1100, erbium addition, porosity, voids, rapid solidification, fatigue, deformation, fracture mechanics

8. Advanced Processing and Properties of High-Performance Alloys
Koss, D. A.
Department of Metallurgical Engineering, Michigan Tech University, Houghton
Technical Report Number Four
Contract No: N00014-85-K-0427
19 pp., 1986 (AD-A167 404)
Key Words: Ti-6Al-4V, AA 7075-T6, AA 1100, AISI 316, fabrication, rapid solidification

9. Hot Isostatic Press
Author Anon
Foreign Technology Division, Wright-Patterson AFB, OH
Rept No.: FTD-ID(RS)T-1406-84, 65 pp., 1985 (AD-B093 100 L)
Key Words: Ti-6Al-4V, B-1900, IN-788, RENE’ 77, IN-792, RENE’ 80, AA C355, AA A356, 142-T4
10. **Advanced Processing and Properties of High-Performance Alloys**
Koss, D. A.
Department of Metallurgical Engineering, Michigan Tech University, Houghton
Annual Technical Report Number Three
Contract No: N00014-85-K-0427
19 pp., 1985 (AD-A163 469)
Key Words: Ti-6Al, AA 7075-T6, AA 1100, tensile properties, fatigue, rapid solidification

11. **Experimental and Theoretical Studies of Creep Crack Growth**
Pelloux, R. M., Bain, K. R., Bensussan, P.
Massachusetts Institute of Technology, Cambridge, MA
Final Report
Rept No: AFOSR-TR-84-0387, 146 pp., 1984 (AD-A141 193)
Key Words: AA 2219-T851, Udimet 700, MERL 76, IN-100, RENE' 95, creep, cracking, tensile properties, creep rupture

12. **Mossbauer Spectrometry: Testing of a New Computer Based System and its Application to a Study of an Aluminum-Iron-Cerium Alloy**
Harmon, J. F., Jr.
School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, OH
Master's Thesis
Rept No: AFIT/GNE/PH/84M-6, 80 pp., 1984 (AD-A151 826)
Key Words: Al-8Fe, microstructure, modelling, vacuum degassing

13. **Powder Metallurgy Gaining Trust of Aero Designers**
Wigotsky, V.
Aerospa Amer 22 (3), 90-4, 1984 (AD-D129 541)
Key Words: Ti-6Al-4V, RENE' 95, AA 7090, AA 7091, Al-8Fe, turbine components, shear properties, compressive properties, net shape forming

14. **Mechanical Property Microstructure Relationships in Alloys**
Eylon, D., Kim, Y. W.
Metcut Research Associates Inc., Materials Research Group, Wright-Patterson AFB, OH
Final Report Sep 79-Jan 83
Rept No: AFWAL-TR-83-4131, 54 pp., 1983 (AD-D139 731L)
Key Words: Ti-6Al-4V, AA 7091, IN9051, AA 7075, turbine components, tensile properties, fatigue, bending

15. **The New Frontiers of Powder Metals**
Vaccari, J. A.
Amer Mach 127 (5), 121-36, 1983 (AD-D127 193)
Key Words: AA 7090, AA 7091, IN9052, Ti-6Al-4V, Monel 400, Inconel 600, RENE' 95, Cb291, Udimet 700, IN-100, AF-115, Inconel 625, net shape forming, injection molding, applications, forging

16. **Rapid Solidification Processing: Status and Facilities**
Author Anon
National Materials Advisory Board (NAS-NAE), Washington DC
Final Report
Rept No: NMAB-401, 101 pp., 1982 (AD-B070 174L)
Key Words: aluminum alloys, titanium alloys, melt spinning, test equipment
17. Treatment Processes of Light and Heat Resistant Alloys
Belov, A. F., Tselikov, A. I., Trishkin, V. G., Rakovskiy, V. S., Rykalin, N. N.
Foreign Technology Division, Wright-Patterson AFB, OH
Rept No: FTD-ID(RS)-TR-0412-82, 335 pp., 1982 (AD-B070680L)
Key Words: aluminum alloys, titanium alloys, mechanical properties, fatigue, cracking

18. Fundamentals of Compaction Processes for Rapidly Quenched Prealloyed Metal Powders
Hildeman, G. J., Lege, D. J., Vasudevan, A. K.
Aluminum Company of America, Alcoa Technical Center, Alcoa Center, PA
Final Technical Report Jul 79-Sep 81
Rept No: AFWAL-TR-82-4156, 217 pp., 1982 (AD-B08394L)
Key Words: Al-2Mn, rapid solidification, fracture toughness, tensile properties, creep rupture

Fatemi, M., Rath, B.B.
Naval Research Lab, Washington DC
Annual Report Number Three
Rept No: NRL-MR-4749, 37 pp., 1982 (AD-A113500)
Key Words: Al-4Cu, Ti-6Al-4V, 21-6-9 steel, microstructure, neutron scattering, tensile creep, plastic deformation

20. Effects of Manufacturing Processes on Structural Allowables
Jones, Dana J., Ford, S. C.
Battelle Memorial Institute, Columbus, OH
Rept No: AFWAL-TR-82-4136, 168 pp., 1982 (AD-A122963)
Key Words: Ti-6AI-4V, 10V2Fe3Al-Ti alloy, CT-91-TTE69 aluminum alloy, AF-1410 steel, extrusion, fracture toughness, creep rupture, stress corrosion, fatigue crack, tensile properties, compressive properties, thermal expansion, bearing strength

21. The State of the Science and Art of Powder Metallurgy
Lenel, F. V., Ansell, G. S.
J Met 34 (2), 17-29, 1982 (AD-D124400)
Key Words: beryllium, MAR-M200, Ti-6Al-4V, MA67, MA6000E, steel, tensile properties, sintering

22. Rapidly Solidified (RS) Aluminum Alloys-Status and Prospects
Author Anon
National Materials Advisory Board (NAS-NAE), Washington DC
Rept No: NMAB-368, 130 pp., 1981 (AD-B058007L)
Key Words: AA 7475, MA67, MA87, AA 2124, AA 7075, extrusion, rapid solidification, dendrite structure

23. Al and Mg Alloys for Aerospace Applications Using Rapid Solidification and Powder Metallurgy Processing
Fraser, H. L.
Department of Materials Science and Engineering, Illinois University at Urbana
Annual Technical Report Number Two
Rept No: AFOSR-TR-87-1584, 89 pp., 1981 (AD-A187953)
Key Words: Al-8Fe-2Mo, Mg-20Gd, Mg-1Si, Mg-2Si, Mg-3Si, Mg-4Si, Mg-5Si, Mg-8Si, Mg-5Li, Mg-12Li, Mg-5Li-5Si, Mg-8Li-5Si, Mg-12Li-5Si, aerospace applications, rapid solidification, melt spinning, tensile properties, precipitation, solution heat treatment
24. **RSR-A Frontier in Materials**
 Tortolano, F. W.
 Design News 37 (8), 34-6, 1981 (AD-D121 254)
 Key Words: AA 7075-T6, AA 2014, turbine components, creep rupture, tensile properties, fatigue, rapid solidification, cost

25. **Aluminum Powder Metallurgy Technology for High Strength Applications**
 Pickens, J. R.
 J Mater Sci 16 (6), 1437-57, 1981 (AD-D121 608)
 Key Words: AA 3003, AA 5083, AA 2024-T4, AA 7075-T6, AA 2024-T3510, AA 7075-T6510, MA67, MA67, IN9051, AA 7075-T73, AA 7475-T651, AA 7475-T7351, AA 7050-T651, AA 7050-T7351, AA 2124-T851, Al-4Ti, Al, Fe, degassing, tensile properties, fatigue, fracture toughness, stress corrosion

 Cohen, M., Kear, B. H., Mehrabian, R.
 Massachusetts Institute of Technology, Cambridge, MA
 Technical Report Number Seven
 Contract No: DARPA Order-3751
 25 pp., 1980 (AD-A088 473)
 Key Words: aluminum alloys, nickel alloys, microstructure, hot extrusion, rapid solidification

27. **Engineering Data for New Aerospace Materials**
 Deel, Omar
 Battelle Memorial Institute, Columbus, OH
 Final Summary Report
 Rept No: AFWAL-TIR-80-4103, 154 pp., 1980 (AD-A098 520)
 Key Words: AA 7010-T73651, Corona-5, AA A357-T6, IN-792, fatigue, bearing strength, tensile properties, thermal expansion

28. **Progress in Powder Metallurgy**
 Dreger, D. R.
 Mach Des 50 (25), 116-21, 1978 (AD-D114 032)
 Key Words: titanium, aluminum, density, fabrication

29. **Powder Forging**
 Huppmann, W. J., Hirschvogel, M.
 Key Words: titanium alloys, aluminum alloys, nickel alloys, beryllium, porosity, plasticity, impact strength, tensile properties, fatigue, sintering, cost, preheating

30. **Hot Isostatic Processing**
 Hanse, H. D., Seifert, D. A., Watts, C. R.
 Metals Information Analysis Center, West Lafayette, IN
 Rept No: MCIC-77-34, 101 pp., 1977 (AD-A049 227)
 Key Words: T-111, Ti-6Al-4V, AA A356-T61, IN-738, RENE 80, Udiment 700, IN-792, welding, tensile properties, pressure bonding
BERYLLIUM AND BERYLLIUM ALLOYS

Beryllium

1. Fracture Toughness of CIP-HIP Beryllium at Elevated Temp
Barkcr, L. M., Jones, A. H.
Terra Tek Inc., Salt Lake City, UT
Final Report
Rept No.: TR-81-50, 25 pp., 1986 (AD-A169 769)
Key Words: beryllium, fracture toughness, crack propagation, crack arrest

2. Passive Optical Component Technology Program
Gardopee, G. J.
Perkin-Elmer Corp., Military Systems Division, Danbury, CT
Quarterly Technical Report Number 2, Sep-Nov 85
Contract No.: DASG60-85-C-0065
7 pp., 1985 (AD-B097 548L)
Key Words: beryllium, tensile properties, passive systems

3. The State of the Science and Art of Powder Metallurgy
Lechel, F. V., Ansell, G. S.
J. Met 34 (2), 17-29, 1982 (AD-D124 400)
Key Words: beryllium, MAR-M200, Ti-6Al-4V, MA67, MA6000E, steel, tensile properties, sintering

4. A Cause of Pitting in Beryllium
Kershaw, R. P.
Lawrence Livermore National Lab, Livermore, CA
Technical Report
Rept No.: UCRL-87370, 24 pp., 1982 (AD-D127 279)
Key Words: beryllium, pitting, microstructure, voids

5. Mechanical Properties Evaluation of Some Commercial Beryllium Materials
Goldberg, A., Hanafee, J. E., Scott, R. G.
Lawrence Livermore National Lab, Livermore, CA
Technical Report
Rept No.: UCRL-87392, 59 pp., 1982 (AD-D127 287)
Key Words: beryllium, density, grain size, tensile properties, strain rate dependence

6. Deformation Behavior of Fine Grained High Purity Beryllium--Influence of Fabrication Parameters, Temperatures, and Copper Additions
Kaltenbach, K.
NTIS, DE85-780394, Springfield, VA
Technical Report
Rept No.: INIS-mf-9225, 225 pp., 1982 (AD-D134 247)
Key Words: beryllium, copper addition, microstructure, grain size, bend test

McCarthy, J., Petri, F.
Charles Stark Draper Lab Inc., Cambridge, MA
Technical Report Number Two
Rept No.: R1388, 38 pp., 1980 (AD-A089 598)
Key Words: beryllium, dimensional stability, tensile properties
8. The Influence of Purity Level on the Mechanical Properties of Hot Isostatically Pressed Beryllium
Odegard, B. C., Jr.
Sandia Labs, Livermore, CA
Energy Report
Rept No: SAND79-8232, 18 pp., 1979 (AD-D121 450)
Key Words: beryllium, grain size, fracture toughness, compressive properties

9. Metallographic Observation of Cleaved Grains in Polycrystalline Beryllium
Heiple, C. R., Smugeresky, J. E., Capes, J. F.
Metall 11 (2), 199-205, 1978 (AD-D112 607)
Key Words: beryllium, grain size, cleavage, metallography, nondestructive testing, cracking

10. Powder Forging
Huppman, W. J., Hirschvogel, M.
Key Words: titanium alloys, aluminum alloys, nickel alloys, beryllium, porosity, plasticity, impact strength, tensile properties, fatigue, sintering, cost, preheating

11. Large Net Shapes by Powder Metallurgy
Pinto, N. P.
Key Words: beryllium, re-entry vehicles, nose cones, porosity, density, tensile properties, fabrication, temperature effect, cold pressing

12. Beryllium Processing-The Foundation of Structural Powder Metallurgy
Hanes, H. D.
The Royal Society, London, UK
Proc 4th Int Conf Beryllium
19 pp., 1977 (AD-D111 582)
Key Words: beryllium, microstructure, plasma spraying

13. Hot Isostatic Pressing: An Economic Route to Powder Components
James, P. J.
Metals and Materials 27-31, 1977 (AD-D111 600)
Key Words: AISI 4340, beryllium, Ti-6Al-4V, pressure vessels

14. On the Occurrence and Removal by Thermal Treatment of Microcracking Arising During the Uniaxial Tensile Deformation of High Purity Beryllium
Turner, G. I., Lane, R. A., Lancaster, R. A.
The Royal Society, London, UK
Proc 4th Int Conf Beryllium Paper No. 12, 10 pp., 1977 (AD-D113 187)
Key Words: beryllium, microcracking, cleavage, fracture mechanics, temperature effect, activation energy

15. Effects of Oxide and Grain Size in High-Purity Beryllium
Aldinger, F., Gold, E., Petzow, G.
The Royal Society, London, UK
Proc 4th Int Conf Beryllium Paper No. 14, 11 pp., 1977 (AD-D113 189)
Key Words: beryllium, grain size, grain refinement, microstructure morphology, particle size, tensile properties, hardness, fracture surface, density
16. High-Strength Beryllium Block
Pinto, N. P., Keith, G. H.
The Royal Society, London, UK
Proc 4th Int Conf Beryllium Paper No. 16, 7 pp., 1977 (AD-DI13 191)
Key Words: beryllium, tensile properties, grain size, creep properties, fracture toughness, ball milling

17. Strength-Ductility Relationships in Intermediate Purity Hot-Pressed Beryllium
Stonehouse, A. J., Bielawski, C. A., Paine, R. M.
The Royal Society, London, UK
Proc 4th Int Conf Beryllium Paper No. 17, 12 pp., 1977 (AD-DI13 192)
Key Words: beryllium, tensile properties, particle size

18. Temperature Effects on Mechanical Properties of CIP/HIP-1 Beryllium
Dignam, J. F., Aronin, L. R., Chou, S. C., Rainey, J. H.
The Royal Society, London, UK
Proc 4th Int Conf Beryllium Paper No. 18, 12 pp., 1977 (AD-DI13 193)
Key Words: beryllium, tensile properties, compressive properties, temperature effect

19. Mechanical Behavior of CIP/HIP-1 Beryllium as a Function of Strain Rate and Stress History
Chou, S. C., Aronin, L. R., Kignam, J. F., Rainey, J. H.
The Royal Society, London, UK
Proc 4th Int Conf Beryllium Paper No. 20, 12 pp., 1977 (AD-DI13 195)
Key Words: beryllium, tensile properties, Poisson's ratio, compression test

20. Beryllium with Controlled Porosity
Pinto, N. P., Hanes, H. S.
The Royal Society, London, UK
Proc 4th Int Conf Beryllium Paper No. 31, 11 pp., 1977 (AD-DI13 204)
Key Words: beryllium, porosity, density, tensile properties, temperature effect, particle size, annealing

21. Hot Isopressing Beryllium--The Effect of Temperature and Pressure
The Royal Society, London, UK
Proc 4th Int Conf Beryllium Paper No. 32, 13 pp., 1977 (AD-DI13 205)
Key Words: beryllium, tensile properties, density, temperature effect

22. The Development, Evaluation and Manufacturing Capability of Beryllium Bar Stock using the CIP-HIP Process
Lowe, J. N., Turner, G. L., Bunce, J. E. J.
The Royal Society, London, UK
Proc 4th Int Conf Beryllium Paper No. 33, 13 pp., 1977 (AD-DI13 206)
Key Words: beryllium, tensile properties, fabrication

23. HIP Fabrication of Experimental Mirror Substructure
Mueller, J. J.
The Royal Society, London, UK
Proc 4th Int Conf Beryllium Paper No. 34, 18 pp., 1977 (AD-DI13 207)
Key Words: beryllium, copper, mirror, coatings, temperature effect
24. **Confidence in Beryllium**
Channon, S. L.
The Royal Society, London, UK
Proc 4th Int Conf Beryllium Paper No. 48, 11 pp., 1977 (AD-D113 215)
Key Words: beryllium, applications, tensile properties, compressive properties, plasma deposition, cost

25. **Fabrication and Evaluation of Hot Isostatically Pressed Beryllium**
London, G. J., Lidman, W. G.
Kawecki Beryllco Industries Inc., Reading, PA
Contract No: F33615-75-C-5041, 18 pp., 1976 (AD-A024 780)
Key Words: beryllium, beryllium alloys, machining, etching, tensile properties

26. **Factors Affecting the Tensile Strength, Elongation and Impact Resistance of Low Oxide, Hot Isostatically Pressed Beryllium Block**
Webster, D., Greene, R. L., Lawley, R. W., London, G. J.
Metall Trans 7A (6), 851-6, 1976 (AD-D106 983)
Key Words: beryllium, oxygen addition, silicon addition, tensile properties, microstructure, grain size, grain growth, grain boundaries, Charpy impact

27. **Grain Size and Oxide Content Affect Beryllium’s Properties**
London, G. J., Keith, G. H., Pinto, N. P.
Met Eng Qtrly 16 (4), 45-57, 1976 (AD-D107 845)
Key Words: beryllium, tensile properties, grain size, density, impurities, oxide addition, single crystals

28. **Mechanical Properties of Structural Grades of Beryllium at High Strain Rates**
Nicholas, T.
Air Force Materials Lab, Wright-Patterson AFB, OH
Rept No: AFML-TR-75-168, 40 pp., 1975 (AD-A020 076)
Key Words: beryllium, plasma deposition, tensile properties, fracture mechanics, ductility

29. **Reverse Loading Effects in Bend Tests on Hot Isostatically Pressed (HIP) Beryllium**
Nicholas, T., Sever, M. J.
Air Force Materials Lab, Wright-Patterson AFB, OH
Final Report, Nov 72-Jun 73
Rept No: AFML-TR-73-258, 31 pp., 1974 (AD-781 065)
Key Words: beryllium, stress-strain, bend test, flow properties

30. **Investigation of Creep Mechanisms and Development of Creep Resistant Beryllium**
Crooks, D. D., Crossman, F. W., Webster, D.
Lockheed Missiles and Space Co. Inc., Palo Alto, CA
Final report May 72-May 74
Rept No: LMSC-D402660, 193 pp., 1974 (AD-923 451L)
Key Words: beryllium, re-entry vehicles, oxide addition, aluminum addition, silicon addition, creep, grain size, plastic deformation, dislocation density, finite element analysis

31. **High-Purity Beryllium Powder Components**
Pinto, N. P., Martin, A. J.
Powder Metall 17 (33), 15 pp., 1974 (AD-D100 183)
Key Words: beryllium, grain growth, recrystallization, density, tensile properties, texture
32. **Examination of Several HIP, P-1 Beryllium Modifications**
Odegard, B. C.
Sandia Corp., Livermore, CA
Summary, Report
Rept No: SAND-74-8207, 22 pp., 1974 (AD-D101 442)
Key Words: beryllium, microstructure, grain size, tensile properties, Hall-Petch

33. **Manufacture of Beryllium Structures**
Denny, John P., Burns, Robert H., Solbach, Robert C., Schoenly, D. K.
Frauson, W. O.
Kawecki Berylco Industries Inc., Reading, PA
Final Report Nov 72-Mar 73
Rept No: AFML-TR-73-251, 56 pp., 1973 (AD-917 815L)
Key Words: MPDC, beryllium, nose cones, tensile properties, fracture surface, machining, fabrication

34. **Reversed Loading Effects in Bend Tests on HIP Beryllium**
Nicholas, T., Sever, M. J.
Air Force Materials Lab, Wright-Patterson AFB, OH
Summary Report
29 pp., 1973 (AD-D103 589)
Key Words: beryllium, bend test, mechanical properties

35. **Establishment of a Manufacturing Process for Thin-Walled Conical Beryllium Structures Involving Hot Isostatic Pressing**
Mueller, J. J., Hanes, H. D.
Battelle Memorial Institute, Columbus, OH
Interim Engineering Progress Report
Rept No: RTD-IR-271-9(VI), 29 pp., 1972 (AD-179 513L)
Key Words: beryllium, aluminum coating, microstructure, diffusion bonding, surface defects

36. **Establishment of a Manufacturing Process for Thin-Walled Conical Beryllium Structures Involving Hot Isostatic Pressing**
Mueller, J. J., Hanes, H. D.
Battelle Memorial Institute, Columbus, OH
Interim Engineering Progress Report, Feb-Apr 72
Rept No: RTD-IR-271-9(VII), 28 pp., 1972 (AD-179 633L)
Key Words: beryllium, shear strength, diffusion bonding, thin film

37. **Establishment of a Manufacturing Process for Thin Walled Conical Beryllium Structures Involving Hot Isostatic Pressing**
Mueller, J. J., Hanes, H. D.
Battelle Memorial Institute, Columbus, OH
Final Technical Report Dec 69-Jul 72
Rept No: AFML-TR-72-263, 268 pp., 1972 (AD-908 569L)
Key Words: beryllium, MPDC, GB-2, re-entry vehicles, microstructure, tensile properties, outgassing, fabrication, cost, heat treatment

38. **Establishment of a Manufacturing Process for Thin-Walled Conical Beryllium Structures Involving Hot Isostatic Pressing**
Mueller, J. J., Hanes, H. D.
Battelle Memorial Institute, Columbus, OH
Interim Engineering Progress Report, Jun-Oct 71
Rept No: RTD-IR-271-9(V), 34 pp., 1971 (AD-178 701L)
Key Words: beryllium, manufacturing process
39. Development of Porous Beryllium by the Hot Isostatic Pressing of Plasma-Spheroidized Powder
Speidel, E. O.
Battelle Memorial Institute, Columbus, OH
Final Technical Report Jun 69-Dec 70
Rept No: AFML-TR-71-73, 58 pp., 1971 (AD-728 234)
Key Words: beryllium, tensile powder, rupture modulus

40. Development of Porous Beryllium
Speidel, E. O.
Battelle Memorial Institute, Columbus, OH
Nov 69-Feb 70
Contract No: F33615-69-C-1648
7 pp., 1970 (AD-175 560L)
Key Words: beryllium, tensile properties, plasma spheroidization

41. Technical Note on Fabricating Isotropic Beryllium
Moberly, J. W., Brown, H. M.
Int J Powder Metall 6 (1), 61-2, 1970 (AD-175 811)
Key Words: beryllium, pressureless sintering

42. Fabrication of Integrally Stiffened Structures by a Powder-Metallurgical Technique
Hanes, H. D., Gripshover, P. J.
Battelle Memorial Institute, Columbus, OH
Technical Paper
Apr 1970
5 pp., 1970 (AD-176 099)
Key Words: beryllium, pressureless sintering

43. Hot Isostatic Pressing of Beryllium
Lidman, W. G.
General Astrometals Corp., Yonkers, NY
Proc Beryllium Conf, National Academy of Engineering and National Research Council,
Washington DC, Mar 1970
22 pp., 1970 (AD-176 596)
Key Words: beryllium, tensile properties, anisotropy

44. Development of Porous Beryllium
Speidel, E. O.
Battelle Memorial Institute, Columbus, OH
Second Quarterly Technical Management Report, Aug-Nov 69
Contract No: F33615-69-C-1648
6 pp., 1969 (AD-175 179L)
Key Words: beryllium, tensile properties

45. Fabrication of Beryllium Sheet by Gas-Pressure Bonding
Carlson, R. J., Porembka, S. W., Linse, V. D.
Battelle Memorial Institute, Columbus, OH
Interim Progress Rept July-Dec 1965
Contract No : AF 33(615)-1683
29 pp., 1966 (AD-D126 155)
Key Words: beryllium, sheet, pressure bonding, tensile properties, microstructure, hardness
Beryllium Alloys

1. **Properties of Beryllium Consolidated By Several Near-net Shape Processes**
 Hashiguchi, D.H., Clement, T.P., Marder, J.M.
 J Mater Shaping Technol 7 (1), 23-31, 1989 (AD-D 143 267)
 Key Words: beryllium alloys, grain size, powder metallurgy, net shape forming, tensile properties

 Kumar, K., Cardarelli, D., Petri, F.
 Charles Stark Draper Lab Inc., Cambridge, MA
 Technical Research Report Number Five
 Rept No: R-1612, 53 pp., 1982 (AD-A125 763)
 Key Words: HIP 50, X-520, microstructure, microscopy, microcreep

3. **Materials Research for Advanced Inertial Instrumentation Task 2. Gas Bearing Material Development**
 Das, D., Kumar, K.
 Charles Stark Draper Lab Inc., Cambridge, MA
 Technical Research Report Number Five
 Rept No: CSDL-R-1647, 89 pp., 1982 (AD-A130 471)
 Key Words: beryllium alloys, microstructure, metallography, ion implantation, wear tests

 Kumar, K., Petri, F., Wollam, J.
 Charles Stark Draper Lab Inc., Cambridge, MA
 Technical Research Report Number Four
 Rept No: R-1527, 48 pp., 1981 (AD-A113 497)
 Key Words: HIP 50, Be alloy X-520, microstructure, creep, tensile properties, dimensional stability, x-ray diffraction

5. **A Fundamental Study of Flow and Fracture in Beryllium**
 Webster, D.
 Lockheed Missiles and Space Co. Inc., Pal Alto Research Lab, Palo Alto, CA
 Final Report
 Rept No: LMSC/D633363, 62 pp., 1978 (AD-A065 150)
 Key Words: beryllium alloys, grain refinement, thermomechanical treatment, tensile properties

6. **Strain Rate and Reverse Loading Effects on HIP-50 Beryllium**
 Aronin, L. R., Chou, S. C., Dignam, J. F., Rainey, J. H.
 The Royal Society, London, UK
 Proc 4th Int Conf Beryllium Paper No. 19, 11 pp., 1977 (AD-D113 194)
 Key Words: HIP 50, beryllium alloys, tensile properties, compressive properties, grain size

7. **Fabrication and Evaluation of Hot Isostatically Pressed Beryllium**
 London, G. J., Lidman, W. G.
 Kawecki Berylico Industries Inc., Reading, PA
 Final Technical Report
 Contract No: F33615-75-C-5041
 18 pp., 1976 (AD-A024 780)
 Key Words: beryllium, beryllium alloys, machining, etching, tensile properties
8. **Effect of Inclusions on the Mechanical Behavior of Beryllium**
 King, D. B., Gelles, S. H., Nicholas, T.
 Brush Wellman Inc., Cleveland, OH
 Final Technical Report
 Contract No: F33615-74-C-5172
 114 pp., 1976 (AD-A025 968)
 Key Words: S-65 beryllium, fractography, tensile properties, hardness

9. **Notch Tensile Strength of Advanced Structural Grades of Beryllium**
 Nicholas, T., Atkins, G. R.
 Air Force Materials Lab, Wright-Patterson AFB, OH
 Technical Report, Mar-Aug 1974
 Rept No: AFML-TR-74-252, 42 pp., 1975 (AD-A011 647)
 Key Words: S-65, P1, beryllium alloys, beryllium oxide addition, stress intensity, tensile properties, notch properties

10. **Factors Influencing The Creep Strength of Hot Pressed Beryllium**
 Webster, D., Crooks, D. D.
 Metall Trans 6A (11), 2049-54, 1975 (AD-D102 263)
 Key Words: RR242, RR243, BSP9, BSP10, T30, 9776, 9715, 1707, 1353, 8084, creep, grain size, dislocation density, annealing

11. **Fundamental Considerations in the Development of Improved Beryllium for Missile Structures**
 Aronin, L. R.
 Army Materials and Mechanics Research Center, Watertown, MA
 Final Report
 Rept No: AMMRC-Ms-74-6, 21 pp., 1974 (AD-780 820)
 Key Words: beryllium alloys, grain size, deformation, plasma deposition, tensile properties

12. **Dynamic Compressive Strain Rate Tests on Several Grades of Beryllium**
 Nicholas, T., Sever, M. J.
 Air Force Materials Lab, Wright-Patterson AFB, OH
 Final Report Nov 73-Jun 74
 Rept No: AFML-TR-74-224, 35 pp., 1974 (AD-A005 701)
 Key Words: Lockalloy, beryllium alloys, beryllium oxide addition, compressive properties

13. **Factors Controlling the Strength and Ductility of High Purity Beryllium Block**
 Webster, D., Greene, R. L., Lawley, R. W.
 Metall Trans 5 (1), 91-6, 1974 (AD-D133 132)
 Key Words: beryllium alloys, microstructure, grain size, ductility, tensile properties, hardness, stress relieving

14. **Manufacturing Methods for the Production of Disk Shapes by Contour Rolling**
 Arnold, David B.
 General Electric Co., Aircraft Engine Group, Evendale, OH
 Final Technical Report Apr 71-Mar 73
 Rept No: AFML-TR-73-109, 126 pp., 1973 (AD-913 300L)
 Key Words: RENE' 95, MPDC, turbine components, microstructure, grain size, tensile properties, machining, creep rupture
15. Manufacture of Beryllium Structures
Denny, John P., Burns, Robert H., Solbach, Robert C., Schoenly, D. K.
Frauson, W. O.
Kawecki Beryleo Industries Inc., Reading, PA
Final Report Nov 72-Mar 73
Rept No: AFML-TR-73-251, 56 pp., 1973 (AD-917 815L)
Key Words: MPDC, beryllium, nose cones, tensile properties, fracture surface, machining, fabrication

16. Establishment of a Manufacturing Process for Thin Walled Conical Beryllium Structures Involving Hot Isostatic Pressing
Mueller, J. J., Hanes, H. D.
Battelle Memorial Institute, Columbus, OH
Final Technical Report Dec 69-Jul 72
Rept No: AFML-TR-72-263, 268 pp., 1972 (AD-908 569L)
Key Words: beryllium, MPDC, GB-2, re-entry vehicles, microstructure, tensile properties, outgassing, fabrication, cost, heat treatment

17. Establishment of a Manufacturing Process for Thin Walled Conical Beryllium Structures Involving Hot Isostatic Pressing
Mueller, J. J., Hanes, H. D.
Battelle Memorial Institute, Columbus, OH
Interim Engineering Progress Report, Dec 69-Apr 70
Rept No : RTD-IR-271-9(I), 48 pp., 1970 (AD-D105 337L)
Key Words: SP-200, SP-350, P-21, P-50, GB-2, beryllium alloys, tensile properties, fracture, outgassing, bubble formation

18. Establishment of a Manufacturing Process for Thin Walled Conical Beryllium Structures Involving Hot Isostatic Pressing
Mueller, J. J., Hanes, H. D.
Battelle Memorial Institute, Columbus, OH
Interim Engineering Progress Report, May-Aug 70
Rept No : RTD-IR-271-9(II), 29 pp., 1970 (AD-D105 338L)
Key Words: GB-2, beryllium alloys, particle size, density, tooling

19. Development of Porous Beryllium
Rosenwasser, S. N., Goddard, D. M.
McDonnell Douglas Astronautics Co., Huntington Beach, CA
Second Technical Management Report Sep 69-Jan 70
Rept No : MDC-G1003, 28 pp., 1970 (AD-175 403)
Key Words: SP-200,MPDC, tensile properties, plastic deformation, permeability

20. Beryllium Wrought Products
Meyer, G. E., Henning, H. J.
Metals Information Analysis Center, West Lafayette, IN
Rept No: DMIC-S-29, 60 pp., 1970 (AD-866 768)
Key Words: Lockalloy, beryllium alloys, hydrostatic extrusion, texture, tensile properties, shear forming

21. Hot Isostatic Pressing of Large, Hollow, Structural, Beryllium Shapes
Johnson, M. R., Hanes, H. D., Pinkerton, G. B.
Battelle Memorial Institute, Columbus, OH
Key Words: S-200, beryllium alloys, tensile properties
COBALT ALLOYS

MAR-M509

1. Modern Powder Metallurgy Science and Technology
 Lawley, A.
 J Met 38 (8), 15-25, 1986 (AD-D136 435)
 Key Words: NiAl, IN-100, MAR-M509, RENE‘ 95, AA 2024-T6, consolidation, REP, tensile properties, impact toughness

2. Hot Workability of Cobalt-Base Superalloys Produced via Powder Metallurgy
 Hellner, L., Johansson, H.
 Powder Metall Int 8 (2), 82-6, 1976 (AD-D107 172)
 Key Words: X-40, MAR-M509, superplasticity, hot working microstructure, cracking, tensile properties, temperature effect

3. Study of Superalloys Produced via Powder Metallurgy
 Hellner, L., Johansson, H.
 NTIS, N77-13210, Springfield, VA
 Final Report
 Rept No: N77-13210, 56 pp., 1975 (AD-D109 492)
 Key Words: X-40, MAR-M509, IN-738, dispersion hardening, cracking, microstructure, temperature effect, deformation, stress intensity, tensile properties

4. Application of Hot-Isostatic Pressing, Hydrostatic Extrusion, and Deformable-Die Tube Tapering Processes to Production of Titanium-6Al-4V Tapered Tubes
 Meyer, G. E., Harth, G. H., Houck, J. A., Byrer, T. G.
 Battelle Memorial Institute, Columbus, OH
 Technical Report
 Rept No: USAAMRDL-TR-72-71, 86 pp., 1973 (AD-759 504)
 Key Words: MAR-M509, IN-100, Ti-6Al-4V, turbine components, microstructure, thermomechanics, die forging, cold drawing, extrusion

5. Structure and Property Control through Rapid Quenching of Liquid Metals
 Grant, N. J., Pelloux, R. M., Flemings, M. C., Argon, A. S.
 Massachusetts Institute of Technology, Center for Materials Science and Engineering, Cambridge, MA
 Final Technical Report
 Contract No: DAHC15-70-C-0283
 411 pp., 1973 (AD-775 225)
 Key Words: AA 7075, AA 2024, AISI 1045, IN-100, MAR-M509, Maraging 300, tensile properties

6. Structure and Property Control Through Rapid Quenching of Liquid Metals
 Grant, N. J., Pelloux, R. M., Regis, M. N., Flemings, M. C., Merton, C.
 Argon, A. S.
 Massachusetts Institute of Technology, Center for Materials Science and Engineering, Cambridge, MA
 Contract No: DAHC15-70-C-0283
 130 pp., 1972 (AD-739 340)
 Key Words: IN-100, MAR-M509, Maraging 300, microstructure, tensile properties, fatigue, hardness, creep rupture, fracture toughness
1. **The Production and Processing of High-Quality Powder Metallurgy Materials**

 Graf, W., Kraemer, H. J., Poetschke, J., Weiglin, W.

 Powder Metall Int 23 (4), 246-52, 1991

 Key Words: T-15, M-4, M-50, AISI 304, AISI 316, AISI 321, AISI 410, AISI 440, Udimet 700, MERL 76, IN-100, Stellite 6, Stellite 12, Stellite 21, atomization, particle size, density, creep, metal injection molding

2. **Structure and Property Control Through Rapid Quenching of Liquid Metals**

 Grant, N. J., Pelloux, R. M., Flemings, M. C., Argon, A. S.

 Massachusetts Institute of Technology, Center for Materials Science and Engineering, Cambridge, MA

 Semi-Annual Technical Report Number Four, Jan-Jul 1972

 Contract No: DAHC15-70-C-0283, 140 pp., 1972 (AD-749 679)

 Key Words: AA 7075, IN-100, MAR-M509, AISI 1045, Maraging 300, microstructure, fractography, tensile properties

3. **Structure and Property Control Through Rapid Quenching of Liquid Metals**

 Grant, N. J., Pelloux, R. M., Flemings, M. C., Argon, A. S.

 Massachusetts Institute of Technology, Center for Materials Science and Engineering, Cambridge, MA

 Semi-Annual Technical Report Number Five, Jul-Dec 1972

 Contract No: DAHC15-70-C-0283, 128 pp., 1972 (AD-757 677)

 Key Words: IN-100, MAR-M509, 18Ni steel, microstructure, hot working, creep properties, strain rate, tensile properties

4. **Liquid-Metal Atomization for Hot Working Preforms**

 Grant, N. J., Pelloux, R. M.

 Massachusetts Institute of Technology, Department of Metallurgy and Materials Science, Cambridge, MA

 Key Words: AA 2024-T4, IN-100, MAR-M509, atomization, silicon addition, hafnium addition, tensile properties, fatigue, segregation

5. **Coarse Powder Techniques**

 Widmer, R.

 Industrial Materials Technology Inc., Woburn, MA

 Proc 18th Sagamore Army Materials Research Conf, Sagamore Conference Center, Raquette Lake, NY, Aug-Sept 71, 16 pp., 1971 (AD-181 534)

 Key Words: IN-100, Maraging 300, X-45, MAR-M509, Hastelloy X, Udimet 710, Alloy 713, Ti-6Al-6V-2Sn, microstructure, creep rupture, tensile properties

6. **Structure and Property Control Through Rapid Quenching of Liquid Metals**

 Grant, N. J., Pelloux, R. M., Regis, M. N., Flemings, M. C., Merton, C.

 Argon, A. S.

 Massachusetts Institute of Technology, Center for Materials Science and Engineering, Cambridge, MA

 Contract No: DAHC15-70-C-0283, 191 pp., 1971 (AD-728 053)

 Key Words: IN-100, Vascomax 300, X-45, MAR-M509, extrusion, tensile properties, creep rupture, quenching

7. **Structure and Property Control Through Rapid Quenching of Liquid Metals**

 Grant, N. J., Pelloux, R. M., Flemings, M. C., Argon, A. S.

 Massachusetts Institute of Technology, Center for Materials Science and Engineering, Cambridge, MA

 Semi-Annual Technical Report Number Four, Jan-Jul 1972

 Contract No: DAHC15-70-C-0283, 140 pp., 1972 (AD-749 679)

 Key Words: AA 7075, IN-100, MAR-M509, AISI 1045, Maraging 300, microstructure, fractography, tensile properties

8. **Structure and Property Control Through Rapid Quenching of Liquid Metals**

 Grant, N. J., Pelloux, R. M., Flemings, M. C., Argon, A. S.

 Massachusetts Institute of Technology, Center for Materials Science and Engineering, Cambridge, MA

 Semi-Annual Technical Report Number Five, Jul-Dec 1972

 Contract No: DAHC15-70-C-0283, 128 pp., 1972 (AD-757 677)

 Key Words: IN-100, MAR-M509, 18Ni steel, microstructure, hot working, creep properties, strain rate, tensile properties

9. **Liquid-Metal Atomization for Hot Working Preforms**

 Grant, N. J., Pelloux, R. M.

 Massachusetts Institute of Technology, Department of Metallurgy and Materials Science, Cambridge, MA

 Key Words: AA 2024-T4, IN-100, MAR-M509, atomization, silicon addition, hafnium addition, tensile properties, fatigue, segregation

10. **Coarse Powder Techniques**

 Widmer, R.

 Industrial Materials Technology Inc., Woburn, MA

 Proc 18th Sagamore Army Materials Research Conf, Sagamore Conference Center, Raquette Lake, NY, Aug-Sept 71, 16 pp., 1971 (AD-181 534)

 Key Words: IN-100, Maraging 300, X-45, MAR-M509, Hastelloy X, Udimet 710, Alloy 713, Ti-6Al-6V-2Sn, microstructure, creep rupture, tensile properties

11. **Structure and Property Control Through Rapid Quenching of Liquid Metals**

 Grant, N. J., Pelloux, R. M., Regis, M. N., Flemings, M. C., Merton, C.

 Argon, A. S.

 Massachusetts Institute of Technology, Center for Materials Science and Engineering, Cambridge, MA

 Contract No: DAHC15-70-C-0283, 191 pp., 1971 (AD-728 053)

 Key Words: IN-100, Vascomax 300, X-45, MAR-M509, extrusion, tensile properties, creep rupture, quenching

Stellite 6
2. HIP-Tool Materials
Bayer, E.
Powder Metall Int 16 (3), 117-20, 1984 (AD-D130 130)
Key Words: Haynes 21, Stellite 6, tool steel, stainless steel, microstructure, impact toughness, tensile properties, net shape forming

3. Metallography of Hot Isostatically Pressed Materials (Part 2)
Piske, D., Wittner, I.
Pract Metall 21 (3), 107-17, 1984 (AD-D130 404)
Key Words: Ti-6Al-4V, Stellite 6, WC coating, diffusion welding, diffusion bonding

4. Application Fields of the HIP-Technology
Selistorfer, H.
Powder Metall Int 16 (6), 268-71, 1984 (AD-D131 767)
Key Words: Waspaloy, Udimet 700, Stellite 6, turbine components, net shape forming, mechanical properties, hardness

5. Containerless HIPping of PM Parts: Technology Economics and Equipment Productivity
Nyce, A. C.
Met Powder Rept 38 (7), 387-92, 1983 (AD-D128 150)
Key Words: AISI 4650, M-2, AISI 316L, Ti-6Al-4V, Monel 400, Stellite 6, Stellite 21, applications, cost, density, tensile properties

6. New Approach Widens the Use of HIP P/M
Precis Met 40 (10), 32-4, 1982 (AD-D128 141)
Key Words: AISI 4650, Stellite 6, AISI 316, Ti-6Al-4V, porosity, cost, tensile properties

7. Trends in Powder Metallurgy Technology
Chandler, H. E., Baxter, D. F.
Metal Prog 117 (1), 100-3, 1980 (AD-D117 225)
Key Words: RENE' 95, AISI 316, M-2, Stellite 6, Ti-6Al-4V, AISI 410, jet engines, net shape forming

X-40

1. Superalloys from Powder: Production and Properties
Author Anon
National Materials Advisory Board (NAS-NAE), Washington DC
Final Report
Rept No: NMAB-369, 102 pp., 1981 (AD-B058 349L)
Key Words: RENE' 95, X-40, Maraging 300, turbine components, fatigue, rapid solidification, mechanical properties, atomization

2. Grain Size Control in PM Superalloys
Dahlen, M.
NTIS, N79-18021, Springfield, VA
Final Report
Rept No: N79-18021, 31 pp., 1977 (AD-D115 659)
Key Words: Udimet 700, IN-738, X-40, grain size, tensile properties, creep properties, hardness, fatigue, recrystallization, annealing
3. **Hot Workability of Cobalt-Base Superalloys Produced via Powder Metallurgy**
 Hellner, L., Johansson, H.
 Powder Metall Int 8 (2), 82-6, 1976 (AD-D107 172)
 Key Words: X-40, MAR-M509, superplasticity, hot working microstructure, cracking, tensile properties, temperature effect

4. **Study of Superalloys Produced via Powder Metallurgy**
 Hellner, L., Johansson, H.
 NTIS, N77-13210, Springfield, VA
 Rept No: N77-13210, 56 pp., 1975 (AD-D109 492)
 Key Words: X-40, MAR-M509, IN-738, dispersion hardening, cracking, microstructure, temperature effect, deformation, stress intensity, tensile properties

5. **Modern Methods of Powder Metallurgical Processing of Superalloys**
 Gessinger, G. H., Bomford, M. J.
 Brown, Boveri & Co. Ltd., Baden, Switzerland
 Proc Symp High Temperature Materials in Gas Turbines 35 pp., 1973 (AD-D102 997)
 Key Words: Udimet 500, Hastelloy X, X-45, Udimet 710, IN-100, IN-853 Udimet 700, RENE' 95, Inconel 718, D-979, Nimonic 80A, TD-nickel, turbine components, creep rupture, tensile properties, fatigue, atomization, REP, thermomechanical treatment

6. **Specialty Methods of Powder Atomization**
 Grant, N. J.
 Massachusetts Institute of Technology, Cambridge, MA
 Proc 18th Sagamore Army Materials Research Conf, Sagamore Conference Center, Raquette Lake, NY, Aug-Sept 71, 13 pp., 1971 (AD-181 533)
 Key Words: IN-100, Maraging 300, 18/8 stainless, AA 2024, X-45, AISI 316, REP, microstructure, ultrasonic testing, fatigue, tensile properties

7. **Coarse Powder Techniques**
 Widmer, R., Industrial Materials Technology Inc., Woburn, MA
 Proc 18th Sagamore Army Materials Research Conf, Sagamore Conference Center, Raquette Lake, NY, Aug-Sept 71, 16 pp., 1971 (AD-181 534)
 Key Words: IN-100, Maraging 300, X-45, MAR-M509, Hastelloy X, Udimet 710, Alloy 713, Ti-6Al-6V-2Sn, microstructure, creep rupture, tensile properties

Miscellaneous Cobalt Alloys

1. **Fully dense HIP compaction of mechanically alloyed amorphous powders**
 Hiroshi, K., Toda, K., Yuine, T., Elsevier, London, UK
 Proc 3rd Int Conf Hot Isostatic Pressing: Theory Appl. 223-8, 1992
 Key Words: Co(79.5)Nb(15)Zr(5.5), compaction, density, viscous flow, porosity

2. **The Production and Processing of High-Quality Powder Metallurgy Materials**
 Graf, W., Kraemer, H. J., Poestschke, J., Weiglin, W.
 Powder Metall Int 23 (4), 246-52, 1991
 Key Words: T-15, M-4, M-50, AISI 304, AISI 316, AISI 321, AISI 410, AISI 440, Udimet 700, MERL 76, IN-100, Stellite 6, Stellite 1, Stellite 12, Stellite 21, atomization, particle size, density, creep, metal injection molding
3. Properties of 'Stellite' (R) Alloy No. 21 Made Via Pliable Powder Technology
Aizaz, A., Kumar, P.
Metal Powder Industries Federation, Princeton, NJ
Proc Int Powder Metallurgy Conf, Modern Developments in Powder Metallurgy
16, 675-93, 1985 (AD-D138 355)
Key Words: Stellite 21, microstructure, Ceracon processing, fatigue, tensile properties

4. A Comparison of the Fatigue Properties of Cast Wrought and HIP P/M Cobalt-Chromium
Prosthetic Alloys
Runkle, J. C., Nicholson, J., Rice, J.
Metal Powder Industries Federation, Princeton, NJ
Proc Int Powder Metallurgy Conf, Modern Developments in Powder Metallurgy
16, 705-25, 1985 (AD-D136 356)
Key Words: PREP, F-75, tensile properties, fatigue stress

5. HIP-Tool Materials
Bayer, F.
Powder Metall Int 16 (3), 117-20, 1984 (AD-D130 130)
Key Words: Haynes 21, Stellite 6, tool steel, stainless steel, microstructure, impact toughness, tensile properties, net shape forming

6. Containerless HIPing of PM Parts: Technology Economics and Equipment Productivity
Nyce, A. C.
Met Powder Rept 38 (7), 387-92, 1983 (AD-D128 150)
Key Words: AISI 4650, M-2, AISI 316L, Ti-6Al-4V, Monel 400, Stellite 6, Stellite 21, applications, cost, density, tensile properties

7. Application of Rapidly Solidified Superalloys
Patterson, R. J.
United Technologies Corp., West Palm Beach, FL
Quarterly Report
Rept No: FR-8062, 22 pp., 1976 (AD-D108 171)
Key Words: MAR-M200, IN-100 Co-20Cr, airfoils, tantalum addition, microstructure, particle size, atomization

8. Effect of Autoclave Heat Treatments on the Mechanical Properties of the Prealloyed
Powder Cobalt-Base Alloy HS-31
Freche, J. C., Ashbrook, R. L.
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH
Technical Note
Rept No: NASA-TN-D-7117, 22 pp., 1973 (AD-181 092)
Key Words: HS-31, microstructure, heat treatment, creep rupture, tensile properties
IRON ALLOYS

A-286

1. Characterization of a Rapidly Solidified Iron-Based Superalloy
Smugeresky, J. E.
Metall Trans 13A (9), 1535-46, 1982 (AD-D 125 578)
Key Words: A-286, JBK-75, Fe-30Ni, microstructure, tensile properties, morphology

2. Physical Metallurgy and Effects of Process Variables on the Microstructure of Wrought Superalloys
Muzyka, D. R.
ASTM, Philadelphia, PA
Proc Symp MiCon 78, 526-46, 1979 (AD-D 126 409)
Key Words: A-286, Inconel 901, Inconel 718, Waspaloy, RENE’ 95, Pyromet CTX-1, Pyromet 31, tensile properties, creep rupture, microstructure

Smugeresky, J. E., German, R. M.
Metall Trans 9A (2), 253-9, 1978 (AD-D 11 960)
Key Words: A-286, microstructure, tensile properties, brittle fracture, intergranular fracture, carbide precipitation, titanium carbides

4. Fracture Path in Hot Isostatically Pressed Superalloy A286
German, R. M., Smugeresky, J. E., Karfs, C. W.
Powder Metall Int 9 (4), 178-9, 1977 (AD-D 11 621)
Key Words: A-286, intergranular fracture, fracture surface, titanium carbides, grain boundaries

5. The Consolidation and Properties of Hot Isostatically Pressed A286 Stainless Steel
German, R. M., Smugeresky, J. E.
Key Words: A-286, tensile properties, fracture surface, aging

AISI 316

1. HIP of Bi-modal Powder Mixtures: Modeling and Experiment
Funkenbusch, P. D., Li, E. K. H.
Key Words: AISI 316L, powder metallurgy, particle size optimization

2. The Production and Processing of High-Quality Powder Metallurgy Materials
Graf, W., Kraemer, H. J., Poetschke, J., Weiglin, W.
Powder Metall Int 23 (4), 246-52, 1991
Key Words: T-15, M-4, M-50, AISI 304, AISI 316, AISI 321, AISI 410, AISI 440, Udiment 700, MERIT 76, IN-100, Stellite 6, Stellite 1, Stellite 12, Stellite 21, atomization, particle size, density, creep, metal injection molding
3. **Deposition and Determination of Argon in HIP-Parts**
Stover, D., Buchkremer, H.P., Diehl, W., Kaiser, H., Laakmann, J.
MPR Publishing Services Ltd., Bellstone, Shrewsbury, UK
Proc Int Conf PM Aerospace Materials-87 8.1-8.9, 1988 (AD-D143 660)
Key Words: Udimet 700, AISI 316L, Hastelloy X, SEM, microscopy, porosity

4. **Advanced Processing and Properties of High-Performance Alloys**
Koss, D. A.
Department of Metallurgical Engineering, Michigan Tech University, Houghton
Technical Report Number Four
Contract No : N00014-85-K-0427
19 pp., 1986 (AD-A167 404)
Key Words: Ti-6Al-4V, AA 7075-T6, AA 1100, AISI 316, fabrication, rapid solidification

5. **Progress of Powder Metallurgy in North America**
Roll, K.H., Johnson, P.K.
Key Words: copper, iron, Inconel 625, AISI 316L, M-2, NiFe, rapid solidification, injection molding

6. **Containerless HIPing of PM Parts: Technology Economics and Equipment Productivity**
Nyce, A. C.
Key Words: AISI 4650, M-2, AISI 316L, Ti-6Al-4V, Monel 400, Stellite 6, Stellite 21, applications, cost, density, tensile properties

7. **Superalloys More Super Than Ever**
McIntyre, R. D.
Mater Eng 95 (1), 36-43, 1982 (AD-D124 025)
Key Words: RENE' 95, IN-100, AISI 316, microstructure, recrystallization, creep rupture, oxidation, tensile properties

8. **New Approach Widens the Use of HIP P/M**
Precis Met 40 (10), 32-4, 1982 (AD-D128 141)
Key Words: AISI 4650, Stellite 6, AISI 316, Ti-6Al-4V, porosity, cost, tensile properties

9. **Trends in Powder Metallurgy Technology**
Chandler, H. E., Baxter, D. F.
Metal Prog 117 (1), 100-3, 1980 (AD-D117 225)
Key Words: RENE' 95, AISI 316, M-2, Stellite 6, Ti-6Al-4V, AISI 410, jet engines, net shape forming

10. **Corrosion Behavior of P/M and Conventionally made 316-L Stainless Steel**
Nazmy, M. Y., Karner, W., Al-Gwaiz, A. A.
J Met 30 (6). 14-9, 1978 (AD-D112 730)
Key Words: AISI 316L, corrosion, pitting, microstructure

11. **A Retrospective View of Metallurgy During the 25 Years of the Gillett Lectures**
Jaffee, R. I.
Key Words: AISI 316, Ti-6Al-4V, titanium, zirconium, hafnium, embrittlement, fracture mechanics
12. Specialty Methods of Powder Atomization
Grant, N. J.
Massachusetts Institute of Technology, Cambridge, MA
Proc 18th Sagamore Army Materials Research Conf, Sagamore Conference Center, Raquette Lake, NY, Aug-Sept 71
13 pp., 1971 (AD-181 533)
Key Words: IN-100, Maraging 300, 18/8 stainless, AA 2024, X-45, AISI 316, REP, microstructure, ultrasonic testing, fatigue, tensile properties

AISI 4340

1. P/M Processing of the Rare Earth Modified High Strength Steels
Sheinker, A. A.
TRW Inc., Materials Technology, Cleveland, OH
Rept No: TRW-ER-8097-2, 68 pp., 1980 (AD-A094 185)
Key Words: AISI 4340, rare earth addition, tensile properties, Charpy impact

2. Application of Superplastic Steels
Slaughter, E. R., Boardea, R. G.
Pratt and Whitney Aircraft Group, West Palm Beach, FL
Rept No: FR-10233, 20 pp., 1978 (AD-D108 306)
Key Words: AISI 4340, airfoils, aluminum addition, titanium addition, boron addition, tensile properties, superplasticity, thermomechanical treatment

3. Hot Isostatic Pressing: An Economic Route to Powder Components
James, P. J.
Metals and Materials 27-31, 1977 (AD-D111 600)
Key Words: AISI 4340, beryllium, Ti-6Al-4V, pressure vessels

Bryant, W. A.
Weld J 54 (12), 433-S-435-S, 1975 (AD-D102 316)
Key Words: AISI 4340, MAR-M250, AISI 1020, 9Ni-4Co steel, Inconel 718, diffusion welding, dissimilar joining, temperature effect, modulus of elasticity, melting point

M-2

1. Mechanical Properties of PH-IHIPed M2 high speed steel (HSS)
Kothari, N. C.
Diffus Defect Data, Pt B 25-26, 471-8, 1992
Key Words: M-2, vanadium addition, austenitizing, tempering, mechanical properties, impact strength, bend strength, hardness

2. Progress of Powder Metallurgy in North America
Roll, K.H., Johnson, P.K.
Key Words: copper, iron, Inconel 625, AISI 316L, M-2, NiFe, rapid solidification, injection molding

39
3. Containerless HIPping of PM Parts: Technology Economics and Equipment Productivity
Nyce, A. C.
Met Powder Rept 38 (7), 387-92, 1983 (AD-D128 150)
Key Words: AISI 4650, M-2, AISI 316L, Ti-6Al-4V, Monel 400, Stellite 6, Stellite 21, applications, cost, density, tensile properties

4. Hot Isostatic Processing
Clauer, A. H., Meiners, K. E., Boyer, C. B.
Metals Information Analysis Center, West Lafayette, IN
Rept No: MIIC-82-46, 228 pp., 1982 (AD-A132 232)
Key Words: Ti-6Al-4V, IN-738, RENE' 95, Udimet 700, IN-797 Inconel 718, M-1, M-2, In-1900, MAR-M250, welding, fatigue, tensile properties, heat treatment

5. Properties of High-Speed Steels Produced by Powder Metallurgy
Takigawa, H., Manto, H., Kawai, N., Homma, K.
Powder Metall 24 (4), 196-202, 1981 (AD-D122 928)
Key Words: M-2, M-3, M-35, M-36, AISI 1050, AISI 1040, AISI 321, AMS 6512, cutting tools, density, bend strength, toughness, cost

6. Trends in Powder Metallurgy Technology
Chandler, H. E., Baxter, D. F.
Metal Prog 117 (1), 100-3, 1980 (AD-D117 225)
Key Words: RENE’ 95, AISI 316, M-2, Stellite 6, Ti-6Al-4V, AISI 410, jet engines, net shape forming

7. The P/M Extrusion of Tool Steel Bar
Dunkley, J. J., Causton, R. J.
Key Words: HSS, M-2, alloying, microstructure, hardness, impact properties, grinding, drilling, milling, cost, annealing, extrusion

8. Toughness and Toughness Behavior of Two High-Speed Steels
Berry, G., Kadhim AI-Tomachi, M. J.
Met Technol 4 (6), 289-95, 1977 (AD-D110 293)
Key Words: M-2, M-3, fracture toughness, fatigue, crack growth fracture mechanics, hardness, milling, tool life

9. Crucible CPM Rex-High Speed Steel for Superior Cutting Tools
Colt Industries Inc., N.Y., 5 pp., 1974 (AD-D104 321)
Key Words: M-1, M-2, M-7, M-10, M-42, M-3, T-15, H41, cutting tools, tool life, Charpy impact, impact toughness, wear, grain size

MA 956

1. Materials for Advanced Turbine Engine--MATE
Evans, D. J., Sheffler, K. D., Freedrich, L. A.
Pratt and Whitney Aircraft Group, East Hartford, CT
Quarterly Technical Progress Report Number Twenty Four, Dec 81-Feb.82
Contract No: NAS 3-20072
44 pp., 1982 (AD-D124 466)
Key Words: MERL 76, Hastelloy X, Incoloy 901, AMS 5616, AMS 4928, MA956, JT-9D, JT-8D, turbine components, coatings, erosion, fatigue
2. Materials for Advanced Turbine Engine-MATE
Evans, D. J., Shefler, K. D., Friedrich, L. A.
Pratt and Whitney Aircraft Group, East Hartford, CT
Contract No: NAS 3-20072
36 pp., 1981 (AD-D122 325)
Key Words: Hastelloy X, MA956, Udimet 700, MERL 76, turbine components,
combustor liners, airfoils, coatings, fatigue, erosion resistance

3. Materials for Advanced Turbine Engine-MATE
Evans, D. J., Henricks, R. J., Friedrich, L. A., Blecherman, S. S.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Quarterly Technical Progress Report Number Sixteen, Dec 79-Feb-80
Contract No: NAS3-20072
44 pp., 1980 (AD-D118 687)
Key Words: MERL 76, Haynes 8077, MA956, turbine components, combustor liners,
tensile properties, creep rupture, coatings, plasma deposition, dispersion hardening

4. Materials for Advanced Turbine Engine-MATE
Evans, D. J., Henricks, R. J., Friedrich, L. A.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Quarterly Technical Progress Report Number Seventeen, 1 Mar-31 May 1980
Contract No: NAS 3-20072
64 pp., 1980 (AD-D118 782)
Key Words: MERL 76, Haynes 8077, MA956, turbine components, combustor liners,
compressor components, airfoils, fatigue, creep properties,
coatings, mechanical properties

5. Materials for Advanced Turbine Engine-MATE
Evans, D. J., Henricks, R. J., Friedrich, L. A.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Quarterly Technical Progress Report Number Eighteen, 1 Jun-31 Aug 1980
Contract No: NAS 3-20072
47 pp., 1980 (AD-D119 486)
Key Words: MERL 76, MA956, Hastelloy X, turbine components, tensile properties,
fatigue, coatings

6. Materials for Advanced Turbine Engine-MATE
Evans, D. J., Henricks, R. J., Friedrich, L. A.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Quarterly Technical Progress Report Number nineteen, 1 Sept-30 Nov 1980
Contract No: NAS 3-20072
35 pp., 1980 (AD-D120 344)
Key Words: MERL 76, Haynes 8077, MA956, aircraft engines, turbine components,
combustor liners, compressor components, airfoils, fatigue,
net shape forming, coatings

7. Materials for Advanced Turbine Engine-MATE
Evans, D. J., Gell, M.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Quarterly Progress Report Number Thirteen
Contract No: NAS3-20072
47 pp., 1979 (AD-D1 198)
Key Words: Haynes 8077, MA956, MERL 76, turbine components, combustor liners,
tensile properties, creep properties, dispersion hardening
8. Powder Metallurgy Techniques Applied to Superalloys
Benjamin, J. S., Larson, J. M.
J Aircr 14 (7), 613-23, 1977 (AD-D109 882)
Key Words: Udimet 700, RENE' 95, MA956E, MA754 turbine components, creep rupture, hot corrosion, oxidation, grain size, thermomechanical treatment

MAR-M250

1. Microstructures and Mechanical Properties of HIP Consolidated 18% Ni Maraging Steel
Komatsubara, N., Hayzelden, C., Cantor, B.
Powder Metall 30 (2), 119-24, 1987 (AD-D137 558)
Key Words: MAR-M250, microstructure, fracture, atomization, tensile properties

2. Hot Isostatic Processing
Clauer, A. H., Meiners, K. E., Boyer, C. B.
Metals Information Analysis Center, West Lafayette, IN
Rept No: MCIC-82-46, 228 pp., 1982 (AD-A132 232)
Key Words: Ti-6Al-4V, IN-738, RENE' 95, Udimet 700, IN-792, Inconel 718, M-1, M-2, B-1900, MAR-M250, welding, fatigue, tensile properties, heat treatment

3. Ductility in Hot Isostatically Pressed 250-Grade Maraging Steel
German, R. M., Smugeresky, J. E.
Metall Trans A 9A (3), 405-12, 1978 (AD-D112 162)
Key Words: MAR-M250, tensile properties, microstructure fracture surface, fabrication

4. Effect of Hot Isostatic Pressing Temperature on the Properties of Inert Gas Atomized Maraging Steel
German, R. M., Smugeresky, J. E.
Key Words: Maraging(250), microstructure, particle size, tensile properties, temperature effect

5. A Method for Specifying Hot Isostatic Pressure Welding Parameters
Bryant, W. A.
Weld J 54 (12), 433-S-435-S, 1975 (AD-D102 316)
Key Words: AISI 4340, MAR-M250, AISI 1020, 9Ni-4Co steel, Inconel 718, diffusion welding, dissimilar joining, temperature effect, modulus of elasticity, melting point

Maraging 300

1. Superalloys from Powder: Production and Properties
Author Anon
National Materials Advisory Board (NAS-NAE), Washington DC
Rept No: NMB-369, 102 pp., 1981 (AD-B058 349L)
Key Words: RENE' 95, X-40, Maraging 300, turbine components, fatigue, rapid solidification, mechanical properties, atomization
2. Soviet Activities in Iron and Titanium Powder Metallurgy
Marley, W. F., Jr.
Metal Powder Industries Federation, Princeton, NJ
P/M Ordnance Seminar, Powder Metallurgy in Defense Technology
5 pp., 1978 (AD-D116 028)
Key Words: Maraging 300, titanium alloys, shock loading, dispersion hardening, thermomechanical treatment

3. Properties of Maraging Steel 300 Produced by Powder Metallurgy
Van Swam, L. F., Pelloux, R. M., Grant, N. J.
Powder Metall 17 (33), 33-45, 1974 (AD-D100 184)
Key Words: Maraging 300, tensile properties, fatigue, aging, annealing

4. Structure and Property Control through Rapid Quenching of Liquid Metals
Grant, N. J., Pelloux, R. M., Flemings, M. C., Argon, A. S.
Massachusetts Institute of Technology, Center for Materials Science and Engineering, Cambridge, MA
Final Technical Report
Contract No: DAHC15-70-C-0283
411 pp., 1973 (AD-775 225)
Key Words: AA 7075, AA 2024, AISI 1045, IN-100, MAR-M509, Maraging 300, tensile properties

5. Structure and Property Control Through Rapid Quenching of Liquid Metals
Grant, N. J., Pelloux, R. M., Regis, M. N., Flemings, M. C., Merton, C.
Argon, A. S.
Massachusetts Institute of Technology, Center for Materials Science and Engineering, Cambridge, MA
Contract No: DAHC15-70-C-0283
130 pp., 1972 (AD-739 340)
Key Words: IN-100, MAR-M509, Maraging 300, microstructure, tensile properties, fatigue, hardness, creep rupture, fracture toughness

6. Structure and Property Control Through Rapid Quenching of Liquid Metals
Grant, N. J., Pelloux, R. M., Flemings, M. C., Argon, A. S.
Massachusetts Institute of Technology, Center for Materials Science and Engineering, Cambridge, MA
Semi-Annual Technical Report Number Four, Jan-Jul 1972
Contract No: DAHC15-70-C-0283
140 pp., 1972 (AD-749 679)
Key Words: AA 7075, IN-100, MAR-M509, AISI 1045, Maraging 300, microstructure, fractography, tensile properties

7. Specialty Methods of Powder Atomization
Grant, N. J.
Massachusetts Institute of Technology, Cambridge, MA
Proc 18th Sagamore Army Materials Research Conf, Sagamore Conference Center, Raquette Lake, NY, Aug-Sept 71
13 pp., 1971 (AD-181 533)
Key Words: IN-100, Maraging 300, 18/8 stainless, AA 2024, X-45, AISI 316, REP, microstructure, ultrasonic testing, fatigue, tensile properties
8. **Coarse Powder Techniques**
Widmer, R.
Industrial Materials Technology Inc., Woburn, MA
Proc 18th Sagamore Army Materials Research Conf, Sagamore Conference Center, Raquette Lake, NY, Aug-Sept 71
16 pp., 1971 (AD-181 534)
Key Words: IN-100, Maraging 300, X-45, MAR-M509, Hastelloy X, Udimet 710, Alloy 713, Ti-6Al-6V-2Sn, microstructure, creep rupture, tensile properties

9. **Structure and Property Control Through Rapid Quenching of Liquid Metals**
Grant, N. J., Pelloux, R. M., Regis, M. N., Flemings, M. C., Merton, C.
Argon, A. S.
Massachusetts Institute of Technology, Center for Materials Science and Engineering, Cambridge, MA
Contract No: DAHC15-70-C-0283
191 pp., 1971 (AD-729 053)
Key Words: IN-100, Vascomax 300, MAR-M509, extrusion, tensile properties, creep rupture, quenching

T-15

1. **The Production and Processing of High-Quality Powder Metallurgy Materials**
Graf, W., Kraemer, H. J., Poetschke, J., Weiglin, W.
Powder Metall Int 23 (4), 246-52, 1991
Key Words: T-15, M-4, M-50, AISI 304, AISI 316, AISI 321, AISI 410, AISI 440, Udimet 700, MERL 76, IN-100, Stellite 6, Stellite 1, Stellite 12, Stellite 21, atomization, particle size, density, creep, metal injection molding

Kumar, K. S., Lawley, A., Koczak, M. J.
TMS, Warrendale, PA
Contract No: N00014-84-K-0472
Metall Trans A 22A, 2733-45, 1991
Key Words: T-15, microstructure, atomization, carbides, lattice parameters, hardness, particle size

Kumar, K. S., Lawley, A., Koczak, M. J.
Key Words: T-15, particle size, heat treatment, microstructure, atomization, grain growth, carbides, impact toughness, bend strength, fracture surface, crack initiation, hardness

4. **Processing Variables and Failure Properties of Water Atomised Sintered T15 High-Speed Steels**
Santos, M., Gomes, M., Oliveira, M. M., Rebbeck, M. M., Wronski, A. S.
PM Into the 1990's 2, 155-8, 1990
Key Words: T-15, HSS, water atomization, sintering, transverse rupture strength, grain boundaries, brittle fracture, fracture toughness, microstructure
5. **Influence of HIP after Sintering on Fracture Toughness of High Speed Steels**
Martinez, V., Palma, R.H., Urcola, J.J.
Met Powder Rept 44 (11), 751-4, 1989 (AD-D142 698)
Key Words: T-6, T-15, microscopy, high speed steel, sintering, fracture toughness, hardness

6. **A Fundamental Study of Tool Steels Processed from Rapidly Solidified Powders**
Lawley, A., Koczak, M. J.
Drexel University, Department of Materials Engineering, Philadelphia, PA
Annual Report
Contract No: N00014-81-K-0039
101 pp., 1983 (AD-A126 163)
Key Words: T-15, Rex 25, tool steel, microstructure, hardness, size distribution

7. **Microstructure and Properties of P/M Tool Steels**
Kumar, S., Fareed, A., Koczak, M. J., Lawley, A.
Drexel University, Department of Materials Engineering, Philadelphia, PA
Technical Report
Contract No: N00014-81-K-0039
29 pp., 1983 (AD-A130 980)
Key Words: T-15, Rex 25, tool steel, microscopy, austenitizing, bend strength, impact toughness, diffraction

8. **Evaluation of Powder Processed Turbine Engine Ball Bearings**
Brown, Paul F., Bogardus, Glen A., Miner, J. R.
Pratt and Whitney Aircraft Group, Government Products Div, West Palm Beach, FL
Final Report
Rept No: PWA-FR-12981, 76 pp., 1981 (AD-A103 263)
Key Words: M-50, T-15, CRB-7, turbine components, microstructure, fatigue, corrosion

9. **A Fundamental Study of Tool Steels Processed from Rapidly Solidified Powders**
Lawley, A., Koczak, M. J.
Drexel University, Department of Materials Engineering, Philadelphia, PA
Annual Report
Contract No: N00014-81-K-0039
55 pp., 1981 (AD-A112 758)
Key Words: T-15, Rex 25, 4Cr steel, particle size, lattice parameters

10. **Hot Isostatic Pressing Favorably Influences Heat Treatment and Performance of P/M Tool Steels**
Lasday, S. B.
Ind Heat 44 (5), 12-5, 1977 (AD-D109 624)
Key Words: HSS, T-15, M-4, M-35S, CPM Rex76, microstructure, grain size, carbide precipitation, hardness, tooling

11. **Crucible CPM Rex-High Speed Steel for Superior Cutting Tools**
Colt Industries Inc., N.Y.
5 pp., 1974 (AD-D104 321)
Key Words: M-1, M-2, M-7, M-10, M-42, M-3, T-15, H41, cutting tools, tool life, Charpy impact, impact toughness, wear, grain size
Miscellaneous Stainless Steel

1. **The Production and Processing of High-Quality Powder Metallurgy Materials**
 Graf, W., Kraemer, H. J., Poetschke, J., Weiglin, W.
 Powder Metall Int 23 (4), 246-52, 1991
 Key Words: T-15, M-4, M-50, AISI 304, AISI 316, AISI 321, AISI 410, AISI 440, Udiment 700, MERL 76, IN-100, Stellite 6, Stellite 1, Stellite 12, Stellite 21, atomization, particle size, density, creep, metal injection molding

2. **Influence of Powder Surface Oxidation on Some Properties of HIPed Martensitic Chromium Steel**
 Arnberg, L., Karlsson, A.
 Int J Powder Metall 24 (2), 107-12, 1988 (AD-D138 728)
 Key Words: 12Cr-1Mo steel, microstructure, fracture, impact, hardening, atomization, tensile properties

3. **Performance Test of 110 mm Bore Ball Bearing Made from Corrosion Resistant Powdered Steel**
 Munson, H. E.
 Geo Centers Inc., Newton Centre, MA
 Final Technical Report
 Contract No: F33615-84-C-2412
 40 pp., 1986 (AD-A177 060)
 Key Words: MRC2001, 15Cr stainless, ball bearings, jet engines, corrosion, fatigue tests, residual stress, compressive stress

4. **HIPing of Stainless Steel--A New Technique for the Offshore Industry**
 Andersson, T.
 Met Powder Rept 40 (3), 164-7, 1985 (AD-D132 556)
 Key Words: 20Cr-18Ni, 26Cr stainless, 20Cr-25Ni, grain size, corrosion, tensile properties, fatigue, impact

5. **HIP-Tool Materials**
 Bayer, E.
 Powder Metall Int 16 (3), 117-20, 1984 (AD-D130 130)
 Key Words: Haynes 21, Stellite 6, tool steel, stainless steel, microstructure, impact toughness, tensile properties, net shape forming

6. **Processing and Consolidation of Rapidly Solidified Alloys: A Technology Assessment**
 Flinn, J. E.
 EG & G Idaho Inc., Idaho Falls, ID
 Technical Report
 Rept No: EGG-SCM-6595, 123 pp., 1984 (AD-D132 399)
 Key Words: stainless steel, alloy development, rapid solidification, scaling, atomization

7. **Injection Molding of 17-4 PH Stainless Steel**
 Marshall, T. P.
 Hughes Aircraft Co., Canoga Park, CA
 Technical Paper
 Rept No: SAE-841516, 28 pp., 1984 (AD-D133 738)
 Key Words: 17-4PH, metallography, Charpy impact, fatigue, tensile properties, injection molding
8. Rapid Solidification of Metallic Particulates
Grant, N. J.
Massachusetts Institute of Technology. Department of Materials Science and Engineering, Cambridge, MA
Contractor Report
Rept No: NASA-CR-169070, 16 pp., 1982 (AD-D126 287)
Key Words: Udiment 700, AA 7075, stainless steel, maraging steel, tensile properties, microstructure, splat quenching

9. Some Recent Developments in Powder Metallurgy
Haynes, R.
Metallurgist and Materials Technologist 13 (7), 355-60, 1981 (AD-D121 844)
Key Words: 1Mn steel, EN 16, 1Ni steel, Distaloy, tensile properties, impact, hardness

10. Wrought Fe-Cr-Al Alloys
Dzncladze, Zh. I., Lykova, V. F., Shchegoleva, R. P., Bakalinskii, V. G., Kiselev, A. A.
Key Words: 10Cr steel, 15Cr stainless, 20Cr stainless, 25Cr stainless, Fe-10Al, microstructure, grain size, oxidation, annealing, tensile properties

11. Properties of High-Speed Steels Produced by Powder Metallurgy
Takigawa, H., Manto, H., Kawai, N., Homma, K.
Powder Metall 24 (4), 196-202, 1981 (AD-D122 928)
Key Words: M-2, M-3, M-35, M-36, AISI 1050, AISI 1040, AISI 321, AMS 6512, cutting tools, density, bend strength, toughness, cost

12. Trends in Powder Metallurgy Technology
Chandler, H. E., Baxter, D. F.
Metal Prog 117 (1), 100-3, 1980 (AD-D117 225)
Key Words: RENE' 95, AISI 316, M-2, Stellite 6, Ti-6Al-4V, AISI 410, jet engines, net shape forming

13. All Systems Are Go for Powder Metallurgy
Irving, R. R.
Iron Age 223 (28), 41-5, 1980 (AD-D118 875)
Key Words: AISI 4600, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Waspaloy, IN-100, AISI 329, 12Cr steel, injection molding, cost, applications

14. Medium and High Alloy P.M. Steel Products by Hot Isostatic Pressing
Garvare, T., Benning, C.
Metall 47 (1), 33-7, 1980 (AD-D119 452)
Key Words: 3Cr steel, 3.5Ni steel, 12Cr steel, impact properties creep rupture, tensile properties, hardness, net shape forming

15. Basic Trends in Advanced Fabrication Processes
Walther, H. H.
Fiat S.P.A Turin (Italy) Laboratori Centrati Orbassano
Proc 47th Meeting of the AGARD Structures and Materials Panel, Advanced Fabrication Processes
Rept No: AGARD-CP-256, K-1 to K-12, 1979 (AD-D117 178)
Key Words: AISI 1045, AISI 304, fabrication, welding, machining, superplastic forming, ion implantation, net shape forming, coatings
16. Evaluation of Powder Processed Turbine Engine Ball Bearings
Brown, P. F., Potts, J. R.
Fratt and Whitney Aircraft Group, Government Products Div, West Palm Beach, FL.
Interim Report
Rept No: FR-8481, 90 pp., 1977 (AD-A046 695)
Key Words: 14Cr stainless, fatigue, hot hardness, fabrication, wear fatigue

17. Specialty Methods of Powder Atomization
Grant, N. J.
Massachusetts Institute of Technology, Cambridge, MA
Proc 18th Sagamore Army Materials Research Conf, Sagamore Conference Center, Raquette Lake, NY, Aug-Sept 71
13 pp., 1971 (AD-181 533)
Key Words: IN-100, Maraging 300, 18/8 stainless, AA 2024, X-45, AISI 316, REP, microstructure, ultrasonic testing, fatigue, tensile properties

18. Manufacturing Methods for the Production of Disc Shapes by Contour Rolling
Arnold, D. B.
General Electric Co., Aircraft Engine Group, Evendale, OH
Interim Engineering Report Number Two, Jul-Sep 71
Rept No: RDT-IR-204-1(II), 23 pp., 1971 (AD-888 623)
Key Words: RENE' 95, Hastelloy X, AISI 304, contour rolling

Miscellaneous Steels

1. Oxidation Resistant ODS-Superalloys for HIP-Equipments
Brueckner, L., Okorn, E.
Elsevier, London, UK
Key Words: PM 2000, oxidation resistance, dispersion strengthening

2. HIP Steel Components for the Manufacturing Industry
Kriester, T.
Elsevier, London, UK
Key Words: gas atomization, powder, turbine components, piping

3. Relationship of Microstructure to Properties of HIP and Weld Clad Alloy 625 in Sour Environments
Sisak, W. J., Ayer, R., Mueller, R. R., Leta, D. P.
TMS, Warrendale, PA
Key Words: Inconel 625, AISI 4130, 2.25Cr-1Mo steel, cladding, welding, corrosive medium, mechanical properties, microstructure, carbides

4. The Production and Processing of High-Quality Powder Metallurgy Materials
Graf, W., Kraemer, H. J., Poetschke, J., Weiglin, W.
Powder Metall Int 23 (4), 246-52, 1991
Key Words: T-15, M-4, M-50, AISI 304, AISI 316, AISI 321, AISI 410, AISI 440, Udimet 700, MERL 76, IN-100, Stellite 6, Stellite 1, Stellite 12, Stellite 21, atomization, particle size, density, creep, metal injection molding
5. Processing Variables and Failure Properties of Water Atomised Sintered T15 High-Speed Steels
Santos, M., Gomes, M., Oliveira, M. M., Rebbeck, M. M., Wronek, A. S.
PM Into the 1990's 2, 155-8, 1990
Key Words: T-15, HSS, water atomization, sintering, transverse rupture strength, grain boundaries, brittle fracture, fracture toughness, microstructure

6. Influence of HIP after Sintering on Fracture Toughness of High Speed Steels
Martinez, V., Palma, R.H., Urcola, J.J.
Met Powder Rept 44 (11), 751-4, 1989 (AD-D142 698)
Key Words: T-6, T-15, microscopy, high speed steel, sintering, fracture toughness, hardness

7. Influence of Powder Surface Oxidation on Some Properties of HIPed Martensitic Chromium Steel
Arnberg, L., Karlsson, A.
Int J Powder Metall 24 (2), 107-12, 1988 (AD-D138 728)
Key Words: 12Cr-1Mo steel, microstructure, fracture, impact, hardening, atomization, tensile properties

8. Production, Compaction and Application of Metal Powders
Kawai, N., Honma, K., Takigawa, H., Iwai, K., Hirano, M.
Met Powder Rept 43 (1), 21-5, 1988 (AD-D139 117)
Key Words: 300M, Waspaloy, Inconel 718, AA 2218, AA 2219, AA 2618, AISI 52100, atomization, rapid solidification, tensile properties, net shape forming

9. Nickel Alloys by P/M
Birkholz, W.J., Stulga, J.E., Eisen, W.B., Moll, J.H.
MPR Publishing Services Ltd., Bellstone, Shrewsbury, UK
Proc Int Conf PM Aerospace Materials-87, 2.1-2.9, 1988 (AD-D143 657)
Key Words: Udiment 700, Inconel 625, RENE’ 95, H-13 tool steel, precipitation hardening, tensile properties, thermal expansion, hardness, creep

10. Mechanical Property Development in Hot Isostatic Pressed (HIP) Low Alloy Steel Powder
Thornton, P., Senick, J., Atchinson, J.
Close Combat Armaments Center, Army Armament Research Development and Engineering Center, Watervliet, NY
Final Technical Report
Rept No: ARCCB-TR-86005, 25 pp., 1986 (AD-A166 666)
Key Words: 3Ni steels, microstructure, Charpy impact, tensile properties, net shape forming, hardness

11. Effect of Nitrogen and Carbon Equivalent on Properties of Powder Metallurgical W Series High V High Speed Steel
Kawai, N., Hirano, M., Horma, K., Tatsuno, T.
J Iron Steel Inst Japan 72 (14), 1929-38, 1986 (AD-D136 169)
Key Words: JIS-SKH 10, high speed steel, phase diagram, hardness, bend strength

Kawai, N., Hirano, M., Horma, K., Tatsuno, T.
J Iron Steel Inst Japan 72 (14), 1921-8, 1986 (AD-D136 170)
Key Words: JIS-SKH 51, high speed steel, microprobe analysis, bend properties, fatigue
13. Mechanical Properties of High Carbon Adamite P/M Steels
Notomi, K., Furuta, S., Kawai, N.
Key Words: IMn steel, atomization, fracture toughness, bend strength, sliding friction, wear rate

14. Emerging Trends in Aerospace Materials and Processes
Chandler, H. E.
Metal Prog 125 (5), 21-9, 1984 (AD-D130 023)
Key Words: Ti-10V-2Fe-3Al, Ti-15V-3Cr-3Al-3Sn, steel, aircraft, net shape forming, manufacturing

15. HIP-Tool Materials
Bayer, E.
Powder Metall Int 16 (3), 117-20, 1984 (AD-D130 130)
Key Words: Haynes 21, Stellite 6, tool steel, stainless steel, microstructure, impact toughness, tensile properties, net shape forming

16. A Fundamental Study of Tool Steels Processed from Rapidly Solidified Powders
Lawley, A., Koczak, M. J.
Drexel University, Department of Materials Engineering, Philadelphia, PA
Annual Report
Contract No: N00014-81-K-0039
101 pp., 1983 (AD-A126 163)
Key Words: T-15, Rex 25, tool steel, microstructure, hardness, size distribution

17. Microstructure and Properties of P/M Tool Steels
Kumar, S., Fareed, A., Koczak, M. J., Lawley, A.
Drexel University, Department of Materials Engineering, Philadelphia, PA
Technical Report
Contract No: N00014-81-K-0039
29 pp., 1983 (AD-A130 980)
Key Words: T-15, Rex 25, tool steel, microscopy, austenitizing, bend strength, impact toughness, diffraction

18. PM Methods for the Production of High Speed Steels
Beiss, P.
Met Powder Rept 38 (4), 185-94, 1983 (AD-D127 212)
Key Words: steel, extrusion, forging, sintering

19. Containerless HIPing of PM Parts: Technology Economics and Equipment Productivity
Nyce, A. C.
Met Powder Rept 38 (7), 387-92, 1983 (AD-D128 150)
Key Words: AISI 4650, M-7, AISI 316L, Ti-6Al-4V, Monel 400, Stellite 6, Stellite 21, applications, cost, density, tensile properties

20. Pressing of Powder Materials (Selected Pages)
Umanskiy, A. M.
Foreign Technology Division, Wright-Patterson AFB, OH
Rept No: FTD-ID(RS)T-1399-81, 31 pp., 1982 (AD-B062 478L)
Key Words: tungsten alloys, niobium alloys, steels, press forging, density, shrinkage
Fatemi, M., Rath, B.B.
Naval Research Lab, Washington DC
Annual Report Number Three
Rept No: NRL-MR-4749, 37 pp., 1982 (AD-A113 500)
Key Words: Al-4Cu, Ti-6Al-4V, 21-6-9 steel, microstructure, neutron scattering, tensile creep, plastic deformation

22. Effects of Manufacturing Processes on Structural Allowables
Jones, Dana J., Ford, S. C.
Battelle Memorial Institute, Columbus, OH
Final Technical Report
Rept No: AFWAL-TR-82-4136, 168 pp., 1982 (AD-A122 963)
Key Words: Ti-6Al-4V, 10V2Fe3Al-Ti alloy, CT-91-TTE69 aluminum alloy, AF-1410 steel, extrusion, fracture toughness, creep rupture, stress corrosion, fatigue crack, tensile properties, compressive properties, thermal expansion, bearing strength

23. Hot Isostatic Processing
Clauer, A. H., Meiners, K. E., Boyer, C. B.
Metals Information Analysis Center, West Lafayette, IN
State-of-the-Art
Rept No: MCIC-82-46, 228 pp., 1982 (AD-A132 232)
Key Words: Ti-6Al-4V, IN-73P, RENÊ 95, Udimet 700, IN-792, Inconel 718, M-1, M-2, B-1900, MAR-M250, welding, fatigue, tensile properties, heat treatment

24. The State of the Science and Art of Powder Metallurgy
Lenel, F. V., Ansell, G. S.
J Met 34 (2), 17-29, 1982 (AD-D124 400)
Key Words: beryllium, MAR-M200, Ti-6Al-4V, MA67, MA6000E, steel, tensile properties, sintering

25. Rapid Solidification of Metallic Particulates
Grant, N. J.
Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, MA
Contractor Report
Rept No: NASA-CR-169070, 16 pp., 1982 (AD-D126 287)
Key Words: Udimet 700, AA 7075, stainless steel, maraging steel, tensile properties, microstructure, splat quenching

26. New Approach Widens the Use of HIP P/M
Precis Met 40 (10), 32-4, 1982 (AD-D128 141)
Key Words: AISI 4650, Stellite 5, AISI 316, Ti-6Al-4V, porosity, cost, tensile properties

27. Evaluation of Powder Processed Turbine Engine Ball Bearings
Brown, Paul F., Bogardus, Glen A., Miner, J. R.
Pratt and Whitney Aircraft Group, Government Products Div, West Palm Beach, FL
Final Report
Rept No: PWA-FR-12981, 76 pp., 1981 (AD-A103 263)
Key Words: M-50, T-15, CRB-7, turbine components, microstructure, fatigue, corrosion
28. A Fundamental Study of Tool Steels Processed from Rapidly Solidified Powders
Lawley, A., Koczak, M. J.
Drexel University, Department of Materials Engineering, Philadelphia, PA
Annual Report
Contract No: N00014-81-K-0039
55 pp., 1981 (AD-A112 758)
Key Words: T-15, Rex 25, 4Cr steel, particle size, lattice parameters

29. Some Recent Developments in Powder Metallurgy
Haynes, R.
Metallurgist and Materials Technologist 13 (7), 355-60, 1981 (AD-D121 844)
Key Words: 1Mn steel, EN 16, 1Ni steel, Distaloy, tensile properties, impact, hardness

30. HIPping the High-Performance Alloys
Moll, J. H.
Mech Eng 103 (11), 56-61, 1981 (AD-D122 795)
Key Words: RENE' 95, titanium alloys, tool steel, Udimet 700, IN-100, MERl, 76, Waspaloy, turbine components, microstructure, tensile properties, stress intensity

31. Effect of Titanium Supersaturation on the Ductility of a Rapidly Solidified Powder-Processed Maraging Steel
Smugeresky, J. E., German, R. M.
Int J Powder Metall Powder Technol 17 (4), 305-17, 1981 (AD-D122 902)
Key Words: Maraging(230), segregation, tensile properties, impact, net shape forming, prealloying, aging

32. Properties of High-Speed Steels Produced by Powder Metallurgy
Takigawa, H., Manto, H., Kawai, N., Homma, K.
Powder Metall 24 (4), 196-202, 1981 (AD-D122 928)
Key Words: M-2, M-3, M-35, M-36, AISI 1050, AISI 1040, AISI 321, AMS 6512, cutting tools, density, bend strength, toughness, cost

33. The Mechanical Properties and Microstructure of Hot Isostatically Pressed HP9-4-20 Steel Powder
Klimowicz, T. F.
Sandia Labs, Materials Development Div., Livermore, CA
Rept No: SAND81-8229, 24 pp., 1981 (AD-D124 186)
Key Words: HP 9-4-20 steel, microstructure, grain growth, austenitizing, tensile properties

34. All Systems Are Go for Powder Metallurgy
Irving, R. R.
Iron Age 223 (28), 41-5, 1980 (AD-D118 875)
Key Words: AISI 4600, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Waspaloy, IN-100, AISI 329, 12Cr steel, injection molding, cost, applications

35. Medium and High Alloy P.M. Steel Products by Hot Isostatic Pressing
Garvare, T., Benning, C.
Metall 47 (1), 33-7, 1980 (AD-D119 452)
Key Words: 3Cr steel, 3.5Ni steel, 12Cr steel, impact properties, creep rupture, tensile properties, hardness, net shape forming
36. Basic Trends in Advanced Fabrication Processes
Walther, H. H.
Fiat S P A Turin (Italy) Laboratori Centrafi Orbassano
Proc 47th Meeting of the AGARD Structures and Materials Panel, Advanced Fabrication Processes
Rept No : AGARD-CP-256, K-1 to K-12, 1979 (AD-D117 178)
Key Words: AISI 1045, AISI 304, fabrication, welding, machining, superplastic forming, ion implantation, net shape forming, coatings

37. Effect of Powder Properties on Strength of Hot Isostatic Pressed High Speed Steels
Ando, H., Okayama, A., Soeno, K., Takeuchi, H.
J Iron Steel Inst Japan 64 (8), 1219-25, 1978 (AD-D113 315)
Key Words: SKII 57, creep rupture, atomization

38. High Speed Steels Turn to Powder Metallurgy
Stake, J-H. G.
Metalworking Production 122 (12), 75, 78, 1978 (AD-D114 920)
Key Words: ASP 60, 4Cr steel, ASP 23, ASP 30, tooling, machining, grinding. tool life, wear

39. A Study of HIP Conditions Influencing Density and Bending Strength of P/M High Speed Steel
Kawai, N., Takigawa, H., Ishi, M., Furuta, S., Inoue, Y.
Key Words: SKII, bend properties, creep properties, deformation density

40. Application of Rapidly Solidified Superalloys
Cox, A. R.
United Technologies Corp., West Palm Beach, FL
Quarterly Report
Rept No : FR-8688, 24 pp., 1977 (AD-D108 239)
Key Words: MAR-M200, IN-100, 7Ni steel, 9Ni steel, turbine components, airfoils, rapid solidification, atomization, recrystallization, thermal stability

41. The P/M Extrusion of Tool Steel Bar
Dunkley, J. J., Causton, R. J.
Key Words: HSS, M-2, alloying, microstructure, hardness, impact properties, grinding, drilling, milling, cost, annealing, extrusion

42. Hot Isostatic Pressing Favorably Influences Heat Treatment and Performance of P/M Tool Steels
Lasday, S. B.
Ind Heat 44 (5), 12-5, 1977 (AD-D109 624)
Key Words: HSS, T-15, M-4, M-35S, CPM Rex76, microstructure, grain size, carbide precipitation, hardness, tooling

43. Toughness and Toughness Behavior of Two High-Speed Steels
Berry, G., Kadhim Al-Tornachi, M. J.
Met Technol 4 (6), 289-95, 1977 (AD-D110 293)
Key Words: M-2, M-3, fracture toughness, fatigue, crack growth fracture mechanics, hardness, milling, tool life
44. **Grain Boundary Precipitation in 18Ni Maraging Steels**
Rack, H. J., Holloway, P. H.
Metall Trans 8A (8), 1313-5, 1977 (AD-D110 509)
Key Words: maraging steel, 18Ni steel, microstructure, grain boundary precipitation, fracture surface, solution heat treatment

45. **Comparative Evaluation of Forged Ti-6Al-4V Bar made from Shot Produced by the REP and CSC Processes**
Vaughan, R. F., Blenkinsop, P. A., Morton, P. H.
Imperial Metal Industries (Kynoch) Ltd., Birmingham, UK MPR Publishing Services Ltd., Bellstone, Shrewsbury, UK
8 pp., 1976 (AD-D110 190)
Key Words: Ti-6Al-4V, tensile properties, fracture toughness, fracture surface, titanium, CM steels, superalloys, surface layers, morphology, composition surface

46. **Processing: The Rediscovered Dimension in High Temperature Alloys**
Semchysen, M.
Standardization News 4 (4), 9-19, 1976 (AD-D110 676)
Key Words: Inconel 718, RENE' 80, AISI 4140, Udimet 700, TZM, IN-738, Waspaloy, remelting, alloying, creep rupture

47. **A Method for Specifying Hot Isostatic Pressure Welding Parameters**
Bryant, W. A.
Weld J 54 (12), 433-S-435-S, 1975 (AD-D102 316)
Key Words: AISI 4340, MAR-M250, AISI 1020, 9Ni-4Co steel, Inconel 718, diffusion welding, dissimilar joining, temperature effect, modulus of elasticity, melting point

48. **Crucible CPM Rex-High Speed Steel for Superior Cutting Tools**
Colt Industries Inc., N.Y.
5 pp., 1974 (AD-D104 321)
Key Words: M-1, M-2, M-7, M-10, M-42, M-3, T-15, H41, cutting tools, tool life, Charpy impact, impact toughness, wear, grain size

49. **Structure and Property Control through Rapid Quenching of Liquid Metals**
Grant, N. J., Pelloux, R. M., Flemings, M. C., Argon, A. S.
Massachusetts Institute of Technology, Center for Materials Science and Engineering, Cambridge, MA
Final Technical Report
Contract No: DAHC15-70-C-0283
411 pp., 1973 (AD-775 225)
Key Words: AA 7075, AA 2024, AISI 1045, IN-100, MAR-M509, Maraging 300, tensile properties

50. **Structure and Property Control Through Rapid Quenching of Liquid Metals**
Grant, N. J., Pelloux, R. M., Flemings, M. C., Argon, A. S.
Massachusetts Institute of Technology, Center for Materials Science and Engineering, Cambridge, MA
Semi-Annual Technical Report Number Four, Jan-Jul 1972
Contract No: DAHC15-70-C-0283
140 pp., 1972 (AD-749 679)
Key Words: AA 7075, IN-100, MAR-M509, AISI 1045, Maraging 300, microstructure, fractography, tensile properties

54
51. **Structure and Property Control Through Rapid Quenching of Liquid Metals**
Grant, N. J., Pelloux, R. M., Flemings, M. C., Argon, A. S.
Massachusetts Institute of Technology, Center for Materials Science and Engineering, Cambridge, MA
Semi-Annual Technical Report Number Five, Jul-Dec 1972
Contract No.: DAHC15-70-C-0283, 128 pp., 1972 (AD-757 677)
Key Words: IN-100, MAR-M509, 18Ni steel, microstructure, hot working, creep properties, strain rate, tensile properties

52. **Better Tool Steels by Powder Metallurgy**
Precis Met 29 (2), 31-33, 1971 (AD-177 505)
Key Words: tool steel, grain size, austenitizing, tooling, impact properties

Miscellaneous Iron Alloys

1. **The Production of Clad and Bimetal Components by the HIP-Assisted Diffusion bonding of Steels and Superalloys**
Pierronnet, M., Raisson, G.
MPR Publishing Services Ltd., Bellstone, Shrewsbury, UK
Key Words: bimetal components, welding, coating

2. **Iron-Based Oxide-Dispersion-Strengthened Alloys Resistant to Oxidation and High Temperatures--A Challenge for Powder Metallurgy Technology**
Korb, G., Schwaiger, A.
High Temp-High Pressures 21 (5), 475-86, 1989 (AD-D142 853)
Key Words: iron alloys, grain size, microstructure, oxide dispersion strengthening, tensile properties, creep

3. **Fracture Behavior of Rapidly Solidified Fe-Al-Si Alloys**
Guruswamy, S., Hirth, J. P., Powell, G. W.
Key Words: Fe-3Al-5Si-1.5Ti, boride addition, microstructure, fracture toughness, crack propagation

4. **Progress of Powder Metallurgy in North America**
Roll, K.H., Johnson, P.K.
Key Words: copper, iron, Inconel 625, AISI 316L, M-2, NiFe, rapid solidification, injection molding

5. **Characterization of a Rapidly Solidified Iron-Based Superalloy**
Smugeresky, J. E.
Metall Trans 13A (9), 1535-46, 1982 (AD-D125 578)
Key Words: A-286, JBK-75, Fe-30Ni, microstructure, tensile properties, morphology

6. **Wrought Fe-Cr-Al Alloys**
Dzneladze, Zh. L., Lykova, V. F., Shchegoleva, R. P., Bakalinskii, V. G.
Kiselev, A. A.
Key Words: 10Cr steel, 15Cr stainless, 20Cr stainless, 25Cr stainless, Fe-10Al, microstructure, grain size, oxidation, annealing, tensile properties
NICKEL ALLOYS

AF-115

1. Mechanical Properties of Ni-base Superalloy Disks Produced by Powder Metallurgy
 Iwai, K., Furuta, S., Yokomaku, T.
 Kobelco Technology Review 3, 6-10, 1988 (AD-D138 841)
 Key Words: AF-115, Waspaloy, Inconel 718, turbine components, tensile properties, fatigue, cracking

2. Mechanical Properties of Powder Ni-Base Superalloy Consolidated by HIP
 Takigawa, H., Iwai, K., Kawai, N., Kokomaku, T.
 Key Words: MERL 76, IN-100, AF-115, creep rupture, tensile properties, fatigue

3. Prior Particle Boundary Precipitation in P/M Superalloys
 Thamburaj, R., Koul, A. K., Wallace, W., de Malherbe, M. C.
 Metal Powder Industries Federation, Princeton, NJ
 Key Words: Udimet 700, AF-115, IN-792, MAR-M432, MERL 76, PA 101, RENE’ 41, tensile properties, creep rupture, fatigue

4. The New Frontiers of Powder Metals
 Vaccari, J. A.
 Amer Mach 127 (5), 121-36, 1983 (AD-D127 193)
 Key Words: AA 7090, AA 7091, IN9052, Ti-6Al-4V, Monel 400, Inconel 600, RENE’ 95, Cb291, Udimet 700, IN-100, AF-115, Inconel 625, net shape forming, injection molding, applications, forging

5. Long Life Disks from Rapidly Solidified Materials. Volume 1 RENE’ 95 and AF115 Process Development
 Van Stone, R. H.
 General Electric Co., Aircraft Engine Group, Evendale, OH
 Final Report Jul 78-Sep 81
 Rept No: AFWAL-TR-82-4032-Vol-1, 301 pp., 1982 (AD-B080 374L)
 Key Words: RENE’ 95, AF-115, rapid solidification, fatigue crack growth, tensile properties, creep rupture

 Van Stone, R. H., Liebermann, H. H., Hughes, J. R., Walter, J. L., Davies, H. A.
 General Electric Co., Aircraft Engine Group, Evendale, OH
 Final Report Jul 78-Sep 81
 Rept No: AFWAL-TR-82-4032-Vol-3, 154 pp., 1982 (AD-B080 376L)
 Key Words: AF-115, RENE’ 95, rapid solidification, melt spinning, fatigue crack growth, creep rupture, replica technique

7. Development of Materials and Process Technology for Dual Alloy Disks
 Marder, J. M., Kortovich, C. S.
 TRW Inc., Materials Lab, Cleveland, OH
 Final report
 Rept No: TRW-ER-8000F, 175 pp., 1981 (AD-D124 206)
 Key Words: RENE’ 95, AF-115, tensile properties, fatigue, creep rupture
8. **Long Life Engine Disks from Gas Atomized Powder**
Van Stone, R. H., Carlson, D. M.
General Electric Co., Aircraft Engine Group, Evendale, OH
Quarterly Report Feb-Jul 80
Contract No: F33615-78-C-5100, 84 pp., 1980 (AD-B053 0771.)
Key Words: RENE' 95, AF-115, rapid solidification, fatigue, cracking, tensile properties

Law, C. C., Blackburn, M. J.
Pratt and Whitney Aircraft Group, Government Products Div, West Palm Beach, FL
Rept No: PWA-FR-13317, 134 pp., 1980 (AD-A086 697)
Key Words: AF-115, MERL 76, MAR-M432, microstructure, tensile properties, notch properties, fatigue, creep, plastic deformation

10. **The Stress Behavior of Three Advanced Nickel-Base Superalloys during High-Temperature, Low Cycle Fatigue**
Bernstein, H. L.
Systems Research Labs Inc., Research Applications Div, Dayton, OH
Rept No: SRL-9799, 235 pp., 1980 (AD-A091 694)
Key Words: RENE' 95, AF-115, AF 2-IDA, forging, tensile properties, hardening, fatigue

11. **The Effect of Defects on the Fatigue Initiation Process in Two P/M Superalloys**
Hyzak, Jack M.
Air Force Wright Aeronautical Labs, Wright-Patterson AFB, OH
Rept No: AFWAL-TR-80-4063, 229 pp., 1980 (AD-A093 509)
Key Words: AF-115, AF 2-IDA, microstructure, crack nucleation, defects, tensile properties, fatigue stress

12. **Crack Growth Modeling in an Advanced Powder Metallurgy Alloy**
Utah, David A.
General Electric Co., Cincinnati, OH
Contract No: F33615-77-C-5082
145 pp., 1980 (AD-A097 992)
Key Words: AF-115, tensile properties, creep rupture, fatigue tests

13. **High Temperature Low Cycle Fatigue Data for Three High Strength Nickel-Base Superalloys**
Conway, J. B., Stentz, R. H.
Mar-Test Inc., Cincinnati, OH
Contract No: F33615-76-C-5191
119 pp., 1980 (AD-A097 430)
Key Words: RENE' 95, AF-115, AF 2-IDA, microstructure, aging, tensile properties, defects, creep rate, fatigue

14. **Creep Rupture in Powder Metallurgical Nickel-Base Superalloys at Intermediate Temperatures**
Law, C. C., Blackburn, M. J.
Metall Trans I 11A (3), 495-507, 1980 (AD-D117 895)
Key Words: AF-115, MAR-M432, IN-100, MERL 76, creep properties, tensile properties, lattice parameters, grain boundaries, heat treatment
15. New Production Methods Gain
Kolcum, E. H.
Aviat Week Space Technol 109 (16), 16-21, 1978 (AD-D115 577)
Key Words: IN-100, RENE' 95, AF-115, turbine components, die forging, net shape forming, cost

Miner, R. V., Jr.
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH
Technical Note
Rept No: E-8468, 35 pp., 1976 (AD-D102 508)
Key Words: NASA IIB-11, AF 2-IDA, AF-115, turbine components, microstructure, grain size, gamma prime, creep rupture, tensile properties, Larsen-Miller curves

17. Development of a Very High Strength Disk Alloy for L400F Service
Bartos, J. L.
General Electric Co., Aircraft Engine Group, Evendale, OH
Final Technical Report Jun 72-Jun 74
Rept No : AFML-TR-74-187, 164 pp., 1974 (AD-A001 937)
Key Words: AF-115, turbine components, microstructure, tensile properties, fatigue, creep rupture

AF2-1DA

1. The Stress Behavior of Three Advanced Nickel-Base Superalloys during High-Temperature, Low Cycle Fatigue
Bernstein, H. L.
Systems Research Labs Inc., Research Applications Div, Dayton, OH
Technical Report
Rept No: SRL-9799, 235 pp., 1980 (AD-A091 694)
Key Words: RENE' 95, AF-115, AF 2-IDA, forging, tensile properties, hardening, fatigue

2. The Effect of Defects on the Fatigue Initiation Process in Two P/M Superalloys
Hyzak, Jack M.
Air Force Wright Aeronautical Labs, Wright-Patterson AFB, OH
Final Report
Rept No: AFWAL-TR-80-4063, 229 pp., 1980 (AD-A093 509)
Key Words: AF-115, AF 2-IDA, microstructure, crack nucleation, defects, tensile properties, fatigue stress

3. High Temperature Low Cycle Fatigue Data for Three High Strength Nickel-Base Superalloys
Conway, J. B., Stentz, R. H.
Mar-Test Inc., Cincinnati, OH
Contract No: F33615-76-C-5191 and F33615-76-C-5245 and F33615-76-C-5191
119 pp., 1980 (AD-A097 430)
Key Words: RENE' 95, AF-115, AF 2-IDA, microstructure, aging, tensile properties, defects, creep rate, fatigue
4. Effects of Carbon and Hafnium Concentrations in Wrought Powder-Metallurgy Superalloys Based on NASA J11 Alloy
Miner, R. V., Jr.
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH
Technical Note, Rept No.: E-8468, 35 pp., 1976 (AD-D102 508)
Key Words: NASA J11, AF-2-1DA, AF-115, turbine components, microstructure, grain size, gamma prime, creep rupture, tensile properties, Larson-Miller curves

5. Evaluation of Powder Metallurgy Superalloy Disk Materials
Evans, D. J.
United Technologies Corp., South Windsor Engineering Facility, South Windsor, CT
Rept No: PWA-5263, 121 pp., 1975 (AD-D102 043)
Key Words: AF-2-1DA, MAR-M432, TRW NASA VI A, Udimet 700, turbine components, particle size, density, fatigue, crack growth, creep rupture, tensile properties, thermomechanical treatment

Alloy 713

1. Flow Behavior of Nickel-Base Superalloys at Isothermal Forging Temperatures and Strain Rates
Immarigeon, J.-P., Koul, A. K., Pergamon Press, Elmsford, NY
Proc 7th Int Conf Strength of Metals and Alloys 2073-8, 1986 (AD-D139 524)
Key Words: IN-100, MAR-M200, Alloy 713LC, grain size, deformation, flow properties

2. Trends in Superalloy Powder Processing
Immarigeon, J.-P., Wallace, W.
Met Powder Rept 38 (10), 537-544, 1983 (AD-D131 001)
Key Words: Alloy 713LC, MAR-M200, microstructure, grain size, net shape forming

3. Microstructural Instabilities During Superplastic Forging of a Nickel Base Superalloy Compact
Immarigeon, J.-P., Floyd, P. H.
Metall Trans 12A (7), 1177-86, 1981 (AD-D122 071)
Key Words: Alloy 713LC, microstructure, grain size, plastic deformation, compressive properties, superplastic forming

4. Cost 50: Materials for Gas Turbines
Bunk, W., Hansen, J.
NTIS, N82-15071, Springfield, VA
Rept No: N82-15071, 126 pp., 1981 (AD-D125 116)
Key Words: IN-738LC, IN-939, IN-597, IN-100, Alloy 713LC, Nimonic 105, Udimet 520, Udimet 700, turbine components, welding, cyclic fatigue, coatings, corrosion, creep

5. Review of Advanced Powder Metallurgical Fabrication Techniques in European NATO Countries
Sutcliffe, P. W.
Advisory Group for Aerospace Research and Development, Paris, France
Rept No: AGARD-R-641, 14 pp., 1976 (AD-A028 348)
Key Words: IN-100, IN-738, Alloy 713, Inconel 718, Rene' 95, Ti-6Al-4V, Waspaloy, precipitation hardening
6. **Atomised Powder-The Key to New Alloys**
Wallis, P. B., Powder Metall Int 8 (4), 167-9, 1976 (AD-D108 681)
Key Words: Nimonic 75, Nimonic 80A, Nimonic 81, Nimonic 90, Nimonic 105, Nimonic 115, Incoloy 901, Nimonic PE11, Nimonic PE16, Nimonic 263, Inconel 718, Inconel X-750, Nimocast 80, Nimocast 242, Nimocast 263, Alloy 713C, Alloy 713LC, Nimocast PD21, Nimocast PE10, Nimocast PK24, IN-738, turbine components

7. **Control of Grain Structure during Superalloy Powder Processing**
Key Words: Alloy 713LC, MAR-M200, IN-100, MAR-M246, Udimet 700, microstructure, tensile properties, creep rupture, gamma prime, thermomechanical treatment, temperature effect

8. **Properties of 713LC Compacts, Hot Isostatically Pressed at Supersolidus Temperatures**
Wallace, W., Holt, R. T., Whelan, E. P., J Test Eval 3 (2), 113-120, 1975 (AD-D100 883)
Key Words: Alloy 713LC, microstructure, grain growth, creep rupture, tensile properties, fracture surface

9. **Coarse Powder Techniques**
Key Words: IN-100, Maraging 300, X-45, MAR-M509, Hastelloy X, Udimet 710, Alloy 713, Ti-6Al-6V-2Sn, microstructure, creep rupture, tensile properties

Hastelloy X

1. **Deposition and Determination of Argon in HIP-Parts**
Key Words: Udimet 700, AISI 316L, Hastelloy X, SEM, microscopy, porosity

2. **Materials for Advanced Turbine Engine--MATE**
Evans, D. J., Sheffler, K. D., Friedrich, L. A., Pratt and Whitney Aircraft Group, East Hartford, CT, Contract No : NAS 3-20072, 44 pp., 1982 (AD-D124 466)
Key Words: MERL 76, Hastelloy X, Incoloy 901, AMS 5616, AMS 4928, MA956, JT-9D, JT-8D, turbine components, coatings, erosion, fatigue

3. **Materials for Advanced Turbine Engine-MATE**
Key Words: Hastelloy X, MA956, Udimet 700, MERL 76, turbine components, combustor liners, airfoils, coatings, fatigue, erosion resistance
4. Materials for Advanced Turbine Engine-MATE
Evans, D. J., Henricks, R. J., Friedrich, L. A.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Quarterly Technical Progress Report Number Eighteen, 1 Jun-31 Aug 1980
Contract No: NAS 3-20072
47 pp., 1980 (AD-D119 486)
Key Words: MERL 76, MA956, Hastelloy X, turbine components, tensile properties, fatigue, coatings

5. Modern Methods of Powder Metallurgical Processing of Superalloys
Gessinger, G. H., Bomford, M. J.
Brown, Boveri & Co. Ltd., Baden, Switzerland
Proc Symp High Temperature Materials in Gas Turbines 35 pp., 1973 (AD-D102 997)
Key Words: Udimet 500, Hastelloy X, X-45, Udimet 710, IN-100, IN-853 Udimet 700, RENE' 95, Inconel 718, D-979, Nimonic 80A, TD-nickel, turbine components, creep rupture, tensile properties, fatigue, atomization, REP, thermomechanical treatment

6. Coarse Powder Techniques
Widmer, R.
Industrial Materials Technology Inc., Woburn, MA
Proc 18th Sagamore Army Materials Research Conf, Sagamore Conference Center, Raquette Lake, NY, Aug-Sept 71
16 pp., 1971 (AD-181 534)
Key Words: IN-100, Maraging 300, X-45, MAR-M509, Hastelloy X, Udimet 710, Alloy 713, Ti-6Al-6V-2Sn, microstructure, creep rupture, tensile properties

7. Manufacturing Methods for the Production of Disc Shapes by Contour Rolling
Arnold, D. B.
General Electric Co., Aircraft Engine Group, Evendale, OH
Interim Engineering Report Number Two, Jul-Sep 71
Rept No : RTD-IR-204-1(II), 23 pp., 1971 (AD-888 623L)
Key Words: RENE' 95, Hastelloy X, AISI 304, contour rolling

Haynes 8077

1. Materials for Advanced Turbine Engine-MATE
Evans, D. J., Henricks, R. J., Friedrich, L. A., Blecherman, S. S.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Quarterly Technical Progress Report Number Sixteen, Dec 79-Feb-80
Contract No : NAS3-20072
44 pp., 1980 (AD-D118 687)
Key Words: MERL 76, Haynes 8077, MA956, turbine components, combustor liners, tensile properties, creep rupture, coatings, plasma deposition, dispersion hardening

2. Materials for Advanced Turbine Engine-MATE
Evans, D. J., Henricks, R. J., Friedrich, L. A.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Quarterly Technical Progress Report Number Seventeen, 1 Mar-31 May 1980
Contract No : NAS 3-20072
64 pp., 1980 (AD-D118 782)
Key Words: MERL 76, Haynes 8077, MA956, turbine components, combustor liners, compressor components, airfoils, fatigue, creep properties, coatings, mechanical properties
3. **Materials for Advanced Turbine Engine-MATE**
 Evans, D. J., Henricks, R. J., Friedrich, L. A.
 Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
 Quarterly Technical Progress Report Number nineteen, 1 Sept-30 Nov 1980
 Contract No: NAS 3-20072
 35 pp., 1980 (AD-D120 344)
 Key Words: MERL 76, Haynes 8077, MA956, aircraft engines, turbine components, combustor liners, compressor components, airfoils, fatigue, net shape forming, coatings

4. **Materials for Advanced Turbine Engine-MATE**
 Evans, D. J., Gell, M.
 Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
 Quarterly Progress Report Number Thirteen
 Contract No: NAS3-20072
 47 pp., 1979 (AD-D 116 198)
 Key Words: Haynes 8077, MA956, MERL 76, turbine components, combustor liners, tensile properties, creep properties, dispersion hardening

IN-100

1. **The Production and Processing of High-Quality Powder Metallurgy Materials**
 Graf, W., Kraemer, H. J., Poetschke, J., Weiglin, W.
 Powder Metall Int 23 (4), 246-52, 1991
 Key Words: T-15, M-4, M-50, AISI 304, AISI 316, AISI 321, AISI 410, AISI 440, Udimet 700, MERL 76, IN-100, Stellite 6, Stellite 1, Stellite 12, Stellite 21, atomization, particle size, density, creep, metal injection molding

2. **Mechanical Properties of Powder Ni-Base Superalloy Consolidated by HIP**
 Takigawa, H., Iwai, K., Kawai, N., Kokomaku, T.
 J Jpn Soc Powder Powder Metall 33 (5), 251-6, 1986 (AD-D135 711)
 Key Words: MERL 76, IN-100, AF-115, creep rupture, tensile properties, fatigue

3. **Structure and Properties of a Rapidly Solidified Superalloy Produced by Liquid Dynamic Compaction**
 Ogata, K., Lavermia, E., Ral, G., Grant, N. J.
 Int J Rapid Solidif 2 (1), 21-35, 1986 (AD-D135 785)
 Key Words: MERL 76, IN-100, microstructure, tensile properties, rapid solidification

4. **On the Sintered Ni-Base Superalloy (VI)--Effect of Microstructures on the Creep Property**
 Morishita, M., Nagai, H., Shoji, K.
 Key Words: IN-100, MERL 76, microstructure, swaging, creep rate, liquid sintering, creep rupture

5. **Modern Powder Metallurgy Science and Technology**
 Lawley, A.
 J Met 38 (8), 15-25, 1986 (AD-D136 435)
 Key Words: NiAl, IN-100, MAR-M509, RENE’ 95, AA 2024-T6, consolidation, REP, tensile properties, impact toughness
6. Preform Conditions for Powder-Consolidated Nickel-Base Superalloy Mod. IN-100 Aimed at Grain Refinement
 Torisaka, Y., Nakazawa, Y., Miyagawa, M.
 J Iron Steel Inst Japan 72 (9), 1351-8, 1986 (AD-D138 879)
 Key Words: IN-100, forging, gatorizing, extrusion, tensile properties, hardness

7. Superplastic Behavior of Powder-Consolidated and Rolled Mod IN-100 Sheet
 Torisaka, Y., Nakazawa, Y., Miyagawa, M.
 J Iron Steel Inst Japan 72(10), 1567-74, 1986 (AD-D138 980)
 Key Words: IN-100, tensile properties, superplasticity

8. Flow Behavior of Nickel-Base Superalloys at Isothermal Forging Temperatures and Strain Rates
 Immarigeon, J.-P., Koul, A. K.
 Pergamon Press, Elmsford, NY
 Proc 7th Int Conf Strength of Metals and Alloys 2073-8, 1986 (AD-D139 524)
 Key Words: IN-100, MAR-M200, Alloy 713LC, grain size, deformation, flow properties

9. Experimental and Theoretical Studies of Creep Crack Growth
 Pelloux, R. M., Bain, K. R., Bensussan, P.
 Massachusetts Institute of Technology, Cambridge, MA
 Final Report
 Rept No: AFOSR-TR-84-0387, 146 pp., 1984 (AD-A141 193)
 Key Words: AA 2219-T851, Udimet 700, MERL 76, IN-100, RENE’ 95, creep, cracking, tensile properties, creep rupture

10. Effect of Environment on Creep Crack Growth in PM/HIP RENE-95
 Bain, K. R., Pelloux, R. M.
 Metall Trans 15A (2), 381-8, 1984 (AD-D129 273)
 Key Words: RENE’ 95, Inconel 718, IN-100, Inconel X-750, Udimet 700, creep, crack growth, fractography

11. Effect of Oxygen on Creep Crack Growth in PM/HIP Nickel-Base Superalloys
 Bain, K. R., Pelloux, R. M.
 The Metallurgical Society of AIME, Warrendale, PA
 Key Words: Udimet 700, MERL 76, IN-100, RENE’ 95, grain boundaries, notch properties, aging, embrittlement

12. Welding of PM Superalloys
 Wilhelm, H.
 NTIS, N85-16191, Springfield, VA
 Final Report
 Rept No: MTU-TB-910/84, 66 pp., 1984 (AD-D133 633)
 Key Words: Udimet 700, IN-100, RENE’ 95, MERL 76, weld and post weld, tensile properties, fatigue

13. Manufacturing Process for Production of Near Net Shapes by Hot Isostatic Pressing of Superalloy Powder
 Evans, D. J., Malley, D. R.
 Pratt and Whitney Aircraft Group, Government Products Div, West Palm Beach, FL
 Final Report Aug 77-Jun 82
 Rept No: AFWAL-TR-83-4022, 312 pp., 1983 (AD-B079 132L)
 Key Words: IN-100, net shape forming, tensile properties, fabrication
14. The New Frontiers of Powder Metals
Vaccari, J. A.
Amer Mach 127 (5), 121-36, 1983 (AD-D127 193)
Key Words: AA 7090, AA 7091, IN9052, Ti-6Al-4V, Monel 400, Inconel 600, RENE' 95, Ch291, Udimet 700, IN-100, AF-115, Inconel 625, net shape forming, injection molding, applications, forging

15. Superalloys More Super Than Ever
McIntyre, R. D.
Mater Eng 95 (1), 36-43, 1982 (AD-D124 025)
Key Words: RENE' 95, IN-100, AISI 316, microstructure, recrystallization, creep rupture, oxidation, tensile properties

16. PM Technology Hitting New Highs
McIntyre, R. D.
Mater Eng 95 (4), 46-54, 1982 (AD-D124 504)
Key Words: RENE' 95, IN-100, Ti-6Al-4V, Ti-6Al-6V-2Sn, coatings, phase transformation, net shape forming

17. Hot Isostatically Pressed Manufacture of High Strength MERL 76 Disk and Seal Shapes, Volume 2
Evarts, D. J.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Final Rept, Project 2
Rept No: NASA-CR-165550, 11 pp., 1982 (AD-D126 061)
Key Words: IN-100, MERL 76, JT-9D, turbine components, fatigue, net shape forming, nondestructive testing

Thompson, E. R.
Annual Reviews Inc., Palo Alto, CA
Key Words: IN-100, Udimet 700, RENE' 95, MERL 76, Ti-6Al-4V, creep rupture, fatigue, fracture toughness

19. Powder and Particulate Production of Metallic Alloys
Grant, N. J.
Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, MA
Contractor Report
Rept No: NASA-CR-169069, 31 pp., 1982 (AD-D126 286)
Key Words: IN-100, Udimet 700, microstructure, creep rupture, porosity, intergranular fracture, splat quenching

20. Creep-Fatigue Environment Interactions in Superalloys
Pelloux, R. M.
Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, MA
Final Report
Rept No: AFOSR-TR-81-0450, 35 pp., 1981 (AD-A098 790)
Key Words: Udimet 700, Waspaloy, IN-100, microstructure, creep, fatigue, embrittlement
21. **HIPping the High-Performance Alloys**
Moll, J. H.
Mech Eng 103 (11), 56-61, 1981 (AD-D122 795)
Key Words: RENE' 95, titanium alloys, tool steel, Udimet 700, IN-100, MERL 76, Waspaloy, turbine components, microstructure, tensile properties, stress intensity

22. **Cost 50: Materials for Gas Turbines**
Bunk, W., Hansen, J.
NTIS, N82-15071, Springfield, VA
Progress Report
Rept No: N82-15071, 126 pp., 1981 (AD-D125 116)
Key Words: IN-738LC, IN-939, IN-597, IN-100, Alloy 713L C, Nimonic 105, Udimet 520, Udimet 700, turbine components, welding, cyclic fatigue, coatings, corrosion, creep

23. **Advances in P/M and ODS Superalloys**
Tien, J. K., Howson, T. E.
ASM International, Metals Park, OH
Key Words: IN-100, Udimet 700, MAR-M200, creep rupture, tensile properties

24. **Creep Rupture in Powder Metallurgical Nickel-Base Superalloys at Intermediate Temperatures**
Law, C. C., Blackburn, M. J.
Metall Trans IA (3), 495-507, 1980 (AD-D117 895)
Key Words: AF-115, MAR-M-432, IN-100, MERL 76, creep properties, tensile properties, lattice parameters, grain boundaries, heat treatment

25. **All Systems Are Go for Powder Metallurgy**
Irving, R. R.
Iron Age 223 (28), 41-5, 1980 (AD-D118 875)
Key Words: AISI 4600, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Waspaloy, IN-100, AISI 329, 12Cr steel, injection molding, cost, applications

26. **Evaluation of the Cyclic Behavior of Aircraft Turbine Disk Alloys, Part 2**
Pratt and Whitney Aircraft Group, West Palm Beach, FL
Final Report
Rept No: PWA-FR-13153, 191 pp., 1980 (AD-D119 421)
Key Words: MERL 76, RENE' 95, IN-100, Waspaloy, Udimet 700, NASA IIB-7, fatigue crack growth, creep-fatigue, tensile properties, microstructure

27. **Powder Metallurgy of Turbine Disc Alloys, Cost 50, Round II**
Ingesten, N-G.
NTIS, DE82-901834, Springfield, VA
Final Report
Rept No: STU-77-3602, 31 pp., 1980 (AD-D126 307)
Key Words: Udimet 700, IN-100, turbine components, carbide precipitation, thermal stability, phase transformation
28. Exploratory Development of Die Materials for Isothermal Forging of Titanium Alloys
Kortovich, C. S., Marder, J. M.
TRW Inc., Materials Technology, Cleveland, OH
Final Technical Report
Contract No: F33615-76-C-5105
188 pp., 1979 (AD-A078-951)
Key Words: TRW NASA VI A, IN-100, IN-792, TAZ-8A, creep rupture, tensile properties, thermal fatigue

29. Rapidly Solidified Powders, Their Production, Properties, and Potential Applications
Cox, A. R., Moore, J. B., Van Reuth, E. C.
Pratt and Whitney Aircraft Group, West Palm Beach, FL
Proc 47th Meeting of the AGARD Structures and Materials Panel. Advanced Fabrication Processes
Rept No: AGARD-CP-256, 12:1 to 12:11, 1979 (AD-D117 187)
Key Words: MAR-M200, IN-100, tensile properties, creep properties, rapid solidification, recrystallization

30. New Production Methods Gain
Kolcum, E. H.
Aviat Week Space Technol 109 (16), 16-21, 1978 (AD-D115 577)
Key Words: IN-100, RENE' 95, AF-115, turbine components, die forging, net shape forming, cost

31. Forging and Powder Metallurgy Processing
Fischmeister, H., Straube, H.
Applied Sciences Publishers Ltd., London, UK
Proc Conf High Temperature Alloys for Gas Turbines, 769-816, 1978 (AD-D116 363)
Key Words: Nimonic 90, Udimet 520, Udimet 700, Inconel 718, IN-738, IN-100, turbine components, microstructure, creep properties, tensile properties, fatigue, precipitation, thermomechanical treatment

Beck, Robert
Teledyne CAE, Toledo, OH
Final Report Apr 73-Sep 76
Rept No: AFAPL-TR-76-107, 46 pp., 1977 (AD-B016 563)
Key Words: IN-792, IN-100, turbine components, creep, Larson-Miller curves, fatigue, tensile properties, Charpy impact, thermal cycling, thermal shock

33. Application of Rapidly Solidified Superalloys
Cox, A. R.
United Technologies Corp., West Palm Beach, FL
Quarterly Report
Rept No: FR-8688, 24 pp., 1977 (AD-D108 239)
Key Words: MAR-M200, IN-100, 7Ni steel, 9Ni steel, turbine components, airfoils, rapid solidification, atomization, recrystallization, thermal stability

34. Production of Components by Hot Isostatic Pressing of Nickel-Base Superalloy Powders
Blackburn, M. J., Sprague, R. A.
Met Technol 4 (8), 388-95, 1977 (AD-D110 796)
Key Words: Incoloy 901, Waspaloy, Udimet 700, IN-100, turbine components, tensile properties, creep rupture, metallography

67
35. Review of Advanced Powder Metallurgical Fabrication Techniques in European NATO Countries
Sutcliffe, P. W.
Advisory Group for Aerospace Research and Development. Paris, France
Rept No: AGARD-R-641, 14 pp., 1976 (AD-A028 348)
Key Words: IN-100, IN-738, Alloy 713, Inconel 718, RENÉ’ 95, Ti-6Al-4V, Waspaloy, precipitation hardening

36. Production Inspection of Near Net Turbine Disk Shapes
Doherty, J. E.
Pratt and Whitney Aircraft Group, East Hartford, CT
2nd Interim Technical Report
Rept No : PWA-5378, 1976 (AD-D108 078)
Key Words: IN-100, Udimet 700, turbine components, fabrication, gatorizing, ultrasonic testing

37. Production Inspection of Near Net Turbine Disk Shapes
Doherty, J. E.
Pratt and Whitney Aircraft Group, East Hartford, CT
First Interim Technical Report
Rept No : PWA-5322, 15 pp., 1976 (AD-D108 079)
Key Words: IN-100, Udimet 700, turbine components, gatorizing, fabrication, ultrasonic testing

38. Application of Rapidly Solidified Superalloys
Patterson, R. J.
United Technologies Corp., West Palm Beach, FL
Quarterly Report
Rept No : FR-8062, 22 pp., 1976 (AD-D108 171)
Key Words: MAR-M200, IN-100, Co-20Cr, airfoils, tantalum addition, microstructure, particle size, atomization

39. Fabrication by Powder Metallurgy of Heat-Resistant Superalloys
Hivert, A., Walder, A., Marty, M.
NTIS, N76-32115, Springfield, VA
Technical Translation
Rept No : N76-32115, 13 pp., 1976 (AD-D108 821)
Key Words: IN-100, microstructure, recrystallization, grain size, precipitation, creep rupture, tensile properties, fatigue, atomization, particle size, heat treatment

40. Control of Grain Structure during Superalloy Powder Processing
Wallace, W., Immarigeon, J-P. A., Trenouth, J. M., Powell, B. D.
National Aeronautical Establishment, Ottawa, Canada
p.9-1 to p.9-13, 1976 (AD-D110 187)
Key Words: Alloy 713LC, MAR-M200, IN-100, MAR-M246, Udimet 700 microstructure, tensile properties, creep rupture, gamma prime, thermomechanical treatment, temperature effect

41. Powder Metallurgy Production Processes
Clark, L. P.
AGARD Structures and Materials Panel, 18 pp., 1974 (AD-D102 694)
Key Words: IN-100, AA 7075-T6, IN-792, Ti-6AI-4V, turbine components, nondestructive testing
42. Production of Superalloys from Powders
Thompson, F. A., Williams, D. L.
AGARD Structures and Materials Panel 15 pp., 1974 (AD-D102 696)
Key Words: IN-100, Nimonic 105, Nimonic 90, Nimonic 80A, TD-nickel, turbine components, creep rupture, dispersion hardening, cost

43. Powder Metallurgy of Superalloys
Gessinger, G. H., Bomford, M. J.
Int Metall Rev 19 (181), 51-76, 1974 (AD-D103 307)
Key Words: IN-100, Udimet 500, MAR-M246, Udimet 700, TD-nickel, chromium addition, porosity, cracking, creep rupture, grain growth, dispersion hardening, tensile properties, microstructure, hot corrosion, oxidation, thermomechanical treatment

44. Application of Hot-Isostatic Pressing, Hydrostatic Extrusion, and Deformable-Die Tube Tapering Processes to Production of Titanium-6Al-4V Tapered Tubes
Meyer, G. E., Harth, G. H., Houck, J. A., Byrer, T. G.
Batelle Memorial Institute, Columbus, OH
Rept No.: USAAMRLD-TR-72-73, 86 pp., 1973 (AD-759 504)
Key Words: MAR-M509, IN-100, Ti-6Al-4V, turbine components, microstructure, thermomechanics, die forging, cold drawing, extrusion

45. Structure and Property Control through Rapid Quenching of Liquid Metals
Grant, N. J., Pelloux, R. M., Flemings, M. C., Argon, A. S.
Massachusetts Institute of Technology, Center for Materials Science and Engineering, Cambridge, MA
Contract No.: DAHC15-70-C-0283, 130 pp., 1972 (AD-775 225)
Key Words: AA 7075, AA 2024, AISI 1045, IN-100, MAR-M509, Maraging 300, tensile properties

46. Modern Methods of Powder Metallurgical Processing of Superalloys
Gessinger, G. H., Bomford, M. J.
Brown, Boveri & Co. Ltd., Baden, Switzerland
Proc Symp High Temperature Materials in Gas Turbines 35 pp., 1973 (AD-D102 997)
Key Words: Udimet 500, Hastelloy X, X-45, Udimet 710, IN-100, IN-853, Udimet 700, RENE' 95, Inconel 718, D-979, Nimonic 80A, TD-nickel, turbine components, creep rupture, tensile properties, fatigue, atomization, REP, thermomechanical treatment

47. Properties of IN-100 Processed by Powder Metallurgy
Moskowitz, L. N., Pelloux, R. M., Grant, N. J.
Massachusetts Institute of Technology, Cambridge, MA
Proc 2nd Int Conf Superalloys-Processing, Champion, PA, Sept. 1972
25 pp., 1972 (AD-179 965)
Key Words: IN-100, grain size, tensile properties, creep rupture

48. Structure and Property Control Through Rapid Quenching of Liquid Metals
Grant, N. J., Pelloux, R. M., Regis, M. N., Flemings, M. C., Merton, C.
Argon, A. S.
Massachusetts Institute of Technology, Center for Materials Science and Engineering, Cambridge, MA
Contract No.: DAHC15-70-C-0283, 130 pp., 1972 (AD-739 340)
Key Words: IN-100, MAR-M509, Maraging 300, microstructure, tensile properties, fatigue, hardness, creep rupture, fracture toughness
49. Structure and Property Control Through Rapid Quenching of Liquid Metals
Grant, N. J., Pelloux, R. M., Flemings, M. C., Argon, A. S.
Massachusetts Institute of Technology, Center for Materials Science and Engineering,
Cambridge, MA
Semi-Annual Technical Report Number Four, Jan-Jul 1972
Contract No: DAHC15-70-C-0283
140 pp., 1972 (AD-749 679)
Key Words: AA 7075, IN-100, MAR-M509, AISI 1045, Maraging 300, microstructure, fractography, tensile properties

50. Structure and Property Control Through Rapid Quenching of Liquid Metals
Grant, N. J., Pelloux, R. M., Flemings, M. C., Argon, A. S.
Massachusetts Institute of Technology, Center for Materials Science and Engineering,
Cambridge, MA
Semi-Annual Technical Report Number Five, Jul-Dec 1972
Contract No: DAHC15-70-C-0283
128 pp., 1972 (AD-757 677)
Key Words: IN-100, MAR-M509, 18Ni steel, microstructure, hot working, creep properties, strain rate, tensile properties

51. Liquid-Metal Atomization for Hot Working Preforms
Grant, N. J., Pelloux, R. M.
Massachusetts Institute of Technology, Department of Metallurgy and Materials Science, Cambridge, MA
Key Words: AA 2024-T4, IN-100, MAR-M509, atomization, silicon addition, hafnium addition, tensile properties, fatigue, segregation

52. Glass Bag Hot Isostatic Pressing of Superalloys
Havel, C. J.
Kelsey-Hayes Co., Utica, NY
Key Words: Udimet 700, Inconel 718, IN-100, mechanical properties

53. Specialty Methods of Powder Atomization
Grant, N. J.
Massachusetts Institute of Technology, Cambridge, MA
Proc 18th Sagamore Army Materials Research Conf, Sagamore Conference Center,
Raquette Lake, NY, Aug-Sept 71
13 pp., 1971 (AD-181 533)
Key Words: IN-100, Maraging 300, 18/8 stainless, AA 2024, X-45, AISI 316, REP, microstructure, ultrasonic testing, fatigue, tensile properties

54. Coarse Powder Techniques
Widmer, R.
Industrial Materials Technology Inc., Woburn, MA
Proc 18th Sagamore Army Materials Research Conf, Sagamore Conference Center,
Raquette Lake, NY, Aug-Sept 71
16 pp., 1971 (AD-181 534)
Key Words: IN-100, Maraging 300, X-45, MAR-M509, Hastelloy X, Udimet 710, Alloy 713, Ti-6Al-6V-2Sn, microstructure, creep rupture, tensile properties
55. **Structure and Property Control Through Rapid Quenching of Liquid Metals**
 Grant, N. J., Pelloux, R. M., Regis, M. N., Flemings, M. C., Merton, C.
 Argon, A. S.
 Massachusetts Institute of Technology, Center for Materials Science and Engineering,
 Cambridge, MA
 Contract No: DAHC15-70-C-0283
 191 pp., 1971 (AD-728 053)
 Key Words: IN-100, Vascomax 300, MAR-M509, extrusion, tensile properties,
 creep rupture, quenching

IN-738

1. **Coatings with Lenticular Oxides Preventing Interdiffusion**
 Burman, C., Ericsson, T., Kvernes, I., Lindblom, Y.
 Surface and Coatings Technology 32 (1), 127-40, 1987 (AD-D137 763)
 Key Words: IN-738, FeCrAlY coatings, microstructure, epitaxial growth,
 electron beam melting, plasma deposition

2. **Trends in Development of Oxide-Dispersion-Strengthened Superalloys**
 Kaido, Y.
 Key Words: IN-738, MA6000, MA753, turbine components, creep rupture

3. **Hot Isostatic Press**
 Author Anon
 Foreign Technology Division, Wright-Patterson AFB, OH
 Rept No: FTD-ID(RS)T-1406-84, 65 pp., 1985 (AD-B093 100L)
 Key Words: Ti-6Al-4V, B-1900, IN-738, RENE' 77, IN-792, RENE' 80, AA C355, AA
 A356, 142-T4

4. **Recent Developments and Trends in High Strength PM Materials**
 Singer, R. F.
 Powder Metall Int 17 (6), 284-8, 1985 (AD-D134 736)
 Key Words: IN-738, MA6000, turbine components, tensile properties, dispersion
 strengthening

5. **Hot Isostatic Processing**
 Clauer, A. H., Meiners, K. E., Boyer, C. B.
 Metals Information Analysis Center, West Lafayette, IN
 State-of-the-Art
 Rept No: MC.'C.-82-46, 228 pp., 1982 (AD-A132 232)
 Key Words: Ti-6Al-4V, IN-738, RENE' 95, Udimet 700, IN-792, Inconel 718, M-1,
 M-2, B-1900, MAR-M250, welding, fatigue, tensile properties, heat treatment

6. **Development of Hybrid Gas Turbine Bucket Technology**
 Peterson, L. G., Hrencicin, D. E., Schilling, W. F., Ostergren, W. J.
 General Electric Co., Gas Turbine Division, Schenectady, NY
 Technical Paper
 Rept No: ASME-82-GT-94, 10 pp., 1982 (AD-D127 264)
 Key Words: RENE' 80, RENE' 150, Udimet 700, MAR-M200, IN-939, RENE' 125,
 RENE' 120, GTD-111, IN-738, turbine components, tensile
 properties, unidirectional solidification, dissimilar joining,
 diffusion bonding, creep rupture
7. **Recent Developments in Powder Metallurgy of Superalloys**
 Gessingei, G. H.
 Powder Metall Int 13 (2), 93-101, 1981 (AD-D122 017)
 Key Words: MERL 76, Udimet 700, RENE’ 95, IN-738, MA6000E, MAR-M200, mechanical properties, corrosion, superplastic forming, thermomechanical treatment

8. **Cost 50: Materials for Gas Turbines**
 Bunk, W., Hansen, J.
 NTIS, N82-15071, Springfield, VA
 Progress Report
 Rept No: N82-15071, 126 pp., 1981 (AD-D125 116)
 Key Words: IN-738LC, IN-939, IN-597, IN-100, Alloy 713LC, Nimonic 105, Udimet 520, Udimet 700, turbine components, welding, cyclic fatigue, coatings, corrosion, creep

9. **Forging and Powder Metallurgy Processing**
 Fischmeister, H., Straube, H.
 Applied Sciences Publishers Ltd., London, UK
 Proc Conf High Temperature Alloys for Gas Turbines, 769-816, 1978 (AD-D116 363)
 Key Words: Nimonic 90, Udimet 520, Udimet 700, Inconel 718, IN-738, IN-100, turbine components, microstructure, creep properties, tensile properties, fatigue, precipitation, thermomechanical treatment

10. **Hot Isostatic Processing**
 Hanes, H. D., Seifert, D. A., Watts, C. R.
 Metals Information Analysis Center, West Lafayette, IN
 Rept No: MCIC-77-34, 101 pp., 1977 (AD-A049 227)
 Key Words: Ti-111, Ti-6Al-4V, AA A356-T61, IN-738, RENE’ 80, Udimet 700, IN-792, welding, tensile properties, pressure bonding

11. **Dispersion Hardened Superalloy**
 Kramer, K-H.
 Powder Metall Int 9 (3), 105-12, 1977 (AD-D110 805)
 Key Words: IN-738, Udimet 700, Nimonic 80A, dispersion hardening yttrium addition, mechanical alloying, grain size, grain structure, creep rupture, recrystallization

12. **Grain Size Control in PM Superalloys**
 Dahlen, M.
 NTIS, N79-18021, Springfield, VA
 Final Report
 Rept No: N79-18021, 31 pp., 1977 (AD-D115 659)
 Key Words: Udimet 700, IN-738, X-40, grain size, tensile properties, creep properties, hardness, fatigue, recrystallization, annealing

13. **Review of Advanced Powder Metallurgical Fabrication Techniques in European NATO Countries**
 Sutcliffe, P. W.
 Advisory Group for Aerospace Research and Development, Paris, France
 Rept No: AGARD-R-641, 14 pp., 1976 (AD-A028 348)
 Key Words: IN-100, IN-738, Alloy 713, Inconel 718, RENE’ 95, Ti-6Al-4V, Waspaloy, precipitation hardening
14. Atomised Powder-The Key to New Alloys
Wallis, P. B.
Powder Metall Int 8 (4), 167-9, 1976 (AD-D108 681)
Key Words: Nimonic 75, Nimonic 80A, Nimonic 81, Nimonic 90, Nimonic 105,
Nimonic 115, Incoloy 901, Nimonic PE11, Nimonic PE16, Nimonic 263, Inconel 718, Inconel X-750, Nimocast 80, Nimocast 242,
Nimocast 263, Alloy 713C, Alloy 713LC, Nimocast PD21, Nimocast PE10, Nimocast PK24, IN-738, turbine components

15. Processing: The Rediscovered Dimension in High Temperature Alloys
Semchyshen, M.
Standardization News 4 (4), 9-19, 1976 (AD-D110 676)
Key Words: Inconel 718, RENE’ 80, AISI 4140, Udimet 700, TZM, IN-738,
Waspaloy, remelting, alloying, creep rupture

16. Study of Superalloys Produced via Powder Metallurgy
Hellner, L., Johansson, H.
NTIS. N77-13210, Springfield, VA
Final Report
Rept No: N77-13210, 56 pp., 1975 (AD-D109 492)
Key Words: X-40, MAR-M509, IN-738, dispersion hardening, cracking,
microstructure, temperature effect, deformation, stress
intensity, tensile properties

17. Hot-Isostatic Processing Reaches Maturity
Hanes, H. D.
SAMPE Qtrly 5 (2), 1-9, 1974 (AD-D133 138)
Key Words: Ti-6Al-4V, IN-738, RENE’ 77, IN-792, defects, diffusion bonding,
elongation

IN-792

1. Hot Isostatic Press
Author Anon
Foreign Technology Division, Wright-Patterson AFB, OH
Rept No: FTD-ID(RS)T-1406-84, 65 pp., 1985 (AD-B093 100L)
Key Words: Ti-6Al-4V, B-1900, IN-738, RENE’ 77, IN-792, defects, diffusion bonding,
elongation

2. Prior Particle Boundary Precipitation in P/M Superalloys
Thamburaj, R., Koul, A. K., Wallace, W., de Malherbe, M. C.
Metal Powder Industries Federation, Princeton, NJ
Proc Int Powder Metallurgy Conf. Modern Developments in Powder Metallurgy
16, 635-73, 1985 (AD-D138 354)
Key Words: Udimet 700, AF-115, IN-792, MAR-M432, MERL 76, PA 101, RENE’ 41,
tensile properties, creep rupture, fatigue

3. Hot Isostatic Processing
Clauer, A. H., Meiners, K. E., Boyer, C. B.
Metals Information Analysis Center, West Lafayette, IN
State-of-the-Art
Rept No: MCIC-82-46, 228 pp., 1982 (AD-A132 232)
Key Words: Ti-6Al-4V, IN-738, RENE’ 95, Udimet 700, IN-792, Inconel 718, M-1,
M-2, B-1900, MAR-M250, welding, fatigue, tensile properties, heat treatment
4. Engineering Data for New Aerospace Materials
Deel, Omar
 Battelle Memorial Institute, Columbus, OH
 Final Summary Report
 Rept No: AFWAL-TR-80-4103, 154 pp., 1980 (AD-A098 520)
 Key Words: AA 7010-T73651, Corona-5, AA A357-T6, IN-792, fatigue, bearing strength, tensile properties, thermal expansion

5. Exploratory Development of Die Materials for Isothermal Forging of Titanium Alloys
Kortovich, C. S., Marder, J. M.
TRW Inc., Materials Technology, Cleveland, OH
Final Technical Report
Contract No: F33615-76-C-5105
188 pp., 1979 (AD-A078 951)
Key Words: TRW NASA VI A, IN-100, IN-792, TAZ-8A, creep rupture, tensile properties, thermal fatigue

6. Hot Isostatic Processing
Hanes, H. D., Seifert, D. A., Watts, C. R.
Metals Information Analysis Center, West Lafayette, IN
Rept No: MCIC-77-34, 101 pp., 1977 (AD-A049 221)
Key Words: T-111, Ti-6AL-4V, AA A356-T61, IN-738, RENE’ 80, Udimet 700, IN-792, welding, tensile properties, pressure bonding

Beck, Robert
Teledyne CAE, Toledo, OH
Final Report Apr 73-Sep 76
Rept No: AFAPL-TR-76-107, 46 pp., 1977 (AD-B016 563)
Key Words: IN-792, IN-100, turbine components, creep, Larsen-Miller curves, fatigue, tensile properties, Charpy impact, thermal cycling, thermal shock

8. Advancements in Superalloy Powder Production and Consolidation
Fiedler, L. J.
Avco Lycoming Div., Stratford, CT
Proc 42nd Meeting of the AGARD Structures and Materials Panel p.4B-1 to p.4B-9. 1976 (AD-D110 183)
Key Words: IN-792, turbine components, hafnium addition, microstructure, tensile properties, creep rupture, temperature effect, cost

9. Powder Metallurgy Production Processes
Clark, L. P.
AGARD Structures and Materials Panel. 18 pp., 1974 (AD-D102 694)
Key Words: IN-100, AA 7075-T6, IN-792, Ti-6Al-4V, turbine components, nondestructive testing

10. Hot-Isostatic Processing Reaches Maturity
Hanes, H. D.
SAMPE Qtrly 5 (2), 1-9, 1974 (AD-D133 138)
Key Words: Ti-6Al-4V, IN-738, RENE’ 77, IN-792, defects, diffusion bonding, elongation
Incoloy 901

1. **Properties and Microstructures for Dual Alloy Combinations of Three Superalloys with Alloy 901**
 Harf, F. H.
 National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH
 Technical Memorandum
 Rept No: NASA-TM-86987, 42 pp., 1985 (AD-D134 337)
 Key Words: Incoloy 901, RENE' 95, MERL 76, Udimet 700, turbine components, microstructure, tensile properties, creep rupture, joining

2. **Materials for Advanced Turbine Engine--MATE**
 Evans, D. J., Sheffler, K. D., Friedrich, L. A.
 Pratt and Whitney Aircraft Group, East Hartford, CT
 Quarterly Technical Progress Report Number Twenty Four, Dec 81-Feb.82
 Contract No: NAS 3-20072
 44 pp., 1982 (AD-D124 466)
 Key Words: MERL 76, Hastelloy X, Incoloy 901, AMS 5616, AMS 4928, MA956, JT-9D, JT-8D, turbine components, coatings, erosion, fatigue

3. **Mechanisms of Recovering Low Cycle Fatigue Damage in Incoloy 901**
 Schafrik, R. E.
 Air Force Inst of Tech, Wright-Patterson AFB, OH
 Doctoral Thesis
 Rept No: AFIT-CL-79-212D, 261 pp., 1979 (AD-A107 255)
 Key Words: Incoloy 901, crack propagation, rejuvenation, aging, metallography, fatigue, tensile properties

4. **Physical Metallurgy and Effects of Process Variables on the Microstructure of Wrought Superalloys**
 Muzyka, D. R.
 ASTM, Philadelphia, PA
 Proc Symp MiCon 78, 526-46, 1979 (AD-D126 409)
 Key Words: A-286, Incoloy 901, Inconel 718, Waspaloy, RENE' 95, Pyromet CTX-1, Pyromet 31, tensile properties, creep rupture, microstructure

5. **Production of Components by Hot Isostatic Pressing of Nickel-Base Superalloy Powders**
 Blackburn, M. J., Sprague, R. A.
 Met Technol 4 (8), 388-95, 1977 (AD-D110 796)
 Key Words: Incoloy 901, Waspaloy, Udimet 700, IN-100, turbine components, tensile properties, creep rupture, metallography

6. **Atomised Powder-The Key to New Alloys**
 Wallis, P. B.
 Powder Metall Int 8 (4), 167-9, 1976 (AD-D108 681)
 Key Words: Nimonic 75, Nimonic 80A, Nimonic 81, Nimonic 90, Nimonic 105, Nimonic 115, Incoloy 901, Nimonic PE11, Nimonic PE16, Nimonic 263, Inconel 718, Inconel X-750, Nimocast 80, Nimocast 242, Nimocast 263, Alloy 713C, Alloy 713LC, Nimocast PD21, Nimocast PE10, Nimocast PK24, IN-738, turbine components
Inconel 625

1. **Relationship of Microstructure to Properties of HIP and Weld Clad Alloy 625 in Sour Environments**
 Sisak, W. J., Ayer, R., Mueller, R. R., Leta, D. P., MS, Warrendale, PA
 Key Words: Inconel 625, AISI 4130, 2.25Cr-1Mo steel, cladding, welding, corrosive medium, mechanical properties, microstructure, carbides

2. **Nickel Alloys by P/M**
 Birkholz, W. J., Stulga, J. E., Eisen, W. B., Moll, J. H.
 MPR Publishing Services Ltd., Bellowstone, Shrewsbury, UK
 Proc Int Conf PM Aerospace Materials-87, 2.1-2.9, 1988 (AD-D143 657)
 Key Words: Udimet 700, Inconel 625, RENEP 95, H-13 tool steel, precipitation hardening, tensile properties, thermal expansion, hardness, creep

3. **The Metallurgy and Applications of Rapidly Solidified Alloy 625**
 Stulga, J. E., McTiernan, B. J.
 ASM International, Metals Park, OH
 Proc Conf Rapidly Solidified Mater, 397-403, 1986 (AD-D139 051)
 Key Words: Inconel 625, atomization, rapid solidification, aging, tensile properties, hardness

4. **Metallurgical Evaluation of Cr Modified Cu-Ni and Inconel 625 Piping Made by Powder Metallurgy Methods**
 Palko, W. A.
 David W. Taylor Naval Ship Research and Development Center, Ship Materials Engineering Department, Annapolis, MD
 Rept No: DTNSRDC/SME-84-65. 47 pp., 1984 (AD-B088 715L)
 Key Words: Inconel 625, welding, hardness, grain size, corrosion, tensile properties

5. **Progress of Powder Metallurgy in North America**
 Roll, K. H., Johnson, P. K.
 Key Words: copper, iron, Inconel 625, AISI 316L, M-2, NiFe, rapid solidification, injection molding

6. **The New Frontiers of Powder Metals**
 Vaccari, J. A.
 Amer Mach 127 (5), 121-36, 1983 (AD-D127 193)
 Key Words: AA 7090, AA 7091, IN9052, Ti-6Al-4V, Monel 400, Inconel 600, RENEP 95, Ch291. Udimet 700, IN-100, AF-115, Inconel 625, net shape forming, injection molding, applications, forging

Inconel 718

1. **Structure/Property Evaluation and Comparison between Shock-Wave Consolidated and Hot-Isostatically Pressed Compacts of RSP Pyromet 718 Alloy Powders**
 Acta Metall 37 (3), 897-908, 1989 (AD-D140 991)
 Key Words: Pyromet 718, shock wave processing, impact tests, tensile properties, consolidation, rapid solidification
2. Mechanical Properties of Ni-base Superalloy Disks Produced by Powder Metallurgy
 Iwai, K., Furuta, S., Yokomaku, T.
 Kobelco Technology Review 3, 6-10, 1988 (AD-D138 841)
 Key Words: AF-115, Waspaloy, Inconel 718, turbine components, tensile properties, fatigue, cracking

3. Production, Compaction and Application of Metal Powders
 Kawai, N., Honma, K., Takigawa, H., Iwai, K., Hirano, M.
 Met Powder Rept 43 (1), 21-5, 1988 (AD-D139 117)
 Key Words: 300M, Waspaloy, Inconel 718, AA 2218, AA 2219, AA 2618, AISI 52100, atomization, rapid solidification, tensile properties, net shape forming

4. A Comparison Between Different Compounds for Improving the Corrosion Protection of FeCrAlY Coatings on Superalloys
 Burman, C., Ericsson, T., Kvernes, I., Lindblom, Y.
 Surface and Coatings Technology 36 (1-2), 1-12, 1988 (AD-D140 581)
 Key Words: Inconel 718, corrosion protection, TiN coatings, vacuum plasma spraying, oxidation

5. The Spray Forming of Superalloys
 Fiedler, H. C., Sawyer, T. F., Kopp, R. W., Leatham, A. G.
 J Met 39 (8), 28-33, 1987 (AD-D137 356)
 Key Words: RENE' 95, Inconel 718, near net forming, tensile properties, fatigue, creep rupture

6. Tensile Properties of Shock-Wave Consolidated and Hot-Isostatically Pressed Compacts of Rapidly Solidified Pyromet 718 Powder
 Mutz, A.H., Thadhani, N.N., Vreeland, T., Jr.
 DGM Informationsgesellschaft mbH, Germany
 Proc Int Conf Impact Loading and Dynamic Behavior of Materials IMPACT 87 2, 661-8, 1987 (AD-D142 118)
 Key Words: Pyromet 718, Inconel 718, microscopy, tensile properties, shock loading, aging

7. Mechanical Properties and Microstructure of Centrifugally Cast Alloy 718
 Michel, D. J., Smith, H. H.
 Naval Research Lab, Washington DC
 Final Report
 Rept No: NRL-MR-5431, 31 pp., 1984 (AD-A147 800)
 Key Words: Inconel 718, microstructure, tensile properties, hardness, creep rupture, fractography

8. Effect of Environment on Creep Crack Growth in PM/HIP RENE-95
 Bain, K. R., Pellioux, R. M.
 Metall Trans 15A (2), 381-8, 1984 (AD-D129 273)
 Key Words: RENE' 95, Inconel 718, IN-100, Inconel X-750, Udiment 700, creep, crack growth, fractography

9. Hot Isostatic Processing
 Clauer, A. H., Meiners, K. E., Boyer, C. B.
 Metals Information Analysis Center, West Lafayette, IN
 State-of-the-Art
 Rept No: MCI-C-82-40, 228 pp., 1982 (AD-A132 232)
 Key Words: Ti-6Al-4V, IN-738, RENE' 95, Udiment 700, IN-792, Inconel 718, M-1, M-2, B-1900, MAR-M250, welding, fatigue, tensile properties, heat treatment

77
10. **Fatigue Growth of Surface Cracks in Nickel-Based Superalloys**
 Brown, C. W., Hicks, M. A.
 Int J Fatigue 4 (2), 73-81, 1982 (AD-D124 743)
 Key Words: Inconel X-750, Inconel 718, turbine components, microstructure, grain size, crack growth, fatigue, tensile properties

11. **Physical Metallurgy and Effects of Process Variables on the Microstructure of Wrought Superalloys**
 Muzyka, D. R.
 ASTM, Philadelphia, PA
 Proc Symp MiCon 78, 526-46, 1979 (AD-D126 409)
 Key Words: A-286, Incoloy 901, Inconel 718, Waspaloy, RENE' 95, Pyromet CTX-I, Pyromet 31, tensile properties, creep rupture, microstructure

12. **Evaluation of Cyclic Behavior of Aircraft Turbine Disk Alloys**
 Shahani, V., Popp, H. G.
 General Electric Co., Aircraft Engine Group, Evendale, OH
 Final Report
 Rept No: N78-33478, 194 pp., 1978 (AD-D113 912)
 Key Words: RENE' 95, Inconel 718, aircraft structures, turbine components, fatigue, fracture mechanics, crack growth, creep rupture, tensile properties

13. **Forging and Powder Metallurgy Processing**
 Fischmeister, H., Straube, H.
 Applied Sciences Publishers Ltd., London, UK
 Proc Conf High Temperature Alloys for Gas Turbines, 769-816, 1978 (AD-D116 363)
 Key Words: Nimonic 90, Udiment 520, Udiment 700, Inconel 718, IN-738, IN-100, turbine components, microstructure, creep properties, tensile properties, fatigue, precipitation, thermomechanical treatment

14. **Review of Advanced Powder Metallurgical Fabrication Techniques in European NATO Countries**
 Sutcliffe, P. W.
 Advisory Group for Aerospace Research and Development, Paris, France
 Rept No: AGARD-R-641, 14 pp., 1976 (AD-A028 348)
 Key Words: IN-100, IN-738, Alloy 713, Inconel 718, RENE' 95, Ti-6Al-4V, Waspaloy, precipitation hardening

15. **Materials for Advanced Turbine Engines-MATE**
 Bamberger, E. N., Mosier, J. S.
 General Electric Co., Aircraft Engine Group, Evendale, OH
 Second Quarterly Engineering Report
 Rept No: R76/EG345-1, 60 pp., 1976 (AD-D107 441)
 Key Words: Inconel 718, RENE' 95, turbine components, nozzles, vanes, tensile properties, thermal cycling, heat treatment, aging

16. **Atomised Powder-The Key to New Alloys**
 Wallis, P. B.
 Powder Metall Int 8 (4), 167-9, 1976 (AD-D108 681)
 Key Words: Nimonic 75, Nimonic 80A, Nimonic 81, Nimonic 90, Nimonic 105, Nimonic 115, Incoloy 901, Nimonic PE11, Nimonic PE16, Nimonic 263, Inconel 718, Inconel X-750, Nimocast 80, Nimocast 242, Nimocast 263, Alloy 713C, Alloy 713LC, Nimocast PD21, Nimocast PE10, Nimocast PK24, IN-738, turbine components
17. Nickel Superalloy Powder Production and Fabrication to Turbine Discs
Symonds, C. H., Thompson, F. A.
Wiggins (Henry) and C° Ltd., Hereford, U.K.
Proc 42nd Meeting of the AGARD Structures and Materials Panel
p.3-1 to p.3-14, 1976 (AD-D110 181)
Key Words: Waspaloy, Nimonic 901, Inconel 718, turbine components, tensile
properties, creep rupture, fatigue, notch properties, fabrication

18. Processing: The Rediscovered Dimension in High Temperature Alloys
Semchvshen, M., Standardization News 4 (4), 9-19, 1976 (AD-D10 676)
Key Words: Inconel 718, RENE' 80, AISI 4140, Udiment 700, TZM, IN-738,
Waspaloy, remelting, alloying, creep rupture

19. A Method for Specifying Hot Isostatic Pressure Welding Parameters
Key Words: AISI 4340, MAR-M250, AISI 1820, 9Ni-4Co steel, Inconel 718,
diffusion welding, dissimilar joint, temperature effect, modulus of elasticity, melting point

20. Modern Methods of Powder Metallurgical Processing of Superalloys
Gessinger, G. H., Bomford, M. J.
Brown, Boven & Co. Ltd., Baden, Switzerland
Proc Symp High Temperature Materials in Gas Turbines 35 pp., 1973 (AD-D1(6) 997)
Key Words: Udiment 500, Hastelloy X, X-45, Udiment 710, IN-100, IN-853 Udiment
700, RENE' 95, Inconel 718, D-979, Nimonic 80A, TD-nickel,
turbine components, creep rupture, tensile properties,
fatigue, atomization, RE, thermomechanical treatment

21. Glass Bag Hot Isostatic Pressing of Superalloys
Havel, C. J., Kelsey-Hayes Co., Utica, NY
Proc Joint ASM - Mellon Institute Symp Part II, 25 pp., 1971 (AD-179 475)
Key Words: Udiment 700, Inconel 718, IN-100, mechanical properties

MA6000

1. Trends in Development of Oxide-Dispersion-Strengthened Superalloys
Key Words: IN-738, MA6000, MA753, turbine components, creep rupture

2. Recent Developments and Trends in High Strength PM Materials
Singer, R. F., Powder Metall Int 17 (6), 284-8, 1985 (AD-D134 736)
Key Words: IN-738, MA6000, turbine components, tensile properties, dispersion
strengthening

3. The Effects of Small Deformation on Creep and Stress Rupture Behavior of ODS
Superalloys
Nardone, V. C., Matejczyk, D. E., Tien, J. K.
Henry Krumb School of Mines, NY
Rept No.: AFOSR-TR-83-0095, 58 pp., 1983 (AD-A125 640)
Key Words: Udiment 700, MA754, MA6000, oxide dispersoids, notch toughness, crack
propagation, fatigue, creep deformation
1. The State of the Science and Art of Powder Metallurgy
Lenel, F. V., Ansell, G. S. J Met 34 (2), 17-29, 1982 (AD-D124 400)
Key Words: beryllium, MAR-M200, Ti-6Al-4V, MA67, MA6000E, steel, tensile properties, sintering

5 Recent Developments in Powder Metallurgy of Superalloys
Gessinger, G. H., Powder Metall Int 13 (2), 93-101, 1981 (AD-D122 017)
Key Words: MERL 76, Udimet 700, RENE’ 95, IN-738, MA6000E, MAR-M200, mechanical properties, corrosion, superplastic forming, thermomechanical treatment

6. Creep Deformation and Rupture of Oxide Dispersion Strengthened Inconel MA754 and MA6000E
Howson, T. E., Cosandey, F., Tien, J. K., ASM International, Metals Park, OH
Proc 4th Int Symp Superalloys, Superalloys 1980, 563-73, 1980 (AD-D120 685)
Key Words: MA754, MA6000E, deformation, creep rupture, notch sensitivity, dispersion hardening

MAR-M206

1. Flow Behavior of Nickel-Base Superalloys at Isothermal Forging Temperatures and Strain Rates
Immarigeon, J-P., Koul, A. K., Pergamon Press, Elmsford, NY
Proc 7th Int Conf Strength of Metals and Alloys 2073-8, 1986 (AD-D139 524)
Key Words: IN-100, MAR-M200, Alloy 713LC, grain size, deformation, flow properties

2. Trends in Superalloy Powder Processing
Immarigeon, J-P., Wallace, W.
Met Powder Rept 38 (10), 537-544, 1983 (AD-D131 001)
Key Words: Alloy 713LC, MAR-M200, microstructure, grain size, net shape forming

3. The State of the Science and Art of Powder Metallurgy
Lenel, F. V., Ansell, G. S.
J Met 34 (2), 17-29, 1982 (AD-D124 400)
Key Words: beryllium, MAR-M200, Ti-6Al-4V, MA67, MA6000E, steel, tensile properties, sintering

4. Development of Hybrid Gas Turbine Bucket Technology
Peterson, L. G., Hrencicin, D. E., Schilling, W. F., Ostergren, W. J.
General Electric Co., Gas Turbine Division, Schenectady, NY
Rept No: ASME-82-GT-94, 10 pp., 1982 (AD-D127 44)
Key Words: RENE’ 80, RENE’ 150, Udimet 700, MAR-M200, IN-939, RENE’ 125, RENE’ 120, GTD-111, IN-738, turbine components, tensile properties, unidirectional solidification, dissimilar joining, diffusion bonding, creep rupture

5. Recent Developments in Powder Metallurgy of Superalloys
Gessinger, G. H.
Powder Metall Int 13 (2), 93-101, 1981 (AD-D122 017)
Key Words: MERL 76, Udimet 700, RENE’ 95, IN-738, MA6000E, MAR-M200, mechanical properties, corrosion, superplastic forming, thermomechanical treatment
6. Advances in P/M and ODS Superalloys
 Tien, J. K., Howson, T. E.
 ASM International, Metals Park, OH
 Key Words: IN-100, Udimet 700, MAR-M200, creep rupture, tensile properties

7. On the Hydrostatic Extrusion of Nickel-Based Superalloys
 Kandeil, A. Y., Wallace, W., Immargeon, J-P. A., de Malherbe, M. C.
 Can Metall Qrrly 19 (2), 245-49, 1980 (AD-D120 127)
 Key Words: MAR-M200, microhardness, aging, heat treatment, extrusion

8. Rapidly Solidified Powders, Their Production, Properties, and Potential Applications
 Cox, A. R., Moore, J. B., Van Reuth, E. C.
 Pratt and Whitney Aircraft Group, West Palm Beach, FL
 Proc 47th Meeting of the AGARD Structures and Materials Panel, Advanced Fabrication Processes
 Rept No: AGARD-CP-256, 12-1 to 12-11, 1979 (AD-D117 187)
 Key Words: MAR-M200, microhardness, aging, heat treatment, extrusion

9. Forging Behavior of Superalloy Compacts and Composites
 Kandeil, A., Immargeon, J-P., Wallace, W.
 National Research Council of Canada, Ottawa, Canada
 Summary Report
 Rept No: NRC-16543, 46 pp., 1978 (AD-D117 399)
 Key Words: MAR-M200, compressive properties, fracture mechanics, particle size

10. Application of Rapidly Solidified Superalloys
 Cox, A. R.
 United Technologies Corp., West Palm Beach, FL
 Quarterly Report
 Rept No: FR-8688, 24 pp., 1977 (AD-D108 239)
 Key Words: MAR-M200, IN-100, 7Ni steel, 9Ni steel, turbine components, airfoils, rapid solidification, atomization, recrystallization, thermal stability

11. Application of Rapidly Solidified Superalloys
 Patterson, R. J.
 United Technologies Corp., West Palm Beach, FL
 Quarterly Report
 Rept No: FR-8062, 22 pp., 1976 (AD-D108 171)
 Key Words: MAR-M200, IN-100, Co-20Cr, airfoils, tantalum addition, microstructure, particle size, atomization

12. Control of Grain Structure during Superalloy Powder Processing
 Wallace, W., Immargeon, J-P. A., Trenouth, J. M., Powell, B. D.
 National Aeronautical Establishment, Ottawa, Canada
 p.9-1 to p.9-13, 1976 (AD-D110 187)
 Key Words: Alloy 713LC, MAR-M200, IN-100, MAR-M246, Udimet 700, microstructure, tensile properties, creep rupture, gamma prime, thermomechanical treatment, temperature effect
1. The Production and Processing of High-Quality Powder Metallurgy Materials
Graf, W., Kraemer, H. J., Poetschke, J., Weiglin, W.
Powder Metall Int 23 (4), 246-52, 1991
Key Words: T-15, M-4, M-50, AISI 304, AISI 316, AISI 321, AISI 410, AISI 440, Udimet 700, MERL 76, IN-100, Stellite 6, Stellite 1, Stellite 12, Stellite 21, atomization, particle size, density, creep, metal injection molding

2. Mechanical Properties of Powder Ni-Base Superalloy Consolidated by HIP
Takigawa, H., Iwai, K., Kawai, N., Kokomaku, T.
J Jpn Soc Powder Powder Metall 33 (5), 251-6, 1986 (AD-D135 711)
Key Words: MERL 76, IN-100, AF-115, creep rupture, tensile properties, fatigue

3. Structure and Properties of a Rapidly Solidified Superalloy Produced by Liquid Dynamic Compaction
Ogata, K., Laverna, E., Ral, G., Grant, N. J.
Int J Rapid Solidif 2 (1), 21-35, 1986 (AD-D135 785)
Key Words: MERL 76, IN-100, microstructure, tensile properties, rapid solidification

4. On the Sintered Ni-Base Superalloy (VI)--Effect of Microstructures on the Creep Property
Morishita, M., Nagai, H., Shoji, K.
Key Words: IN-100, MERL 76, microstructure, swaging, creep rate, liquid sintering, creep rupture

5. Properties and Microstructures for Dual Alloy Combinations of Three Superalloys with Alloy 901
Harl, F. H.
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH Technical Memorandum Rept No: NASA-TM-86987, 42 pp., 1985 (AD-D134 337)
Key Words: Incoloy 901, RENE' 95, MERL 76, Udimet 700, turbine components, microstructure, tensile properties, creep rupture, joining

6. Prior Particle Boundary Precipitation in P/M Superalloys
Thamburaj, R., Koul, A. K., Wallace, W., de Malherbe, M. C.
Key Words: Udimet 700, AF-115, IN-792, MAR-M432, MERL 76, PA 101, RENE' 95, tensile properties, creep rupture, fatigue

7. Experimental and Theoretical Studies of Creep Crack Growth
Pelloux, R. M., Bain, K. R., Bensussan, P.
Key Words: AA 2219-T85, Udimet 700, MERL 76, IN-100, RENE' 95, creep, cracking, tensile properties, creep rupture
8. Effects of Argon Contamination in PM Hot Isostatically Pressed Nickel Base Superalloy
 Prybylowski, J., Pelloux, R. M., Price, P.
 Powder Metall 27 (2), 107-11, 1984 (AD-D130 603)
 Key Words: MERL 76, microstructure, creep, cracking, creep rupture, tensile properties, notch properties

9. Effect of Oxygen on Creep Crack Growth in PM/HIP Nickel-Base Superalloys
 Bain, K. R., Pelloux, R. M.
 The Metallurgical Society of AIME, Warrendale, PA
 Key Words: Udimet 700, MERL 76, IN-100, RENE’ 95, grain boundaries, notch properties, aging, embrittlement

10. Welding of PM Superalloys
 Wilhelm, H.
 NTIS, N85-16191. Springfield, VA
 Final Report
 Rept No: MTU-TB-910/84, 66 pp., 1984 (AD-D133 633)
 Key Words: Udimet 700, IN-100, RENE’ 95, MERL 76, weld and post weld, tensile properties, fatigue

11. Materials for Advanced Turbine Engine--MATE
 Evans, D. J., Sheffler, K. D., Friedrich, L. A.
 Pratt and Whitney Aircraft Group, East Hartford, CT
 Quarterly Technical Progress Report Number Twenty Four, Dec 81-Feb. 82
 Contract No: NAS 3-20072
 44 pp., 1982 (AD-D124 466)
 Key Words: MERL 76, Hastelloy X, Incoloy 901, AMS 5616, AMS 4928, MA956, JT-9D, JT-8D, turbine components, coatings, erosion, fatigue

12. Hot Isostatically Pressed Manufacture of High Strength MERL 76 Disk and Seal Shapes
 Eng, R. D., Evans, D. J.
 Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
 Final Report
 Rept No: NASA-CR-165549, 138 pp., 1982 (AD-D125 120)
 Key Words: MERL 76, Waspaloy, turbine components, tensile properties, creep, fatigue, notch sensitivity

13. Hot Isostatically Pressed Manufacture of High Strength MERL 76 Disk and Seal Shapes. Volume 2
 Evans, D. J.
 Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
 Final Rept. Project 2
 Rept No: NASA-CR-165550, 11 pp., 1982 (AD-D126 061)
 Key Words: IN-100, MERL 76, JT-9D, turbine components, fatigue, net shape forming, nondestructive testing

 Thompson, E. R.
 Annual Reviews Inc., Palo Alto, CA
 Key Words: IN-100, Udimet 700, RENE’ 95, MERL 76, Ti-6Al-4V, creep rupture, fatigue, fracture toughness
15. Recent Developments in Powder Metallurgy of Superalloys
Gessinger, G. H.
Powder Metall Int 13 (2), 93-101, 1981 (AD-D122-017)
Key Words: MERL 76, Udimet 700, RENE' 95, IN-738, MA60001, MAR-M200, mechanical properties, corrosion, superplastic forming, thermomechanical treatment

16. Materials for Advanced Turbine Engine-MATE
Evans, D. J., Sheffler, K. D., Friedrich, L. A.
Pratt and Whitney Aircraft Group, East Hartford, CT
Contract No: NAS 3-20072
36 pp., 1981 (AD-D122-325)
Key Words: Hastelloy X, MA956, Udimet 700, MERL 76, turbine components, combustor liners, airfoils, coatings, fatigue, erosion resistance

17. Microstructural Behavior of Interfaces in Hot Isostatically Pressed Dual Alloy Combinations
Harf, F. H.
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH
Technical Memorandum
Rept No: NASA-TM-82698, 10 pp., 1981 (AD-D122-440)
Key Words: MERL 76, Udimet 700, RENE' 95, turbine components, microstructure, phase studies, prealloying, interface

18. HIPping the High-Performance Alloys
Moll, J. H.
Mech Eng 103 (11), 56-61, 1981 (AD-D122-795)
Key Words: RENE' 95, titanium alloys, tool steel, Udimet 700, IN-100, MERL 76, Waspalooy, turbine components, microstructure, tensile properties, stress intensity

Law, C. C., Blackburn, M. J.
Pratt and Whitney Aircraft Group, Government Products Div., West Palm Beach, FL
Final Report
Rept No: PWA-FR-13317, 134 pp., 1980 (AD-A086-697)
Key Words: AF-115, MERL 76, MAR-M432, microstructure, tensile properties, notch properties, fatigue, creep, plastic deformation

20. Manufacture of Disks by the Hot Isostatic Pressing Process
Cassenti, B. N.
Technical Report
Rept No: AFOSR-TR-80-C593, 14pp., 1980 (AD-A088-180)
Key Words: MERL 76, turbine components, creep properties, modelling

21. Analytical Modeling of the Hot Isostatic Pressing Process
Cassenti, B. N., Cheverton, K. J.
United Technologies Research Center, East Hartford, CT
Final Report
Rept No: R80-944374-13, 134 pp., 1980 (AD-A088-208)
Key Words: MERL 76, modelling, tensile properties, creep properties, compression tests
22. Creep Rupture in Powder Metallurgical Nickel-Base Superalloys at Intermediate Temperatures
Law, C. C., Blackburn, M. J.
Metall Trans 11A (3), 495-507, 1980 (AD-D117 895)
Key Words: AF-115, MAR-M432, IN-100, MERL 76, creep properties, tensile properties, lattice parameters, grain boundaries, heat treatment

23. Materials for Advanced Turbine Engine-MATE
Evans, D. J., Henricks, R. J., Friedrich, L. A., Blecherman, S. S.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Quarterly Technical Progress Report Number Sixteen, Dec 79-Feb-80
Contract No: NAS3-20072
44 pp., 1980 (AD-D118 687)
Key Words: MERL 76, Haynes 8077, MA956, turbine components, combustor liners, tensile properties, creep rupture, coatings, plasma deposition, dispersion hardening

24. Materials for Advanced Turbine Engine-MATE
Evans, D. J., Henricks, R. J., Friedrich, L. A.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Quarterly Technical Progress Report Number Seventeen, 1 Mar-31 May 1980
Contract No: NAS 3-20072
64 pp., 1980 (AD-D118 782)
Key Words: MERL 76, Haynes 8077, MA956, turbine components, combustor liners, compressor components, airfoils, fatigue, creep properties, coatings, mechanical properties

25. Evaluation of the Cyclic Behavior of Aircraft Turbine Disk Alloys, Part 2
Pratt and Whitney Aircraft Group, West Palm Beach, FL
Final Report
Rept No: PWA-FR-13153, 191 pp., 1980 (AD-D119 421)
Key Words: MERL 76, RENE’ 95, IN-100, Waspaloy, Udimet 700, NASA JRB-7, fatigue crack growth, creep-fatigue, tensile properties, microstructure

26. Application of Superalloy Powder Metallurgy for Aircraft Engines
Dreshfield, R. L., Miner, R. V., Jr.
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH
Technical Memorandum
Rept No: NASA-TM-81466, 21 pp., 1980 (AD-D119 422)
Key Words: RENE’ 95, Udimet 700, MERL 76, turbine components, tensile properties, creep properties, fatigue

27. Materials for Advanced Turbine Engine-MATE
Evans, D. J., Henricks, R. J., Friedrich, L. A.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Quarterly Technical Progress Report Number Eighteen, 1 Jun-31 Aug 1980
Contract No: NAS 3-20072
47 pp., 1980 (AD-D119 486)
Key Words: MERL 76, MA956, Hastelloy X, turbine components, tensile properties, fatigue, coatings
28. Materials for Advanced Turbine Engine-MATE
Evans, D. J., Henricks, R. J., Friedrich, L. A.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Quarterly Technical Progress Report Number nineteen, 1 Sept-30 Nov 1980
Contract No: NAS 3-20072
35 pp., 1980 (AD-D120 344)
Key Words: MERL 76, Haynes 8077, MA956, aircraft engines, turbine components, combustor liners, compressor components, airfoils, fatigue, net shape forming, coatings

29. High Strength HIP Consolidated MERL 76 Disks
Eng, R. D., Evans, D. J.
ASM International, Metals Park, OH
Proc 4th Int Symp Superalloys, Superalloys 1980, 491-500, 1980 (AD-D120 678)
Key Words: MERL 76, turbine components, tensile properties, creep rupture, fatigue, notch rupture strength

30. Progress in P/M Superalloy and Titanium for Aircraft Applications
Dulis, E. J., Moll, J. H., Chandhok, V. K., Hebeisen, J. C.
SAMPE, Azusa, CA
Proc 25th National SAMPE Symp and Exhibition, 75-89, 1980 (AD-D126 267)
Key Words: Ti-6AI-4V, MERL 76, RENE’ 95, aircraft structures, tensile properties, creep rupture

Law, C. C., Blackburn, M. J.
Pratt and Whitney Aircraft Group, Government Products Div, West Palm Beach, FL
Annual Report Number Two
Rept No: PWA-FR-11749, 54 pp., 1979 (AD-A068 909)
Key Words: MERL 76, microstructure, creep rupture, shot peening

32. Materials for Advanced Turbine Engine-MATE
Evans, D. J.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Quarterly Report Number Twelve
Rept No: PWA-5574-49, 52 pp., 1979 (AD-D11 5609)
Key Words: MERL 76, turbine components, grain size, tensile properties, creep properties, fatigue, welding

33. Materials for Advanced Turbine Engine-MATE
Evans, D. J., Gell, M.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Quarterly Progress Report Number Thirteen
Contract No: NAS3-20072
47 pp., 1979 (AD-D116 198)
Key Words: Haynes 8077, MA956, MERL 76, turbine components, combustor liners, tensile properties, creep properties, dispersion hardening

34. MATE-Materials for Advanced Turbine Engine
Evans, D. J., Gell, M.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Quarterly Report Number Fourteen, 1 Jun-31 Aug 1979
Contract No: NAS3-20072
49 pp., 1979 (AD-D116 889)
Key Words: MERL 76, turbine components, tensile properties, creep properties, fatigue
35. Materials for Advanced Turbine Engine-MATE
Evans, D. J., Henricks, R. J., Friedrich, L. A.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Contract No: NAS3-20072, 45 pp., 1979 (AD-D117 734)
Key Words: MERL 76, Waspaloy, turbine components, compressor components,
creep properties, tensile properties, erosion resistance, coatings

36. MATE-Materials for Advanced Turbine Engines
Evans, D. J.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Contract No: NAS3-20072, 18 pp., 1978 (AD-D112 397)
Key Words: MERL 76, turbine components, porosity, microstructure

37. MATE-Materials for Advanced Turbine Engines
Evans, D. J.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Technical Progress Narrative Report One, Mar.-May 1978
Rept No: PWA-5574-21, 23 pp., 1978 (AD-D113 125)
Key Words: MERL 76, Udimet 700, turbine components, JT10D, tensile properties, creep rupture, microstructure, dimensional stability

38. MATE-Materials for Advanced Turbine Engine
Evans, D. J.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Rept No: PWA-5574-28, 20 pp., 1978 (AD-D113 899)
Key Words: MERL 76, turbine components, porosity, tensile properties, thermal exposure, SEM

39. MATE-Materials for Advanced Turbine Engine
Evans, D. J.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Products Div
Rept No: PWA-5574-39, 37 pp., 1978 (AD-D114 794)
Key Words: MERL 76, turbine components, tensile properties, creep rupture, net shape forming

NASA IIB-11

1. Effects of C and Hf Concentration on Phase Relations and Microstructure of a Wrought Powder-Metallurgy Superalloy
Miner, R. V., Jr.
Metall Trans 8A (2), 259-63, 1977 (AD-D108 755)
Key Words: NASA IIB-11, carbon addition, hafnium addition, turbine components, microstructure, phase studies, gamma prime, carbide precipitation

2. Development of an Extra-High Strength Powder Metallurgy Nickel-Base Superalloy
Kent, W. B.
Cyclops Corp., Universal Cyclops Specialty Steel Division, Pittsburgh, PA
Rept No: N76-20208, 110 pp., 1977 (AD-D109 486)
Key Words: NASA IIB-11, turbine components, thermal stability, microstructure, creep rupture, tensile properties, grain size, heat treatment
3. An Experimental P/M Wrought Superalloy for Advanced Temperature Service
Miner, R. V., Kent, W. B.
Key Words: NASA IIB-11, turbine components, tensile properties, grain growth, Larsen-Miller curves, creep rupture, long term tests, gamma prime

4. Effects of Carbon and Hafnium Concentrations in Wrought Powder-Metallurgy Superalloys Based on NASA IIB-11 Alloy
Miner, R. V., Jr., NASA, Lewis Research Center, Cleveland, OH
Technical Note, Rept No: E-8468, 35 pp., 1976 (AD-D102 508)
Key Words: NASA IIB-11, AF 2-1DA, AF-115, turbine components, microstructure, grain size, gamma prime, creep rupture, tensile properties, Larsen-Miller curves

Nimonic 80

1. Dispersion Hardened Superalloy
Key Words: IN-738, Udimet 700, Nimonic 80A, dispersion hardening yttrium addition, mechanical alloying, grain size, grain structure, creep rupture, recrystallization

2. Atomised Powder-The Key to New Alloys
Wallis, P. B., Powder Metall Int 8 (4), 167-9, 1976 (AD-D108 681)
Key Words: Nimonic 75, Nimonic 80A, Nimonic 81, Nimonic 90, Nimonic 105, Nimonic 115, Incoloy 901, Nimonic PE11, Nimonic PE16, Nimonic 263, Inconel 718, Inconel X-750, Nimocast 80, Nimocast 242, Nimocast 263, Alloy 713C, Alloy 713LC, Nimocast PD21, Nimocast PE10, Nimocast PK24, IN-738, turbine components

3. Production of Superalloys from Powders
Key Words: IN-100, Nimonic 105, Nimonic 90, Nimonic 80A, TD-nickel, turbine components, creep rupture, dispersion hardening, cost

4. Modern Methods of Powder Metallurgical Processing of Superalloys
Gessinger, G.H., Bomford, M.J., Brown, Boven & Co. Ltd., Baden, Switzerland
Proc Symp High Temp Materials in Gas Turbines 35 pp., 1973 (AD-D102 997)
Key Words: Udime 500, Hastelloy X, X-45, Udimet 710, IN-100, IN-853 Udimet 700, RENE' 95, Inconel 718, D-979, Nimonic 80A, TD-nickel, turbine components, creep rupture, tensile properties, fatigue, atomization, REP, thermomechanical treatment

Rene' 80

1. Hot Isostatic Press
Author Anon., Foreign Technology Division, Wright-Patterson AFB, OH
Rept No: FTD-ID(R5)T-1406-84, 65 pp., 1985 (AD-B093 100L)
Key Words: Ti-6Al-4V, B-1900, IN-738, RENE' 77, IN-792, RENE' 80, AA C355, AA A356, 142-T4
2. Development of Hybrid Gas Turbine Bucket Technology
Peterson, L. G., Hrencecin, D. E., Schilling, W. F., Ostergren, W. J.
General Electric Co., Gas Turbine Division, Schenectady, NY
Technical Paper
Rept No : ASME-82-GT-94, 10 pp., 1982 (AD-D127 264)
Key Words: RENE’ 80, RENE’ 150, Udimet 700, MAR-M200, IN-939, RENE’ 125.
RENE’ 120, GTD-111, IN-738, turbine components, tensile properties, unidirectional solidification, dissimilar joining,
diffusion bonding, creep rupture

3. Hot Isostatic Processing
Hanes, H. D., Seifert, D. A., Watts, C. R.
Metals Information Analysis Center, West Lafayette, IN
Rept No : MCIC-77-34, 101 pp., 1977 (AD-A049 227)
Key Words: T-l 11, Ti-6Al-4V, AA A356-T61, IN-738, RENE’ 80, Udimet 700.
IN-792, welding, tensile properties, pressure bonding

4. Processing: The Rediscovered Dimension in High Temperature Alloys
Semchyshen, M.
Standardization News 4 (4), 9-19, 1976 (AD-D110 676)
Key Words: Inconel 718, RENE’ 80, AISI 4140, Udimet 700, TZM, IN-738,
Waspaloy, remelting, alloying, creep rupture

5. Process for High-Integrity Casting
Arnold, D. B., Grisik, J. J.
General Electric Co., Aircraft Engine Group, Evendale, OH
Interim Engineering Report Aug-Oct 72
Rept No : IR-162-2(II), 17 pp., 1972 (AD-180 570L)
Key Words: RENE’ 80, Ti-6Al-4V, densification

RENE’ 95

1. Achievements of JISEDAL Project in the Fields of PM Nickel-Base Superalloys
Tomizuka, I., Harada, H., Nakazawa, S., Koizumi, Y., Yamazaki, M.
PM Into the 1990's 1, 337-45, 1990
Key Words: TMP-1, TMP-9, TMP-2, RENE’ 95, TMP-3, TMP-4, TMP-10, TMP-11
TMP-15, superplastic forging, regression analysis, gamma prime phase, boron addition, carbon addition, heat treatment, aging,
tensile properties

2. Effect of Preliminary Heat Treatment on Microstructure of P/M RENE’ Superalloy
Mao, J., Yu, K., Zhou, R.
Foreign Technology Division, Wright-Patterson AFB, OH
P/M Technology (Fenmo Ycjin Jishu)
Rept No : FTD-ID(RS)T-1058-90, 7 (4), 213-9, 1989 (AD-A237 176)
Key Words: RENE’ 95, heat treatment, grain boundaries, carbides, gamma prime phase, grain size

3. The Deformation Behavior of P/M RENE’ 95 Under Isothermal Forging Conditions
Morra, J.M., Biederman, R.R., Tuler, F.R.
The Metallurgical Society of AIME, Warrendale, PA
Proc 6th Int Symp Superalloys 1988, 505-14, 1988 (AD-D142 313)
Key Words: RENE’ 95, microscopy, deformation, isothermal forging, flow stress, stability
4. **Nickel Alloys by P/M**
Birkholz, W.J., Stulga, J.E., Eisen, W.B., Moll, J.H.
MPR Publishing Services Ltd., Bellstone, Shrewsbury, UK
Proc Int Conf PM Aerospace Materials-87, 2.1-2.9, 1988 (AD-D143 657)
Key Words: Udiment 700, Inconel 625, RENE’ 95, H-13 tool steel, precipitation hardening, tensile properties, thermal expansion, hardness, creep

Tomizuka, I., Nakazawa, S., Koizumi, Y., Harada, H., Yamazaki, M.
MPR Publishing Services Ltd., Bellstone, Shrewsbury, UK
Key Words: RENE’ 95, tensile properties, elongation, superplasticity

Tomizuka, I., Maeda, T., Nakazawa, S., Koizumi, Y., Harada, H.
MPR Publishing Services Ltd., Bellstone, Shrewsbury, UK
Proc Int Conf PM Aerospace Materials-87, 52.1-52.11, 1988 (AD-D143 681)
Key Words: RENE’ 95, tensile properties, forging, thermal expansion

7. **Understanding the HIP (Hot Isostatic Pressing) Consolidation of P/M Nickel-Based Superalloys**
Tien, J. K.
Center for Strategic Materials, Henry Krumb School of Mines, NY
Final Report
Rept No: AFOSR-TR-87-1893, 69 pp., 1987 (AD-A187 640)
Key Words: RENE’ 95, net shape forming, porosity, temperature effect, activation energy, grain size, density

8. **The Spray Forming of Superalloys**
Fiedler, H. C., Sawyer, T. F., Kopp, R. W., Leatham, A. G.
J Met 39 (8), 28-33, 1987 (AD-D137 356)
Key Words: RENE’ 95, Inconel 718, near net forming, tensile properties, fatigue, creep rupture

9. **Understanding the HIP (Hot Isostatic Pressing) Consolidation of P/M Nickel-Based Superalloys**
Tien, J. K.
Columbia University, NY
Annual Summary Report
Rept No: AFOSR-82-0352, 39 pp., 1986 (AD-A172 237)
Key Words: RENE’ 95, particle size, stress-strain, creep deformation, activation energy, plastic flow

10. **Modern Powder Metallurgy Science and Technology**
Lawley, A.
J Met 38 (8), 15-25, 1986 (AD-D136 435)
Key Words: NiAl, IN-100, MAR-M509, RENE’ 95, AA 2024-T6, consolidation, REP, tensile properties, impact toughness
11. Understanding the HIP (Hot Isostatic Pressing) of Alloys Consolidation P/M Nickel-Base Superalloys
Tien, J. K.
Center for Strategic Materials, Columbia University, NY
Annual Progress Report
Rept No: AFOSR-TR-85-0984, 15 pp., 1985 (AD-A162 387)
Key Words: RENE’95, atomization, dendrite structure, creep deformation

12. Screw Press Forging of Powder HIP Billet to Critical Gas Turbine Discs and Wheels
Cockell, M. W., Boyce, K. A. G.
Met Powder Rep 40 (3), 139-44, 1985 (AD-D132 551)
Key Words: Nimonic AP1, Udimet 700, RENE’95, turbine components, grain size, tensile properties, creep rupture, fatigue

13. Properties and Microstructures for Dual Alloy Combinations of Three Superalloys with Alloy 901
Harf, F. H.
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH
Technical Memorandum
Rept No: NASA-TM-86987, 42 pp., 1985 (AD-D134 337)
Key Words: Incoloy 901, RENE’95, MERL 76, Udimet 700, turbine components, microstructure, tensile properties, creep rupture, joining

14. Effect of Inclusions on LCF Life of HIP Plus Heat Treated Powder Metal RENE’95
Shamblen, C. E., Chang, D. R.
Metall Trans 16B (4), 775-84, 1985 (AD-D135 839)
Key Words: RENE’95, microstructure, crack propagation, fatigue

15. Experimental and Theoretical Studies of Creep Crack Growth
Pelloux, R. M., Bair, K. R., Bensussan, P.
Massachusetts Institute of Technology, Cambridge, MA
Final Report
Rept No: AFOSR-TR-84-0387, 146 pp., 1984 (AD-A141 193)
Key Words: AA 2219-T851, Udimet 700, MERL 76, IN-100, RENE’95, creep, cracking, tensile properties, creep rupture

16. Hot Isostatic Consolidation of P/M Superalloys
Kissing, R. D., Nair, S. V., Tien, J. K
Henry Krumb School of Mines, NY
Interim Report
Rept No: AFOSR-TR-85-0676, 8 pp., 1984 (AD-A158 419)
Key Words: RENE’95, microstructure, particle size, modelling

17. Effect of Environment on Creep Crack Growth in PM/HIP RENE-95
Bain, K. R., Pelloux, R. M.
Metall Trans 15A (2), 381-8, 1984 (AD-D129 273)
Key Words: RENE’95, Inconel 718, IN-100, Inconel X-750, Udimet 700, creep, crack growth, fractography

18. Powder Metallurgy Gaining Trust of Aero Designers
Wigotsky, V.
Aerospa Amer 22 (3), 90-4, 1984 (AD-D129 541)
Key Words: Ti-6Al-4V, RENE’95, AA 7090, AA 7091, Al-8Fe, turbine components, shear properties, compressive properties, net shape forming
19. **Superalloy Powder Processing, Properties and Turbine Disk Applications**
Chang, D. R., Krueger, D. D., Sprague, R. A.
The Metallurgical Society of AIME, Warrendale, PA
Proc 5th Int Symp Superalloys 1984, 245-73, 1984 (AD-D132 841)
Key Words: RENE’ 95, microstructure, tensile properties, fatigue crack

20. **High Temperature Deformation Behavior of P/M RENE’ 95**
Howson, T. E., Couts, W. H., Jr., Coyne, J. E.
The Metallurgical Society of AIME, Warrendale, PA
Proc 5th Int Symp Superalloys 1984, 275-284, 1984 (AD-D132 842)
Key Words: RENE’ 95, microstructure, forging, extrusion, tensile properties

21. **Influence of Powder Particle Size Distribution and Pressure on the Kinetics of Hot Isostatic Pressing Consolidation of P/M Superalloy RENE’ 95**
Kissinger, R. D., Nair, S. V., Tien, J. K.
The Metallurgical Society of AIME, Warrendale, PA
Key Words: RENE’ 95, particle size, deformation, plastic strain

22. **The Effect of Microstructure, Temperature, and Hold-Time on Low-Cycle Fatigue of as HIP P/M RENE’ 95**
Bashir, S., Antolovich, S. D.
The Metallurgical Society of AIME, Warrendale, PA
Key Words: RENE’ 95, turbine components, microstructure, deformation, oxidation, fatigue strain, plastic strain

23. **The Influence of Hold Times on LCF and FCG Behavior in a P/M Ni-base Superalloy**
Choe, S. J., Golwalker, S. V., Duquette, D. J., Stoloff, N. S.
The Metallurgical Society of AIME, Warrendale, PA
Proc 5th Int Symp Superalloys 1984, 309-18, 1984 (AD-D132 845)
Key Words: RENE’ 95, microstructure, fracture surface, oxidation, creep test, fatigue

24. **Effect of Oxygen on Creep Crack Growth in PM/HIP Nickel-Base Superalloys**
Bain, K. R., Pelloux, R. M.
The Metallurgical Society of AIME, Warrendale, PA
Key Words: Udiment 700, MERL 76, IN-100, RENE’ 95, grain boundaries, notch properties, aging, embrittlement

25. **Liquid Phase Sintering of Nickel Base Superalloys**
Jeandin, M., Bienvenu, Y., Kouty, J. L.
The Metallurgical Society of AIME, Warrendale, PA
Proc 5th Int Symp Superalloys 1984, 467-76, 1984 (AD-D132 859)
Key Words: Nimonic AP1, Udiment 700, RENE’ 95, molybdenum addition, chromium addition, microstructure, tensile strength, creep rupture

26. **Welding of PM Superalloys**
Wilhelm, H.
NTIS, N85-16191, Springfield, VA
Final Report
Rept No : MTU-TB-910/84, 66 pp., 1984 (AD-D133 633)
Key Words: Udiment 700, IN-100, RENE’ 95, MERL 76, weld and post weld, tensile properties, fatigue
27. Manufacturing Methods for Improved Superalloy Powder Production
Shamblen, C. E.
General Electric Co., Aircraft Engine Group, Evendale, OH
Final Report Jan 79-Dec 82
Rept No: AFWAL-TR-82-4150, 555 pp., 1983 (AD-B079 135L)
Key Words: RENE' 95, fatigue, tensile properties, creep rupture, microprobe analysis

28. The New Frontiers of Powder Metals
Vaccari, J. A.
Amer Mach 127 (5), 121-36, 1983 (AD-D127 193)
Key Words: AA 7090, AA 7091, IN9052, Ti-6Al-4V, Monel 400, Inconel 600, RENE' 95, Cb291, Udiment 700, IN-100, AF-115, Inconel 625, net shape forming, injection molding, applications, forging

29. Liquid Phase Sintering of Nickel Base Superalloys
Jeandin, M., Koutny, J. L., Bienvenu, Y.
Powder Metall 26 (1), 17-22, 1983 (AD-D127 302)
Key Words: RENE' 95, Udiment 700, porosity, grain boundaries, precipitation, particle size, grain size, sintering

30. Fatigue Crack Growth and Low Cycle Fatigue of Two Nickel Base Superalloys
Stoloff, N. S., Duquette, D. J., Choc, S. J., Golwalker, S.
Rensselaer Polytechnic Institute, Department of Materials Engineering, Troy, NY
Final Report
Rept No: NASA-CR-174534, 51 pp., 1983 (AD-D129 613)
Key Words: RENE' 95, Udiment 700, fatigue, cracking, tensile properties

31. PM Dual Property Wheels for Small Engines
Moll, J. H., Schwertz, H. H., Chandhok, V. K.
Met Powder Rept 38 (10), 547-552, 1983 (AD-D131 002)
Key Words: C-103, PA 101, MAR-M247, RENE' 95, turbine components, joining, unidirectional solidification

32. Long Life Disks from Rapidly Solidified Materials. Volume 1 RENE' 95 and AF115 Process Development
Van Stone, R. H.
General Electric Co., Aircraft Engine Group, Evendale, OH
Final Report Jul 78-Sep 81
Rept No: AFWAL-TR-82-4032-Vol-1, 301 pp., 1982 (AD-B080 374L)
Key Words: RENE' 95, AF-115, rapid solidification, fatigue crack growth, tensile properties, creep rupture

Van Stone, R. H.
General Electric Co., Aircraft Engine Group, Evendale, OH
Final Report Jul 78-Sep 81
Key Words: RENE' 95, rapid solidification, fatigue crack growth, creep rupture, tensile properties
34. Long Life Disks from Rapidly Solidified Materials. Volume 3 Chill Block Melt-Spinning Development
Van Stone, R. H., Liebermann, H. H., Hughes, J. R., Walter, J. L., Davies, H. A.
General Electric Co., Aircraft Engine Group, Evendale, OH
Final Report Jul 78-Sep 81
Rept No: AFWAL-TR-82-4032-Vol-3, 154 pp., 1982 (AD-B080 376L)
Key Words: AF-115, RENE' 95, rapid solidification, melt spinning, fatigue, crack growth, creep rupture, replica technique

35. Hot Isostatic Processing
Clauer, A. H., Meiners, K. E., Boyer, C. B.
Metals Information Analysis Center, West Lafayette, IN
State-of-the-Art
Rept No: MCIC-82-46, 228 pp., 1982 (AD-A132 232)
Key Words: Ti-6Al-4V, IN-738, RENE' 95, Udimet 700, IN-792, Inconel 718, M-1, M-2, B-1900, MAR-M250, welding, fatigue, tensile properties, heat treatment

36. Superalloys More Super Than Ever
McIntyre, R. D.
Mater Eng 95 (1), 36-43, 1982 (AD-D124 025)
Key Words: RENE' 95, IN-100, AISI 316, microstructure, recrystallization, creep rupture, oxidation, tensile properties

37. PM Technology Hitting New Highs
McIntyre, R. D.
Mater Eng 95 (4), 46-54, 1982 (AD-D124 504)
Key Words: RENE' 95, IN-100, Ti-6Al-4V, Ti-6Al-6V-2Sn, coatings, phase transformation, net shape forming

38. High Temperature Aerospace Materials Prepared by Powder Metallurgy
Thompson, E. R.
Annual Reviews Inc., Palo Alto, CA
Key Words: IN-100, Udimet 700, RENE' 95, MERL 76, Ti-6Al-4V, creep rupture, fatigue, fracture toughness

39. Superalloys from Powder: Production and Properties
Author Anon
National Materials Advisory Board (NAS NAE), Washington DC
Final Report
Rept No: NMAB-369, 102 pp., 1981 (AD-B058 349L)
Key Words: RENE' 95, X-40, Maraging 300, turbine components, fatigue, rapid solidification, mechanical properties, atomization

40. Processing Effects on the Microstructure and Fatigue Properties of Nickel-Base Superalloys
Van Stone, R. H., Henry, M. F.
General Electric Co., Aircraft Engine Group, Evendale, OH
Progress Report Number 2, Nov 80-Feb 81
Contract No: N62269-80-C-0708
59 pp., 1981 (AD-D121 677L)
Key Words: RENE' 95, turbine components, tensile properties, compressive stress, crack nucleation, replica technique
41. Powder Metallurgy RENE' 95 Rotating Turbine Engine Parts-MATE
Redden, T. K., Wilbers, L. G.
General Electric Co., Aircraft Engine Group, Evendale, OH
Final Report, Project 1-Volume 2
Rept No: R80AEG664, 31 pp., 1981 (AD-D120 726)
Key Words: RENE' 95, turbine components, compressor components, tensile properties, net shape forming

42. Recent Developments in Powder Metallurgy of Superalloys
Gessinger, G. H.
Powder Metall Int 13 (2), 93-101, 1981 (AD-D122 017)
Key Words: MERL 76, Udimet 700, RENE' 95, IN-738, MA600E, MAR-M200, mechanical properties, corrosion, superplastic forming, thermomechanical treatment

43. Microstructural Behavior of Interfaces in Hot Isostatically Pressed Dual Alloy Combinations
Harf, F. H.
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH
Technical Memorandum
Rept No: NASA-TM-82698, 10 pp., 1981 (AD-D122 440)
Key Words: MERL 76, Udimet 700, RENE' 95, turbine components, microstructure, phase studies, prealloying, interface

44. HIPping the High-Performance Alloys
Moll, J. H.
Mech Eng 103 (11), 56-61, 1981 (AD-D122 795)
Key Words: RENE' 95, titanium alloys, tool steel, Udimet 700, IN-100, MERL 76, Waspaloy, turbine components, microstructure, tensile properties, stress intensity

45. Development of Materials and Process Technology for Dual Alloy Disks
Marder, J. M., Kortovich, C. S.
TRW Inc., Materials Lab, Cleveland, OH
Final report
Rept No: TRW-ER-8000F, 175 pp., 1981 (AD-D124 206)
Key Words: RENE' 95, AF-115, tensile properties, fatigue, creep rupture

46. Long Life Engine Disks from Gas Atomized Powder
Van Stone, R. H.
General Electric Co., Aircraft Engine Group, Evendale, OH
Quarterly Report Nov 79-Jan 80
Contract No: F33615-78-C-5100
61 pp., 1980 (AD-B052 434L)
Key Words: RENE' 95, hardness, tensile properties, creep rupture

47. Long Life Engine Disks from Gas Atomized Powder
Van Stone, R. H., Carlson, D. M.
General Electric Co., Aircraft Engine Group, Evendale, OH
Quarterly Report Feb-Jul 80
Contract No: F33615-78-C-5100
84 pp., 1980 (AD-B053 077L)
Key Words: RENE' 95, AF-115, rapid solidification, fatigue, cracking, tensile properties
Van Stone, R. H.
General Electric Co., Aircraft Engine Group, Evendale, OH
Quarterly Progress Letter Report Number One, Dec 79-Mar 80
Contract No: N00019-79-C-0659
12 pp., 1980 (AD-D118 800L)
Key Words: RENE' 95, fatigue tests, fabrication, heat treatment

Van Stone, R. H., Henry, M. F., Ritter, A. M.
General Electric Co., Aircraft Engine Group, Evendale, OH
Quarterly Progress Letter Report Number Two and Three, Apr-Oct 80
Contract No: N00019-79-C-0659
48 pp., 1980 (AD-D119 708L)
Key Words: RENE' 95, turbine components, microstructure, microscopy, aging, tensile properties, fatigue, cracking

50. Processing Effects on Microstructure and Fatigue Properties of Nickel-Base Superalloys
Van Stone, R. H., Henry, M. F.
General Electric Co., Aircraft Engine Group, Evendale, OH
Progress Letter Report Number One, Sep-Oct 80
Contract No: N62269-80-C-0708
10 pp., 1980 (AD-D120 462L)
Key Words: RENE' 95, tensile strength, fatigue, cracking, replica technique

51. The Stress Behavior of Three Advanced Nickel-Base Superalloys during High-Temperature, Low Cycle Fatigue
Bernstein, H. L.
Systems Research Labs Inc., Research Applications Div, Dayton, OH
Technical Report
Rept No: SRL-9799, 235 pp., 1980 (AD-A091 694)
Key Words: RENE' 95, AF-115, AF 2-1DA, forging, tensile properties, hardening, fatigue

52. High Temperature Low Cycle Fatigue Data for Three High Strength Nickel-Base Superalloys
Conway, J. B., Stentz, R. H.
Mar-Test Inc., Cincinnati, OH
and F33615-76-C-5191
Contract No: F33615-76-C-5245 and F33615-76-C-5191
119 pp., 1980 (AD-A097 430)
Key Words: RENE' 95, AF-115, AF 2-1DA, microstructure, aging. tensile properties, defects, creep rate, fatigue

53. Trends in Powder Metallurgy Technology
Chandler, H. E., Baxter, D. F.
Metal Prog 117 (1), 100-3, 1980 (AD-D117 225)
Key Words: RENE' 95, AISI 316, M-2, Stellite 6, Ti-6Al-4V, AISI 410, jet engines, net shape forming
54. **Evaluation of the Cyclic Behavior of Aircraft Turbine Disk Alloys, Part 2**
Pratt and Whitney Aircraft Group, West Palm Beach, FL
Rept No: PWA-FR-13153, 191 pp., 1980 (AD-D119 421)
Key Words: MERL 76, RENE' 95, IN-100, Waspaloy, Udimet 700, NASA IIB-7
fatigue cracking, creep-fatigue, tensile properties, microstructure

55. **Application of Superalloy Powder Metallurgy for Aircraft Engines**
Dreshfield, R. L., Miner, R. V., Jr.
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH
Technical Memorandum
Rept No: NASA-TM-81466, 21 pp., 1980 (AD-D119 422)
Key Words: RENE' 95, Udimet 700, MERL 76, turbine components, tensile properties, creep properties, fatigue

56. **Phase Relationships in RENE' 95**
Domingue, J. A., Beosch, W. J., Radavich, J. F.
ASM International, Metals Park, OH
Proc 4th Int Symp Superalloys, Superalloys 1980 335-344, 1980 (AD-D120 663)
Key Words: RENE' 95, particle size, phase studies, gamma prime, differential thermal analysis

57. **The Effect of Processing Parameters on the Microstructure and Mechanical Properties of RENE' 95 Consolidated from Gas Atomized Powders**
Van Stone, R. H., Gangloff, R. P.
Key Words: RENE' 95, crack growth, tensile properties, fatigue

58. **Progress in P/M Superalloy and Titanium for Aircraft Applications**
Dulis, E. J., Moll, J. H., Chandhok, V. K., Hebeisen, J. C.
SAMPE, Azusa, CA
Proc 25th National SAMPE Symposium and Exhibition, 75-89, 1980 (AD-D126 267)
Key Words: Ti-6Al-4V, MERL 76, RENE' 95, aircraft structures, tensile properties, creep rupture

59. **Aircraft Engine Near Net Shape Disk Inspection System**
Barker, K., Feldman, R., Gronauer, L., Halase, J., Hughes, J.
General Electric Co., Aircraft Engine Group, Evendale, OH
Rept No: AFML-TR-79-4171, 192 pp., 1979 (AD-B056 840L)
Key Words: RENE' 95, turbine components, ultrasonic testing, net shape forming, defects

60. **Long Life Engine Disks from Gas Atomized Powder**
Van Stone, R. H.
General Electric Co., Aircraft Engine Group, Evendale, OH
98 pp., 1979 (AD-B088 840L)
Key Words: RENE' 95, fatigue, rapid solidification, microscopy, aging, tensile properties

61. **Development of Hot Isostatically Pressed RENE' 95 Turbine Parts Addendum**
Mathur, P. S., Bartos, J. L.
General Electric Co., Aircraft Engine Group, Lynn, MA
Contract No: DAAJ02-73-C-0106
43 pp., 1979 (AD-A069 979)
Key Words: RENE' 95, fatigue, creep rupture, tensile properties
62. Low Cycle Fatigue of As-HIP and HIP + Forged RENE' 95
Bashir, S., Taupin, P., Antolovich, S. D.
Metall Trans 10A (10), 1481-90, 1979 (AD-D117 666)
Key Words: RENE' 95, fatigue, crack growth, tensile properties, grain size, dislocation density, microstructure

63. Powder Metallurgy RENE' 95 Rotating Turbine Engine Parts
Pfouts, W. R., Shamblen, C. E., Mosier, J. S., Peebles, R. E., Gorsler, R. W.
General Electric Co., Aircraft Engine Group, Evendale, OH
Final Report, Volume 1 of 2
Rept No: R79AEG416, 339 pp., 1979 (AD-D119 046)
Key Words: RENE' 95, turbine components, compressor components, creep rupture, fatigue, tensile properties, notch sensitivity, net shape forming, cost, temperature effect

64. HIP of RENE' 95
Happ, M. V., San Clemente, P.
U.S. Army Mantech J 4 (4), 41-4, 1979 (AD-D120 851)
Key Words: RENE' 95, turbine components, T700 engine, tensile properties, machining

65. Physical Metallurgy and Effects of Process Variables on the Microstructure of Wrought Superalloys
Muzyka, D. R.
ASTM, Philadelphia, PA
Proc Symp MiCon 78, 526-46, 1979 (AD-D126 409)
Key Words: A-286, Incoloy 901, Inconel 718, Waspaloy, RENE' 95, Pyromet CTX-1, Pyromet 31, tensile properties, creep rupture, microstructure

66. Review of Superalloy Powder Metallurgy Processing for Aircraft Gas Turbine Applications
Bartos, J. L.
ASTM, Philadelphia, PA
Proc Symp MiCon 78, 564-77, 1979 (AD-D126 411)
Key Words: RENE' 95, turbine components, tensile properties, creep rupture, net shape forming

Lane, Jan M.
Army Research and Technology Labs, Fort Eustis, VA
Final Report
Rept No: USARTL-TR-78-6, 53 pp., 1978 (AD-A054 022)
Key Words: RENE' 95, turbine components, heat treatment, tensile properties, net shape forming

68. Material for Advanced Turbine Engines-MATE
Bamberger, E. N., Mosier, J. S., Harrison, R. W.
General Electric Co., Aircraft Engine Group, Evendale, OH
Eighth Quarterly Engineering Report One, Dec-Feb 78
Rept No: R78AEG265, 111 pp., 1978 (AD-D112 563)
Key Words: RENE' 95, RENE' 150, turbine components, unidirectional solidification, creep properties, crack growth, notch sensitivity, tensile properties, thermal properties, oxidation, corrosion, fatigue

98
69. **Materials for Advanced Turbine Engines-MATE**
Bamberger, E. N., Mosier, J. S., Harrison, R. W.
General Electric Co., Aircraft Engine Group, Evendale, OH
Ninth Quarterly Engineering Report, Mar-May 78
Rept No: R78AEG356, 20 pp., 1978 (AD-D113 124)
Key Words: RENE' 95, RENE' 150, turbine components, unidirectional solidification, coatings, microstructure, net shape forming

70. **Effect of Grain Size and Gamma Prime Size on Fatigue Crack Propagation in RENE' 95**
Bartos, J., Antolovich, S. D.
General Electric Co., Aircraft Engine Group, Evendale, OH
Proc 4th Int Conf Fracture 11 pp., 1978 (AD-D113 706)
Key Words: RENE' 95, microstructure, gamma prime, grain size, fatigue, crack growth, tensile properties

71. **Material for Advanced Turbine Engines-MATE**
Arnold, D. B., Mosier, J. S., Harrison, R. W.
General Electric Co., Aircraft Engine Group, Evendale, OH
Quarterly Engineering Report Number Ten, Jun-Aug 78
Rept No.: R78AEG496, 56 pp., 1978 (AD-D113 898)
Key Words: RENE' 95, RENE' 150, turbine components, compressor components, unidirectional solidification, tensile properties, fatigue, creep rupture, coatings

72. **Evaluation of Cyclic Behavior of Aircraft Turbine Disk Alloys**
Shahani, V., Popp, H. G.
General Electric Co., Aircraft Engine Group, Evendale, OH
Final Report
Rept No: N78-33478, 194 pp., 1978 (AD-D113 912)
Key Words: RENE' 95, Inconel 718, aircraft structures, turbine components, fatigue, fracture mechanics, crack growth, creep rupture, tensile properties

73. **Microstructure and Mechanical Properties of HIP-Consolidated RENE 95 Powders**
Shimanuki, Y., Nishino, Y., Masui, M., Doi, H.
Key Words: RENE' 95, microstructure, gamma prime, tensile properties, creep properties

74. **New Production Methods Gain**
Kolcum, E. H.
Aviat Week Space Technol 109 (16), 16-21, 1978 (AD-D115 577)
Key Words: IN-100, RENE' 95, AF-115, turbine components, die forging, net shape forming, cost

75. **Development of Hot Isostatically Pressed RENE' 95 Turbine Parts**
Mathur, P. S., Bartos, J. L.
General Electric Co., Aircraft Engine Group, Lynn, MA
Final Report
Contract No: DAAJ02-73-C-0106
313 pp., 1977 (AD-A043 688)
Key Words: RENE' 95, microscopy, tensile properties, creep rupture, crack propagation
76. Material for Advanced Turbine Engines-MATE
Bamberger, E. N., Mosier, J. S.
General Electric Co., Aircraft Engine Group, Evendale, OH
4th Quarterly Engineering Report
Rept No: R76AEG345-2, 53 pp., 1977 (AD-D109485)
Key Words: RENE'95, turbine components, F-101 aircraft, compressor components, microstructure, cracking, heat treatment, cost

77. Powder Metallurgy Techniques Applied to Superalloys
Benjamin, J. S., Larson, J. M.
J Aircr 14 (7), 613-23, 1977 (AD-D109882)
Key Words: Udimet 700, RENE'95, MA956E, MA754 turbine components, creep rupture, hot corrosion, oxidation, grain size, thermomechanical treatment

78. Molten Salt Bath Solutioning of Superalloys for Aircraft Engine Components Improves Physical Properties
Harvey, R. F.
Ind Heat 44 (8), 20, 45, 1977 (AD-D110633)
Key Words: RENE'95, turbine components, compressor components, solution heat treatment, tensile properties, precipitation hardening

79. Material for Advanced Turbine Engines-MATE
Bamberger, E. N., Mosier, J. S.
General Electric Co., Aircraft Engine Group, Evendale, OH
Quarterly Engineering Report Number Six, Jun-Aug 77
Rept No: R77AEG529, 56 pp., 1977 (AD-D110864)
Key Words: RENE'95, RENE'150, turbine components, unidirectional solidification, fatigue, creep rupture, tensile properties, fracture surface, temperature effect

80. Effects of Heat Treating PM RENE'95 Slightly Below the Gamma-Prime Solvus
Dreshfield, R. L.
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH
Technical Memorandum
Rept No: NASA-TM-X-73663, 16 pp., 1977 (AD-D110875)
Key Words: RENE'95, solution heat treatment, microstructure, tensile properties, creep rupture

81. MATE-Materials for Advanced Turbine Engines
Bamberger, E. N., Mosier, J. S., Harrison, R. W.
General Electric Co., Aircraft Engine Group, Evendale, OH
Seventh Quarterly Engineering Report, Sept.-Nov. 1977
Rept No: R77AEG647, 41 pp., 1977 (AD-D111589)
Key Words: RENE'95, RENE'150, turbine components, unidirectional solidification, tensile properties, solution heat treatment

82. Development of Hot Isostatically Pressed RENE'95 Turbine Parts
Mathur, P.S., Bartos, J.L.
Army Air Mobility Research and Development Lab, Fort Eustis, TX
Technical Report
Rept No: USAAMRDL-TR-76-30, 111 pp., 1977 (AD-D703061)
Key Words: RENE'95, turbine components, microstructure
83. Forging of HIP Powder Preforms
Couts Jr., W. H.
Manufacturing Technology Division, AFML, Wright-Patterson AFB, OH
Proc Net Shape Metalworking Program Review 335-47, 1976 (AD-D119 182L)
Key Words: RENE' 95, turbine components, densification, forging, nondestructive testing

84. Review of Advanced Powder Metallurgical Fabrication Techniques in European NATO Countries
Sutcliffe, P. W.
Advisory Group for Aerospace Research and Development, Paris, France
Rept No: AGARD-R-641, 14 pp., 1976 (AD-A028 348)
Key Words: IN-100, IN-738, Alloy 713, Inconel 718, RENE' 95, Ti-6Al-4V, Waspaloy, precipitation hardening

85. A Comparison of Various Non-Destructive Inspection Processes Using Hot Isostatically Pressed Powder Turbine Parts
Nulk, D. E.
General Electric Co., Aircraft Engine Group, Lynn, MA
Rept No: USAAVSCOM-TR-76-23, 173 pp., 1976 (AD-A040 333)
Key Words: RENE' 95, turbine components, ultrasonic testing

86. Materials for Advanced Turbine Engines-MATE
Bamberger, E. N., Mosier, J. S.
General Electric Co., Aircraft Engine Group, Evendale, OH
Rept No: R76AEG345-1, 60 pp., 1976 (AD-D107 441)
Key Words: Inconel 718, RENE' 95, turbine components, nozzles, vanes, tensile properties, thermal cycling, heat treatment, aging

87. Material for Advanced Turbine Engines--MATE
Bamberger, E.N., Mosier, J.S.
General Electric Co., Aircraft Engine Group, Evendale, OH
Third Quarterly Engineering Report, Sep.-Nov., 1976
Rept No: R76AEG345-2, 75 pp., 1976 (AD-D108 531)
Key Words: RENE' 95, turbine components, compressor components, tensile properties, fatigue, creep rupture, machining, finishing, solution heat treatment

88. RENE' 95 Powder Metallurgy Opportunities for Gas Turbine Applications
Arnold, D. B.
General Electric Co., Cincinnati, OH
p.6-1 to p.6-6, 1976 (AD-D110 185)
Key Words: RENE' 95, turbine components, tensile properties, creep rupture, fatigue

89. Low Cost P/M Superalloy Applications in Turbines
Reichman, S. H.
Key Words: RENE' 95, turbine components, compressor components, tensile properties, creep rupture

90. Low Cost P/M Superalloy Applications in Turbines
Reichman, S.H.
Key Words: RENE' 95, Udiment 700, PA 101, turbine components, powder metallurgy, performance
91. **Development of Hot-Isostatically Pressed and Forged P/M RENE’ 95 for Turbine Disc Application**

 Bartos, J. L., Allen, R. E., Thompson, V. R., Moll, J. H., Morris, C. A.

 National Aerospace and Manufacturing Meeting, 12 pp., 1974 (AD-D102 993)

 Key Words: RENE’ 95, turbine components, tensile properties, creep rupture, microstructure, cracking, strain rate

92. **Manufacturing Methods for the Production of Disk Shapes by Contour Rolling**

 Arnold, David B.

 General Electric Co., Aircraft Engine Group, Evendale, OH

 Final Technical Report Apr 71-Mar 73

 Rept No.: AFM’t-TR-73-109, 126 pp., 1973 (AD-913 300L)

 Key Words: RENE’ 95, MPDC, turbine components, microstructure, grain size, tensile properties, machining, creep rupture

93. **Modern Methods of Powder Metallurgical Processing of Superalloys**

 Gessinger, G. H., Bomford, M. J.

 Brown, Bovert & Co. Ltd., Baden, Switzerland

 Proc Symp High Temperature Materials in Gas Turbines 35 pp., 1973 (AD-D102 997)

 Key Words: Udimet 500, Hastelloy X, X-45, Udimet 710, IN-100, IN-853 Udiment 700, RENE’ 95, Inconel 718, D-979, Nimonic 80A, TD-nickel, turbine components, creep rupture, tensile properties, fatigue, atomization, REP, thermomechanical treatment

94. **Effect of Processing Variables on Powder-Metallurgy RENE’ 95**

 Barker, J. F., Vandermolen, E. H.

 General Electric Co., Cincinnati, OH

 Proc 2nd Int Conf Superalloys-Processing, Champion, PA, Sept. 1972

 23 pp., 1972 (AD-179 966)

 Key Words: RENE’ 95, extrusion, forging, tensile properties, fatigue, creep rupture, notch properties

95. **Manufacturing Methods for the Production of Disc Shapes by Contour Rolling**

 Arnold, D. B.

 General Electric Co., Aircraft Engine Group, Evendale, OH

 Interim Engineering Report Number Two, Jul-Sep 71

 Rept No.: RTD-IR-204-I(II), 23 pp., 1971 (AD-888 623L)

 Key Words: RENE’ 95, Hastelloy X, AISI 304, contour rolling

Rene’ 150

1. **Prior Particle Boundary Precipitation in P/M Superalloys**

 Thamburaj, R., Koul, A. K., Wallace, W., de Malherbe, M. C.

 Metal Powder Industries Federation, Princeton, NJ

 Proc Int Powder Metallurgy Conf. Modern Developments in Powder Metallurgy

 16, 635-73, 1985 (AD-D138 354)

 Key Words: Udimet 700, AF-115, IN-792, MAR-M432, MERL 76, PA 101, RENE’ 41, tensile properties, creep rupture, fatigue

2. **PM Dual Property Wheels for Small Engines**

 Moll, J. H., Schwertz, H. H., Chandhok, V. K.

 Met Powder Rept 38 (10), 547-552, 1983 (AD-D131 002)

 Key Words: C-103, PA 101, MAR-M247, RENE’ 95, turbine components, joining, unidirectional solidification
3. Development of Hybrid Gas Turbine Bucket Technology
Peterson, L. G., Hrencecin, D. E., Schilling, W. F., Ostergren, W. J.
General Electric Co., Gas Turbine Division, Schenectady, NY
Technical Paper
Rept No.: ASME-82-GT-94, 10 pp., 1982 (AD-D127 264)
Key Words: RENE' 80, RENE' 150, Udimet 700, MAR-M200, IN-939, RENE' 125,
RENE' 120, GTD-111, IN-738, turbine components, tensile
properties, unidirectional solidification, dissimilar joining,
diffusion bonding, creep rupture

Profant, D. D., Fiedler, L. J.
AVCO Lycoming Division, Stratford, CT
Final Report May 73-Sep 77
Rept No.: AFML-TR-78-22, 313 pp., 1978 (AD-B039 126L)
Key Words: PA 101, net shape forming, tensile properties, fatigue, creep
rupture

5. Material for Advanced Turbine Engines-MATE
Bamberger, E. N., Mosier, J. S., Harrison, R. W.
General Electric Co., Aircraft Engine Group, Evendale, OH
Eighth Quarterly Engineering Report One, Dec-Feb 78
Rept No.: R78AEG265, 111 pp., 1978 (AD-D112 563)
Key Words: RENE' 95, RENE' 150, turbine components, unidirectional
solidification, creep properties, crack growth, notch
sensitivity, tensile properties, thermal properties,
oxidation, corrosion, fatigue

6. Materials for Advanced Turbine Engines-MATE
Bamberger, E. N., Mosier, J. S., Harrison, R. W.
General Electric Co., Aircraft Engine Group, Evendale, OH
Ninth Quarterly Engineering Report, Mar-May 78
Rept No.: R78AEG356, 20 pp., 1978 (AD-D113 124)
Key Words: RENE' 95, RENE' 150, turbine components, unidirectional
solidification, coatings, microstructure, net shape forming

7. Material for Advanced Turbine Engines-MATE
Arnold, D. B., Mosier, J. S., Harrison, R. W.
General Electric Co., Aircraft Engine Group, Evendale, OH
Quarterly Engineering Report Number Ten, Jun-Aug 78
Rept No.: R78AEG496, 56 pp., 1978 (AD-D113 898)
Key Words: RENE' 95, RENE' 150, turbine components, compressor components,
unidirectional solidification, tensile properties, fatigue, creep rupture, coatings

8. Material for Advanced Turbine Engines-MATE
Bamberger, E. N., Mosier, J. S.
General Electric Co., Aircraft Engine Group, Evendale, OH
Quarterly Engineering Report Number Six, Jun-Aug 77
Rept No.: R77AEG529, 56 pp., 1977 (AD-D110 864)
Key Words: RENE' 95, RENE' 150, turbine components, unidirectional
solidification, fatigue, creep rupture, tensile properties,
fracture surface, temperature effect
9. **MATE-Materials for Advanced Turbine Engines**
Bamberger, E. N., Mosier, J. S., Harrison, R. W.
General Electric Co., Aircraft Engine Group, Evendale, OH
Seventh Quarterly Engineering Report, Sept.-Nov. 1977
Rept No: R77AEG647, 41 pp., 1977 (AD-D111 589)
Key Words: RENE' 95, RENE' 150, turbine components, unidirectional solidification, tensile properties, solution heat treatment

10. **Low Cost P/M Superalloy Applications in Turbines**
Reichman, S.H.
Key Words: RENE' 95, Udimet 700, PA 101, turbine components, powder metallurgy, performance

Udimet 700

1. **The Production and Processing of High-Quality Powder Metallurgy Materials**
Graf, W., Kraemer, H. J., Poetschke, J., Weiglin, W.
Powder Metall Int 23 (4), 246-52, 1991
Key Words: T-15, M-4, M-50, AISI 304, AISI 316, AISI 321, AISI 410, AISI 440, Udimet 700, MERL 76, IN-100, Stellite 6, Stellite 1, Stellite 12, Stellite 21, atomization, particle size, density, creep, metal injection molding

2. **Densification and Microstructure Development During HIPping of API**
Mitkov, M., Asian, M., Kaysser, W. A.
Powder Metall Int 21 (1), 7-10, 1989 (AD-D140 874)
Key Words: Nimonic API, microstructure, grain size, hardness

3. **Mechanical Properties of Modified Low Cobalt Powder Metallurgy Udimet 700 Type Alloys**
Harf, F. H.
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH
Technical Memorandum
Rept No: NASA-TM-101481, E-4609, 28 pp., 1989 (AD-D141 875)
Key Words: Udimet 700, microscopy, rupture strength, creep, aging, tensile properties

4. **Maximum Strength—The Ultimate Achievement in P/M Superalloys?**
Betz, W.
Met Powder Rept 44 (4), 597-601, 1989 (AD-D142 168)
Key Words: Udimet 700, turbine components, fatigue strain, tensile properties

5. **Growth of Small Cracks in Aeroengine Disc Materials**
Hudak, S. J., Jr., Davidson, D. L., Chan, K. S.
Southwest Research Institute, San Antonio, TX
Final Report
Rept No: AFWAL-TR-88-4090, 249 pp., 1988 (AD-A199 842)
Key Words: Udimet 700, Waspaloy, turbine components, fatigue, crack growth kinetics, tensile properties, temperature effect, microstructure, grain size, crack closure

104
6. **Quantitative Evaluation of the Cleanness of HIP + Forge Astroloy Disks Produced from APowders of Controlled Inclusion Contents**
Raisson, G. Met Powder Rep 43 (10), 654-8, 1988 (AD-D139 884)
Key Words: Udimet 700, turbine components, hot working, forging, atomization, ultrasonic cleaning

7. **Nickel Alloys by P/M**
Birkholz, W.J., Stulga, J.E., Fuka, W.B., Moll, J.H.
MPR Publishing Services Ltd., Bellstone, Shrewsbury, UK
Proc Int Conf PM Aerospace Materials-87, 2.1-2.9, 1988 (AD-D143 657)
Key Words: Udimet 700, Inconel 625, RENE 95, H-13 tool steel, precipitation hardening, tensile properties, thermal expansion, hardness, creep

8. **Deposition and Determination of Argon in HIP-Parts**
"Over, D., Buchkremer, H.P., Diehl, W., Kaiser, H., Laakmann, J.
"R Publishing Services Ltd., Bellstone, Shrewsbury, UK
Proc Int Conf PM Aerospace Materials-87 8.1-8.9, 1988 (AD-D143 660)
Key Words: Udimet 700, AISI 316L, Hastelloy X, SEM, microscopy, porosity

9. **Behavior of Long and Short Fatigue Cracks in a Powder Metallurgy Superalloy at Room and at High Temperature**
Soniak, F., Remy, L.
Ecole Nationale Superieure des Mines de Paris, France
Proc 3rd Int Conf Fatigue and Fatigue Thresholds 1, 351-60, 1987 (AD-D138 578)
Key Words: Udimet 700, grain structure, fatigue crack, tensile properties

10. **A Study of Fatigue Crack Propagation in Powder Metallurgy Hot Isostatically Pressed Nickel-Base Alloy**
Hertzberg, R. W.
Dept of Metallurgy and Materials Engineering, Lehigh Univ. Bethlehem, PA
Rept No.: AFOSR-TR-86-0920, 32 pp., 1986 (AD-A173 211)
Key Words: Udimet 700, turbine components, fatigue, cracking, tensile properties, dislocation density

11. **Analysis of Second Phase Particles in a Powder Metallurgy HIP Nickel-Base Superalloy**
Crompton, J. S., Hertzberg, R. W.
J Mater Sci 21 (10), 3445-54, 1986 (AD-D135 776)
Key Words: Udimet 700, microstructure

Lu, T.C., Bienvenu, Y., Faral, O., Davidson, J.H.
Kluwer Academic Publishers, Norwell, MA
Proc High Temperature Alloys for Gas Turbines and Other Applications 1986-Part 2 887-96, 1986 (AD-D142 126)
Key Words: Udimet 700, microstructure, densification, REP, Charpy impact, tensile properties, creep rupture

13. **Hot Isostatic Press**
Author Anon
Foreign Technology Division, Wright-Patterson AFB. OH
Rept No.: FTD-ID(RS)T-1406-84, 65 pp., 1985 (AD-B093 100L)
Key Words: Ti-6Al-4V, B-1900, IN-738, RENE' 77, IN-792, RENE' 80, AA C355, AA A356, 142-T4
14. Screw Press Forging of Powder HIP Billet to Critical Gas Turbine Discs and Wheels
Cockell, M. W., Boyce, K. A. G.
Met Powder Rept 40 (3), 139-44, 1985 (AD-D132 551)
Key Words: Nimonic AP1, Udimet 700, RENE’95, turbine components, grain size, tensile properties, creep rupture, fatigue

15. Modes of Failure under Creep/Fatigue Loading of a Nickel-Based Superalloy
Winstone, M. R., Nikbin, K. M., Webster, G. A.
J Mater Sci 20 (7), 2471-6, 1985 (AD-D132 581)
Key Words: Nimonic AP1, creep-fatigue

16. The Substitution of Nickel for Cobalt in Hot Isostatically Pressed Powder Metallurgy UDIMET 700 Alloys
Harf, F. H.
Metall Trans 16A (6), 993-1003, 1985 (AD-D132 599)
Key Words: Udimet 700, turbine components, creep rupture, tensile properties

17. The Response of Cobalt-Free Udimet 700 Type Alloy to Modified Heat Treatment
Harf, F. H.
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH
Technical Memorandum
Key Words: Udimet 700, cobalt addition, chromium addition, molybdenum addition, aluminum addition, heat treatment, creep rupture, tensile properties

18. Properties and Microstructures for Dual Alloy Combinations of Three Superalloys with Alloy 901
Harf, F. H.
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH
Technical Memorandum
Rept No: NASA-TM-86987, 42 pp., 1985 (AD-D134 337)
Key Words: Incoloy 901, RENE’95, MERL 76, Udimet 700, turbine components, microstructure, tensile properties, creep rupture, joining

Witt, M. C., Charles, J. A.
Mater Sci Technol 1 (12), 1063-8, 1985 (AD-D134 414)
Key Words: Nimonic AP1, grain boundary sliding, TEM, hardness, creep deformation

20. Prior Particle Boundary Precipitation in P/M Superalloys
Thamburaj, R., Koul, A. K., Wallace, W., de Malherbe, M. C.
Metal Powder Industries Federation, Princeton, NJ
Key Words: Udimet 700, AF-115, IN-792, MAR-M432, MERL 76, PA 101, RENE’ 41, tensile properties, creep rupture, fatigue

Hertzberg, R. W.
Department of Metallurgy and Materials Engineering, Lehigh University, Bethlehem, PA
Annual Report
Rept No : AFOSR-TR-84-0164, 11 pp., 1984 (AD-A139 290)
Key Words: Udimet 700, grain size, fatigue crack, compliance tests
22. Experimental and Theoretical Studies of Creep Crack Growth
Pelloux, R. M., Bain, K. R., Bensussan, P.
Massachusetts Institute of Technology, Cambridge, MA
Final Report
Rept No: AFOSR-TR-84-0387, 146 pp., 1984 (AD-A141 193)
Key Words: AA 2219-T851, Udiment 700, MERL 76, IN-100, RENE’ 95, creep, cracking, tensile properties, creep rupture

23. Effect of Environment on Creep Crack Growth in PM/HIP RENE-95
Bain, K. R., Pelloux, R. M.
Metall Trans 15A (2), 381-8, 1984 (AD-D129 273)
Key Words: RENE’ 95, Inconel 718, IN-100, Inconel X-750 Udiment 700, creep, crack growth, fractography

24. Influence of Processing Variables on Prior Particle Boundary Precipitation and Mechanical Behavior in PM Superalloy APK1
Thamburaj, R., Wallace, W., Chari, Y. N., Prakash, T. L.
Powder Metall 27 (3), 169-80, 1984 (AD-D130 990)
Key Words: APK-1, fracture, tensile properties, creep rupture

25. A Two-Stage Compaction Process for Superalloy Powders: Presintering + HIP
Jeandin, M., Trottier, J. P., Koutny, J. L., Bienvenu, Y.
Met Powder Rept 39 (9), 495-500, 1984 (AD-D131 241)
Key Words: Udiment 700, fracture, sintering, shrinkage, creep rupture, tensile properties

26. Eliminating Inclusions in Atomized Powder Superalloys
Met Powder Rept 39 (9), 532-3, 1984 (AD-D131 244)
Key Words: Nimonic API, grain size, crack propagation, fatigue

27. Application Fields of the HIP-Technology
Selistorfer, H.
Powder Metall Int 16 (6), 268-71, 1984 (AD-D131 767)
Key Words: Waspaloy, Udiment 700, Stellite 6, turbine components, net shape forming, mechanical properties, hardness

28. Effects of Long-Time Elevated Temperature Exposures on Hot-Isostatically-Pressed Powder-Metallurgy Udiment 700 Alloys with Reduced Cobalt Contents
Harf, F. H.
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH
Technical Memorandum
Rept No: NASA-TM-83632, 18 pp., 1984 (AD-D132 064)
Key Words: Udiment 700, microstructure, porosity, creep rupture, long term tests, tensile properties

29. Effect of Oxygen on Creep Crack Growth in PM/HIP Nickel-Base Superalloys
Bain, K. R., Pelloux, R. M.
The Metallurgical Society of AIME, Warrendale, PA
Key Words: Udiment 700, MERL 76, IN-100, RENE’ 95, grain boundaries, notch properties, aging, embrittlement
30. **Liquid Phase Sintering of Nickel Base Superalloys**
Jeandin, M., Bienvenu, Y., Koutny, J. L.
The Metallurgical Society of AIME, Warrendale, PA
Proc 5th Int Symp Superalloys 1984, 467-76, 1984 (AD-D132 859)
Key Words: Nimonic AP1, Udimet 700, RENE' 95, molybdenum addition, chromium addition, microstructure, tensile strength, creep rupture

31. **Welding of PM Superalloys**
Wilhelm, H.
NTIS, N85-16191, Springfield, VA
Final Report
Rept No: MTU-TB-910/84, 66 pp., 1984 (AD-D133 633)
Key Words: Udimet 700, IN-100, RENE' 95, MERL 76, weld and post weld, tensile properties, fatigue

32. **The Initiation and Growth of Microcracks in Nickelbase Superalloys**
Newman, P. T., Beevers, C. J.
Engineering Materials Advisory Services Ltd., West Midlands, UK
Proc 2nd Int Conf Fatigue and Fatigue Thresholds 2, 785-96, 1984 (AD-D138 497)
Key Words: Nimonic 901, Udimet 700, APK-1, porosity, fatigue, cracking, bend test

33. **Fatigue Threshold Behavior in a Nickel Base Superalloy**
Vecchio, R. S., Crompton, J. S., Hertzberg, R. W.
Engineering Materials Advisory Services Ltd., West Midlands, UK
Proc 2nd Int Conf Fatigue and Fatigue Thresholds 3, 1379-88, 1984 (AD-D138 520)
Key Words: Udimet 700, grain size, fatigue, crack, aging

34. **The Effects of Small Deformation on Creep and Stress Rupture Behavior of ODS Superalloys**
Nardone, V. C., Matejczyk, D. E., Tien, J. K.
Henry Krumb School of Mines, NY
Final Technical Report
Rept No : AFOSR-TR-83-0095, 58 pp., 1983 (AD-A125 640)
Key Words: Udimet 700, MA754, MA6000, oxide dispersoids, notch toughness, crack propagation, fatigue, creep deformation

35. **Hot Isostatic Pressing of UDIMET 700--Mechanical Properties and Part Production**
Bayer, E., Moser, G., Seilstorfer, H.
Met Powder Rept 38 (1), 26-9, 1983 (AD-D126 644)
Key Words: Udimet 700, turbine components, creep rupture, tensile properties, fatigue, hardness

36. **Microstructures and Mechanical Properties of Hot Isostatically Pressed Powder Metallurgy Alloy APK-1**
Prakash, T. L., Chari, Y. N., Bhagiradha Rao, E. S., Thamburaj, R.
Metall Trans 14A (4), 733-42, 1983 (AD-D127 002)
Key Words: APK-1, Udimet 700, microstructure, tensile properties, fracture mechanics, creep rupture, fracture surface, cracking, aging

37. **Properties and Structures of Hot Isostatic Pressed and Hot Isostatic Pressed Plus Forged Superalloys**
Symonds, C. H., Eggar, J. W., Lewis, G. J., Siddall, R. J.
Powder Metall Int 15 (1), 30-5, 1983 (AD-D127 074)
Key Words: Nimonic AP1, Udimet 700, turbine components, tensile properties, notch properties
38. **The New Frontiers of Powder Metals**
Vaccari, J. A.
Amer Mach 127 (5), 121-36, 1983 (AD-D127 193)
Key Words: AA 7090, AA 7091, IN9052, Ti-6Al-4V, Monel 400, Inconel 600, RENE' 95, Cb291, Udimet 700, In-100, AF-115, Inconel 625, net shape forming, injection molding, applications, forging

39. **Liquid Phase Sintering of Nickel Base Superalloys**
Jeandin, M., Koutny, J. L., Bienvenu, Y.
Powder Metall 26 (1), 17-22, 1983 (AD-D127 302)
Key Words: RENE' 95, Udimet 700, porosity, grain boundaries, precipitation, particle size, grain size, sintering

40. **The Effects of Microstructure on 650 C Fatigue Crack Growth in P/M Astroloy**
Gayda, J., Miner, R. V.
Metall Trans 14A (11), 2301-8, 1983 (AD-D128 693)
Key Words: Udimet 700, microstructure, crack growth, fracture mechanics, fatigue

41. **Fatigue Crack Growth and Low Cycle Fatigue of Two Nickel Base Superalloys**
Stoloff, N. S., Duquette, D. J., Choe, S. J., Golwalker, S.
Rensselaer Polytechnic Institute, Department of Materials Engineering, Troy, NY
Final Report
Rept No: NASA-CR-174534, 51 pp., 1983 (AD-D129 613)
Key Words: RENE' 95, Udimet 700, fatigue, cracking, tensile properties

42. **The Cyclic Behavior of a Powder Ni-Base Superalloy**
Hicks, M. A., Newley, R. A., Towill, B. P.
NTIS, N84-22743, Springfield, VA
Technical Report
Rept No: PNR-90182, 20 pp., 1983 (AD-D131 936)
Key Words: Waspaloy, Udimet 700, turbine components, fracture, fatigue, tensile properties

43. **Hot Isostatic Processing**
Clauer, A. H., Meiners, K. E., Boyer, C. B.
Metals Information Analysis Center, West Lafayette, IN
State-of-the-Art
Rept No: MCIC-82-46, 228 pp., 1982 (AD-A132 232)
Key Words: Ti-6Al-4V, IN-738, RENE' 95, Udimet 700, IN-792, Inconel 718, M-1, M-2, B-1900, MAR-M250, welding, fatigue, tensile properties, heat treatment

44. **Effects of Grain Size and Microstructure on Threshold Values and Near Threshold Crack Growth in Powder-Formed Ni-Base Superalloy**
King, J. E.
Metal Science 16 (7), 345-55, 1982 (AD-D125 426)
Key Words: Nimonic AP1, microstructure, grain size, recrystallization, crystallography, crack growth, stress intensity, fatigue, tensile properties

45. **High Temperature Aerospace Materials Prepared by Powder Metallurgy**
Thompson, E. R.
Annual Reviews Inc., Palo Alto, CA
Key Words: IN-100, Udimet 700, RENE' 95, MERL 76, Ti-6Al-4V, creep rupture, fatigue, fracture toughness
46. Powder and Particulate Production of Metallic Alloys
Grant, N. J.
Massachusetts Institute of Technology, Department of Materials Science and
Engineering, Cambridge, MA
Contractor Report
Rept No.: NASA-CR-169069, 31 pp., 1982 (AD-D126 286)
Key Words: IN-100, Udimet 700, microstructure, creep rupture, porosity, intergranular fracture, splat quenching

47. Rapid Solidification of Metallic Particulates
Grant, N. J.
Massachusetts Institute of Technology, Department of Materials Science and
Engineering, Cambridge, MA
Contractor Report
Rept No.: NASA-CR-169070, 16 pp., 1982 (AD-D126 287)
Key Words: Udimet 700, AA 7075, stainless steel, maraging steel, tensile properties, microstructure, splat quenching

48. Surface Damage and Near-Threshold Fatigue Crack Growth in a Ni-Base Superalloy in Vacuum
King, J. E.
Fatigue Fract Eng Mater Struct 5 (2), 177-88, 1982 (AD-D126 517)
Key Words: Nimonic AP1, fatigue, crack growth, aging

49. Development of Hybrid Gas Turbine Bucket Technology
Peterson, L. G., Hrencecin, D. E., Schilling, W. F., Ostergren, W. J.
General Electric Co., Gas Turbine Division, Schenectady, NY
Technical Paper
Rept No.: ASME-82-GT-94, 10 pp., 1982 (AD-D127 264)
Key Words: RENE' 80, RENE' 150, Udimet 700, MAR-M200, IN-939, RENE' 125, RENE' 120, GTD-111, IN-738, turbine components, tensile properties, unidirectional solidification, dissimilar joining, diffusion bonding, creep rupture

Bressers, J., Roth, M., Tambuyser, P., Fenske, E.
NTIS, PB83-206078, Springfield, VA
Final Rept Round 2
Rept No.: EUR-8162-EN, 72 pp., 1982 (AD-D128 766)
Key Words: Waspaloy, Udimet 700, turbine components, microstructure, fractography, oxidation, crack growth, fatigue, tensile properties.

51. Necklace Structure Obtained by Forging Astroloy Supersolidus Sintered Preforms
Jeandin, M.
J Mater Sci 17 (10), 2902-10, 1982 (AD-D130 402)
Key Words: Udimet 700, turbine components, microstructure, crack growth, fatigue, tensile properties, creep rupture

52. Time Dependent Low Cycle Fatigue of PM Astroloy at 1003 K
Bressers, J., Roth, M., Fenske, E., Tambuyser, P.
Kluwer Boston Inc., Hingham, MA
Proc Conf High Temperature Alloys for Gas Turbines, 597-609, 1982 (AD-D134 007)
Key Words: Udimet 700, microstructure, oxidation, fatigue crack, hardening, creep deformation, cyclic loading
53. The Nature and Origin of Previous Particle Boundary Precipitates in P/M Superalloys
Ingesten, N. G., Warren, R., Winberg, L.
Kluwer Boston Inc., Hingham, MA
Proc Conf High Temperature Alloys for Gas Turbines 1013-1027, 1982 (AD-D134 031)
Key Words: Udiment 700, microstructure, grain boundaries, heat treatment, atomization

54. Forging Astroloy Supersolidus-Sintered Preforms: Necklace Structure Achievement
Jeandin, M., Koutny, J. L., Bienvenu, Y.
Kluwer Boston Inc., Hingham, MA
Proc Conf High Temperature Alloys for Gas Turbines 1029-41, 1982 (AD-D134 032)
Key Words: Udiment 700, microstructure, creep rupture, fatigue stress, tensile properties, atomization

55. Creep-Fatigue Environment Interactions in Superalloys
Pelloux, R. M.
Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, MA
Final Report
Rept No: AFOSR-TR-81-0450, 35 pp., 1981 (AD-A098 790)
Key Words: Udiment 700, Waspaloy, IN-100, microstructure, creep, fatigue, embrittlement

56. The Effect of Ceramic Inclusions on the Low Cycle Fatigue Life of Low Carbon Astroloy Subjected to Hot Isostatic Pressing
Jablonski, D. A.
Mater Sci Eng 48 (2), 189-98, 1981 (AD-D121 615)
Key Words: Udiment 700, microstructure, crack growth, inclusions, fracture mechanics, fatigue

57. Recent Developments in Powder Metallurgy of Superalloys
Gessinger, G. H.
Powder Metall Int 13 (2), 93-101, 1981 (AD-D122 017)
Key Words: MERL 76, Udiment 700, RENE' 95, IN-738, MA6000E, MAR-M200, mechanical properties, corrosion, superplastic forming, thermomechanical treatment

58. Prior Particle Boundaries in Hot Isostatically Pressed Nickel-Based Superalloy, Studied by Auger Electron Spectroscopy
Waters, R. E., Charles, J. A., Lea, C.
Met Technol 8 (5), 194-200, 1981 (AD-D122 165)
Key Words: Udiment 700, APK-1, coatings, fracture surface, precipitation, heat treatment, Auger Electron Spectroscopy

59. Materials for Advanced Turbine Engine-MATE
Evans, D. J., Sheffler, K. D., Friedrich, L. A.
Pratt and Whitney Aircraft Group, East Hartford, CT
Contract No: NAS 3-20072
36 pp., 1981 (AD-D122 325)
Key Words: Hastelloy X, MA956, Udiment 700, MERL 76, turbine components, combustor liners, airfoils, coatings, fatigue, erosion resistance
60. Microstructural Behavior of Interfaces in Hot Isostatically Pressed Dual Alloy Combinations
Harf, F. H.
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH
Technical Memorandum
Rept No: NASA-TM-82698, 10 pp., 1981 (AD-D122 440)
Key Words: MERL 76, Udimet 700, RENE' 95, turbine components, microstructure, phase studies, prealloying, interface

61. HIPping the High-Performance Alloys
Moll, J. H.
Mech Eng 103 (11), 56-61, 1981 (AD-D122 795)
Key Words: RENE' 95, titanium alloys, tool steel, Udimet 700, IN-100, MERL 76, Waspaloy, turbine components, microstructure, tensile properties, stress intensity

62. Hot Isostatic Pressing of Superalloys
Moser, G., Bayer, E., Seilstorfer, H.
Powder Metall Int 13 (4), 184-7, 1981 (AD-D122 856)
Key Words: Udimet 700, turbine components, grain size, fabrication, fatigue

63. Cost 50: Materials for Gas Turbines
Bunk, W., Hansen, J.
NTIS, N82-15071, Springfield, VA
Rept No: N82-15071, 126 pp., 1981 (AD-D125 116)
Key Words: IN-738LC, IN-939, IN-597, IN-100, Alloy 713LC, Nimonic 105, Udimet 520, Udimet 700, turbine components, welding, cyclic fatigue, coatings, corrosion, creep

64. Advances in P/M and ODS Superalloys
Tien, J. K., Howson, T. E.
ASM International, Metals Park, OH
Key Words: IN-100, Udimet 700, MAR-M200, creep rupture, tensile properties

65. Effects of Thermally Induced Porosity on an As-HIP Powder Metallurgy Superalloy
Dreshfield, R. L., Miner, R. V., Jr.
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH
Rept No: NASA-TM-79263, 18 pp., 1980 (AD-D117 255)
Key Words: Udimet 700, creep rupture, tensile properties, fatigue porosity

66. Effects of Fine Porosity on the Fatigue Behavior of a Powder Metallurgy Superalloy
Miner, R. V., Dreshfield, R. L.
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH
Rept No: NASA-TM-81448, 14 pp., 1980 (AD-D119 053)
Key Words: Udimet 700, fatigue, crack growth, creep rupture, tensile properties, porosity

67. Evaluation of the Cyclic Behavior of Aircraft Turbine Disk Alloys, Part 2
Pratt and Whitney Aircraft Group, West Palm Beach, FL
Rept No: PWA-FR-13153, 191 pp., 1980 (AD-D119 421)
Key Words: MERL 76, RENE' 95, IN-100, Waspaloy, Udimet 700, NASA III-B-7 fatigue crack growth, creep-fatigue, tensile properties, microstructure
68. Application of Superalloy Powder Metallurgy for Aircraft Engines
Dreshfield, R. L., Minor, R. V., Jr.
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH
Technical Memorandum
Rept No.: NASA-TM-81466, 21 pp., 1980 (AD-D119422)
Key Words: RENE' 95, Udimet 700, MERL 76, turbine components, tensile properties, creep properties, fatigue

69. The Influence of Powder Particle Surface Composition on the Properties of a Nickel-Based Superalloy Produced by Hot Isostatic Pressing
Aubin, C., Davidson, J. H., Trotter, J. P.
ASM International, Metals Park, OH
Key Words: Udimet 700, impact, creep rupture

70. Powder Metallurgy of Turbine Disc Alloys, Cost 50, Round II
Ingesten, N.-G.
NTIS, DE82-901834, Springfield, VA
Final Report
Rept No.: STU-77-3602, 31 pp., 1980 (AD-D126307)
Key Words: Udimet 700, IN-100, turbine components, carbide precipitation, thermal stability, phase transformation

71. Manufacture of Low Carbon Astroloy Turbine Disc Shapes by Hot Isostatic Pressing, Volume 2
Eng, R. D., Evans, D. J.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Final Report
Rept No.: N80-21329, 8 pp., 1979 (AD-D114793)
Key Words: Udimet 700, Waspaloy, turbine components, tensile properties, net shape forming, nondestructive testing

72. Heat Treatment of P/M Nickel-Base Superalloys for Turbine Disks
Antons, P. L., Bennani, A.
Fiat S P A Turin (Italy) Laboratori Centrali Orbassano
Proc 47th Meeting of the AGARD Structures and Materials Panel, Advanced Fabrication Processes
Rept No.: AGARD-CP-256, 18-1 to 18-20, 1979 (AD-D117193)
Key Words: Udimet 700, turbine components, heat treatment, microstructure, tensile properties, fractography, porosity

73. Manufacture of Low Carbon Astrology Turbine Disk Shapes by Hot Isostatic Pressing
Eng, R. D., Evans, D. J.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Final Report Project 1
Rept No.: PWA-5574-12, 92 pp., 1978 (AD-D112930)
Key Words: Udimet 700, Waspaloy, turbine components, porosity, tensile properties, outgassing, nondestructive testing, creep properties, fatigue, crack growth

74. MATE-Materials for Advanced Turbine Engines
Evans, D. J.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Technical Progress Narrative Report One, Mar.-May 1978
Rept No.: PWA-5574-21, 23 pp., 1978 (AD-D113125)
Key Words: MERL 76, Udimet 700, turbine components, JT10D, tensile properties, creep rupture, microstructure, dimensional stability

113
75. **Ni-Based Superalloys by Powder Atomisation**
Metallurgia 45 (7), 340-41, 1978 (AD-D113 499)
Key Words: APK-1, grain size, atomization

76. **Forging and Powder Metallurgy Processing**
Fischmeister, H., Straube, H.
Applied Sciences Publishers Ltd., London, UK
Proc Conf High Temperature Alloys for Gas Turbines, 769-816, 1978 (AD-D116 363)
Key Words: Nimonic 90, Udimet 520, Udimet 700, Inconel 718, IN-738, IN-100,
 turbine components, microstructure, creep properties, tensile properties, fatigue, precipitation, thermomechanical treatment

77. **Hot Isostatic Processing**
Hanes, H. D., Seifert, D. A., Watts, C. R.
Metals Information Analysis Center, West Lafayette, IN
Rept No: MCIC-77-34, 101 pp., 1977 (AD-A049 227)
Key Words: T-111, Ti-6Al-4V, AA A356-T61, IN-738, RENE' 80, Udimet 700, IN-792, welding, tensile properties, pressure bonding

78. **Materials for Advanced Turbine Engines-MATE**
Bisset, J. W., Evans, D. J.
Pratt and Whitney Aircraft Group, East Hartford, CT
4th Quarterly Report
Contract No: NAS3-20072
15 pp., 1977 (AD-D108 981)
Key Words: Udimet 700, turbine components, tensile properties, fatigue, creep rupture, porosity, metallography

79. **Powder Metallurgy Techniques Applied to Superalloys**
Benjamin, J. S., Larson, J. M.
J Aircr 14 (7), 613-23, 1977 (AD-D109 882)
Key Words: Udimet 700, RENE' 95, MA956E, MA754 turbine components, creep rupture, hot corrosion, oxidation, grain size, thermomechanical treatment

80. **Materials for Advanced Turbine Engine-MATE**
Evans, D. J.
Quarterly Progress Report
Contract No: NAS3-20072
24 pp., 1977 (AD-D109 956)
Key Words: Udimet 700, turbine components, tensile properties, porosity, creep rupture, microstructure, grain size, cost

81. **Hot Isostatically Pressed Alloy APK1, a Nickel-Base Superalloy**
Williams, D. L.
Powder Metall 20 (2), 84-89, 1977 (AD-D110 311)
Key Words: APK-1, turbine components, tensile properties, creep rupture, fatigue, atomization

82. **Production of Components by Hot Isostatic Pressing of Nickel-Base Superalloy Powders**
Blackburn, M. J., Sprague, R. A.
Met Technol 4 (8), 388-95, 1977 (AD-D110 796)
Key Words: Incoloy 901, Waspaloy, Udimet 700, IN-100, turbine components, tensile properties, creep rupture, metallography
83. **Dispersion Hardened Superalloy**
Kramer, K.-H.
Powder Metall Int 9 (3), 105-12, 1977 (AD-D110 805)
Key Words: IN-738, Udimet 700, Nimonic 80A, dispersion hardening yttrium addition, mechanical alloying, grain size, grain structure, creep rupture, recrystallization

84. **MATE-Materials for Advanced Turbine Engines**
Evans, D. J.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Quarterly Technical Progress Narrative Report, June-Aug. 1977
Contract No: NAS3-20072
45 pp., 1977 (AD-D111 104)
Key Words: Udimet 700, turbine components, tensile properties, microstructure, fatigue, crack growth, creep rupture, gamma prime, dimensional stability, nondestructive testing

85. **Grain Size Control in PM Superalloys**
Dahlen, M.
NTIS, N79-18021, Springfield, VA
Final Report
Rept No: N79-18021, 31 pp., 1977 (AD-D115 659)
Key Words: Udimet 700, IN-738, X-40, grain size, tensile properties, creep properties, hardness, fatigue, recrystallization, annealing

86. **Experience With Hot Isostatic Pressing of Superalloy Powders and Castings**
Widmer, R.
Manufacturing Technology Division, AFML, Wright-Patterson AFB, OH
Proc Net Shape Metalworking Program Review, 348-68, 1976 (AD-D119 183L)
Key Words: Udimet 700, net shape forming, tensile properties, creep rupture, fatigue

87. **Materials for Advanced Turbine Engines (MATE)**
Bisset, J. W., Ruckle, D. L., Giddings, J. G.
United Technologies Corp., South Windsor Engineering Facility, South Windsor, CT
First Quarterly Report
Contract No: NAS3-20072
13 pp., 1976 (AD-D105 265)
Key Words: Udimet 700, turbine components, aircraft structures, cylinders, particle size

88. **MATE-Material for Advanced Turbine Engines**
Bisset, J. W., Grey, D. A.
Pratt and Whitney Aircraft Group, East Hartford, CT
Quarterly Progress Report
Contract No: NAS3-20072
31 pp., 1976 (AD-D107 147)
Key Words: Udimet 700, turbine components, porosity, tensile properties, creep rupture, microstructure

89. **Production Inspection of Near Net Turbine Disk Shapes**
Doherty, J. E.
Pratt and Whitney Aircraft Group, East Hartford, CT
2nd Interim Technical Report
Rept No: PWA-5378, 1976 (AD-D108 078)
Key Words: IN-100, Udimet 700, turbine components, fabrication, gatorizing, ultrasonic testing
90. **Production Inspection of Near Net Turbine Disk Shapes**
Doherty, J. E.
Pratt and Whitney Aircraft Group, East Hartford, CT
First Interim Technical Report
Rept No: FWA-5322, 15 pp., 1976 (AD-D108 079)
Key Words: IN-100, Udimet 700, turbine components, gatorizing, fabrication, ultrasonic testing

91. **MATE-Materials for Advanced Turbine Engines**
Bisset, J. W., Grey, D. A.
Quarterly Technical Progress Report
Contract No: NAS3-20072
37 pp., 1976 (AD-D109 495)
Key Words: Udimet 700, turbine components, tensile properties, creep rupture, fatigue

92. **Manufacture of Low Cost P/M Astroloy Turbine Disks**
Evans, D. J.
Pratt and Whitney Aircraft Group, East Hartford, CT
Proc 42nd Meeting of the AGARD Structures and Materials Panel
p.4A-1 to p.4A-6, 1976 (AD-D110 182)
Key Words: Udimet 700, turbine components, creep rupture, tensile properties, microstructure

93. **Investigations for Manufacturing Turbine Discs of Ni-Base Superalloys by Powder Metallurgy Methods**
Betz, W., Huff, H., Track, W.
Motoren und Turbinen Union GMBH, Munich, Germany
p.7-1 to p.7-19, 1976 (AD-D110 186)
Key Words: Udimet 700, turbine components, creep rupture, fatigue, tensile properties, microstructure

94. **Control of Grain Structure during Superalloy Powder Processing**
Wallace, W., Immarigeon, J-P. A., Trenouth, J. M., Powell, B. D.
National Aeronautical Establishment, Ottawa, Canada
p.9-1 to p.9-13, 1976 (AD-D110 187)
Key Words: Alloy 713LC, MAR-M200, IN-100, MAR-M246, Udimet 700 microstructure, tensile properties, creep rupture, gamma prime, thermomechanical treatment, temperature effect

95. **Processing: The Rediscovered Dimension in High Temperature Alloys**
Semchyshen, M.
Standardization News 4 (4), 9-19, 1976 (AD-D110 676)
Key Words: Inconel 718, RENE 80, AISI 4140, Udimet 700, TZM, IN-738, Waspaloy, remelting, alloying, creep rupture

96. **Evaluation of Powder Metallurgy Superalloy Disk Materials**
Evans, D. J.
United Technologies Corp., South Windsor Engineering Facility, South Windsor, CT
Contractor Report
Rept No: FWA-5263, 121 pp., 1975 (AD-D102 043)
Key Words: AF 2-1DA, MAR-M432, TRW NASA VI A, Udimet 700, turbine components, particle size, density, fatigue, crack growth, creep rupture, tensile properties, thermomechanical treatment

116
97. Low Cost P/M Superalloy Applications in Turbines
Reichman, S.H.
Key Words: RENE' 95, Udiment 700, PA 101, turbine components, powder metallurgy, performance

98. Microstructures and Mechanical Properties in a Turbine Disc Fabricated from Astroloy Powder
Wallace, W., Dunthorne, H. B., Sprague, R. A.
Can Metall Qtrly 13 (3), 517-527, 1974 (AD-D100 456)
Key Words: Udiment 700, turbine components, microstructure, grain boundaries, tensile properties, fatigue, crack growth, fracture toughness, creep rupture, machining, carbide precipitation

99. Powder Metallurgy of Superalloys
Gessinger, G. H., Bomford, M. J.
Int Metall Rev 19 (181), 51-76, 1974 (AD-D103 307)
Key Words: IN-100, Udiment 500, MAR-M246, Udiment 700, TD-nickel, chromium addition, porosity, cracking, creep rupture, grain growth, dispersion hardening, tensile properties, microstructure, hot corrosion, oxidation, thermomechanical treatment

100. Hot-Isostatic Processing Reaches Maturity
Hanes, H. D.
SAMPE Qtrly 5 (2), 1-9, 1974 (AD-D133 138)
Key Words: Ti-6Al-4V, IN-738, RENE' 77, IN-792, defects, diffusion bonding, elongation

101. Modern Methods of Powder Metallurgical Processing of Superalloys
Gessinger, G. H., Bomford, M. J.
Brown, Boveri & Co. Ltd., Baden, Switzerland
Proc Symp High Temperature Materials in Gas Turbines 35 pp., 1973 (AD-D102 997)
Key Words: Udiment 500, Hastelloy X, X-45, Udiment 710, IN-100, IN-853 Udiment 700, RENE' 95, Inconel 718, D-979, Nimonic 80A, TD-nickel, turbine components, creep rupture, tensile properties, fatigue, atomization, REP, thermomechanical treatment

102. Comparison of Astroloy Powder Consolidation Processes Forging and Testing of Astroloy Powder Billet
Morris, C. A., Smythe, J. W.
Wyman-Gordon Co., Worcester, MA
Proc 2nd Int Conf Superalloys-Processing, Champion, PA, Sept. 1972
26 pp., Y-1 to Y-26, 1972 (AD-D108 456)
Key Words: Udiment 700, tensile properties, fatigue, compaction, extrusion

103. Glass Bag Hot Isostatic Pressing of Superalloys
Havel, C. J.
Kelsey-Hayes Co., Utica, NY
Proc Joint ASM - Mellon Institute Symp Part II, 25 pp., 1971 (AD-179 475)
Key Words: Udiment 700, Inconel 718, IN-100, mechanical properties
Waspaloy

1. **Growth of Small Cracks in Aeroengine Disc Materials**
 Hudak, S. J., Jr., Davidson, D. L., Chan, K. S.
 Southwest Research Institute, San Antonio, TX
 Final Report
 Rept No: AFWAL-TR-88-4090, 249 pp., 1988 (AD-A199 842)
 Key Words: Udiment 700, Waspaloy, turbine components, fatigue, crack growth kinetics, tensile properties, temperature effect, microstructure, grain size, crack closure

2. **Mechanical Properties of Ni-base Superalloy Disks Produced by Powder Metallurgy**
 Iwai, K., Furuta, S., Yokomaku, T.
 Kobelco Technology Review 3, 6-10, 1988 (AD-D138 841)
 Key Words: AF-115, Waspaloy, Inconel 718, turbine components, tensile properties, fatigue, cracking

3. **Production, Compaction and Application of Metal Powders**
 Kawai, N., Honma, K., Takigawa, H., Iwai, K., Hirano, M.
 Met Powder Rept 43 (1), 21-5, 1988 (AD-D139 117)
 Key Words: 300M, Waspaloy, Inconel 718, AA 2218, AA 2219, AA 2618, AISI 52100, atomization, rapid solidification, tensile properties, net shape forming

4. **Application Fields of the HIP-Technology**
 Selistorfer, H.
 Powder Metall Int 16 (6), 268-71, 1984 (AD-D131 767)
 Key Words: Waspaloy, Udiment 700, Stellite 6, turbine components, net shape forming, mechanical properties, hardness

5. **The Cyclic Behavior of a Powder Ni-Base Superalloy**
 Hicks, M. A., Newley, R. A., Towill, B. P.
 NTIS, N84-22743, Springfield, VA
 Technical Report
 Rept No: PNR-90182, 20 pp., 1983 (AD-D131 936)
 Key Words: Waspaloy, Udiment 700, turbine components, fracture, fatigue, tensile properties

6. **Hot Isostatically Pressed Manufacture of High Strength MERL 76 Disk and Seal Shapes**
 Eng, R. D., Evans, D. J.
 Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
 Final Report
 Rept No: NASA-CR-165549, 138 pp., 1982 (AD-D125 120)
 Key Words: MERL 76, Waspaloy, turbine components, tensile properties, creep, fatigue, notch sensitivity

 Bressers, J., Roth, M., Tambuyser, P., Fenske, E.
 NTIS, PB83-206078, Springfield, VA
 Final Rept Round 2
 Rept No: EUR-8162-EN, 72 pp., 1982 (AD-D128 766)
 Key Words: Waspaloy, Udiment 700, turbine components, microstructure, fractography, oxidation, crack growth, fatigue, tensile properties.
8. Creep-Fatigue Environment Interactions in Superalloys
Pelloux, R. M.
Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, MA
Final Report
Rept No: AFOSR TR-81-0450, 35 pp., 1981 (AD-A098 790)
Key Words: Udiment 700, Waspaloy, IN-100, microstructure, creep, fatigue, embrittlement

9. HIPping the High-Performance Alloys
Moll, J. H.
Mech Eng 103 (11), 56-61, 1981 (AD-D122 795)
Key Words: RENE' 95, titanium alloys, tool steel, Udiment 700, IN-100, MERL 76, Waspaloy, turbine components, microstructure, tensile properties, stress intensity

10. All Systems Are Go for Powder Metallurgy
Irving, R. R.
Iron Age 223 (28), 41-5, 1980 (AD-D118 875)
Key Words: AISI 4600, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Waspaloy, IN-100, AISI 329, 12Cr steel, injection molding, cost, applications

11. Evaluation of the Cyclic Behavior of Aircraft Turbine Disk Alloys, Part 2
Cowles, B. A., Warren, J. K., Haake, F. K.
Pratt and Whitney Aircraft Group, West Palm Beach, FL
Final Report
Rept No: PWA-FR-13153, 191 pp., 1980 (AD-D119 421)
Key Words: MERL 76, RENE' 95, IN-100, Waspaloy, Udiment 700, NASA IIB-7 fatigue crack growth, creep-fatigue, tensile properties, microstructure

Eng, R. D., Evans, D. J.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Final Report
Rept No: N80-21329, 8 pp., 1979 (AD-D114 793)
Key Words: Udiment 700, Waspaloy, turbine components, tensile properties, net shape forming, nondestructive testing

13. Materials for Advanced Turbine Engine-MATE
Evans, D. J., Henricks, R. J., Friedrich, L. A.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Quarterly Technical Report Number Fifteen, 1 Sept-31 Nov 1979
Contract No: NAS3-20072
45 pp., 1979 (AD-D117 734)
Key Words: MERL 76, Waspaloy, turbine components, compressor components, creep properties, tensile properties, erosion resistance, coatings

14. Physical Metallurgy and Effects of Process Variables on the Microstructure of Wrought Superalloys
Muzyka, D. R.
ASTM, Philadelphia, PA
Proc Symp MiCon 78, 526-46, 1979 (AD-D126 409)
Key Words: A-286, Incoloy 901, Inconel 718, Waspaloy, RENE' 95, Pyromet 3TX-1, Pyromet 31, tensile properties, creep rupture, microstructure
15. **Manufacture of Low Carbon Astrology Turbine Disk Shapes by Hot Isostatic Pressing**
 Eng, R. D., Evans, D. J.
 Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
 Final Report Project 1
 Rept No: PWA-5574-12, 92 pp., 1978 (AD-D112 930)
 Key Words: Udimet 700, Waspaloy, turbine components, porosity, tensile properties, outgassing, nondestructive testing, creep properties, fatigue, crack growth

16. **Production of Components by Hot Isostatic Pressing of Nickel-Base Superalloy Powders**
 Blackburn, M. J., Sprague, R. A.
 Met Technol 4 (8), 388-95, 1977 (AD-D110 796)
 Key Words: Incoloy 901, Waspaloy, Udimet 700, IN-100, turbine components, tensile properties, creep rupture, metallography

17. **Review of Advanced Powder Metallurgical Fabrication Techniques in European NATO Countries**
 Sutcliffe, P. W.
 Advisory Group for Aerospace Research and Development, Paris, France
 Rept No: AGARD-R-641, 14 pp., 1976 (AD-A028 348)
 Key Words: IN-100, IN-738, Alloy 713, Inconel 718, RENE' 95, Ti-6Al-4V, Waspaloy, precipitation hardening

18. **Nickel Superalloy Powder Production and Fabrication to Turbine Discs**
 Symonds, C. H., Thompson, F. A.
 Wiggins (Henry) and Co. Ltd., Hereford, UK
 Proc 42nd Meeting of the AGARD Structures and Materials Panel
 p.3-1 to p.3-14, 1976 (AD-D110 181)
 Key Words: Waspaloy, Nimonic 901, Inconel 718, turbine components, tensile properties, creep rupture, fatigue, notch properties, fabrication

19. **Processing: The Rediscovered Dimension in High Temperature Alloys**
 Semchyshen, M.
 Standardization News 4 (4), 9-19, 1976 (AD-D110 676)
 Key Words: Inconel 718, RENE' 80, AISI 4140, Udimet 700, TZM, IN-738, Waspaloy, remelting, alloying, creep rupture

Miscellaneous Nickel Alloys

1. **Advanced Surface Coatings by Hipping**
 Blackford, J. R., Tidbury, L. E.
 TMS, Warrendale, PA
 Proc Conf Surface Modification Technologies IV 971-7, 1991
 Key Words: MAR-M002, turbine components, corrosion resistance, ion vapor deposition, diffusion, microscopy, oxidation, coatings

2. **The Production of Clad and Bimetal Components by the HIP-Assisted Diffusion bonding of Steels and Superalloys**
 Pierronnet, M., Raisson, G.
 MPR Publishing Services Ltd., Bellstone, Shrewsbury, UK
 Proc 4th Int Conf Isostatic Pressing
 Paper No. 30, 14 pp., 1991
 Key Words: bimetal components, welding, coating
3. Achievements of JISEDAl Project in the Fields of PM Nickel-Base Superalloys
 Tomizuka, I., Harada, H., Nakazawa, S., Koizumi, Y., Yamazaki, M.
 PM Into the 1990's 1, 337-45, 1990
 Key Words: TMP-1, TMP-9, TMP-2, RENE' 95, TMP-3, TMP-4, TMP-10, TMP-11
 TMP-15, superplastic forging, regression analysis, gamma prime
 phase, boron addition, carbon addition, heat treatment, aging,
 tensile properties

4. Effects of Processing History and Contents of B and C on Hot-Corrosion of a P/M
 Ni-Base Superalloy
 Tomizuka, I., Numata, H., Harada, H., Koizumi, Y., Miyazaki, A., Yamazaki, M.
 High Temp Sci 28, 21-33, 1990
 Key Words: Ni-8Co-8Cr-12W-5Al-4Ta, carbon addition, boron addition, hot
 corrosion, atomization, superplastic forming, heat treatment

5. Effects of Processing Factors on Mechanical Properties of 'Pancake' Prepared by Hot
 Isostatic Pressing and Superplastic Forging from Nickel-Base Powder
 Nakazawa, S., Tomizuka, I., Koizumi, Y., Yamazaki, M.
 Trans Natl Res Inst Metals 31 (2), 63-4, 1989 (AD-D142 705)
 Key Words: nickel alloys, attrition, tensile properties, creep,
 superplasticity

6. Effects of Conditions of High Isostatic Pressing and Extrusion on Superplasticity of
 a Nickel Base Superalloy
 Nakazawa, S., Tomizuka, I., Koizumi, Y., Harada, H., Yamazaki, M.
 Trans Natl Res Inst Metals 31 (2), 64-5, 1989 (AD-D142 706)
 Key Words: nickel alloys, tensile properties, extrusion, gatorizing,
 superplasticity

7. Extrusion of Bimetallic Materials through Powder Metallurgy Process
 Ohashi, Y., Nakanishi, M.
 Sumitomo Search (40), 9-14, 1989 (AD-D143 317)
 Key Words: Ni-30Fe, surface penetration, tensile properties

8. A Low Cobalt Powder Metallurgy Superalloy
 Sharma, K. K., Tewari, S. N.
 Key Words: ZhS6-K, microstructure, atomization, tensile properties

9. Effect of Consolidation Temperature and Boron Addition on Microstructure and
 Mechanical Properties of Hot Isostatically Pressed PM Superalloy Based on ZhS6-K
 Sharma, K. K., Tewari, S. N., Birla, N. C., Misra, P. S.
 Powder Metall 31 (1), 52-62, 1988 (AD-D138 806)
 Key Words: ZhS6-K, microstructure, tensile properties, creep rupture

10. Cyclic Crack-Propagation Characteristics of the Powder Metallurgical Nickel-Base
 Alloy Udimet 720 at Elevated Temperatures and Different Dwell Times
 Affeldt, E., Floege, H., Kraus, M., Track, W.
 NTIS, TIB/B89-80282, Springfield, VA
 Final Report
 Rept No: TIB/B89-80282, 29 pp., 1988 (AD-D141 902)
 Key Words: Udimet 720, turbine components, crack growth, fracture surface,
 fatigue
Marty, M., Walder, A., Diot, C.
MPR Publishing Services Ltd., Bellstone, Shrewsbury, UK
Proc Int Conf PM Aerospace Materials-87 10.1-10.20, 1988 (AD-D143 661)
Key Words: nickel alloys, chromium addition, solution hardening, powder metallurgy, creep rupture, tensile yield strength

12. Advanced Single Crystal for SSME Turbopumps
Fritzemeier, L. G.
Rockwell International, Rocketdyne Div, Canoga Park, CA
Contract No: NAS3-24646
6 pp., 1987 (AD-D138 335)
Key Words: PWA 1480, turbine components, tensile properties, creep rupture, fatigue

13. Advanced Single Crystal for SSME Turbopumps
Fritzemeier, L. G.
Rockwell International, Rocketdyne Div, Canoga Park, CA
Quarterly Technical Progress Rept 16 Dec 86-23 Mar 87
Contract No: NAS3-24646
5 pp., 1987 (AD-D139 585)
Key Words: PWA 1480, turbine components, tensile properties, creep rupture

Nakazawa, S., Tomizuka, I., Koizumi, Y., Yamazaki, M., Kocokam, T.
J Iron Steel Inst Japan 72 (11), 1701-7, 1986 (AD-D135 717)
Key Words: TMP-3, microstructure, tensile properties, fracture surface

15. Trends in Development of Oxide-Dispersion-Strengthened Superalloys
Kaida, Y.
Key Words: IN-738, MA6000, MA753, turbine components, creep rupture

16. Effects of Pre-Hipping and Other Extrusion Conditions in Gatorizing Process
Nakazawa, S., Tomizuka, I., Koizumi, Y., Harada, H., Yamazaki, M.
J Iron Steel Inst Japan 72(16), 2256-62, 1986 (AD-D141 534)
Key Words: TM-321, TMP-7, MAR-M247, tungsten addition, tantalum addition, gatorizing, extrusion, superplasticity

17. Hot Isostatic Press
Author Anon
Foreign Technology Division, Wright-Patterson AFB, OH
Rept No: FTD-ID(RS)T-1406-84, 65 pp., 1985 (AD-B093 100L)
Key Words: Ti-6Al-4V, B-1900, IN-738, RENE' 77, IN-792, RENE' 80, AA C355, AA A356, 142-T4

18. Prior Particle Boundary Precipitation in P/M Superalloys
Thumbaraj, R., Koul, A. K., Wallace, W., de Malherbe, M. C.
Metal Powder Industries Federation, Princeton, NJ
Key Words: Udiment 700, AF-115, IN-792, MAR-M432, MERN 76, PA 101, RENE' 41, tensile properties, creep rupture, fatigue

122
19. Effect of Environment on Creep Crack Growth in PM/HP RENE-95
Bain, K. R., Pelloux, R. M.
Metall Trans 15A (2), 381-8, 1984 (AD-D129 273)
Key Words: RENE’ 95, Inconel 718, IN-100, Inconel X-750, Udiment 700, creep, crack growth, fractography

20. Rapidly Solidified Alloys for Dies and Wear Parts
Raybould, D.
Carbide Tool J 16 (6), 26-30, 1984 (AD-D132 799)
Key Words: nickel alloys, rapid solidification, hardness, thermal properties, impact strength, wear resistance

21. The Initiation and Growth of Microcracks in Nickelbase Superalloys
Newman, P. T., Beevers, C. J.
Engineering Materials Advisory Services Ltd., West Midlands, UK
Proc 2nd Int Conf Fatigue and Fatigue Thresholds 2, 785-96, 1984 (AD-D138 497)
Key Words: Nimonic 901, Udiment 700, APK-1, porosity, fatigue, cracking, bend test

22. The Effects of Small Deformation on Creep and Stress Rupture Behavior of ODS Superalloys
Nardone, V. C., Matejczyk, D. E., Tien, J. K.
Henry Krumb School of Mines, NY
Final Technical Report
Rept No: AFOSR-TR-83-0095, 58 pp., 1983 (AD-A125 640)
Key Words: Udiment 700, MA754, MA6000, oxide dispersoids, notch toughness, crack propagation, fatigue, creep deformation

23. The New Frontiers of Powder Metals
Vaccari, J. A.
Amer Mach 127 (5), 121-36, 1983 (AD-D127 193)
Key Words: AA 7090, AA 7091, IN9052, Ti-6Al-4V, Monel 400, Inconel 600, RENE’ 95, Cb291, Udiment 700, IN-100, AF-115, Inconel 625, net shape forming, injection molding, applications, forging

24. Temperature Effects on Fatigue Thresholds and Structure Sensitive Crack Growth in a Nickel-Base Superalloy
Hicks, M. A., King, J. E.
Int J Fatigue 5 (2), 67-74, 1983 (AD-D127 327)
Key Words: Ni-15Cr-17Co-5Mo-4Al-3Ti, fatigue, crack growth, grain size, fracture surface, surface roughness, stress intensity

25. Containerless HIPing of PM Parts: Technology Economics and Equipment Productivity
Nyce, A. C.
Met Powder Rept 38 (7), 387-92, 1983 (AD-D128 150)
Key Words: AISI 4650, M-2, AISI 316L, Ti-6Al-4V, Monel 400, Stellite 6, Stellite 21, applications, cost, density, tensile properties

26. PM Dual Property Wheels for Small Engines
Moll, J. H., Schwertz, H. H., Chandhok, V. K.
Met Powder Rept 38 (10), 547-552, 1983 (AD-D131 002)
Key Words: C-103, PA 101, MAR-M247, RENE’ 95, turbine components, joining, unidirectional solidification
27. Application of Diffusion Welding of Nickel Based Metals and Application of Electron Beam Welding of Hot Isostatically Pressed Nickel Based Powdered Metals
 Schreck, K., Klatt, H.
 NTIS, N85-17375, Springfield, VA
 Final Report
 Rept No: N85-17375, 1983 (AD-D132 621)
 Key Words: MAR-M247, turbine components, microstructure, tensile properties, electron beam welding

28. Hot Isostatic Processing
 Clauer, A. H., Meiners, K. E., Boyer, C. B.
 Metals Information Analysis Center, West Lafayette, IN
 State-of-the-Art
 Rept No: MCIC-82-46, 228 pp., 1982 (AD-A132 232)
 Key Words: Ti-6Al-4V, IN-738, RENE' 95, Udimet 700, IN-792, Inconel 718, M-1, M-2, B-1900, MAR-M250, welding, fatigue, tensile properties, heat treatment

29. Fatigue Growth of Surface Cracks in Nickel-Based Superalloys
 Brown, C. W., Hicks, M. A.
 Int J Fatigue 4 (2), 73-81, 1982 (AD-D124 743)
 Key Words: Inconel X-750, Inconel 718, turbine components, microstructure, grain size, crack growth, fatigue, tensile properties

30. Diffusion Processes in the Sintering of Nickel Alloy Powders with Spherical Particles under Pressure
 Shinyaev, A. Ya., Mukhametkulov, M. A., Illarionov, E. I.
 Sov Powder Metall Met Ceram 21 (5), 379-81, 1982 (AD-D126 105)
 Key Words: EP 741, particle size, diffusion, sintering, electron microprobe analysis

31. Development of Hybrid Gas Turbine Bucket Technology
 Peterson, L. G., Hrencecin, D. E., Schilling, W. F., Ostergren, W. J.
 General Electric Co., Gas Turbine Division, Schenectady, NY
 Technical Paper
 Rept No: ASME-82-GT-94, 10 pp., 1982 (AD-D127 264)
 Key Words: RENE' 80, RENE' 150, Udimet 700, MAR-M200, IN-939, RENE' 125, RENE' 120, GTD-111, IN-738, turbine components, tensile properties, unidirectional solidification, dissimilar joining, diffusion bonding, creep rupture

32. Cost 50: Materials for Gas Turbines
 Bunk, W., Hansen, J.
 NTIS, N82-15071, Springfield, VA
 Progress Report
 Rept No: N82-15071, 126 pp., 1981 (AD-D125 116)
 Key Words: IN-738LC, IN-939, IN-597, IN-100, Alloy 713LC, Nimonic 105, Udimet 520, Udimet 700, turbine components, welding, cyclic fatigue, coatings, corrosion, creep

33. Plastic Flow and Fracture Processes in Powder Metallurgy Nickel-Based Superalloys
 Law, C. C., Blackburn, M. J.
 Pratt and Whitney Aircraft Group, Government Products Div, West Palm Beach, FL
 Final Report
 Rept No: PWA-FR-13317, 134 pp., 1980 (AD-A086 697)
 Key Words: A.F.115, MERL 76, MAR-M432, microstructure, tensile properties, notch properties, fatigue, creep, plastic deformation
34. Rapid Solidification Processing: An Outlook
Cohen, M., Kear, B. H., Mehrabian, R.
Massachusetts Institute of Technology, Cambridge, MA
Technical Report Number Seven
Contract No. DARPA Order-3751
25 pp., 1980 (AD-A088 473)
Key Words: aluminum alloys, nickel alloys, microstructure, hot extrusion, rapid solidification

35. Creep Rupture in Powder Metallurgical Nickel-Base Superalloys at Intermediate Temperatures
Law, C. C., Blackburn, M. J.
Metall Trans 11A (3), 495-507, 1980 (AD-D117 895)
Key Words: AF-115, MAR-M432, IN-100, MERL 76, creep properties, tensile properties, lattice parameters, grain boundaries, heat treatment

36. Evaluation of the Cyclic Behavior of Aircraft Turbine Disk Alloys, Part 2
Pratt and Whitney Aircraft Group, West Palm Beach, FL
Final Report
Rept No: PWA-FR-13153, 191 pp., 1980 (AD-D119 421)
Key Words: MERL 76, RENE’ 95, IN-100, Waspaloy, Udiment 700, NASA IIB-7 fatigue crack growth, creep-fatigue, tensile properties, microstructure

37. Creep Deformation and Rupture of Oxide Dispersion Strengthened Inconel MA754 and MA6000E
Howson, T. E., Cosandey, F., Tien, J. K.
ASM International, Metals Park, OH
Proc 4th Int Symp Superalloys, Superalloys 1980, 563-73, 1980 (AD-D120 685)
Key Words: MA754, MA6000E, deformation, creep rupture, notch sensitivity, dispersion hardening

38. Exploratory Development of Die Materials for Isothermal Forging of Titanium Alloys
Kortovich, C. S., Marder, J. M.
TRW Inc., Materials Technology, Cleveland, OH
Final Technical Report
Contract No.: F33615-76-C-5105
188 pp., 1979 (AD-A078 951)
Key Words: TRW NASA VI A, IN-100, IN-792, TAZ-8A, creep rupture, tensile properties, thermal fatigue

39. Physical Metallurgy and Effects of Process Variables on the Microstructure of Wrought Superalloys
Muzyka, D. R.
ASTM, Philadelphia, PA
Proc Symp MiCon 78, 526-46, 1979 (AD-D126 409)
Key Words: A-286, Incoloy 901, Inconel 718, Waspaloy, RENE’ 95, Pyromet CTX-1, Pyromet 31, tensile properties, creep rupture, microstructure

40. Hot Consolidation of Rapidly Solidified Powders: Sintering, Hot Pressing (HP) and Hot Isostatic Pressing (HIP) in Relation to the Superalloy
Coble, R. L.
Powder Metall Int 10 (3), 128-30, 1978 (AD-D113 756)
Key Words: nickel alloys, creep, superplasticity
41. **Powder Forging**
Huppmann, W. J., Hirschvogel, M.
Key Words: titanium alloys, aluminum alloys, nickel alloys, beryllium, porosity, plasticity, impact strength, tensile properties, fatigue, sintering, cost, preheating

42. **Forging and Powder Metallurgy Processing**
Fischmeister, H., Straube, H.
Applied Sciences Publishers Ltd., London, UK
Proc Conf High Temperature Alloys for Gas Turbines, 769-816, 1978 (AD-D116 363)
Key Words: Nimonic 90, Udimet 520, Udimet 700, Inconel 718, IN-738, IN-100, turbine components, microstructure, creep properties, tensile properties, fatigue, precipitation, thermomechanical treatment

43. **Application of Rapidly Solidified Superalloys**
Cox, A. R.
Pratt and Whitney Aircraft Group, West Palm Beach, FL
Quarterly Report
Rept No: FR-9011, 22 pp., 1977 (AD-D108 248)
Key Words: nickel alloys, cobalt addition, chromium addition, aluminum addition, titanium addition, molybdenum addition, tantalum addition, tungsten addition, niobium addition, hafnium addition, turbine components, airfoils, grain growth, solidification, recrystallization, heat treatment

44. **Powder Metallurgy Techniques Applied to Superalloys**
Benjamin, J. S., Larson, J. M.
J Aircr 14 (7), 613-23, 1977 (AD-D109 882)
Key Words: Udimet 700, RENE’ 95, MA956E, MA754 turbine components, creep rupture, hot corrosion, oxidation, grain size, thermomechanical treatment

45. **Atomised Powder-The Key to New Alloys**
Wallis, P. B.
Powder Metall Int 8 (4), 167-9, 1976 (AD-D108 681)
Key Words: Nimonic 75, Nimonic 80A, Nimonic 81, Nimonic 90, Nimonic 105, Nimonic 115, Incoloy 901, Nimonic PE11, Nimonic PE16, Nimonic 263, Inconel 718, Inconel X-750, Nimocast 80, Nimocast 242, Nimocast 263, Alloy 713C, Alloy 713LC, Nimocast PD21, Nimocast PE10, Nimocast PK24, IN-738, turbine components

46. **Nickel Superalloy Powder Production and Fabrication to Turbine Discs**
Symonds, C. H., Thompson, F. A.
Wiggins (Henry) and Co. Ltd., Hereford, UK
Proc 42nd Meeting of the AGARD Structures and Materials Panel
p.3-1 to p.3-14, 1976 (AD-D110 181)
Key Words: Waspaloy, Nimonic 901, Inconel 718, turbine components, tensile properties, creep rupture, fatigue, notch properties, fabrication

47. **Control of Grain Structure during Superalloy Powder Processing**
Wallace, W., Immarigeon, J-P. A., Trenouth, J. M., Powell, B. D.
National Aeronautical Establishment, Ottawa, Canada
p.9-1 to p.9-13, 1976 (AD-D110 187)
Key Words: Alloy 713LC, MAR-M200, IN-100, MAR-M246, Udimet 700 microstructure, tensile properties, creep rupture, gamma prime, thermomechanical treatment, temperature effect
48. Evaluation of Powder Metallurgy Superalloy Disk Materials
Evans, D. J.
United Technologies Corp., South Windsor Engineering Facility, South Windsor, CT
Contractor Report
Rept No: PWA-5263, 121 pp., 1975 (AD-D102 043)
Key Words: AF 2-IDA, MAR-M432, TRW NASA VI A, Udimet 700, turbine components, particle size, density, fatigue, crack growth, creep rupture, tensile properties, thermomechanical treatment

49. Production of Superalloys from Powders
Thompson, F. A., Williams, D. L.
AGARD Structures and Materials Panel 15 pp., 1974 (AD-D102 696)
Key Words: IN-100, Nimonic 105, Nimonic 90, Nimonic 80A, TD-nickel, turbine components, creep rupture, dispersion hardening, cost

50. Powder Metallurgy of Superalloys
Gessinger, G. H., Bomford, M. J.
Int Metall Rev 19 (181), 51-76, 1974 (AD-D103 307)
Key Words: IN-100, Udimet 500, MAR-M246, Udimet 700, TD-nickel, chromium addition, porosity, cracking, creep rupture, grain growth, dispersion hardening, tensile properties, microstructure, hot corrosion, oxidation, thermomechanical treatment

51. Modern Methods of Powder Metallurgical Processing of Superalloys
Gessinger, G. H., Bomford, M. J.
Brown, Boveri & Co. Ltd., Baden, Switzerland
Proc Symp High Temperature Materials in Gas Turbines 35 pp., 1973 (AD-D102 997)
Key Words: Udimet 500, Hastelloy X, X-45, Udimet 710, IN-100, IN-853 Udimet 700, RENE' 95, Inconel 718, D-979, Nimonic 80A, TD-nickel, turbine components, creep rupture, tensile properties, fatigue, atomization, REP, thermomechanical treatment

52. Coarse Powder Techniques
Widmer, R.
Industrial Materials Technology Inc., Woburn, MA
Proc 18th Sagamore Army Materials Research Conf, Sagamore Conference Center, Raquette Lake, NY, Aug-Sept 71
16 pp., 1971 (AD-181 534)
Key Words: IN-100, Maraging 300, X-45, MAR-M509, Hastelloy X, Udimet 710, Alloy 713, Ti-6Al-6V-2Sn, microstructure, creep rupture, tensile properties

53. AF95 Powder Manufacturing Techniques
Barker, J. F., Calhoun, C. D.
General Electric Co., Aircraft Engine Group, Evendale, OH
Final Technical Report, Jun 69-Nov 70
Rept No : AFML-TR-70-314, 96 pp., 1970 (AD-881 272)
Key Words: AF-95, VHP, microstructure, creep properties, fracture toughness, heat treatment

54. AF95 Powder Manufacturing Techniques
Barker, J. F., Calhoun, C. D.
General Electric Co., Aircraft Engine Group, Evendale, OH
Interim Engineering Progress Report Number 2, Oct 69-Feb 70
Rept No : RTD-IR-274-9(II), 28 pp., 1970 (AD-865 682L)
Key Words: AF-95, turbine components, oxygen addition, carbon addition, nitrogen addition, atomization
TITANIUM AND TITANIUM ALLOYS

Titanium

1. Advanced Powder Metallurgy Techniques for Both Economic Advantage and for Property Enhancement of Titanium Alloys and Titanium Matrix Composites
Abkowitz, S. M., Abkowitz, S.
Proc Int Conf Titanium 1990, Products and Applications, 2, 1 p., 1990 (AD-D144 305)

 Key Words: titanium, hardness, cost

2. Densification of Titanium Powder during Hot Isostatic Pressing
Lograsso, B. K., Koss, D. A.
Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA
Technical Report Number Four
Contract No: N00014-084-K-0381, 25 pp., 1987 (AD-A176 617)

 Key Words: titanium, plasma deposition, REP, porosity, density, microstructure

3. Advanced Processing and Properties of High Performance Alloys
Koss, D. A.
Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA
Technical Report Number Six
Contract No: N00014-86-K-0381
41 pp., 1987 (AD-A183 566)

 Key Words: titanium, Ti-10Al, AA 7075, AA 1100, erbium addition, porosity, voids, rapid solidification, fatigue, deformation, fracture mechanics

4. Effects of Purity of Titanium Powder and Porosity on Static Tensile Properties of Sintered and Titanium Specimens
Majima, K., Hirata, T., Shouji, K.
J Jpn Inst Met 51 (12), 1194-200, 1987 (AD-D138 267)

 Key Words: titanium, microstructure, compaction, tensile properties

5. Isostatic Pressing of Complex Shapes from Titanium and Titanium Alloys
Abrowitz, S.
Metallurgical Society of AIME, Warrendale, PA
Proc 4th Int Conf Titanium, Titanium'80-Science and Technology
3, 2321-30, 1980 (AD-D121 252)

 Key Words: Ti-6Al-4V, titanium, mechanical properties

6. Advance Titanium Metallic Materials and Processes for Application to Naval Aircraft Structures
Highburger, W.T., Chanani, G.R., Scarich, G.V.
SAMPE, Azusa, CA

 Key Words: titanium, Corota-5, F-14 aircraft, F-18 aircraft, crack propagation, near net shape, fatigue
7. Lower Cost Titanium Parts by Powder Metallurgy
Dreger, D. R.
Mach Des 50 (17), 20-2, 1978 (AD-D113 100)
Key Words: Ti-6Al-4V, titanium, spacecraft, applications, tensile properties, density

8. Progress in Powder Metallurgy
Dreger, D. R.
Mach Des 50 (25), 116-21, 1978 (AD-D114 032)
Key Words: titanium, aluminum, density, fabrication

9. A Retrospective View of Metallurgy During the 25 Years of the Gillett Lectures
Jaffee, R. I.
Key Words: AISI 316, Ti-6Al-4V, titanium, zirconium, hafnium, embrittlement, fracture mechanics

Arunachalam, V. S., Plenum Press, New York, NY
Proc 3rd Int Conf Titanium 3, 2305-14, 1976 (AD-D127 690)
Key Words: titanium, tensile properties, fracture toughness

Corona-5

1. Fatigue property Enhancement of Alpha-Beta Titanium Alloys by Blended Elemental P/M Approach
Hagiwara, M., Kaieda, Y., Kawabe, Y., Miura, S.
Iron Steel Inst Jpn Inter 31 (8), 922-30, 1991
Key Words: IMI 829, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-4V, Corona-5 Ti-5Al-2Cr-1Fe, Ti-5Al-2.5Fe, microstructure, fatigue life crack initiation, tensile properties

2. Advanced Titanium Metallic Materials and Processes for Application to Naval Aircraft Structures
Highberger, W. T., Chanani, G. R.
SAMPE Qtrly 12 (3), 32-9, 1981 (AD-D121 155)
Key Words: Ti-6Al-4V, Corona-5, aircraft structures, F-14 aircraft, fatigue, crack growth, tensile properties, superplastic forming, cost

3. Relationship of Mechanical Properties to Microstructure and Fractographic Features in a Welded High-Toughness Titanium Alloy
Baeslack III, W. A., Mullins, F. D.
ASM International, Metals Park, OH
Key Words: Corona-5, microstructure, electron beam welding, welds, fracture toughness, fatigue, fractography, tensile properties, intergranular fracture

4. Engineering Data for New Aerospace Materials
Deel, Omar
 Battelle Memorial Institute, Columbus, OH
Rept No: AFWAL-TR-80-4103, 154 pp., 1980 (AD-A098 520)
Key Words: AA 7010-T73651, Corona-5, AA A357-T6, IN-792, fatigue, bearing strength, tensile properties, thermal expansion
5. **Advance Titanium Metallic Materials and Processes for Application to Naval Aircraft Structures**
Hightberger, W.T., Chanani, G.R., Scarich, G.V., SAMPE, Azusa, CA
Key Words: titanium, Corona-5, F-14 aircraft, F-18 aircraft, crack propagation, near net shape, fatigue

Ti-5Al-2.5Sn

1. **On the Effects of NaCl on Porosity in Elemental-Blend Powder-Metallurgy Ti-5Al-2.5Sn**
Jackson, A. G., Moteff, J., Froes, F. H.
Metall Trans 15A (1), 248-9, 1984 (AD-D129 167)
Key Words: Ti-5Al-2.5Sn, porosity, microstructure

2. **Transient Liquid Phase Sintering of P/M Titanium**
Patterson, B. R., Bates, C. E.
Southern Research Institute, Birmingham, AL
Rept No : SORI-EAS-82-C-5021, 74 pp., 1983 (AD-D124 462)
Key Words: Ti-5Al-2.5Sn, Ti-6Al-6V-2Sn, density, sintering, net shape forming.

3. **Dispersion Hardening of the Ti-5Al-2.5Sn Alloy Using a Powder Metallurgy Approach**
Jackson, A. G., Moteff, J., Froes, F. H.
The Metallurgical Society of AIME, Warrendale, PA
Proc 4th Int Conf Titanium, Titanium '80-Science and Technology 4, 2461-70, 1980 (AD-D121 369)
Key Words: Ti-5Al-2.5Sn, microstructure, porosity, dispersion hardening, aging

4. **Advanced Titanium Alloy Development Via Powder Metallurgy**
Jackson, A. G., Moteff, J., Froes, F. H.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Powder Metallurgy of Titanium Alloys, 229-41, 1980 (AD-D127 439)
Key Words: Ti-6Al-4V, Ti-5Al-2.5Sn, silicon and germanium, porosity, dispersions

Ti-6Al-2Sn-4Zr-2Mo

1. **Fatigue property Enhancement of Alpha-Beta Titanium Alloys by Blended Elemental P/M Approach**
Hagiwara, M., Kaieda, Y., Kawabe, Y., Miura, S.
Iron Steel Inst Jpn Inter 31 (8), 922-30, 1991
Key Words: IMI 829, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-4V, Corona-5 Ti-5Al-2Cr-1Fe, Ti-5Al-2.5Fe, microstructure, fatigue life crack initiation, tensile properties

2. **P/M Processing of Titanium Aluminides**
Moll, John H., Yolton, C. F., McTiernan, B. J.
Key Words: Ti3Al, Ti-25Al-10Nb-3V-1Mo, Ti-6Al-2Sn-4Zr-2Mo, Ti-48 at pct Al-1 at pct V, microstructure, particle size, tensile properties, stress rupture, plasma spraying
3. **P/M Titanium Technology for High Performance Uses**
Moll, J. H., Yotlon, C. F., Chandholk, V. K.
Ind Heat 55 (5), 24-30, 1988 (AD-D138 992)
Key Words: Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo, near net forming, REP, atomization, tensile properties, creep rupture

4. **High Temperature Rapidly Solidified Titanium Alloy Evaluation**
Anderson, R. E.
Pratt and Whitney, Engineering Div, West Palm Beach, FL
Interim Technical Report Feb-Apr 87
Rept No: P&W/ED/FR-19120-7, 19 pp., 1987 (AD-D138 557L)
Key Words: Ti-6Al-2Sn-4Zr-6Mo, Ti-8Al-1Mo-1V, Ti-6Al-2Sn-4Zr-2Mo, microscopy, porosity, tensile properties

5. **Consolidation of Prealloyed Ti-6Al-2Sn-4Zr-2Mo Spherical Powders**
Birla, N. C., Krishnaswamy, W.
Powder Metall 24 (4), 203-9, 1981 (AD-D122 929)
Key Words: Ti-6Al-2Sn-4Zr-2Mo, microstructure, tensile properties, consolidation, explosive compaction

6. **Microstructure and High Temperature Properties**
Roberson, J. A., Adair, A. M., Lipsitt, H. A.
Aerospace Research Labs, Wright-Patterson AFB, OH
Rept No: ARL-75-0135, 6 pp., 1975 (AD-A014 241)
Key Words: Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-6V-2Sn, microstructure, hot working

Ti-6Al-2Sn-4Zr-6Mo

1. **Fabrication and Evaluation of Production-Size Quantities of Rapidly Solidified Ti-6Al-2Sn-4Zr-6Mo-.75Er**
Martin, R. L., Tamacki, G.
TMS, Warrendale, PA
Key Words: Ti-6Al-2Sn-4Zr-6Mo, erbium addition, turbine components, airframes, rapid solidification, gas atomization, production, extrusion, forging, tensile properties, fracture toughness, creep

2. **High Temperature Rapidly Solidified Titanium Alloy Evaluation**
Anderson, R. E., Martin, R. L.
Pratt and Whitney, Engineering Div, West Palm Beach, FL
Rept No: P&W/ED/FR-19120-9, 19 pp., 1987 (AD-D138 336L)
Key Words: Ti-6Al-2Sn-4Zr-6Mo, microstructure, alloy development, machining, forging, rapid solidification

3. **High Temperature Rapidly Solidified Titanium Alloy Evaluation**
Anderson, R. E.
Pratt and Whitney, Engineering Div, West Palm Beach, FL
Interim Technical Report Feb-Apr 87
Rept No: P&W/ED/FR-19120-7, 19 pp., 1987 (AD-D138 557L)
Key Words: Ti-6Al-2Sn-4Zr-6Mo, Ti-8Al-1Mo-1V, Ti-6Al-2Sn-4Zr-2Mo, microscopy, porosity, tensile properties
4. All Systems Are Go for Powder Metallurgy
Irving, R. R.
Iron Age 223 (28), 41-5, 1980 (AD-D118 875)
Key Words: AISI 4600, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Waspaloy, IN-100, AISI 329, 12Cr steel, injection molding, cost, applications

5. On the Heat Treat Response of Ti-6Al-2Sn-4Zr-6Mo Powder Forgings
Chen, C. C.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Powder Metallurgy of Titanium Alloys, 139-49, 1980 (AD-D127 433)
Key Words: Ti-6Al-25n-4Zr-6Mo, microstructure, tensile properties, fracture toughness

6. Hot Isostatic Pressing of Large Titanium Shapes
Petersen, V. C., Chandhok, V. K., Kelto, C. A.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Powder Metallurgy of Titanium Alloys, 243-54, 1980 (AD-D127 440)
Key Words: Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, aircraft structures, engine components, tensile properties, net shape forming

7. Manufacturing Methods for Production of Titanium Alloy Compressor Disks from Powder Billet
Pratt and Whitney Aircraft Group, Government Products Div, West Palm Beach, FL
Final Report
Rept No: FR-7778, 167 pp., 1977 (AD-A062 686)
Key Words: Ti-6Al-25n-4Zr-6Mo, microstructure, tensile properties, fatigue, creep, gatorizing

8. Manufacturing Methods for Production of Titanium Alloy Compressor Disks from Powder Billet
Allen, M. M.
Pratt and Whitney Aircraft Group, West Palm Beach, FL
Interim Engineering Progress Report Number Seven, Jan 74-Mar 76
Rept No: AFML-IR-174-2(VII), 63 pp., 1976 (AD-D108 1151)
Key Words: Ti-6Al-25n-4Zr-6Mo, turbine components, microstructure, forging, fracture, gatorizing, tensile properties, creep rupture

Ti-6Al-4V

1. Fatigue property Enhancement of Alpha-Beta Titanium Alloys by Blended Elemental P/M Approach
Hagiwara, M., Kaieda, Y., Kawabe, Y., Miura, S.
Iron Steel Inst Jpn Inter 31 (8), 922-30, 1991
Key Words: IMI 829, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-4V, Corona-5 Ti-5Al-2Cr-1Fe, Ti-5Al-2.5Fe, microstructure, fatigue life crack initiation, tensile properties

2. Powder Metallurgy of Titanium Alloys
Froes, F. H., Eylon, D.
Int Mater Rev 35 (3), 162-82, 1990 (AD-D144 188)
Key Words: Ti-6Al-4V, Ti-10V-2Fe-3Al, microstructure, crack growth, fatigue, fracture toughness, tensile properties, porosity, near net shape
3. **Effect of Degassing Treatment on Microstructure and Mechanical Properties of P/M Ti-6Al-4V**
Lee, Y.T., Schurmann, H., Grundhoff, K.J., Peters, M.
Powder Metall Int 22 (1), 11-16, 1990 (AD-D143 350)
Key Words: Ti-6Al-4V, microstructure, tensile properties, fatigue, fracture toughness

4. **Manufacture of a Novel Porous Material**
Kearns, M. W., Blenkinsop, P. A., Barber, A. C., Farthing, T. W.
Int J Powder Metall 24 (1), 59-64, 1988 (AD-D138 482)
Key Words: Ti-6Al-4V, consolidation, damping, hot working

5. **P/M Titanium Technology for High Performance Uses**
Moll, J. H., Yolton, C. F., Chandhok, V. K.
Ind Heat 55 (5), 24-30, 1988 (AD-D138 992)
Key Words: Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo, near net forming, REP, atomization, tensile properties, creep rupture

6. **Production of Powder Ti-Alloy Rings by Means of Compaction and Radial-Rolling**
Szczepanik, S., Kopp, R., Wiegels, H.
Powder Metall Int 20 (6), 25-7, 1988 (AD-D140 389)
Key Words: Ti-6Al-4V, microstructure, deformation, fracture surface, rolling, forging

7. **Effect of High Pressure Compaction on Phase Morphology of Alpha/Beta Titanium Alloys**
Locci, I. E., Welsch, G., Eylon, D., Froes, F. H.
Met Powder Rept 43 (10), 675-7, 1988 (AD-D140 635)
Key Words: Ti-6Al-4V, microstructure, fracture surface, REP, plastic deformation

8. **Production of Titanium Alloy Powders by REP and PREP**
Roberts, P.R., Airey, J.J.
MPR Publishing Services Ltd., Bellstone, Shrewsbury, UK
Proc Int Conf PM Aerospace Materials-87, 17.1-17.15, 1988 (AD-D143 665)
Key Words: Ti-6Al-4V, ingot metallurgy, near net shape, REP, plasma deposition, fatigue stress

9. **Effect of Thermomechanical Treatment on the Fatigue Behavior of PM Ti-6Al-4V Containing Artificial Contaminants**
Wirth, G., Grundhoff, K.J., Eylon, D., Froes, F.H.
MPR Publishing Services Ltd., Bellstone, Shrewsbury, UK
Key Words: Ti-6Al-4V, REP, fatigue stress, fracture

10. **Deformation Behavior of Thermomechanically Treated PREP Ti-6Al-4V Alloy**
Lee, Y.T., Grundhoff, K. J., Wirth, G.
Z Metallk 78 (1), 49-57, 1987 (AD-D136 922)
Key Words: Ti-6Al-4V, microstructure, fatigue crack, PREP, aging, tensile properties

11. **Characteristic Properties of Hot Isostatically Pressed Ti-6Al-4V Alloys**
Majima, K., Hirata, T., Yamamoto, M., Shoji, K.
Key Words: Ti-6Al-4V, microstructure, fractography, REP, tensile properties
12. Evaluation and Application of Prealloyed Titanium P/M Parts for Airframe Structures
Sheinker, A. A., Chanani, G. R., Bohien, J. W.
Int J Powder Metall 23 (3), 171-6, 1987 (AD-D140 441)
Key Words: Ti-6Al-4V, F-18A aircraft, corrosion, REP, tensile properties, shear, fracture toughness

13. Advanced Processing and Properties of High-Performance Alloys
Koss, D. A.
Department of Metallurgical Engineering, Michigan Tech University, Houghton
Technical Report Number Four
Contract No: N00014-85-K-0427
19 pp., 1986 (AD-A167 404)
Key Words: Ti-6Al-4V, AA 7075-T6, AA 1100, AISI 316, fabrication, rapid solidification

14. Correlations Between Post-HIP Treatment, Resulting Microstructure, and Fatigue Behavior of Prealloyed Ti-6Al-4V Powder Compacts
Wirth, G., Grundhoff, K. J., Smarsly, W.
SAMPE Qtrly 17 (2), 34-9, 1986 (AD-D134 466)
Key Words: Ti-6Al-4V, microstructure, TEM, tensile properties, fatigue stress

15. Influence of Foreign Particles on Fatigue Behavior of Ti-6Al-4V Prealloyed Powder Compacts
Schwenker, S. W., Eylon, D., Froes, F. H.
Metall Trans 17 A (2), 271-80, 1986 (AD-D134 809)
Key Words: Ti-6Al-4V, alumina addition, silica addition, crack propagation, tensile properties, fatigue stress

16. Improvement of Mechanical Properties of Blended Elemental Ti-6Al-4V Alloy Through Microstructural Modification
Haziwara, M., Kaieda, Y., Kawabe, Y.
J Iron Steel Inst Japan 72 (6), 685-92, 1986 (AD-D135 327)
Key Words: Ti-6Al-4V, tensile properties, fracture toughness, fatigue stress

17. Microstructure/Property Relationships in Prealloyed Ti-6Al-4V
Friedman, G. I., Moxson, V. S.
SAMPE J 22 (1), 36-44, 1986 (AD-D136 434)
Key Words: Ti-6Al-4V, turbine components, microstructure, aging, beta processing, tensile properties, fatigue crack

18. Superior Fatigue Properties for Blended Elemental P/M Ti-6Al-4V
Abkowitz, S., Rowell, D.
J Met 38 (8), 36-9, 1986 (AD-D136 436)
Key Words: Ti-6Al-4V, turbine components, microstructure, net shape forming, tensile properties, fatigue

19. HIP Compaction of Titanium Alloy Powders at High Pressure and Low Temperature (HPLT)
Eylon, D., Froes, F. H.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Titanium, Rapid Solidification Technology, 273-89, 1986 (AD-)
Key Words: Ti-6Al-4V, Ti-10V-2Fe-3Al, rapid solidification, REP, tensile properties, fatigue
20. **Hot Isostatic Press**
Author Anon
Foreign Technology Division, Wright-Patterson AFB, OH
Rept No.: FTD-IDRS/T-1406-84, 65 pp., 1985 (AD-B1093 100L)
Key Words: Ti-6Al-4V, B-1900, IN-738, RE/NI: 77, IN-792, RE/NI: 80, AA C355, AA A356, 142-T4

21. **Coatings and PM Research at CEN Grenoble**
Williams, B.
Met Powder Rept 40 (7/8), 420-3, 1985 (AD-D132 809)
Key Words: Ti-6Al-4V, TiN coatings, sputtering

22. **Thermally Induced Porosity in Ti-6Al-4V Prealloyed Powder Compacts**
Eylon, D., Schwenker, S. W., Froes, F. H.
Metall Trans 16A (8), 1526-31, 1985 (AD-D134 121)
Key Words: Ti-6Al-4V, microstructure, REP, thermally induced porosity

23. **Microporosity in Hot Isostatically Pressed Ti6Al4V Powder Compacts**
Smarsly, W., Lee, Y. T., Welsch, G.
Metall Trans 16A (10), 1831-4, 1985 (AD-D134 540)
Key Words: Ti-6Al-4V, microstructure, oxide addition

24. **Effect of Thermomechanical Treatments of Ti6Al4V PSV Powders on the Improvement of the Low Cycle Fatigue of Sintered Compacts**
Devillard, J.
Deutsche Gesellschaft Metallk, Germany
Proc 5th Int Conf Titanium, Titanium--Science and Technology 1, 287-94, 1985 (AD-D135 668)
Key Words: Ti-6Al-4V, microstructure, fracture surface, crack propagation, tensile properties, fatigue

25. **Low and High Cycle Fatigue Behavior of P/M Ti6Al4V with Respect to Microstructure Developed During Processing**
Wirth, G., Grundhoff, K. J.
Deutsche Gesellschaft Metallk, Germany
Proc 5th Int Conf Titanium, Titanium--Science and Technology 1, 347-54, 1985 (AD-D135 672)
Key Words: Ti-6Al-4V, microstructure, fracture, fatigue crack, tensile properties

26. **Combined Die Forging (CDF) of Prealloyed Ti6Al4V Powder**
Smarsly, W., Bunk, W., Kopp, R.
Deutsche Gesellschaft Metallk, Germany
Proc 5th Int Conf Titanium, Titanium--Science and Technology 1, 367-73, 1985 (AD-D135 675)
Key Words: Ti-6Al-4V, microstructure, near shape forming, forging

27. **Effect of Advanced Powder Production Processes on Powder Characteristics and Mechanical Properties of HIP Compacts of Prealloyed Ti6Al4V**
Grundhoff, K. J., Wirth, G.
Deutsche Gesellschaft Metallk, Germany
Proc 5th Int Conf Titanium, Titanium--Science and Technology 1, 405-10, 1985 (AD-D135 681)
Key Words: Ti-6Al-4V, crack propagation, tensile properties, fatigue
28. Fatigue Failure Analysis of Ti6Al4V Powder Compacts Produced by Different Techniques
Wirth, G., Grundhoff, K. J., Smarsly, W., Froes, F. H., Eylon, D.
Deutsche Gesellschaft Metallk, Germany
Proc 5th Int Conf Titanium, Titanium--Science and Technology
1, 427-34, 1985 (AD-D135 683)
Key Words: Ti-6Al-4V, fracture, tensile properties, fatigue, REP

29. Introduction of Titanium Powder Metallurgy Components to Aircraft Series Production
Keinath. W., Engels, J.
Deutsche Gesellschaft Metallk, Germany
Proc 5th Int Conf Titanium, Titanium--Science and Technology
2, 1315-20, 1985 (AD-D136 076)
Key Words: Ti-6Al-4V, tensile properties, shot peening, heat treatment

30. SCC Behavior of I/M and P/M Ti6Al4V Dependent Upon the Strain Rate
Buhl, H.
Deutsche Gesellschaft Metallk, Germany
Proc 5th Int Conf Titanium, Titanium--Science and Technology
4, 2549-55, 1985 (AD-D136 826)
Key Words: Ti-6Al-4V, fracture, stress, corrosion

31. Fatigue Improvement of Prealloyed and Blended Elemental Titanium Powder Metallurgy Compacts by Microstructure Modifications
Eylon, D., Vogt, R. G., Froes, F. H.
Metal Powder Industries Federation, Princeton, NJ
Proc Int Powder Metallurgy Con., Modern Developments in Powder Metallurgy
16, 563-75, 1985 (AD-D138 351)
Key Words: Ti-6Al-4V, fatigue improvement, tensile properties, fatigue, REP

32. Application of Advanced Powder Process Technology to Titanium Aeroengine Components
Broomfield, R. W., Turner, N. G., Leat, B. J.
Powder Metall 28 (1), 27-34, 1985 (AD-D130 920)
Key Words: Ti-6Al-4V, turbine components, microstructure, consolidation, tensile properties, fatigue, impact properties

33. Powder Metallurgy of Light Metal Alloys for Demanding Applications
Froes, F. H., Pickens, J. R.
Air Force Wright Aeronautical Labs, Wright-Patterson AFB, OH
Final Report
J Met Rept No : AFWAL-TR-84-4084, 36 (1), 18 pp., 1984 (AD-A142 066)
Key Words: AA 7090, AA 7091, Ti-6Al-4V, rapid solidification, mechanical attritioning, tensile properties

34. Deformation and Fracture of P/M (Powder/Metallurgy) Titanium Alloys
Koss, D. A.
Department of Metallurgical Engineering, Michigan Tech University, Houghton
Annual Technical Report Number Twenty Seven
Contract No : N00014-76-C-0937
26 pp., 1984 (AD-A148 672)
Key Words: Ti-6Al-4V, AA 7075-T6, porosity, hydrogen embrittlement, tensile properties, fracture
35. The Influence of Porosity on the Deformation and Fracture of Alloys
Bourcier, R. J., Koss, D. A., Smelser, R. E., Richmond, O.
Department of Metallurgical Engineering, Michigan Tech University, Houghton Technical Report Number Twenty Six
36 pp., 1984 (AD-A148 766)
Key Words: Ti-6Al-4V, microscopy, tensile properties, deformation

36. Powder Metallurgy Gaining Trust of Aero Designers
Wigotsky, V.
Aerospa Amer 22 (3), 90-4, 1984 (AD-D129 541)
Key Words: Ti-6Al-4V, RENE’ 95, AA 7090, AA 7091, Al-8Fe, turbine components, shear properties, compressive properties, net shape forming

37. Feasibility of Inclusion Detection and Characterization in Titanium Powder Compacts Using Ultrasounds
NDT Int 17 (2), 73-9, 1984 (AD-D129 632)
Key Words: Ti-6Al-4V, inclusions, nondestructive testing

38. Powder Metallurgy in the Federal Republic of Germany
Thummler, F., Oberacker, R.
Key Words: Ti-6Al-4V, net shape forming

Pske, D., Wittner, I.
Pract Metall 21 (3), 107-17, 1984 (AD-D130 404)
Key Words: Ti-6Al-4V, Stellite 6, WC coating, diffusion welding and bonding

40. Microstructures and Tensile Properties of Hot Isostatically Pressed Rotating Electrode Process Ti-6Al-4V Alloy Powders
Hagiwara, M., Kaieda, Y., Kawabe, Y.
J Jpn Inst Met 48 (11), 1092-8, 1984 (AD-D131 482)
Key Words: Ti-6Al-4V, microstructure, REP, aging, tensile properties

41. Mechanical Properties of Advanced Titanium Powder Metallurgy Compacts
Herteman, J. P., Eylon, D., Froes, F. H.
Powder Metall Int 17 (3), 116-8, 1984 (AD-D132 989)
Key Words: Ti-6Al-4V, turbine components, fracture toughness, fatigue, plasma arc melting

42. Titanium Powder Metallurgy--A Review
Froes, F. H., Eylon, D.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Titanium--Net Shape Technologies, 1-20, 1984 (AD-D134 588)
Key Words: Ti-6Al-4V, rare earth addition, microstructure, grain size, bending, tensile properties, fatigue stress

43. Study of Production Methods of Aerospace Quality Titanium Alloy Powder
Peebles, R. E., Parsons, L. D.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Titanium--Net Shape Technologies, 21-8, 1984 (AD-D134 589)
Key Words: Ti-6Al-4V, microstructure, fracture toughness, tensile properties, fatigue stress
44. Modification of Titanium Powder Metallurgy Alloy Microstructures by Strain Energizing and Rapid Omni-Directional Compaction
Mahajan, Y. R., Eylon, D., Kelto, C. A., Egerer, T., Froes, F. H.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Titanium--Net Shape Technologies, 38-51, 1984 (AD-D134 591)
Key Words: Ti-6Al-4V, microstructure, rapid solidification, tensile properties, fatigue stress

45. Titanium Alloy Shapes from Elemental Blend Powder and Tensile and Fatigue Properties of Low Chloride Compositions
Abkowitz, S., Kardys, G. J., Fujihiro, S., Froes, F. H., Eylon, D.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Titanium--Net Shape Technologies, 107-20, 1984 (AD-D134 596)
Key Words: Ti-6Al-4V, net shape forming, tensile properties, gas tungsten arc welding, fatigue stress

46. Suiting Blended Elemental Powder Metallurgy Material/Processing to Parts
Friedman, G. I.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Titanium--Net Shape Technologies, 121-9, 1984 (AD-D134 597)
Key Words: Ti-6Al-4V, manufacturing, hydrostatic compaction

47. Development in PM HHDH-Ti6Al4V Technology for Aircraft Application
Renpo, T., Tao, L., Changchun, L.
Deutsche Gesellschaft Metallk, Germany
Proc 5th Int Conf Titanium, Titanium--Science and Technology 1, 443-50, 1984 (AD-D135 685)
Key Words: Ti-6Al-4V, microstructure, fracture, tensile properties, impact toughness, fatigue stress

48. Superplastic Forging of HIP'ed Ti-6Al-4V Alloy Preforms
Nishino, Y., Kimura, T., Yamauchi, T., Oka, T.
Deutsche Gesellschaft Metallk, Germany
Proc 5th Int Conf Titanium, Titanium--Science and Technology 2, 673-80, 1984 (AD-D135 997)
Key Words: Ti-6Al-4V, microstructure, REP, flow stress, stress-strain

49. Mechanical Property Microstructure Relationships in Alloys
Eylon, D., Kim, Y. W.
Metcut Research Associates Inc., Materials Research Group, Wright-Patterson AFB, OH
Rept No: AFWAL-TR-83-4131, 54 pp., 1983 (AD-A135 612)
Key Words: Ti-6Al-4V, AA 7091, IN9051, AA 7075, turbine components, tensile properties, fatigue, bending

50. Deformation and Fracture of P/M Titanium Alloys
Koss, D. A.
Department of Metallurgical Engineering, Michigan Tech University, Houghton
Annual Report Number Twenty Three 18 pp., 1983 (AD-A135 612)
Key Words: Ti-6Al-4V, porosity, ductile fracture, fracture strain

51. Fatigue Properties of Hot Isostatically Pressed Ti-6Al-4V Powders
Froes, F. H., Eylon, D., Wirth, G., Grundhoff, K. J., Smarsly, W.
Met Powder Rept 38 (1), 36-41, 1983 (AD-D126 646)
Key Words: Ti-6Al-4V, fatigue, crack growth, tensile properties
52. The New Frontiers of Powder Metals
Key Words: AA 7090, AA 7091, IN9052, Ti-6Al-4V, Monel 400, Inconel 600, RENI, 95, Cr291, Udimet 700, IN-100, AF-115, Inconel 625, net shape forming, injection molding, applications, forging

53. Fatigue Crack Growth Rate of Ti-6Al-4V Prealloyed Powder Compacts
Schwenker, S. W., Sommer, A. W., Eylon, D., Froes, F. H.
Metall Trans 14A (7), 1524-8, 1983 (AD-D127 927)
Key Words: Ti-6Al-4V, stress intensity factor, fracture surface, fatigue, crack growth

54. Containerless HIPing of PM Parts: Technology Economics and Equipment Productivity
Nyce, A. C.
Met Powder Rept 38 (7), 387-92, 1983 (AD-D128 150)
Key Words: AISI 4650, M-2, AISI 316L, Ti-6Al-4V, Monel 400, Stellite 6, Stellite 21, applications, cost, density, tensile properties

55. Influence of Thermomechanical Processing on Low Cycle Fatigue of Prealloyed Ti-6Al-4V Powder Compacts
Metall Trans 14A (12), 2497-505, 1983 (AD-D128 792)
Key Words: Ti-6Al-4V, porosity, fatigue, microstructure, tensile properties, thermomechanical treatment

56. Titanium Powder Metallurgy Components for Advanced Aerospace Applications
Eylon, D., Froes, F. H., Parsons, L. D.
American Institute of Aeronautics and Astronautics, New York, NY
Proc Structures, Structural Dynamics and Materials Conf 1, 586-93, 1983 (AD-D134 229)
Key Words: Ti-6Al-4V, turbine components, REP, net shape forming, tensile properties, fatigue stress, fracture toughness

57. Advanced Manufacturing Methods for High Quality, Low Cost Titanium Powder Production
Peebles, R. E.
General Electric Co., Aircraft Engine Group, Evendale, OH
Rept No: AFWAL-TR-82-4113, 181 pp., 1982 (AD-B073 068L)
Key Words: Ti-6Al-4V, microstructure, microscopy, tensile properties, Charpy impact, fatigue strain, creep properties

Fatemi, M., Rath, B.B., Naval Research Lab, Washington DC
Rept No: NRL-MR-4749, 37 pp., 1982 (AD-A113 500)
Key Words: Al-4Cu, Ti-6Al-4V, 21-6-9 steel, microstructure, neutron scattering, tensile creep, plastic deformation

59. Application of Powdered Metal Technology to Produce Titanium Gyro Parts, Volume 1. Overall Tests Results
Regn, R. J.
Martin Marietta Aerospace, Orlando, FL
Rept No: OR-16766, 49 pp., 1982 (AD-A118 064)
Key Words: Ti-6Al-4V, tensile properties, impact tests, acceptance tests
60. Effects of Manufacturing Processes on Structural Allowables
Jones, Dana J., Ford, S. C.
Battelle Memorial Institute, Columbus, OH
Final Technical Report
Rept No: AFWAL-TR-82-4136, 168 pp., 1982 (AD-A122 963)
Key Words: Ti-6Al-4V, 10V2Fe3Al-Ti alloy, CT-91-TTE69 aluminum alloy, Al-1410 steel, extrusion, fracture toughness, creep rupture, stress corrosion, fatigue crack, tensile properties, compressive properties, thermal expansion, bearing strength

61. Hot Isostatic Processing
Clauer, A. H., Meiners, K. E., Boyer, C. B.
Metals Information Analysis Center, West Lafayette, IN
State-of-the-Art
Rept No: MCIC-82-46, 228 pp., 1982 (AD-A132 232)
Key Words: Ti-6Al-4V, IN-738, RENE' 95, Udimet 700, IN-792, Inconel 718, M-1, M-2, B-1900, MAR-M250, welding, fatigue, tensile properties, heat treatment

62. The State of the Science and Art of Powder Metallurgy
Lenel, F. V., Ansell, G. S.
J Met 34 (2), 17-29, 1982 (AD-D124 400)
Key Words: beryllium, MAR-M200, Ti-6Al-4V, MA67, MA6000E, steel, tensile properties, sintering

63. PM Technology Hitting New Highs
McIntyre, R. D.
Mater Eng 95 (4), 46-54, 1982 (AD-D124 504)
Key Words: RENE' 95, IN-100, Ti-6Al-4V, Ti-6Al-6V-2Sn, coatings, phase transformation, net shape forming

64. Recent Advancement in Titanium Near-Net Shape Technology
Chen, C. C.
J Met 34 (11), 30-5, 1982 (AD-D126 098)
Key Words: Ti-6Al-4V, Ti-10V-2Fe-3Al, net shape forming, cost

65. High Temperature Aerospace Materials Prepared by Powder Metallurgy
Thompson, E. R.
Annual Reviews Inc., Palo Alto, CA
Key Words: IN-100, Udimet 700, RENE' 95, MERL 76, Ti-6Al-4V, creep rupture, fatigue, fracture toughness

66. New Approach Widens the Use of HIP P/M
Precis Met 40 (10), 32-4, 1982 (AD-D128 141)
Key Words: AISI 4650, Stellite 6, AISI 316, Ti-6Al-4V, porosity, cost, tensile properties

67. Advanced Manufacturing Methods for High Quality, Low Cost Titanium Powder Production
Peebles, R. E.
General Electric Co., Aircraft Engine Group, Evendale, OH
Interim Engineering Progress Report Number Six, Dec 80-Sep 81
Rept No: AFML-IR-189-7T(6), 38 pp., 1981 (AD-D122 327L)
Key Words: Ti-6Al-4V, Ti-5Al-2Sn-2Zr-4Cr-4Mo, REP, tensile properties, fracture toughness
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Author(s)</th>
<th>Institution/Publication</th>
<th>Date</th>
<th>Key Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>Mechanical-Property Data Ti-6Al-4V Alloy, Powder Metallurgy Product CHIP</td>
<td>Battelle Memorial Institute, Columbus, OH</td>
<td></td>
<td>1981</td>
<td>Key Words: Ti-6Al-4V, tensile properties, bearing strength, fracture toughness, compressive properties, stress corrosion</td>
</tr>
<tr>
<td>69</td>
<td>Copperhead Alternate Manufacturing Process</td>
<td>Friedman, G.</td>
<td>Martin Marietta Aerospace, Orlando, FL</td>
<td>1981</td>
<td>Key Words: Ti-6Al-4V, bending, compaction, dies</td>
</tr>
<tr>
<td>71</td>
<td>Advanced Titanium Metallic Materials and Processes for Application to Naval Aircraft Structures</td>
<td>Highberger, W. T., Chanani, G. R.</td>
<td>SAMPE Qtrly 12 (3), 32-9, 1981 (AD-DI21 155)</td>
<td>1981</td>
<td>Key Words: Ti-6Al-4V, Corona-5, aircraft structures, F-14 aircraft, fatigue, crack growth, tensile properties, superplastic forming, cost</td>
</tr>
<tr>
<td>74</td>
<td>Trends in Powder Metallurgy Technology</td>
<td>Chandler, H. E., Baxter, D. F.</td>
<td>Metal Prog 117 (1), 100-3, 1980 (AD-D117 225)</td>
<td>1980</td>
<td>Key Words: RENE’ 95, AISI 316, M-2, Stellite 6, Ti-6Al-4V, AISI 410, jet engines, net shape forming</td>
</tr>
<tr>
<td>76</td>
<td>P/M Titanium Reduces Aerospace Component Costs</td>
<td>Andersen, P. J., Alber, N. E., Thellman, E. L.</td>
<td>Precis Met 38 (4), 39-41, 1980 (AD-D118 409)</td>
<td>1980</td>
<td>Key Words: Ti-6Al-4V, net shape forming</td>
</tr>
</tbody>
</table>
77. All Systems Are Go for Powder Metallurgy
Irving, R. R.
Iron Age 223 (28), 41-5, 1980 (AD-D118 875)
Key Words: AISI 4600, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Waspaloy, IN-100, AISI 329, 12Cr steel, injection molding, cost, applications

78. Titanium Powder Metallurgy--A Perspective
J Met 32 (8), 17-25, 1980 (AD-D119 351)
Key Words: Ti-6Al-4V, fatigue, net shape forming, diffusion bonding

79. Development in Powder Metallurgy (PM) Ti6Al4V Technology for Aircraft Parts
Keinath, W., Mohn, R., Bank, W.
Metallurgical Society of AIME, Warrendale, PA
Proc 4th Int Conf Titanium, Titanium '80-Science and Technology
3, 2214-21, 1980 (AD-D121 241)
Key Words: Ti-6Al-4V, helicopters, microstructure, fatigue, tensile properties, net shape forming

80. Titanium 6Al-4V Plate from Prealloyed Powder
Geisendorfer, R. F.
Metallurgical Society of AIME, Warrendale, PA
Proc 4th Int Conf Titanium, Titanium '80-Science and Technology
3, 2223-35, 1980 (AD-D121 242)
Key Words: Ti-6Al-4V, prealloying, tensile properties, fracture toughness, fatigue, crack growth, crystallography, texture

Witt, R. H., Highberger, W. T.
Metallurgical Society of AIME, Warrendale, PA
Proc 4th Int Conf Titanium, Titanium '80-Science and Technology
3, 2309-13, 1980 (AD-D121 250)
Key Words: Ti-6Al-4V, aircraft structures, F-14A aircraft, fuselage, nacelle, net shape forming, tensile properties

82. Titanium Net Shapes by a New Technology-Part 2: F-18A Parts Evaluation
Chanani, G. R., Highberger, W. T., Kelto, C. A.
Metallurgical Society of AIME, Warrendale, PA
Proc 4th Int Conf Titanium, Titanium '80-Science and Technology
3, 2314-19, 1980 (AD-D121 251)
Key Words: Ti-6Al-4V ELI, aircraft structures, F-18A aircraft, fracture mechanics, net shape forming, tensile properties, fatigue

83. Isostatic Pressing of Complex Shapes from Titanium and Titanium Alloys
Abrowitz, S.
Metallurgical Society of AIME, Warrendale, PA
Proc 4th Int Conf Titanium, Titanium '80-Science and Technology
3, 2321-30, 1980 (AD-D121 252)
Key Words: Ti-6Al-4V, titanium, mechanical properties

84. Progress in P/M Superalloy and Titanium for Aircraft Applications
Dulis, E. J., Moll, J. H., Chandhok, V. K., Hebeisen, J. C.
SAMPE, Azusa, CA
Proc 25th National SAMPE Symp and Exhibition, 75-89, 1980 (AD-D126 267)
Key Words: Ti-6Al-4V, MERL 76, RENE' 95, aircraft structures, tensile properties, creep rupture
85. Titanium Alloy Powders Made by the Rotating Electrode Process
Roberts, P. R., Loewenstein, P.
The Metallurgical Society of AIME, Warrendale, PA
Key Words: Ti-6Al-4V, tensile properties, particle size

86. Investigation of Methods for the Production of High Quality, Low Cost Titanium Alloy Powders
Peebles, R. E., Kelto, C. A.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Powder Metallurgy of Titanium Alloys, 47-58, 1980 (AD-D127 425)
Key Words: Ti-6Al-4V, Ti-17, microstructure, tensile properties, fatigue.

87. Evaluation of Ti-6Al-4V Powder Compacts
Devillard, J., Herteman, J-P.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Powder Metallurgy of Titanium Alloys, 59-70, 1980 (AD-D127 426)
Key Words: Ti-6Al-4V, microstructure, tensile properties, fatigue, spraying, particle size

88. Relationship Between Mechanical Properties, Contaminants, and Fracture Topography of HIP Ti-6Al-4V Powder Metallurgy Products
Scarich, G. V., Chanani, G. R., Petersen, V. C., Weaver, D. M.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Powder Metallurgy of Titanium Alloys, 103-114, 1980 (AD-D127 430)
Key Words: Ti-6Al-4V, porosity, fatigue, crack growth, fractography, tensile properties

89. Microstructure Property Correlation in Cold Pressed and Sintered Elemental Ti-6Al-4V Powder Compacts
Mahajan, Y., Eylon, D., Bacon, R., Froes, F. H.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Powder Metallurgy of Titanium Alloys, 189-202, 1980 (AD-D127 436)
Key Words: Ti-6Al-4V, microstructure, porosity, fracture toughness, fatigue, crack growth, tensile properties, deformation

90. Characterization of Pressed and Sintered Ti-6Al-4V Powders
Boyer, R. R., Magnuson, J. E., Tripp, J. W.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Powder Metallurgy of Titanium Alloys, 203-16, 1980 (AD-D127 437)
Key Words: Ti-6Al-4V, fatigue, crack growth, fracture toughness, microstructure, tensile properties

91. Advanced Titanium Alloy Development Via Powder Metallurgy
Jackson, A. G., Mottef, J., Froes, F. H.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Powder Metallurgy of Titanium Alloys, 229-41, 1980 (AD-D127 439)
Key Words: Ti-6Al-4V, Ti-5Al-2.5Sn, silicon addition, germanium addition, porosity, dispersions

92. Hot Isostatic Pressing of Large Titanium Shapes
Petersen, V. C., Chandhok, V. K., Kelto, C. A.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Powder Metallurgy of Titanium Alloys, 243-54, 1980 (AD-D127 440)
Key Words: Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, aircraft structures, engine components, tensile properties, net shape forming
93. **Hot Isostatic Pressing of Near-Net Titanium Structural Parts**
Witt, R. H., Highberger, W. T.
The Metallurgical Society of AIME, Warrendale, PA
Key Words: Ti-6Al-4V, Ti-6Al-6V-2Sn, aircraft structures, tensile properties, net shape forming, fracture toughness

94. **Application of HIP Titanium 6Al-4V Powder to the Radial Compressor for the Cruise Missile Engine**
Barker, C. S., Nagy, P.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Powder Metallurgy of Titanium Alloys, 267-77, 1980 (AD-D127 442)
Key Words: Ti-6Al-4V, compressor components, tensile properties, net shape forming, fatigue

95. **Application of Titanium Powder Metallurgy for Manufacture of a Large and Complex Naval Aircraft Component**
Chanani, G. R., Highberger, W. T., Kelto, C., Petersen, V. C., Scarich, G. V.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Powder Metallurgy of Titanium Alloys, 279-90, 1980 (AD-D127 443)
Key Words: Ti-6Al-4V, aircraft structures, tensile properties, fracture toughness, net shape forming, fatigue, crack growth, fractography

96. **Advanced Manufacturing Methods for High Quality Low Cost Titanium Powder Production**
Peebles, R. E.
General Electric Co., Aircraft Engine Group, Evendale, OH
Interim Engineering Report Feb-May 78
Rept No.: AFML-IR-189-7T(3), 44 pp., 1978 (AD-D112 925L)
Key Words: Ti-6Al-4V, turbine components, fabrication, particle size

97. **Built-Up Low-Cost Advanced Titanium Structures (BLATS)**
Paez, C.
Grumman Aerospace Corp., Bethpage, NY
Third Quarterly Program Report Apr-Jul 78
Contract No.: F33615-77-C-3109
61 pp., 1978 (AD-D113 509L)
Key Words: Ti-6Al-4V, Ti-15V-3Cr-3Al-3Sn, diffusion welding, superplastic forming, lap shear strength

98. **Advanced Manufacturing Methods for High Quality Low Cost Titanium Powder Production**
Peebles, R. E.
General Electric Co., Aircraft Engine Group, Evendale, OH
Interim Engineering Report, May-Nov 78
Rept No.: AFML-IR-189-7T(4), 59 pp., 1978 (AD-D114 365L)
Key Words: Ti-6Al-4V, Ti-5Al-2Sn-2Zr-4Cr-4Mo, isothermal process, forging, hydriding

99. **Amorphous Glassy Metal and Microcrystalline Alloys for Aerospace Applications**
Colling, E. W., Maringer, R. E., Mobley, C. E.
Battelle Memorial Institute, Columbus, OH
Final Report
Rept No.: AFML-TR-78-70 and GIDEP-E126-1832, 257 pp., 1978 (AD-A060 353)
Key Words: Ti-6Al-4V, microstructure, phase diagram, fabrication, tensile properties
100. Consolidation of Titanium Powder to Near Net Shapes
Schwertz, J. H., Chandhok, V. K., Peterson, V. C., Thompson, V. R.
Colt Industries Inc., Crucible Materials Research Center, Pittsburgh, PA
Final Report
Rept No: AFML-TR-78-41, 333 pp., 1978 (AD-A078 039)
Key Words: Ti-6Al-4V, Ti-17, microstructure, fatigue, fracture, stress,
Charpy impact, tensile properties, near net shape

101. Lower Cost Titanium Parts by Powder Metallurgy
Dreger, D. R.
Mach Des 50 (17), 20-2, 1978 (AD-D113 100)
Key Words: Ti-6Al-4V, titanium, spacecraft, applications, tensile properties,
density

102. Built-Up Low-Cost Advanced Titanium Structures (BLATS)
Grumman Aerospace Corp., Bethpage, NY
Third Technical Bulletin, Mar.-May 1978
Contract No: F33615-77-C-3109
9 pp., 1978 (AD-D113 232)
Key Words: Ti-6Al-4V, Ti-6Al-2Zn-2Sn-2Mo-2Cr

103. Built-Up Low-Cost Advanced Titanium Structures (BLATS)
Grumman Aerospace Corp., Bethpage, NY
Contract No: F33615-77-C-3109
9 pp., 1978 (AD-D113 510)
Key Words: Ti-6Al-4V, Ti-6Al-2Zn-2Sn-2Mo-2Cr, welding, superplastic torming

104. Opportunities for Cost-Affordable Titanium Aerospace Structures
Tupper, N. G., Elbaum, J. K., Burte, H. M.
J Met 30 (9), 7-13, 1978 (AD-D113 721)
Key Words: Ti-6Al-4V, F-15 aircraft, aircraft structures, superplastic
forming, net shape forming, diffusion bonding

105. Hot Isostatic Processing
Hanes, H. D., Seifert, D. A., Watts, C. R.
Metals Information Analysis Center, West Lafayette, IN
Rept No: MUC-77-34, 101 pp., 1977 (AD-A049 227)
Key Words: T-111, Ti-6Al-4V, AA A356-T61, IN-738, RENE’ 80, Udimet 700,
IN-792, welding, tensile properties, pressure bonding

106. A Retrospective View of Metallurgy During the 25 Years of the Gillett Lectures
Jaffee, R. I.
Key Words: AISI 316, Ti-6Al-4V, titanium, zirconium, hafnium, embrittlement,
fracture mechanics

107. Weldability of Hot Isostatically Pressed Prealloyed Titanium 6Al-4V Powder
Greenfield, M. A., Geisendorfer, R. F., Haggard, D. K., Clark, L. P.
Weld J 56 (5), 143-s to 148-s, 1977 (AD-D109 586)
Key Words: Ti-6Al-4V, Weldability, tensile properties, fracture toughness,
crack growth, Charpy impact, porosity, nondestructive testing
108. Recent Developments in the Titanium Industry
Herman, W. E., Kessler, H.
SAMPE Qtrly 9 (1), 40-4, 1977 (AD-D111 268)
Key Words: Ti-6Al-4V, Ti-6Al-6V-2Sn, creep rupture, fracture toughness
fatigue, tensile properties

109. Hot Isostatic Pressing
Hanes, H. D.
Batelle Memorial Institute, Columbus, OH
Proc 6th AIRAPT Int High Pressure Conference
39 pp., 1977 (AD-D111 581)
Key Words: Ti-6Al-4V, fatigue, dissimilar joining, diffusion bonding

110. Hot Isostatic Pressing: An Economic Route to Powder Components
James, P. J.
Metals and Materials 27-31, 1977 (AD-D111 600)
Key Words: AISI 4340, beryllium, Ti-6Al-4V, pressure vessels

111. Powder Metallurgy Process of an Airframe Structural Part
Turner, H. C., Kotfila, R. J.
Manufacturing Technology Division, AFML, Wright-Patterson AFB, OH
Proc Net Shape Metalworking Program Review, 383-91, 1976 (AD-D119 185L)
Key Words: Ti-6Al-4V, net shape forming, fatigue

112. Review of Advanced Powder Metallurgical Fabrication Techniques in European NATO
Countries
Sutcliffe, P. W.
Advisory Group for Aerospace Research and Development, Paris, France
Rept No: AGARD-R-641, 14 pp., 1976 (AD-A028 348)
Key Words: IN-100, IN-738, Alloy 713, Inconel 718, RENEX 95, Ti-6Al-4V,
Waspaloy, precipitation hardening

113. Advancements in Titanium Powder Processing
Fleck, J. N., Clark, L. P.
SAMPE Qtrly 8 (1), 10-20, 1976 (AD-D107 894)
Key Words: Ti-6Al-4V, turbine components, F-14 aircraft, F-15 aircraft, F-101
aircraft, tensile properties, microstructure

114. Comparative Evaluation of Forged Ti-6Al-4V Bar made from Shot Produced by the REP
and CSC Processes
Vaughn, R. F., Blenkinsop, P. A., Morton, P. H.
Imperial Metal Industries (Kynoch) Ltd., Birmingham, UK MPR Publishing Services
Ltd., Bellstone, Shrewsbury, UK
8 pp., 1976 (AD-D110 190)
Key Words: Ti-6Al-4V, tensile properties, fracture toughness, fracture
surface, titanium, CM steels, superalloys, surface layers,
morphology, composition surface

115. Some Comments on the Mechanical Properties of HIP Titanium
Keinath, W.
Messerschmitt-Boelkow-Blohm GMBH, Propulsion Dept., Munich, Germany
12 pp., 1976 (AD-D110 191)
Key Words: Ti-6Al-4V, fatigue, tensile properties, microstructure notch
properties, fracture surface, electron beam melting
116. Hot Isostatic Pressing of Ti-6Al-4V Powder Forging Preforms
Peebles, R. E.
General Electric Co., Aircraft Engine Group, Evendale, OH
6 pp., 1976 (AD-D110 192)
Key Words: Ti-6Al-4V, turbine components, microstructure, tensile properties

117. Near-Net Powder Metallurgy Airframe Structures
Witt, R. H.
Grumman Aerospace Corp., Advanced Materials and Processes Development, Bethpage, NY
10 pp., 1976 (AD-D110 193)
Key Words: Ti-6Al-4V, Ti-6Al-6V-2Sn, tensile properties, fatigue fracture toughness, density, cost

118. Manufacturing of Titanium Airframe Components by Hot Isostatic Pressing
Witt, R. H., Magnuson, J.
Grumman Aerospace Corp., Bethpage, NY
Final Report, Apr 74-Apr 75
Contract No: N00019-74-C-0301
90 pp., 1975 (AD-A014 130)
Key Words: Ti-6Al-4V, Ti-6Al-6V-2Sn, F-14 aircraft, microstructure, fracture toughness, annealing, fabrication, tensile properties

119. Manufacturing of Titanium Airframe Components
Witt, R., Magnuson, J.
Grumman Aerospace Corp., Bethpage, NY
Final Report, Apr 74-Apr 75
Contract No: N00019-74-C-0301
90 pp., 1975 (AD-D301 610)
Key Words: Ti-6Al-4V, Ti-6Al-6V-2Sn, net shape, fracture toughness

120. Powder Metallurgy Production Processes
Clark, L. P.
AGARD Structures and Materials Panel, 18 pp., 1974 (AD-D102 694)
Key Words: IN-100, AA 7075-T6, IN-792, Ti-6Al-4V, turbine components, nondestructive testing

121. Titanium Powder Metallurgy
Sutcliffe, P. W., Mardon, P. G.
AGARD Structures and Materials Panel, 17 pp., 1974 (AD-D102 697)
Key Words: Ti-6Al-4V, tensile properties, density, cost

122. Hot Isostatic Compaction is Key to Quality Titanium Parts
Gurganus, T. B., Turnbull, G. K.
Metal Prog 106 (3), 83-8, 1974 (AD-D103 799)
Key Words: Ti-6Al-4V, oxygen addition, porosity, microstructure, metallography, tensile properties, cost

123. Hot-Isostatic Processing Reaches Maturity
Hanes, H. D.
SAMPE Qtrly 5 (2), 1-9, 1974 (AD-D133 138)
Key Words: Ti-6Al-4V, IN-738, RENE' 77, IN-792, defects, diffusion bonding, elongation
124. Application of Hot-Isostatic Pressing, Hydrostatic Extrusion, and Deformable-Die Tube Tapering Processes to Production of Titanium-6Al-4V Tapered Tubes
Meyer, G. E., Harth, G. H., Houck, J. A., Byrer, T. G.
Battelle Memorial Institute, Columbus, OH
Technical Report
Rept No: USAAMRDL-TR-72-71, 86 pp., 1973 (AD-759 504)
Key Words: MAR-M509, IN-100, Ti-6Al-4V, turbine components, microstructure, thermomechanics, die forging, cold drawing, extrusion

125. Process for High-Integrity Casting
Arnold, D. B., Grisik, J. J.
General Electric Co., Aircraft Engine Group, Evendale, OH
Interim Engineering Report Aug-Oct 72
Rept No: IR-162-2(II), 17 pp., 1972 (AD-180 570L)
Key Words: RENE 80, Ti-6Al-4V, densification

126. Hot Isostatic Pressing of Titanium 6Al-4V
Geisendorfer, R. F., Sajdak, R. J., Harth, G. H.
Proc 2nd Int Conf organized by the Metallurgical Society of AIME, the ASM, and the Institute of Metals in association with the Academy of Sciences of the USSR and the Japan Institute of Metals
Rept No: Vol-1, 399-418, 1972 (AD-D105 328)
Key Words: Ti-6Al-4V, tungsten addition, oxygen addition, welding, porosity, tensile properties, thermal properties, microstructure, fracture toughness, crystal orientation, heat treatment, particle size

127. Hot Isostatic Pressing of High-Performance Materials
Hanes, H. D.
Battelle Memorial Institute, Columbus, OH
Proc 18th Sagamore Army Materials Research Conf, Sagamore Conference Center, Raquette Lake, NY, Aug-Sept 71
20 pp., 1971 (AD-181 532)
Key Words: Ti-6Al-4V, microstructure, tensile properties, fracture toughness

128. Feasibility of Producing Close-Tolerance F-14 Titanium Forgings from Sintered Powder Preforms
Witt, R. H., Paul, O.
Grumman Aerospace Corp., Bethpage, NY
Final Report Jun 70-Nov 71
Contract No: N00019-70-C-0598
57 pp., 1971 (AD-901 835L)
Key Words: Ti-6Al-4V, F-14 aircraft, airframes, turbine components, welding, tensile properties, fracture toughness, fatigue

129. Solid-State Bonding and Consolidation of Powders Under Hot-Isostatic Pressure
Boyer, C. B., Hanes, H. D., Meiners, K. E., Orcutt, F. D.
The American Society of Mechanical Engineers, New York, NY
Technical Paper
Proc ASME Winter Annual Meeting
Rept No: 71-WA/Prod-20, 14 pp., 1971 (AD-D123 764)
Key Words: Ti-6Al-4V, tensile properties, pressure bonding, aging
Ti-6Al-6V-2Sn

1. **Consolidation of a Rapidly Solidified Titanium Alloy by Hot Isostatic Pressing**
 Smith, C. H.
 Mater Sci Eng 89, 103-17, 1987 (AD-D137 332)
 Key Words: Ti-6Al-6V-2Sn, microstructure, tensile properties, REP, aging, melt spinning

2. **Improvement in Ductility and Fracture Toughness of HIP’d and Isothermally Forged Ti-6Al-6V-2Sn Powder With Heat Treatment**
 Simpson, R. P., Adair, A. M., Froex, F. H., Eylon, D.
 Air Force Wright Aeronaautical Labs, Wright-Patterson AFB, OH
 Final Report
 Rept No: AFWAL-TR-86-4064, 76 pp., 1986 (AD-A168 804)
 Key Words: Ti-6Al-6V-2Sn, microstructure, extrusion, forging, REP, solution heat treatment, Charpy impact, bend test, tensile properties

3. **Microstructures and Mechanical Properties of Hot Isostatically Pressed Ti-6Al-6V-2Sn Alloy Powders Made by the Rotating Electrode Process**
 Hagiwara, M., Kaida, Y., Kawabe, Y.
 J Jpn Inst Met 50 (1), 50-6, 1986 (AD-D135 004)
 Key Words: Ti-6Al-6V-2Sn, REP, microstructure, tensile properties, fracture toughness

4. **Titanium PM Components for Airframes**
 Witt, R., Weaver, I. G.
 The Metallurgical Society of AIME, Warrendale, PA
 Proc Symp Titanium--Net Shape Technologies, 29-38, 1984 (AD-D134 590)
 Key Words: Ti-6Al-6V-2Sn, fracture, crack growth, net shape forming, fatigue stress

5. **Process for Producing Parts with Deep Pocketed Precision Cavities Using P/M Shape Technology**
 Chandhok, V. K., Moll, J. H., Ulitchny, M. G.
 The Metallurgical Society of AIME, Warrendale, PA
 Proc Symp Titanium--Net Shape Technologies, 53-61, 1984 (AD-D134 592)
 Key Words: Ti-6Al-6V-2Sn, microstructure, REP, tensile properties

6. **Intermetallic Phases in the Copper/Titanium-6-6-2 Alloy System for the XM-785 Rotating Band**
 Shappirio, J. R., Calella, P. C., Eckart, D. W.
 Army Electronics Technology and Devices Lab., Fort Monmouth, NJ
 Research and Development Technical Report
 Rept No: DELET-TR-83-1, 16 pp., 1983 (AD-B074 322L)
 Key Words: TiAl, Ti-6Al-6V-2Sn, dissimilar joining, diffusion bonding

7. **Transient Liquid Phase Sintering of P/M Titanium**
 Patterson, B. R., Bates, C. F.
 Southern Research Institute, Birmingham, AL
 Six-Month Interim Report
 Rept No: SORI-EAS-82-C-5021, 74 pp., 1983 (AD-D124 462)
 Key Words: Ti-5Al-2.5Sn, Ti-6Al-6V-2Sn, density, sintering, net shape forming
8. Progress on Hot Isostatic Pressing of Titanium
Witt, R. H., Bruce, J. S.
SAMPE Qtrly 14 (4), 16-23, 1983 (AD-D127 815)
Key Words: Ti-6Al-6V-2Sn, aircraft structures, tensile properties, fatigue, fracture toughness, net shape forming

9. PM Technology Hitting New Highs
McIntyre, R. D.
Mater Eng 95 (4), 46-54, 1982 (AD-D124 504)
Key Words: RENE', IN-100, Ti-6Al-4V, Ti-6Al-6V-2Sn, coatings, phase transformation, net shape forming

10. Electron-Beam Welded HIP Structures
Witt, R. H.
Grumman Aerospace Corp., Bethpage, NY
Interim Progress Report Number One, Jun 80-Jun 81
Contract No: N00019-80-C-0034
27 pp., 1981 (AD-D122 136L)
Key Words: Ti-6Al-6V-2Sn, aircraft structures, particle size, net shape forming, welding

11. Diffusion Welding of Copper to Titanium by Hot Isostatic Pressing (HIP)
Isserow, Saul
Army Materials and Mechanics Research Center, Watertown, MA
Final Report
Rept No: AMMRC-TR-80-55, 14 pp., 1980 (AD-B055 418L)
Key Words: Ti-6Al-6V-2Sn, diffusion welding, cladding, copper coating

12. Characterization of the Tensile Properties of Hot Isostatically Pressed Ti-6Al-6V-2Sn
Dawson, D. B., Ulitchny, M. G.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Powder Metallurgy of Titanium Alloys, 115-26, 1980 (AD-D127 431)
Key Words: Ti-6Al-6V-2Sn, aging, annealing, tensile properties, transus temperature

13. Effect of Powder Particle Size and Hot Isostatic Pressing Temperature on the Properties of Ti-6Al-6V-2Sn
Smugeresky, J. E., Dawson, D. B.
The Metallurgical Society of AIME, Warrendale, PA
Key Words: Ti-6Al-6V-2Sn, fracture, tensile properties

14. Hot Isostatic Pressing of Near-Net Titanium Structural Parts
Witt, R. H., Highberger, W. T.
The Metallurgical Society of AIME, Warrendale, PA
Key Words: Ti-6Al-4V, Ti-6Al-6V-2Sn, aircraft structures, tensile properties, net shape forming, fracture toughness
15. Flight Qualification of Titanium F-14A Airframe Components Manufactured by Hot Isostatic Pressing (HIP)
Witt, R. H., Magnuson, J.
Grumman Aerospace Corp., Bethpage, NY
Final Report
Contract No: N00019-76-C-0143
111 pp., 1977 (AD-A048 485)
Key Words: Ti-6Al-6V-2Sn, microstructure, fracture, tensile properties, net shape forming, butt weld, fatigue

16. Recent Developments in the Titanium Industry
Herman, W. E., Kessler, H.
SAMPE Qtrly 9(1), 40-4, 1977 (AD-D111 268)
Key Words: Ti-6Al-4V, Ti-6Al-6V-2Sn, creep rupture, fracture toughness, fatigue, tensile properties

17. Near-Net Powder Metallurgy Airframe Structures
Witt, R. H.
Grumman Aerospace Corp., Advanced Materials and Processes Development, Bethpage, NY
10 pp., 1976 (AD-D110 193)
Key Words: Ti-6Al-4V, Ti-6Al-6V-2Sn, tensile properties, fatigue fracture toughness, density, cost

18. Manufacturing of Titanium Airframe Components by Hot Isostatic Pressing
Witt, R. H., Magnuson, J.
Grumman Aerospace Corp., Bethpage, NY
Final Report, Apr 74-Apr 75
Contract No: N00019-74-C-0301
90 pp., 1975 (AD-A014 130)
Key Words: Ti-6Al-4V, Ti-6Al-6V-2Sn, F-14 aircraft, microstructure, fracture toughness, annealing, fabrication, tensile properties

19. Microstructure and High Temperature Properties
Roberson, J. A., Adair, A. M., Lipsitt, H. A.
Aerospace Research Labs, Wright-Patterson AFB, OH
Final Report Nov 70-Nov 74
Rept No: ARL-75-0135, 6 pp., 1975 (AD-A014 241)
Key Words: Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-6V-2Sn, microstructure, hot working

20. The Evaluation of Ti-6Al-6V-2Sn Pre-Alloyed Powder Processing
Cook, C. S., Vaia, A. R.
Westinghouse Electric Corp., Research and Development Center, Pittsburgh, PA
Final Report
Rept No: AFML-TR-75-65, 146 pp., 1975 (AD-A015 730)
Key Words: Ti-6Al-6V-2Sn, microstructure, heat treatment, tensile properties, fracture surface

21. Development of Hot Isostatic Pressing Techniques for Producing High Quality Billet from Titanium Alloy Powder
Friedman, G.
Nuclear Metals Inc., Concord, MA
Final Report
Rept No: AFML-TR-75-9, 99 pp., 1975 (AD-A015 894)
Key Words: Ti-6Al-6V-2Sn, microstructure, extrusion, forging, tensile properties, fracture toughness, dimensional stability
22. Manufacturing of Titanium Airframe Components
Witt, R., Magnuson, J.
Grumman Aerospace Corp., Bethpage, NY
Contract No: N00019-74-C-0301,90 pp., 1975 (AD-D301 610)
Key Words: Ti-6Al-4V, Ti-6Al-6V-2Sn, net shape, fracture toughness

23. Coarse Powder Techniques
Widmer, R., Industrial Materials Technology Inc., Woburn, MA
Proc 18th Sagamore Army Materials Research Conf, Sagamore Conference Center,
Raquette Lake, NY, Aug-Sept 71
16 pp., 1971 (AD-181 534)
Key Words: IN-100, Maraging 300, X-45, MAR-M509, Hastelloy X, Udimet 710.
Alloy 713, Ti-6Al-6V-2Sn, microstructure, creep rupture, tensile properties

Ti-10V-2Fe-3Al

1. Powder Metallurgy of Titanium Alloys
Key Words: Ti-6Al-4V, Ti-10V-2Fe-3Al, microstructure, crack growth, fatigue,
fracture toughness, tensile properties, porosity, near net shape

2. The Role of Defect Size on the Fracture Toughness of Powder Processed
Ti-10V-2Fe-3Al
Moody, N.R., Garrison, W.M., Costa, J.E., Smugeresky, J.E.
Scr Metall 23 (7), 1147-50, 1989 (AD-D142 934)
Key Words: Ti-10V-2Fe-3Al, pore structure, defects, fracture toughness

3. HIP Compaction of Titanium Alloy Powders at High Pressure and Low Temperature
(HPLT)
Eylon, D., Froes, F. H.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Titanium, Rapid Solidification Technology, 273-89, 1986 (AD-)
Key Words: Ti-6Al-4V, Ti-10V-2Fe-3Al, rapid solidification, REP, tensile
properties, fatigue

4. Emerging Trends in Aerospace Materials and Processes
Chandler, H. E.
Metal Prog 125 (5), 21-9, 1984 (AD-D130 023)
Key Words: Ti-10V-2Fe-3Al, Ti-15V-3Cr-3Al-3Sn, steel, aircraft, net shape
forming, manufacturing

5. Powder Metallurgy of Ti-10V-2Fe-3Al
Boyer, R. R., Eylon, D., Yolton, C. F., Froes, F. H.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Titanium--Net Shape Technologies, 63-78, 1984 (AD-D134 593)
Key Words: Ti-10V-2Fe-3Al, microstructure, heat treatment, tensile
properties, fatigue stress

6. Recent Advancement in Titanium Near-Net Shape Technology
Chen, C. C.
J Met 34 (11), 30-5, 1982 (AD-D126 098)
Key Words: Ti-6Al-4V, Ti-10V-2Fe-3Al, net shape forming, cost
7. **New Titanium Alloys for Blended Elemental Powder Processing**
Smugeresky, J. E., Dawson, D. B.
Powder Technol 30 (1), 87-94, 1981 (AD-D122315)
Key Words: Ti-6Al-4V, Ti-10V-2Fe-3Al, Ti-6Al-6Zr-6Mo, Ti-6Al-6V-2Zr, tensile properties, microstructure, density

Miscellaneous Titanium Alloys

1. **Fatigue property Enhancement of Alpha-Beta Titanium Alloys by Blended Elemental P/M Approach**
Hagiwara, M., Kaieda, Y., Kawabe, Y., Miura, S.
Iron Steel Inst Jpn Inter 31 (8), 922-30, 1991
Key Words: IMI 829, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-4V, Corona-5 Ti-5Al-2Cr-1Fe, Ti-5Al-2.5Fe, microstructure, fatigue life crack initiation, tensile properties

2. **Plastic Deformation Behavior of Rapidly Solidified Ti-Y Alloys Below 700 C**
Perrier, C., Naka, S., Kubin, L. P.
Scr Metall 23 (4), 477-82, 1989 (AD-D140882)
Key Words: titanium alloys, yttrium addition, microstructure, grain boundaries, arc melting, rapid solidification, tensile properties, creep, aging

3. **High Temperature Rapidly Solidified Titanium Alloy Evaluation**
Anderson, R. E.
Pratt and Whitney, Engineering Div, West Palm Beach, FL
Interim Technical Report Feb-Apr 87
Rept No: P&W/ED/FR-19120-7, 19 pp., 1987 (AD-D138557L)
Key Words: Ti-6Al-2Sn-4Zr-6Mo, Ti-8Al-1Mo-1V, Ti-6Al-2Sn-4Zr-2Mo, microscopy, porosity, tensile properties

4. **Advanced Processing and Properties of High Performance Alloys**
Koss, D. A.
Department of Materials Science and Engineering, Pennsylvania State University,
University Park, PA
Technical Report Number Six
Contract No: N00014-86-K-0381
41 pp., 1987 (AD-A183566)
Key Words: titanium, Ti-10Al, AA 7075, AA 1100, erbium addition, porosity, voids, rapid solidification, fatigue, deformation, fracture mechanics

5. **Oxide-Dispersed Titanium Alloys Ti-Y Prepared with the Rotating Electrode Process**
Naka, S., Marty, M., Octor, H.
J Mater Sci 22 (3), 887-95, 1987 (AD-D137075)
Key Words: titanium alloys, yttrium addition, microstructure, oxide dispersion, strengthening, REP

6. **High Temperature RST Titanium Alloys**
Gigliotti, M. F., Scarr, G. K., Wasielewski, G. E.
General Electric Co., Aircraft Engine Group, Evendale, OH
Interim Technical Report Number Ten, Dec 85-Jan 86
Rept No: R86-AEB-211, 48 pp., 1986 (AD-D137192L)
Key Words: titanium alloys, aluminum addition, RST, tensile properties, creep test, rapid solidification, melt spinning, dispersion hardening
7. High Temperature Rapidly Solidified Titanium Alloy Evaluation
 Anderson, R. E.
 United Technologies Corp., Engineering Division, West Palm Beach, FL
 Interim Technical Report Aug-Oct 86
 Rept No : P&W/ED/FR-19120-5, 45 pp., 1986 (AD-D137 194L)
 Key Words: titanium alloys, aluminum addition, tin addition, zirconium
 addition, molybdenum addition, erbium addition, niobium
 addition, microscopy, tensile properties, rapid
 solidification

8. Mechanical Evaluation of Rapidly Solidified Titanium Alloys Containing Fine
 Dispersoids
 Gigliotti, M. F. X., Wasielewski, G. E., Rowe, R. G.
 The Metallurgical Society of AIME, Warrendale, PA
 Proc Symp Titanium, Rapid Solidification Technology, 141-51, 1986 (AD-D138 895)
 Key Words: alpha alloys, titanium alloys, rare earth dispersoids, tensile
 properties, creep, thermal exposure

9. Manufacturing Process for the Hot Isostatic Pressing of Large Titanium PM (Powder
 Metallurgy) Shapes
 Petersen, V. C., Chandhok, V. K., Moll, J. H.
 Colt Industries Inc., Crucible Materials Research Center, Pittsburgh, PA
 Final Report, Jun 77-May 85
 Rept No : AFWAL-TR-85-4120, 474 pp., 1985 (AD-B101 439L)
 Key Words: titanium alloys, crack propagation. fracture, weldability,
 toughness, machinability

10. Advanced Processing and Properties of High-Performance Alloys
 Koss, D. A.
 Department of Metallurgical Engineering, Michigan Tech University, Houghton
 Annual Technical Report Number Three
 Contract No : N00014-85-K-0427
 19 pp., 1985 (AD-A163 469)
 Key Words: Ti-6Al, AA 7075-T6, AA 1100, tensile properties, fatigue, rapid
 solidification

11. Strength and Reliability of Powder Metallurgically Produced IMI 685
 Borchert, B., Schmid, H., Wortmann, J.
 Deutsche Gesellschaft Metallik, Germany
 Proc 5th Int Conf Titanium, Titanium--Science and Technology
 1, 295-302, 1985 (AD-D135 669)
 Key Words: IMI 685, microstructure, crack propagation, tensile properties.
 fatigue

12. Emerging Trends in Aerospace Materials and Processes
 Chandler, H. E.
 Metal Prog 125 (5), 21-9, 1984 (AD-D130 023)
 Key Words: Ti-10V-2Fe-3Al, Ti-15V-3Cr-3Al-3Sn, steel, aircraft, net shape
 forming, manufacturing

13. Rapid Solidification Processing: Status and Facilities
 Author Anon
 National Materials Advisory Board (NAS-NAE), Washington DC
 Final Report
 Rept No : NMAB-401, 101 pp., 1982 (AD-B070 174L)
 Key Words: aluminum alloys, titanium alloys, melt spinning, test equipment
14. **Treatment Processes of Light and Heat Resistant Alloys**
Belov, A. F., Tselikov, A. I., Trishkin, V. G., Rakovskiy, V. S., Rykalin, N. N.
Foreign Technology Division, Wright-Patterson AFB, OH
Rept No: FTD-ID(RS)T-0412-82, 335 pp., 1982 (AD-B070 680L)
Key Words: aluminum alloys, titanium alloys, mechanical properties, fatigue, cracking

15. **Effects of Manufacturing Processes on Structural Allowables**
Jones, Dana J., Ford, S. C.
 Battelle Memorial Institute, Columbus, OH
Final Technical Report
Rept No: AFWAL-TR-82-4136, 168 pp., 1982 (AD-A122 963)
Key Words: Ti-6Al-4V, 10V2Fe3Al-Ti alloy, CT-91-TTE69 aluminum alloy, AF-1410 steel, extrusion, fracture toughness, creep rupture, stress corrosion, fatigue crack, tensile properties, compressive properties, thermal expansion, bearing strength

16. **Advanced Manufacturing Methods for High Quality, Low Cost Titanium Powder Production**
Peebles, R. E.
General Electric Co., Aircraft Engine Group, Evendale, OH
Interim Engineering Progress Report Number Six, Dec 80-Sep 81
Rept No: AFML-IR-189-7T(6), 38 pp., 1981 (AD-D122 327L)
Key Words: Ti-6Al-4V, Ti-5Al-2Sn-2Zr-4Cr-4Mo, REP, tensile properties, fracture toughness

17. **New Titanium Alloys for Blended Elemental Powder Processing**
Smugeresky, J. E., Dawson, D. B.
Powder Technol 30 (1), 87-94, 1981 (AD-D122 315)
Key Words: Ti-6Al-4V, Ti-10V-2Fe-3Al, Ti-6Al-6Zr-6Mo, Ti-6Al-6V-2Zr, tensile properties, microstructure, density

18. **HIPping the High-Performance Alloys**
Moll, J. H.
Mech Eng 103 (11), 56-61, 1981 (AD-D122 795)
Key Words: RENE’ 95, titanium alloys, tool steel, Udimet 700, IN-100, MERL 76, Waspaloy, turbine components, microstructure, tensile properties, stress intensity

19. **Investigation of Methods for the Production of High Quality, Low Cost Titanium Alloy Powders**
Peebles, R. E., Kelto, C. A.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Powder Metallurgy of Titanium Alloys, 47-58, 1980 (AD-D127 425)
Key Words: Ti-6Al-4V, Ti-17, microstructure, tensile properties, fatigue.

20. **Built-Up Low-Cost Advanced Titanium Structures (BLATS)**
Paez, C.
Grumman Aerospace Corp., Bethpage, NY
Third Quarterly Program Report Apr-Jul 78
Contract No: F33615-77-C-3109
61 pp., 1978 (AD-D113 509L)
Key Words: Ti-6Al-4V, Ti-15V-3Cr-3Al-3Sn, diffusion welding, superplastic forming, lap shear strength
21. **Advanced Manufacturing Methods for High Quality Low Cost Titanium Powder Production**
 Peebles, R. E.
 General Electric Co., Aircraft Engine Group, Evendale, OH
 Interim Engineering Report, May-Nov 78
 Rept No: AFML-IR-189-7T(4), 59 pp., 1978 (AD-D114 365L)
 Key Words: Ti-6Al-4V, Ti-5Al-2Sn-2Zr-4Cr-4Mo, isothermal process, forging, hydriding

22. **Consolidation of Titanium Powder to Near Net Shapes**
 Schwertz, J. H., Chandhok, V. K., Peterson, V. C., Thompson, V. R.
 Colt Industries Inc., Crucible Materials Research Center, Pittsburgh, PA
 Final Report
 Rept No: AFML-TR-78-41, 333 pp., 1978 (AD-A078 039)
 Key Words: Ti-6Al-4V, Ti-17, microstructure, fatigue, fracture, stress, Charpy impact, tensile properties, near net shape

23. **Built-Up Low-Cost Advanced Titanium Structures (BLATS)**
 Grumman Aerospace Corp., Bethpage, NY
 Third Technical Bulletin, Mar.-May 1978
 Contract No: F33615-77-C-3109
 9 pp., 1978 (AD-D113 232)
 Key Words: Ti-6Al-4V, Ti-6Al-2Zn-2Sn-2Mo-2Cr

24. **Built-Up Low-Cost Advanced Titanium Structures (BLATS)**
 Grumman Aerospace Corp., Bethpage, NY
 Contract No: F33615-77-C-3109
 9 pp., 1978 (AD-D113 510)
 Key Words: Ti-6Al-4V, Ti-6Al-2Zn-2Sn-2Mo-2Cr, welding, superplastic forming

25. **Powder Forging**
 Huppmann, W. J., Hirschvogel, M.
 Key Words: titanium alloys, aluminum alloys, nickel alloys, beryllium, porosity, plasticity, impact strength, tensile properties, fatigue, sintering, cost, preheating

26. **Soviet Activities in Iron and Titanium Powder Metallurgy**
 Marley, W. F., Jr.
 Metal Powder Industries Federation, Princeton, NJ
 P/M Ordnance Seminar, Powder Metallurgy in Defense Technology
 5 pp., 1978 (AD-D116 028)
 Key Words: Maraging 300, titanium alloys, shock loading, dispersion hardening, thermomechanical treatment
INTERMETALLIC COMPOUNDS

Ni(3)Al

1. **Powder Processing of Intermetallic Alloys and Intermetallic Matrix Composites**
 Stoloff, N. S., Alman, D. E.
 Key Words: Al(3)Ta, NiAl, Ni(3)Al, NbAl(3), TiAl, phase diagram, reactive sintering, densification, injection molding, reaction milling, mechanical alloying, Charpy impact, tensile properties

2. **High Temperature Deformation Behavior of the Ni(3)Al Compacts Produced by Hot Pressing of Mechanically Alloyed Powder**
 Esaki, H., Tokizane, M.
 Key Words: Ni(3)Al, mechanical alloying, ball milling, compressive properties, strain rate sensitivity, dynamic recrystallization

3. **Modelling of Hipping Consolidation Applied to Ni(3)Al Powders**
 Wright, R. N., Williamson, R. L., Knibloe, J. R.
 Powder Metall 33 (3), 253-9, 1990
 Key Words: Ni(3)Al, Ni-19 at pct Al-8.5 at pct Cr, grain boundary diffusion, creep, tensile properties, atomization

4. **Intermetallic Compounds and Their Powder Metallurgy Materials**
 Ni, R., Sun, Yuan
 Foreign Technology Division, Wright-Patterson AFB, OH
 P/M Technology (Fenmo Ycjin Jishu)
 Rept No : FTD-ID(RS)-T-1058-90, 7 (4), 253-61, 1989 (AD-A237176)
 Key Words: Ni(3)Al, turbine components, corrosion resistance, tensile properties, rapid solidification, grain growth, coatings

5. **Ni(3)Al-Base Alloys Processed by Rapid Solidification**
 Huang, S. C., Chang, K. M., Taub, A. I.
 Met Powder Rept 43 (2), 92-5 1988 (AD-D138 292)
 Key Words: Ni(3)Al, boron addition, atomization, tensile properties

6. **Hot Isostatic Pressing of Nickel Aluminide Powders**
 Wright, R. N., Flinn, J. E.
 EG & G Idaho Inc., Idaho Falls, ID
 Technical Report
 Rept No : EGG-MG-7986, DE88 009677, 31 pp., 1988 (AD-D141 721)
 Key Words: Ni(3)Al, microscopy, grain size, densification, flow stress, tensile properties

7. **High-Temperature Fatigue Crack Propagation in P/M Ni3Al-B Alloys**
 Chang, K. M., Huang, S. C., Taub, A. I.
 Materials Research Society, Pittsburgh, PA
 Key Words: Ni(3)Al, Ni-12Al-12Co, T144, grain size, fatigue, crack growth, oxidation, tensile properties, fracture surface

159
8. High Cycle Fatigue in Polycrystalline Ni(3)Al+B
Fuchs, G. E., Stoloff, N. S.
Scr Metall 21 (6), 863-8, 1987 (AD-D137 117)
Key Words: Ni(3)Al, fracture, crack propagation, fatigue, tensile properties

9. Effects of Processing and Impurities on the Elevated Temperature Ductility Loss in Rapidly Solidified Ni (3)Al-B
Iaub, A. I., Chang, K. W., Huang, S. C.
ASM International, Metals Park, OH
Proc Conf Rapidly Solidified Mater, 297-302, 1986 (AD-D139 047)
Key Words: Ni(3)Al, plasma deposition, melt spinning, tensile properties

NiAl

1. HIP and Sinter-HIP of Ternary Nickel Aluminide (NiAl)-X alloys
Kaysser, W. A., Laag, R., Murray, J. C., Petzow, G.
Elsevier, London, UK
Key Words: NiAl, gas atomization, sintering, microstructure, density, grain size, tensile properties, fracture path, fracture toughness, hardness, titanium additions, niobium additions

2. Consolidation of Nickel Aluminide Powders Using Hot Isostatic Pressing
Wright, R. N., Knibloe, J. R., Noebe, R. D.
Key Words: NiAl, density, HIP maps, diffusion

3. Fabrication of Dense Nickel Aluminide Monolithic and Composite Bodies by Combined Self Propagating High Temperature Synthesis and In Situ Containerless Hot Isostatic Pressing
Concannon, M., Hodge, E. S., Nyce, A. C., Turmel, C. P.
Materials Research Society, Pittsburgh, PA
Key Words: NiAl, boron addition, density, tensile properties, hardness

4. A Comparative Study on the Influence of Nb and Ti Additions to Different Processed Atomized NiAl Powders
Laag, R., Kaysser, W. A., Petzow, G.
Materials Research Society, Pittsburgh, PA
Key Words: NiAl, niobium addition, titanium addition, microstructure, grain size, impurities, fracture surface, intergranular fracture, transgranular fracture, fracture toughness, creep, hardness, elastic modulus, tensile properties, melting point, Poisson’s ratio

5. Powder Processing of Intermetallic Alloys and Intermetallic Matrix Composites
Stoloff, N. S., Alman, D. E.
Key Words: Al(3)Ta, NiAl, Ni(3)Al, NbAl(3), TiAl, phase diagram, reactive sintering, densification, injection molding, reaction milling, mechanical alloying, Charpy impact, tensile properties
6. **Powder Processing of High Temperature Aluminides**

German, R.M., Bose, A., Stoloff, N.S.
Materials Research Society, Pittsburgh, PA
Proc Symp High-Temperature Ordered Intermetallic Alloys III
133, 403-14, 1989 (AD-D143 438)
Key Words: NiAl, TiAl, NbAl(3), Ta(2)Al(4), TaAl(3), microstructure, tensile properties

7. **Microstructures and Mechanical Behavior of Mechanically Alloyed Nickel Aluminide**

Wang, J. S. C., Donnelly, S. G., Godavarti, P., Koch, C. C.
Key Words: NiAl, microstructure, grain refinement, consolidation, mechanical alloying, tensile properties, fracture, creep

8. **High Temperature Intermetallics by Powder Processing**

Bose, A., Moore, B., Stoloff, N.S., German, R.M.
MPR Publishing Services Ltd., Bellstone, Shrewsbury, UK
Key Words: NiAl, Nb(3)Al, phase diagram, elongation, tensile properties

9. **Modern Powder Metallurgy Science and Technology**

Lawley, A., J Met 38 (8), 15-25, 1986 (AD-D136 435)
Key Words: NiAl, IN-100, MAR-M509, RENE' 95, AA 2024-T6, consolidation, REP, tensile properties, impact toughness

10. **P/M Processing of Intermetallic Compounds of CsCl Type for High Temperature Applications**

Vedula, K., Anderson, G., Pathare, V., Aslandis, I.
Metal Powder Industries Federation, Princeton, NJ
Proc Int Powder Metallurgy Conf, Modern Developments in Powder Metallurgy
16, 717-44, 1985 (AD-D138 357)
Key Words: FeAl, NiAl, hot extrusion, creep, compressive properties

Ti(3)Al

1. **Microstructure and Mechanical Properties of HIPed compacts of Mechanically Alloyed Titanium-Aluminum Powder**

Park, Y. H., Hashimoto, H., Watanabe, R., Ahn, J. H., Chung, H. S.
Key Words: TiAl, Ti(3)Al, Al(3)Ti, mechanical alloying, ball milling, microstructure, mechanical properties, microhardness

2. **Synthesis of Titanium Aluminide (TiAl) Intermetallic Compounds by HIP-Reaction Sintering**

Kakitsuji, A., Miyamoto, H., Elsevier, London, UK
Key Words: TiAl, Ti(3)Al, reaction sintering, microstructure, grain size

3. **P/M Processing of Titanium Aluminides**

Key Words: Ti(3)Al, Ti-25Al-10Nb-3V-1Mo, Ti-6Al-2Sn-4Zr-2Mo, Ti-48 at pct Al-1 at pct V, microstructure, particle size, tensile properties, stress rupture, plasma spraying

161
4. Influence of Metallurgical Methods on the Properties of Ti(3)Al

Proc Int Conf Titanium 1990, Products and Applications, 1, 170-9, 1990 (AD-D144 273)

Key Words: Ti(3)Al, microstructure, porosity, corrosion, oxidation, grain growth, compressive properties, tensile properties, creep, elastic modulus

5. Improved Toughness Alloys Based on Titanium Aluminides

Blackburn, M. J., Smith, M. P.
Pratt and Whitney Aircraft Group, West Palm Beach, FL
Final Report
Rept No: PW-FR-20760, 222 pp., 1989 (AD-A218 149)

Key Words: Ti(3)Al, turbine components, niobium addition, molybdenum addition, lanthanum addition, erbium addition, cerium addition, rapid solidification, thermomechanical treatment, fracture toughness, impact strength, tensile properties, creep rupture, fatigue

TiAl

1. Microstructure and Mechanical Properties of HIPed compacts of Mechanically Alloyed Titanium-Aluminum Powder

Park, Y. H., Hashimoto, H., Watanabe, R., Ahn, J. H., Chung, H. S.

Key Words: TiAl, Ti(3)Al, Al(3)Ti, mechanical alloying, ball milling, microstructure, mechanical properties, microhardness

2. Phase Transformation Effects During HIP of Titanium Aluminide (TiAl).

Schaefer, R. J., Janowski, G. M.
Acta Metall Mater 40 (7), 1645-51, 1992

Key Words: TiAl, phase transformation, densification

3. Synthesis of Titanium Aluminide (TiAl) Intermetallic Compounds by HIP-Reaction Sintering

Kakitsuji, A., Miyamoto, H.
Elsevier, London, UK
Proc 3rd Int Conf Hot Isostatic Pressing: Theory Appl 295-300, 1992

Key Words: TiAl, Ti(3)Al, reaction sintering, microstructure, grain size

4. Powder Processing of Intermetallic Alloys and Intermetallic Matrix Composites

Stoloff, N. S., Alman, D. E.

Key Words: Al(3)Ta, NiAl, Ni(3)Al, NbAl(3), TiAl, phase diagram, reactive sintering, densification, injection molding, reaction milling, mechanical alloying, Charpy impact, tensile properties

5. Novel P/M Processing of Intermetallic Compound Using Amorphous TiAl

Kimura, H., Kobayashi, S.
The Japan Institute of Metals, Sendai, Japan
Proc Intermetallic Compounds-Structure and Mechanical Properties (JIMIS-6) 985-9, 1991

Key Words: TiAl, amorphous alloy, hardness, processing, microstructure
6. **Formability of Hiped TiAl at Elevated Temperatures**
Bolt, P. J., Horihata, M., Ohuchi, K., Sano, T., Matsuno, K.
The Japan Institute of Metals, Sendai, Japan
Proc Intermetallic Compounds-Structure and Mechanical Properties (JIMIS-6)
953-7, 1991
Key Words: TiAl, compressive properties, three point bend, self-propagating high-temperature synthesis

7. **Microstructure and Mechanical Properties of Reactive Hot Isostatic Pressed TiAl Powder Material**
Smarsly, W. G., Dahms, M.
The Japan Institute of Metals, Sendai, Japan
Proc Intermetallic Compounds-Structure and Mechanical Properties (JIMIS-6)
947-52, 1991
Key Words: TiAl, aerospace applications, microstructure, hardness, tensile properties, bend test

8. **Processing and Properties of Gamma Titanium Aluminide Sheet Produced from Prep Powder**
Ohls, M. A., Nachtrab, W. T., Roberts, P. R.
Metal Powder Industries Federation, Princeton, NJ
Key Words: TiAl, materials comparison, PREP, microstructure, tensile properties

Tokizane, M., Isonishi, K., Kido, S.
PM Into the 1990's 2, 53-6, 1990
Key Words: TiAl, ball milling compressive properties, microstructure

10. **Processing of TiAl Structural Parts by Reaction HIP of Precompacted Elemental Powders**
Key Words: TiAl, structural parts, airframes, turbine components, extrusion, reactive hipping

11. **Mechanical Properties of Sintered TiAl Prepared by Canning Hipping**
Key Words: TiAl, grain size, impurities, crack growth, fracture surface, compressive properties, three point bend, bend strength, work hardening

12. **Powder Processing of High Temperature Aluminides**
German, R.M., Bose, A., Stoloff, N.S.
Materials Research Society, Pittsburgh, PA
Proc Symp High-Temperature Ordered Intermetallic Alloys III
133, 403-14, 1989 (AD-D143 438)
Key Words: NiAl, TiAl, NbAl(3), Ta(2)Al(4),TaAl(3), microstructure, tensile properties

13. **Powder Metallurgy of Titanium Aluminides**
Moxson, V. S., Friedman, G. I.
Met Powder Rept 43 (2), 88-91, 1988 (AD-D138 291)
Key Words: TiAl, microstructure, fracture, tensile properties, REP, bimetal joining
14. Microstructure and Mechanical Properties of Sintered TiAl
Nakamura, M., Kaieda, Y.
Powder Metall 31 (3), 201-9, 1988 (AD-D140 014)
Key Words: TiAl, microstructure, compressive properties, hardness, sintering, atomization, bend properties

15. Consolidation of Rapidly Solidified Intermetallic Powders Using the Ceracon (R) Process
J Mater Shaping Technol 6 (2), 125-32, 1988 (AD-D140 650)
Key Words: TiAl, microstructure, phase diagram, consolidation, REP, rapid solidification

16. Powder Metallurgy of Titanium Aluminide Components
Yolton, C. F., Lizzi, T., Chandhok, V. K., Moll, J. H.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Titanium, Rapid Solidification Technology 263-71, 1986 (AD-D138 900)
Key Words: TiAl, turbine components, creep rupture, tensile properties, plastic deformation

17. Alloys Based on NiAl for High Temperature Applications
Vedula, K., Pathare, V., Aslandis, L., Titran, R. H.
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH
Technical Memorandum
Rept No: NASA-TM-86976, 13 pp., 1984 (AD-D134 342)
Key Words: TiAl, grain size, strengthening, flow stress, compressive properties, hot extrusion

18. Intermetallic Phases in the Copper/Titanium-6-6-2 Alloy System for the XM-785 Rotating Band
Shappirio, J. R., Calella, P. C., Eckart, D. W.
Army Electronics Technology and Devices Lab., Fort Monmouth, NJ
Research and Development Technical Report
Rept No: DELET-TR-83-1, 16 pp., 1983 (AD-B074 322L)
Key Words: TiAl, Ti-6Al-6V-2Sn, dissimilar joining, diffusion bonding

Miscellaneous Intermetallic Compounds

1. Microstructure and Mechanical Properties of HIPed compacts of Mechanically Alloyed Titanium-Aluminum Powder
Park, Y. H., Hashimoto, H., Watanabe, R., Ahn, J. H., Chung, H. S.
Key Words: TiAl, Ti(3)Al, Al(3)Ti, mechanical alloying, ball milling, microstructure, mechanical properties, microhardness

2. HIP Consolidation of Aluminum-Rich Intermetallic Alloys and Their Composites
Frazier, W. E., Donnellan, M. E.
Naval Air Warfare Center, Aircraft Div, Warminster, PA
NAWCADWAR-92003-60, 28 pp., 1992 (AD-A251 429)
Key Words: Al(3)Ti, aircraft structures, tensile properties, crystal structure, copper addition, melting point

164
3. Microstructure and Tensile Properties of Fe(3)AI Produced by Combustion Synthesis/Hot Isostatic Pressing
Rabin, B. H., Wright, R. N.
TMS, Warrendale, PA
Metall Trans 23A, 35-40, 1992
Key Words: Fe(3)AI, tensile properties, microstructure, combustion synthesis

4. Intelligent Hip Processing of Intermetallic Alloys
Naval Air Warfare Center, Warminster, PA
Quarterly Progress Report Number One
Contract No.: N62269-91-C-0247
Rept No.: BDM/VAS-0746-91-TR, 15 pp., 1991 (AD-B161960)
Key Words: intermetallic compounds, turbine components, processing, microstructure, densification, near net shape forming, finite element analysis, control systems

5. Microstructure Control of Titanium Aluminide Powder Compacts by Thermochemical Processing
Apgar, L. S., Eylon, D.
Iron Steel Inst Jpn Inter 31 (8), 915-21, 1991
Key Words: Ti-24Al-11Nb, microstructure, PREP, thermomechanical treatment, hydrogenation, phase diagram, superplasticity

6. Structure and Some Properties of Electrolytic Powdered Intermetallics of Titanium and Iron
Zarubitskaya, L. I., Korobka, Yu. V.
Plenum Press, New York, NY
Sov Powder Metall Met Ceram 30 (3), 167-8, 1991
Key Words: TiFe, hydrogen power generation, sintering, electrolytic powder, hydrogen capacity

7. Powder Processing of Intermetallic Alloys and Intermetallic Matrix Composites
Stoloff, N. S., Alman, D. E.
Key Words: Al(3)Ta, NiAl, Ni(3)Al, NbAl(3), TiAl, phase diagram, reactive sintering, densification, injection molding, reaction milling, mechanical alloying, Charpy impact, tensile properties

8. Intrinsic Second-Phase Particles in Powder-Processed MoSi(2)
Cotton, J. D., Kim, Y. S., Kaufman, M. J.
Key Words: MoSi(2), hot pressing, arc melting, inclusions, fracture grain growth, carbon addition

9. Reactive Sintering and Reactive Hot Isostatic Pressing of Iron Aluminides
Bose, A., Page R. A., Misislek, W., German, R. M.
Key Words: Fe(3)AI, density, powder size, sintering temperature

10. P/M Processing of Titanium Aluminides
Moll, John H., Yolton, C. F., McTierman, B. J.
Key Words: Ti(3)Al, Ti-25Al-10Nb-3V-1Mo, Ti-6Al-2Sn-4Zr-6Mo, Ti-48 at pct Al-1 at pct V, microstructure, particle size, tensile properties, stress rupture, plasma spraying
11. Densification of Rapidly Solidified Titanium Aluminide Powders-II. The Use of a Sensor to Verify Hipping Models
Choi, B. W., Marschall, J., Deng, Y. G., McCullough, C., Paden, B., Mehrabian, R.
Acta Metall Mater 38 (11), 2245-52, 1990 (AD-D144 155)
Key Words: Ti-48 at pct Al-2.5 at pct Nb, Ti-50 at pct Al-2 at pct Nb, atomization, density, densification, rapid solidification, REP

12. Densification of Rapidly Solidified Titanium Aluminide Powders-I. Comparison of Experiments to Hiping Models
Choi, B. W., Deng, Y. G., McCullough, C., Paden, B., Mehrabian, R.
Acta Metall Mater 38 (11), 2225-43, 1990 (AD-D144 154)
Key Words: Ti-48 at pct Al-2.5 at pct Nb, Ti-50 at pct Al-2 at pct Nb, atomization, particle size, grain size, consolidation, rapid solidification, REP, density

13. Fabrication of the DO(22)-Type Intermetallic Compound AI3Ta via Powder Metallurgy Processes and its Characterization
Pak, H. R., Pak, J. S. L., Rigsbee, J. M., Wayman, C. M.
Mater Sci Eng A 128 (1), 129-39, 1990 (AD-D144 120)
Key Words: Al(3)Ti, aluminum, tantalum, crystal structure, lattice parameters, phase diagram, density, dislocations, grain boundaries, deformation, fabrication

14. Fabrication of Intermetallic Compounds by Solid State Reaction of Roll-Bonded Materials
Fishman, S. G., Martin Marietta Astronautics Group, Denver, CO
Rept No: MCR-85-721, 6 pp., 1990 (AD-A229 386)
Key Words: Ti(2)Be(17), TiBe(12), microstructure, fracture surface, tensile properties, foil, roll bonding, fabrication

15. Modelling of Hipping Consolidation Applied to Ni(3)Al Powders
Wright, R. N., Williamson, R. L., Knibloc, J. R.
Powder Metall 33 (3), 253-9, 1990
Key Words: Ni(3)Al, Ni-19 at pct Al-8.5 at pct Cr, grain boundary diffusion, creep, tensile properties, atomization

16. Powder Processing of High Temperature Aluminides
German, R.M., Bose, A., Stoloff, N.S.
Materials Research Society, Pittsburgh, PA
Proc Symp High-Temperature Ordered Intermetallic Alloys III 133, 403-14, 1989 (AD-D143 438)
Key Words: NiAl, TiAl, NbAl(3), Ta(2)Al(4), TaAl(3), microstructure, tensile properties

17. High Temperature Intermetallics by Powder Processing
Bose, A., Moore, B., Stoloff, N.S., German, R. M.,
MPR Publishing Services Ltd., Bellstone, Shrewsbury, UK
Key Words: NiAl, Nb(3)Al, phase diagram, elongation, tensile properties

18. Effect of Hydrostatic Pressure on the Sintering Behavior and Density of Blended Elemental TiNi Compacts
Uehara, S., Sasano, H., Kaieda, Y., Suzuki, T.
Powder Metall Int 17 (5), 229-32, 1985 (AD-D134 086)
Key Words: TiNi, microstructure, microprobe analysis, martensitic transformation, density
19. **P/M Processing of Intermetallic Compounds of CsCl Type for High Temperature Applications**
Vedula, K., Anderson, G., Pathare, V., Aslandis, I.
Metal Powder Industries Federation, Princeton, NJ
Key Words: FeAl, NiAl, hot extrusion, creep, compressive properties

20. **Progress of Powder Metallurgy in North America**
Roll, K.H., Johnson, P.K.
Key Words: copper, iron, Inconel 625, AISI 316L, M-2, NiFe, rapid solidification, injection molding

21. **The Effect of Grain Size on the High Temperature Plastic Deformation of Nb(3)Sn**
Clark, J. B., Hopple, G. B., Wright, R. N.
Key Words: Nb(3)Sn, compressive properties, grain size, creep, plastic deformation, activation energy

22. **Materials Research for Advanced Inertial Instrumentation. Task 3. Rare Earth Magnetic Material Technology as Related to Gyro Torquers and Motors**
Das, D., Kumar, K.
Charles Stark Draper Lab Inc., Cambridge, MA
Technical Report
Rept No: CSDL-R-1614, TR-5, 73 pp., 1982 (AD-A126 982)
Key Words: SmCo(5), plasma spraying, sintering, arc spraying

23. **Materials Research for Advanced Inertial Instrumentation, Task 3: Rare Earth Magnetic Material Technology as Related to Gyro Torquers and Motors**
Das, D., Kumar, K., Wettstein, E.
Charles Stark Draper Lab Inc., Cambridge, MA
Research Report
Rept No: CSDL-R-1529, TR-4, 70 pp., 1981 (AD-A114 955)
Key Words: Sm(5)Co, thermal expansion, x-ray diffraction, plasma deposition

24. **Rolling, Forming and Joining Titanium-Aluminide Sheet**
Battelle Memorial Institute, Columbus, OH
Final Report
Rept No : AFML-TR-78-59, 130 pp., 1978 (AD-B031 214)
Key Words: Ti-16Al-10Nb, Ti-12Al-19Nb, Ti-13Al-20Nb, Ti-36Al-5Nb, Ti-32Al-5Nb-5W, rolling, superplastic forming, joining, tensile properties, hardness, fatigue, creep test, bend test
REFRACTORY METALS AND ALLOYS

Molybdenum Alloys

1. Structure and Mechanical Properties of Mo-ZrO(2) Materials Densified by HIP
Muramatsu, Y., Funami, K., Halada, K., Hoshimoto, K.
J Jpn Inst Met 52 (8), 803-9, 1988 (AD-D139 796)
Key Words: Molybdenum alloys, microstructure, flexural properties, fracture toughness, transformation toughening

2. Sintering Behavior and Mechanical Properties of Activated Sintered Molybdenum
Hofmann, H., Grosskopf, M., Hofmann-Antenbrink, M., Petzow, G.
Powder Metall 29 (3), 201-6, 1986 (AD-D135 749)
Key Words: molybdenum alloys, nickel addition, microstructure, bend properties

3. New Powder Technologies for Molybdenum Alloy Gun Barrel Liners
Barranco, J. M., Isserow, S.
Large Caliber Weapon Systems Lab, Army Armament and Development Center, Watervliet, NY
Final Technical Report
Rept No : ARLCB-TR-85017, 42 pp., 1985 (AD-A158 315)
Key Words: gun barrels, REP, erosion resistance, hardness, bend test, tensile properties, creep rupture, compressive properties, fracture, molybdenum alloys

4. The Densification of Molybdenum and Molybdenum Alloy Powders Using Hot Isostatic Pressing
Barranco, J., Ahmad, I., Isserow, S., Warenchak, R.
Large Caliber Weapon Systems Lab, Army Armament and Development Center, Watervliet, NY
Final Technical Report
Rept No : ARLCB-TR-85025, 66 pp., 1985 (AD-A159 886)
Key Words: gun barrels, microscopy, compressive properties, REP, fracture, plasma deposition, molybdenum alloys

5. Reduced Grain Boundary Mobility and the Sintering of Molybdenum
German, R. M.
Rensselaer Observatory, Troy, NY
Final Report
Contract No : DAAG29-81-K-0152
12 pp., 1984 (AD-A140 265)
Key Words: molybdenum alloys, nickel addition, grain boundaries, liquid sintering

6. Processing: The Rediscovered Dimension in High Temperature Alloys
Semchysken, M.
Standardization News 4 (4), 9-19, 1976 (AD-D110 676)
Key Words: Inconel 718, RENE' 80, AISI 4140, Udiment 700, TZM, IN-738, Waspaloy, remelting, alloying, creep rupture
7. **Interdiffusion Behavior of Tungsten or Rhenium and Group V and VI Elements and Alloys of the Periodic Table-Part II (Appendices)**

Arcella, F. G., Westinghouse Astronuclear Lab, Pittsburgh, PA
Rept No: WANL-M-FR-74-005, 147 pp., 1974 (AD-D100 713)

Key Words: Nb-1Zr, W-30Re-20Mo, Mo-50Re, T-111, Ta-10W, niobium, tungsten, tantalum, porosity, dissimilar joining, weldability, fracture mechanics, cracking, degradation, diffusivity, interdiffusion

Niobium and Niobium Alloys

1. **Rapid Solidification Processing of Niobium Alloys**

Jha, S. C., Ray, R.
Met Powder Rept 43 (2), 96-9, 1988 (AD-D138 293)

Key Words: Nb-1OHf, WC-103, microstructure, grain size, dispersoids, tensile properties

2. **Alternate Processing Concepts for P/M Columbium Alloys**

Friedman, G. I.
TRW Inc., Materials Technology, Cleveland, OH
Rept No: TRW-ER-8249-F, 43 pp., 1983 (AD-B077 405L)

Key Words: C-103, niobium alloys, forging, tensile properties welding, scrap reclaimation

3. **Pressing of Powder Materials (Selected Pages)**

Umanskiy, A. M.
Foreign Technology Division, Wright-Patterson AFB, OH
Rept No: FTD-ID(RS)T-1399-81, 31 pp., 1982 (AD-B062 478L)

Key Words: tungsten alloys, niobium alloys, steels, press forging, density, shrinkage

4. **Creep Behavior of Hot Isostatically Pressed Niobium Alloy Powder Compacts**

Wadsworth, J., Robert, C. A., Rennhack, E. H.
J Mater Sci 17 (9), 2539-46, 1982 (AD-D125 985)

Key Words: C-103, microstructure, creep, tensile properties

5. **Interdiffusion Behavior of Tungsten or Rhenium and Group V and VI Elements and Alloys of the Periodic Table-Part I**

Arcella, F. G.
Westinghouse Astronuclear Lab, Pittsburgh, PA
Rept No: WANL-M-FR-74-005, 248 pp., 1974 (AD-D100 645)

Key Words: tantalum, niobium, tungsten, T-111, rhenium, dissimilar joining, electron beam welding, pressure bonding, interdiffusion, voids, aging, mathematical model, niobium alloys

6. **Interdiffusion Behavior of Tungsten or Rhenium and Group V and VI Elements and Alloys of the Periodic Table-Part II (Appendices)**

Arcella, F. G.
Westinghouse Astronuclear Lab, Pittsburgh, PA
Rept No: WANL-M-FR-74-005, 147 pp., 1974 (AD-D100 713)

Key Words: Nb-1Zr, W-30Re-20Mo, Mo-50Re, T-111, Ta-10W, niobium, tungsten, tantalum, porosity, dissimilar joining, weldability, fracture mechanics, cracking, degradation, diffusivity, interdiffusion
Tantalum and Tantalum Alloys

1. **Properties of Hot Isostatically Pressed Tantalum**
 Boncoeur, M., Valin, F., Raisson, G., Michaud, H.
 Elsevier, London, UK
 Key Words: tantalum, microstructure, mechanical properties, electron beam melting, near net shape

2. **Fabrication of the \(\text{D0}(22) \)-Type Intermetallic Compound \(\text{Al}_3\text{Ta} \) via Powder Metallurgy Processes and its Characterization**
 Pak, H. R., Pak, J. S. L., Rigsbee, J. M., Wayman, C. M.
 Mater Sci Eng A A128 (1), 129-39, 1990 (AD-D144 120)
 Key Words: \(\text{Al}(3)\text{Ti} \), aluminum, tantalum, crystal structure, lattice parameters, phase diagram, density, dislocations, grain boundaries, deformation, fabrication

3. **Hot Isostatic Processing**
 Hanes, H. D., Seifert, D. A., Watts, C. R.
 Metals Information Analysis Center, West Lafayette, IN
 Rept No: MCIC-77-34, 101 pp., 1977 (AD-A049 227)
 Key Words: T-111, Ti-6Al-4V, AA A356-T61, IN-738, RENE' 80, Udimet 700, IN-792, welding, tensile properties, pressure bonding

4. **Interdiffusion Behavior of Tungsten or Rhenium and Group V and VI Elements and Alloys of the Periodic Table-Part I**
 Arcella, F. G.
 Westinghouse Astronuclear Lab, Pittsburgh, PA
 Final Report
 Rept No: WANL-M-FR-74-005, 248 pp., 1974 (AD-D100 645)
 Key Words: tantalum, niobium, tungsten, T-111, rhenium, dissimilar joining, electron beam welding, pressure bonding, interdiffusion, voids, aging, mathematical model, niobium alloys

5. **Interdiffusion Behavior of Tungsten or Rhenium and Group V and VI Elements and Alloys of the Periodic Table-Part II (Appendices)**
 Arcella, F. G.
 Westinghouse Astronuclear Lab, Pittsburgh, PA
 Final Report
 Rept No: WANL-M-FR-74-005, 147 pp., 1974 (AD-D100 713)
 Key Words: Nb-1Zr, W-30Re-20Mo, Mo-50Re, T-111, Ta-10W, niobium, tungsten, tantalum, porosity, dissimilar joining, weldability, fracture mechanics, cracking, degradation, diffusivity, interdiffusion

Tungsten and Tungsten Alloys

1. **Hot Isostatic Pressing and Sintering Behavior of Yttrium Oxide Dispersed Tungsten**
 Ishiwata, Y., Itoh, Y., Kashiwaya, H.
 Elsevier, London, UK
 Key Words: tungsten, yttrium oxide addition, sintering, density, bend strength

171
2. **Pressing of Powder Materials (Selected Pages)**
Umanskiy, A. M.
Foreign Technology Division, Wright-Patterson AFB, OH
Rept No: FTD-ID(RS)T-1399-81, 31 pp., 1982 (AD-B062 478L)
Key Words: tungsten alloys, niobium alloys, steels, press forging, density, shrinkage

3. **Processing and Characterization of Several Tungsten Alloys**
Hall, R. C., Ossin, A., Ammon, R. L., Buckman, R. W., Aronin, L.
Proc 20th National SAMPE Symp and Exhibition, 13 pp., 1975 (AD-D107 039)
Key Words: W-10Cu, W-2ThO2, W-4Re, W-0.5HfC, turbine components, leading edges, microstructure, tensile properties, thermal properties

4. **Interdiffusion Behavior of Tungsten or Rhenium and Group V and VI Elements and Alloys of the Periodic Table-Part I**
Arcella, F. G.
Westinghouse Astronuclear Lab, Pittsburgh, PA
Final Report
Rept No : WANL-M-FR-74-005, 248 pp., 1974 (AD-D100 645)
Key Words: tantalum, niobium, tungsten, T-111, rhenium, dissimilar joining, electron beam welding, pressure bonding, interdiffusion, voids, aging, mathematical model, niobium alloys

5. **Interdiffusion Behavior of Tungsten or Rhenium and Group V and VI Elements and Alloys of the Periodic Table-Part II (Appendices)**
Arcella, F. G.
Westinghouse Astronuclear Lab, Pittsburgh, PA
Final Report
Rept No : WANL-M-FR-74-005, 147 pp., 1974 (AD-D100 713)
Key Words: Nb-1Zr, W-30Re-20Mo, Mo-50Re, T-111, Ta-10W, niobium, tungsten, tantalum, porosity, dissimilar joining, weldability, fracture mechanics, cracking, degradation, diffusivity, interdiffusion

6. **Carbide Tools for Cold Extrusion**
Kennicott, W. L.
Met Eng Qtrly 13 (2), 15-8, 1973 (AD-181 411)
Key Words: tungsten alloys, compressive properties, creep rupture, fatigue, tooling
MISCELLANEOUS POWDER ALLOYS

1. The Densification of Powders by Power-Lab Creep During Hot Isostatic Pressing
 Duva, J. M., Crow, P. D.
 Acta Metall Mater 40 (1), 31-5, 1992
 Key Words: creep, densification, porosity, finite element analysis

2. Technology of HIPing Complex Shape Parts With Dual Chemical Composition and
 Properties from Metal Powders: Trends of Its development in the USSR
 Kratt, E. P., Samarov, V. N., Khaikin, R. A.
 Elsevier, London, UK
 Key Words: applications

3. Die Forging of Powder Materials Under Conditions of High Hydrostatic Pressure
 Bondarev, A. A., Yermanok, M. Z., Sobolyev, Yu. P.
 Foreign Technology Division, Wright-Patterson AFB, OH
 Rept No: FTD-ID(RS)T-0342-85, 14 pp., 1985 (AD-B997 2701)
 Key Words: mechanical properties, plastic deformation, extrusion, heat treatment

4. Progress of Powder Metallurgy in North America
 Roll, K.H., Johnson, P.K.
 Key Words: copper, iron, Inconel 625, AISI 316L, M-2, NiFe, rapid solidification, injection molding

5. Al and Mg Alloys for Aerospace Applications Using Rapid Solidification and Powder
 Metallurgy Processing
 Fraser, H. L.
 Department of Materials Science and Engineering, Illinois University at Urbana
 Annual Technical Report Number Two
 Rept No : AFOSR-TR-87-1584, 89 pp., 1981 (AD-A187 953)
 Key Words: AI-8Fe-2Mo, Mg-20Gd, Mg-1Si, Mg-2Si, Mg-3Si, Mg-4Si, Mg-5Si,
 Mg-8Si, Mg-5Li, Mg-12Li, Mg-5Li-5Si, Mg-8Li-5Si, Mg-12Li-5Si,
 aerospace applications, rapid solidification, melt spinning,
 tensile properties, precipitation, solution heat treatment

6. A Retrospective View of Metallurgy During the 25 Years of the Gillett Lectures
 Jaffee, R. I.
 Key Words: AISI 316, Ti-6Al-4V, titanium, zirconium, hafnium, embrittlement,
 fracture mechanics

7. HIP Fabrication of Experimental Mirror Substructure
 Mueller, J. J.
 The Royal Society, London, UK
 Proc 4th Int Conf Beryllium Paper No. 34, 18 pp., 1977 (AD-D113 207)
 Key Words: beryllium, copper, mirror, coatings, temperature effect
8. **An Evaluation of Real and Programmed Defect Conditions in HIP Discs Using Holosonics' System 200 Scanned Acoustical Holography Imaging System**
Knuter, N. J.
Holosonics Inc., Richland, WA
Final Report
Rept No: USAAVSCOM-TR-76-25, 140 pp., 1976 (AD-A038 264)
Key Words: holography, acoustic emission, defects, nondestructive testing

9. **Ductile-Brittle Transition of Thoriated Chromium**
Wilcox, B. A., Veigel, N. D., Clauer, A. H.
Metall Trans 3 (1), 273-83, 1972 (AD-D123 239)
Key Words: chromium, Cr-ThO2, tensile properties, microstructure, annealing
2. Castings
ALUMINUM ALLOYS

AA A201

1. Effect of Hot Isostatic Pressure on Cast Aluminum Airframe Components
 Mocarski, S. J., Scarich, G. V., Wu, K. C.
 Trans Am Foundrymen's Soc 99, 77-81, 1991
 Key Words: AA A201-T7, aircraft structures, fatigue, tensile properties, fracture toughness

2. Fracture Toughness and Fatigue Crack Growth Rate Testing of Premium Quality Vacuum Investment Cast 200 and 300 Series Aluminum Alloys
 Bouse, G. K., Behrendt, M. R.
 Proc Int Conf Aluminum Alloys--Their Physical and Mechanical Properties. 3, 1665-80, 1986 (AD-D140 112)
 Key Words: AA A201-T7, AA A206-T71, AA A357-T6, turbine components, crack growth rate, fracture toughness

3. Hipping is One Way to Check Porosity in Cast Components
 Irving, R. R., Iron Age 225 (33), 43-5, 1982 (AD-D126 241)
 Key Words: AA A201, AISI 4330, AA C355-T6, 142-T4, AA A356-T61, IN-738, RENE’ 77, IN-792, RENE’ 80, stainless steel, porosity, tensile properties, fatigue

4. Hot Isostatic Pressing of Aluminum Alloy Castings
 Vonk, S. J., Hoppin, G. S., Benn, K. W.
 Garrett Turbine Engine Co., Phoenix, AZ
 Rept No.: 31-3968, 64 pp., 1981 (AD-A105 562)
 Key Words: AA A201, porosity, microstructure, tensile properties, fatigue

5. Advanced Aluminum Metallic Materials and Processes for Application to Naval Aircraft Structures
 Highberger, W. T., Scarich, G. V., Chanani, G. R.
 SAMPE, Azusa, CA
 Key Words: AA A201-T7, porosity, tensile properties, fatigue, crack growth rate

AA A356

1. A Statistical Model for Predicting the Fracture of Silicon Particles in HIPed A356 Aluminum Castings
 Chou, J. S., Meyers, C. W.
 Trans Am Foundrymen's Soc 99, 165-1, 1991
 Key Words: AA A356, microcracking, porosity, plastic deformation

2. Experimental Investigations of deformation in HIPped A356 aluminum castings
 Meyers, C. W., Chou, J. S.
 Key Words: AA A356, casting, microstructure, fracture fracture toughness, tensile behavior, deformation
3. Developing Aluminum-Lithium Alloys for Investment Casting

Haynes, T. G., III. Tesar, A. M., Webster, D.

Modern Casting 76 (10), 26-8, 1986 (AD-D138 421)

Key Words: AA A356-T6, microstructure, fracture, tensile properties

4. Hot Isostatic Press

Author Anon

Foreign Technology Division, Wright-Patterson AFB, OH

Rept No: FTD-ID(RS)T-1406-84, 65 pp., 1985 (AD-B093 100L)

Key Words: Ti-6Al-4V, B-1900, IN-738, RENE' 77, IN-792, RENE' 80, AA C355, AA A356, 142-T4

5. Improving Casting Properties and Integrity with Hot Isostatic Pressing

Rooy, E. L.

Modern Casting 73(12), 18-20, 1983 (AD-D128 854)

Key Words: AA A356-T61, AA A357-T62, F132-T6, porosity, fatigue, tensile properties

6. Hipping is One Way to Check Porosity in Cast Components

Irving, R. R., Iron Age 225 (33), 43-5, 1982 (AD-D126 241)

Key Words: AA A201, AISI 4330, AA C355-T6, 142-T4, AA A356-T61, IN-738, RENE' 77, IN-792, RENE' 80, stainless steel, porosity, tensile properties, fatigue

7. Cutting Metal Loss Tied to Near Net Shapes

Harvey, R. E. Iron Age 222 (42), 57-63, 1979 (AD-D116 853)

Key Words: RENE' 77, IN-738, IN-792, AA C355-T6, AA A356-T61 142-T6, net shape forming, fatigue, tensile properties

8. Improved Properties in Castings by Hot Isostatic Pressing

Glenn, G. M.

SAMPE Qtrly 8 (1), 1-9, 1976 (AD-D107 893)

Key Words: IN-738, RENE' 80, RENE' 120, RENE' 77, Ti-6Al-4V, AA A356, AA C355 porosity, tensile properties, microstructure, creep rupture, density, fatigue

9. Improvement of Nuclear Reactor Component Materials by Application of Hot Isostatic Processing (HIP)

Mueller, J. J.

Electric Power Research Inst, Palo Alto, CA

Rept No: EPRI-500-1, PB-250952, 64 pp., 1975 (AD-D107 180)

Key Words: Ti-6Al-4V, AA A356-T61, RENE' 95, IN-738, IN-792, RENE' 77, RENE' 80, nuclear reactor, turbine components, tensile properties, fatigue, creep rupture, cladding, defects

AA A357

1. Fracture Toughness and Fatigue Crack Growth Rate Testing of Premium Quality Vacuum Investment Cast 200 and 300 Series Aluminum Alloys

Bouse, G. K., Behrendt, M. R.

Proc Int Conf Aluminum Alloys: Their Physical and Mechanical Properties 3, 1665-80, 1986 (AD-D140 112)

Key Words: AA A201-T7, AA A206-T71, AA A157-T6, turbine components, airframes, crack growth rate, fracture toughness
2. Correction of Casting Faults by the Hot Isostatic Pressing of High Strength Aluminum Materials
Zeitler, H., Scharfenberger, W.
Aluminum English 60 (12), E803-8, 1984 (AD-D131 723)
Key Words: AA A357-T6, fracture defects, porosity, sand casting

3. Improving Casting Properties and Integrity with Hot Isostatic Pressing
Rooy, E. L.
Modern Casting 73(12), 18-20, 1983 (AD-D128 854)
Key Words: AA A356-T61, AA A357-T62, F132-T6, porosity, fatigue, tensile properties

NTIS, N84-23555, Springfield, VA
Final Report, Dec 80-Jun 83
Rept No: N84-23555, 152 pp., 1983 (AD-D134 719)
Key Words: AA A357, titanium alloys, fracture mechanics, diffusion bonding, fatigue

5. HIP, the Great Healer of Castings
Bittence, J. C.
Mater Eng 88 (4), 54-7, 1978 (AD-D113 844)
Key Words: Inconel 718, IN-792, Ti-6Al-4V, 17-4PH, AA A357, porosity, fatigue, creep properties, deformation, cost

6. High Integrity Casting Program
Schweikert, W. H.
Manufacturing Technology Division, AFML, Wright-Patterson AFB, OH
Proc Net Shape Metalworking Program Review 392-405, 1976 (AD-D119 186L)
Key Words: Inconel 718, Ti-6Al-4V, 17-4PH, AA A357, tensile properties, nondestructive testing

Miscellaneous Aluminum Alloys

1. Effect of Heat Treatment and Hot Isostatic Pressing on Void Density and Fracture Mode of Al(67)Ni(8)Ti(25)
Mysko, D.D., Lumsden, J.B., Powers, W.O., Wert, J.A.
Scr Metall 23(11), 1827-30, 1989 (AD-D143 812)
Key Words: Al-8N-25Ti, electrode arc melting, microstructure, heat treatment, transgranular fracture, voids

2. The Mechanical Properties of Superplastically Formed Titanium and Aluminum Alloys
Partridge, P. G., McDarmaid, D. S., Bottomley, I., Common, D.
Royal Aircraft Establishment Farnborough, UK
AGARD Lecture Series, Superplasticity AGARD-LS-154
6-1 to 6-23, 1987 (AD-D139 987)
Key Words: Ti-6Al-4V, AA 7475, Supral 100, Supral 150, Supral 220, alclad coatings, microstructure, grain size, aging, elastic properties, fatigue, fracture toughness

179
3. **Hot Isostatic Pressing of Aluminum-Silicon Castings**
Chama, C. C.
Pennsylvania State University, Dept. of Materials Science and Engineering, University Park, PA
Dissertation
275 pp., 1986 (AD-D139 361)
Key Words: Al-7Si, Al-10Si, porosity, tensile properties

4. **Fracture Toughness and Fatigue Crack Growth Rate Testing of Premium Quality Vacuum Investment Cast 200 and 300 Series Aluminum Alloys**
Bouse, G. K., Behrendt, M. R.
Proc Int Conf Aluminum Alloys--Their Physical and Mechanical Properties, 3, 1665-80, 1986 (AD-D140 112)
Key Words: AA A201-T7, AA A206-T71, AA A357-T6, turbine components, airframes, crack growth rate, fracture toughness

5. **Hot Isostatic Press**
Author Anon
Foreign Technology Division, Wright-Patterson AFB, OH
Rept No: FTD-ID(RS)T-1406-85, 65 pp., 1985 (AD-R093 100L)
Key Words: Ti-6Al-4V, B-1900, IN-738, RENE' 77, IN-792, RENE' 80, AA C355, AA A356, 142-T4

6. **Manufacturing Technology for Cast Aluminum Alloy Compressor Housings**
Johnson, C. A.
Naval Weapons Center, China Lake, CA
Final Report Mar 81-May 84
Rept No: NWC-TP-6603, 40 pp., 1985 (AD-B101 621L)
Key Words: AA 6061-T6, 15-5PH, tensile properties, fracture, metallography, bend test, burst test

7. **Improving Casting Properties and Integrity with Hot Isostatic Pressing**
Rooy, E. L.
Modern Casting 73(12), 18-20, 1983 (AD-D128 854)
Key Words: AA A356-T61, AA A357-T62, F132-T6, porosity, fatigue, tensile properties

8. **Application of the HIP Process to Aluminum and its Alloys**
Hofer, B.
Aluminum English 59 (12), E536-8, 1983 (AD-D129 047)
Key Words: Al-10Si, Al-4Cu, Al-7Si, diffusion bonding, porosity, net shape forming, mechanical properties

9. **Treatment Processes of Light and Heat Resistant Alloys**
Belov, A. F., Tselikov, A. I., Trishkin, V. G., Rakovskiy, V. S., Rykalin, N. N.
Foreign Technology Division, Wright-Patterson AFB, OH
Rept No: FTD-ID(RS)T-0412-82, 335 pp., 1982 (AD-B070 680L)
Key Words: aluminum alloys, titanium alloys, mechanical properties, fatigue, cracking

10. **Porous Castings? HIPping Might be Your Answer**
Widmer, R., Price, P. E.
Modern Casting 72 (8), 42-3, 1982 (AD-D125 344)
Key Words: Ti-6Al-4V, stainless steel, aluminum alloys, porosity, rejuvenation, cost
11. **Hipping is One Way to Check Porosity in Cast Components**
 Irving, R. R.
 Iron Age 225 (33), 43-5, 1982 (AD-D126.241)
 Key Words: AA A201, AISI 4330, AA C355-T6, 142-T4, AA A356-T61, IN 738, RENE 77, IN-792, RENE 80; stainless steel, porosity, tensile properties, fatigue

12. **The Development of Aluminum-Lithium Alloys**
 Gayle, Frank W.
 Reynolds Metals Co., Metallurgical Research Division, Richmond, VA
 Final Report
 Contract No.: N00019-78-C-0485
 178 pp., 1980 (AD-A090138)
 Key Words: Al-42.3Li, scandium addition, gallium addition, manganese addition, magnesium addition, silver addition, copper addition, iron addition, dispersion hardening, microstructure, hardness, tensile properties

13. **Trends in Casting Technology**
 Chandler, H. E., Baxter, D. F.
 Metal Prog 117 (1), 97-9, 1980 (AD-D117.224)
 Key Words: AA 6061-T6, AISI 4340, Fe-3Cr-19Cr-1.5Ni-2Mo, tensile properties

14. **Cutting Metal Loss Tied to Near Net Shapes**
 Harvey, R. E.
 Iron Age 222 (42), 57-63, 1979 (AD-D116.853)
 Key Words: RENE' 77, IN-738, IN-792, AA C355-T6, AA A356-T61, 142-T6, net shape forming, fatigue, tensile properties

15. **Casting High-Performance, High-Integrity Components**
 Heine, H. J.
 Foundry Manage Technol 105 (3), 88-96, 1977 (AD-D108.804)
 Key Words: Ti-6Al-4V, 18/8 stainless, 18Cr-10Ni, AA A360, B1914, B1925, 31964, B1981, airframes, aircraft structures, creep rupture, stress analysis, nondestructive testing, tensile properties, triboloy

16. **Improved Properties in Castings by Hot Isostatic Pressing**
 Glenn, G. M.
 SAMPE Qtrly 8 (1), 1-9, 1976 (AD-D107.893)
 Key Words: IN-738, RENE' 80, RENE' 120, RENE' 77, Ti-6Al-4V, AA A356, AA C355; porosity, tensile properties, microstructure, creep rupture, density, fatigue
BERYLLIUM AND BERYLLIUM ALLOYS

1. Characteristics of Mechanically Fastened Joints of CIP/HIP-1 Beryllium
Chou, S-C., Rainey, J. H., Swanson, R. A.
Army Materials and Mechanics Research Center, Watertown, MA
Final Report
Rept No: AMMRC-TR-79-48, 37 pp., 1979 (AD-A018275)
Key Words: beryllium, bearing strength, stress-strain, stress analysis

Das, D., Kumar, K., Wettstein, E., Wollam, J.
Charles Stark Draper Lab Inc., Cambridge, MA
Technical Report Number Two
Rept No: R-1330, 70 pp., 1979 (AD-A084780)
Key Words: beryllium alloys, ion implantation, boride coatings, plasma deposition

3. Containerless Processing of Beryllium Experiment 74-48
Wouch, G., Keith, G. H., Frost, R. T., Pinto, N.P.
Final Report
Rept No: N77-27211, 65 pp., 1977 (AD-D111224)
Key Words: beryllium, beryllium oxide addition, grain structure, space processing, zero gravity environment, thermal analysis

4. Creep Mechanisms in Beryllium
Webster, D., Crooks, D. D.
Metall Trans 7A (9), 1307-15, 1976 (AD-D107626)
Key Words: beryllium, RR243, BSP9, T30, 9776, 9713, 8084, EF1, creep properties, cracking, grain boundaries, plastic deformation
COBALT ALLOYS

MAR-M509

1. Fatigue Dominated Damage Processes
Bressers, J., Remy, L., Hoffelner, W.
Kluwer Academic Publishers, Norwell, MA
Proc High Temperature Alloys for Gas Turbines and Other Applications 1986-Part 1
441-68, 1986 (AD-D142 075)
Key Words: MAR-M509, IN-738LC, Hastelloy X, Inconel 617, RA-333, A-286, Inconel 718, Incoloy 901, microstructure, cracking, granular fracture, fatigue

2. Aircraft Gas Turbine Materials and Processes
Kear, B. H., Thompson, E. R.
Science 208 (4446), 847-56, 1980 (AD-D126 322)
Key Words: Haynes 188, Inconel 617, HA8077, Waspaloy, B-1900, PWA 1422, Incoloy 901, IN-100, X-40, MAR-M509, Hastelloy X, turbine components, fan blades, compressor components, coatings, unidirectional solidification, superplastic forming

3. Quality of Castings of Superalloys
Bachelet, E., Lesoult, G.
Applied Sciences Publishers Ltd., London, UK
High Temperature Alloys for Gas Turbines 665-99, 1978 (AD-D116 360)
Key Words: IN-738, Udimet 500, X-40, IN-100, MC-102, M3608F, C263, mto-001, B1914, B1981, M-21, FSX-430, MAR-M509, IN-939, Alloy 713LC, creep properties, fatigue, crack growth, thermal fatigue, porosity

Bisset, J. W.
United Technologies Corp., East Hartford, CT
Rept No: N77-14026, PWA-5453, 42 pp., 1976 (AD-D107 956)
Key Words: MAR-M509, Hastelloy X, Waspaloy, IN-100, MAR-M200, turbine components, single crystals, hafnium addition, unidirectional solidification, cost

5. Study of Superalloys Produced via Powder Metallurgy
Hellner, L., Johansson, H., NTIS, N77-13210, Springfield, VA
Rept No: N77-13210, 56 pp., 1975 (AD-D109 492)
Key Words: X-40, MAR-M509, IN-738, dispersion hardening, cracking, microstructure, temperature effect, deformation, stress intensity, tensile properties

6. Structure and Property Control Through Rapid Quenching of Liquid Metals
Grant, N. J., Pelloux, R. M., Regis, M. N., Flemings, M. C., Merton, C.
Argon, A. S.
Massachusetts Institute of Technology, Center for Materials Science and Engineering, Cambridge, MA
Contract No: DAHC15-70-C-0283
130 pp., 1972 (AD-739 340)
Key Words: IN-100, MAR-M509, Maraging 300, microstructure, tensile properties, fatigue, hardness, creep rupture, fracture toughness
X-40

1. Microstructural Damages Induced During the Repair Process
Davin, A., Lecomte-Mertens, Ch., Vierset, P., Louis, P.
Kluwer Academic Publishers, Norwell, MA
Proc High Temperature Alloys for Gas Turbines and Other Applications 1986-Part I
811-20, 1986 (AD-D142 085)
Key Words: Haynes 188, MAR-M200, X-40, turbine components, tensile properties, thermal shock, diffusion brazing, rejuvenation, repairs, welding

2. Repair and Rejuvenation Procedures for Aero-Gas-Turbine Hot-Section Components
Bell, S. R.
Mater Sci Technol 1 (8), 629-34, 1985 (AD-D133 818)
Key Words: Nimonic 108, RENE' 100, Nimocast PD21, X-40, C1023, turbine components, repair welding, microstructure, rejuvenation, creep

3. Aircraft Gas Turbine Materials and Processes
Kear, B. H., Thompson, E. R.
Science 208 (4446), 847-56, 1980 (AD-D126 322)
Key Words: Haynes 188, Inconel 617, HA8077, Waspaloy, B-1900, PWA 1422, Incoloy 901, IN-100, X-40, MAR-M509, Hastelloy X, turbine components, fan blades, compressor components, coatings, unidirectional solidification, superplastic forming

4. Quality of Castings of Superalloys
Bachelet, E., Lesoult, G.
Applied Sciences Publishers Ltd., London, UK
High Temperature Alloys for Gas Turbines 665-99, 1978 (AD-D116 360)
Key Words: IN-738, Udiment 500, X-40, IN-100, MC-102, M3608F, C263, mto-001, B1914, B1981, M-21, FSX-430, MAR-M509, IN-939, Alloy 713LC, creep properties, fatigue, crack growth, thermal fatigue, porosity

5. Study of Superalloys Produced via Powder Metallurgy
Hellner, L., Johansson, H.
NTIS, N77-13210, Springfield, VA
Rept No: N77-13210, 56 pp., 1975 (AD-D109 492)
Key Words: X-40, MAR-M509, IN-738, dispersion hardening, cracking, microstructure, temperature effect, deformation, stress intensity, tensile properties

Miscellaneous Cobalt Alloys

1. Microstructural Damages Induced During the Repair Process
Davin, A., Lecomte-Mertens, Ch., Vierset, P., Louis, P.
Kluwer Academic Publishers, Norwell, MA
Proc High Temperature Alloys for Gas Turbines and Other Applications 1986-Part I
811-20, 1986 (AD-D142 085)
Key Words: Haynes 188, MAR-M200, X-40, turbine components, tensile properties, thermal shock, diffusion brazing, rejuvenation, repairs, welding
2. **Long Term Materials Test Program: Materials Evaluation--Improved Simulation Tests**
General Electric Co., Energy Systems Programs Department, Schenectady, NY
Technical Report
Rept No: DE82-000649, 54 pp., 1981 (AD-D125 182)
Key Words: FSX-414, IN-738, GTD-111, turbine components, coatings, erosion, hot corrosion

3. **Aircraft Gas Turbine Materials and Processes**
Kear, B. H., Thompson, E. R.
Science 208 (4446), 847-56, 1980 (AD-D126 322)
Key Words: Haynes 188, Inconel 617, HA8077, Waspaloy, B-1900, PWA 1422, Incoloy 901, IN-100, X-40, MAR-M509, Hastelloy X, turbine components, fan blades, compressor components, coatings, unidirectional solidification, superplastic forming

4. **Quality of Castings of Superalloys**
Bachelet, E., Lesoult, G.
Applied Sciences Publishers Ltd., London, UK
High Temperature Alloys for Gas Turbines 665-99, 1978 (AD-D116 360)
Key Words: IN-738, Udiment 500, X-40, IN-100, MC-102, M3608F, C263, mtO-001, B1914, B1981, M-21, FSX-430, MAR-M509, IN-939, Alloy 713LC, creep properties, fatigue, crack growth, thermal fatigue, porosity

5. **New Superalloys, Better Processing Promise More Durable Turbine Parts**
Mishka, K. H.
Mater Eng 84 (3), 22-4, 1976 (AD-D104 639)
Key Words: MA956E, CAPIVAC IV, Pyromet CTX-1, Haynes 556, Haynes 8077, MA754E, MA757E, turbine components, zirconium coatings, tensile properties, creep rupture, thermal processing, thermal fatigue, oxidation, gamma prime, oxide dispersion strengthening

Freche, J. C., Ashbrook, R. L.
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH
Technical Note
Rept No: NASA-TN-D-7117, 22 pp., 1973 (AD-181 092)
Key Words: HS-31, microstructure, heat treatment, creep rupture, tensile properties
IRON ALLOYS

17-4PH

1. Influence of Processing Route on Fatigue Behavior of Investment Cast High Strength Steels
McCallum, R., Lang, W.
NTIS, PB85-234813, Springfield, VA
Technical Report
Rept No: NEL-697, 35 pp., 1985 (AD-D135 646)
Key Words: 17-4PH, EN40B, microstructure, fatigue, cracking

2. Hipping: A Good Way to Improve Properties
Irving, R. R.
Iron Age 224 (6), 77-81, 1981 (AD-D120 406)
Key Words: JT-9D, MERL 76, 17-4PH, RENE' 120, IN-792, IN-738, turbine components, porosity

3. HIP, the Great Healer of Castings
Bittenbender, J. C.
Mater Eng 88 (4), 54-7, 1978 (AD-D113 844)
Key Words: Inconel 718, IN-792, Ti-6Al-4V, 17-4PH, AA A357, porosity, fatigue, creep properties, deformation, cost

4. High Integrity Casting Program
Schweikert, W. H.
Manufacturing Technology Division, AFML, Wright-Patterson AFB, OH
Proc Net Shape Metalworking Program Review 392-405, 1976 (AD-D119 1861)
Key Words: Inconel 718, Ti-6Al-4V, 17-4PH, AA A357, tensile properties, nondestructive testing

5. Precision Castings State-of-the-Art
Nagan, R. M.
SAMPE Qtrly 6 (4), 1-7, 1975 (AD-D102 565)
Key Words: 17-4PH, Hastelloy X, Inconel 718, Ti-6Al-4V, aircraft structures, turbine components, tensile properties

AISI 4340

1. Trends in Casting Technology
Chandler, H. E., Baxter, D. F.
Metal Prog 117 (1), 97-9, 1980 (AD-D117 224)
Key Words: AA 6061-T6, AISI 4340, Fe-3C-19Cr-1.5Ni-2Mo, tensile properties

2. Rare Earth Modified High Strength Steels via P/M Processing
Sheinker, A. A.
TRW Inc., Materials Technology, Cleveland, OH
Technical Report
Rept No: TRW-ER-8097, 66 pp., 1979 (AD-A080 637)
Key Words: AISI 4340, metallography, fractography, tensile properties, Charpy impact
3. Complex Rotor Fabrication by Hot Isostatic Pressure Welding
Lessman, G. G., Bryant, W. A.
Weld J 51 (12), 606s-614s, 1972 (AD-180 534)
Key Words: AISI 4340, Inconel 718, hardness, tensile properties

4. Investigation of Solidification of High Strength Steel
Gnanamuthu, D. S., Basaran, M., Kattamis, T. Z., Mehrabian, R., Flemings, M. C.
Massachusetts Institute of Technology, Department of Metallurgy and Materials Science, Cambridge, MA
Technical Rept., Jan Dec 1971
Rept No: AMMRC-CTR-72-6/1, 82 pp., 1972 (AD-753 958)
Key Words: AISI 4340, thermomechanics, porosity, heat treatment

1. Strain Anisotropy During Superplastic Flow of an Iron Base Oxide Dispersion Strengthened Alloy
Luton, M. J.
Pergamon Press, Elmsford, NY
Proc 7th Int Conf Strength of Metals and Alloys
ICSMA 7-V-2, 859-64, 1987 (AD-D139 302)
Key Words: MA956, grain boundaries, oxide dispersion, strengthening, tensile properties

2. Materials for Advanced Turbine Engine--MATE
Evans, D. J., Sheffler, K. D., Friedrich, L. A.
Pratt and Whitney Aircraft Group, East Hartford, CT
Mar-May 82
Contract No: NAS 3-20072
1982, 21 pp. (AD-D125 191)
Key Words: Hastelloy X, Incoloy 901, MA956, Udimet 700, MERL 76, turbine components, combustors, erosion, coatings, oxide dispersion strengthening

3. Materials for Advanced Turbine Engine-MATE
Evans, D. J., Henricks, R. J., Friedrich, L. A.
Pratt and Whitney Aircraft Group, Commercial Products Div. East Hartford, CT
Quarterly Technical Progress Report Number Twenty, Dec 80-Feb 81
Contract No: NAS 3-20072
48 pp., 1981 (AD-D120 953)
Key Words: MERL 76, MA956, Hastelloy X, Incoloy 901, aircraft structures, combustor liners, turbine components, tensile properties, creep, crack growth, coatings, thermal fatigue

4. New Superalloys, Better Processing Promise More Durable Turbine Parts
Mishka, K. H.
Mater Eng 84 (3), 22-4, 1976 (AD-D104 639)
Key Words: MA956E, CAPIVAC IV, Pyromet CTX-I, Haynes 556, Haynes 8077 MA754E, MA757E, turbine components, zirconium coatings, tensile properties, creep rupture, thermal processing, thermal fatigue, oxidation, gamma prime, oxide dispersion strengthening
Miscellaneous Stainless Steels

1. Manufacturing Technology of 15-5PH Castings for Compressor Housings
 Froehner, T. A., Weed, S. J.
 Naval Weapons Center, China Lake, CA
 Final Report Mar 81-May 84
 Rept No: NWC-TP-6604, 21 pp., 1986 (AD-B101788L)
 Key Words: 15-5PH, hardening, investment casting

2. Creep Dominated Damage Processes
 Hoffelner, W.
 Kluwer Academic Publishers, Norwell, MA
 Proc High Temperature Alloys for Gas Turbines and Other Applications 1986-Part 1
 413-39, 1986 (AD-D142075)
 Key Words: Incoloy 800H, IN-738LC, IN-939, microstructure, creep, corrosive environment

3. Fatigue Dominated Damage Processes
 Bressers, J., Remy, L., Hoffelner, W.
 Kluwer Academic Publishers, Norwell, MA
 Proc High Temperature Alloys for Gas Turbines and Other Applications 1986-Part 1
 441-68, 1986 (AD-D142075)
 Key Words: MAR-M509, IN-738LC, Hastelloy X, Inconel 617, RA-333, A-286, Inconel 718, Incoloy 901, microstructure, cracking, granular fracture, fatigue

4. Manufacturing Technology for Cast Aluminum Alloy Compressor Housings
 Johnson, C. A.
 Naval Weapons Center, China Lake, CA
 Final Report Mar 81-May 84
 Rept No: NWC-TP-6603, 40 pp., 1985 (AD-B101621L)
 Key Words: AA 6061-T6, 15-5PH, tensile properties, fracture, metallography, bend test, burst test

5. Hot Isostatic Pressing of Stainless Steel--A New Technique for the Offshore Industry
 Andersson, T.
 Powder Metall Int 17 (1), 27-30, 1985 (AD-D131955)
 Key Words: 20Cr-18Ni, 20Cr-25Ni, 22Cr stainless, 26Cr stainless, welding, microstructure, microsegregation, tensile properties

6. Progress of Powder Metallurgy in North America
 Roll, K.H., Johnson, P.K.
 Key Words: copper, iron, Inconel 625, AISI 316L, M-2, NiFe, rapid solidification, injection molding

7. Integrally Cast Low-Cost Compressor
 Hessler, Barton H., Muntner, M. S., Cargo, Don, Roopchand, B.
 Avco Lycoming Div, Stratford, CT
 Final Technical Report
 Rept No: TACOM-TR-12673, 134 pp., 1983 (AD-A127663)
 Key Words: Custom 450, turbine components, fatigue, corrosion-fatigue, tensile properties
8. Overview of Temperature and Environmental Effects on Fatigue of Structural Metals
Coffin, L. F.
Plenum Press, New York, NY
Proc 27th Sagamore Army Materials Research Conf 1-40, 1983 (AD-D131 509)
Key Words: RENE' 95, A-286, stainless steel, Udiment 700, Waspaloy, MERL 76, IN-100, NASA HIB-7, crack growth, fatigue

9. Ultrasonic Inspectability Improvements in Austenitic Stainless Steel Welds After Thermal-Mechanical Processing
Lott, L. A., Malik, R. K.
Mater Eval 41 (6), 738-42, 1983 (AD-D315 514)
Key Words: AISI 304, AISI 308, welds, microstructure, ultrasonic properties

10. Porous Castings? HIPping Might be Your Answer
Widmer, R., Price, P. E.
Modern Casting 72 (8), 42-3, 1982 (AD-D125 344)
Key Words: Ti-6Al-4V, stainless steel, aluminum alloys, porosity, rejuvenation, cost

11. Hipping is One Way to Check Porosity in Cast Components
Irving, R. R.
Iron Age 275 (33), 43 5, 1982 (AD-D126 241)
Key Words: AA A201, AISI 4330, AA C355-T6, 142-T4, AA A356-T61, IN-738, RENE' 77, IN-792, RENE' 80, stainless steel, porosity, tensile properties, fatigue

12. The Joining of Refractory Metals by Hot Isostatic Pressing
Werdecker, W., Aldinger, F.
High Temp-High Pressures 14 (2), 183-97, 1982 (AD-D127 724)
Key Words: Inconel 601, Kanthal A-1, molybdenum, stainless steel, dissimilar joining, diffusion bonding, microhardness

13. Trends in Casting Technology
Chandler, H. E., Baxter, D. F.
Metal Prog 117 (1), 97-9, 1980 (AD-D117 224)
Key Words: AA 6061-T6, AISI 4340, Fe-3C-19Cr-1.5Ni-2Mo, tensile properties

14. All Systems Are Go for Powder Metallurgy
Irving, R. R.
Iron Age 223 (28), 41-5, 1980 (AD-D118 875)
Key Words: AISI 4600, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Waspaloy, IN-100, AISI 329, 12Cr steel, injection molding, cost, applications

15. Feasibility Study on the use of Small-Angle Neutron Scattering for Microstructural Determinations of Technological Alloys
Herman, H.
State University of New York at Stony Brook, Department of Materials Sciences, NY
Final Report
Contract No.: N00014-78-M-0074
58 pp., 1978 (AD-A061 867)
Key Words: Ti-6Al-4V, HY-130, AISI 304, Udiment 700, creep-fatigue, crack detection
16. **Casting High-Performance, High-Integrity Components**
Heine, H. J.
Key Words: Ti-6Al-4V, 18/8 stainless, 18Cr-10Ni, AA A360, B1914, B1925, B1964, B1981, airframes, aircraft structures, creep rupture, stress analysis, nondestructive testing, tensile properties, triboloy

17. **A Retrospective View of Metallurgy During the 25 Years of the Gillett Lectures**
Jaffee, R. I.
Key Words: AISI 316, Ti-6Al-4V, titanium, zirconium, hafnium, embrittlement, fracture mechanics

18. **New Superalloys, Better Processing Promise More Durable Turbine Parts**
Mishka, K. H.
Mater Eng 84 (3), 22-4, 1976 (AD-D104 639)
Key Words: MA956E, CAPIVAC IV, Pyrornet CTX-1, Haynes 556, Haynes 8077 MA754E, MA757E, turbine components, zirconium coatings, tensile properties, creep rupture, thermal processing, thermal fatigue, oxidation, gamma prime, oxide dispersion strengthening

19. **Manufacturing Methods for the Production of Disc Shapes by Contour Rolling**
Arnold, D. B.
General Electric Co., Aircraft Engine Group, Evendale, OH
Interim Engineering Progress Report Number Five, Apr-Jun 72
Rept No: AFML-IR-204-1(V), 22 pp., 1972 (AD-179 851L)
Key Words: RENE' 95, Hastelloy X, AISI 304, AF 2-1DA, microstructure, hot rolling

Miscellaneous Steels

1. **The Development of the Composite Rolls for Hot Rolling Mills**
Rhee, B. O., Cao, M. Y., Zhang, H. R., Streicher, E., Chung, C. I.
Elsevier, London, UK
Proc 3rd Int Conf Hot Isostatic Pressing: Theory Appl 253-8, 1992
Key Words: high speed steel, toughness, hardness, microstructure, diffusion bonding

2. **Influence of Processing Route on Fatigue Behavior of Investment Cast High Strength Steels**
McCallum, R., Lang, W.
NTIS, PB85-234813, Springfield, VA
Technical Report
Rept No: NEL-697, 35 pp., 1985 (AD-D135 646)
Key Words: 17-4PH, EN40B, microstructure, fatigue, cracking

3. **Emerging Trends in Aerospace Materials and Processes**
Chandler, H. E.
Metal Prog 125 (5), 21-9, 1984 (AD-D130 023)
Key Words: Ti-10V-2Fe-3Al, Ti-15V-3Cr-3Al-3Sn, steel, aircraft, net shape forming, manufacturing
4. **Progress of Powder Metallurgy in North America**
Roll, K.H., Johnson, P.K.
Key Words: copper, iron, Inconel 625, AISI 316L, M-2, NiFe, rapid solidification, injection molding

5. **Hipping is One Way to Check Porosity in Cast Components**
Irving, R. R.
Iron Age 225 (33), 43-5, 1982 (AD-D126 241)
Key Words: AA A201, AISI 4330, AA C355-T6, 142-T4, AA A356-T61, IN-738, RENE’ 77, IN-792, RENE’ 80, stainless steel, porosity, tensile properties, fatigue

6. **All Systems Are Go for Powder Metallurgy**
Irving, R. R.
Iron Age 223 (28), 41-5, 1980 (AD-D118 875)
Key Words: AISI 4600, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Waspaloy, IN-100, AISI 329, 12Cr steel, injection molding, cost, applications

7. **Feasibility Study on the use of Small-Angle Neutron Scattering for Microstructural Determinations of Technological Alloys**
Herman, H.
State University of New York at Stony Brook, Department of Materials Sciences, NY
Final Report
Contract No: N00014-78-M-0074
58 pp., 1978 (AD-A061 867)
Key Words: Ti 6Al-4V, HY-130, AISI 304, Udimet 700, creep-fatigue, crack detection

8. **Comparative Evaluation of Forged Ti-6Al-4V Bar made from Shot Produced by the REP and CSC Processes**
Vaughan, R. F., Blenkinsop, P. A., Morton, P. H.
Imperial Metal Industries (Kynoch) Ltd., Birmingham, UK MPR Publishing Services Ltd., Bellstone, Shrewsbury, UK
8 pp., 1976 (AD-D110 190)
Key Words: Ti-6Al-4V, tensile properties, fracture toughness, fracture surface, titanium, CM steels, superalloys, surface layers, morphology, composition surface

9. **Processing: The Rediscovered Dimension in High Temperature Alloys**
Semchyshen, M.
Standardization News 4 (4), 9-19, 1976 (AD-D110 676)
Key Words: Inconel 718, RENE’ 80, AISI 4140, Udimet 700, TZM, IN-738, Waspaloy, remelting, alloying, creep rupture

10. **The Effect of Homogenization Treatment and Hot Isostatic Pressing on Microporosity in Cast Steel**
Basaran, M., Kattamis, T. Z., Mehrabian, R.
Metall Trans 4 (10), 2429-34, 1973 (AD-D104 149)
Key Words: AISI 4330, porosity, grain boundaries, diffusion homogenizing, spheroidizing
11. **Structure and Property Control Through Rapid Quenching of Liquid Metals**
Grant, N. J., Pelloux, R. M., Regis, M. N., Flemings, M. C., Merton, C.
Argon, A. S.
Massachusetts Institute of Technology, Center for Materials Science and Engineering, Cambridge, MA
Contract No: DAHC15-70-C-0283
130 pp., 1972 (AD-739 340)
Key Words: IN-100, MAR-M509, Maraging 300, microstructure, tensile properties, fatigue, hardness, creep rupture, fracture toughness

Miscellaneous Iron Alloys

1. **Progress of Powder Metallurgy in North America**
Roll, K.H., Johnson, P.K.
Key Words: copper, iron, Inconel 625, AISI 316L, M-2, NiFe, rapid solidification, injection molding

2. **New Superalloys, Better Processing Promise More Durable Turbine Parts**
Mishka, K. H.
Mater Eng 84 (3), 22-4, 1976 (AD-D104 639)
Key Words: MA956E, CAPIVAC IV, Pyromet CTX-1, Haynes 556, Haynes 8077, MA754E, MA757E, turbine components, zirconium coatings, tensile properties, creep rupture, thermal processing, thermal fatigue, oxidation, gamma prime, oxide dispersion strengthening
NICKEL ALLOYS

Alloy 713

1. Microstructure, Creep Properties, and Rejuvenation of Service-Exposed Alloy 713C Turbine Blades
Metall Trans A 21A, 3115-25, 1990 (AD-D144 207)
Key Words: Alloy 713C, turbine components, porosity, microstructure, grain boundaries, creep, rejuvenation

Quested, P. N., Osgerby, S.
Mater Sci Technol 2 (5), 461-75, 1986 (AD-D140 385)
Key Words: IN-935, IN-738, IN-939, IN-597, IN-738LC, MAR-M246, MAR-M002, MAR-M247, Alloy 713LC, unidirectional solidification, creep

3. Development of a Conventional Fine Grain Casting Process
Woulds, M., Benson, H.
The Metallurgical Society of AIME, Warrendale, PA
Proc 5th Int Symp Superalloys 1984 3-12, 1984 (AD-D132 821)
Key Words: Alloy 713LC, MAR-M247, turbine components, microstructure, creep rupture, tensile properties, fatigue

4. Optimization of the High Temperature, Low Cycle Fatigue Strength of Precision-Cast Turbine Wheels
Lamberigts, M., Ballarati, G., Drapier, J. M.
The Metallurgical Society of AIME, Warrendale, PA
Proc 5th Int Symp Superalloys 1984 13-22, 1984 (AD-D132 822)
Key Words: Alloy 713, microstructure, porosity, fatigue

5. The Effects of Tantalum for Columbium Substitutions in Alloy 713C
Brinegar, J. R., Mihalisin, J. R., VanderSluis, J.
The Metallurgical Society of AIME, Warrendale, PA
Key Words: Alloy 713C, niobium addition, tantalum addition, aging, creep rupture, tensile properties

6. Improvement of Material Properties of Ni-Base Alloy Investment Castings by Hot Isostatic Processing
Tsuji, I., Kawai, H.
NTIS, PB84-113422, Springfield, VA
Technical Report
Rept No: MTB-159, 8 pp., 1983 (AD-D130 515)
Key Words: IN-738, IN-738LC, Udiment 500, Alloy 713C, turbine components, fatigue

7. Blade Life Extended by Pressing Processes
Radivich, J. F.
American Metal Market 90 (216), 10A & 15A, 1982 (AD-D126 104)
Key Words: Alloy 713C, turbine components, service life, creep rupture rejuvenation

197
8. **Precision Casting of Turbine Blades and Vanes**
Drapier, J. M., Kluwer Boston Inc., Hingham, MA
Proc Conf High Temperature Alloys for Gas Turbines 887-908, 1982 (AD-D134 025)
Key Words: Alloy 713LC, IN-100, MAR-M200, PWA 1480, MAR-M247, CMSX-2, turbine components, rejuvenation, oxidation, vacuum melting, unidirectional solidification

9. **The Metallurgical Aspects of Hot Isostatically Pressed Superalloy Castings**
Antony, K. C., Radavich, J. F.
Key Words: Alloy 713C, MAR-M246, microstructure, porosity, tensile properties, creep rupture, fatigue, fracture toughness

10. **HIP'ing Various Precision Cast Engine Components in Nickel-Based Superalloys**
Lamberigts, M., Diderrich, E., Coutouradis, D., de Lamotte, E., Drapier, J. M.
Key Words: Alloy 713LC, IN-792, MAR-M002, MAR-M004, IN-100, jet engines, turbine components, creep, microstructure

11. **Quality of Castings of Superalloys**
High Temperature Alloys for Gas Turbines 665-99, 1978 (AD-D116 360)
Key Words: IN-738, Udimet 500, X-40, IN-100, MC-102, M3608F, C263, mto-001, B1914, B1981, M-21, FSX-430, MAR-M509, IN-939, Alloy 713LC, creep properties, fatigue, crack growth, thermal fatigue, porosity

12. **Premium Quality Castings**
Freeman Jr., W. R.
Manufacturing Technology Division, AFML, Wright-Patterson AFB, OH
Proc Net Shape Metalworking Program Review 406-17, 1976 (AD-D119 187L)
Key Words: IN-792, IN-738, IN-100, RENE’ 80, Alloy 713L, Alloy 713LC, B-1900, MAR-M200, tensile properties, fatigue

13. **Materials and Process Technol for Advanced Gas Turbines**
Hauser, H. A., SAMPE Qtrly 6 (3), 8 pp., 1975 (AD-D101 035)
Key Words: TiAl, Ti(3)Al, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Ti-6Al-2Sn-4Zr-2Mo, Ti-8Al-1Mo-1V, IN-100, IN-738, IN-792, Alloy 713, B-1900, MAR-M200, turbine components, fracture mechanics, fatigue, creep rupture

14. **The Nature of the Sulfo-Carbides Observed in Nickel-Base Superalloys**
Wallace, W., Holt, R. T., Terada, T., Metall 6 (6), 511-26, 1973 (AD-D106 657)
Key Words: Alloy 713C, IN-100, Udimet 700, sulfur addition, carbide phases, crack growth

B-1900
2. **Effect of HIP on Elevated-Temperature Low Cycle Fatigue Properties of an Equiaxed Cast Superalloy**
 Anton, D. L., Favrow, L. H., ASTM, Philadelphia, PA
 Proc Symp Low Cycle Fatigue 824-37, 1985 (AD-D139 273)
 Key Words: B-1900, microstructure, grain growth, fractography, tensile properties, fatigue

3. **HIP Processing--Potentials and Applications**
 Van Der Vet, W. J.
 Chromalloy American Co., Midwest City, OK
 Proc 53rd Meeting of the AGARD Structures and Materials Panel, Maintenance in Service of High Temperature Parts 11-1 to 11-16, 1982 (AD-D125 468)
 Key Words: Inconel X-750, Udinet 500, RENE' 100, B-1900, Nimonic 105, IN-738, IN-782, turbine components, fatigue, thermal cycling, creep rupture

4. **Aircraft Gas Turbine Materials and Processes**
 Kear, B. H., Thompson, E. R.
 Science 208 (4446), 847-56, 1980 (AD-D126 322)
 Key Words: Haynes 188, Inconel 617, HA8077, Waspaloy, B-1900, PWA 1422, Incoloy 901, IN-100, X-40, MAR-M509, Hastelloy X, turbine components, fan blades, compressor components, coatings, unidirectional solidification, superplastic forming

5. **HIP'ing Raises Casting Performance Levels**
 Freeman, W. R., Jr.
 Metal Prog 112 (3), 33-8, 1977 (AD-D110 513)
 Key Words: B-1900, IN-792, Ti-6Al-4V, IN-100, tensile properties, turbine components, fatigue, creep rupture

6. **Premium Quality Castings**
 Freeman Jr., W. R.
 Manufacturing Technology Division, AFML, Wright-Patterson AFB, OH
 Proc Net Shape Metalworking Program Review 406-17, 1976 (AD-D119 187L)
 Key Words: IN-792, IN-738, IN-100, RENE' 80, Alloy 713L, Alloy 713LC, B-1900, MAR-M200, tensile properties, fatigue

7. **Materials and Processing Technology for Advanced Gas Turbines**
 Hauser, H. A., SAMPE Qtrly 6 (3), 8 pp., 1975 (AD-D101 035)
 Key Words: TiAl, Ti(3)AI, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Ti-6Al-2Sn-4Zr-2Mo, Ti-8Al-1Mo-1V, IN-100, IN-738, IN-792, Alloy 713, B-1900, MAR-M200, turbine components, fracture mechanics, fatigue, creep rupture

Hastelloy X

1. **Fatigue Dominated Damage Processes**
 Bressers, J., Remy, L., Hoffelner, W.
 Kluwer Academic Publishers, Norwell, MA
 Proc High Temperature Alloys for Gas Turbines and Other Applications 1986-Part I 441-68, 1986 (AD-D142 075)
 Key Words: MAR-M509, IN-738LC, Hastelloy X, Inconel 617, RA-333, A-286, Inconel 718, Incoloy 901, microstructure, cracking, granular fracture, fatigue
2. **Materials for Advanced Turbine Engine--MATE**
Evans, D. J., Shefler, K. D., Friedrich, L. A.
Pratt and Whitney Aircraft Group, East Hartford, CT
Mar-May 82
Contract No: NAS 3-20072
1982, 21 pp. (AD-D125 191)
Key Words: Hastelloy X, Incoloy 901, MA956, Udimet 700, MERL 76, turbine components, combustors, erosion, coatings, oxide dispersion strengthening

3. **Materials for Advanced Turbine Engine--MATE**
Evans, D. J., Henricks, R. J., Friedrich, L. A.
Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
Quarterly Technical Progress Report Number Twenty, Dec 80-Feb 81
Contract No: NAS 3-20072
48 pp., 1981 (AD-D120 953)
Key Words: MERL 76, MA956, Hastelloy X, Incoloy 901, aircraft structures, combustor liners, turbine components, tensile properties, creep, crack growth, coatings, thermal fatigue

4. **Aircraft Gas Turbine Materials and Processes**
Kear, B. H., Thompson, E. R.
Science 208 (4446), 847-56, 1980 (AD-D126 322)
Key Words: Haynes 188, Inconel 617, HA8077, Waspaloy, B-1900, PWA 1422, Incoloy 901, IN-100, X-40, MAR-M509, Hastelloy X, turbine components, single crystals, hafnium addition, unidirectional solidification, superplastic forming

5. **Cost/Benefit Analysis of Advanced Materials Technologies for Future Aircraft Turbine Engines**
Bisset, J. W.
United Technologies Corp., East Hartford, CT
Project Completion Report
Rept No: N77-14026, PWA-5453, 42 pp., 1976 (AD-D107 956)
Key Words: MAR-M509, Hastelloy X, Waspaloy, IN-100, MAR-M200, turbine components, single crystals, hafnium addition, unidirectional solidification, cost

6. **Precision Castings State-of-the-Art**
Nagan, R. M.
SAMPE Qtrly 6 (4), 1-7, 1975 (AD-D102 565)
Key Words: 17-4PH, Hastelloy X, Inconel 718, Ti-6Al-4V, aircraft structures, turbine components, tensile properties

7. **Manufacturing Methods for the Production of Disc Shapes by Contour Rolling**
Arnold, D. B.
General Electric Co., Aircraft Engine Group, Evendale, OH
Interim Engineering Progress Report Number Five, Apr-Jun 72
Rept No: AFML-IR-204-1(V), 22 pp., 1972 (AD-179 851L)
Key Words: RENEX 95, Hastelloy X, AISI 304, AF 2-1DA, microstructure, hot rolling
IN-100

1. **Rejuvenation Procedures to Recover Creep Properties of Nickel-Base Superalloys by Heat Treatment and Hot Isostatic Pressing Techniques**
 Baldan, A.
 Key Words: IN-100, Nimonic 80A, Nimonic 115, Nimonic 75, Nimonic 105, Nimonic 90, IN-738, IN-738LC, Inconel X-750, turbine components, creep, grain size, cavitation

2. **Deformation Mechanisms of Thermostructural Materials**
 Arsenault, R. J., Louat, N., Shahinian, P., Singh, A. K., Chaki, T.
 Crystal Growth and Materials Testing Associates, Lanham, MD
 Final Report
 Rept No: 162, 46 pp., 1987 (AD-A184 070)
 Key Words: IN-100, RENE' 80, turbine components, CoCrAl coatings, creep rupture, thermal fatigue, barrier coatings, dislocation

3. **On the Sintered Ni-Base Superalloy (VI)--Effect of Microstructures on the Creep Property**
 Morishita, M., Nagai, H., Shoj, K.
 Key Words: IN-100, MFEI, 76, microstructure, swaging, creep rate, liquid sintering, creep rupture

4. **Repair and Rejuvenation Procedures for Aero-Gas-Turbine Hot-Section Components**
 Bell, S. R.
 Mater Sci Technol 1 (8), 629-34, 1985 (AD-D133 818)
 Key Words: Nimonic 108, RENE' 100, Nimocast PD21, X-40, C1023, turbine components, repair welding, microstructure, rejuvenation, creep

5. **Structure-Property Characterization of Rheocast and VADER Processed IN 100 Superalloy**
 Cheng, J-J. A., Apelian, D.
 Drexel University, Philadelphia, PA
 Final Report
 Rept No: N86-14354, 234 pp., 1985 (AD-D135 914)
 Key Words: IN-100, turbine components, microstructure, fatigue crack growth, rheocasting, tensile properties

6. **Effects of Trace Elements on Mechanical Properties of Superalloys**
 McLean, M., Strang, A.
 Met Technol 11 (10), 454-64, 1984 (AD-D131 862)
 Key Words: IN-100, MAR-M002, IN-738, IN-939, IN-718, Inconel X-750, grain boundaries, porosity, creep rupture

7. **Problems and Possibilities for Life Extension in Gas Turbine Components**
 Koul, A. K., Wallace, W., Thamburaj, R.
 National Aeronautical Establishment, Structures and Materials Section
 Proc Propulsion and Energites 63rd (B) Specialists' Meeting on Engine Cyclic Durability by Analysis and Testing, Lisse, Netherlands
 10-1 to 10-32, 1984 (AD-D132 383)
 Key Words: Inconel X-750, IN-738LC, Udiment 700, IN-100, Incoloy 901, turbine components, damage tolerance, EDM, creep, machining
8. **Fatigue Crack Initiation and Propagation in Several Nickel-Base Superalloys at 650**
Gayda, J., Miner, R. V.
Key Words: Waspaloy, IN-100, RENE' 95, turbine components, fatigue, creep-fatigue, crack growth, porosity, fracture mechanics, tensile properties, microstructure,

9. **Overview of Temperature and Environmental Effects on Fatigue of Structural Metals**
Coffin, L. F.
Plenum Press, New York, NY
Proc 27th Sagamore Army Materials Research Conf 1-40, 1983 (AD-D131 509)
Key Words: RENE' 95, A-286, stainless steel, Udimet 700, Waspaloy, MERL 76, IN-100, NASA IIB-7, crack growth, fatigue

10. **HIP Processing--Potentials and Applications**
Van Der Vet, W. J.
Chromalloy American Co., Midwest City, OK
Key Words: Inconel X-750, Udiment 500, RENE' 100, B-1900, Nimonic 105, IN-738, IN-782, turbine components, fatigue, thermal cycling, creep rupture

11. **Repair and Regeneration of Turbine Blades, Vanes, and Discs**
Huff, H., Wortmann, J.
Motoren und Turbinen Union GMBH, Munich, Germany
Proc 53rd Meeting of the AGARD Structures and Materials Panel, Maintenance in Service of High Temperature Parts 13-1 to 13-7, 1982 (AD-D125 470)
Key Words: IN-100, Nimonic 90, Nimonic 108, turbine components, welding, creep, rejuvenation

12. **Superalloy Technology-Today and Tomorrow**
VerSnyder, F. L.
Kluwer Boston Inc., Hingham, MA
Proc Conf High Temperature Alloys for Gas Turbines 1-49, 1982 (AD-D133 988)
Key Words: MAR-M200, IN-100, Udimet 700, carbon addition, boron addition, zirconium addition, cobalt addition, turbine components, corrosion, oxidation, REP, creep rupture, thermal fatigue

13. **Precision Casting of Turbine Blades and Vanes**
Drapier, J. M.
Kluwer Boston Inc., Hingham, MA
Proc Conf High Temperature Alloys for Gas Turbines 887-908, 1982 (AD-D134 025)
Key Words: Alloy 713LC, IN-100, MAR-M200, PWA 1480, MAR-M247, CMSX2, turbine components, rejuvenation, oxidation, vacuum melting, unidirectional solidification

14. **Creep-Fatigue Environment Interactions in Superalloys**
Pelloux, R. M.
Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, MA
Final Report
Rept No.: AFOSR-TR-81-0450, 35 pp., 1981 (AD-A098 790)
Key Words: Udimet 700, Waspaloy, IN-100, microstructure, creep, fatigue, embrittlement

202
Moracz, D. J., Cook, C. R.
TRW Inc., Materials Technology, Cleveland, OH
Key Words: Ti-6Al-4V, IN-100, seam welding, microstructure, diffusion bonding

16. All Systems Are Go for Powder Metallurgy
Irving, R. R.
Iron Age 223 (28), 41-5, 1980 (AD-D118 875)
Key Words: AISI 4600, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Waspaloy, IN-100, AISI 329, 12Cr steel, injection molding, cost, applications

17. HIP'ing Various Precision Cast Engine Components in Nickel-Based Superalloys
Lamberigts, M., Diderrich, E., Coutouradis, D., de Lamotte, E., Drapier, J. M.
Key Words: Alloy 713LC, IN-792, MAR-M002, MAR-M004, IN-100, jet engines, turbine components, creep, microstructure

18. An Assessment of Hot Isostatic Pressing and Reheat Treatment for the Regeneration of Creep Properties of Superalloys
Dennison, J. P., Elliot, I. C., Wilshire, B.
ASM International, Metals Park, OH
Key Words: Nimonic 105, IN-100, fracture mechanics, creep, heat treatment

19. Aircraft Gas Turbine Materials and Processes
Kear, B. H., Thompson, E. R.
Science 208 (4446), 847-56, 1980 (AD-D126 322)
Key Words: Haynes 188, Inconel 617, HA8077, Waspaloy, B-1900, PWA 1422, Incoloy 901, IN-100, X-40, MAR-M509, Hastelloy X, turbine components, fan blades, compressor components, coatings, unidirectional solidification, superplastic forming

20. HIP Rejuvenation of Damaged Blades
Stewart, D. C., Bennett, G. T.
Pratt and Whitney Aircraft Group, Government Products Div, West Palm Beach, FL
Rept No: FR-11642, 115 pp., 1979 (AD-D108 398L)
Key Words: IN-100, MAR-M200, unidirectional solidification, creep properties, aluminides, PWA 73 coating, surface defects, rejuvenation

21. The Promise of more Heat Resistant Turbine Materials
Freche, J. C., Ault, G. M.
Prod Engineering 50 (7), 35-9, 1979 (AD-D115 942)
Key Words: AF-2-1DA, AF-115, NASA IIB-7, NASA IIB-11, MAR-M200, MA6000E, WAZ-D, WAZ20, IN-100, service life, creep rupture, tensile properties, coatings, corrosion, thermal fatigue, unidirectional solidification

22. Original HCI Surface Treatment for Diffusion Bonding of Nickel Superalloy Specimens
Billard, D., Trotter, J. P.
Met Technol 5 (9), 309-19, 1978 (AD-D114 028)
Key Words: IN-100, Waspaloy, RENE' 95, Inconel 718, welding, grain size, bonding, recrystallization, temperature effect
23. **Quality of Castings of Superalloys**
Bachelet, E., Lesoult, G.
Applied Sciences Publishers Ltd., London, UK
High Temperature Alloys for Gas Turbines 665-99, 1978 (AD-D116 360)
Key Words: IN-738, Udiment 500, X-40, IN-100, MC-102, M3608F, C263, mto-001, B1914, B1981, M-21, FSX-430, MAR-M509, IN-939, Alloy 713LC, creep properties, fatigue, crack growth, thermal fatigue, porosity

24. **HIP'ing Raises Casting Performance Levels**
Freeman, W. R., Jr.
Metal Prog 112 (3), 33-8, 1977 (AD-D110 513)
Key Words: B-1900, IN-792, Ti-6Al-4V, IN-100, tensile properties turbine components, fatigue, creep rupture

25. **Premium Quality Castings**
Freeman Jr., W. R.
Manufacturing Technology Division, AFML, Wright-Patterson AFB, OH
Proc Net Shape Metalworking Program Review 406-17, 1976 (AD-D119 187L)
Key Words: IN-792, IN-738, IN-100, RENE' 80, Alloy 713L, Alloy 713LC, B-1900, MAR-M200, tensile properties, fatigue

26. **Cost/Benefit Analysis of Advanced Materials Technologies for Future Aircraft Turbine Engines**
Bisset, J. W.
United Technologies Corp., East Hartford, CT
Project Completion Report
Rept No.: N77-14026, PWA-5453, 42 pp., 1976 (AD-D107 956)
Key Words: MAR-M509, Hastelloy X, Waspaloy, IN-100, MAR-M200, turbine components, single crystals, hafnium addition, unidirectional solidification, cost

27. **Materials and Processing Technology for Advanced Gas Turbines**
Hauser, H. A.
SAMPE Qtrly 6 (3), 8 pp., 1975 (AD-D101 035)
Key Words: TiAl, Ti(3)Al, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Ti-6Al-2Sn-4Zr-2Mo, Ti-8Al-1Mo-1V, IN-100, IN-738, IN-792, Alloy 713, B-1900, MAR-M200, turbine components, fracture mechanics, fatigue, creep rupture

28. **The Nature of the Sulfo-Carbides Observed in Nickel-Base Superalloys**
Wallace, W., Holt, R. T., Terada, T.
Metall 6 (6), 511-26, 1973 (AD-D106 657)
Key Words: Alloy 713C, IN-100, Udiment 700, sulfur addition, carbide phases, crack growth

29. **Structure and Property Control Through Rapid Quenching of Liquid Metals**
Grant, N. J., Pelloux, R. M., Regis, M. N., Flemings, M. C., Merton, C.
Argon, A. S.
Massachusetts Institute of Technology, Center for Materials Science and Engineering, Cambridge, MA
Contract No.: DAHC15-70-C-0283
130 pp., 1972 (AD-739 340)
Key Words: IN-100, MAR-M509, Maraging 300, microstructure, tensile properties, fatigue, hardness, creep rupture, fracture toughness
1. **Rejuvenation Procedures to Recover Creep Properties of Nickel-Base Superalloys by Heat Treatment and Hot Isostatic Pressing Techniques**
 Baldan, A.
 Key Words: IN-100, Nimonic 80A, Nimonic 115, Nimonic 75, Nimonic 105, Nimonic 90, IN-738, IN-738LC, Inconel X-750, turbine components, creep, grain size, cavitation

2. **Assessment of Service Induced Microstructural Damage and Its Rejuvenation in Turbine Blades**
 Koul, A. K., Castillo, R.
 Metall Trans 19a (8), 2049-66, 1988 (AD-D139 440)
 Key Words: IN-738LC, turbine components, microstructure, grain boundaries, fractography, degradation, service life, rejuvenation, creep properties

3. **Rejuvenation of Service-Exposed IN 738 Turbine Blades**
 Koul, A.K., Immarigeon, J-P, Castillo, R., Lowden, P., Liburdi, J.
 The Metallurgical Society of AIME, Warrendale, PA
 Proc 6th Int Symp Superalloys 1988 755-64, 1988 (AD-D142 328)
 Key Words: IN-738, turbine components, rejuvenation, service life, aluminide coatings, creep rupture

4. **The Effect of Service Exposure on the Creep Properties of Cast IN-738LC Subjected to Low Stress High Temperature Creep Conditions**
 Castillo, R., Koul, A.K., Immarigeon, J-P.A.
 The Metallurgical Society of AIME, Warrendale, PA
 Proc 6th Int Symp Superalloys 1988 805-14, 1988 (AD-D142 331)
 Key Words: IN-738LC, turbine components, grain boundaries, fracture, creep rupture, stress cracking

5. **Mechanical Properties of Conventionally Cast, Directionally Solidified, and Single-Crystal Superalloys**
 Quested, P. N., Osgerby, S.
 Mater Sci Technol 2 (5), 461-75, 1986 (AD-D140 385)
 Key Words: IN-935, IN-738, IN-939, IN-597, IN-738LC, MAR-M246, MAR-M002, MAR-M247, Alloy 713LC, unidirectional solidification, creep

6. **Creep Dominated Damage Processes**
 Hoffelner, W.
 Kluwer Academic Publishers, Norwell, MA
 Proc High Temperature Alloys for Gas Turbines and Other Applications 1986-Part 1 413-39, 1986 (AD-D142 074)
 Key Words: Incoloy 800H, IN-738LC, IN-939, microstructure, creep, corrosive environment

7. **Fatigue Dominated Damage Processes**
 Bressers, J., Remy, L., Hoffelner, W.
 Kluwer Academic Publishers, Norwell, MA
 Proc High Temperature Alloys for Gas Turbines and Other Applications 1986-Part 1 441-68, 1986 (AD-D142 075)
 Key Words: MAR-M509, IN-738LC, Hastelloy X, Inconel 617, RA-333, A-286, Inconel 718, Incoloy 901, microstructure, cracking, granular fracture, fatigue
8. Effect of Fabrication and Repair Procedures on the Performance of IN 738 LC and IN 939
Esser, W., McLean, M., Schneider, K.
Kluwer Academic Publishers, Norwell, MA
Proc High Temperature Alloys for Gas Turbines and Other Applications 1986-Part 1
593-622, 1986 (AD-D142 076)
Key Words: IN-738LC, IN-939, turbine components, welding, gas tungsten arc welding, electron beam welding, creep rupture strength, hot corrosion, welding, tensile properties, fatigue

9. The Behavior of Nimonic 105 and IN 738 LC Under Creep and LCF Testing
Persson, P-O., Persson, C., Burman, G., Lindblom, Y.
Kluwer Academic Publishers, Norwell, MA
Proc High Temperature Alloys for Gas Turbines and Other Applications 1986-Part 2
1501-15, 1986 (AD-D142 159)
Key Words: Nimonic 105, IN-738LC, fatigue strain, creep

10. Hot Isostatic Press
Author Anon, Foreign Technology Division, Wright-Patterson AFB, OH
Rept No: FTD-ID(RS)T-1406-84, 65 pp., 1985 (AD-B093 100L)
Key Words: Ti-6Al-4V, B-1900, IN-738, RENE’ 77, IN-792, RENE’ 80, AA C355, AA A356, 142-T4

11. Experience with Repair of Stationary Gas-Turbine Blades--View of a Turbine Manufacturer
Schneider, K., Jahnke, B., Burgel, R., Ellner, J.
Mater Sci Technol 1 (8), 613-9, 1985 (AD-D133 816)
Key Words: IN-738LC, turbine components, repairs, brazing, welding, microstructure, microcracking, oxidation, silicide coatings, fatigue, creep rupture

12. Refurbishing Procedures for Blades of Large Stationary Gas Turbines
Keinenburg, K-H., Esser, W., Deblon, B.
Mater Sci Technol 1 (8), 620-8, 1985 (AD-D133 817)
Key Words: IN-738LC, Nimonic 80A, Udimet 520, turbine components, repair technique, corrosion, erosion, fatigue, tensile properties, tungsten arc welding

13. Creep Life Predictions in Nickel-based Superalloys
Koul, A. K., Castillo, R., Willett, K.
Mater Sci Eng 66 (2), 213-26, 1984 (AD-D131 247)
Key Words: MAR-M200, IN-738LC, Inconel X-750, turbine components, deformation, grain size, long term tests, shear stress

14. Effects of Trace Elements on Mechanical Properties of Superalloys
McLean, M., Strang, A., Met Technol 11 (10), 454-64, 1984 (AD-D131 862)
Key Words: IN-100, MAR-M002, IN-738, IN-939, IN-718, Inconel X-750, grain boundaries, porosity, creep rupture

15. Problems and Possibilities for Life Extension in Gas Turbine Components
Koul, A. K., Wallace, W., Thamburaj, R.
National Aeronautical Establishment, Structures and Materials Section
Proc Propulsion and Energetics 63rd (B) Specialists’ Meeting on Engine Cyclic Durability by Analysis and Testing, Lisse, Netherlands
10-1 to 10-32, 1984 (AD-D132 383)
Key Words: Inconel X-750, IN-738LC, Udimet 700, IN-100, Incoloy 901, turbine components, damage tolerance, EDM, creep, machining

206
Burke, M. A., Beck, C. G., Jr., Crombie, E. A.
The Metallurgical Society of AIME, Warrendale, PA
Proc 5th Int Symp Superalloys 1984 63-71, 1984 (AD-D132 827)
Key Words: IN-738LC, microstructure, crack propagation, fatigue, unidirectional solidification

17. Assessment of Damage Accumulation and Property Regeneration by Hot Isostatic Pressing and Heat Treatment of Laboratory-Tested and Service Exposed IN738LC
McLean, M., Tipler, H. R.
The Metallurgical Society of AIME, Warrendale, PA
Proc 5th Int Symp Superalloys 1984 73-82, 1984 (AD-D132 828)
Key Words: IN-738LC, turbine components, microstructure, stress intensity

18. Comparison of Property Regeneration Techniques and Life Prediction Procedures Applied to Laboratory Tested and Service Exposed Ni-Cr Alloys
McLean, M., Peck, M. S.
Final Report
Rept No: NPL-DMA-A-91, 48 pp., 1984 (AD-D134 696)
Key Words: IN-738LC, turbine components, crystallography, creep, heat treatment, rupture

19. Improvement of Material Properties of Ni-Base Alloy Investment Castings by Hot Isostatic Processing
Tsuji, I., Kawai, H.
NTIS, PB84-113422, Springfield, VA
Technical Report
Rept No: MTB-159, 8 pp., 1983 (AD-D130 515)
Key Words: IN-738, IN-738LC, Udimet 500, Alloy 713C, turbine components, fatigue

20. Rejuvenation of Used Turbine Blades by Hot Isostatic Pressing and Reheat Treatment
Cheung, K. L., Leach, C. C., Willett, K. P., Koul, A. K.
Westinghouse Canada Ltd., Hamilton, Ontario, Canada
Proc 53rd Meeting of the AGARD Structures and Materials Panel, Maintenance in Service of High Temperature Parts
10-1 to 10-6, 1982 (AD-D125 467)
Key Words: inconel X-750, IN-738, Nimonic 115, Nimonic 105, Inconel 700, turbine components, microstructure, rejuvenation, creep

21. HIP Processing--Potentials and Applications
Van Der Vet, W. J.
Chromalloy American Co., Midwest City, OK
Proc 53rd Meeting of the AGARD Structures and Materials Panel, Maintenance in Service of High Temperature Parts
11-1 to 11-16, 1982 (AD-D125 468)
Key Words: Inconel X-750, Udimet 500, RENÉ 100, B-1900, Nimonic 105, IN-738, IN-782, turbine components, fatigue, thermal cycling, creep rupture

22. Regeneration of the Creep Properties of a Cast Ni-Cr-Base Alloy
Tipler, H. R.
National Physical Lab, Teddington, UK
Proc 53rd Meeting of the AGARD Structures and Materials Panel, Maintenance in Service of High Temperature Parts
12-1 to 12-6, 1982 (AD-D125 469)
Key Words: IN-738LC, creep, tensile properties, rejuvenation
23. **High-Temperature Electron Beam Welding of the Nickel-Base Superalloy IN-738LC**

Jahnke, B.

Weld J 61 (11), 343s to 347s, 1982 (AD-D125 951)

Key Words: IN-738LC, turbine components, microstructure, hot cracking, tensile properties, fatigue

24. **Hipping is One Way to Check Porosity in Cast Components**

Irving, R. R.

Iron Age 225 (33), 43-5, 1982 (AD-D126 241)

Key Words: AA A201, AISI 4330, AA C355-T6, 142-T4, AA A356-T61, IN-738, RENE’ 77, IN-792, RENE’ 80, stainless steel, porosity, tensile properties, fatigue

25. **Scope for Repair Welding Gas Turbine Blades**

Eisner, W.

Pract Metall 19 (4), 199-214, 1982 (AD-D126 799)

Key Words: IN-738LC, Nimonic 90, Nimonic 105, Udimet 520, turbine components, microstructure, tensile properties, welding

26. **Development of Hybrid Gas Turbine Bucket Technology**

Peterson, L. G., Gracccecin, D. E., Schilling, W. F., Ostergren, W. J.

General Electric Co., Gas Turbine Division, Schenectady, NY

Technical Paper

Rept No : ASME-82-GT-94, 10 pp., 1982 (AD-D127 264)

Key Words: RENE’ 00, RENE’ 150, Udimet 700, MAR-M200, IN-939, RENE’ 125, RENE’ 120, GTD-111, IN-738, turbine components, tensile properties, unidirectional solidification, dissimilar joining, diffusion bonding, creep rupture

27. **High Cyclic Fatigue Properties of Cast Nickel Base Superalloys IN 738LC and IN 939**

Schneider, K., Gnirrs, G., McColvin, G.

Kluwer Boston Inc., Hingham, MA

Proc Conf High Temperature Alloys for Gas Turbines 319-44, 1982 (AD-D133 996)

Key Words: IN-738C, IN-939, grain size, porosity, particle size, fatigue

28. **Mechanisms of High Cycle Fatigue of Cast Nickel Base Alloys**

Schneider, K., Gnirrs, G., Truck, B., Arnim, G. V.

Kluwer Boston Inc., Hingham, MA

Proc Conf High Temperature Alloys for Gas Turbines 685-701, 1982 (AD-D134 014)

Key Words: IN-738LC, IN-939, grain refinement, crack initiation, fatigue life

29. **Hipping: A Good Way to Improve Properties**

Irving, R. R.

Iron Age 224 (6), 77-81, 1981 (AD-D120 406)

Key Words: JT-9D, MEP-L 76, 17-4PH, RENE’ 120, IN-792, IN-738, turbine components, porosity

30. **Long Term Materials Test Program: Materials Evaluation—Improved Simulation Tests**

General Electric Co., Energy Systems Programs Department, Schenectady, NY

Technical Report

Rept No : DE82-000649, 54 pp., 1981 (AD-D125 182)

Key Words: FSX-414, IN-738, GTD-111, turbine components, coatings, erosion, hot corrosion
31. European Concerted Action COST 50--Materials for Gas Turbines UK17--An Investigation of the Creep Fracture Process in a Cast Ni-Cr Base Alloy, IN738LC
Tipler, H. R., Peck, M. S.
NTIS, PB83-212787, Springfield, VA
Final Rept Round Two
Rept No.: NPL-DMA-A-33, 118 pp., 1981 (AD-D128 455)
Key Words: IN-738LC, turbine components, cracking, porosity, creep rupture, tensile properties

32. Heat Treatment of Hot Isostatically Processed IN-738 Investment Castings
Beddoes, J. C., Wallare, W.
Metall 13 (2), 185-94, 1980 (AD-D118 440)
Key Words: IN-738, turbine components, creep rupture twinning, heat treatment

33. Cutting Metal Loss Tied to Near Net Shapes
Harvey, R. E.
Iron Age 222 (42), 57-63, 1979 (AD-D116 853)
Key Words: RENE', 77, IN-738, IN-792, AA C355-T6, AA A356-T61, 142-T6, net shape forming, fatigue, tensile properties

34. Hot Isostatic Processing of IN-738 Turbine Blades
Van Drunen, G., Liburdi, J., Wallace, W., Terada, T.
Westinghouse Canada Ltd. Hamilton (Ontario) turbine and Generator Div
Proc 47th Meeting of the AGARD Structures and Materials Panel, Advanced Fabrication Processes
Rept No.: AGARD-CP-256, 13-1 to 13-12, 1979 (AD-D117 188)
Key Words: IN-738, turbine components, creep rupture, tensile properties, fatigue, Larson-Miller curves, thermal cycling

35. Damage Accumulation and Fracture in Creep of Nickel-Base Alloys
Tipler, H. R., Lindblom, Y., Davidson, J. G.
Applied Sciences Publishers Ltd., London, UK
Key Words: IN-597, Nimonic 115, IN-738LC, Nimonic 80A, MAR-M200, Udiment 500, Udiment 710, Udiment 720, turbine components, microstructure, grain boundaries, cracking, creep properties, fatigue, thermal fatigue, cavitation corrosion

36. Quality of Castings of Superalloys
Bachelet, E., Lesoult, G.
Applied Sciences Publishers Ltd., London, UK
High Temperature Alloys for Gas Turbines 665-99, 1978 (AD-D116 360)
Key Words: IN-738, Udiment 500, X-40, IN-100, MC-102, M3608F, C263, mto-001, B1914, B1981, M-21, FSX-430, MAR-M509, IN-939, Alloy 713LC, creep properties, fatigue, crack growth, thermal fatigue, porosity

37. High Cycle Fatigue of Nickel-Base Alloys-European Concerted Action--Cost 50-Materials for Gas Turbines, Project UK8
McColvin, G. M.
NTIS, N79-18022, Springfield, VA
Final Report
Rept No.: N79-18022, T.R. 2977, 99 pp., 1977 (AD-D115 653)
Key Words: Incoloy 901, IN-738, Nimonic 90, Nimonic 115, Inconel 718, fatigue, tensile properties, creep rupture, grain size
38. **Premium Quality Castings**
Freeman Jr., W. R.
Manufacturing Technology Division, AFML, Wright-Patterson AFB, OH
Proc Net Shape Metalworking Program Review 406-17, 1976 (AD-D119 187L)
Key Words: IN-792, IN-738, IN-100, RENE’ 80, Alloy 713L, Alloy 713LC, B-1900, MAR-M200, tensile properties, fatigue

39. **Improved Properties in Castings by Hot Isostatic Pressing**
Glenn, G. M.
SAMPE Qtrly 8 (1), 1-9, 1976 (AD-D107 893)
Key Words: IN-738, RENE’ 80, RENE’ 120, RENE’ 77, Ti-6Al-4V, AA A356, AA C355, porosity, tensile properties, microstructure, creep rupture, density, fatigue

40. **Processing: The Rediscovered Dimension in High Temperature Alloys**
Semchyshen, M.
Standardization News 4 (4), 9-19, 1976 (AD-D110 676)
Key Words: Inconel 718, RENE’ 80, AISI 4140, Udimet 700, TZM, IN-738, Waspaloy, remelting, alloying, creep rupture

41. **Materials and Processing Technology for Advanced Gas Turbines**
Hauser, H. A.
SAMPE Qtrly 6 (3), 8 pp., 1975 (AD-D101 035)
Key Words: TiAl, Ti(3)Al, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Ti-6Al-2Sn-4Zr-2Mo, Ti-8Al-1Mo-1V, IN-100, IN-738, IN-792, Alloy 713, B-1900, MAR-M200, turbine components, fracture mechanics, fatigue, creep rupture

42. **Improvement of Nuclear Reactor Component Materials by Application of Hot Isostatic Processing (HIP)**
Mueller, J. J.
Electric Power Research Inst, Palo Alto, CA
Phase One Survey Report
Rept No: EPRI-500-1, PB-250952, 64 pp., 1975 (AD-D107 180)
Key Words: Ti-6Al-4V, AA A356-T61, RENE’ 95, IN-738, IN-792, RENE’ 77, RENE’ 80, nuclear reactor, turbine components, tensile properties, fatigue, creep rupture, cladding, defects

43. **Study of Superalloys Produced via Powder Metallurgy**
Heliner, L., Johansson, H.
NTIS, N77-13210, Springfield, VA
Final Report
Rept No: N77-13210, 56 pp., 1975 (AD-D109 492)
Key Words: X-40, MAR-M509, IN-738, dispersion hardening, cracking, microstructure, temperature effect, deformation, stress intensity, tensile properties

IN-792

1. **Hot Isostatic Press**
Author Anon
Foreign Technology Division, Wright-Patterson AFB, OH
Rept No: FTD-II(RS)T-1406-84, 65 pp., 1985 (AD-B093 100L)
Key Words: Ti-6Al-4V, B-1900, IN-738, RENE’ 77, IN-792, RENE’ 80, AA C355, AA A356, 142-T4
2. **Polycrystalline Grain Controlled Castings for Rotating Compressor and Turbine Components**
 Ewing, B. A., Green, K. A.
 The Metallurgical Society of AIME, Warrendale, PA
 Proc 5th Int Symp Superalloys 1984 33-42, 1984 (AD-D132 824)
 Key Words: Microcast X, IN-792, MAR-M247, AF-95, turbine components, microstructure, tensile properties, creep rupture

3. **Hipping is One Way to Check Porosity in Cast Components**
 Irving, R. R.
 Iron Age 225 (33), 43-5, 1982 (AD-D129 241)
 Key Words: AA A201, AISI 4330, AA C355-T6, 142-T4, AA A356-T61, IN-738, RENE’ 77, IN-792, RENE’ 80, stainless steel, porosity, tensile properties, fatigue

4. **Hipping: A Good Way to Improve Properties**
 Irving, R. R.
 Iron Age 224 (6), 77-81, 1981 (AD-D120 406)
 Key Words: JT-9D, MERL 76, 17-4PH, RENE’ 120, IN-792, IN-738, turbine components, porosity

5. **Applications of Composite Gas Turbine Components**
 General Electric Co., Gas Turbine Division, Schenectady, NY
 Semi-Annual Technical Progress Rept-Phase I
 Rept No: DE82-004710, 30 pp., 1981 (AD-D125 782)
 Key Words: MAR-M200, Udimet 700, IN-792, turbine components, tensile properties, creep, fatigue, diffusion bonding, unidirectional solidification

6. **A Solid-to-Solid HIP Bond Pressing Concept for the Manufacturing of Dual-Property Turbine-Wheels for Small Gas Turbines**
 Ewing, B. A.
 ASM International, Metals Park, OH
 Proc 4th Int Symp Superalloys, Superalloys 1980 169-78, 1980 (AD-D120 647)
 Key Words: MAR-M246, IN-792, turbine components, net shape forming, diffusion bonding, dissimilar joining, tensile properties, thermal fatigue

7. **HIP’ing Various Precision Cast Engine Components in Nickel-Based Superalloys**
 Lamberigts, M., Diderrich, E., Coutouradis, D., de Lamotte, E., Drapier, J. M.
 Key Words: Alloy 713LC, IN-792, MAR-M002, MAR-M004, IN-100, jet engines, turbine components, creep, microstructure

8. **Cutting Metal Loss Tied to Near Net Shapes**
 Harvey, R. E.
 Iron Age 222 (42), 57-63, 1979 (AD-D116 853)
 Key Words: RENE’ 77, IN-738, IN-792, AA C355-T6, AA A356-T61, 142-T6, net shape forming, fatigue, tensile properties

9. **HIP, the Great Healer of Castings**
 Bittence, J. C.
 Mater Eng 88 (4), 54-7, 1978 (AD-D113 844)
 Key Words: Inconel 718, IN-792, Ti-6Al-4V, 17-4PH, AA A357, porosity, fatigue, creep properties, deformation, cost
10. **HIP'ing Raises Casting Performance Levels**
Freeman, W. R., Jr., Metal Prog 112 (3), 33-8, 1977 (AD-D110 513)
Key Words: B-1900, IN-792, Ti-6Al-4V, IN-100, tensile properties, turbine components, fatigue, creep rupture

11. **Premium Quality Castings**
Freeman Jr., W. R.
Manufacturing Technology Division, AFB, Wright-Patterson AFB, OH
Proc Net Shape Metalworking Program Review 406-17, 1976 (AD-D119 187)
Key Words: IN-792, IN-738, IN-100, RENE’ 80, Alloy 713L, Alloy 713LC, B-1900, MAR-M200, tensile properties, fatigue

12. **Materials and Processing Technology for Advanced Gas Turbines**
Hauser, H. A., SAMPE Qtrly 6 (3), 8 pp., 1975 (AD-D101 035)
Key Words: TiAl, Ti(3)Al, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-1Mo-1V, IN-100, IN-738, IN-792, Alloy 713, B-1900, MAR-M200, turbine components, fracture mechanics, fatigue, creep rupture

13. **Improvement of Nuclear Reactor Component Materials by Application of Hot Isostatic Processing (HIP)**
Mueller, J. J., Electric Power Research Inst, Palo Alto, CA
Phase One Survey Report
Rept No.: EPRI-500-1, PB-250952, 64 pp., 1975 (AD-D107 180)
Key Words: Ti-6Al-4V, AA A356-T61, RENE’ 95, IN-738, IN-792, RENE’ 77, RENE’ 80, nuclear reactor, turbine components, tensile properties, fatigue, creep rupture, cladding, defects

IN-939

1. **Mechanical Properties of Conventionally Cast, Directionally Solidified, and Single-Crystal Superalloys**
Quested, P. N., Osgerby, S.
Mater Sci Technol 2 (5), 461-75, 1986 (AD-D140 385)
Key Words: IN-935, IN-738, IN-939, IN-597, IN-738LC, MAR-M246, MAR-M002, MAR-M247, Alloy 713LC, unidirectional solidification, creep

2. **Creep Dominated Damage Processes**
Hoffelner, W., Kluwer Academic Publishers, Norwell, MA
Proc High Temperature Alloys for Gas Turbines and Other Applications 1986-Part 1 413-39, 1986 (AD-D142 074)
Key Words: Incoloy 800H, IN-738LC, IN-939, microstructure, creep, corrosive environment

3. **Effect of Fabrication and Repair Procedures on the Performance of IN 738 LC and IN 939**
Esser, W., McLean, M., Schneider, K.
Kluwer Academic Publishers, Norwell, MA
Proc High Temperature Alloys for Gas Turbines and Other Applications 1986-Part 1 593-622, 1986 (AD-D142 076)
Key Words: IN-738LC, IN-939, turbine components, welding, gas tungsten arc welding, electron beam welding, creep rupture strength, hot corrosion, welding, tensile properties, fatigue
4. Effects of Trace Elements on Mechanical Properties of Superalloys
McLean, M., Strang, A., Met Technol 11 (10), 454-64, 1984 (AD-D131 862)
Key Words: IN-100, MAR-M002, IN-738, IN-939, 11-718, Inconel X-750, grain boundaries, porosity, creep rupture

5. Development of Hybrid Gas Turbine Bucket Technology
Peterson, L. G., Hrencecin, D. E., Schilling, W. F., Ostergren, W. J.
General Electric Co., Gas Turbine Division, Schenectady, NY
Rept No: ASME-82-GT-94, 10 pp., 1982 (AD-D127 264)
Key Words: RENE' 80, RENE' 150, Udimet 700, MAR-M200, IN-939, RENE' 125, RENE' 120, GTD-111, IN-738, turbine components, tensile properties, unidirectional solidification, dissimilar joining, diffusion bonding, creep rupture

6. High Cycle Fatigue Properties of Cast Nickel Base Superalloys IN 738LC and IN 939
Schneider, K., Gnirrs, G., McColvin, G.
Kluwer Boston Inc., Hingham, MA
Proc Conf High Temperature Alloys for Gas Turbines 319-44, 1982 (AD-D133 996)
Key Words: IN-738C, IN-939, grain size, porosity, particle size, fatigue

7. Mechanisms of High Cycle Fatigue of Cast Nickel Base Alloys
Schneider, K., Gnirrs, G., Truck, B., Armin, G. V.
Kluwer Boston Inc., Hingham, MA
Proc Conf High Temperature Alloys for Gas Turbines 685-701, 1982 (AD-D134 014)
Key Words: IN-738LC, IN-939, grain refinement, crack initiation, fatigue life

8. Quality of Castings of Superalloys
High Temperature Alloys for Gas Turbines 665-99, 1978 (AD-D116 360)
Key Words: IN-738, Udimet 500, X-40, IN-100, MC-102, M3608F, C263, mto-001, B1914, B1981, M-21, FSX-430, MAR-M509, IN-939, Alloy 713LC, creep properties, fatigue, crack growth, thermal fatigue, porosity

Incoloy 901

1. Fatigue Dominated Damage Processes
Bressers, J., Remy, L., Hoffelner, W.
Kluwer Academic Publishers, Norwell, MA
Proc High Temperature Alloys for Gas Turbines and Other Applications 1986-Part 1 441-68, 1986 (AD-D142 075)
Key Words: MAR-M509, IN-738LC, Hastelloy X, Inconel 617, RA-333, A-286, Inconel 718, Incoloy 901, microstructure, cracking, granular fracture, fatigue

2. Problems and Possibilities for Life Extension in Gas Turbine Components
Koul, A. K., Wallace, W., Thamburaj, R.
National Aeronautical Establishment, Structures and Materials Section
Proc Propulsion and Energetics 63rd (B) Specialists' Meeting on Engine Cyclic Durability by Analysis and Testing, Lisse, Netherlands 10-1 to 10-32, 1984 (AD-D132 383)
Key Words: Inconel X-750, IN-738LC, Udimet 700, IN-100, Incoloy 901, turbine components, damage tolerance, EDM, creep, machining
3. **Materials for Advanced Turbine Engine--MATE**
 Evans, D. J., Sheffler, K. D., Friedrich, L. A.
 Pratt and Whitney Aircraft Group, East Hartford, CT
 Contract No: NAS 3-20072, 1982, 21 pp. (AD-D125 191)
 Key Words: Hastelloy X, Incoloy 901, MA956, Udimet 700, MERL 76, turbine components, combustors, erosion, coatings, oxide dispersion strengthening

4. **Materials for Advanced Turbine Engine-MATE**
 Evans, D. J., Henricks, R. J., Friedrich, L. A.
 Pratt and Whitney Aircraft Group, Commercial Products Div. East Hartford, CT
 Quarterly Technical Progress Report Number Twenty, Dec 80-Feb 81
 Contract No: NAS 3-20072, 48 pp., 1981 (AD-D120 953)
 Key Words: MERL 76, MA956, Hastelloy X, Incoloy 901, aircraft structures, combustor liners, turbine components, tensile properties, creep, crack growth, coatings, thermal fatigue

5. **Aircraft Gas Turbine Materials and Processes**
 Kear, B. H., Thompson, E. R.
 Science 208 (4446), 847-56, 1980 (AD-D126 322)
 Key Words: Haynes 188, Inconel 617, HA8077, Waspaloy, B-1900, PWA 1422, Incoloy 901, IN-100, X-40, MAR-M509, Hastelloy X, turbine components, fan blades, compressor components, coatings, unidirectional solidification, superplastic forming

6. **High Cycle Fatigue of Nickel-Base Alloys-European Concerted Action--Cost 50-Materials for Gas Turbines, Project UK8**
 McColvin, G. M.
 NTIS, N79-18022, Springfield, VA
 Key Words: Incoloy 901, IN-738, Nimonic 90, Nimonic 115, Inconel 718, fatigue, tensile properties, creep rupture, grain size

Inconel 625

1. **Cast 625 Hot Isostatic Pressing (HIP) Parameters - a Statistically Designed Study**
 Carlson, R. G.
 TMS, Warrendale, PA
 Key Words: Inconel 625, tensile properties, computer model, defects

2. **Severe Sour Gas Service Performance of HIP-Clad Alloy 625**
 Bednarowicz, T. A., Byrd, J. D., Raymond, E. L., Bunch, P. D.
 Materials Performance 28 (1), 59-63, 1989 (AD-D140 727)
 Key Words: Inconel 625, corrosive medium, sour gas wells

3. **Repair Techniques for Gas Turbine Components**
 Liburdi, J.
 Liburdi Engineering Ltd. Burlington, Ontario, Canada
 Proc 61st Meeting of the AGARD Structures and Materials Panel, Advanced Joining of Aerospace Metallic Materials
 Rept No: AGARD-CP-398, 22-1 to 22-12, 1985 (AD-D139 985)
 Key Words: Inconel X-750, Inconel 625, Udimet 500, Inconel 700, diffusion brazing, vacuum deposition, tensile properties, creep rupture
4. Progress of Powder Metallurgy in North America
Roll, K.H., Johnson, P.K.
Key Words: copper, iron, Inconel 625, AISI 316L, M-2, NiFe, rapid solidification, injection molding

Inconel 718

1. The Effect of Laves Phase on the Mechanical Properties of Wrought and Cast + HIP Inconel 718
Schirra, J. J., Caless, R. H., Hatala, R. W., TMS, Warrendale, PA
Key Words: Inconel 718, tensile properties, microstructure, fracture toughness, impact toughness, fatigue, cracking

2. An Evaluation of the Effects of Filler Metal Composition on Cast Alloy 718 Simulated Repair Welds
Kelly, T. J., Cremisio, W. H., Simon, W. H.
Weld J 68 (1), 14-s to 18-s, 1989 (AD-D140 251)
Key Words: Inconel 718, microstructure, HAZ, welding, fatigue

3. Elemental Effects on Cast 718 Weldability
Kelly, T. J., Weld J 68 (2), 44-s to 51-s, 1989 (AD-D140 721)
Key Words: Inconel 718, turbine components, microstructure, tensile properties, rupture strength, welding

4. Near-Threshold Crack Growth in Nickel-Base Superalloys
Van Stone, R. H., Krueger, D. D., ASTM, Philadelphia, PA
Key Words: RENE' 95, Inconel 718, microstructure, grain size, fatigue crack growth, tensile properties

5. Microstructure and Properties of Ni-Fe Base Ta-718
Loewenkamp, S.A., Radavich, J.F., Kelly, T.
The Metallurgical Society of AIME, Warrendale, PA
Key Words: Inconel 718, microstructure, tensile properties creep rupture

6. Effect of HIP Parameters on Fine Grain Cast Alloy 718
Siereveld, P., Radavich, J.F., Kelly, T., Cole, G., Widmer, R.
The Metallurgical Society of AIME, Warrendale, PA
Key Words: Inconel 718, microscopy, grain growth, porosity, heat treating, tensile properties

7. Effects of Thermal and Thermo-Mechanical Treatments on the Mechanical Properties of Centrifugally Cast Alloy 718
Michel, D. J., Smith, H. H., Naval Research Lab, Washington DC
Rept No: NRL-MR-6101, 22 pp., 1987 (AD-A188 195)
Key Words: Inconel 718, fatigue, crack growth, creep rupture microstructure, crystallography, brittle fracture, aging, thermomechanical treatment, homogenizing
8. **The Role of Hot Isostatic Pressing--Now and in the Future**
 Widmer, R.
 ASM International, Metals Park, OH
 Proc Nicholas J. Grant Symp, Processing and Properties of Advanced High Temperature Alloys, 105-16, 1986 (AD-D139 357)
 Key Words: Udiment 700, Inconel 718, densification, fatigue, creep rupture

9. **Fatigue Dominated Damage Processes**
 Bressers, J., Remy, L., Hoffelner, W.
 Kluwer Academic Publishers, Norwell, MA
 Proc High Temperature Alloys for Gas Turbines and Other Applications 1986-Part 1 441-68, 1986 (AD-D142 075)
 Key Words: MAR-M509, IN-738LC, Hastelloy X, Inconel 617, RA-333, A-286, Inconel 718, Incoloy 901, microstructure, cracking, granular fracture, fatigue

10. **Effects of Trace Elements on Mechanical Properties of Superalloys**
 McLean, M., Strang, A.
 Met Technol 11 (10), 454-64, 1984 (AD-D131 862)
 Key Words: IN-100, MAR-M002, IN-738, IN-939, IN-718, Inconel X-750, grain boundaries, porosity, creep rupture

11. **Fatigue Growth of Surface Cracks in Nickel-Based Superalloys**
 Brown, C. W., Hicks, M. A.
 Int J Fatigue 4 (2), 73-81, 1982 (AD-D124 743)
 Key Words: Inconel X-750, Inconel 718, turbine components, microstructure, grain size, crack growth, fatigue, tensile properties

12. **Hot Isostatic Pressing of Alloy IN-718**
 Lamberigts, M., Herman, C., Louis, P., Wallemacq, J. P., Drapier, J. M.
 Kluwer Boston Inc., Hingham, MA
 Proc Conf High Temperature Alloys for Gas Turbines 999-1011, 1982 (AD-D134 030)
 Key Words: Inconel 718, turbine components, welding, tensile properties, creep rupture

13. **Healing Defects by HIP**
 Dreger, D. R.
 Mach Des 53 (12), 79-85, 1981 (AD-D121 264)
 Key Words: Inconel 718, porosity, welding, cracking, fatigue, creep, tensile properties

14. **Use of a d-c Potential Drop Crack Monitoring Technique in the Development of Defect Tolerant Disk Alloys**
 Van Stone, R. H., Krueger, D. D., Duvelius, L. T.
 ASTM, Philadelphia, PA
 Proc 14th National Symp Fracture Mechanics 2, 553-78, 1981 (AD-D128 740)
 Key Words: RENE' 95, Inconel 718, turbine components, microstructure, tensile properties, crack growth, fatigue

15. **Process Optimization of Cast Alloy 718 for Water Cooled Gas Turbine Application**
 Bouse, G. K., Schilke, P. W.
 ASM International, Metals Park, OH
 Proc 4th Int Symp Superalloys, Superalloys 1980 303-10, 1980 (AD-D120 660)
 Key Words: Inconel 718, turbine components, dislocation structure, homogenizing, tensile properties
16. **New Method for Cast Superalloy Frames**
Schweikert, W. H., Bailey, P. G.
Key Words: Inconel 718, turbine components, fatigue, microstructure, welding, chemical milling

17. **Investigation of Rejuvenation of Fatigue Damage in IN-718**
Clauer, A. H., Leis, B. N., Hoover, G., Seifert, D. A.
Battelle Memorial Institute, Columbus, OH
Final Report
Rept No.: AFML-TR-78-90, 115 pp., 1978 (AD-A068 333)
Key Words: IN-718, microstructure, rejuvenation, fatigue, tensile properties

18. **HIP, the Great Healer of Castings**
Bittence, J. C.
Mater Eng 88 (4), 54-7, 1978 (AD-D113 844)
Key Words: Inconel 718, IN-792, Ti-6Al-4V, 17-4PH, AA A357, porosity, fatigue, creep properties, deformation, cost

19. **Original HCl Surface Treatment for Diffusion Bonding of Nickel Superalloy Specimens**
Billard, D., Trottier, J. P.
Met Technol 5 (9), 309-19, 1978 (AD-D114 028)
Key Words: IN-100, Waspaloy, RENE' 95, Inconel 718, welding, grain size, bonding, recrystallization, temperature effect

20. **High Cycle Fatigue of Nickel-Base Alloys-European Concerted Action--Cost 50-Materials for Gas Turbines, Project UK8**
McColvin, G. M.
NTIS, N79-18022, Springfield, VA
Final Report
Rept No.: N79-18022, T.R. 2977, 99 pp., 1977 (AD-D115 653)
Key Words: Incoloy 901, IN-738, Nimonic 90, Nimonic 115, Inconel 718, fatigue, tensile properties, creep rupture, grain size

21. **Superalloy Casting Process**
Schweikert, W. H., Piwonka, T. S.
Manufacturing Technology Division, AFML, Wright-Patterson AFB, OH
Proc Net Shape Metalworking Program Review 93-116, 1976 (AD-D119 169L)
Key Words: Inconel 718, forging, turbine components, tensile properties, fatigue

22. **High Integrity Casting Program**
Schweikert, W. H.
Manufacturing Technology Division, AFML, Wright-Patterson AFB, OH
Proc Net Shape Metalworking Program Review 392-405, 1976 (AD-D119 186L)
Key Words: Inconel 718, Ti-6Al-4V, 17-4PH, AA A357, tensile properties, nondestructive testing

23. **Processing: The Rediscovered Dimension in High Temperature Alloys**
Semchyschen, M.
Standardization News 4 (4), 9-19, 1976 (AD-D110 676)
Key Words: Inconel 718, RENE' 80, AISI 4140, Udiment 700, TZM, IN-738, Waspaloy, remelting, alloying, creep rupture

217
24. Precision Castings State-of-the-Art
Nagan, R. M., SAMPE Qtrly 6 (4), 1-7, 1975 (AD-D102 565)
Key Words: 17-4PH, Hastelloy X, Inconel 718, Ti-6Al-4V, aircraft structures, turbine components, tensile properties

25. Complex Rotor Fabrication by Hot Isostatic Pressure Welding
Lessman, G. G., Bryant, W. A.
Weld J 51 (12), 606s-614s, 1972 (AD-180 534)
Key Words: AISI 4340, Inconel 718, hardness, tensile properties

Inconel X-750

1. Rejuvenation Procedures to Recover Creep Properties of Nickel-Base Superalloys by Heat Treatment and Hot Isostatic Pressing Techniques
Key Words: IN-100, Nimonic 80A, Nimonic 115, Nimonic 75, Nimonic 105, Nimonic 90, IN-738, IN-738LC, Inconel X-750, turbine components, creep, grain size, cavitation

2. Repair Techniques for Gas Turbine Components
Liburdi, J., Liburdi Engineering Ltd. Burlington, Ontario, Canada
Proc 61st Meeting of the AGARD Structures and Materials Panel, Advanced Joining of Aerospace Metallic Materials
Rept No: AGARD-CP-398, 22-1 to 22-12, 1985 (AD-D139 985)
Key Words: Inconel X-750, Inconel 625, Udimet 500, Inconel 700, diffusion brazing, vacuum deposition, tensile properties, creep rupture

3. Creep Life Predictions in Nickel-based Superalloys
Koul, A. K., Castillo, R., Willett, K.
Mater Sci Eng 66 (2), 213-26, 1984 (AD-D131 247)
Key Words: MAR-M200, IN-738LC, Inconel X-750, turbine components, deformation, grain size, long term tests, shear stress

4. Effects of Trace Elements on Mechanical Properties of Superalloys
McLean, M., Strang, A., Met Technol 11 (10), 454-64, 1984 (AD-D131 862)
Key Words: IN-100, MAR-M002, IN-738, IN-939, IN-718, Inconel X-750, grain boundaries, porosity, creep rupture

5. Problems and Possibilities for Life Extension in Gas Turbine Components
Koul, A. K., Wallace, W., Thamburaj, R.
National Aeronautical Establishment, Structures and Materials Section
Proc Propulsion and Energetics 63rd (B) Specialists' Meeting on Engine Cyclic Durability by Analysis and Testing, Lisse, Netherlands
10-1 to 10-32, 1984 (AD-D132 383)
Key Words: Inconel X-750, IN-738LC, Udimet 700, IN-100, Incoloy 901, turbine components, damage tolerance, EDM, creep, machining

6. Fatigue Growth of Surface Cracks in Nickel-Based Superalloys
Brown, C. W., Hicks, M. A.
Int J Fatigue 4 (2), 73-81, 1982 (AD-D124 743)
Key Words: Inconel X-750, Inconel 718, turbine components, microstructure, grain size, crack growth, fatigue, tensile properties
7. **Rejuvenation of Used Turbine Blades by Hot Isostatic Pressing and Reheat Treatment**
Cheung, K. L., Leach, C. C., Willett, K. P., Koul, A. K.
Westinghouse Canada Ltd., Hamilton, Ontario, Canada
Proc 53rd Meeting of the AGARD Structures and Materials Panel, Maintenance in
Service of High Temperature Parts
10-1 to 10-6, 1982 (AD-D125 467)
Key Words: Inconel X-750, IN-738, Nimonic 115, Nimonic 105, Inconel 700,
turbine components, microstructure, rejuvenation, creep

8. **HIP Processing--Potentials and Applications**
Van Der Vet, W. J.
Chromalloy American Co., Midwest City, OK
Proc 53rd Meeting of the AGARD Structures and Materials Panel, Maintenance in
Service of High Temperature Parts
11-1 to 11-16, 1982 (AD-D125 468)
Key Words: Inconel X-750, Udiment 500, RENE' 100, B-1900, Nimonic 105, IN-738,
IN-782, turbine components, fatigue, thermal cycling, creep rupture

MAR-M002

1. **Mechanical Properties of Conventionally Cast, Directionally Solidified, and
Single-Crystal Superalloys**
Quested, P. N., Osgerby, S.
Mater Sci Technol 2 (5), 461-75, 1986 (AD-D140 385)
Key Words: IN-935, IN-738, IN-939, IN-597, IN-738LC, MAR-M246, MAR-M002,
MAR-M247, Alloy 713LC, unidirectional solidification, creep

2. **Effects of Trace Elements on Mechanical Properties of Superalloys**
McLean, M., Strang, A.
Met Technol 11 (10), 454-64, 1984 (AD-D131 862)
Key Words: IN-100, MAR-M002, IN-738, IN-939, IN-718, Inconel X-750, grain
boundaries, porosity, creep rupture

3. **Characterizations of Elevated Temperature Fatigue Crack Growth Rates**
Crompton, J. S., Morley, S. A., Martin, J. W.
The Metallurgical Society of AIME, Warrendale, PA
Proc 5th Int Symp Superalloys 1984 761-9, 1984 (AD-D132 885)
Key Words: MAR-M002, Nimonic AP1, unidirectional solidification, fatigue
crack, stress relaxation

4. **The Effect of Hot Isostatic Pressing on the Creep and Fracture Behavior of the Cast
Superalloy MAR-M002**
Burt, H., Dennison, J. P., Elliott, I. C., Wilshire, B.
Mater Sci Eng 53 (2), 245-50, 1982 (AD-D125 089)
Key Words: MAR-M002, microstructure, porosity, cracking, surface defects,
fracture mechanics, creep, ductility

5. **HIP'ing Various Precision Cast Engine Components in Nickel-Based Superalloys**
Lamberigts, M., Diderrich, E., Costousourdias, D., de Lamotte, E., Drapier, J. M.
Key Words: Alloy 713LC, IN-792, MAR-M002, MAR-M004, IN-100, jet engines,
turbine components, creep, microstructure

219
6. **Casting Conditions, Microstructure and Creep Properties of MAR-M-002 Blades**
Viator, P., Coutsouradis, D., Habraken, L., Drapier, J. M.
Applied Sciences Publishers Ltd., London, UK
Proc Conf High Temperature Alloys for Gas Turbines 875-91, 1978 (AD-D116 366)
Key Words: MAR-M002, turbine components, rotor blades, microstructure, porosity, grain boundaries, creep rupture, precipitation, segregation, thermomechanical treatment

MAR-M200

1. **Microstructural Damages Induced During the Repair Process**
Davin, A., Lecomte-Mertens, Ch., Vierset, P., Louis, P.
Kluwer Academic Publishers, Norwell, MA
Proc High Temperature Alloys for Gas Turbines and Other Applications 1986-Part 1
811-20, 1986 (AD-D142 085)
Key Words: Haynes 188, MAR-M200, X-40, turbine components, tensile properties, thermal shock, diffusion brazing, rejuvenation, repairs, welding

2. **Structural Damage and Rejuvenation of Used Turbine Blades**
Lamberigts, M., Lecomte-Mertens, Ch., Vierset, P.
Kluwer Academic Publishers, Norwell, MA
Proc High Temperature Alloys for Gas Turbines and Other Applications 1986-Part 1
821-30, 1986 (AD-D142 086)
Key Words: MAR-M200, turbine components, microstructure, aging, rupture strength, service life, rejuvenation

3. **Creep Life Predictions in Nickel-based Superalloys**
Koul, A. K., Castillo, R., Willett, K.
Mater Sci Eng 66 (2), 213-26, 1984 (AD-D131 247)
Key Words: MAR-M200, IN-738LC, Inconel X-750, turbine components, deformation, grain size, long term tests, shear stress

4. **Development of Hybrid Gas Turbine Bucket Technology**
Peterson, L. G., Hrencecin, D. E., Schilling, W. F., Ostergren, W. J.
General Electric Co., Gas Turbine Division, Schenectady, NY
Rept No: ASME-82-GT-94, 10 pp., 1982 (AD-D127 264)
Key Words: RENE’ 80, RENE’ 150, Udimet 700, MAR-M200, IN-939, RENE’ 125, RENE’ 120, GTD-111, IN-738, turbine components, tensile properties, unidirectional solidification, dissimilar joining, diffusion bonding, creep rupture

5. **Superalloy Technology-Today and Tomorrow**
Ver Snyder, F. L., Kluwer Boston Inc., Hingham, MA
Proc Conf High Temperature Alloys for Gas Turbines 1-49, 1982 (AD-D133 988)
Key Words: MAR-M200, IN-100, Udimet 700, carbon addition, boron addition, zirconium addition, cobalt addition, turbine components, corrosion, oxidation, REP, creep rupture, thermal fatigue

6. **Precision Casting of Turbine Blades and Vanes**
Drapier, J. M., Kluwer Boston Inc., Hingham, MA
Proc Conf High Temperature Alloys for Gas Turbines 887-908, 1982 (AD-D134 025)
Key Words: Alloy 713LC, IN-100, MAR-M200, PWA 1480, MAR-M247, CMSX2, turbine components, rejuvenation, oxidation, vacuum melting, unidirectional solidification

220
7. Applications of Composite Gas Turbine Components
General Electric Co., Gas Turbine Division, Schenectady, NY
Rept No: DE82-004710, 30 pp., 1981 (AD-D125 782)
Key Words: MAR-M200, Udimet 700, IN-792, turbine components, tensile properties, creep, fatigue, diffusion bonding, unidirectional solidification

8. HIP Rejuvenation of Damaged Blades
Stewart, D. C., Bennett, G. T.
Pratt and Whitney Aircraft Group, Government Products Div, West Palm Beach, FL
Interim Technical Report One and Two, Aug 77-Mar 79
Rept No: FR-11642, 115 pp., 1979 (AD-D108 398L)
Key Words: IN-100, MAR-M200, unidirectional solidification, creep properties, aluminides, PWA 73 coating, surface defects, rejuvenation

9. The Promise of more Heat Resistant Turbine Materials
Freche, J. C., Ault, G. M.
Prod Engineering 50 (7), 35-9, 1979 (AD-D115 942)
Key Words: AF 2-1DA, AF-115, NASA IIB-7, NASA IIB-11, MAR-M200, MA6000E, WAZ-D, WAZ20, IN-100, service life, creep rupture, tensile properties, coatings, corrosion, thermal fatigue, unidirectional solidification

10. Damage Accumulation and Fracture in Creep of Nickel-Base Alloys
Tipler, H. R., Lindblom, Y., Davidson, J. G.
Applied Sciences Publishers Ltd., London, UK
Key Words: IN-597, Nimonic 115, IN-738LC, Nimonic 80A, MAR-M200, Udimet 500, Udimet 710, Udimet 720, turbine components, microstructure, grain boundaries, cracking, creep properties, fatigue, thermal fatigue, cavitation corrosion

11. Coatings for Directionally Solidified Gamma Prime-Gamma Plus Alpha Eutectics
Smeggil, J.
United Technologies Research Center, East Hartford, CT
Rept No: R77-912959-1, 12 pp., 1977 (AD-D108 260)
Key Words: MAR-M200, hafnium addition, nickel aluminide coatings, CoCrAlY coatings, NiCoCrAlY coatings, platinum addition, thermal expansion, oxidation, sulfidation, unidirectional solidification

12. Premium Quality Castings
Freeman Jr., W. R.
Manufacturing Technology Division, AFML, Wright-Patterson AFB, OH
Proc Net Shape Metalworking Program Review 406-17, 1976 (AD-D119 187L)
Key Words: IN-792, IN-738, IN-100, RENE' 80, Alloy 713L, Alloy 713LC, B-1900, MAR-M200, tensile properties, fatigue

Bisset, J. W.
United Technologies Corp., East Hartford, CT
Rept No: N77-14026, PWA-5453, 42 pp., 1976 (AD-D107 956)
Key Words: MAR-M509, Hastelloy X, Waspaloy, IN-100, MAR-M200, turbine components, single crystals, hafnium addition, unidirectional solidification, cost
14. Materials and Processing Technology for Advanced Gas Turbines
Hauser, H. A., SAMPE Qtrly 6 (3), 8 pp., 1975 (AD-D101 035)
Key Words: TiAl, Ti(3)Al, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Ti-6Al-2Sn-4Zr-2Mo,
Ti-8Al-1Mo-1V, IN-100, IN-738, IN-792, Alloy 713, B-1900,
MAR-M200, turbine components, fracture mechanics, fatigue,
creep rupture

MAR-M246

1. Advanced Single Crystal for SSME Turbopumps
Fritzemeier, L. G., Rockwell International, Rocketdyne Div, Canoga Park, CA
Contract No: NAS3-24646, 8 pp., 1988 (AD-D138 556)
Key Words: MAR-M246, fatigue, creep rupture, tensile properties

2. Mechanical Properties of Conventionally Cast, Directionally Solidified, and
Single-Crystal Superalloys
Quested, P. N., Osgerby, S.
Mater Sci Technol 2 (5), 461-75, 1986 (AD-D140 385)
Key Words: IN-935, IN-738, IN-939, IN-597, IN-738LC, MAR-M246, MAR-M002,
MAR-M247, Alloy 713LC, unidirectional solidification, creep

3. A Solid-to-Solid HIP Bond Pressing Concept for the Manufacturing of Dual-Property
Turbine-Wheels for Small Gas Turbines
Ewing, B. A., ASM International, Metals Park, OH
Proc 4th Int Symp Superalloys, Superalloys 1980 169-78, 1980 (AD-D120 647)
Key Words: MAR-M246, IN-792, turbine components, net shape forming, diffusion
bonding, dissimilar joining, tensile properties, thermal fatigue

4. The Metallurgical Aspects of Hot Isostatically Pressed Superalloy Castings
Antony, K. C., Radavich, J. F.
Key Words: Alloy 713C, MAR-M246, microstructure, porosity, tensile
properties, creep rupture, fatigue, fracture toughness

MAR-M247

1. Manufacturing Processes for Long-Life Gas Turbines
Hoppin, G. S., III, Danesi, W. P.
J Met 38 (7), 20-3, 1986 (AD-D136 463)
Key Words: MAR-M247, turbine components, diffusion bonding

2. Metallurgical Advancements in Investment Casting Technology
Dardi, L. E., Dalal, R. P., Yaker, C.
ASM International, Metals Park, OH
Proc Nicholas J. Grant Symp, Processing and Properties of Advanced High Temperature
Alloys 25-39, 1986 (AD-D139 354)
Key Words: MAR-M247, Ni-7Al-14Mo, Ti-6Al-4V, turbine components, fatigue
properties, unidirectional solidification
3. **Mechanical Properties of Conventionally Cast, Directionally Solidified, and Single-Crystal Superalloys**
 Quested, P. N., Osgerby, S.
 Mater Sci Technol 2 (5), 461-75, 1986 (AD-D140 385)
 Key Words: IN-935, IN-738, IN-939, IN-597, IN-738LC, MAR-M246, MAR-M002, MAR-M247, Alloy 713LC, unidirectional solidification, creep

4. **Development of a Conventional Fine Grain Casting Process**
 Wouds, M., Benson, H.
 The Metallurgical Society of AIME, Warrendale, PA
 Proc 5th Int Symp Superalloys 1984 3-12, 1984 (AD-D132 321)
 Key Words: Alloy 713LC, MAR-M247, turbine components, microstructure, creep rupture, tensile properties, fatigue

5. **Polycrystalline Grain Controlled Castings for Rotating Compressor and Turbine Components**
 Ewing, B. A., Green, K. A.
 The Metallurgical Society of AIME, Warrendale, PA
 Proc 5th Int Symp Superalloys 1984 33-42, 1984 (AD-D132 824)
 Key Words: Microcast X, IN-792, MAR-M247, AF-95, turbine components, microstructure, tensile properties, creep rupture

6. **Properties of Cast MAR-M-247 for Turbine Blisk Applications**
 Kaufman, M.
 The Metallurgical Society of AIME, Warrendale, PA
 Proc 5th Int Symp Superalloys 1984 43-52, 1984 (AD-D132 825)
 Key Words: MAR-M247, turbine components, defects, crack growth, tensile properties, fatigue, threshold stress

7. **Precision Casting of Turbine Blades and Vanes**
 Drapier, J. M.
 Kluwer Boston Inc., Hingham, MA
 Proc Conf High Temperature Alloys for Gas Turbines 887-908, 1982 (AD-D134 025)
 Key Words: Alloy 713LC, IN-100, MAR-M200, PWA 1480, MAR-M247, CMSX2, turbine components, rejuvenation, oxidation, vacuum melting, unidirectional solidification

MERL 76

1. **Development of Gatorized(R) MERL 76 for Gas Turbine Disk Applications**
 Caless, R. H., Paulonis, D. F.
 The Metallurgical Society of AIME, Warrendale, PA
 Key Words: MERL 76, turbine components, grain size, crack growth, tensile properties, flow stress, gatorizing, fatigue

2. **On the Sintered Ni-Base Superalloy (VI)--Effect of Microstructures on the Creep Property**
 Morishita, M., Nagai, H., Shoji, K.
 Key Words: IN-100, MERL 76, microstructure, swaging, creep rate, liquid sintering, creep rupture
3. **Overview of Temperature and Environmental Effects on Fatigue of Structural Metals**
 Coffin, L. F.
 Plenum Press, New York, NY
 Proc 27th Sagamore Army Materials Research Conf 1-40, 1983 (AD-D131 509)
 Key Words: RENE' 95, A-286, stainless steel, Udimet 700, Waspaloy, MERL 76, IN-100, NASA IIB-7, crack growth, fatigue

4. **Materials for Advanced Turbine Engine-MATE**
 Evans, D. J., Sheffler, K. D., Friedrich, L. A.
 Pratt and Whitney Aircraft Group, East Hartford, CT
 Mar-May 82
 Contract No: NAS 3-20072
 1982, 21 pp. (AD-D125 191)
 Key Words: Hastelloy X, Incoloy 901, MA956, Udimet 700, MERL 76, turbine components, combustors, erosion, coatings, oxide dispersion strengthening

5. **The Relationship Between Structure, Properties, and Processing in Powder Metallurgy Superalloys**
 Davidson, J. H., Aubin, C.
 Kluwer Boston Inc., Hingham, MA
 Proc Conf High Temperature Alloys for Gas Turbines 853-86, 1982 (AD-F134 024)
 Key Words: Udimet 700, Nimonic API, MERL 76, RENE' 95, turbine components, microstructure, crack propagation, fatigue, creep rupture, impact, thermomechanical treatment

6. **Hipping: A Good Way to Improve Properties**
 Irving, R. R.
 Iron Age 224 (6), 77-81, 1981 (AD-D120 406)
 Key Words: JT-9D, MERL 76, 17-4PH, RENE' 120, IN-792, IN-738, turbine components, porosity

7. **Materials for Advanced Turbine Engine-MATE**
 Evans, D. J., Henricks, R. J., Friedrich, L. A.
 Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
 Quarterly Technical Progress Report Number Twenty, Dec 80-Feb 81
 Contract No: NAS 3-20072
 48 pp., 1981 (AD-D120 953)
 Key Words: MERL 76, MA956, Hastelloy X, Incoloy 901, aircraft structures, combustor liners, turbine components, tensile properties, creep, crack growth, coatings, thermal fatigue

Nimonic 90

1. **Rejuvenation Procedures to Recover Creep Properties of Nickel-Base Superalloys by Heat Treatment and Hot Isostatic Pressing Techniques**
 Bildan, A.
 Mater Sci 26 (13), 3409-21, 1991
 Key Words: IN-100, Nimonic 80A, Nimonic 115, Nimonic 75, Nimonic 105, Nimonic 90, IN-738, IN-738LC, Inconel X-750, turbine components, creep, grain size, cavitation
2. Repair and Regeneration of Turbine Blades, Vanes, and Discs
Huff, H., Wortmann, J.
Motoren und Turbinen Union GMBH, Munich, Germany
Proc 53rd Meeting of the AGARD Structures and Materials Panel, Maintenance in Service of High Temperature Parts
13-1 to 13-7, 1982 (AD-D125 470)
Key Words: IN-100, Nimonic 90, Nimonic 108, turbine components, welding, creep, rejuvenation

3. Scope for Repair Welding Gas Turbine Blades
Elsner, W.
Pract Metall 19 (4), 199-214, 1982 (AD-D126 799)
Key Words: IN-738LC, Nimonic 90, Nimonic 105, Udimet 520, turbine components, microstructure, tensile properties, welding

McColvin, G. M.
NTIS, N79-18022, Springfield, VA
Final Report
Key Words: Incoloy 901, IN-738, Nimonic 90, Nimonic 115, Inconel 718, fatigue, tensile properties, creep rupture, grain size

Nimonic 105

1. Rejuvenation Procedures to Recover Creep Properties of Nickel-Base Superalloys by Heat Treatment and Hot Isostatic Pressing Techniques
Baldan, A.
Key Words: IN-100, Nimonic 80A, Nimonic 115, Nimonic 75, Nimonic 105, Nimonic 90, IN-738, IN-738LC, Inconel X-750, turbine components, creep, grain size, cavitation

2. The Behavior of NIM 105 and IN738 LC Under Creep and LCF Testing
Persson, P-O., Persson, C., Burman, G., Lindblom, Y.
Kluwer Academic Publishers, Norwell, MA
Proc High Temperature Alloys for Gas Turbines and Other Applications 1986-Part 2
1501-15, 1986 (AD-D142 159)
Key Words: Nimonic 105, IN-738LC, fatigue strain, creep

3. Refurbishing Superalloy Components for Gas Turbines
Lindblom, Y.
Mater Sci Technol 1 (8), 636-41 and 643, 1985 (AD-D133 819)
Key Words: Nimonic 105, turbine components, coatings, repairs, microstructure, rejuvenation, creep rate, fatigue

4. Refurbishing Superalloy Components for Gas Turbines
Lindblom, Y.
Mater Sci Technol 1 (8), 636-41, 1985 (AD-D319 428)
Key Words: Nimonic 105, turbine components, SEM, optical microscopy, blade life, creep
5. Rejuvenation of Used Turbine Blades by Hot Isostatic Pressing and Reheat Treatment
 Cheung, K. L., Leach, C. C., Willett, K. P., Koul, A. K.
 Westinghouse Canada Ltd., Hamilton, Ontario, Canada
 Proc 53rd Meeting of the AGARD Structures and Materials Panel, Maintenance in
 Service of High Temperature Parts, 10-1 to 10-6, 1982 (AD-D125 467)
 Key Words: Inconel X-750, IN-738, Nimonic 115, Nimonic 105, Inconel 700,
 turbine components, microstructure, rejuvenation, creep

6. HIP Processing--Potentials and Applications
 Van Der Vet, W. J., Chromalloy American Co., Midwest City, OK
 Proc 53rd Meeting of the AGARD Structures and Materials Panel,
 Maintenance in Service of High Temperature Parts
 11-1 to 11-16, 1982 (AD-D125 468)
 Key Words: Inconel X-750, Udimet 500, RENE' 100, B-1900, Nimonic 105, IN-738,
 IN-782, turbine components, fatigue, thermal cycling, creep rupture

7. Scope for Repair Welding Gas Turbine Blades
 Elsner, W., Pract Metall 19 (4), 199-214, 1982 (AD-D126 799)
 Key Words: IN-738LC, Nimonic 90, Nimonic 105, Udimet 520, turbine components,
 microstructure, tensile properties, welding

8. An Assessment of Hot Isostatic Pressing and Reheat Treatment for the Regeneration of
 Creep Properties of Superalloys
 Dennison, J. P., Elliot, I. C., Wilshire, B.
 ASM International, Metals Park, OH
 Key Words: Nimonic 105, IN-100, fracture mechanics, creep, heat treatment

Nimonic 115

1. Rejuvenation Procedures to Recover Creep Properties of Nickel-Base Superalloys by
 Heat Treatment and Hot Isostatic Pressing Techniques
 Key Words: IN-100, Nimonic 80A, Nimonic 115, Nimonic 75, Nimonic 105, Nimonic
 90, IN-738, IN-738LC, Inconel X-750, turbine components,
 creep, grain size, cavitation

2. Rejuvenation of Used Turbine Blades by Hot Isostatic Pressing and Reheat Treatment
 Cheung, K. L., Leach, C. C., Willett, K. P., Koul, A. K.
 Westinghouse Canada Ltd., Hamilton, Ontario, Canada
 Proc 53rd Meeting of the AGARD Structures and Materials Panel, Maintenance in
 Service of High Temperature Parts, 10-1 to 10-6, 1982 (AD-D125 467)
 Key Words: Inconel X-750, IN-738, Nimonic 115, Nimonic 105, Inconel 700,
 turbine components, microstructure, rejuvenation, creep

3. Damage Accumulation and Fracture in Creep of Nickel-Base Alloys
 Tipler, H. R., Lindblom, Y., Davidson, J. G.
 Applied Sciences Publishers Ltd., London, UK
 Key Words: IN-597, Nimonic 115, IN-738LC, Nimonic 80A, MAR-M200, Udimet 500,
 Udimet 710, Udimet 720, turbine components, microstructure,
 grain boundaries, cracking, creep properties, fatigue, thermal
 fatigue, cavitation corrosion
4. High Cycle Fatigue of Nickel-Base Alloys-European Concerted Action-- Cost
50-Materials for Gas Turbines, Project UK8
McColvin, G. M.
NTIS, N79-18022, Springfield, VA
Final Report
Key Words: Incoloy 901, IN-738, Nimonic 90, Nimonic 115, Inconel 718,
fatigue, tensile properties, creep rupture, grain size

PWA 1480

1. The Role of the gamma/gamma prime Eutectic and Porosity on the Tensile Behavior of a
Single-Crystal Nickel-Base Superalloy
Walston, W. S., Bernstein, I. M., Thompson, A. W.
Metall Trans A 22A, 1443-51, 1991
Key Words: PWA 1480, tensile properties, porosity, fracture, single crystals

2. Advanced Single Crystal for SSME Turbopumps
Fritzemeier, L. G.
Rockwell International, Rocketdyne Div, Canoga Park, CA
Final Contractor Report
Rept No: RURD 88-273, N89-21072, 48 pp., 1989 (AD-D141 694)
Key Words: PWA 1480, space shuttle, turbine components, porosity, crack
propagation, tensile properties, creep, rupture strength, fatigue

3. The Influence of High Thermal Gradient Casting, Hot Isostatic Pressing and Alternate
Heat Treatment on the Structure and Properties of a Single Crystal Nickel Base
Superalloy
Fritzemeier, L.G.
The Metallurgical Society of AIME, Warrendale, PA
Key Words: PWA 1480, space shuttle, porosity, creep rupture, tensile
properties, fatigue, hydrogen environment

4. Advanced Single Crystal for SSME Turbopumps
Fritzemeier, L. G.
Rockwell International, Rocketdyne Div, Canoga Park, CA
Quarterly Technical Progress Report, Mar-Jun 87
Contract No: NAS3-24646
6 pp., 1987 (AD-D138 334)
Key Words: PWA 1480, defects, tensile properties, fatigue

5. Mechanical Behavior and Processing of DS and Single Crystal Superalloys
Khan, T., Caron, P., Nakagawa, Y. G.
J Met 38 (7), 16-9, 1986 (AD-D136 462)
Key Words: CMSX2, PWA 1480, Alloy 454, tensile properties, creep rupture,
fatigue

6. Precision Casting of Turbine Blades and Vanes
Drapier, J. M.
Kluwer Boston Inc., Hingham, MA
Proc Conf High Temperature Alloys for Gas Turbines 887-908, 1982 (AD-D134 025)
Key Words: Alloy 713LC, IN-100, MAR-M200, PWA 1480, MAR-M247, CMSX2, turbine
components, rejuvenation, oxidation, vacuum melting, unidirectional solidification
Rene' 80

1. **High Pressure Turbine Blade Life Extension**
 Smith, H. H., Michel, D. J.
 Naval Research Lab, Washington DC
 Final Memorandum Report
 Rept No: NRL-MR-6861, 47 pp., 1991 (AD-A240 654)
 Key Words: Rene' 80H, MERL 72, turbine components, tensile properties, creep rupture, microstructure, welding

2. **Deformation Mechanisms of Thermostructural Materials**
 Arsenault, R. J., Louat, N., Shahinian, P., Singh, A. K., Chaki, T.
 Crystal Growth and Materials Testing Associates, Lanham, MD
 Final Report
 Rept No: 162, 46 pp., 1987 (AD-A184 070)
 Key Words: IN-100, Rene' 80, turbine components, CoCrAl coatings, creep rupture, thermal fatigue, barrier coatings, dislocation

3. **Hot Isostatic Press**
 Author Anon
 Foreign Technology Division, Wright-Patterson AFB, Glk
 Rept No: FTD-ID(RS)T-1406-84, 65 pp., 1985 (AD-B093 100L)
 Key Words: Ti-6Al-4V, B-1900, IN-738, Rene' 77, IN-792, Rene' 80, AA C355, AA A356, 142-T4

4. **A Mechanistically Based Model for High Temperature Notched LCF of Rene' 80**
 Domas, P. A., Antolovich, S. D.
 Eng Fract Mechanics 21 (1), 203-14, 1985 (AD-D131 953)
 Key Words: Rene' 80, microstructure, heat treatment, fatigue, tensile properties

5. **Hipping is One Way to Check Porosity in Cast Components**
 Irving, R. R.
 Iron Age 225 (33), 43-5, 1982 (AD-D126 241)
 Key Words: AA A201, AISI 4330, AA C355-T6, 142-T4, AA A356-T61, IN-738, Rene' 77, IN-792, Rene' 80, stainless steel, porosity, tensile properties, fatigue

6. **Development of Hybrid Gas Turbine Bucket Technology**
 Peterson, L. G., Hrencecin, D. E., Schilling, W. F., Ostergren, W. J.
 General Electric Co., Gas Turbine Division, Schenectady, NY
 Technical Paper
 Rept No: ASME-82-GT-94, 10 pp., 1982 (AD-D127 264)
 Key Words: Rene' 80, Rene' 150, Udimet 700, MAR-M200, IN-939, Rene' 125, Rene' 120, GTD-111, IN-738, turbine components, tensile properties, unidirectional solidification, dissimilar joining, diffusion bonding, creep rupture

7. **Turbine Blade Technology--Present and Future**
 Allen, R. E., Sidenstick, J. E.
 American Institute of Aeronautics and Astronautics, New York, NY
 Proc Century 2 Aerospace Conf, American Society of Mechanical engineers, San Francisco, CA, Aug 1960
 7 pp., 1981 (AD-D126 839)
 Key Words: Rene' 80, Rene' 150, turbine components, aircraft structures, coatings, welding
8. **Premium Quality Castings**
Freeman Jr., W. R.
Manufacturing Technology Division, AFML, Wright-Patterson AFB, OH
Proc Net Shape Metalworking Program Review 406-17, 1976 (AD-D119 187L)
Key Words: IN-792, IN-738, IN-100, RENE' 80, Alloy 713L, Alloy 713LC, B-1900, MAR-M200, tensile properties, fatigue

9. **Improved Properties in Castings by Hot Isostatic Pressing**
Glenn, G. M., SAMPE Qtrly 8 (1), 1-9, 1976 (AD-D107 893)
Key Words: IN-738, RENE' 80, RENE' 120, RENE' 77, Ti-6Al-4V, AA A356, AA C355 porosity, tensile properties, microstructure, creep rupture, density, fatigue

10. **Processing: The Rediscovered Dimension in High Temperature Alloys**
Semchyshen, M.
Standardization News 4 (4), 9-19, 1976 (AD-D110 676)
Key Words: Inconel 718, RENE' 80, AISI 4140, Udimet 700, TZM, IN-738, Waspaloy, remelting, alloying, creep rupture

11. **Improvement of Nuclear Reactor Component Materials by Application of Hot Isostatic Processing (HIP)**
Mueller, J. J., Electric Power Research Inst, Palo Alto, CA
Rept No: EPRI-500-1, PB-250952, 64 pp., 1975 (AD-D107 180)
Key Words: Ti-6Al-4V, AA A356-T61, RENE' 95, IN-738, IN-792, RENE' 77, RENE' 80, nuclear reactor, turbine components, tensile properties, fatigue, creep rupture, cladding, defects

Rene' 95

1. **Constraint-Loss Model for the Growth of Surface Fatigue Cracks**
Van Stone, R. H., Gilbert, M. S., Gooden, O. C., Laflen, J. H.
ASTM, Philadelphia, PA
Proc Fracture Mechanics, Nineteenth Symp
Rept No: ASTM-STP-969, 637-56, 1988 (AD-D139 960)
Key Words: RENE' 95, surface defects, fracture mechanics, fatigue crack growth

2. **Near-Threshold Crack Growth in Nickel-Base Superalloys**
Van Stone, R. H., Krueger, D. D.
ASTM, Philadelphia, PA
Proc Fracture Mechanics, Nineteenth Symp
Rept No: ASTM-STP-969, 883-906, 1988 (AD-D139 966)
Key Words: RENE' 95, Inconel 718, microstructure, grain size, fatigue crack growth, tensile properties

3. **Modelling of Deformation and Microstructural Changes in P/M RENE' 95 Under Isothermal Forging Conditions**
Alniak, O., Morphy, D. D., Terada, T., Koul, A. K., Immarigeon, J-P.
National Aeronautical Establishment, Ottawa, Canada
Proc 65th Meeting of the AGARD Structures and Materials Panel 2-1 to 2-18, 1987 (AD-D140 764)
Key Words: RENE' 95, microstructure, grain refinement, deformation, flow stress, compression tests
Flom, D. G.
General Electric Corporate Research and Development, Schenectady, NY
Final Report Jul 79-Aug 83
Rept No: AFWAL-TR-84-4059-Vol-5, 230 pp., 1984 (AD-B088 346L)
Key Words: Ti-6Al-4V, RENE’ 95, turbine components, gun tubes, laser machining

5. Effects of Processing and Microstructure on the Fatigue Behavior of the Nickel-Base Superalloy RENE’ 95
Miner, R. V., Gayda, J.
Int J Fatigue 6 (3), 189-93, 1984 (AD-D130 746)
Key Words: RENE’ 95, grain size, fatigue crack, tensile properties, aging

6. Fatigue Crack Initiation and Propagation in Several Nickel-Base Superalloys at 650
Gayda, J., Miner, R. V.
Key Words: Waspaloy, IN-100, RENE’ 95, turbine components, fatigue, creep-fatigue, crack growth, porosity, fracture mechanics, tensile properties, microstructure

7. Overview of Temperature and Environmental Effects on Fatigue of Structural Metals
Coffin, L. F.
Plenum Press, New York, NY
Proc 27th Sagamore Army Materials Research Conf 1-40, 1983 (AD-D131 509)
Key Words: RENE’ 95, A-286, stainless steel, Udimet 700, Waspaloy, MERL 76, IN-100, NASA IIB-7, crack growth, fatigue

8. The Relationship Between Structure, Properties, and Processing in Powder Metallurgy Superalloys
Davidson, J. H., Aubin, C.
Kluwer Boston Inc., Hingham, MA
Proc Conf High Temperature Alloys for Gas Turbines 853-86, 1982 (AD-D134 024)
Key Words: Udimet 700, Nimonic API, MERL 76, RENE’ 95, turbine components, microstructure, crack propagation, fatigue, creep rupture, impact, thermomechanical treatment

9. Use of a d-c Potential Drop Crack Monitoring Technique in the Development of Defect Tolerant Disk Alloys
Van Stone, R. H., Krueger, D. D., Duvelius, L. T.
ASTM, Philadelphia, PA
Proc 14th National Symp Fracture Mechanics 2, 553-78, 1981 (AD-D128 740)
Key Words: RENE’ 95, Inconel 718, turbine components, microstructure, tensile properties, crack growth, fatigue

10. Review of Superalloy Powder Metallurgy Processing for Aircraft Gas Turbine Applications
Bartos, J. L.
ASTM, Philadelphia, PA
Proc Symp MiCon 78, 564-77, 1979 (AD-D126 411)
Key Words: RENE’ 95, turbine components, tensile properties, creep rupture, net shape forming
11. **Material for Advanced Turbine Engines-MATE**
Bamberger, E. N., Mosier, J. S., Harrison, R. W.
General Electric Co., Aircraft Engine Group, Evendale, OH
Eighth Quarterly Engineering Report One, Dec-Feb 78
Rept No: R78AEG265, 111 pp., 1978 (AD-D112 563)
Key Words: RENE' 95, RENE' 150, turbine components, unidirectional solidification, creep properties, crack growth, notch sensitivity, tensile properties, thermal properties, oxidation, corrosion, fatigue

12. **Materials for Advanced Turbine Engines-MATE**
Bamberger, E. N., Mosier, J. S., Harrison, R.W.
General Electric Co., Aircraft Engine Group, Evendale, OH
Ninth Quarterly Engineering Report, Mar-May 78
Rept No : R78AEG356, 20 pp., 1978 (AD-D113 124)
Key Words: RENE’ 95, RENE’ 150, turbine components, unidirectional solidification, coatings, microstructure, net shape forming

13. **Material for Advanced Turbine Engines-MATE**
Arnold, D. B., Mosier, J. S., Harrison, R. W.
General Electric Co., Aircraft Engine Group, Evendale, OH
Quarterly Engineering Report Number Ten, Jun-Aug 78
Rept No : R78AEG496, 56 pp., 1978 (AD-D113 898)
Key Words: RENE’ 95, RENE’ 150, turbine components, compressor components, unidirectional solidification, tensile properties, fatigue, creep rupture, coatings

14. **Original HCl Surface Treatment for Diffusion Bonding of Nickel Superalloy Specimens**
Billard, D., Trottier, J. P.
Met Technol 5 (9), 309-19, 1978 (AD-D114 028)
Key Words: IN-100, Waspaloy, RENE’ 95, Inconel 718, welding, grain size, bonding, recrystallization, temperature effect

15. **Material for Advanced Turbine Engines-MATE**
Bamberger, E. N., Mosier, J. S.
General Electric Co., Aircraft Engine Group, Evendale, OH
Quarterly Engineering Report Number Six, Jun-Aug 77
Rept No : R77AEG529, 56 pp., 1977 (AD-D110 864)
Key Words: RENE’ 95, RENE’ 150, turbine components, unidirectional solidification, fatigue, creep rupture, tensile properties, fracture surface, temperature effect

16. **MATE-Materials for Advanced Turbine Engines**
Bamberger, E. N., Mosier, J. S., Harrison, R. W.
General Electric Co., Aircraft Engine Group, Evendale, OH
Seventh Quarterly Engineering Report, Sept.-Nov. 1977
Rept No : R77AEG647, 41 pp., 1977 (AD-D111 589)
Key Words: RENE’ 95, RENE’ 150, turbine components, unidirectional solidification, solution heat treatment

17. **Application of Hot Isostatic Pressing to Aircraft Gas Turbines**
Evans, D. J.
Plenum Press, New York, NY
Proc 6th AIRAPT Int High Pressure Conf 2, 656-63, 1977 (AD-D126 192)
Key Words: Udiment 700, RENE’ 95, Ti-6Al-4V, turbine components, tensile properties, creep rupture, net shape forming
18. Improvement of Nuclear Reactor Component Materials by Application of Hot Isostatic Processing (HIP)

Mueller, J. J.
Electric Power Research Inst, Palo Alto, CA
Phase One Survey Report
Rept No: EPRI-500-1, PB-250952, 64 pp., 1975 (AD-D107 180)
Key Words: Ti-6Al-4V, AA A356-T61, RENE' 95, IN-738, IN-792, RENE' 77, RENE' 80, nuclear reactor, turbine components, tensile properties, fatigue, creep rupture, cladding, defects

19. Manufacturing Methods for the Production of Disc Shapes by Contour Rolling

Arnold, D. B.
General Electric Co., Aircraft Engine Group, Evendale, OH
Interim Engineering Progress Report Number Five, Apr-Jun 72
Rept No: AFML-IR-204-1(V), 22 pp., 1972 (AD-179 851L)
Key Words: RENE' 95, Hastelloy X, AISI 304, AF 2-1DA, microstructure, hot rolling

Rene' 120

1. Development of Hybrid Gas Turbine Bucket Technology

Peterson, L. G., Hrencecin, D. E., Schilling, W. F., Ostergren, W. J.
General Electric Co., Gas Turbine Division, Schenectady, NY
Technical Paper
Rept No: ASME-82-GT-94, 10 pp., 1982 (AD-D127 264)
Key Words: RENE' 80, RENE' 150, Udimet 700, MAR-M200, IN-939, RENE' 125, RENE' 120, GTD-111, IN-738, turbine components, tensile properties, unidirectional solidification, dissimilar joining, diffusion bonding, creep rupture

2. Hot Isostatic Pressing in the Aerospace Industry

Price, P. E.
Metal Prog 121 (2), 46-7, 1982 (AD-D200 345)
Key Words: RENE' 120, Ti-6Al-4V, aerospace applications, mechanical properties

3. Hipping: A Good Way to Improve Properties

Irving, R. R.
Iron Age 224 (6), 77-81, 1981 (AD-D120 406)
Key Words: JT-9D, MERL 76, 17-4PH, RENE' 120, IN-792, IN-738, turbine components, porosity

Price, P.
Ind Heat 46 (6), 8-10, 1979 (AD-D115 742)
Key Words: Ti-6Al-4V, RENE' 120, Ti-6Al-2Sn-4Zr-2Mo, microstructure, fatigue

5. Improved Properties in Castings by Hot Isostatic Pressing

Glenn, G. M.
SAMPE Qtrly 8 (1), 1-9, 1976 (AD-D107 893)
Key Words: IN-738, RENE' 80, RENE' 120, RENE' 77, Ti-6Al-4V, AA A356, AA C355, porosity, tensile properties, microstructure, creep rupture, density, fatigue
Rene' 150

1. Development of Hybrid Gas Turbine Bucket Technology
 Peterson, L. G., Hrencecin, D. E., Schilling, W. F., Ostergren, W. J.
 General Electric Co., Gas Turbine Division, Schenectady, NY
 Technical Paper
 Rept No : ASME-82-GT-94, 10 pp., 1982 (AD-D127 264)
 Key Words: RENE' 80, RENE' 150, Udimet 700, MAR-M200, IN-939, RENE' 125,
 RENE' 120, GTD-111, IN-738, turbine components, tensile
 properties, unidirectional solidification, dissimilar joining,
 diffusion bonding, creep rupture

2. Turbine Blade Technology--Present and Future
 Allen, R. E., Sidenstick, J. E.
 American Institute of Aeronautics and Astronautics, New York, NY
 Proc Century 2 Aerospace Conf, American Society of Mechanical engineers, San
 Francisco, CA, Aug 1980
 7 pp., 1981 (AD-D126 839)
 Key Words: RENE' 80, RENE' 150, turbine components, aircraft structures,
 coatings, welding

3. Material for Advanced Turbine Engines-MATE
 Bamberger, E. N., Mosier, J. S., Harrison, R. W.
 General Electric Co., Aircraft Engine Group, Evendale, OH
 Eighth Quarterly Engineering Report One, Dec-Feb 78
 Rept No : R78AEG265, 111 pp., 1978 (AD-D112 563)
 Key Words: RENE' 95, RENE' 150, turbine components, unidirectional
 solidification, creep properties, crack growth, notch
 sensitivity, tensile properties, thermal properties,
 oxidation, corrosion, fatigue

4. Materials for Advanced Turbine Engines-MATE
 Bamberger, E. N., Mosier, J. S., Harrison, R.W.
 General Electric Co., Aircraft Engine Group, Evendale, OH
 Ninth Quarterly Engineering Report, Mar-May 78
 Rept No : R78AEG356, 20 pp., 1978 (AD-D113 124)
 Key Words: RENE' 95, RENE' 150, turbine components, unidirectional
 solidification, coatings, microstructure, net shape forming

5. Material for Advanced Turbine Engines-MATE
 Arnold, D. B., Mosier, J. S., Harrison, R. W.
 General Electric Co., Aircraft Engine Group, Evendale, OH
 Quarterly Engineering Report Number Ten, Jun-Aug 78
 Rept No : R78AEG496, 56 pp., 1978 (AD-D113 898)
 Key Words: RENE' 95, RENE' 150, turbine components, compressor components,
 unidirectional solidification, tensile properties, fatigue, creep rupture, coatings

6. Material for Advanced Turbine Engines-MATE
 Bamberger, E. N., Mosier, J. S.
 General Electric Co., Aircraft Engine Group, Evendale, OH
 Quarterly Engineering Report Number Six, Jun-Aug 77
 Rept No : R77AEG529, 56 pp., 1977 (AD-D110 864)
 Key Words: RENE' 95, RENE' 150, turbine components, unidirectional
 solidification, fatigue, creep rupture, tensile properties,
 fracture surface, temperature effect

233
7. **MATE - Materials for Advanced Turbine Engines**
Bamberger, E. N., Mosier, J. S., Harrison, R. W.
General Electric Co., Aircraft Engine Group, Evendale, OH
Seventh Quarterly Engineering Report, Sept.-Nov. 1977
Rept No : R77AEG647, 41 pp., 1977 (AD-D111589)
Key Words: RENE' 95, RENE' 150, turbine components, unidirectional solidification, tensile properties, solution heat treatment

8. **HIP of Near-Net Shapes**
Dulis, E. J., Fleck, J. N.
Manufacturing Technology Division, AFML, Wright-Patterson AFB, OH
Proc Net Shape Metalworking Program Review 369-82, 1976 (AD-D119184L)
Key Words: PA 101, Ti-6Al-4V, net shape forming, forging

Udimet 500

1. **Repair Techniques for Gas Turbine Components**
Liburdi, J.
Liburdi Engineering Ltd. Burlington, Ontario, Canada
Proc 61st Meeting of the AGARD Structures and Materials Panel, Advanced Joining of Aerospace Metallic Materials
Rept No: AGARD-CP-398, 22-1 to 22-12, 1985 (AD-D139985)
Key Words: Inconel X-750, Inconel 625, Udimet 500, Inconel 700, diffusion brazing, vacuum deposition, tensile properties, creep rupture

2. **Improvement of Material Properties of Ni-Base Alloy Investment Castings by Hot Isostatic Processing**
Tsuji, I., Kawai, H.
NTIS, PB84-113422, Springfield, VA
Technical Report
Rept No: MTB-159, 8 pp., 1983 (AD-D130515)
Key Words: IN-738, IN-738LC, Udimet 500, Alloy 713C, turbine components, fatigue

3. **HIP Processing--Potentials and Applications**
Van Der Vet, W. J.
Chromalloy American Co., Midwest City, OK
Proc 53rd Meeting of the AGARD Structures and Materials Panel, Maintenance in Service of High Temperature Parts
11-1 to 11-16, 1982 (AD-D125468)
Key Words: Inconel X-750, Udimet 500, RENE' 100, B-1900, Nimonic 105, IN-738, IN-782, turbine components, fatigue, thermal cycling, creep rupture

4. **Damage Accumulation and Fracture in Creep of Nickel-Base Alloys**
Tipler, H. R., Lindblom, Y., Davidson, J. G.
Applied Sciences Publishers Ltd., London, UK
Proc Conf High Temperature Alloys for Gas Turbines 359-407, 1978 (AD-D116350)
Key Words: IN-597, Nimonic 115, IN-738LC, Nimonic 80A, MAR-M200, Udimet 500, Udimet 710, Udimet 720, turbine components, microstructure, grain boundaries, cracking, creep properties, fatigue, thermal fatigue, cavitation corrosion

234
5. **Quality of Castings of Superalloys**
Bachelet, E., Lesoult, G.
Applied Sciences Publishers Ltd., London, UK
High Temperature Alloys for Gas Turbines 665-99, 1978 (AD-D116 360)
Key Words: IN-738, Udimet 500, X-40, IN-100, MC-102, M3608F, C263, mto-001, B1914, B1981, M-21, FSX-430, MAR-M509, IN-939, Alloy 713LC, creep properties, fatigue, crack growth, thermal fatigue, porosity

Udimet 700

1. **A Microanalytical Study of the Early Stages of Recrystallization in the Nickel-Base Superalloy APKI**
Howell, P. R., Bee, J. V.
Key Words: APK-1, microstructure, recrystallization

2. **Growth of Small Cracks in Aeroengine Disc Materials**
Hudak, S. J., Jr., Davidson, D. L., Chan, K. S.
Southwest Research Institute, San Antonio, TX
Final Report
Rept No: AFWAL-TR-88-4090, 249 pp., 1988 (AD-A199 842)
Key Words: Udimet 700, Waspaloy, turbine components, fatigue, crack growth kinetics, tensile properties, temperature effect, microstructure, grain size, crack closure

3. **Influence of Cyclic to Mean Load Ratio on Creep/Fatigue Crack Growth**
Dimopoulos, V., Nikbin, K. M., Webster, G. A.
Metall Trans 19a (4), 873-80, 1988 (AD-D138 631)
Key Words: Nimonic API, oxidation, plastic deformation, fracture, creep-fatigue

4. **The Effect of Temperature on Fatigue Crack Initiation from Aluminosilicate Inclusions**
Woollin, P., Knott, J. F.
Ecole Nationale Superieure des Mines de Paris, France
Proc 3rd Int Conf Fatigue and Fatigue Thresholds 2, 1087-99, 1987 (AD-D138 602)
Key Words: Nimonic API, fatigue crack, bend test, tensile properties

5. **Effects Temperature and Hold Times on Low Cycle Fatigue of of Astroloy**
Choe, S. J., Stoloff, N. S., Duquette, D. J.
Pergamon Press, Elmsford, NY
Proc 7th Int Conf Strength of Metals and Alloys
ICSMA 7-V-2, 1291-8, 1986 (AD-D139 331)
Key Words: Udimet 700, microstructure, fracture mechanics, creep-fatigue, tensile properties

6. **The Role of Hot Isostatic Pressing--Now and in the Future**
Widmer, R.
ASM International, Metals Park, OH
Proc Nicholas J. Grant Symp. Processing and Properties of Advanced High Temperature Alloys
105-16, 1986 (AD-D139 357)
Key Words: Udimet 700, Inconel 718, densification, fatigue, creep rupture
7. **Geometry Effects on Creep/Fatigue Crack Growth in a Nickel-Base Superalloy**
 Nikbin, K.M., Webster, G.A.
 Kluwer Academic Publishers, Norwell, MA
 Proc High Temperature Alloys for Gas Turbines and Other Applications 1986-Part 2
 1477-90, 1986 (AD-D142 157)
 Key Words: Nimonic API, fracture mechanics, creep-fatigue

8. **Hot Isostatic Press**
 Author Anon
 Foreign Technology Division, Wright-Patterson AFB, OH
 Rep No: FTD-ID(RS)T-1406-84, 65 pp., 1985 (AD-B093 100L)
 Key Words: Ti-6Al-4V, B-1900, IN-738, RENE' 77, IN-792, RENE' 80, AA C355, AA A356, 142-T4

9. **The Effect of Cobalt Content in U-700 Type Alloys on Degradation of Aluminide Coatings**
 Zaplatynsky, I.
 National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH
 Technical Memorandum
 Key Words: Udimet 700, cobalt addition, aluminide coatings, microstructure, crack growth

10. **Particle Surfaces and Prior Particle Boundaries in Hf Modified PM Astroloy**
 Warren, R., Ingesten, N. G., Winberg, L., Ronnhult, T.
 Powder Metall 27 (3), 141-6, 1984 (AD-D130 988)
 Key Words: Udimet 700, hafnium addition, microstructure, grain boundary segregation, tensile properties

11. **Problems and Possibilities for Life Extension in Gas Turbine Components**
 Koul, A. K., Wallace, W., Thamburaj, R.
 National Aeronautical Establishment, Structures and Materials Section
 Proc Propulsion and Energetics 63rd (B) Specialists’ Meeting on Engine Cyclic Durability by Analysis and Testing, Lisse, Netherlands
 10-1 to 10-32, 1984 (AD-D132 383)
 Key Words: Inconel X-750, IN-738LC, Udimet 700, IN-100, Incoloy 901, turbine components, damage tolerance, EDM, creep, machining

12. **Characterizations of Elevated Temperature Fatigue Crack Growth Rates**
 Crompton, J. S., Morley, S. A., Martin, J. W.
 The Metallurgical Society of AIME, Warrendale, PA
 Proc 5th Int Symp Superalloys 1984 761-9, 1984 (AD-D132 885)
 Key Words: MAR-M002, Nimonic API, unidirectional solidification, fatigue crack, stress relaxation

13. **Overview of Temperature and Environmental Effects on Fatigue of Structural Metals**
 Coffin, L. F.
 Plenum Press, New York, NY
 Proc 27th Sagamore Army Materials Research Conf 1-40, 1983 (AD-D131 509)
 Key Words: RENE' 95, A-286, stainless steel, Udimet 700, Waspaloy, MERL 76, IN-100, NASA IIB-7, crack growth, fatigue

236
14. Materials for Advanced Turbine Engine--MATE
Evans, D. J., Sheffler, K. D., Friedrich, L. A.
Pratt and Whitney Aircraft Group, East Hartford, CT
Mar-May 82
Contract No: NAS 3-20072, 1982, 21 pp. (AD-D125 191)
Key Words: Hastelloy X, Incoloy 901, MA956, Udimet 700, MERL 76, turbine
components, combustors, erosion, coatings, oxide dispersion strengthening

15. Hipping is One Way to Check Porosity in Cast Components
Irving, R. R.
Iron Age 225 (33), 43-5, 1982 (AD-D126 241)
Key Words: AA A201, AISI 4330, AA C355-T6, 142-T4, AA A356-T61, IN-738, RENE’
77, IN-792, RENE’ 80, stainless steel, porosity, tensile properties, fatigue

16. Development of Hybrid Gas Turbine Bucket Technology
Peterson, L. G., Hrencecin, D. E., Schilling, W. F., Ostergren, W. J.
General Electric Co., Gas Turbine Division, Schenectady, NY
Rept No: ASME-82-GT-94, 10 pp., 1982 (AD-D127 264)
Key Words: RENE’ 80, RENE’ 150, Udimet 700, MAR-M200, IN-939, RENE’ 125,
RENE’ 120, GTD-111, IN-738, turbine components, tensile
properties, unidirectional solidification, dissimilar joining,
diffusion bonding, creep rupture

17. Superalloy Technology-Today and Tomorrow
Versnyder, F. L.
Kluwer Boston Inc., Hingham, MA
Proc Conf High Temperature Alloys for Gas Turbines 1-49, 1982 (AD-D133 988)
Key Words: MAR-M200, IN-100, Udimet 700, carbon addition, boron addition,
zirconium addition, cobalt addition, turbine components,
corrosion, oxidation, REP, creep rupture, thermal fatigue

18. The Relationship Between Structure, Properties, and Processing in Powder Metallurgy
Superalloys
Davidson, J. H., Aubin, C.
Kluwer Boston Inc., Hingham, MA
Proc Conf High Temperature Alloys for Gas Turbines 853-86, 1982 (AD-D134 024)
Key Words: Udimet 700, Nimonic AP1, MERL 76, RENE’ 95, turbine components,
microstructure, crack propagation, fatigue, creep rupture,
impact, thermomechanical treatment

19. Creep-Fatigue Environment Interactions in Superalloys
Pelloux, R. M.
Massachusetts Institute of Technology, Department of Materials Science and
Engineering, Cambridge, MA
Rept No: AFOSR-TR-81-0450, 35 pp., 1981 (AD-A098 790)
Key Words: Udimet 700, Waspaloy, IN-100, microstructure, creep, fatigue,
embrittlement

20. Applications of Composite Gas Turbine Components
General Electric Co., Gas Turbine Division, Schenectady, NY
Semi-Annual Technical Progress Rept-Phase I
Rept No: DE82-004710, 30 pp., 1981 (AD-D125 782)
Key Words: MAR-M200, Udimet 700, IN-792, turbine components, tensile
properties, creep, fatigue, diffusion bonding, unidirectional solidification
21. Cutting Metal Loss Tied to Near Net Shapes
Harvey, R. E.
Iron Age 222 (42), 57-63, 1979 (AD-D116 853)
Key Words: RENE’ 77, IN-738, IN-792, AA C355-T6, AA A356-T61, 142-T6, net shape forming, fatigue, tensile properties

22. Feasibility Study on the use of Small-Angle Neutron Scattering for Microstructural Determinations of Technological Alloys
Herman, H.
State University of New York at Stony Brook, Department of Materials Sciences, NY
Contract No: N00014-78-M-0074
58 pp., 1978 (AD-A061 867)
Key Words: Ti-6Al-4V, HY-130, AISI 304, Udimet 700, creep-fatigue, crack detection

23. Application of Hot Isostatic Pressing to Aircraft Gas Turbines
Evans, D. J.
Plenum Press, New York, NY
Proc 6th AIRAPT Int High Pressure Conf 2, 656-63, 1977 (AD-D126 192)
Key Words: Udimet 700, RENE’ 95, Ti-6Al-4V, turbine components, tensile properties, creep rupture, net shape forming

24. Experience With Hot Isostatic Pressing of Superalloy Powders and Castings
Widmer, R.
Manufacturing Technology Division, AFML, Wright-Patterson AFB, OH
Proc Net Shape Metalworking Program Review, 348-68, 1976 (AD-D119 183L)
Key Words: Udimet 700, net shape forming, tensile properties, creep rupture, fatigue

25. Improved Properties in Castings by Hot Isostatic Pressing
Glenn, G. M.
SAMPE Qtrly 8 (1), 1-9, 1976 (AD-D107 893)
Key Words: IN-738, RENE’ 80, RENE’ 120, RENE’ 77, Ti-6Al-4V, AA A356, AA C355 porosity, tensile properties, microstructure, creep rupture, density, fatigue

26. Processing: The Rediscovered Dimension in High Temperature Alloys
Semchyshen, M.
Standardization News 4 (4), 9-19, 1976 (AD-D110 676)
Key Words: Inconel 718, RENE’ 80, AISI 4140, Udimet 700, TZM, IN-738, Waspaloy, remelting, alloying, creep rupture

27. Improvement of Nuclear Reactor Component Materials by Application of Hot Isostatic Processing (HIP)
Mueller, J. J.
Electric Power Research Inst, Palo Alto, CA
Rept No: EPRI-500-1, PB-250952, 64 pp., 1975 (AD-D107 180)
Key Words: Ti-6Al-4V, AA A356-T61, RENE’ 95, IN-738, IN-792, RENE’ 77, RENE’ 80, nuclear reactor, turbine components, tensile properties, fatigue, creep rupture, cladding, defects

28. The Nature of the Sulfo-Carbides Observed in Nickel-Base Superalloys
Wallace, W., Holt, R. T., Terada, T.
Metall 6 (6), 511-26, 1973 (AD-D106 657)
Key Words: Alloy 713C, IN-100, Udimet 700, sulfur addition, carbide phases, crack growth
Waspaloy

1. Growth of Small Cracks in Aeroengine Disc Materials
 Hudak, S. J., Jr., Davidson, D. L., Chan, K. S.
 Southwest Research Institute, San Antonio, TX
 Final Report
 Rept No.: AFWAL-TR-88-4090, 249 pp., 1988 (AD-A199842)
 Key Words: Udimet 700, Waspaloy, turbine components, fatigue, crack growth kinetics, tensile properties, temperature effect, microstructure, grain size, crack closure

2. Fatigue Crack Initiation and Propagation in Several Nickel-Base Superalloys at 650
 Gayda, J., Miner, R. V.
 Key Words: Waspaloy, IN-100, RENE' 95, turbine components, fatigue, creep-fatigue, crack growth, porosity, fracture mechanics, tensile properties, microstructure

3. Overview of Temperature and Environmental Effects on Fatigue of Structural Metals
 Coffin, L. F.
 Plenum Press, New York, NY
 Proc 27th Sagamore Army Materials Research Conf 1-40, 1983 (AD-D131509)
 Key Words: RENE' 95, A-286, stainless steel, Udimet 700, Waspaloy, MERL 76, IN-100, NASA IIB-7, crack growth, fatigue

4. Creep-Fatigue Environment Interactions in Superalloys
 Pelloux, R. M.
 Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, MA
 Final Report
 Rept No.: AFOSR-TR-81-0450, 35 pp., 1981 (AD-A098790)
 Key Words: Udimet 700, Waspaloy, IN-100, microstructure, creep, fatigue, embrittlement

5. All Systems Are Go for Powder Metallurgy
 Irving, R. R.
 Iron Age 223 (28), 41-5, 1980 (AD-D118875)
 Key Words: AISI 4600, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Waspaloy, IN-100, AISI 329, 12Cr steel, injection molding, cost, applications

6. Aircraft Gas Turbine Materials and Processes
 Kear, B. H., Thompson, E. R.
 Science 208 (4446), 847-56, 1980 (AD-D126322)
 Key Words: Haynes 188, Inconel 617, HA8077, Waspaloy, B-1900, PWA 1422, Incoloy 901, IN-100, X-40, MAR-M509, Hastelloy X, turbine components, fan blades, compressor components, coatings, unidirectional solidification, superplastic forming

7. Hot Isostatic Pressing Rejuvenation of Disks
 Sundberg, D. V., Comey, D. H.
 Airesearch Mfg. Co. of Arizona, Phoenix, AZ
 Final Technical Report
 Rept No.: 21-3238, 139 pp., 1979 (AD-A078593)
 Key Words: Ti-6Al-4V, Waspaloy, turbine components, rejuvenation, tensile properties
8. Original HCI Surface Treatment for Diffusion Bonding of Nickel Superalloy Specimens
 Billard, D., Trottier, J. P.
 Met Technol 5 (9), 309-19, 1978 (AD-D114 028)
 Key Words: IN-100, Waspaloy, RENE’ 95, Inconel 718, welding, grain size, bonding, recrystallization, temperature effect

 Bisset, J. W.
 United Technologies Corp., East Hartford, CT
 Project Completion Report
 Rept No: N77-14026, PWA-5453, 42 pp., 1976 (AD-D107 956)
 Key Words: MAR-M509, Hastelloy X, Waspaloy, IN-100, MAR-M200, turbine components, single crystals, hafnium addition, unidirectional solidification, cost

10. Processing: The Rediscovered Dimension in High Temperature Alloys
 Semchyshen, M.
 Standardization News 4 (4), 9-19, 1976 (AD-D110 676)
 Key Words: Inconel 718, RENE’ 80, AISI 4140, Udiment 700, TZM, IN-738, Waspaloy, remelting, alloying, creep rupture

Miscellaneous Nickel Alloys

1. Effect of Pressure on Diffusion of Elemental Chromium in Nickel During Hot Isostatic Pressing
 Pan, G., Wang, S.
 Elsevier, London, UK
 Proc 3rd Int Conf Hot Isostatic Pressing: Theory Appl 269-74, 1992
 Key Words: chromium, nickel, diffusion, dislocation mechanism, vacancy mechanism, pressure effect

2. Rejuvenation Procedures to Recover Creep Properties of Nickel-Base Superalloys by Heat Treatment and Hot Isostatic Pressing Techniques
 Baldan, A.
 Key Words: IN-100, Nimonic 80A, Nimonic 115, Nimonic 75, Nimonic 105, Nimonic 90, IN-738, IN-738LC, Inconel X-750, turbine components, creep, grain size, cavitation

3. High Pressure Turbine Blade Life Extension
 Smith, H. H., Michel, D. J.
 Naval Research Lab, Washington DC
 Final Memorandum Report
 Rept No: NRL-MR-6861, 47 pp., 1991 (AD-A240 654)
 Key Words: RENE’ 80H, MERL 72, turbine components, tensile properties creep rupture, microstructure, welding

4. HIP Diffusion Bonding of ODS MA6000
 Verpoort, C., Nazmy, M., Jongenburger, C. P.
 Met Powder Rept 43 (2), 107-13, 1988 (AD-D138 295)
 Key Words: MA6000, turbine components, oxide dispersion, diffusion, strengthening, welding, creep rupture, tensile properties
5. **B/C Modification of a Low Cobalt PM Superalloy**
Sharma, K. K., Balasubramanian, T. V., Birla, N. C.
Met Powder Rept 43 (10), 656-62, 1988 (AD-D139 883)
Key Words: ZhS6-K, microstructure, microprobe, reduction in area, atomization, creep rupture

6. **Cyclic Crack-Propagation Characteristics of the Powder Metallurgical Nickel-Base Alloy Udimet 720 at Elevated Temperatures and Different Dwell Times**
Affeldt, E., Floege, H., Kraus, M., Track, W
NTIS, TIB/B99-80282, Springfield, VA
Final Report
Rept No : TIB/B89-80282, 29 pp., 1988 (AD-D141 902)
Key Words: Udimet 720, turbine components, crack growth, fracture surface, fatigue

7. **Precision Cast vs. Wrought Superalloys**
Tien, J. K., Borofka, J. C., Casey, M. E.
J Met 38 (12), 13-7, 1986 (AD-D136 449)
Key Words: nickel alloys, turbine components, crack growth, fatigue vacuum induction, electroslag, electron beam melting

8. **Mechanical Behavior and Processing of DS and Single Crystal Superalloys**
Khan, T., Caron, P., Nakagawa, Y. G.
J Met 38 (7), 16-9, 1986 (AD-D136 462)
Key Words: CMSX2, PWA 1480, Alloy 454, tensile properties, creep rupture, fatigue

9. **A Study of Fatigue Fracture Surfaces of a Cast Nickel-Base Superalloy**
Weicheng, Y., Jincai, Y., Zhongguang, W.
Fatigue Fract Eng Mater Struct 9 (6), 425-34, 1986 (AD-D137 368)
Key Words: Ni-9Cr-15Co-5Ti, microstructure, fracture, fatigue crack

10. **Metallurgical Advancements in Investment Casting Technology**
Dardi, L. E., Dalal, R. P., Yaker, C.
ASM International, Metals Park, OH
Proc Nicholas J. Grant Symp, Processing and Properties of Advanced High Temperature Alloys
25-39, 1986 (AD-D139 354)
Key Words: MAR-M247, Ni-7Al-14Mo, Ti-6Al-4V, turbine components, fatigue properties, unidirectional solidification

11. **Mechanical Properties of Conventionally Cast, Directionally Solidified, and Single-Crystal Superalloys**
Quested, P. N., Osgerby, S.
Mater Sci Technol 2 (5), 461-75, 1986 (AD-D140 385)
Key Words: IN-935, IN-738, IN-939, IN-597, IN-738LC, MAR-M246, MAR-M002, MAR-M247, Alloy 713LC, unidirectional solidification, creep

12. **Fatigue Dominated Damage Processes**
Bressers, J., Remy, L., Hoffelner, W.
Kluwer Academic Publishers, Norwell, MA
Proc High Temperature Alloys for Gas Turbines and Other Applications 1986-Part 1
441-68, 1986 (AD-D142 075)
Key Words: MAR-M509, IN-738LC, Hastelloy X, Inconel 617, RA-333, A-286, Inconel 718, Incoloy 901, microstructure, cracking, granular fracture, fatigue
13. Refurbishing Procedures for Blades of Large Stationary Gas Turbines
Keinenburg, K-H., Esser, W., Deblon, B.
Mater Sci Technol 1 (8), 620-8, 1985 (AD-D133 817)
Key Words: IN-738LC, Nimonic 80A, Udimet 520, turbine components, repair technique, corrosion, erosion, fatigue, tensile properties, tungsten arc welding

14. Repair and Rejuvenation Procedures for Aero-Gas-Turbine Hot-Section Components
Bell, S. R.
Mater Sci Technol 1 (8), 629-34, 1985 (AD-D133 818)
Key Words: Nimonic 108, RENE' 100, Nimocast PD21, X-40, C1023, turbine components, repair welding, microstructure, rejuvenation, creep

15. Improving Reliability and Lifetime of Rejuvenated Turbine Blades
Wortmann, J.
Mater Sci Technol 1 (8), 644-50, 1985 (AD-D133 820)
Key Words: Nimonic 108, turbine components, microstructure, grain size, rejuvenation, creep, cracking, rupture strength

16. Repair Techniques for Gas Turbine Components
Liburdi, J.
Liburdi Engineering Ltd. Burlington, Ontario, Canada
Proc 61st Meeting of the AGARD Structures and Materials Panel, Advanced Joining of Aerospace Metallic Materials
Rept No: AGARD-CP-398, 22-1 to 22-12, 1985 (AD-D139 985)
Key Words: Inconel X-750, Inconel 625, Udimet 500, Inconel 700, diffusion brazing, vacuum deposition, tensile properties, creep rupture

17. Effects of Trace Elements on Mechanical Properties of Superalloys
McLean, M., Strang, A.
Met Technol 11 (10), 454-64, 1984 (AD-D131 862)
Key Words: IN-100, MAR-M002, IN-738, IN-939, IN-718, Inconel X-750, grain boundaries, porosity, creep rupture

18. Problems and Possibilities for Life Extension in Gas Turbine Components
Koul, A. K., Wallace, W., Thamburaj, R.
National Aeronautical Establishment, Structures and Materials Section
Proc 65th Meeting of the AGARD Structures and Materials Panel. Advanced Joining of Aerospace Metallic Materials
Rept No: AGARD-CP-398, 22-1 to 22-12, 1985 (AD-D139 985)
Key Words: Inconel X-750, IN-738LC, Udimet 700, IN-100, Incoloy 901, turbine components, damage tolerance, EDM, creep, machining

19. Polycrystalline Grain Controlled Castings for Rotating Compressor and Turbine Components
Ewing, B. A., Green, K. A.
The Metallurgical Society of AIME, Warrendale, PA
Proc 5th Int Symp Superalloys 1984 33-42, 1984 (AD-D132 824)
Key Words: Microcast X, IN-792, MAR-M247, AF-95, turbine components, microstructure, tensile properties, creep rupture

20. The Development of Preferred Orientation in Ni-Mo-Al-X and Ni-Cr-Al-X Superalloys
Chin, H. A., Adair, A. M.
The Metallurgical Society of AIME, Warrendale, PA
Proc 6th Int Symp Superalloys 1984 335-45, 1984 (AD-D132 848)
Key Words: nickel alloys, crystal orientation, thermomechanical treatment, alloy development
21. Overview of Temperature and Environmental Effects on Fatigue of Structural Metals
 Coffin, L. F.
 Plenum Press, New York, NY
 Proc 27th Sagamore Army Materials Research Conf 1-40, 1983 (AD-D131 509)
 Key Words: RENE' 95, A-286, stainless steel, Udiment 700, Waspaloy, MERL 76, IN-100, NASA IIB-7, crack growth, fatigue

22. Fatigue Growth of Surface Cracks in Nickel-Based Superalloys
 Brown, C. W., Hicks, M. A.
 Int J Fatigue 4 (2), 73-81, 1982 (AD-D124 43)
 Key Words: Inconel X-750, Inconel 718, turbine components, microstructure, grain size, crack growth, fatigue, tensile properties

23. Rejuvenation of Used Turbine Blades by Hot Isostatic Pressing and Reheat Treatment
 Cheung, K. L., Leach, C. C., Willett, K. P., Koul, A. K.
 Westinghouse Canada Ltd., Hamilton, Ontario, Canada
 Proc 53rd Meeting of the AGARD Structures and Materials Panel, Maintenance in Service of High Temperature Parts
 10-1 to 10-6, 1982 (AD-D125 467)
 Key Words: Inconel X-750, IN-738, Nimonic 115, Nimonic 105, Inconel 700, turbine components, fatigue, thermal cycling, creep

24. HIP Processing--Potentials and Applications
 Van Der Vet, W. J.
 Chromalloy American Co., Midwest City, OK
 Proc 53rd Meeting of the AGARD Structures and Materials Panel, Maintenance in Service of High Temperature Parts
 11-1 to 11-16, 1982 (AD-D125 468)
 Key Words: Inconel X-750, Udiment 500, RENE' 100, B-1900, Nimonic 105, IN-738, IN-782, turbine components, fatigue, thermal cycling, creep

25. Repair and Regeneration of Turbine Blades, Vanes, and Discs
 Huff, H., Wortmann, J.
 Motoren und Turbinen Union GMBH, Munich, Germany
 Proc 53rd Meeting of the AGARD Structures and Materials Panel, Maintenance in Service of High Temperature Parts
 13-1 to 13-7, 1982 (AD-D125 470)
 Key Words: IN-100, Nimonic 90, Nimonic 108, turbine components, welding, creep, rejuvenation

26. Scope for Repair Welding Gas Turbine Blades
 Elsner, W.
 Pract Metall 19 (4), 199-214, 1982 (AD-D126 799)
 Key Words: IN-738LC, Nimonic 90, Nimonic 105, Udiment 520, turbine components, microstructure, tensile properties, welding

27. Development of Hybrid Gas Turbine Bucket Technology
 Peterson, L. G., Hrencecin, D. E., Schilling, W. F., Ostergren, W. J.
 General Electric Co., Gas Turbine Division, Schenectady, NY
 Technical Paper
 Rept No: ASME-82-GT-94, 10 pp., 1982 (AD-D127 264)
 Key Words: RENE' 80, RENE' 150, Udiment 700, MAR-M200, IN-939, RENE' 125, RENE' 120, GTD-111, IN-738, turbine components, tensile properties, unidirectional solidification, dissimilar joining, diffusion bonding, creep rupture
28. The Joining of Refractory Metals by Hot Isostatic Pressing
 Werdecker, W., and Aldinger, F.
 High Temp-High Pressures 14 (2), 183-97, 1982 (AD-D127 724)
 Key Words: Inconel 601, Kanthal A-1, molybdenum, stainless steel, dissimilar joining, diffusion bonding, microhardness

29. Precision Casting of Turbine Blades and Vanes
 Drapier, J. M.
 Kluwer Boston Inc., Hingham, MA
 Proc Conf High Temperature Alloys for Gas Turbines 887-908, 1982 (AD-D134 025)
 Key Words: Alloy 713LC, IN-100, MAR-M200, PWA 1480, MAR-M247, CMSX2, turbine components, rejuvenation, oxidation, vacuum melting, unidirectional solidification

30. Anisotropic Fatigue Hardening of a Nickel Base Single Crystal At Elevated Temperature
 Jablonski, D. A., and Sargent, S.
 Scr Metall 15 (9), 1003-6, 1981 (AD-D122 456)
 Key Words: Ni-12Cr-11Al-5Co-3Ta-1W, microstructure, porosity, gamma prime, anisotropy, single crystals, dislocation structure, hardening, fatigue, heat treatment

 General Electric Co., Energy Systems Programs Department, Schenectady, NY
 Technical Report
 Rept No: DE82-000649, 54 pp., 1981 (AD-D125 182)
 Key Words: FSX-414, IN-738, GTD-111, turbine components, coatings, erosion, hot corrosion

32. Hot Isostatic Pressing/Heat Treatment of Cast Superalloy, AF 2-1DA Radial Turbine Wheels
 Kidwell, J. R., Sundberg, D. V., Fujii, M.
 Airresearch Mfg. Co. of Arizona, Phoenix, AZ
 Final Report
 Rept No: 31-3292, 56 pp., 1980 (AD-A091 305)
 Key Words: AF 2-1DA, turbine components, microstructure, creep rupture, tensile properties

33. HIP'ing Various Precision Cast Engine Components in Nickel-Based Superalloys
 Lamberigts, M., Diderrich, E., Coutouradis, D., de Lamotte, E., and Drapier, J. M.
 Key Words: Alloy 713LC, IN-792, MAR-M002, MAR-M004, IN-100, jet engines, turbine components, creep, microstructure

34. Aircraft Gas Turbine Materials and Processes
 Kear, B. H., Thompson, E. R.
 Science 208 (4446), 847-56, 1980 (AD-D126 322)
 Key Words: Haynes 188, Inconel 617, HA8077, Waspaloy, B-1900, PWA 1422, Incoloy 901, IN-100, X-40, MAR-M509, Hastelloy X, turbine components, fan blades, compressor components, coatings, unidirectional solidification, superplastic forming
35. The Promise of more Heat Resistant Turbine Materials
Freche, J. C., Ault, G. M.
Prod Engineering 50 (7), 35-9, 1979 (AD-D115 942)
Key Words: AF 2-1DA, AF-115, NASA IIB-7, NASA IIB-11, MAR-M200, MA6000E,
WAZ-D, WAZ20, IN-100, service life, creep rupture, tensile
properties, coatings, corrosion, thermal fatigue,
unidirectional solidification

36. Damage Accumulation and Fracture in Creep of Nickel-Base Alloys
Tipler, H. R., Lindblom, Y., Davidson, J. G.
Applied Sciences Publishers Ltd., London, UK
Key Words: IN-597, Nimonic 115, IN-738LC, Nimonic 80A, MAR-M200, Udimet 500,
Udimet 710, Udimet 720, turbine components, microstructure,
grain boundaries, cracking, creep properties, fatigue, thermal
fatigue, cavitation corrosion

37. Quality of Castings of Superalloys
Bachelet, E., Lesoult, G.
Applied Sciences Publishers Ltd., London, UK
High Temperature Alloys for Gas Turbines 665-99, 1978 (AD-D116 360)
Key Words: IN-738, Udimet 500, X-40, IN-100, MC-102, M3608F, C263, mto-001,
P1914, B1981, M-21, FSX-430, MAR-M509, IN-939, Alloy 713LC,
creep properties, fatigue, crack growth, thermal fatigue,
porosity

38. Casting High-Performance, High-Integral Components
Heine, H. J.
Key Words: Ti-6Al-4V, 18/8 stainless, 18Cr-10Ni, AA A360, B1914, B1925,
B1964, B1981, airframes, aircraft structures, creep rupture,
stress analysis, nondestructive testing, tensile properties,
tribaloy

39. New Superalloys, Better Processing Promise More Durable Turbine Parts
Mishka, K. H.
Mater Eng 84 (3), 22-4, 1976 (AD-D104 639)
Key Words: MA956E, CAIVIAC IV, Pyromet CTX-1, Haynes 556, Haynes 8077, MA754E,
MA757E, turbine components, zirconium coatings, tensile
properties, creep rupture, thermal processing, thermal
fatigue, oxidation, gamma prime, oxide dispersion
strengthening

40. Manufacturing Methods for the Production of Disc Shapes by Contour Rolling
Arnold, D. B.
General Electric Co., Aircraft Engine Group, Evendale, OH
Interim Engineering Progress Report Number Five, Apr-Jun 72
Rept No: AFML-IR-204-1(V). 22 pp., 1972 (AD-179 851L)
Key Words: RENÉ’ 95, Hastelloy X, AISI 304, AF 2-1DA, microstructure, hot
rolling
TITANIUM AND TITANIUM ALLOYS

Titanium

1. Large Structural Titanium Castings
 Barice, W. J.
 J Aircr 19 (8), 687-91, 1982 (AD-D125 528)
 Key Words: titanium, Ti-6Al-4V, Ti-5Al-2.5Sn, Ti-6Al-2Sn-4Zr-2Mo,
 Ti-6Al-2Sn-4Zr-6Mo, Ti-6Al-2Sn-2Zr-2Mo-2Cr, Transage 175, turbine components

2. A Retrospective View of Metallurgy During the 25 Years of the Gillett Lectures
 Jaffee, R. I.
 Key Words: AISI 316, Ti-6Al-4V, titanium, zirconium, hafnium, embrittlement,
 fracture mechanics

3. Flight Qualification of Titanium F-14a Airframe Components Manufactured by Hot
 Isostatic Pressing
 Witt, R., Magnuson, J.
 Grumman Aerospace Corp., Bethpage, NY
 122 pp., 1977 (AD-D305 114)
 Key Words: titanium, specifications, ultrasonic testing, microporosity

4. Comparative Evaluation of Forged Ti-6Al-4V Bar made from Shot Produced by the REP
 and CSC Processes
 Vaughan, R. F., Blenkinsop, P. A., Morton, P. H.
 Imperial Metal Industries (Kynoch) Ltd., Birmingham, UK MPR Publishing Services
 Ltd., Bellstone, Shrewsbury, UK
 8 pp., 1976 (AD-D110 190)
 Key Words: Ti-6Al-4V, tensile properties, fracture toughness, fracture
 surface, titanium, CM steels, superalloys, surface layers, morphology, composition surface

Ti-6Al-2Sn-4Zr-2Mo

1. Production of Large Titanium Investment Castings
 Ellebrecht, C., Thorne, J. K.
 Deutsche Gesellschaft Metallk, Germany
 Proc 5th Int Conf Titanium, Titanium--Science and Technology
 1: 145-9, 1985 (AD-D135 654)
 Key Words: Ti-6Al-2Sn-4Zr-2Mo, skull melting, chemical milling

2. Developments in Titanium Alloy Casting Technology
 Eylon, D., Froes, F. H., Gardiner, R. W.
 J Met 35 (2), 35-47, 1983 (AD-D126 785)
 Key Words: Ti-6Al-4V, Ti-6Al-6V-2Sn, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-2Sn-4Zr-6Mo,
 Ti-5Al-2.5Sn, Transage 175, Beta III, Ti-10V-2Fe-3Al, microstructure, net shape forming, welding, tensile
 properties, fracture toughness, fatigue, crack growth

247
3. **Large Structural Titanium Castings**
Barice, W. J.
J Aircr 19 (8), 687-91, 1982 (AD-D125 528)
Key Words: titanium, Ti-6Al-4V, Ti-5Al-2.5Sn, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-2Sn-4Zr-6Mo, Ti-6Al-2Sn-2Zr-2Mo-2Cr, Transage 175, turbine components

4. **Cast Titanium Components for Rotating Gas Turbine Applications**
Ewing, B. A.
General Motors Corp., Detroit Diesel Allison Division
Proc 54th Meeting of the AGARD Structures and Materials Panel
13-1 to 13-14, 1982 (AD-D127 041)
Key Words: Ti-6Al-4V, Ti-6Al-2Sn-2Zr-2Mo-2Cr, Ti-6Al-2Sn-4Zr-6Mo, Ti-6Al-2Sn-4Zr-2Mo, Transage 175, turbine components, net shape forming, Charpy impact, tensile properties, fatigue, cost

5. **Hot Isostatic Pressing—A New Heat Treating Technology with Tremendous Potential**
Price, P.
Ind Heat 46 (6), 8-10, 1979 (AD-D115 742)
Key Words: Ti-6Al-4V, RENE' 120, Ti-6Al-2Sn-4Zr-2Mo, microstructure, fatigue

6. **Materials and Processing Technology for Advanced Gas Turbines**
Hauser, H. A.
SAMPE Qtrly 6 (3), 8 pp., 1975 (AD-D101 035)
Key Words: TiAl, Ti(3)Al, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Ti-6Al-2Sn-4Zr-2Mo, Ti-8Al-1Mo-1V, IN-100, IN-738, IN-792, Alloy 713, B-1900, MAR-M200, turbine components, fracture mechanics, fatigue, creep rupture

Ti-6Al-2Sn-4Zr-6Mo

1. **Developments in Titanium Alloy Casting Technology**
Eylon, D., Froes, F. H., Gardiner, R. W.
J Met 35 (2), 35-47, 1983 (AD-D126 785)
Key Words: Ti-6Al-4V, Ti-6Al-6V-2Sn, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-2Sn-4Zr-6Mo, Ti-5Al-2.5Sn, Transage 175, Beta III, Ti-10V-2Fe-3Al, microstructure, net shape forming, welding, tensile properties, fracture toughness, fatigue, crack growth

2. **Large Structural Titanium Castings**
Barice, W. J.
J Aircr 19 (8), 687-91, 1982 (AD-D125 528)
Key Words: titanium, Ti-6Al-4V, Ti-5Al-2.5Sn, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-2Sn-4Zr-6Mo, Ti-6Al-2Sn-2Zr-2Mo-2Cr, Transage 175, turbine components

3. **Cast Titanium Components for Rotating Gas Turbine Applications**
Ewing, B. A.
General Motors Corp., Detroit Diesel Allison Division
Proc 54th Meeting of the AGARD Structures and Materials Panel
13-1 to 13-14, 1982 (AD-D127 041)
Key Words: Ti-6Al-4V, Ti-6Al-2Sn-2Zr-2Mo-2Cr, Ti-6Al-2Sn-4Zr-6Mo, Ti-6Al-2Sn-4Zr-2Mo, Transage 175, turbine components, net shape forming, Charpy impact, tensile properties, fatigue, cost
4. All Systems Are Go for Powder Metallurgy
Irving, R. R.
Iron Age 223 (28), 41-5, 1980 (AD-D118 875)
Key Words: AISI 4600, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Waspaloy, IN-100, AISI 329, 12Cr steel, injection molding, cost, applications

5. Materials and Processing Technology for Advanced Gas Turbines
Hauser, H. A.
SAMPE Qtrly 6 (3), 8 pp., 1975 (AD-D101 035)
Key Words: TiAl, Ti(3)Al, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Ti-6Al-2Sn-4Zr-2Mo, Ti-8Al-1Mo-1V, IN-100, IN-738, IN-792, Alloy 713, B-1900, MAR-M200, turbine components, fracture mechanics, fatigue, creep rupture

Ti-6Al-4V

1. Effects of Treatments on Mechanical Properties of Titanium Alloy Castings
Eylon, D., Froes, F. H., Barice, W. J.
SAMPE Qtrly 20 (2), 42-5, 1989 (AD-D140 690)
Key Words: Ti-6Al-4V, microstructure, tensile properties, fatigue, net shape

2. Titanium NNS Technology Shaping Up
Kubel, E. J., Jr.
Key Words: Ti-6Al-4V, turbine components, near net shape, rapid solidification

3. The Mechanical Properties of Superplastically Formed Titanium and Aluminum Alloys
Partridge, P. G., McDarmaid, D. S., Bottomley, I., Common, D.
Royal Aircraft Establishment Farnborough, UK
AGARD Lecture Series, Superplasticity AGARD-LS-154
6-1 to 6-23, 1987 (AD-D139 987)
Key Words: Ti-6Al-4V, AA 7475, Supral 100, Supral 150, Supral 220, alclad coatings, microstructure, grain size, aging, elastic properties, fatigue, fracture toughness

4. Titanium Near Net Shape Components for Demanding Airframe Applications
Witt, R. H., Ferreri, A. L.
SAMPE Qtrly 17 (3), 55-62, 1986 (AD-D135 849)
Key Words: Ti-6Al-4V, Transage 175, Transage 134, fracture toughness, tensile properties

5. Microstructure Modification of Ti-6Al-4V castings
Eylon, D., Barice, W. J., Froes, F. H.
SAMPE Qtrly 22 (1), 24-9, 47, 1986 (AD-D136 432)
Key Words: Ti-6Al-4V, microstructure, tensile properties, fatigue, solution heat treatment

6. Titanium Alloy Technology Update
Kubel, E. J., Jr.
Metal Prog 129 (7), 41-51, 1986 (AD-D138 429)
Key Words: Ti-6Al-4V, turbine components, crack growth, forging, fatigue
7. **Metallurgical Advancements in Investment Casting Technology**
 Dardi, L. E., Dalal, R. P., Yaker, C.
 ASM International, Metals Park, OH
 Proc Nicholas J. Grant Symp. Processing and Properties of Advanced High Temperature Alloys
 25-39, 1986 (AD-D139 354)
 Key Words: MAR-M247, Ni-7Al-14Mo, Ti-6Al-4V, turbine components, fatigue properties, unidirectional solidification

8. **Cast HIP and Heat Treated Titanium UH-60A Main Rotor Damper Bracket**
 Kopchick, J. P., Silverstein, S. M.
 United Technologies Corp., Stratford, CT
 Final Report
 Rept No: USAAVSCOM-TR-85-F-4, 49 pp., 1985 (AD-B097 223)
 Key Words: Ti-6Al-4V, UH-60A Black Hawk, casting, arc melting, fatigue, tensile properties

9. **Hot Isostatic Press**
 Author Anon
 Foreign Technology Division, Wright-Patterson AFB, OH
 Rept No: FTD-ID(RS)T-1406-84, 55 pp., 1985 (AD-B093 100)
 Key Words: Ti-6AI-4V, B-1900, IN-738, RENE' 77, IN-792, RENE' 80, AA C355, AA A356, 142-T4

10. **Comparison of Various Fabrication Methods for the Production of an Aircraft Structural Component from Titanium Semifabricates (II)**
 Mietrach, D., Blomeier, K.
 Aluminum English 61 (3), E151-5, 1985 (AD-D131 961)
 Key Words: Ti-6Al-4V, aircraft structures, tensile properties, hammer forging, electron beam welding

11. **Comparison of Various Fabrication Methods for the Production of an Aircraft Structural Component from Titanium Semifabricates (I)**
 Mietrach, D., Blomeier, K.
 Aluminum English 61 (2), E83-8, 1985 (AD-D132 335)
 Key Words: Ti-6Al-4V, Ti-6Al-6V-2Sn, forging, extrusion, fatigue, tensile properties

12. **Effect of Hot Isostatic Pressing and Heat Treatment on Fatigue Properties of Ti-6Al-4V Castings**
 Eylon, D., Froes, F. H., Levin, L.
 Deutsche Gesellschaft Metallik, Germany
 Proc 5th Int Conf Titanium, Titanium—Science and Technology 1, 179-86, 1985 (AD-D135 659)
 Key Words: Ti-6Al-4V, microstructure, crack growth, fatigue stress, tensile properties

13. **Nontraditional Thermal Processing of HIP’ed Investment Cast Ti-6Al-4V Alloy**
 Soltesz, S. M., Smickley, R. J., Dardi, L. E.
 Deutsche Gesellschaft Metallik, Germany
 Proc 5th Int Conf Titanium, Titanium—Science and Technology 1, 187-94, 1985 (AD-D135 660)
 Key Words: Ti-6Al-4V, microstructure, tensile properties, fracture toughness, vacuum arc melting
14. Fatigue Resistance Improvement of Ti-6Al-4V by Thermomechanical Treatment
Deutsche Gesellschaft Metallk, Germany
Proc 5th Int Conf Titanium, Titanium--Science and Technology
4, 2107-14, 1985 (AD-D136 775)
Key Words: Ti-6Al-4V, tensile properties, fatigue stress, hydrogenation

15. Advanced Machining Research Program (AMRP). Volume 5. Economic Modeling
Flom, D. G.
General Electric Corporate Research and Development, Schenectady, NY
Rept No : AFWAL-TR-84-4059-Vol-5, 230 pp., 1984 (AD-B088 346L)
Key Words: Ti-6Al-4V, RENE' 95, turbine components, gun tubes, laser machining

Paige, J. I., Clites, P. G., Henry, J. L.
Bureau of Mines, Albany Research Center, Albany, NY
Rept No : BM-RI-8897, 20 pp., 1984 (AD-D134 349)
Key Words: Ti-6Al-4V, microstructure, tensile properties, fatigue stress, Charpy impact, sand casting

17. Thermo-Chemical Treatment (TCT) of Titanium Alloy Net Shapes
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Titanium--Net Shape Technologies 145-53, 1984 (AD-D134 599)
Key Words: Ti-6Al-4V, REP, tensile strength, fatigue stress, net shape forming

18. Titanium Casting--A Review
Eylon, D., Froes, F. H.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Titanium--Net Shape Technologies 155-77, 1984 (AD-D134 600)
Key Words: Ti-6Al-4V, repair welding, microstructure, fatigue crack

19. Investment Casting of Large Components
Barice, W. J.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Titanium--Net Shape Technologies 179-91, 1984 (AD-D134 601)
Key Words: Ti-6Al-4V, tensile properties, heat treatment

20. The Thermal Processing Response of HIP'ed Investment Cast Ti-6Al-4V Alloy
Smickley, R. J., Dardi, L. E.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Titanium--Net Shape Technologies 201-9, 1984 (AD-D134 603)
Key Words: Ti-6Al-4V, microstructure, fatigue, Charpy impact, tensile properties

21. Status of Titanium Net-Shape Technology
Key Words: Ti-6Al-4V, isothermal forging, net shape, tensile properties, fracture toughness

251
22. **Developments in Titanium Alloy Casting Technology**
Eylon, D., Froes, F. H., Gardiner, R. W.
J Met 35 (2), 35-47, 1983 (AD-D126 785)
Key Words: Ti-6Al-4V, Ti-6Al-6V-2Sn, Ti-6Al-2Sn-4Zr-2Mo, Ti-5Al-2.5Sn, Transage 175, Beta III, Ti-10V-2Fe-3Al, microstructure, net shape forming, welding, tensile properties, fracture toughness, fatigue, crack growth

23. **Porous Castings? HIPping Might be Your Answer**
Widmer, R., Price, P. E.
Modern Casting 72 (8), 42-3, 1982 (AD-D125 344)
Key Words: Ti-6Al-4V, stainless steel, aluminum alloys, porosity, rejuvenation, cost

24. **Large Structural Titanium Castings**
Barice, W. J.
J Aircr 19 (8), 687-91, 1982 (AD-D125 528)
Key Words: titanium, Ti-6Al-4V, Ti-5Al-2.5Sn, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-2Sn-4Zr-6Mo, Ti-6Al-2Sn-2Zr-2Mo-2Cr, Transage 175, turbine components

25. **High Cycle Fatigue of Weld Repaired Cast Ti-6Al-4V**
Hunter, G. B., Hodi, F. S., Eagar, T. W.
Metall Trans 13A (9), 1589-94, 1982 (AD-D125 582)
Key Words: Ti-6Al-4V, welding, crack growth, tensile properties, hardness, fatigue

26. **Recent Advancement in Titanium Near-Net Shape Technology**
Chen, C. C.
J Met 34 (11), 30-5, 1982 (AD-D126 098)
Key Words: Ti-6Al-4V, Ti-10V-2Fe-3Al, net shape forming, cost

27. **Cast Titanium Components for Rotating Gas Turbine Applications**
Ewing, B. A.
General Motors Corp., Detroit Diesel Allison Division
Proc 54th Meeting of the AGARD Structures and Materials Panel 13-1 to 13-14, 1982 (AD-D127 041)
Key Words: Ti-6Al-4V, Ti-6Al-2Sn-2Zr-2Mo-2Cr, Ti-6Al-2Sn-4Zr-6Mo, Ti-6Al-2Sn-4Zr-2Mo, Transage 175, turbine components, net shape forming, Charpy impact, tensile properties, fatigue, cost

Author Anon
NTIS, N84-27876, Springfield, VA
Technical Report
Rept No: N84-27876, 65 pp., 1982 (AD-D131 694)
Key Words: Ti-6Al-4V, fatigue, molding, mechanical properties

29. **Fatigue Testing of CIC-Densified Cast T.A6V**
Author Anon
NTIS, PB84-213610, Springfield, VA
Technical Report
Rept No : PB84-213610, 66 pp., 1982 (AD-D131 944)
Key Words: Ti-6Al-4V, microstructure, densification, fatigue
30. **Hot Isostatic Pressing in the Aerospace Industry**
Price, P.E.
Metal Prog 121 (2), 46-7, 1982 (AD-D200 345)
Key Words: RENE 120, Ti-6Al-4V, aerospace applications, mechanical properties

31. **Evaluation of Cast Titanium Alloy Compressor Components Volume 1**
Hammer, A. N.
Solar Turbines International, San Diego, CA
Rept No: RDR-1827-18-VOL-1, 84 pp., 1981 (AD-A111 431)
Key Words: Ti-6Al-4V, turbine components, fatigue, welding, tensile properties, notch strength, stress corrosion

32. **Manufacture of Cost-Affordable High Performance Titanium Components for Advanced Air Force Systems**
Eylon, D., Field, M., Froes, F. H., Eichelman, G. E.
SAMPE Qtrly 12 (3), 19-25, 1981 (AD-D121 154)
Key Words: Ti-6Al-4V, tensile properties, fatigue, net shape forming, superplastic forming

33. **Mechanical Properties of Titanium Castings**
Ulitchny, M. G.
Bendix Corp., Kansas, MO
Rept No: BDX-613-2680, 11 pp., 1981 (AD-D124 358)
Key Words: Ti-6Al-4V, Ti-6Al-6V-2Sn, fracture toughness, aging, tensile properties

Moracz, D. J., Cook, C. R.
TRW Inc., Materials Technology, Cleveland, OH
Final Technical Report Nov 78-Jun 81
Key Words: Ti-6Al-4V, IN-100, seam welding, microstructure, diffusion bonding

35. **Synthesis of Microstructures and the Relationship Between Microstructure and Properties**
Rosenblum, M. E., Eylon, D.
Cincinnati University, Department of Materials Science and Metallurgical Engineering, Cincinnati, OH
Rept No: AFWAL-TR-80-4035, 41 pp., 1980 (AD-A089 602)
Key Words: Ti-6Al-4V, microstructure, fatigue, creep

36. **All Systems Are Go for Powder Metallurgy**
Irving, R. R.
Iron Age 223 (28), 41-5, 1980 (AD-D118 875)
Key Words: AISI 4600, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Waspaloy, IN-100, AISI 329, 12Cr steel, injection molding, cost, applications

37. **Titanium Powder Metallurgy--A Perspective**
Kelto, C. A., Kosmal, B. A., Eylon, D., Froes, F. H.
J Met 32 (8), 17-25, 1980 (AD-D119 351)
Key Words: Ti-6Al-4V, fatigue, net shape forming, diffusion bonding

253
38. **Creep Behavior of Cast Ti-6Al-4V Alloy**
Chakrabarti, A. K., Nichols, E. S.
Metallurgical Society of AIME, Warrendale, PA
Proc 4th Int Conf Titanium, Titanium'80-Science and Technology
2, 1081-96, 1980 (AD-D121 003)
Key Words: Ti-6Al-4V, grain size, creep, tensile properties, plastic deformation

39. **Influence of Manufacturing Method and Surface Condition on the Fatigue Strength of Ti-6Al-4V Material**
Broichhausen, J., Telliah, M.
Metallurgical Society of AIME, Warrendale, PA
Proc 4th Int Conf Titanium, Titanium'80-Science and Technology
3, 1797-1806, 1980 (AD-D121 214)
Key Words: Ti-6Al-4V, fatigue, surface roughness, microhardness

40. **Some Aspects of Titanium Alloy Powder Metallurgy**
Marty, M., Octor H., Renon, C., Walder, A.
Foreign Technology Division, Wright-Patterson AFB, OH
Rept No: FTD-ID(RS)T-0542-79, 37 pp., 1979 (AD-B044 328L)
Key Words: Ti-6Al-4V, electron beam melting, hydriding, densification, hot extrusion, mechanical properties

41. **Manufacturing Methods for Low Cost Non-Rotating Titanium Engine Components**
Kemphaus, J. B.
General Electric Co., Aircraft Engine Group, Evendale, OH
Final Report Dec 74-Jun 79
Rept No: AFML-TR-79-4129, 143 pp., 1979 (AD-B045 094L)
Key Words: Ti-6Al-4V, diffusion bonding, creep, near net shape forming, notch properties, tensile properties, fatigue

42. **Use Properties for the Cast Alloy Titanium TA6V Whether Densified or Not by Hot Isostatic Compaction. Analysis of Tests Carried Out by the C.E.A.T. Between 1972 and 1978**
Deviller, I. P. A., Herteman, I. A.
Foreign Technology Division, Wright-Patterson AFB, OH
Rept No: FTD-ID(RS)T-1526-79, 32 pp., 1979 (AD-B048 892L)
Key Words: Ti-6Al-4V, defects, impact toughness, fatigue, bearings

43. **Built-Up Low-Cost Advanced Titanium Structures—BLATS**
Paez, C.
Grumman Aerospace Corp., Bethpage, NY
Quarterly Progress Report Number Five, Oct 78-Jan 79
Contract No: F33615-77-C-3109
90 pp., 1979 (AD-D108 342L)
Key Words: Ti-6Al-4V, diffusion bonding, tensile properties, welding, compression tests, fatigue

44. **Hot Isostatic Pressing Rejuvenation of Disks**
Sundberg, D. V., Comey, D. H.
Airesearch Mfg. Co. of Arizona, Phoenix, AZ
Final Technical Report
Rept No: 21-3238, 139 pp., 1979 (AD-A078 593)
Key Words: Ti-6Al-4V, Waspaloy, turbine components, rejuvenation, tensile properties

254
Price, P.
Ind Heat 46 (6), 8-10, 1979 (AD-D115 742)
Key Words: Ti-6Al-4V, RENÉ' 120, Ti-6Al-2Sn-4Zr-2Mo, microstructure, fatigue

46. Fatigue Crack Initiation in Hot Isostatically Pressed Ti-6Al-4V Castings
Eylon, D.
J Mater Sci 14 (8), 1914-22, 1979 (AD-D116 074)
Key Words: Ti-6Al-4V, microstructure, grain boundaries, fractography, fatigue, crack growth

47. Built-Up Low-Cost Advanced Titanium Structures (BLATS)
Paez, C.
Grumman Aerospace Corp., Bethpage, NY
Quarterly Progress Report Number Two, Jan-Apr 78
Contract No: F33615-77-C-3109, 135 pp., 1978 (AD-D108 320L)
Key Words: Ti-6Al-4V, turbine components, buckling strength, tensile properties, fatigue, superplastic forming, creep rupture, welding, shear stress

48. Advanced Manufacturing Methods for High Quality Low Cost Titanium Powder Production
Peebles, R. E.
General Electric Co., Aircraft Engine Group, Evendale, OH
Rept No: AFML-IR-189-77(4), 59 pp., 1978 (AD-D114 365L)
Key Words: Ti-6Al-4V, Ti-5Al-2Sn-2Zr-4Cr-4Mo, isothermal process, forging, hydriding

49. Feasibility Study on the use of Small-Angle Neutron Scattering for Microstructural Determinations of Technological Alloys
Herman, H.
State University of New York at Stony Brook, Department of Materials Sciences, NY
Final Report
Contract No: N00014-78-M-0074
58 pp., 1978 (AD-A061 867)
Key Words: Ti-6Al-4V, HY-130, AISI 304, Udimet 700, creep-fatigue, crack detection

50. HIP, the Great Healer of Castings
Bittence, J. C.
Mater Eng 88 (4), 54-7, 1978 (AD-D113 844)
Key Words: Inconel 718, IN-792, Ti-6Al-4V, 17-4PH, AA A357, porosity, fatigue, creep properties, deformation, cost

51. Casting High-Performance, High-Integrity Components
Heine, H. J.
Key Words: Ti-6Al-4V, 18/8 stainless, 18Cr-10Ni, AA A360, B1914, B1925, B1964, B1981, airframes, aircraft structures, creep rupture, stress analysis, nondestructive testing, tensile properties, tribaloy

52. A Retrospective View of Metallurgy During the 25 Years of the Gillett Lectures
Jaffee, R. I.
Key Words: AISI 316, Ti-6Al-4V, titanium, zirconium, hafnium, embrittlement, fracture mechanics
53. Repair of Titanium Airframe Castings by Hot Isostatic Pressing
Magnuson, J.
Metall 10 (2), 223-32, 1977 (AD-D109428)
Key Words: Ti-6Al-4V, porosity, microstructure, defects, voids, metallography

54. HIP'ing Raises Casting Performance Levels
Freeman, W. R., Jr.
Metal Prog 112 (3), 33-8, 1977 (AD-D110513)
Key Words: B-1900, IN-792, Ti-6Al-4V, IN-100, tensile properties turbine components, fatigue, creep rupture

55. Application of Hot Isostatic Pressing to Aircraft Gas Turbines
Evans, D. J.
Plenum Press, New York, NY
Proc 6th AIRAPT Int High Pressure Conf 2, 656-63, 1977 (AD-D126192)
Key Words: Udimet 700, RENE' 95, Ti-6Al-4V, turbine components, tensile properties, creep rupture, net shape forming

56. HCF Crack Initiation Analysis of Ti-6Al-4V Cast and HIP Specimens
Eylon, D.
Manufacturing Technology Division, AFML, Wright-Patterson AFB, OH
Proc Net Shape Metalworking Program Review 73-87, 1976 (AD-D119168L)
Key Words: Ti-6Al-4V, fracture surface, crack propagation, microstructure, fatigue stress, grain boundaries

57. HIP of Near-Net Shapes
Dulis, E. J., Fleck, J. N.
Manufacturing Technology Division, AFML, Wright-Patterson AFB, OH
Proc Net Shape Metalworking Program Review 369-82, 1976 (AD-D119184L)
Key Words: PA 101, Ti-6Al-4V, net shape forming, forging

58. High Integrity Casting Program
Schweikert, W. H.
Manufacturing Technology Division, AFML, Wright-Patterson AFB, OH
Proc Net Shape Metalworking Program Review 392-405, 1976 (AD-D119186L)
Key Words: Inconel 718, Ti-6Al-4V, 17-4PH, AA A357, tensile properties, nondestructive testing

59. Improved Properties in Castings by Hot Isostatic Pressing
Glenn, G. M.
SAMPE Qtrly 8 (1), 1-9, 1976 (AD-D107893)
Key Words: IN-738, RENE' 80, RENE' 120, RENE' 77, Ti-6Al-4V, AA A356, AA C355 porosity, tensile properties, microstructure, creep rupture, density, fatigue

60. Comparative Evaluation of Forged Ti-6Al-4V Bar made from Shot Produced by the REP and CSC Processes
Vaughan, R. F., Blenkinsop, P. A., Morton, P. H.
Imperial Metal Industries (Kynoch) Ltd., Birmingham, UK MPR Publishing Services Ltd., Bellstone, Shrewsbury, UK
8 pp., 1976 (AD-D110190)
Key Words: Ti-6Al-4V, tensile properties, fracture toughness, fracture surface, titanium, CM steels, superalloys, surface layers, morphology, composition surface
61. Materials and Processing Technology for Advanced Gas Turbines
Hauser, H. A.
SAMPE Qtrly 6 (3), 8 pp., 1975 (AD-D101 035)
Key Words: TiAl, Ti(3)Al, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Ti-6Al-2Sn-4Zr-2Mo,
Ti-8Al-1Mo-1V, IN-100, IN-738, IN-792, Alloy 713, B-1900,
MAR-M200, turbine components, fracture mechanics, fatigue,
creep rupture

62. Precision Castings State-of-the-Art
Nagan, R. M.
SAMPE Qtrly 6 (4), 1-7, 1975 (AD-D102 565)
Key Words: 17-4PH, Hastelloy X, Inconel 718, Ti-6Al-4V, aircraft structures,
turbine components, tensile properties

63. Improvement of Nuclear Reactor Component Materials by Application of Hot Isostatic
Processing (HIP)
Mueller, J. J.
Electric Power Research Inst, Palo Alto, CA
Phase One Survey Report
Rept No.: EPRI-500-1, PB-250952, 64 pp., 1975 (AD-D107 180)
Key Words: Ti-6Al-4V, AA A356-T61, RENE’ 95, IN-738, IN-792, RENE’ 77, RENE’
80, nuclear reactor, turbine components, tensile properties,
fatigue, creep rupture, cladding, defects

64. Manufacturing of Titanium Airframe Components
Witt, R., Magnuson, J.
Grumman Aerospace Corp., Bethpage, NY
Final Report, Apr 74-Apr 75
Contract No.: N00019-74-C-0301
90 pp., 1975 (AD-D301 610)
Key Words: Ti-6Al-4V, Ti-6Al-6V-2Sn, net shape, fracture toughness

65. Titanium Powder Metallurgy
Sutcliffe, P. W., Mardon, P. G.
AGARD Structures and Materials Panel, 17 pp., 1974 (AD-D102 697)
Key Words: Ti-6Al-4V, tensile properties, density, cost

Ti-6Al-6V-2Sn

1. Comparison of Various Fabrication Methods for the Production of an Aircraft
Structural Component from Titanium Semifabricates (I)
Mietrach, D., Blomeier, K.
Aluminum English 61 (2), E83-8, 1985 (AD-D132 335)
Key Words: Ti-6Al-4V, Ti-6Al-6V-2Sn, forging, extrusion, fatigue, tensile
properties

2. Developments in Titanium Alloy Casting Technology
Eylon, D., Froes, F. H., Gardiner, R. W.
J Mct 35 (2), 35-47, 1983 (AD-D126 785)
Key Words: Ti-6Al-4V, Ti-6Al-6V-2Sn, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-2Sn-4Zr-6Mo,
Ti-5Al-2.5Sn, Transage 175, Beta III, Ti-10V-2Fe-3Al,
microstructure, net shape forming, welding, tensile
properties, fracture toughness, fatigue, crack growth
3. Mechanical Properties of Titanium Castings
Ulitchny, M. G., Bendix Corp., Kansas, MO
Rept No: BDX-613-2680, 11 pp., 1981 (AD-D124 358)
Key Words: Ti-6Al-4V, Ti-6Al-6V-2Sn, fracture toughness, aging, tensile properties

4. Engineering Design, Development, Fabrication and Testing Services Related to 155-mm, XM785 Nuclear Projectile
Steiner, E. G., Ballheim, R. W., Brinker, G. G.
Chamberlain Mfg. Corp., Research and Development Division, Waterloo, IA
Rept No: C8182-PR-026, 452 pp., 1980 (AD-B052 420L)
Key Words: Ti-6Al-6V-2Sn, projectiles, ballistic tests, spin test

5. Manufacturing of Titanium Airframe Components
Witt, R., Magnuson, J.
Grumman Aerospace Corp., Bethpage, NY
Final Report, Apr 74-Apr 75
Contract No: N00019-74-C-0301, 90 pp., 1975 (AD-D301 610)
Key Words: Ti-6Al-4V, Ti-6Al-6V-2Sn, net shape, fracture toughness

Transage 175

1. Titanium Near Net Shape Components for Demanding Airframe Applications
Witt, R. H., Ferreri, A. L.
SAMPE Qtrly 17 (3), 55-62, 1986 (AD-D135 849)
Key Words: Ti-6Al-4V, Transage 175, Transage 134, fracture toughness, tensile properties

2. Data Sheet: Transage 175 (Ti-2.7Al-13V-7Sn-2Zr) High-Strength Cast Alloy
Crossley, F. A.
The Metallurgical Society of AIME, Warrendale, PA
Proc Symp Beta Titanium Alloys in the 1980's 493-6, 1984 (AD-D136 674)
Key Words: Transage 175, thermal stability, density, tensile properties

3. Cast Transage 175 Titanium Alloy for Durability Critical Structural Components
Crossley, F. A., Barice, W. J.
J Aircr 20 (1), 66-9, 1983 (AD-D126 651)
Key Words: Transage 175, tensile properties, notch sensitivity, fatigue

4. Developments in Titanium Alloy Casting Technology
Eylon, D., Froes, F. H., Gardiner, R. W.
J Met 35 (2), 35-47, 1983 (AD-D126 785)
Key Words: Ti-6Al-4V, Ti-6Al-6V-2Sn, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-2Sn-4Zr-6Mo, Ti-5Al-2.5Sn, Transage 175, Beta III, Ti-10V-2Fe-3Al, microstructure, net shape forming, welding, tensile properties, fracture toughness, fatigue, crack growth

5. Large Structural Titanium Castings
Barice, W. J.
J Aircr 19 (8), 687-91, 1982 (AD-D125 528)
Key Words: titanium, Ti-6Al-4V, Ti-5Al-2.5Sn, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-2Sn-4Zr-6Mo, Ti-6Al-2Sn-2Zr-2Mo-2Cr, Transage 175, turbine components
6. **Cast Titanium Components for Rotating Gas Turbine Applications**
 Ewing, B. A., General Motors Corp., Detroit Diesel Allison Division
 Proc 54th Meeting of the AGARD Structures and Materials Panel
 13-1 to 13-14, 1982 (AD-D127 041)
 Key Words: Ti-6Al-4V, Ti-6Al-2Sn-2Zr-2Mo-2Cr, Ti-6Al-2Sn-4Zr-6Mo, Ti-6Al-2Sn-4Zr-2Mo, Transage 175, turbine components, net shape forming, Charpy impact, tensile properties, fatigue, cost

7. **Influence of Hot Isostatic Processing and Heat Treatment Variables on the Tensile Properties of Cast Transage 175 Alloy, Ti-2.5Al-13V-7Sn-2Zr**
 Crossley, F. A., Barice, W. J., SAMPE, Azusa, CA
 Proc 27th National SAMPE Symp and Exhibition 667-78, 1982 (AD-D127 142)
 Key Words: Transage 175, Ti-2.5Al-13V-7Sn-2Zr, heat treatment, age hardening, tensile properties

8. **Mechanical Properties of Two Cast and Hot Isostatically Processed Martensitic Transage Titanium Alloys**
 Crossley, F. A., Barice, W. J.
 J Met 33 (2), 26-32, 1981 (AD-D120 560)
 Key Words: Transage 129, Ti-2Al-11V-2Sn-11Zr, Transage 134, Transage 175, tensile properties, fatigue, density

Miscellaneous Titanium Alloys

1. **Cast Beta-Titanium Alloy Ready for Flight**
 McKenzie, R.M.
 Adv Mater Processes 136 (1), 45-6, 1989 (AD-D143 200)
 Key Words: Ti-15V-3Cr-3Al-3Sn, cyclic aging, tensile properties

2. **Alloy Development, Processing and Characterization of Devitrified Titanium Base Microcrystalline Alloys**
 Whang, Sung H.
 Barnett Institute of Chemical Analysis and Materials Science, Northeastern University, Boston, MA
 Annual Report, Contract No: N00014-82-K-0579, 17 pp., 1986 (AD-A172 140)
 Key Words: titanium alloys, aluminum addition, tin addition, yttrium addition, lanthanum addition, thorium addition, erbium addition, microscopy, age hardening, melt spinning, tensile properties

3. **Deformation of Rapidly Solidified Ti-2Er**
 Kampe, S. L., Koss, D. A.
 Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA
 Technical Report Number Three
 Contract No: N00014-86-K-0381, 8 pp., 1986 (AD-A173 734)
 Key Words: Ti-2Er, grain size, strain rate, flow stress, vacuum annealing

4. **Structure-Property Relationships in Centrifugally Cast IMI 550**
 Kearns, M. W., Ward-Close, C. M.
 SAMPE J 22 (1), 7-11, 1986 (AD-D134 747)
 Key Words: IMI 550, tensile properties, fracture toughness, creep, aging
5. **Titanium Near Net Shape Components for Demanding Airframe Applications**
Witt, R. H., Ferreri, A. L.
SAMPE Qtrly 17 (3), 55-62, 1986 (AD-D135 849)
Key Words: Ti-6Al-4V, Transage 175, Transage 134, fracture toughness, tensile properties

6. **Manufacturing Process for the Hot Isostatic Pressing of Large Titanium PM (Powder Metallurgy) Shapes**
Petersen, V. C., Chandhok, V. K., Moll, J. H.
Colt Industries Inc., Crucible Materials Research Center, Pittsburgh, PA
Rept No: AFWAL-TR-85-4120, 474 pp., 1985 (AD-B101 439L)
Key Words: titanium alloys, crack propagation, fracture, weldability, toughness, machinability

7. **Titanium Mill Production**
Belov, A. F.
Deutsche Gesellschaft Metallk., Germany
Proc 5th Int Conf Titanium, Titanium--Science and Technology 1, 31-8, 1985 (AD-D135 651)
Key Words: VT5L, tensile properties, fatigue, heat treatment

8. **Alloy Development, Processing and Characterization of Devitrified Titanium Based Microcrystalline Alloys**
Whang, S. H.
Barnett Institute of Chemical Analysis and Materials Science, Northeastern University, Boston, MA
Annual Report, Contract No: N00014-82-K-0597, 113 pp., 1984 (AD-A149 609)
Key Words: Ti-5Sn-3Y, Ti-5Sn-4.5La, Ti-8Mo-2.5Al-1.5B, Ti-6Al-4V-2Si, Ti-2.5Al-5.5Er, Ti-5Al-2Si, Ti-12Zr-4.5Si, Ti(5)Si(3), Al(3)La, Ti-5Al-2.5Sn-3Ce, Ti-5Al-2.5Sn-1B, Ti-5Al-2.5Sn-2Y, Ti-5Al-2.5Sn, Ti-6.5Si, Ti-5Al-4Zr-2.5Sn-3La, Ti-8Zr-3.5Al-3.5Si, rapid solidification, hardness, rare earth solubility

9. **Emerging Trends in Aerospace Materials and Processes**
Chandler, H. E.
Metal Prog 125 (5), 21-9, 1984 (AD-D130 023)
Key Words: Ti-10V-2Fe-3Al, Ti-15V-3Cr-3Al-3Sn, steel, aircraft, net shape forming, manufacturing

10. **Thermal Treatment of Titanium Alloy TA6Zr5D Obtained by Powder Metallurgy**
Quesne, C., Severac, C., Servant, C.
NTIS, PB86-159415, Springfield, VA
Technical Translation Rept No: PB86-159415, 55 pp., 1984 (AD-D140 123)
Key Words: IMI 685, microstructure, porosity, precipitation, tensile properties

11. **Developments in Titanium Alloy Casting Technology**
Eylon, D., Froes, F. H., Gardiner, R. W.
J Met 35 (2), 35-47, 1983 (AD-D126 785)
Key Words: Ti-6Al-4V, Ti-6Al-6V-2Sn, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-2Sn-4Zr-6Mo, Ti-5Al-2.5Sn, Transage 175, Beta III, Ti-10V-2Fe-3Al, microstructure, net shape forming, welding, tensile properties, fracture toughness, fatigue, crack growth
 NTIS, N84-23555, Springfield, VA
 Rept No: N84-23555, 152 pp., 1983 (AD-D134 719)
 Key Words: AA A357, titanium alloys, fracture mechanics, diffusion bonding, fatigue

13. Treatment Processes of Light and Heat Resistant Alloys
 Belov, A. F., Tselikov, A. I., Trishkin, V. G., Rakovskiy, V. S., Rykalin, N. N.
 Foreign Technology Division, Wright-Patterson AFB, OH
 Rept No: FTD-ID(RS)T-0412-82, 335 pp., 1982 (AD-B070 680L)
 Key Words: aluminum alloys, titanium alloys, mechanical properties, fatigue, cracking

14. Large Structural Titanium Castings
 Barice, W. J.
 J Aircr 19 (8), 687-91, 1982 (AD-D125 528)
 Key Words: titanium, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-2Sn-4Zr-6Mo, Transage 175, turbine components

15. Recent Advancement in Titanium Near-Net Shape Technology
 Chen, C. C.
 J Met 34 (11), 30-5, 1982 (AD-D126 098)
 Key Words: Ti-6Al-4V, Ti-10V-2Fe-3Al, net shape forming, cost

16. Cast Titanium Components for Rotating Gas Turbine Applications
 Ewing, B. A.
 General Motors Corp., Detroit Diesel Allison Division
 Proc 54th Meeting of the AGARD Structures and Materials Panel 13-1 to 13-14, 1982 (AD-D127 041)
 Key Words: Ti-6Al-4V, Ti-6Al-2Sn-2Zr-2Mo-2Cr, Ti-6Al-2Sn-4Zr-6Mo, Transage 175, turbine components, net shape forming, Charpy impact, tensile properties, fatigue, cost

17. Influence of Hot Isostatic Processing and Heat Treatment Variables on the Tensile Properties of Cast Transage 175 Alloy, Ti-2.5Al-11V-7Sn-2Zr
 Crossley, F. A., Barice, W. J.
 SAMPE, Azusa, CA
 Proc 27th National SAMPE Symp and Exhibition 667-78, 1982 (AD-D127 142)
 Key Words: Transage 175, Ti-2.5Al-11V-7Sn-2Zr, heat treatment, age hardening, tensile properties

18. Mechanical Properties of Two Cast and Hot Isostatically Processed Martensitic Transage Titanium Alloys
 Key Words: Transage 129, Ti-2Al-11V-2Sn-11Zr, Transage 134, Transage 175, tensile properties, fatigue, density

19. Advanced Manufacturing Methods for High Quality Low Cost Titanium Powder Production
 Peebles, R. E.
 General Electric Co., Aircraft Engine Group, Evendale, OH
 Rept No: AFML-IR-189-77T(4), 59 pp., 1978 (AD-D114 365L)
 Key Words: Ti-6Al-4V, Ti-5Al-2Sn-2Zr-4Cr-4Mo, isothermal process, forging, hydriding
20. Research to Conduct an Exploratory Experimental and Analytical Investigation of Alloys
Ruckle, D. L., Blackburn, M. J., Hayden, S. Z.
Pratt and Whitney Aircraft Group, East Hartford, CT
Fourth Quarterly Report Nov 75-Feb 76
Rept No: EII-75-200-4001-3, 46 pp., 1976 (AD-D108 056L)
Key Words: Ti-16Al-10Nb, TiAl, turbine components, fatigue, bend test, ECG, EDM, creep, Charpy impact, creep rupture, notch properties, tensile properties

21. Materials and Processing Technology for Advanced Gas Turbines
Hauser, H. A.
SAMPE Qtrly 6 (3), 8 pp., 1975 (AD-D101 035)
Key Words: TiAl, Ti(3)Al, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Ti-6Al-2Sn-4Zr-2Mo, Ti-8Al-1Mo-1V, IN-100, IN-738, IN-792, Alloy 713, B-1900, MAR-M200, turbine components, fracture mechanics, fatigue, creep rupture
INTERMETALLIC COMPOUNDS

TiAl

1. **Flow Softening and Microstructure Evolution during Hot Working of Wrought Near-Gamma Titanium Aluminides**
 Semiatin, S. L., Frey, N., El-Soudani, S. M., Bryant, J. D.
 Key Words: TiAl, Ti-48 at pct Al-2.5 at pct Nb, Ti-48 at pct Al-2 at pct Nb-2 at pct Cr, isothermal forging, hot compression test

2. **Design, Manufacture, and Evaluation of Titanium Aluminide Components**
 O'Connell, T. E., Blackburn, M. J., Smith, M. P.
 Pratt and Whitney Aircraft Group, Government Products Div, West Palm Beach, FL
 Interim Report Feb-Apr 84
 Rept No: FR-18287, 45 pp., 1984 (AD-D130 536L)
 Key Words: TiAl, turbine components, extrusion, ring rolling, tensile properties, solution heat treatment

3. **R&D on Composition and Processing of Titanium Aluminide Alloys for Turbine Engines**
 Blackburn, M. J., Smith, M. P.
 Pratt and Whitney Aircraft Group, Government Products Div, West Palm Beach, FL
 Rept No: PWA-PR-16259, 103 pp., 1982 (AD-B069 620)
 Key Words: TiAl, Ti(3)Al, Ti-25Al-10Nb-3V-1Mo, Ti-48 at pct Al-1 at pct V, turbine components, aluminides, microstructure, modulus, tensile properties, creep rupture, Charpy impact, fatigue, fracture toughness, thermal properties

4. **Research to Conduct an Exploratory Experimental and Analytical Investigation of Alloys**
 Ruckle, D. L., Blackburn, M. J., Hayden, S. Z.
 Pratt and Whitney Aircraft Group, East Hartford, CT
 Rept No: EII-75-200-4001-3, 46 pp., 1976 (AD-D108 056L)
 Key Words: Ti-16Al-10Nb, TiAl, turbine components, fatigue, bend test, ECG, EDM, creep, Charpy impact, creep rupture, notch properties, tensile properties

5. **Materials and Processing Technology for Advanced Gas Turbines**
 Hauser, H. A., SAMPE Qtrly 6 (3), 8 pp., 1975 (AD-D101 035)
 Key Words: TiAl, Ti(3)Al, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Ti-6Al-2Sn-4Zr-2Mo, Ti-8Al-1Mo-1V, IN-100, IN-738, IN-792, Alloy 713, B-1900, MAR-M200, turbine components, fracture mechanics, fatigue, creep rupture

Miscellaneous Intermetallic Compounds

1. **Flow Softening and Microstructure Evolution during Hot Working of Wrought TNear-Gamma Titanium Aluminides**
 Semiatin, S. L., Frey, N., El-Soudani, S. M., Bryant, J. D.
 Key Words: TiAl, Ti-48 at pct Al-2.5 at pct Nb, Ti-48 at pct Al-2 at pct Nb-2 at pct Cr, isothermal forging, hot compression test

263
2. Mechanical Properties of Fe-Modified L1(2)-Type Al3Ti
Inoue, H. R. P., Cooper, C. V., Favrow, L. H., Hamada, Y., Wayman, C. M.
Materials Research Society, Pittsburgh, PA
Key Words: Al(3)Ti, Al-25 at pct Ti-7.5 at pct Fe, microstructure,
dislocation structure, compressive properties, fracture
surface, intergranular fracture, brittle fracture

3. Fatigue and Fracture of Intermetallic Alloys
Cooper, C. V., Inoue, H. E., Giamei, A. F., Favrow, L. H.
United Technologies Research Center, East Hartford, CT
Annual Report
Rept No: R91-917992-2, 47 pp., 1991 (AD-A238 686)
Key Words: Al(3)Ti, turbine components, iron addition, copper addition,
nickel addition, phase transformation, microstructure, fatigue, fracture

4. Elastic Modulus of NiAl-TiB(2) Composites in the Temperature Range 300 to 1273 K
Viswanadham, R. K., Mannan, S. K., Kumar, K. S.
Key Words: NiAl, boride addition, modulus of elasticity

5. The Effect of 0.1 Atomic Percent Zirconium on the Cyclic Oxidation Behavior of Beta-NiAl for 3000 Hours at 1200 C
Barrett, C. A.
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH
Technical Memorandum
Rept No: NASA-TM-101408, 18 pp., 1989 (AD-D141 688)
Key Words: NiAl, zirconium addition, microstructure, spalling, cyclic test,
oxidation, long term tests

6. Investigation of As-Cast and Rapidly Solidified Al(3)Sc
Tarnacki, J., Kim, Y.W.
Scr Metall 23 (7), 1063-8, 1989 (AD-D142 932)
Key Words: Al(3)Sc, microscopy, melt spinning, hardness, compressive
properties

7. Environmental Effects in Niobium Base Alloys and other Selected Intermetallic Compounds
Meier, G. H., Thompson, A. W.
Department of Materials Science and Engineering, Pittsburgh University, PA
Annual Report Number One
Rept No: AFOSR-TR-89-0366, 68 pp., 1988 (AD-A206 072)
Key Words: NbAl(3), Nb-21Ti-10Al-15Si, Ti-24Al-11Nb, Nb-21Ti-25Si,
Nb-25Ti-12.5Al-25Si, Nb-25Ti-12.5Ta-12.5Al-25Si, turbine
components, tensile properties, fracture toughness, crack
growth

8. Progress of Powder Metallurgy in North America
Roll, K.H., Johnson, P.K.
Key Words: copper, iron, Inconel 625, AISI 316L, M-2, NiFe, rapid solidification, injection molding

264
9. **R&D on Composition and Processing of Titanium Aluminide Alloys for Turbine Engines**
Blackburn, M. J., Smith, M. P.
Pratt and Whitney Aircraft Group, Government Products Div, West Palm Beach, FL
Interim Report
Rept No: PWA-FR-16259, 103 pp., 1982 (AD-B069 620)
Key Words: TiAl, Ti(3)Al, Ti-25Al-10Nb-3V-1Mo, Ti-48 at pct Al-1 at pct V,
turbine components, aluminides, microstructure, modulus,
tensile properties, creep rupture, Charpy impact, fatigue,
fracture toughness, thermal properties

10. **Rolling, Forming and Joining Titanium-Aluminide Sheet**
 Battelle Memorial Institute, Columbus, OH
Final Report
Rept No: AFML-TR-78-59, 130 pp., 1978 (AD-B031 214)
Key Words: Ti-16Al-10Nb, Ti-12Al-19Nb, Ti-13Al-20Nb, Ti-36Al-5Nb,
Ti-32Al-5Nb-5W, rolling, superplastic forming, joining,
tensile properties, hardness, fatigue, creep test, bend test

11. **Materials and Processing Technology for Advanced Gas Turbines**
Hauser, H. A.
SAMPE Qtrly 6 (3), 8 pp., 1975 (AD-D101 035)
Key Words: TiAl, Ti(3)Al, Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Ti-6Al-2Sn-4Zr-2Mo,
Ti-8Al-1Mo-1V, IN-100, IN-738, IN-792, Alloy 713, B-1900,
MAR-M200, turbine components, fracture mechanics, fatigue,
creep rupture
REFRACTORY METALS AND ALLOYS

1. **The Joining of Refractory Metals by Hot Isostatic Pressing**
 Werdecker, W., Aldinger, F.
 High Temp-High Pressures 14 (2), 183-97, 1982 (AD-D127 724)
 Key Words: Inconel 601, Kanthal A-1, molybdenum, stainless steel, dissimilar joining, diffusion bonding, microhardness

2. **Processing: The Rediscovered Dimension in High Temperature Alloys**
 Semchyshen, M.
 Standardization News 4 (4), 9-19, 1976 (AD-D110 676)
 Key Words: Inconel 718, RENE’ 80, AISI 4140, Udimet 700, TZM, IN-738, Waspaloy, remelting, alloying, creep rupture

3. **Processing and Characterization of Several Tungsten Alloys**
 Hall, R. C., Ossin, A., Ammon, R. L., Buckman, R. W., Aronin, L.
 Proc 20th National SAMPE Symp and Exhibition, 13 pp., 1975 (AD-D107 039)
 Key Words: W-10Cu, W-2ThO2, W-4Re, W-0.5HfC, turbine components, leading edges, microstructure, tensile properties, thermal properties

4. **Interdiffusion Behavior of Tungsten or Rhenium and Group V and VI Elements and Alloys of the Periodic Table-Part I**
 Arcella, F. G.
 Westinghouse Astronuclear Lab, Pittsburgh, PA
 Final Report
 Rept No.: WANL-M-FR-74-005, 248 pp., 1974 (AD-D100 645)
 Key Words: tantalum, niobium, tungsten, T-111, rhenium, dissimilar joining, electron beam welding, pressure bonding, interdiffusion, voids, aging, mathematical model, niobium alloys

5. **Interdiffusion Behavior of Tungsten or Rhenium and Group V and VI Elements and Alloys of the Periodic Table-Part II (Appendices)**
 Arcella, F. G.
 Westinghouse Astronuclear Lab, Pittsburgh, PA
 Final Report
 Rept No.: WANL-M-FR-74-005, 147 pp., 1974 (AD-D100 713)
 Key Words: Nb-12Zr, W-30Re-20Mo, Mo-50Re, T-111, Ta-10W, niobium, tungsten, tantalum, porosity, dissimilar joining, weldability, fracture mechanics, cracking, degradation, diffusivity, interdiffusion
MISCELLANEOUS CAST ALLOYS

1. **Manufacture of Reference Defects for NDE through Hot Isostatic Pressing**
 Sinclair, A.N., Graf, M., Moles, M.C., Doleby, M., DaSilva, V.
 Review of Progress in Quantitative Nondestructive Evaluation
 10B, 2235-42, 1991 (AD-D331 425)
 Key Words: Zircaloy, Zr-2.5Nb, pressure tube, fabricated defects

2. **Progress of Powder Metallurgy in North America**
 Rolt, K.H., Johnson, P.K.
 Key Words: copper, iron, Inconel 625, AISI 316L, M-2, NiFe, rapid solidification, injection molding

3. **A Retrospective View of Metallurgy During the 25 Years of the Gillett Lectures**
 Jaffee, R. I.
 Key Words: AISI 316, Ti-6Al-4V, titanium, zirconium, hafnium, embrittlement, fracture mechanics

4. **Hot Isostatic Pressure Healing of Navy Gun Metal Castings**
 Seifert, D. A., Hanes, H. D.
 Battelle Memorial Institute, Columbus, OH
 Final Report
 Contract No: N00024-73-C-5375
 41 pp., 1974 (AD-787 598)
 Key Words: copper alloy 903, gun metal, microstructure, porosity, defects, tensile properties
3. Miscellaneous
ALUMINUM ALLOYS

1. Applications of Coating Technology and HIP to Advanced Materials Processing
Nicholls, J. R., Stephenson, D. J.
Mater High Temp 9 (2), 110-20, 1991
Key Words: nickel, copper, phosphor bronze, Ni-13Al, MAR-M002, AA 7075, AA 8090, silver, Inconel 625, ion plating, electron beam evaporation, coatings, microstructure, creep, diffusion bonding

2. The Influence of Specimen Geometry on Near Threshold Fatigue Crack Growth
Vecchio, R. S., Crompton, J. S., Hertzberg, R. W.
Fatigue Fract Eng Mater Struct 10 (4), 333-42, 1987 (AD-D137 808)
Key Words: Udimet 700, AA 2024-T3, grain size, crack growth, fatigue crack

3. Hot Isostatic Press
Author Anon
Foreign Technology Division, Wright-Patterson AFB, OH
Rept No: FTD-ID(RS)T-1406-84, 65 pp., 1985 (AD-B093 100L)
Key Words: Ti-6Al-4V, B-1900, IN-738, RENE’ 77, IN-792, RENE’ 80, AA C355, AA A356, 142-T4

4. Dual-Property T63 Turbine Rotor
Ewing, B. A., Jain, S. K.
General Motors Corp., Allison Gas Turbine Operations, Indianapolis, IN
Final Report Mar 81-Apr 84
Rept No: USAAVSCOM-TR-84-D-18, 166 pp., 1984 (AD-B089 072L)
Key Words: nickel alloys, aluminum alloys, steels, T63 turbine components, defects, fatigue, fabrication, cracking, fracture, ultrasonic testing, stress analysis

5. Metalforming’s Big Push to Systems Technologies
Larsen, R. J., Harvey, R. E., Post, C. T., Weimer, G. A., LeCerf, B. H.
Iron Age 222 (43), 53-63, 1979 (AD-D116 917)
Key Words: Ti-6Al-4V, copper, aluminum, stainless steel, superplastic forming, diffusion bonding

6. Research to Conduct an Exploratory Experimental and Analytical Investigation of Alloys
Ruckle, D. L.
Pratt and Whitney Aircraft Group, East Hartford, CT
Third Quarterly Report, Aug-Nov 75
Rept No: EII-75-200-4001-2, 55 pp., 1975 (AD-D108 084L)
Key Words: Ti-16Al-10Nb, aluminum alloys, turbine components, microstructure, thermal properties, fracture, hardness, fatigue, tensile properties, creep rupture, notch properties
IRON ALLOYS

Miscellaneous Stainless Steels

1. **Superplasticity and Hardening of Extremely Fine Grained Ultrahigh Carbon-Chromium-Vanadium-Iron Alloys**
 Frommeyer, G.
 Pergamon Press, Elmsford, NY
 Proc 7th Int Conf Strength of Metals and Alloys
 ICSMA 7-V-2, 877-84, 1986 (AD-D139 304)
 Key Words: 5Cr steel, 18Cr stainless, forging, atomization, tensile properties, rapid solidification

2. **Application of Diffusion Welding in the USA**
 Owczarski, W. A. Paulonis, D. F.
 Weld J 60 (2), 22-33, 1981 (AD-D120 554)
 Key Words: Pyromet X-15, T-111, Ti-6Al-4V, diffusion welding, bonding, dissimilar joining

3. **An Investigation of Diffusion Bonding of Titanium to Stainless Steel**
 Chen, C. C.
 Metallurgical Society of AIME, Warrendale, PA
 Proc 4th Int Conf Titanium, Titanium’80-Science and Technology
 4, 2379-88, 1980 (AD-D121 360)
 Key Words: titanium, AISI 304, dissimilar joining, diffusion bonding, microhardness

4. **Ultrasonic Inspectability Improvement of Austenitic Stainless Steel Welds After Thermal Mechanical Processing**
 Malif, R.K., Lott, L.A.
 NDT for Energy Progress 66-70, 1980 (AD-D310 104)
 Key Words: stainless steel, welds, microstructure, mechanical properties

5. **Metalforming’s Big Push to Systems Technologies**
 Larsen, R. J., Harvey, R. E., Post, C. T., Weimer, G. A., LeCerf, B. H.
 Iron Age 222 (43), 53-63, 1979 (AD-D116 917)
 Key Words: Ti-6Al-4V, copper, aluminum, stainless steel, superplastic forming, diffusion bonding

6. **Feasibility Study on the use of Small-Angle Neutron Scattering for Microstructural Determinations of Technological Alloys**
 Herman, H.
 State University of New York at Stony Brook, Department of Materials Sciences, NY
 Final Report
 Contract No: N00014-78-M-0074
 58 pp., 1978 (AD-A061 867)
 Key Words: Ti-6Al-4V, HY-130, AISI 304, Udiment 700, creep-fatigue, crack detection
7. Technological Considerations in the Forging of Superalloy Rotor Parts
Wilkinson, N. A.
Met Technol 4 (7), 346-59, 1977 (AD-D110 651)
Key Words: Waspaloy, Udiment 700, Inconel 718, A-286, grain size, grain boundaries, thermomechanical treatment, notch sensitivity, tensile properties, creep properties, fatigue size, Charpy impact, dislocation structure

8. Compositional and Structural Aspects of Processing Nickel-Base Alloys
Knott, A. R., Symonds, C. H.
Met Technol 3 (8), 370-9, 1976 (AD-DI03 973)
Key Words: Monel 400, Nimonic 75, Nimonic 80A, Nimonic 90, Nimonic 105, Nimonic 115, Nimonic PE13, Inconel 600, Inconel 718, Incoloy 800, Incoloy 825, microstructure, deformation, segregation, grain size

9. Materials Research for Superconducting Machinery-IV
Reed, R. P., Clark, A. F., Van Reuth, E. C.
National Bureau of Standards, Cryogenics Division, Boulder, CO
Semi-Annual Technical Report
Contract No: ARPA Order-2569
636 pp., 1975 (AD-A019 230)
Key Words: niobium alloys, titanium alloys, AISI 310, Inconel X-750, Inconel 706, Inconel 718, Incoloy 903, AA 6061, A-286, Invar, Kromarcs 58, 21-6-9 steel, tensile properties, fatigue

Miscellaneous Steels

1. HIPing Effects for Steel's Mechanical Properties
Ona, H., Ichikawa, S., Anndou, T., Nishioka, K.
Elsevier, London, UK
Key Words: S45C, tensile properties, hardness, heat treatment

2. Additional Fracture and Strength Test Results for A723 Steel and 38644 Titanium
Underwood, J. H., Kamdar, M. H., Fujczak, R. R.
Benet Labs, Army Armament Research Development and Engineering Center, Watervliet, NY
Final Report
Rept No: ARCCB-TR-88018, 21 pp., 1988 (AD-A196 329)
Key Words: A723, 38644, cylinders, pressure vessels, fracture toughness, fatigue, crack growth, notch fatigue, burst test, aluminum coating

Frommeyer, G.
Pergamon Press, Elmsford, NY
Proc 7th Int Conf Strength of Metals and Alloys
ICSMA 7-V-2, 877-84, 1986 (AD-D139 304)
Key Words: 5Cr steel, 18Cr stainless, forging, atomization, tensile properties, rapid solidification
4. **Dual-Property T63 Turbine Rotor**
Ewing, B. A., Jain, S. K.
General Motors Corp., Allison Gas Turbine Operations, Indianapolis, IN
Final Report Mar 81-Apr 84
Rept No: USAVSCOM-TR-84-D-18, 166 pp., 1984 (AD-B089 072L)
Key Words: nickel alloys, aluminum alloys, steels, T63 turbine components, defects, fatigue, fabrication, cracking, fracture, ultrasonic testing, stress analysis

5. **HIP Clad Nickel Base Alloy 625 for Deep Sour Wells**
Uhl, W. K., Pendley, M. R.
Materials Performance 23 (5), 30-4, 1984 (AD-D129 874)
Key Words: Inconel 625, AISI 4130, cladding, corrosion, tensile properties, dissimilar joining

6. **Metallography of Hot Isostatically Pressed Materials**
Piske, D., Wittner, I., Seilstorfer, H.
Pract Metall 20 (7), 342-9, 1983 (AD-D128 809)
Key Words: X 225 CrVMo 13 4, 5Cr steel, Stellite 6, tool steel, porosity, microstructure

7. **Analysis an Verification of Fracture Mechanics Criteria for a Large Monobloc High Pressure Vessel**
Bishop, R. J., Khare, A. K., Mraz, G. J.
J Mater Energy Syst 4 (2), 92-8, 1982 (AD-D126 500)
Key Words: 3.5Ni steel, fracture mechanics, tensile properties, fracture toughness, impact properties, fatigue, crack growth

8. **Atom-Probe Microanalysis of a Tempered High-Speed Steel**
Audren, H.-O.
Scr Metall 15 (7), 749-52, 1981 (AD-D121 730)
Key Words: Fe-2.2C-10Co-7Mo-7W-6V-4Cr, martensite, precipitation, tempering, microprobe analysis

9. **Feasibility Study on the use of Small-Angle Neutron Scattering for Microstructural Determinations of Technological Alloys**
Herman, H.
State University of New York at Stony Brook, Department of Materials Sciences, NY
Final Report
Contract No: N00014-78-M-0074
58 pp., 1978 (AD-A061 867)
Key Words: Ti-6Al-4V, HY-130, AISI 304, Udimet 700, creep-fatigue, crack detection

10. **Establishment of Production Machinability Data**
Zlatin, N., Field, M., Tipnis, V. A., Garrison, R. C., Christopher, J. D.
Final Report, 13 Jul 73-Aug 75
Rept No: 1400-20300, 441 pp., 1975 (AD-A050 904)
Key Words: tool steel, cladding pressure vessels, defects, welding
11. Materials Research for Superconducting Machinery-IV
Reed, R. P., Clark, A. F., Van Reuth, E. C.
National Bureau of Standards, Cryogenics Division, Boulder, CO
Semi-Annual Technical Report
Contract No: ARPA Order-2569
636 pp., 1975 (AD-A019 230)
Key Words: niobium alloys, titanium alloys, AISI 310, Inconel X-750, Inconel 706, Inconel 718, Incoloy 903, AA 6061, A-286, Invar, Kromarc 58, 21-6-9 steel, tensile properties, fatigue

12. Development of a Gas Pressure Bonded Four-Pole Alternator Rotor
Lessmann, G. G., Bryant, W. A.
Westinghouse Astronuclear Lab, Pittsburgh, PA
Final Report
Rept No: WANL-M-FR-72-002. 81 pp., 1972 (AD-D101 258)
Key Words: AISI 4340, Inconel 718, welding, bonding, fabrication
Inconel 718

1. Advanced Machining Research Program (AMRP). Volume 4 Laser-Assisted Machining
 Flom, D. G.
 General Electric Corporate Research and Development, Schenectady, NY
 Rept No: AFWAL-TR-84-4059-Vol-4, 75 pp., 1984 (AD-B087 672L)
 Key Words: Inconel 718, Ti-6Al-4V, laser machining, turning, machine tools

2. The Evolution of the Forging Processes on Discs
 Coyne, J. E., Couts, W. H., Jr.
 Kluwer Boston Inc., Hingham, MA
 Proc Conf High Temperature Alloys for Gas Turbines 839-52, 1982 (AD-D134 023)
 Key Words: Waspaloy, Inconel 718, IN-100, RENE' 95, MERL 76, Udimet 700, tensile properties, creep rupture, fatigue

3. Forging and Processing of High-Temperature Alloys
 DeRidder, A. J., Koch, R.
 ASTM, Philadelphia, PA
 Proc Symp MiCon 78 547-63, 1979 (AD-D126 410)
 Key Words: RENE' 95, Waspaloy, Inconel 718, IN-100, microstructure, thermomechanical treatment
4. Original HCl Surface Treatment for Diffusion Bonding of Nickel Superalloy Specimens
Billard, D., Trottier, J. P.
Met Technol 5 (9), 309-19, 1978 (AD-D14028)
Key Words: IN-100, Waspaloy, RENE'95, Inconel 718, welding, grain size, bonding, recrystallization, temperature effect

5. Forging and Properties of Aerospace Materials
Metallurgia and Metal Forming 44 (6), 251-6, 1977 (AD-D11439)
Key Words: Ti-10Mo-6Cr-2.5Al, Ti-7Mo-4Cr-2.5Al, Ti-10Mo-8V-2.5Al IMI 679, IMI 685, Ti-6Al-2Sn-4Zr-2Mo, Ti-10V-2Fe-3Al, Inconel 718, Waspaloy, Incoloy 901, fatigue, crack growth

6. Technological Considerations in the Forging of Superalloy Rotor Parts
Wilkinson, N. A.
Met Technol 4 (7), 346-59, 1977 (AD-D110651)
Key Words: Waspaloy, Udiment 700, Inconel 718, A-286, grain size, grain boundaries, thermomechanical treatment, notch sensitivity, tensile properties, creep properties, fatigue size, Charpy impact, dislocation structure

7. Compositional and Structural Aspects of Processing Nickel-Base Alloys
Knott, A. R., Symonds, C. H.
Met Technol 3 (8), 370-9, 1976 (AD-D103973)
Key Words: Monel 400, Nimonic 75, Nimonic 80A, Nimonic 90, Nimonic 105, Nimonic 115, Nimonic PE13, Inconel 600, Inconel 718, Incoloy 800, Incoloy 825, microstructure, deformation, segregation, grain size

8. Materials Research for Superconducting Machinery-IV
Reed, R. P., Clark, A. F., Van Reuth, E. C.
National Bureau of Standards, Cryogenics Division, Boulder, CO
Semi-Annual Technical Report
Contract No: ARPA Order 2569
636 pp., 1975 (AD-A019230)
Key Words: niobium alloys, titanium alloys, AISI 310, Inconel X-750, Inconel 706, Inconel 718, Incoloy 903, AA 6061, A-286, Invar, Kromarc 58, 21-6-9 steel, tensile properties, fatigue

Lessmann, G. G., Bryant, W. A.
Westinghouse Astronuclear Lab, Pittsburgh, PA
Final Report
Rept No: WANL-M-R-72-002, 81 pp., 1972 (AD-D101258)
Key Words: AISI 4340, Inconel 718, welding, bonding, fabrication

Rene' 95

1. The Effect of Loading History on Closure Behavior in RENE' 95
Zawada, L. P., Nicholas, T.
ASTM Committee E-24 on Fracture Testing, Philadelphia, PA
Proc 18th National Symp Fracture Mechanics ASTM-STP-945
192-205, 1988 (AD-D143462)
Key Words: RENE'95, forging, cyclic loading, fatigue, crack closure
2. Fatigue and Creep-Fatigue Deformation of Several Nickel-Base Superalloys at 650 C
Miner, R., Gayda, J., Maier, R. D.
Metall Trans 13A (10), 1755-65, 1982 (AD-D125 930)
Key Words: Waspaloy, Udimet 700, RENE' 95, IN-100, MERL 76, NASA IIB-7, turbine components, microstructure, creep-fatigue, slip

3. The Evolution of the Forging Processes on Discs
Coyne, J. E., Couts, W. H., Jr.
Kluwer Boston Inc., Hingham, MA
Proc Conf High Temperature Alloys for Gas Turbines 839-52, 1982 (AD-D134 023)
Key Words: Waspaloy, Inconel 718, IN-100, RENE' 95, MERL 76, Udimet 700, tensile properties, creep rupture, fatigue

4. Aircraft Jet Engine Research Aims at Lighter, Dual-Property Disks
Weintraub, P.
American Metal Market/Metalworking News 87 (167), 10, 13, 1979 (AD-D116 267)
Key Words: RENE' 95, AF-113, AF-115, turbine components, grain structure

5. Forging and Processing of High-Temperature Alloys
DeRidder, A. J., Koch, R.
ASTM, Philadelphia, PA
Proc Symp MiCon 78 547-63, 1979 (AD-D126 410)
Key Words: RENE' 95, Waspaloy, Inconel 718, IN-100, microstructure, thermomechanical treatment

6. Original HCl Surface Treatment for Diffusion Bonding of Nickel Superalloy Specimens
Billard, D., Trottier, J. P.
Met Technol 5 (9), 309-19, 1978 (AD-D114 028)
Key Words: IN-100, Waspaloy, RENE' 95, Inconel 718, welding, grain size, bonding, recrystallization, temperature effect

7. Material for Advanced Turbine Engines-MATE
Bamberger, E. N., Mosier, J. S.
General Electric Co., Aircraft Engine Group, Evendale, OH
First Quarterly Engineering Report
Rept No : R76AEG345, 59 pp., 1976 (AD-D105 191)
Key Words: RENE' 95, Compressor discs, tensile properties, creep rupture, chemical milling, machining, microstructure, density, solution heat treatment

8. Application of Hot Isostatic Pressing to Aircraft Gas Turbines
Evans, D. J.
Plenum Press, New York, NY
Proc 6th AIRAPT Int High Pressure Conf 2, 656-63, 1977 (AD-D126 192)
Key Words: Udimet 700, RENE' 95, Ti-6Al-4V, turbine components, tensile properties, creep rupture, net shape forming

9. Materials for Advanced Turbine Engines-MATE
Bamberger, E. N., Mosier, J. S.
General Electric Co., Aircraft Engine Group, Evendale, OH
First Quarterly Engineering Report
Rept No : R76AEG345, 59 pp., 1976 (AD-D105 191)
Key Words: RENE' 95, Compressor components, tensile properties, machining, aging, heat treatment

281
Udimet 700

1. The Influence of Specimen Geometry on Near Threshold Fatigue Crack Growth
 Vecchio, R. S., Crompton, J. S., Hertzberg, R. W.
 Fatigue Fract Eng Mater Struct 10 (4), 333-42, 1987 (AD-D137 808)
 Key Words: Udimet 700, AA 2024-T3, grain size, crack growth, fatigue crack

2. Hot Isostatic Press
 Author Anon
 Foreign Technology Division, Wright-Patterson AFB, OH
 Rept No: FTD-ID(RS)-T-1406-84, 65 pp., 1985 (AD-B093 100L)
 Key Words: Ti-6Al-4V, B-1900, IN-738, RENE' 77, IN-792, RENE' 80, AA C355, AA A356, 142-T4

3. Fatigue and Creep-Fatigue Deformation of Several Nickel-Base Superalloys at 650 C
 Miner, R., Gayda, J., Maier, R. D.
 Metall Trans 13A (10), 1755-65, 1982 (AD-D125 930)
 Key Words: Waspaloy, Udimet 700, RENE' 95, IN-100, MERL 76, NASA IIIB-7, turbine components, microstructure, creep-fatigue, slip

4. The Evolution of the Forging Processes on Discs
 Coyne, J. E., Couts, W. H., Jr.
 Kluwer Boston Inc., Hingham, MA
 Proc Conf High Temperature Alloys for Gas Turbines 839-52, 1982 (AD-D134 023)
 Key Words: Waspaloy, Inconel 718, IN-100, RENE' 95, MERL 76, Udimet 700, tensile properties, creep rupture, fatigue

5. High Temperature Deformation Modes in Nickel Base Superalloys
 Dermarkar, S., Strudel, J. L.
 Proc 5th Int Conf Strength of Metals and Alloys. 705-10, 1980 (AD-D122 966)
 Key Words: Udimet 700, cylinders, microstructure, gamma prime, deformation, compressive properties, thermomechanical treatment

6. Feasibility Study on the use of Small-Angle Neutron Scattering for Microstructural Determinations of Technological Alloys
 Herman, H.
 State University of New York at Stony Brook, Department of Materials Sciences, NY
 Final Report
 Contract No: N00014-78-M-0074
 58 pp., 1978 (AD-A061 867)
 Key Words: Ti-6Al-4V, HY-130, AISI 304, Udimet 700, creep-fatigue, crack detection

7. Oxide Dispersion Strengthened Alloys
 Gessinger, G. H.
 Applied Sciences Publishers Ltd., London, UK
 Key Words: IN-738, IN-738LC, Udimet 700, Nimonic 80A, turbine components, oxide dispersion strengthening, tensile properties, corrosion, thermal fatigue, hardness, grain growth

282
8. Technological Considerations in the Forging of Superalloy Rotor Parts
Key Words: Waspaloy, Udimet 700, Inconel 718, A-286, grain size, grain boundaries, thermomechanical treatment, notch sensitivity, tensile properties, creep properties, fatigue size, Charpy impact, dislocation structure

9. Application of Hot Isostatic Pressing to Aircraft Gas Turbines
Evans, D. J., Plenum Press, New York, NY
Proc 6th AIRAPT Int High Pressure Conf 2, 656-63, 1977 (AD-D126 192)
Key Words: Udimet 700, RENÉ’ 95, Ti-6Al-4V, turbine components, tensile properties, creep rupture, net shape forming

Waspaloy

1. Fatigue and Creep-Fatigue Deformation of Several Nickel-Base Superalloys at 650 C
Miner, R., Gayda, J., Maier, R. D.
Metall Trans 13A (10), 1755-65, 1982 (AD-D125 930)
Key Words: Waspaloy, Udimet 700, RENÉ’ 95, IN-100, MERL 76, NASA IIB-7, turbine components, microstructure, creep-fatigue, slip

2. The Evolution of the Forging Processes on Discs
Coyne, J. E., Couts, W. H., Jr., Kluwer Boston Inc., Hingham, MA
Proc Conf High Temperature Alloys for Gas Turbines 839-52, 1982 (AD-D134 023)
Key Words: Waspaloy, Inconel 718, IN-100, RENÉ’ 95, MERL 76, Udimet 700, tensile properties, creep rupture, fatigue

3. Forging and Processing of High-Temperature Alloys
DeRidder, A. J., Koch, R., ASTM, Philadelphia, PA
Proc Symp MiCon 78 547-63, 1979 (AD-D126 410)
Key Words: RENÉ’ 95, Waspaloy, Inconel 718, IN-100, microstructure, thermomechanical treatment

4. Original HCl Surface Treatment for Diffusion Bonding of Nickel Superalloy Specimens
Billard, D., Trottier, J. P.
Met Technol 5 (9), 309-19, 1978 (AD-D114 028)
Key Words: IN-100, Waspaloy, RENÉ’ 95, Inconel 718, welding, grain size, bonding, recrystallization, temperature effect

5. Forging and Properties of Aerospace Materials
Metallurgia and Metal Forming 44 (6), 251-6, 1977 (AD-D110 439)
Key Words: Ti-10Mo-6Cr-2.5Al, Ti-7Mo-4Cr-2.5Al, Ti-10Mo-8V-2.5Al IMI 679, IMI 685, Ti-6Al-2Sn-4Zr-2Mo, Ti-10V-2Fe-3Al, Inconel 718, Waspaloy, Incoloy 901, fatigue, crack growth

6. Technological Considerations in the Forging of Superalloy Rotor Parts
Wilkinson, N. A.
Met Technol 4 (7), 346-59, 1977 (AD-D110 651)
Key Words: Waspaloy, Udimet 700, Inconel 718, A-286, grain size, grain boundaries, thermomechanical treatment, notch sensitivity, tensile properties, creep properties, fatigue size, Charpy impact, dislocation structure
Miscellaneous Nickel Alloys

1. Applications of Coating Technology and HIP to Advanced Materials Processing
 Nicholls, J. R., Stephenson, D. J.
 Mater High Temp 9 (2), 110-20, 1991
 Key Words: nickel, copper, phosphor bronze, Ni-13Al, MAR-M002, AA 7075, AA 8090, silver, Inconel 625, ion plating, electron beam evaporation, coatings, microstructure, creep, diffusion bonding

2. Hot Isostatic Pressing of PM and Cast Components
 Stephenson, D. J., Downing, M.
 Key Words: IN-792, IMI 829, IMI 318, IN-738, Alloy 713C, Ti-6Al-4V, nickel, tensile properties, defects, near net shape forming, fatigue, density

3. Precision Cast vs. Wrought Superalloys
 Tien, J. K., Borofka, J. C., Casey, M. E.
 J Met 38 (12), 13-7, 1986 (AD-D136449)
 Key Words: nickel alloys, turbine components, crack growth, fatigue, vacuum induction, electroslag, electron beam melting

4. Hot Isostatic Press
 Author Anon
 Foreign Technology Division, Wright-Patterson AFB, OH
 Rept No: FTD-ID(RS)T-1406-84, 65 pp., 1985 (AD-B093100L)
 Key Words: Ti-6Al-4V, B-1900, IN-738, RENE’ 77, IN-792, RENE’ 80, AA C355, AA A356, 142-T4

5. Dual-Property T63 Turbine Rotor
 Ewing, B. A., Jain, S. K.
 General Motors Corp., Allison Gas Turbine Operations, Indianapolis, IN
 Final Report Mar 81-Apr 84
 Rept No: USAAVSCOM-TR-84-D-18, 166 pp., 1984 (AD-B089072L)
 Key Words: nickel alloys, aluminum alloys, steels, T63 turbine components, defects, fatigue, fabrication, cracking, fracture, ultrasonic testing, stress analysis

6. HIP Clad Nickel Base Alloy 625 for Deep Sour Wells
 Uhl, W. K., Pendley, M. R.
 Materials Performance 23 (5), 30-4, 1984 (AD-D129874)
 Key Words: Inconel 625, AISI 4130, cladding, corrosion, tensile properties, dissimilar joining

7. Effects of Trace Elements of Forgeability of Superalloys
 Turner, F.
 Met Technol 11 (10), 446-52, 1984 (AD-D131861)
 Key Words: Nimonic 115, Nimonic 75, Nimonic 80, Nimonic 105, Nimonic PK31, plastic deformation, ductility, electron beam melting, vacuum arc melting

8. Fatigue and Creep-Fatigue Deformation of Several Nickel-Base Superalloys at 650 C
 Miner, R., Gayda, J., Maier, R. D.
 Metall Trans 13A (10), 1755-65, 1982 (AD-D125930)
 Key Words: Waspaloy, Udinet 700, RENE’ 95, IN-100, MERL 76, NASA IIB-7, turbine components, microstructure, creep-fatigue, slip
9. The Evolution of the Forging Processes on Discs
Coyne, J. E., Couts, W. H., Jr.
Kluwer Boston Inc., Hingham, MA
Proc Conf High Temperature Alloys for Gas Turbines 839-52, 1982 (AD-D134 023)
Key Words: Waspaloy, Inconel 718, IN-100, RENE' 95, MERL 76, Udimet 700, tensile properties, creep rupture, fatigue

10. P/M AF115 Dual Property Disk Process Development
Carlson, D. M.
ASM International, Metals Park, OH
Key Words: AF-115, turbine components, creep rupture, tensile properties

11. Aircraft Jet Engine Research Aims at Lighter, Dual-Property Disks
Weintraub, P.
American Metal Market/Metals News 87 (167), 10, 13, 1979 (AD-D116 267)
Key Words: RENE' 95, AF-113, AF-115, turbine components, grain structure

12. Oxide Dispersion Strengthened Alloys
Gessinger, G. H.
Applied Sciences Publishers Ltd., London, UK
Key Words: IN-738, IN-738LC, Udimet 700, Nimonic 80A, turbine components, oxide dispersion strengthening, tensile properties, corrosion, thermal fatigue, hardness, grain growth

13. Forging and Properties of Aerospace Materials
Metallurgical and Metal Forming 44 (6), 251-6, 1977 (AD-D110 439)
Key Words: Ti-10Mo-6Cr-2.5Al, Ti-7Mo-4Cr-2.5Al, Ti-10Mo-8V-2.5Al, IMI 679, IMI 685, Ti-6Al-25Sn-4Zr-2Mo, Ti-10V-2Fe-3Al, Inconel 718, Waspaloy, Incoloy 901, fatigue, crack growth

14. Compositional and Structural Aspects of Processing Nickel-Base Alloys
Knott, A. R., Symonds, C. H.
Met Technol 3 (8), 370-9, 1976 (AD-D103 973)
Key Words: Monel 400, Nimonic 75, Nimonic 80A, Nimonic 90, Nimonic 105, Nimonic 115, Nimonic PE13, Incoloy 600, Inconel 718, Incoloy 800, Incoloy 825, microstructure, deformation, segregation, grain size

15. Materials Research for Superconducting Machinery-IV
Reed, R. P., Clark, A. F., Van Reuth, E. C.
National Bureau of Standards, Cryogenics Division, Boulder, CO
Contract No: ARPA Order-2569, 636 pp., 1975 (AD-A019 230)
Key Words: niobium alloys, titanium alloys, AISI 310, Inconel X-750, Inconel 706, Inconel 718, Incoloy 903, AA 6061, A 286, Inv-ir, Kromarc 58, 21-6-9 steel, tensile properties, fatigue

Dunn, E. L., Bartos, J. J.
General Electric Co., Material and Process Technology Labs., Cincinnati, OH
Interim Engineering Progress Report Number Two. Jan-Mar 73
Contract No: F33615-72-C-1797, 20 pp., 1973 (AD-D123 650L)
Key Words: nickel alloys, cobalt addition, chromium addition, development, creep rupture strength, heat treatment
TITANIUM ALLOYS

Ti-6Al-4V

1. Hot Isostatic Pressing of PM and Cast Components
 Stephenson, D. J., Downing, M.
 Key Words: IN-792, IMI 829, IMI 318, IN-738, Alloy 713C, Ti-6Al-4V, nickel, tensile properties, defects, near net shape forming, fatigue, density

2. Hot Isostatic Press
 Author Anon
 Foreign Technology Division, Wright-Patterson AFB, OH
 Rept No: FTD:DR(S)T-1406-84, 65 pp., 1985 (AD-B093150L)
 Key Words: Ti-6Al-4V, B-1900, IN-738, RENE' 77, IN-792, RENE' 80, AA C355, AA A356, 142-T4

3. Advanced Machining Research Program (AMRP). Volume 4 Laser-Assisted Machining
 Hom, D. G.
 General Electric Corporate Research and Development, Schenectady, NY
 Final Report Jul 79-Aug 83
 Rept No: AFWAL-TR-84-4059-Vol-4, 75 pp., 1984 (AD-B087672L)
 Key Words: Inconel 718, Ti-6Al-4V, laser machining, turning, machine tools

4. Application of Diffusion Welding in the USA
 Weld J 60 (2), 22-33, 1981 (AD-D120554)
 Owczarski, W. A. Paulonis, D. F.
 Key Words: Pyromet X-15, T-111, Ti-6Al-4V, diffusion welding, bonding, dissimilar joining

 Michael, C. J.
 Pratt and Whitney Aircraft Group, Commercial Products Div, East Hartford, CT
 Contractor Report
 Rept No: NASA-CR-165586, 83 pp., 1981 (AD-D125625)
 Key Words: Ti-6Al-4V, turbofan engine, fan blades, superplastic forming, diffusion bonding, tensile properties, fatigue

6. Influence of Manufacturing Method and Surface Condition on the Fatigue Strength of Ti-6Al-4V Material
 Broichhausen, J., Telfah, M.
 Metallurgical Society of AIME, Warrendale, PA
 Proc 4th Int Conf Titanium, Titanium '80-Science and Technology 3, 1797-1806, 1980 (AD-D121214)
 Key Words: Ti-6Al-4V, fatigue, surface roughness, microhardness

7. Welding for Low-Cost Advanced Titanium Airframe Structures
 Messler, R. W., Jr., Paez, C. A.
 American Institute of Aeronautics and Astronautics, New York, NY
 Technical Paper
 Rept No: A82-23757, 16 pp., 1980 (AD-D126682)
 Key Words: Ti-6Al-4V, Ti-6Al-4Ti-2Sn, aircraft structures, welding, diffusion bonding, superplastic forming, net shape forming
8. **Advances in Manufacturing Technology for Titanium Aircraft Structures**
 Hightberger, W. T.
 Metal Prog 115 (3), 56-59, 1979 (AD-D114 858)
 Key Words: Ti-6Al-6V-2Sn, Ti-6Al-4V, Corona-5, Ti-4.5Al-5Mo-1.5Cr, aircraft structures, net shape forming, superplastic forming, diffusion bonding

9. **Metalforming's Big Push to Systems Technologies**
 Larsen, R. J., Harvey, R. E., Post, C. T., Weimer, G. A., LeCerti, B. H.
 Iron Age 222 (43), 53-63, 1979 (AD-D116 917)
 Key Words: Ti-6Al-4V, copper, aluminum, stainless steel, superplastic forming, diffusion bonding

10. **Feasibility Study on the use of Small-Angle Neutron Scattering for Microstructural Determinations of Technological Alloys**
 Heman, H.
 State University of New York at Stony Brook, Department of Materials Sciences, NY
 Final Report
 Contract No: N00014-78-M-0074
 58 pp., 1978 (AD-A061 867)
 Key Words: Ti-6Al-4V, HY-130, AISI 304, Udiment 700, creep-fatigue, crack detection

11. **Built-Up Low-Cost Advanced Titanium Structures (BLATS)**
 Grumman Aerospace Corp., Bethpage, NY
 Technical Bulletin Number Five
 Contract No: F33615-77-C-3109
 9 pp., 1978 (AD-D113 992)
 Key Words: Ti-6Al-4V, Ti-15V-3Cr-3Al-3Sn, aircraft structures, superplastic forming, diffusion bonding, bend test, nondestructive testing, cost

12. **Investigation of Rejuvenation of Fatigue Damage in Ti-6Al-4V**
 Battelle Memorial Institute, Columbus, OH
 Interim Report
 Key Words: Ti-6Al-4V, turbine components, aircraft structures, microstructure, metallography, rejuvenation, fatigue, crack growth, titanium coatings, nickel coatings, hardness, solution heat treatment

13. **Application of Hot Isostatic Pressing to Aircraft Gas Turbines**
 Evans, D. J.
 Plenum Press, New York, NY
 Proc 6th AIRAPT Int High Pressure Conf 2, 656-663, 1977 (AD-D126 192)
 Key Words: Udiment 700, RENE' 95, Ti-6Al-4V, turbine components, tensile properties, creep rupture, net shape forming

Miscellaneous Titanium Alloys

1. **Hot Isostatic Pressing of PM and Cast Components**
 Stephenson, D. J., Downing, M.
 Key Words: IN-792, IMI 829, IMI 318, IN-738, Alloy 718C, Ti-6Al-4V, nickel, tensile properties, defects, near net shape forming, fatigue, density
2. **Additional Fracture and Strength Test Results for A723 Steel and 38644 Titanium**
Underwood, J. H., Kamdar, M. H., Fujczak, R. R.
Bonet Labs, Army Armament Research Development and Engineering Center, Watervliet, NY
Final Report
Rept No: ARCCIB-TR-88018, 21 pp., 1988 (AD-A196329)
Key Words: A723, 38644, cylinders, pressure vessels, fracture toughness, fatigue, crack growth, notch fatigue, burst test, aluminum coating

3. **Microstructural Coarsening at High Temperatures in Rapidly Solidified Ti-5wt.%Al-2.9wt.%Y and Ti-5wt.%Al-7.5wt.%Th**
Mater Sci Eng 98, 173-7, 1988 (AD-D140063)
Key Words: Ti-5Al, grain structure, melt spinning, hardness

4. **An Investigation of Diffusion Bonding of Titanium to Stainless Steel**
Chen, C. C.
Metallurgical Society of AIME, Warrendale, PA
Proc 4th Int Conf Titanium, Titanium '80-Science and Technology
4, 2379-88, 1980 (AD-D121360)
Key Words: titanium, AISI 304, dissimilar joining, diffusion bonding, microhardness

5. **Diffusion Bonded Rotating Band on Titanium Base Projectile**
Greenspan, J.
Army Materials and Mechanics Research Center, Watertown, MA
Technical Report
10 pp., 1980 (AD-D124077)
Key Words: Ti-6Al-6V-2Sn, projectiles, shells, tensile properties, impact properties, firing test, diffusion bonding

6. **Welding for Low-Cost Advanced Titanium Airframe Structures**
Messer, R. W., Jr., Paez, C. A.
American Institute of Aeronautics and Astronautics, New York, NY
Technical Paper
Rept No: A82-23757, 16 pp., 1980 (AD-D126682)
Key Words: Ti-6Al-4V, Ti-6Al-6V-2Sn, aircraft structures, welding, diffusion bonding, superplastic forming, net shape forming

7. **Built-Up Low-Cost Advanced Titanium Structures (BLAST)**
Paez, C. A.
Grumman Aerospace Corp., Bethpage, NY
Final Technical Report Oct 77-Apr 79
Rept No: AFFDL-TR-79-3093, 377 pp., 1979 (AD-B0448641)
Key Words: titanium alloys, forging, cost analysis, fatigue, machinability

8. **Advances in Manufacturing Technology for Titanium Aircraft Structures**
Hilgerber, W. T.
Metal Prog 115 (4), 56-59, 1979 (AD-D114858)
Key Words: Ti-6Al-6V-2Sn, Ti-6Al-4V, Corona-5, Ti-4.5Al-5Mo-1.5Cr, aircraft structures, net shape forming, superplastic forming, diffusion bonding
9. Built-Up Low-Cost Advanced Titanium Structures (BLATS)
Pacz, C.
Grumman Aerospace Corp., Bethpage, NY
Quarterly Progress Report Number One, Oct 77-Jan 78
Contract No: F33615-77-C-3109
170 pp., 1978 (AD-D108 269L)
Key Words: titanium alloys, aluminum addition, vanadium addition,
superplastic forming, welding, design, tooling, weight change

10. Built-Up Low-Cost Advanced Titanium Structures (BLATS)
Pacz, C.
Grumman Aerospace Corp., Bethpage, NY
Quarterly Progress Report Number Four, Jul-Oct 78
Contract No: F33615-77-C-3109
125 pp., 1978 (AD-D114 241L)
Key Words: Ti-15Al-3Cr-3Al-3Sn, weight reduction, fracture, tensile
properties, damage tolerance

11. Built-Up Low-Cost Advanced Titanium Structures (BLATS)
Grumman Aerospace Corp., Bethpage, NY
Technical Bulletin Number Five
Contract No: F33615-77-C-3109
9 pp., 1978 (AD-D113 992)
Key Words: Ti-6Al-4V, Ti-15V-3Cr-3Al-3Sn, aircraft structures, superplastic
forming, diffusion bonding, bend test, nondestructive testing, cost

12. Forging and Properties of Aerospace Materials
Metallurgia and Metal Forming 44 (6), 251-6, 1977 (AD-D110 439)
Key Words: Ti-16Al-1ONb, aluminum alloys, turbine components, microstructure,
thermal properties, fracture, hardness, fatigue, tensile properties, creep rupture, notch properties

13. Research to Conduct an Exploratory Experimental and Analytical Investigation of
Alloys
Ruckle, D. L.
Pratt and Whitney Aircraft Group, East Hartford, CT
Third Quarterly Report, Aug-Nov 75
Rept No: EII-75-200-4001-2, 55 pp., 1975 (AD-D108 084L)
Key Words: Ti-16Al-10Nb, aluminum alloys, turbine components, microstructure,
thermal properties, fracture, hardness, fatigue, tensile properties, creep rupture, notch properties

14. Materials Research for Superconducting Machinery-IV
Reed, R. P., Clark, A. F., Van Reuth, E. C.
National Bureau of Standards, Cryogenics Division, Boulder, CO
Semi-Annual Technical Report
Contract No: ARPA Order-2569
636 pp., 1975 (AD-A019 230)
Key Words: niobium alloys, titanium alloys, AISI 310, Inconel X-750, Inconel
706, Inconel 718, Incoloy 903, AA 6061, A-286, Invar, Kromarc
58, 21-6-9 steel, tensile properties, fatigue
INTERMETALLIC COMPOUNDS

1. Flow Softening and Microstructure Evolution during Hot Working of Wrought Near-Gamma Titanium Aluminides
 Semiatin, S. L., Frey, N., El-Soudani, S. M., Bryant, J. D.
 Key Words: TiAl, Ti-48 at pct Al-2.5 at pct Nb, Ti-48 at pct Al-2 at pct Nb-2
 at pct Cr, isothermal forging, hot compression test

2. Recent Advances in Gamma Titanium Aluminide Alloys
 Kim, Y-W.
 Materials Research Society, Pittsburgh, PA
 Key Words: TiAl, Ti(3)Al, NiAl, Ni-48 at pct Al, Ni-48 at pct Al-2 at pct Nb,
 crystal structure, phase diagram, microstructure, grain size,
tensile properties, fracture toughness, oxidation, crack
growth, creep, thermomechanical treatment, fracture surface
REFRACTORY METALS AND ALLOYS

1. Application of Diffusion Welding in the USA
Weld J 60 (2), 22-33, 1981 (AD-D120554)
Owczarski, W. A., Paulonis, D. F.
Key Words: Pyromet X-15, T-111, Ti-6Al-4V, diffusion welding, bonding, dissimilar joining

2. Materials Research for Superconducting Machinery-IV
Reed, R. P., Clark, A. F., Van Reuth, F. C.
National Bureau of Standards, Cryogenics Division, Boulder, CO
Semi-Annual Technical Report
Contract No: ARPA Order-2569
636 pp., 1975 (AD-A019230)
Key Words: niobium alloys, titanium alloys, AISI 310, Inconel X-750, Inconel 706, Inconel 718, Incoloy 903, AA 6061, A-286, Invar, Kromarc 58, 21-6-9 steel, tensile properties, fatigue

3. Tensile Properties from Room Temperature to 1315 Degrees C of Tungsten-Lined Tantalum-Alloy (T-111) Tubing Fabricated by Hot Isostatic Pressing
Buzzard, R. J., Metroka, R. R.
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH
Technical Memorandum
Rept No: N74-16217, 18 pp., 1974 (AD-D106809)
Key Words: T-111, tubes, tungsten coating, tensile properties
MISCELLANEOUS METALS AND ALLOYS

1. **Hot Isostatic Pressing of Mechanically Alloyed Copper-Niobium Powders**
 Vance, R. R., Courtney, T. H.
 Scr Metall Mater 26 (9), 1435-40, 1992
 Key Words: Cu-15 vol. % Nb, density, hardness, mechanical alloying, microstructure

2. **Applications of Coating Technology and HIP to Advanced Materials Processing**
 Nicholls, J. R., Stephenson, D. J.
 Mater High Temp 9 (2), 110-20, 1991
 Key Words: nickel, copper, phosphor bronze, Ni-13Al, MAR M002, AA 7075, AA 8090, silver, Inconel 625, ion plating, electron beam evaporation, coatings, microstructure, creep, diffusion bonding

3. **Advanced Surface Coatings by HIPing (Hot Isostatic Processing)**
 Blackford, J. R., Tidbury, L. E.
 TMS, Warrendale, PA
 Key Words: coatings, vapor deposition, microscopy, electron microprobe analysis

4. **Advanced Processing of High Temperature P/M Copper Alloy for Aerospace Applications**
 Raman, R. V., Rele, S. V., Lasley, C. C., Krotz, P. D.
 Metal Powder Industries Federation, Princeton, NJ
 Key Words: copper alloy 1035, chromium addition, zirconium addition, microstructure, particle size distribution, vacuum plasma spraying, tensile properties

5. **BDM-KAT, Report of Research Results**
 Lancaster, J. S., Kushner, B. B.
 BDM International Inc., Arlington, VA
 Final Technical Report
 Rept No : BDM/ROS-90-0562-TR, 175 pp., 1990 (AD-A223 035)
 Key Words: artificial intelligence, control systems, models

6. **The Structures and Properties of Mg-Al-Zr and Mg-Zn-Zr Alloys Produced by Liquid Dynamic Compaction**
 Lavernia, E. J., Gomez, E., Grant, N. J.
 Mater Sci Eng 95, 225-36, 1987 (AD-D137 790)
 Key Words: Mg-8Al-0.2Zr, Mg-6Al-0.3Zr, microstructure, hot rolling, tensile properties

7. **Eddy Current Measurement of Density During Hot Isostatic Pressing**
 Wadley, H. G., Kahn, A. H., Gefen, Y., Mester, M.
 Key Words: copper, density sensors, metallography, yield properties
8. **Advanced High-Power Generator Research Program**
Johnson, T. E.
Airesearch Mfg. Co. of California, Torrance, CA
Final Report
Rept No: 85-22686, 134 pp., 1986 (AD-A172 885)
Key Words: samarium alloys, cobalt addition, heat treatment, spinning, nonsuperconducting generators

9. **Preventing Fracture by Inspection and Analysis**
Selz, A., Peterson, D.B.
ASTM Committee E-24 on Fracture Testing, Philadelphia, PA
Proc Symp Case Histories Involving Fatigue and Fracture Mechanics, ASTM STP 918.
211-25, 1986 (AD-D329 533)
Key Words: pressure components, fracture prevention

10. **Ultrasonic Evaluation of the XM785 Copper/Niobium/Titanium Diffusion Bond**
Michael, M. D., Cappetta, J.
Army Armament Research and Development Center, Product Assurance Directorate, Dover, NJ
Interim Technical Report Jun-Dec 83
Rept No: ARPAD-TR-84005, 41 pp., 1984 (AD-B083 901L)
Key Words: XM-785-Nb-Ti, diffusion bonding, projectiles, processing ultrasonic testing

11. **High-Temperature Radial Turbine Heat Transfer Testing**
Ahles, A. F.
General Motors Corp., Allison Gas Turbine Operations, Indianapolis, IN
Final Report Oct 81-Mar 83
Rept No: USAVADRDM-TR-83-D-11, 62 pp., 1983 (AD-B077 456L)
Key Words: turbine components, thermal expansion

12. **Metallography of Hot Isostatically Pressed Materials**
Piske, D., Wittner, I., Seilstorfer, H.
Pract Metall 20 (7), 342-9, 1983 (AD-D128 809)
Key Words: X 225 CrVMo 13 4, 5Cr steel, Stellite 6, tool steel, porosity, microstructure

13. **Engineering Design, Development, Fabrication and Testing Services Related to 155-mm, XM785 Nuclear Projectile**
Steiner, E. G., Kaisand, D. D.
Chamberlain Mfg. Corp., Research and Development Division, Waterloo, IA
Final Technical Report Sep 78-Sep 79
Rept No: C8182-PR-014, 102 pp., 1980 (AD-B043 784L)
Key Words: XM-785 projectile, manufacturing

14. **Metalforming’s Big Push to Systems Technologies**
Larsen, R. J., Harvey, R. E., Post, C. T., Weimer, G. A., LeCerf, B. H.
Iron Age 222 (43), 53-63, 1979 (AD-D116 917)
Key Words: Ti-6Al-4V, copper, aluminum, stainless steel, superplastic forming, diffusion bonding

15. **Reliability of Hot Isostatic Systems**
Bowles, A. G.
Manufacturing Technology Division, AFML, Wright-Patterson AFB, OH
Proc Net Shape Metalworking Program Review 281-7, 1976 (AD-D119 179L)
Key Words: reliability, design, pressure vessels

296
16. Some Systems Considerations of Hot Isostatic Processing
 Conaway, R. M.
 Manufacturing Technology Division, AFML, Wright-Patterson AFB, OH
 Proc Net Shape Metalworking Program Review 288-98, 1976 (AD-D119 1801.)
 Key Words: densification, bonding, consolidation

17. Hip Production Experience
 Younger, F. K.
 Manufacturing Technology Division, AFML, Wright-Patterson AFB, OH
 Proc Net Shape Metalworking Program Review 299-308, 1976 (AD-D119 1811.)
 Key Words: design, equipment, pressure vessels
MATERIALS LIST
MATERIALS LIST

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>ALLOY</th>
<th>PAGE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10Cr steel</td>
<td>Iron</td>
<td>47</td>
</tr>
<tr>
<td>12Cr steel</td>
<td>Iron</td>
<td>47, 192</td>
</tr>
<tr>
<td>12Cr-1Mo steel</td>
<td>Iron</td>
<td>46</td>
</tr>
<tr>
<td>1353</td>
<td>Beryllium</td>
<td>28</td>
</tr>
<tr>
<td>142</td>
<td>Aluminum</td>
<td>16, 180, 181, 273</td>
</tr>
<tr>
<td>14Cr stainless</td>
<td>Iron</td>
<td>47, 48</td>
</tr>
<tr>
<td>15-5PH</td>
<td>Iron</td>
<td>191</td>
</tr>
<tr>
<td>15Cr stainless</td>
<td>Iron</td>
<td>46, 47</td>
</tr>
<tr>
<td>17-4PH</td>
<td>Iron</td>
<td>46, 189, 193</td>
</tr>
<tr>
<td>1707</td>
<td>Beryllium</td>
<td>28</td>
</tr>
<tr>
<td>18/8 stainless</td>
<td>Iron</td>
<td>48, 193</td>
</tr>
<tr>
<td>18Cr stainless</td>
<td>Iron</td>
<td>275</td>
</tr>
<tr>
<td>18Cr-10Ni</td>
<td>Iron</td>
<td>193</td>
</tr>
<tr>
<td>18Ni steel</td>
<td>Iron</td>
<td>55</td>
</tr>
<tr>
<td>1Mn steel</td>
<td>Iron</td>
<td>50, 52</td>
</tr>
<tr>
<td>1Ni steel</td>
<td>Iron</td>
<td>52</td>
</tr>
<tr>
<td>2.25Cr-1Mo steel</td>
<td>Iron</td>
<td>48</td>
</tr>
<tr>
<td>20Cr stainless</td>
<td>Iron</td>
<td>47</td>
</tr>
<tr>
<td>20Cr-18Ni</td>
<td>Iron</td>
<td>46, 191</td>
</tr>
<tr>
<td>20Cr-25Ni</td>
<td>Iron</td>
<td>46, 191</td>
</tr>
<tr>
<td>21-6-9 steel</td>
<td>Iron</td>
<td>51, 276</td>
</tr>
<tr>
<td>22Cr stainless</td>
<td>Iron</td>
<td>191</td>
</tr>
<tr>
<td>25Cr stainless</td>
<td>Iron</td>
<td>47</td>
</tr>
<tr>
<td>26Cr stainless</td>
<td>Iron</td>
<td>46, 191</td>
</tr>
<tr>
<td>3.5Ni steel</td>
<td>Iron</td>
<td>52, 277</td>
</tr>
<tr>
<td>300M</td>
<td>Iron</td>
<td>49</td>
</tr>
<tr>
<td>38644</td>
<td>Titanium</td>
<td>289</td>
</tr>
<tr>
<td>3Cr steel</td>
<td>Iron</td>
<td>52</td>
</tr>
<tr>
<td>3Ni steel</td>
<td>Iron</td>
<td>49</td>
</tr>
<tr>
<td>4Cr steel</td>
<td>Iron</td>
<td>52, 53</td>
</tr>
<tr>
<td>5Cr steel</td>
<td>Iron</td>
<td>276, 277</td>
</tr>
<tr>
<td>7Ni steel</td>
<td>Iron</td>
<td>53</td>
</tr>
<tr>
<td>8084</td>
<td>Beryllium</td>
<td>28</td>
</tr>
<tr>
<td>9713</td>
<td>Beryllium</td>
<td>183</td>
</tr>
<tr>
<td>9715</td>
<td>Beryllium</td>
<td>28</td>
</tr>
<tr>
<td>9776</td>
<td>Beryllium</td>
<td>28</td>
</tr>
<tr>
<td>9Ni steel</td>
<td>Iron</td>
<td>53</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>ALLOY</td>
<td>PAGE(S)</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>9Ni-4Co steel</td>
<td>Iron</td>
<td>54</td>
</tr>
<tr>
<td>A-286</td>
<td>Iron</td>
<td>37, 191, 192, 276</td>
</tr>
<tr>
<td>A723</td>
<td>Iron</td>
<td>276</td>
</tr>
<tr>
<td>AA 1100</td>
<td>Aluminum</td>
<td>16, 17</td>
</tr>
<tr>
<td>AA 2014</td>
<td>Aluminum</td>
<td>19</td>
</tr>
<tr>
<td>AA 2024</td>
<td>Aluminum</td>
<td>11, 273</td>
</tr>
<tr>
<td>AA 2124</td>
<td>Aluminum</td>
<td>18, 19</td>
</tr>
<tr>
<td>AA 2218</td>
<td>Aluminum</td>
<td>16</td>
</tr>
<tr>
<td>AA 2219</td>
<td>Aluminum</td>
<td>16, 17</td>
</tr>
<tr>
<td>AA 2618</td>
<td>Aluminum</td>
<td>16</td>
</tr>
<tr>
<td>AA 3003</td>
<td>Aluminum</td>
<td>19</td>
</tr>
<tr>
<td>AA 5083</td>
<td>Aluminum</td>
<td>19</td>
</tr>
<tr>
<td>AA 6061</td>
<td>Aluminum</td>
<td>181</td>
</tr>
<tr>
<td>AA 7010</td>
<td>Aluminum</td>
<td>19</td>
</tr>
<tr>
<td>AA 7050</td>
<td>Aluminum</td>
<td>16, 19</td>
</tr>
<tr>
<td>AA 7064</td>
<td>Aluminum</td>
<td>16</td>
</tr>
<tr>
<td>AA 7075</td>
<td>Aluminum</td>
<td>11-14, 273</td>
</tr>
<tr>
<td>AA 7090</td>
<td>Aluminum</td>
<td>14</td>
</tr>
<tr>
<td>AA 7091</td>
<td>Aluminum</td>
<td>14, 15</td>
</tr>
<tr>
<td>AA 7475</td>
<td>Aluminum</td>
<td>18, 19, 179</td>
</tr>
<tr>
<td>AA 8090</td>
<td>Aluminum</td>
<td>15, 273</td>
</tr>
<tr>
<td>AA A201</td>
<td>Aluminum</td>
<td>177</td>
</tr>
<tr>
<td>AA A206</td>
<td>Aluminum</td>
<td>180</td>
</tr>
<tr>
<td>AA A356</td>
<td>Aluminum</td>
<td>16, 19, 177, 178, 273</td>
</tr>
<tr>
<td>AA A357</td>
<td>Aluminum</td>
<td>19, 178, 179</td>
</tr>
<tr>
<td>AA A360</td>
<td>Aluminum</td>
<td>181</td>
</tr>
<tr>
<td>AA C355</td>
<td>Aluminum</td>
<td>16, 180, 181, 273</td>
</tr>
<tr>
<td>AA X7090</td>
<td>Aluminum</td>
<td>14</td>
</tr>
<tr>
<td>AA X7091</td>
<td>Aluminum</td>
<td>15</td>
</tr>
<tr>
<td>AF 2-IDA</td>
<td>Nickel</td>
<td>59, 60, 244, 245</td>
</tr>
<tr>
<td>AF-113</td>
<td>Nickel</td>
<td>285</td>
</tr>
<tr>
<td>AF-115</td>
<td>Nickel</td>
<td>57-59, 244, 285</td>
</tr>
<tr>
<td>AF-1410 steel</td>
<td>Iron</td>
<td>51</td>
</tr>
<tr>
<td>AF-95</td>
<td>Nickel</td>
<td>127, 242</td>
</tr>
<tr>
<td>AISI 1020</td>
<td>Iron</td>
<td>54</td>
</tr>
<tr>
<td>AISI 1040</td>
<td>Iron</td>
<td>52</td>
</tr>
<tr>
<td>AISI 1045</td>
<td>Iron</td>
<td>53, 54</td>
</tr>
<tr>
<td>AISI 1050</td>
<td>Iron</td>
<td>52</td>
</tr>
<tr>
<td>AISI 304</td>
<td>Iron</td>
<td>46-48, 192, 193, 275</td>
</tr>
<tr>
<td>AISI 308</td>
<td>Iron</td>
<td>192</td>
</tr>
<tr>
<td>AISI 310</td>
<td>Iron</td>
<td>276</td>
</tr>
<tr>
<td>AISI 316</td>
<td>Iron</td>
<td>37-39, 193</td>
</tr>
<tr>
<td>AISI 321</td>
<td>Iron</td>
<td>46, 47</td>
</tr>
<tr>
<td>AISI 329</td>
<td>Iron</td>
<td>47, 192, 194</td>
</tr>
<tr>
<td>AISI 410</td>
<td>Iron</td>
<td>46, 47</td>
</tr>
<tr>
<td>AISI 4130</td>
<td>Iron</td>
<td>48, 277</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>ALLOY</td>
<td>PAGE(S)</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>AISI 4140</td>
<td>Iron</td>
<td>54, 194</td>
</tr>
<tr>
<td>AISI 4330</td>
<td>Iron</td>
<td>192, 194</td>
</tr>
<tr>
<td>AISI 4340</td>
<td>Iron</td>
<td>39, 189, 190, 278</td>
</tr>
<tr>
<td>AISI 440</td>
<td>Iron</td>
<td>48</td>
</tr>
<tr>
<td>AISI 4600</td>
<td>Iron</td>
<td>52, 193</td>
</tr>
<tr>
<td>AISI 4650</td>
<td>Iron</td>
<td>51</td>
</tr>
<tr>
<td>AISI 52100</td>
<td>Iron</td>
<td>49</td>
</tr>
<tr>
<td>APK-1</td>
<td>Nickel</td>
<td>123</td>
</tr>
<tr>
<td>ASP 23</td>
<td>Iron</td>
<td>53</td>
</tr>
<tr>
<td>ASP 30</td>
<td>Iron</td>
<td>53</td>
</tr>
<tr>
<td>ASP 60</td>
<td>Iron</td>
<td>53</td>
</tr>
<tr>
<td>Al(3)La</td>
<td>Intermetallics</td>
<td>260</td>
</tr>
<tr>
<td>Al(3)Sc</td>
<td>Intermetallics</td>
<td>264</td>
</tr>
<tr>
<td>Al(3)Ta</td>
<td>Intermetallics</td>
<td>164, 165</td>
</tr>
<tr>
<td>Al(3)Ti</td>
<td>Intermetallics</td>
<td>164, 165, 264</td>
</tr>
<tr>
<td>Al-(2-3)Li</td>
<td>Aluminum</td>
<td>181</td>
</tr>
<tr>
<td>Al-105i</td>
<td>Aluminum</td>
<td>180</td>
</tr>
<tr>
<td>Al-2.52Li-1.6Cu-1.2Mg-0.2Zr</td>
<td>Aluminum</td>
<td>15</td>
</tr>
<tr>
<td>Al-25 at pct Ti-7.5 at pct Fe</td>
<td>Intermetallics</td>
<td>264</td>
</tr>
<tr>
<td>Al-2Mn</td>
<td>Aluminum</td>
<td>18</td>
</tr>
<tr>
<td>Al-4Cu</td>
<td>Aluminum</td>
<td>18, 180</td>
</tr>
<tr>
<td>Al-4Ti</td>
<td>Aluminum</td>
<td>10</td>
</tr>
<tr>
<td>Al-7Si</td>
<td>Aluminum</td>
<td>180</td>
</tr>
<tr>
<td>Al-8Fe</td>
<td>Aluminum</td>
<td>17, 19</td>
</tr>
<tr>
<td>Al-8Fe-2Mo</td>
<td>Aluminum</td>
<td>18</td>
</tr>
<tr>
<td>Al-8N-25Ti</td>
<td>Aluminum</td>
<td>179</td>
</tr>
<tr>
<td>Alloy 454</td>
<td>Nickel</td>
<td>241</td>
</tr>
<tr>
<td>Alloy 713</td>
<td>Nickel</td>
<td>60, 61, 197, 198, 284</td>
</tr>
<tr>
<td>B-1900</td>
<td>Nickel</td>
<td>122, 124, 198, 199, 284</td>
</tr>
<tr>
<td>B1914</td>
<td>Nickel</td>
<td>245</td>
</tr>
<tr>
<td>B1925</td>
<td>Nickel</td>
<td>245</td>
</tr>
<tr>
<td>B1964</td>
<td>Nickel</td>
<td>245</td>
</tr>
<tr>
<td>B1981</td>
<td>Nickel</td>
<td>245</td>
</tr>
<tr>
<td>BSP10</td>
<td>Beryllium</td>
<td>28</td>
</tr>
<tr>
<td>BSP9</td>
<td>Beryllium</td>
<td>28</td>
</tr>
<tr>
<td>Beryllium</td>
<td>Beryllium</td>
<td>21-26, 183</td>
</tr>
<tr>
<td>Beta III</td>
<td>Titanium</td>
<td>260</td>
</tr>
<tr>
<td>C-103</td>
<td>Niobium</td>
<td>170</td>
</tr>
<tr>
<td>C1023</td>
<td>Nickel</td>
<td>242</td>
</tr>
<tr>
<td>C263</td>
<td>Nickel</td>
<td>245</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>ALLOY</td>
<td>PAGE(S)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>CAPIVAC IV</td>
<td>Cobalt</td>
<td>187</td>
</tr>
<tr>
<td>CM steels</td>
<td>Iron</td>
<td>54</td>
</tr>
<tr>
<td>CMSX2</td>
<td>Nickel</td>
<td>241, 244</td>
</tr>
<tr>
<td>CPM Rex76 CRB-7</td>
<td>Iron</td>
<td>59</td>
</tr>
<tr>
<td>CT-91-TTE69</td>
<td>Aluminum</td>
<td>18</td>
</tr>
<tr>
<td>Co(79.5)Nb(15)Zr(5.5)Co-20Cr</td>
<td>Intermetallics</td>
<td>34</td>
</tr>
<tr>
<td>Copper</td>
<td>Copper</td>
<td>173, 269, 295, 296</td>
</tr>
<tr>
<td>Copper alloy 1035</td>
<td>Copper</td>
<td>295</td>
</tr>
<tr>
<td>Copper alloy 903</td>
<td>Copper</td>
<td>269</td>
</tr>
<tr>
<td>Corona-5</td>
<td>Titanium</td>
<td>130, 131, 289</td>
</tr>
<tr>
<td>Cr-ThO2</td>
<td>Chromium</td>
<td>174</td>
</tr>
<tr>
<td>Cu-15 vol. % Nb</td>
<td>Copper</td>
<td>295</td>
</tr>
<tr>
<td>Custom 450</td>
<td>Iron</td>
<td>191</td>
</tr>
<tr>
<td>D-979</td>
<td>Nickel</td>
<td>127</td>
</tr>
<tr>
<td>Distaloy</td>
<td>Iron</td>
<td>47, 52</td>
</tr>
<tr>
<td>EF1</td>
<td>Beryllium</td>
<td>183</td>
</tr>
<tr>
<td>EN 16</td>
<td>Iron</td>
<td>52</td>
</tr>
<tr>
<td>EN40B</td>
<td>Iron</td>
<td>193</td>
</tr>
<tr>
<td>EP 741</td>
<td>Nickel</td>
<td>124</td>
</tr>
<tr>
<td>F-75</td>
<td>Cobalt</td>
<td>35, 187</td>
</tr>
<tr>
<td>F132-T6</td>
<td>Aluminum</td>
<td>180</td>
</tr>
<tr>
<td>FSX-430</td>
<td>Cobalt</td>
<td>187</td>
</tr>
<tr>
<td>Fe(3)Al</td>
<td>Intermetallics</td>
<td>165</td>
</tr>
<tr>
<td>Fe-10Al</td>
<td>Iron</td>
<td>55</td>
</tr>
<tr>
<td>Fe-2.2C-10Co-7Mo-7W-6V-4Cr</td>
<td>Iron</td>
<td>277</td>
</tr>
<tr>
<td>Fe-30Ni</td>
<td>Iron</td>
<td>55</td>
</tr>
<tr>
<td>Fe-3Al-5Si-1.5Ti</td>
<td>Iron</td>
<td>55</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>ALLOY</td>
<td>PAGE(S)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Fe-3C-19Cr-1.5Ni-2Mo</td>
<td>Iron</td>
<td>192</td>
</tr>
<tr>
<td>FeAl</td>
<td>Intermetallics</td>
<td>167</td>
</tr>
<tr>
<td>GB-2</td>
<td>Beryllium</td>
<td>29</td>
</tr>
<tr>
<td>GTD-111</td>
<td>Nickel</td>
<td>124, 243, 244</td>
</tr>
<tr>
<td>H-13 tool steel</td>
<td>Iron</td>
<td>49</td>
</tr>
<tr>
<td>H41</td>
<td>Iron</td>
<td>54</td>
</tr>
<tr>
<td>HA8077</td>
<td>Nickel</td>
<td>244</td>
</tr>
<tr>
<td>HIP 50</td>
<td>Beryllium</td>
<td>27</td>
</tr>
<tr>
<td>HP 9-4-20 steel</td>
<td>Iron</td>
<td>52</td>
</tr>
<tr>
<td>HS-31</td>
<td>Cobalt</td>
<td>35, 137</td>
</tr>
<tr>
<td>HSS</td>
<td>Iron</td>
<td>53</td>
</tr>
<tr>
<td>HY-130</td>
<td>Iron</td>
<td>192, 194, 277</td>
</tr>
<tr>
<td>Hafnium</td>
<td>Hafnium</td>
<td>173, 269</td>
</tr>
<tr>
<td>Hastelloy X</td>
<td>Nickel</td>
<td>61, 62, 199, 200</td>
</tr>
<tr>
<td>Haynes 188</td>
<td>Cobalt</td>
<td>186, 187</td>
</tr>
<tr>
<td>Haynes 21</td>
<td>Cobalt</td>
<td>35</td>
</tr>
<tr>
<td>Haynes 556</td>
<td>Iron</td>
<td>193</td>
</tr>
<tr>
<td>Haynes 8077</td>
<td>Nickel</td>
<td>62, 63, 245</td>
</tr>
<tr>
<td>IMI 318</td>
<td>Titanium</td>
<td>288</td>
</tr>
<tr>
<td>IMI 550</td>
<td>Titanium</td>
<td>259</td>
</tr>
<tr>
<td>IMI 679</td>
<td>Titanium</td>
<td>260</td>
</tr>
<tr>
<td>IMI 685</td>
<td>Titanium</td>
<td>155, 260</td>
</tr>
<tr>
<td>IMI 829</td>
<td>Titanium</td>
<td>154, 288</td>
</tr>
<tr>
<td>IN-100</td>
<td>Nickel</td>
<td>63-71, 201-204, 279</td>
</tr>
<tr>
<td>IN-597</td>
<td>Nickel</td>
<td>124, 241, 245</td>
</tr>
<tr>
<td>IN-718</td>
<td>Nickel</td>
<td>242</td>
</tr>
<tr>
<td>IN-738</td>
<td>Nickel</td>
<td>71-73, 205-210, 284, 285</td>
</tr>
<tr>
<td>IN-782</td>
<td>Nickel</td>
<td>243</td>
</tr>
<tr>
<td>IN-792</td>
<td>Nickel</td>
<td>73, 74, 210-212, 284</td>
</tr>
<tr>
<td>IN-853</td>
<td>Nickel</td>
<td>127</td>
</tr>
<tr>
<td>IN-935</td>
<td>Nickel</td>
<td>241</td>
</tr>
<tr>
<td>IN-939</td>
<td>Nickel</td>
<td>124, 212, 213</td>
</tr>
<tr>
<td>IN9051</td>
<td>Aluminum</td>
<td>17, 19</td>
</tr>
<tr>
<td>IN9052</td>
<td>Aluminum</td>
<td>17</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>ALLOY</td>
<td>PAGE(S)</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>Incoloy 800</td>
<td>Iron</td>
<td>276</td>
</tr>
<tr>
<td>Incoloy 800H</td>
<td>Iron</td>
<td>191</td>
</tr>
<tr>
<td>Incoloy 825</td>
<td>Nickel</td>
<td>285</td>
</tr>
<tr>
<td>Incoloy 901</td>
<td>Nickel</td>
<td>75, 213, 214, 285</td>
</tr>
<tr>
<td>Incoloy 903</td>
<td>Iron</td>
<td>276, 278</td>
</tr>
<tr>
<td>Inconel 600</td>
<td>Nickel</td>
<td>123, 285</td>
</tr>
<tr>
<td>Inconel 601</td>
<td>Nickel</td>
<td>244</td>
</tr>
<tr>
<td>Inconel 617</td>
<td>Nickel</td>
<td>241, 244</td>
</tr>
<tr>
<td>Inconel 625</td>
<td>Nickel</td>
<td>76, 214, 215, 284</td>
</tr>
<tr>
<td>Inconel 700</td>
<td>Nickel</td>
<td>242, 243</td>
</tr>
<tr>
<td>Inconel 706</td>
<td>Nickel</td>
<td>285</td>
</tr>
<tr>
<td>Inconel 718</td>
<td>Nickel</td>
<td>76-79, 215-218, 279, 280</td>
</tr>
<tr>
<td>Inconel X-750</td>
<td>Nickel</td>
<td>123, 124, 126, 218, 219, 285</td>
</tr>
<tr>
<td>Invar</td>
<td>Iron</td>
<td>278</td>
</tr>
<tr>
<td>Iron</td>
<td>Iron</td>
<td>195</td>
</tr>
<tr>
<td>JBK-75</td>
<td>Iron</td>
<td>55</td>
</tr>
<tr>
<td>JIS-SKH 10</td>
<td>Iron</td>
<td>49</td>
</tr>
<tr>
<td>JIS-SKH 51</td>
<td>Iron</td>
<td>49</td>
</tr>
<tr>
<td>Kanthal A-1</td>
<td>Iron</td>
<td>192, 267</td>
</tr>
<tr>
<td>Kromarc 58</td>
<td>Iron</td>
<td>276</td>
</tr>
<tr>
<td>Lockalloy</td>
<td>Beryllium</td>
<td>28, 29</td>
</tr>
<tr>
<td>M-1</td>
<td>Iron</td>
<td>51, 53</td>
</tr>
<tr>
<td>M-10</td>
<td>Iron</td>
<td>54</td>
</tr>
<tr>
<td>M-2</td>
<td>Iron</td>
<td>39, 40, 194, 195</td>
</tr>
<tr>
<td>M-21</td>
<td>Nickel</td>
<td>245</td>
</tr>
<tr>
<td>M-3</td>
<td>Iron</td>
<td>52-54</td>
</tr>
<tr>
<td>M-35</td>
<td>Iron</td>
<td>52</td>
</tr>
<tr>
<td>M-35S</td>
<td>Iron</td>
<td>53</td>
</tr>
<tr>
<td>M-36</td>
<td>Iron</td>
<td>52</td>
</tr>
<tr>
<td>M-4</td>
<td>Iron</td>
<td>48, 53</td>
</tr>
<tr>
<td>M-42</td>
<td>Iron</td>
<td>54</td>
</tr>
<tr>
<td>M-50</td>
<td>Iron</td>
<td>48, 51</td>
</tr>
<tr>
<td>M-7</td>
<td>Iron</td>
<td>54</td>
</tr>
<tr>
<td>M3608F</td>
<td>Nickel</td>
<td>245</td>
</tr>
<tr>
<td>MA6000</td>
<td>Nickel</td>
<td>79, 80, 240, 245</td>
</tr>
<tr>
<td>MA67</td>
<td>Aluminum</td>
<td>18, 19</td>
</tr>
<tr>
<td>MA753</td>
<td>Nickel</td>
<td>122</td>
</tr>
<tr>
<td>MA754</td>
<td>Nickel</td>
<td>123, 125, 126</td>
</tr>
<tr>
<td>MA757E</td>
<td>Nickel</td>
<td>245</td>
</tr>
<tr>
<td>MA87</td>
<td>Aluminum</td>
<td>18, 19</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>ALLOY</td>
<td>PAGE(S)</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>MA956</td>
<td>Iron</td>
<td>40-42, 190</td>
</tr>
<tr>
<td>MAR-M002</td>
<td>Nickel</td>
<td>190, 219, 220, 284</td>
</tr>
<tr>
<td>MAR-M004</td>
<td>Nickel</td>
<td>244</td>
</tr>
<tr>
<td>MAR-M200</td>
<td>Nickel</td>
<td>80, 81, 220-222</td>
</tr>
<tr>
<td>MAR-M246</td>
<td>Nickel</td>
<td>126, 127, 222</td>
</tr>
<tr>
<td>MAR-M247</td>
<td>Nickel</td>
<td>122-124, 222, 223</td>
</tr>
<tr>
<td>MAR-M250</td>
<td>Iron</td>
<td>42</td>
</tr>
<tr>
<td>MAR-M432</td>
<td>Nickel</td>
<td>122, 124, 125, 127</td>
</tr>
<tr>
<td>MAR-M509</td>
<td>Cobalt</td>
<td>31, 32, 185</td>
</tr>
<tr>
<td>MC-102</td>
<td>Nickel</td>
<td>245</td>
</tr>
<tr>
<td>MERL 72</td>
<td>Nickel</td>
<td>240</td>
</tr>
<tr>
<td>MERL 76</td>
<td>Nickel</td>
<td>82-87, 223, 224, 284, 285</td>
</tr>
<tr>
<td>MPDC</td>
<td>Beryllium</td>
<td>28, 29</td>
</tr>
<tr>
<td>MRC2001</td>
<td>Iron</td>
<td>46</td>
</tr>
<tr>
<td>Maraging 300</td>
<td>Iron</td>
<td>42-44, 195</td>
</tr>
<tr>
<td>Maraging(230)</td>
<td>Iron</td>
<td>52</td>
</tr>
<tr>
<td>Maraging(250)</td>
<td>Iron</td>
<td>42</td>
</tr>
<tr>
<td>Mg-12Li</td>
<td>Magnesium</td>
<td>173</td>
</tr>
<tr>
<td>Mg-12Li-5Si</td>
<td>Magnesium</td>
<td>173</td>
</tr>
<tr>
<td>Mg-1Si</td>
<td>Magnesium</td>
<td>173</td>
</tr>
<tr>
<td>Mg-20Gd</td>
<td>Magnesium</td>
<td>173</td>
</tr>
<tr>
<td>Mg-2Si</td>
<td>Magnesium</td>
<td>173</td>
</tr>
<tr>
<td>Mg-3Si</td>
<td>Magnesium</td>
<td>173</td>
</tr>
<tr>
<td>Mg-4Si</td>
<td>Magnesium</td>
<td>173</td>
</tr>
<tr>
<td>Mg-5Li</td>
<td>Magnesium</td>
<td>173</td>
</tr>
<tr>
<td>Mg-5Li-5Si</td>
<td>Magnesium</td>
<td>173</td>
</tr>
<tr>
<td>Mg-5Si</td>
<td>Magnesium</td>
<td>173</td>
</tr>
<tr>
<td>Mg-6Al-0.3Zr</td>
<td>Magnesium</td>
<td>295</td>
</tr>
<tr>
<td>Mg-8Al-0.2Zr</td>
<td>Magnesium</td>
<td>295</td>
</tr>
<tr>
<td>Mg-8Si</td>
<td>Magnesium</td>
<td>173</td>
</tr>
<tr>
<td>Mg-8Li-5Si</td>
<td>Magnesium</td>
<td>173</td>
</tr>
<tr>
<td>Microcast X</td>
<td>Nickel</td>
<td>242</td>
</tr>
<tr>
<td>Mo-50Re</td>
<td>Molybdenum</td>
<td>267</td>
</tr>
<tr>
<td>MoSi(2)</td>
<td>Intermetallics</td>
<td>166</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>Molybdenum</td>
<td>169, 170, 267</td>
</tr>
<tr>
<td>Monel 400</td>
<td>Nickel</td>
<td>123, 285</td>
</tr>
<tr>
<td>NASA IIIB-11</td>
<td>Nickel</td>
<td>87, 88, 245</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>ALLOY</td>
<td>PAGE(S)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NASA IIB-7</td>
<td>Nickel</td>
<td>125, 243, 245, 284</td>
</tr>
<tr>
<td>Nb(3)Al</td>
<td>Intermetallics</td>
<td>166</td>
</tr>
<tr>
<td>Nb(3)Sn</td>
<td>Intermetallics</td>
<td>167</td>
</tr>
<tr>
<td>Nb-10Hf</td>
<td>Niobium</td>
<td>170</td>
</tr>
<tr>
<td>Nb-12Zr</td>
<td>Niobium</td>
<td>267</td>
</tr>
<tr>
<td>Nb-21Ti-10Al-15Si</td>
<td>Intermetallics</td>
<td>264</td>
</tr>
<tr>
<td>Nb-2Ti-25Si</td>
<td>Intermetallics</td>
<td>264</td>
</tr>
<tr>
<td>Nb-25Ti-12.5Al-25Si</td>
<td>Intermetallics</td>
<td>264</td>
</tr>
<tr>
<td>Nb-25Ti-12.5Ta-12.5Al-25Si</td>
<td>Intermetallics</td>
<td>264</td>
</tr>
<tr>
<td>NbAl(3)</td>
<td>Intermetallics</td>
<td>165, 166, 264</td>
</tr>
<tr>
<td>Ni(3)Al</td>
<td>Intermetallics</td>
<td>159, 160</td>
</tr>
<tr>
<td>Ni-12Cr-11Al-5Co-3Ta-1W</td>
<td>Nickel</td>
<td>244</td>
</tr>
<tr>
<td>Ni-13Al</td>
<td>Nickel</td>
<td>284</td>
</tr>
<tr>
<td>Ni-15Cr-17Co-5Mo-4Al-3Ti</td>
<td>Nickel</td>
<td>123</td>
</tr>
<tr>
<td>Ni-19 at pct Al-8.5 at pct Cr</td>
<td>Intermetallics</td>
<td>166</td>
</tr>
<tr>
<td>Ni-30Fe</td>
<td>Nickel</td>
<td>121</td>
</tr>
<tr>
<td>Ni-48 at pct Al</td>
<td>Intermetallics</td>
<td>291</td>
</tr>
<tr>
<td>Ni-48 at pct Al-2 at pct Nb</td>
<td>Intermetallics</td>
<td>291</td>
</tr>
<tr>
<td>Ni-7Al-14Mo</td>
<td>Nickel</td>
<td>241</td>
</tr>
<tr>
<td>Ni-8Co-8Cr-12W-5Al-4Ta</td>
<td>Nickel</td>
<td>121</td>
</tr>
<tr>
<td>Ni-9Cr-15Co-5Ti</td>
<td>Nickel</td>
<td>241</td>
</tr>
<tr>
<td>NiAl</td>
<td>Intermetallics</td>
<td>160, 161, 264, 291</td>
</tr>
<tr>
<td>NiFe</td>
<td>Intermetallics</td>
<td>167, 264</td>
</tr>
<tr>
<td>Nickel</td>
<td>Nickel</td>
<td>240, 284, 295</td>
</tr>
<tr>
<td>Nimocast 242</td>
<td>Nickel</td>
<td>126</td>
</tr>
<tr>
<td>Nimocast 263</td>
<td>Nickel</td>
<td>126</td>
</tr>
<tr>
<td>Nimocast 80</td>
<td>Nickel</td>
<td>126</td>
</tr>
<tr>
<td>Nimocast PD21</td>
<td>Nickel</td>
<td>126, 242</td>
</tr>
<tr>
<td>Nimocast PE10</td>
<td>Nickel</td>
<td>126</td>
</tr>
<tr>
<td>Nimocast PK24</td>
<td>Nickel</td>
<td>126</td>
</tr>
<tr>
<td>Nimonic 105</td>
<td>Nickel</td>
<td>124, 126, 127, 225, 226, 284, 285</td>
</tr>
<tr>
<td>Nimonic 108</td>
<td>Nickel</td>
<td>242, 243</td>
</tr>
<tr>
<td>Nimonic 115</td>
<td>Nickel</td>
<td>126, 226, 227, 284, 285</td>
</tr>
<tr>
<td>Nimonic 263</td>
<td>Nickel</td>
<td>126</td>
</tr>
<tr>
<td>Nimonic 75</td>
<td>Nickel</td>
<td>126, 240, 284, 285</td>
</tr>
<tr>
<td>Nimonic 80</td>
<td>Nickel</td>
<td>88, 284</td>
</tr>
<tr>
<td>Nimonic 80A</td>
<td>Nickel</td>
<td>126, 127, 240, 242, 245, 285</td>
</tr>
<tr>
<td>Nimonic 81</td>
<td>Nickel</td>
<td>126</td>
</tr>
<tr>
<td>Nimonic 90</td>
<td>Nickel</td>
<td>126, 127, 224, 225, 285</td>
</tr>
<tr>
<td>Nimonic 901</td>
<td>Nickel</td>
<td>123, 126</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>ALLOY</td>
<td>PAGE(S)</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Nimonic API1</td>
<td>Nickel</td>
<td>104-117, 235-238, 282, 283</td>
</tr>
<tr>
<td>Nimonic PE11</td>
<td>Nickel</td>
<td>126</td>
</tr>
<tr>
<td>Nimonic PE13</td>
<td>Nickel</td>
<td>285</td>
</tr>
<tr>
<td>Nimonic PE16</td>
<td>Nickel</td>
<td>126</td>
</tr>
<tr>
<td>Nimonic PK31</td>
<td>Nickel</td>
<td>284</td>
</tr>
<tr>
<td>Niobium</td>
<td>Niobium</td>
<td>170, 267</td>
</tr>
<tr>
<td>P-21</td>
<td>Beryllium</td>
<td>29</td>
</tr>
<tr>
<td>P-50</td>
<td>Beryllium</td>
<td>29</td>
</tr>
<tr>
<td>P1</td>
<td>Beryllium</td>
<td>28</td>
</tr>
<tr>
<td>PA 101</td>
<td>Nickel</td>
<td>122, 123</td>
</tr>
<tr>
<td>PM 2000</td>
<td>Iron</td>
<td>48</td>
</tr>
<tr>
<td>PWA 1422</td>
<td>Nickel</td>
<td>244</td>
</tr>
<tr>
<td>PWA 1480</td>
<td>Nickel</td>
<td>122, 227</td>
</tr>
<tr>
<td>Pyromet 31</td>
<td>Nickel</td>
<td>125</td>
</tr>
<tr>
<td>Pyromet 718</td>
<td>Nickel</td>
<td>76-79, 215-218, 279, 280</td>
</tr>
<tr>
<td>Pyromet CTX-1</td>
<td>Iron</td>
<td>195</td>
</tr>
<tr>
<td>Pyromet X-15</td>
<td>Iron</td>
<td>275</td>
</tr>
<tr>
<td>RA-333</td>
<td>Nickel</td>
<td>241</td>
</tr>
<tr>
<td>RENE' 100</td>
<td>Nickel</td>
<td>242, 243</td>
</tr>
<tr>
<td>RENE' 120</td>
<td>Nickel</td>
<td>124, 232</td>
</tr>
<tr>
<td>RENE' 125</td>
<td>Nickel</td>
<td>124, 243</td>
</tr>
<tr>
<td>RENE' 150</td>
<td>Nickel</td>
<td>102-104, 223, 234</td>
</tr>
<tr>
<td>RENE' 41a</td>
<td>Nickel</td>
<td>122</td>
</tr>
<tr>
<td>RENE' 77</td>
<td>Nickel</td>
<td>104-117, 235-238, 282, 283</td>
</tr>
<tr>
<td>RENE' 80</td>
<td>Nickel</td>
<td>88, 228, 229, 284</td>
</tr>
<tr>
<td>RENE' 80H</td>
<td>Nickel</td>
<td>240</td>
</tr>
<tr>
<td>RENE' 95</td>
<td>Nickel</td>
<td>89-102, 229-232, 280, 281</td>
</tr>
<tr>
<td>RR242</td>
<td>Beryllium</td>
<td>28</td>
</tr>
<tr>
<td>RR243</td>
<td>Beryllium</td>
<td>28</td>
</tr>
<tr>
<td>Rex 25</td>
<td>Iron</td>
<td>50, 52</td>
</tr>
<tr>
<td>Rhenium</td>
<td>Rhenium</td>
<td>267</td>
</tr>
<tr>
<td>S-200</td>
<td>Beryllium</td>
<td>29</td>
</tr>
<tr>
<td>S-65</td>
<td>Beryllium</td>
<td>28</td>
</tr>
<tr>
<td>S45C</td>
<td>Iron</td>
<td>276</td>
</tr>
<tr>
<td>SKH 55</td>
<td>Iron</td>
<td>53</td>
</tr>
<tr>
<td>SKH 57</td>
<td>Iron</td>
<td>53</td>
</tr>
<tr>
<td>SP-200</td>
<td>Beryllium</td>
<td>29</td>
</tr>
<tr>
<td>SP-350</td>
<td>Beryllium</td>
<td>29</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>ALLOY</td>
<td>PAGE(S)</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>Sm(5)Co</td>
<td>Intermetallics</td>
<td>167</td>
</tr>
<tr>
<td>SmCo(5)</td>
<td>Intermetallics</td>
<td>167</td>
</tr>
<tr>
<td>Stellite 1</td>
<td>Cobalt</td>
<td>34</td>
</tr>
<tr>
<td>Stellite 12</td>
<td>Cobalt</td>
<td>34</td>
</tr>
<tr>
<td>Stellite 21</td>
<td>Cobalt</td>
<td>34, 35</td>
</tr>
<tr>
<td>Stellite 6</td>
<td>Cobalt</td>
<td>32, 33, 296</td>
</tr>
<tr>
<td>Supral 100</td>
<td>Aluminum</td>
<td>179</td>
</tr>
<tr>
<td>Supral 150</td>
<td>Aluminum</td>
<td>179</td>
</tr>
<tr>
<td>Supral 220</td>
<td>Aluminum</td>
<td>179</td>
</tr>
<tr>
<td>T-111</td>
<td>Tantalum</td>
<td>267, 293</td>
</tr>
<tr>
<td>T-15</td>
<td>Iron</td>
<td>44, 45</td>
</tr>
<tr>
<td>T-6</td>
<td>Iron</td>
<td>49</td>
</tr>
<tr>
<td>T30</td>
<td>Beryllium</td>
<td>28</td>
</tr>
<tr>
<td>TAZ-8A</td>
<td>Nickel</td>
<td>125</td>
</tr>
<tr>
<td>TD-nickel</td>
<td>Nickel</td>
<td>127</td>
</tr>
<tr>
<td>TM-321</td>
<td>Nickel</td>
<td>122</td>
</tr>
<tr>
<td>TMP-1</td>
<td>Nickel</td>
<td>121</td>
</tr>
<tr>
<td>TMP-10</td>
<td>Nickel</td>
<td>121</td>
</tr>
<tr>
<td>TMP-11</td>
<td>Nickel</td>
<td>121</td>
</tr>
<tr>
<td>TMP-15</td>
<td>Nickel</td>
<td>121</td>
</tr>
<tr>
<td>TMP-2</td>
<td>Nickel</td>
<td>121</td>
</tr>
<tr>
<td>TMP-3</td>
<td>Nickel</td>
<td>121, 122</td>
</tr>
<tr>
<td>TMP-4a</td>
<td>Nickel</td>
<td>121</td>
</tr>
<tr>
<td>TMP-7</td>
<td>Nickel</td>
<td>122</td>
</tr>
<tr>
<td>TMP-9</td>
<td>Nickel</td>
<td>121</td>
</tr>
<tr>
<td>TRW NASA VI A</td>
<td>Nickel</td>
<td>125, 126</td>
</tr>
<tr>
<td>TZM</td>
<td>Molybdenum</td>
<td>267</td>
</tr>
<tr>
<td>Ta(2)Al(4)</td>
<td>Intermetallics</td>
<td>166</td>
</tr>
<tr>
<td>Ta-10w</td>
<td>Intermetallics</td>
<td>267</td>
</tr>
<tr>
<td>TaAl(3)</td>
<td>Intermetallics</td>
<td>166</td>
</tr>
<tr>
<td>Tantalum</td>
<td>Tantalum</td>
<td>171, 267</td>
</tr>
<tr>
<td>Ti(2)Be(17)</td>
<td>Intermetallics</td>
<td>166</td>
</tr>
<tr>
<td>Ti(3)Al</td>
<td>Intermetallics</td>
<td>161, 162, 264, 265</td>
</tr>
<tr>
<td>Ti(5)Si(3)</td>
<td>Intermetallics</td>
<td>260</td>
</tr>
<tr>
<td>Ti-10Al</td>
<td>Titanium</td>
<td>154</td>
</tr>
<tr>
<td>Ti-10Mo-6Cr-2.5Al</td>
<td>Titanium</td>
<td>290</td>
</tr>
<tr>
<td>Ti-10Mo-8V-2.5Al</td>
<td>Titanium</td>
<td>290</td>
</tr>
<tr>
<td>Ti-10V-2Fe-3Al</td>
<td>Titanium</td>
<td>153, 154, 260, 290</td>
</tr>
<tr>
<td>Ti-12Al-19Nb</td>
<td>Titanium</td>
<td>265</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>ALLOY</td>
<td>PAGE(S)</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Ti-13AI-20Nb</td>
<td>Titanium</td>
<td>167, 265</td>
</tr>
<tr>
<td>Ti-15AI-3Cr-3AI-3Sn</td>
<td>Titanium</td>
<td>260, 290</td>
</tr>
<tr>
<td>Ti-15V-3Cr-3AI-3Sn</td>
<td>Titanium</td>
<td>155, 156, 259, 290</td>
</tr>
<tr>
<td>Ti-16AI-10Nb</td>
<td>Titanium</td>
<td>262, 290</td>
</tr>
<tr>
<td>Ti-17</td>
<td>Titanium</td>
<td>156, 157</td>
</tr>
<tr>
<td>Ti-18Zr-4.5Si</td>
<td>Titanium</td>
<td>260</td>
</tr>
<tr>
<td>Ti-2.5AI-13V-7Sn-2Zr</td>
<td>Titanium</td>
<td>261</td>
</tr>
<tr>
<td>Ti-2.5AI-5.5Er</td>
<td>Titanium</td>
<td>260</td>
</tr>
<tr>
<td>Ti-24AI-11Nb</td>
<td>Intermetallics</td>
<td>165, 264</td>
</tr>
<tr>
<td>Ti-25AI-10Nb-3V-1Mo</td>
<td>Intermetallics</td>
<td>165, 264</td>
</tr>
<tr>
<td>Ti-2AI-11V-2Sn-11Zr</td>
<td>Titanium</td>
<td>261</td>
</tr>
<tr>
<td>Ti-2Er</td>
<td>Titanium</td>
<td>259</td>
</tr>
<tr>
<td>Ti-32AI-5Nb-5W</td>
<td>Titanium</td>
<td>265</td>
</tr>
<tr>
<td>Ti-36AI-5Nb</td>
<td>Titanium</td>
<td>265</td>
</tr>
<tr>
<td>Ti-4.5AI-5Mo-1.5Cr</td>
<td>Titanium</td>
<td>289</td>
</tr>
<tr>
<td>Ti-48 at pct Al-1 at pct V</td>
<td>Intermetallics</td>
<td>165, 264</td>
</tr>
<tr>
<td>Ti-48 at pct Al-2 at pct Nb-2 at pct Cr</td>
<td>Intermetallics</td>
<td>263, 291</td>
</tr>
<tr>
<td>Ti-48 at pct Al-2.5 at pct Nb</td>
<td>Intermetallics</td>
<td>166, 263, 291</td>
</tr>
<tr>
<td>Ti-50 at pct Al-2 at pct Nb</td>
<td>Intermetallics</td>
<td>166</td>
</tr>
<tr>
<td>Ti-5AI</td>
<td>Titanium</td>
<td>289</td>
</tr>
<tr>
<td>Ti-5AI-2.5Fe</td>
<td>Titanium</td>
<td>154</td>
</tr>
<tr>
<td>Ti-5AI-2.5Sn</td>
<td>Titanium</td>
<td>131, 260</td>
</tr>
<tr>
<td>Ti-5AI-2.5Sn-1B</td>
<td>Titanium</td>
<td>260</td>
</tr>
<tr>
<td>Ti-5AI-2.5Sn-2Y</td>
<td>Titanium</td>
<td>260</td>
</tr>
<tr>
<td>Ti-5AI-2.5Sn-3Ce</td>
<td>Titanium</td>
<td>260</td>
</tr>
<tr>
<td>Ti-5AI-2Cr-1Fe</td>
<td>Titanium</td>
<td>154</td>
</tr>
<tr>
<td>Ti-5AI-2Si</td>
<td>Titanium</td>
<td>260</td>
</tr>
<tr>
<td>Ti-5AI-2Sn-2Zr-4Cr-4Mo</td>
<td>Titanium</td>
<td>156, 157, 261</td>
</tr>
<tr>
<td>Ti-5AI-4Zr-2.5Sn-3La</td>
<td>Titanium</td>
<td>260</td>
</tr>
<tr>
<td>Ti-5Sn-3Y</td>
<td>Titanium</td>
<td>260</td>
</tr>
<tr>
<td>Ti-5Sn-4.5La</td>
<td>Titanium</td>
<td>260</td>
</tr>
<tr>
<td>Ti-6.5Si</td>
<td>Titanium</td>
<td>260</td>
</tr>
<tr>
<td>Ti-6AI</td>
<td>Titanium</td>
<td>155</td>
</tr>
<tr>
<td>Ti-6AI-2Sn-2Zr-2Mo-2Cr</td>
<td>Titanium</td>
<td>261</td>
</tr>
<tr>
<td>Ti-6AI-2Sn-4Zr-2Mo</td>
<td>Titanium</td>
<td>131, 132, 247, 248, 290</td>
</tr>
<tr>
<td>Ti-6AI-2Sn-4Zr-6Mo</td>
<td>Titanium</td>
<td>132, 133, 248, 249</td>
</tr>
<tr>
<td>Ti-6AI-2Zn-2Sn-2Mo-2Cr</td>
<td>Titanium</td>
<td>157</td>
</tr>
<tr>
<td>Ti-6AI-4V</td>
<td>Titanium</td>
<td>133-149, 249-257, 287, 288</td>
</tr>
<tr>
<td>Ti-6AI-4V-2Si</td>
<td>Titanium</td>
<td>260</td>
</tr>
<tr>
<td>Ti-6AI-6V-25n</td>
<td>Titanium</td>
<td>150-153, 257, 258, 289</td>
</tr>
<tr>
<td>Ti-6AI-6V-2Zr</td>
<td>Titanium</td>
<td>156</td>
</tr>
<tr>
<td>Ti-6AI-6Zr-6Mo</td>
<td>Titanium</td>
<td>156</td>
</tr>
<tr>
<td>Ti-7Mo-4Cr-2.5AI</td>
<td>Titanium</td>
<td>290</td>
</tr>
<tr>
<td>Ti-8AI-1Mo-1V</td>
<td>Titanium</td>
<td>154, 262</td>
</tr>
<tr>
<td>Ti-8Mo-2.5AI-1.5B</td>
<td>Titanium</td>
<td>260</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>ALLOY</td>
<td>PAGE(S)</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>Ti-8Zr-3.5Al-3.5Si</td>
<td>Titanium</td>
<td>260</td>
</tr>
<tr>
<td>TiAl</td>
<td>Intermetallics</td>
<td>162-164, 291</td>
</tr>
<tr>
<td>TiBe(12)</td>
<td>Intermetallics</td>
<td>166</td>
</tr>
<tr>
<td>TiFe</td>
<td>Intermetallics</td>
<td>165</td>
</tr>
<tr>
<td>TiNi</td>
<td>Intermetallics</td>
<td>166</td>
</tr>
<tr>
<td>Titanium</td>
<td>Titanium</td>
<td>129, 130, 247, 289</td>
</tr>
<tr>
<td>Transage 129</td>
<td>Titanium</td>
<td>261</td>
</tr>
<tr>
<td>Transage 134</td>
<td>Titanium</td>
<td>260, 261</td>
</tr>
<tr>
<td>Transage 175</td>
<td>Titanium</td>
<td>258, 259</td>
</tr>
<tr>
<td>Tungsten</td>
<td>Tungsten</td>
<td>171, 172, 267</td>
</tr>
<tr>
<td>Udiment 500</td>
<td>Nickel</td>
<td>127, 234, 235</td>
</tr>
<tr>
<td>Udiment 520</td>
<td>Nickel</td>
<td>124, 126, 242, 243</td>
</tr>
<tr>
<td>Udiment 700</td>
<td>Nickel</td>
<td>104-117, 235-238, 282, 283</td>
</tr>
<tr>
<td>Udiment 710</td>
<td>Nickel</td>
<td>127, 245</td>
</tr>
<tr>
<td>Udiment 720</td>
<td>Nickel</td>
<td>121, 241, 245</td>
</tr>
<tr>
<td>VT5L</td>
<td>Titanium</td>
<td>260</td>
</tr>
<tr>
<td>Vascomax 300</td>
<td>Iron</td>
<td>42-44, 195</td>
</tr>
<tr>
<td>W-0.5HfC</td>
<td>Tungsten</td>
<td>267</td>
</tr>
<tr>
<td>W-10Cu</td>
<td>Tungsten</td>
<td>267</td>
</tr>
<tr>
<td>W-2ThO2</td>
<td>Tungsten</td>
<td>267</td>
</tr>
<tr>
<td>W-30Re-20Mo</td>
<td>Tungsten</td>
<td>267</td>
</tr>
<tr>
<td>W-4Re</td>
<td>Tungsten</td>
<td>267</td>
</tr>
<tr>
<td>WAZ-D</td>
<td>Nickel</td>
<td>245</td>
</tr>
<tr>
<td>WAZ20</td>
<td>Nickel</td>
<td>245</td>
</tr>
<tr>
<td>WC-103</td>
<td>Niobium</td>
<td>170</td>
</tr>
<tr>
<td>Waspaloy</td>
<td>Nickel</td>
<td>118-120, 239, 240, 283</td>
</tr>
<tr>
<td>X 225 CrVMo 13 4</td>
<td>Iron</td>
<td>277</td>
</tr>
<tr>
<td>X-40</td>
<td>Cobalt</td>
<td>33, 34, 186</td>
</tr>
<tr>
<td>X-45</td>
<td>Cobalt</td>
<td>33, 34, 186</td>
</tr>
<tr>
<td>X-520</td>
<td>Beryllium</td>
<td>27</td>
</tr>
<tr>
<td>ZhS6-K</td>
<td>Nickel</td>
<td>121, 241</td>
</tr>
<tr>
<td>Zircaloy</td>
<td>Zirconium</td>
<td>269</td>
</tr>
<tr>
<td>Zirconium</td>
<td>Zirconium</td>
<td>173, 269</td>
</tr>
<tr>
<td>Zr-2.5Nb</td>
<td>Zirconium</td>
<td>269</td>
</tr>
</tbody>
</table>
INDEX TERMS
INDEX TERMS

Acceptance Tests
Acoustic Emission
Activation Energy
Aerospace Applications
Age Hardening
Aircraft Engines
Aircraft Structures
Airfoils
Airframes
Alloy Development
Alpha Alloys
Amorphous Alloy
Anisotropy
Annealing
Arc Melting
Arc Spraying
Arc Welding
Artificial Intelligence
Atomization
Attrition
Auger Electron Spectroscopy
Austenitizing

Ball Bearings
Ball Milling
Ballistic Tests
Bearing Strength
Bend Properties
Beta Processing
Binary Components
Blade Life
Boeing 757
Bonding
Brazing
Brittle Fracture
Buckling Strength
Burst Test
Butt Weld

Casting
Cavitation Corrosion
Ceracon Processing
Charpy Impact
Chemical Milling
Cladding
Cleavage

Coating
Cold Drawing
Cold Pressing
Combustion Synthesis
Combustor Liners
Compaction
Compliance Tests
Compression Tests
Compressive Properties
Compressor Components
Compressor Discs
Computer Model
Consolidation
Contour Rolling
Control Systems
Corrosion Protection
Corrosion Resistance
Corrosion-Fatigue
Corrosive Environment
Crack Arrest
Crack Closure
Crack Detection
Crack Growth Rate
Crack Initiation
Crack Nucleation
Crack Propagation
Creep Deformation
Creep Properties
Creep Rupture Strength
Creep Test
Crystal Orientation
Cutting Tools
Cyclic Aging
Cyclic Loading
Cyclic Test

Damage Tolerance
Defects
Dendrite Structure
Densification
Density Sensors
Design
Development
Diagram
Die Forging
Differential Thermal Analysis
Diffraction
Impact Properties
Impact Strength
Impact Tests
Impact Toughness
Inclusions
Ingot Metallurgy
Injection Molding
Intensities
Inter-diffusion
Intergranular Fracture
Investment Casting
Ion Implantation
Ion Plating
Ion Vapor Deposition
Isothermal Forging
Isothermal Process

Jet Engines
Joining

Lap Shear Strength
Larsen-Miller Curves
Laser Machining
Lattice Parameters
Liquid Sintering
Long Term Tests

Machinability
Machine Tools
Manufacturing Process
Martensitic Transformation
Materials Comparison
Mathematical Model
Mechanical Alloying
Mechanical Attritioning
Mechanical Properties
Melt Spinning
Melting Point
Metal Injection Molding
Metallography
Microcracking
Microcreep
Microhardness
Microporosity
Microprobe Analysis
Microscopy
Microsegregation
Microstructure
Milling
Mirror

Modelling
Modulus Of Elasticity
Molding
Morphology

Nacelle
Near Net Forming
Near Net Shape Forming
Neutron Scattering
Nondestructive Testing
Nonsuperconducting Generators
Nose Cones
Notch Fatigue
Notch Properties
Notch Rupture Strength
Notch Sensitivity
Notch Strength
Notch Toughness
Nozzles
Nuclear Reactor

Optical Microscopy
Oxidation Resistance
Oxide Dispersion Strengthening
Oxide Dispersoids

Pep
Particle Size
Performance
Permeability
Phase Diagram
Phase Transformation
Pitting
Plasma Arc Melting
Plasma Deposition
Plasma Spheroidization
Plasma Spraying
Plastic Deformation
Plastic Strain
Poisson's Ratio
Pore Structure
Porosity
Powder Metallurgy
Powder Size
Prealloying
Precipitation Hardening
Press Forging
Pressure Bonding
Pressure Components
Pressure Effect
Texture
Thermal Analysis
Thermal Cycling
Thermal Expansion
Thermal Exposure
Thermal Fatigue
Thermal Processing
Thermal Properties
Thermal Shock
Thermal Stability
Thermally Induced Porosity
Thermomechanical Treatment
Thermomechanics
Thin Film
Three Point Bend
Threshold Stress
Tool Life
Tooling
Toughness
Transformation Toughening
Transgranular Fracture
Transus Temperature
Transverse Rupture
Tribaloy
Tungsten Arc Welding
Tungsten Coating
Turbine Components
Turbofan Engine
Twinning

Uh-60a Black Hawk
Ultrasonic Cleaning
Ultrasonic Properties
Ultrasonic Testing
Unidirectional Solidification

Vacuum Annealing
Vacuum Arc Melting
Vacuum Degassing
Vacuum Deposition
Vacuum Induction
Vacuum Melting
Vacuum Plasma Spraying
Vanes
Vapor Deposition
Viscous Flow

Water Atomization
Wear Fatigue
Wear Rate

Wear Resistance
Wear Tests
Weight Change
Weight Reduction
Weld And Post Weld
Weldability
Welding
Work Hardening

X-Ray Diffraction
Xm-785 Projectile
Yield Properties
Zero Gravity Environment