Metallographic Observations of Rolled-Homogeneous-Armor Specimens From Plates Perforated by Shaped Charge Jets

Claire D. Krause
Martin N. Raftenberg

ARL-MR-68

June 1993
NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Secondary distribution of this report is prohibited.

Additional copies of this report may be obtained from the Defense Technical Information Center, Cameron Station, Alexandria, VA 22304-6145.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial products.
In each of a series of experiments, a plate of rolled homogeneous armor (RHA) is perforated by a copper jet from a shaped charge warhead. Microscopy specimens of RHA are prepared from a remaining, perforated target plate and from various recovered fragments. Optical and scanning electron microscopy reveal shear bands, voids, cracks, and evidence of precipitate formation and microstructure transformation in the original martensite. Some shear bands contain a finer-scaled microstructure than that of the ambient martensite, while others contain martensitic laths of dimensions similar to those of the ambient martensite. Cracks in RHA specimens are generally associated either with shear bands or with coalescing voids. In a specimen from a copper fragment, a variety of grain sizes and extensive twinning are observed.
INTENTIONALLY LEFT BLANK.
ACKNOWLEDGMENTS

The authors would like to recognize the efforts of several staff members of the U.S. Army Research Laboratory. Dr. Pat Kingman assisted with the use of the scanning electron microscope. Mr. David E. Mackenzie helped with the preparation of specimens for microscopy. The range firing at Range 7A was performed by Messrs. Grat E. Blackburn, David R. Schall, and Sterling C. Shelley, Jr. The three firings at Range 16 were performed by Messrs. Carl V. Paxton and Joseph W. Gardiner. Dr. Lee S. Magness provided a very helpful review of the manuscript.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. METHODS</td>
<td>1</td>
</tr>
<tr>
<td>3. OBSERVATIONS</td>
<td>3</td>
</tr>
<tr>
<td>3.1 Perforated RHA Plate from Rd. 10771</td>
<td>3</td>
</tr>
<tr>
<td>3.2 RHA Fragments from Rds. 4098, 4099 and 4100</td>
<td>4</td>
</tr>
<tr>
<td>4. DISCUSSION</td>
<td>5</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>31</td>
</tr>
</tbody>
</table>
INTENTIONALLY LEFT BLANK.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Setup for range firings</td>
<td>10</td>
</tr>
<tr>
<td>2.</td>
<td>Pre-impact and post-perforation radiographs for a standoff of 3.00 C.D. and a target plate thickness of 13 mm</td>
<td>11</td>
</tr>
<tr>
<td>3.</td>
<td>Pre-impact radiograph from Rd. 4100</td>
<td>12</td>
</tr>
<tr>
<td>4.</td>
<td>Sectioning of perforated RHA target plate from Rd. 10771</td>
<td>13</td>
</tr>
<tr>
<td>5.</td>
<td>Slice of target plate from Rd. 10771 with two cracks emanating from perforation hole indicated</td>
<td>14</td>
</tr>
<tr>
<td>6.</td>
<td>Tempered martensite observed in perforated target plate</td>
<td>14</td>
</tr>
<tr>
<td>7.</td>
<td>Crack #1 in Figure 5 and adjoining shear band</td>
<td>15</td>
</tr>
<tr>
<td>8.</td>
<td>Enlargement of Figure 7 showing crack to be surrounded by a shear band</td>
<td>15</td>
</tr>
<tr>
<td>9.</td>
<td>Enlargement of Figure 7 showing relationship of crack tip to shear band</td>
<td>16</td>
</tr>
<tr>
<td>10.</td>
<td>Further enlargement of Figure 7 showing details of the shear band</td>
<td>16</td>
</tr>
<tr>
<td>11.</td>
<td>Crack #2 in Figure 5 and adjoining shear band</td>
<td>17</td>
</tr>
<tr>
<td>12.</td>
<td>A shear band with a microstructure similar to that of surrounding martensite</td>
<td>18</td>
</tr>
<tr>
<td>13.</td>
<td>A shear band associated with a crack at one end and blending with the ambient martensite at the other</td>
<td>19</td>
</tr>
<tr>
<td>14.</td>
<td>Voids have coalesced to form a crack in RHA</td>
<td>20</td>
</tr>
<tr>
<td>15.</td>
<td>Lower bainite microstructure in RHA fragment</td>
<td>21</td>
</tr>
<tr>
<td>16.</td>
<td>Crack at boundary of RHA fragment and adjoining shear band</td>
<td>21</td>
</tr>
<tr>
<td>17.</td>
<td>Shear band that meanders into interior of RHA fragment</td>
<td>22</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>18.</td>
<td>Shear band that bifurcates and abruptly changes direction in an RHA fragment</td>
<td>23</td>
</tr>
<tr>
<td>19.</td>
<td>Enlargement of Figure 18 in region of shear band bifurcation</td>
<td>23</td>
</tr>
<tr>
<td>20.</td>
<td>RHA fragment bounded by a band of dendritic structure</td>
<td>24</td>
</tr>
<tr>
<td>21.</td>
<td>Enlargement of Figure 20 with dendritic structure shown</td>
<td>25</td>
</tr>
<tr>
<td>22.</td>
<td>Further enlargement of dendritic structure in Figure 20</td>
<td>26</td>
</tr>
<tr>
<td>23.</td>
<td>Band of striations near RHA fragment’s boundary</td>
<td>26</td>
</tr>
<tr>
<td>24.</td>
<td>Copper fragment with variety of grain sizes and evidence of twinning</td>
<td>27</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Round Descriptions</td>
<td>9</td>
</tr>
<tr>
<td>2.</td>
<td>Vickers and Rockwell C Hardness Measurements Across the RHA Fragment of Figures 21 and 22 (100 g Load Used)</td>
<td>9</td>
</tr>
</tbody>
</table>
INTENTIONALLY LEFT BLANK.
1. INTRODUCTION

Four experiments are performed, in each of which a shaped charge warhead is fired at normal incidence into a plate of rolled homogeneous armor (RHA). The same type of warhead is used in all experiments. The two parameters varied in the series are the standoff, or distance between charge base and the target plate, and the target plate thickness. Metallographic observations of RHA specimens from a perforated target plate from one experiment and from recovered fragments from the other three experiments will be presented. Both optical and scanning electron micrographs will reveal the presence of five features that presumably resulted from the penetration event: (i) shear bands, (ii) voids, (iii) cracks, (iv) precipitates, and (v) evidence of changes in the martensitic microstructure.

Two companion reports (Raftenberg 1992, to be published) present other data from these same four experiments. These data include: (i) flash radiographs, both of the jet prior to impact and of the behind-armor-debris pattern at specific times following perforation; (ii) measurements pertaining to the final geometry of the target plate hole; (iii) measurements of the total mass lost by the target plate; (iv) observations of the fracture surface pattern near the target plate hole; and (v) geometrical observations on the largest recovered fragments. Together, the three reports are intended to provide an overview of the physics of RHA plate perforation by a shaped charge jet.

Section 2 of this report will describe the four experiments from which RHA specimens were obtained. Also described here are the specimen preparation procedure and the optical microscope and scanning electron microscope (SEM) employed. Section 3 presents metallographic observations of the RHA specimens. Specifically, Subsection 3.1 is devoted to specimens prepared from a perforated target plate, and Subsection 3.2 to specimens prepared from recovered fragments. Section 4 follows with a discussion of the results.

2. METHODS

The shaped charge warhead used throughout the four experiments is described in Raftenberg (to be published). This warhead contains a conical liner composed of OFHC copper and has a vertex angle of 42°. The jet tip speed produced by this warhead has been determined to be 7.73 mm/μs (Raftenberg 1992; Raftenberg and Krause 1992).
The target plates are composed of RHA, a quenched and tempered, medium-carbon, martensitic steel (U. S. Department of Defense 1984). Each has a square cross section, with an edge length of either 197 mm or about 254 mm. Two values for target plate thickness \(d\) are considered: 13 and 25 mm. The Brinell hardness is measured at a single location on each of the entrance and exit surfaces. These measurements are denoted \(BHN_{\text{ent.}}\) and \(BHN_{\text{exit}}\) respectively.

Figure 1 displays the setup employed in the series of experiments. The warhead is supported on a horizontal platform containing a hole through which the jet can pass. Four vertical bolts are attached to the underside of this platform. The target plate is suspended from these bolts by means of a hook welded to each of its four edges. The plate’s square cross section is oriented horizontally, so that the jet strikes at normal incidence. Standoff \(S\) is controlled by adjusting the elevation of the target plate’s attachment to these bolts and by elevating the warhead by means of a wooden stand. Three values of standoff are considered: 3.00 charge diameters (C.D.), or 244 mm; 12.00 C.D., or 975 mm; and 15.23 C.D., or 1238 mm.

The setup includes x-ray tubes and associated film cassettes. These are described in Raftenberg (1992, to be published). A witness pack is located 609.6 mm beneath the exit surface of the target plate. The pack consists of five mild steel plates and four styrofoam spacers. Each steel plate and spacer has a square cross section with an edge length of about 1219 mm. The thickness of each styrofoam spacer is 25.4 mm. Thicknesses of the steel witness plates, in the order of increasing distance from the target plate, are 0.8, 0.8, 1.6, 1.6, and 3.2 mm. The witness pack is used to collect fragments of RHA and copper and is disassembled for their retrieval following the experiment.

Table 1 presents the values for \(d\), \(S\), cross-sectional dimensions, \(BHN_{\text{ent.}}\) and \(BHN_{\text{exit}}\) applicable to each experiment. Each experiment is identified by a round (Rd.) number and has been performed on the indicated date and at the indicated range, either 7A or 16. Each \(d\) value has been obtained at a single point near the center of the plate by means of a micrometer.

Figure 2 contains a series of radiographs from Rd. 4099 and another experiment involving the same conditions of 13 mm for \(d\) and a 3.00 C.D. standoff. (No fragments were collected from this other experiment, so it has not been included in Table 1.) Figure 2 shows that at this relatively short standoff, the copper jet is still intact and
stretching at the time of initial impact and throughout the course of perforation. In contrast, Figure 3 shows from Rd. 4100 that at the longer standoff of 12.00 C.D., the jet has broken up into particles prior to initial impact. Figure 2 also shows post-perforation debris patterns at five times. At the early times of 17.7 and 33.1 μs after impact, fragments are small and clustered into a dense debris cloud. At the three later times, much larger fragments are apparent. This same general pattern of debris was observed throughout the series of experiments.

In the case of Rd. 10771, the perforated RHA plate is sectioned into wedges following the experiment (Figure 4). Microscopy specimens are prepared from thin slices removed from the exposed faces of the tips of the wedges. Specimens from Rd. 10771 are mounted in a bakelite resin. In the case of Rds. 4098, 4099 and 4100, witness packs are disassembled following the experiment, and assorted fragments of RHA are recovered. Recovered fragments are sectioned to expose an internal surface and mounted in a clear epoxy. Specimens from the four experiments are then ground, polished, and etched in a 2% nital solution for approximately ten seconds.

Optical microscopy is performed with a Zeiss Axiomat IAC, an inverted reflected light microscope. The SEM used is a JEOL JXA-840A. Vickers and Rockwell C hardness measurements are obtained on one fragment specimen by means of a LECO M-400 microhardness tester.

3. OBSERVATIONS

3.1 Perforated RHA Plate from Rd. 10771. Figure 5 shows the slice from the wedge of Rd. 10771 from which all micrographs in this subsection are obtained. Figure 6 shows the microstructure of the tempered martensite observed in much of the RHA near the perforation hole boundary.

Crack #1 shown in Figure 5, emanating from the hole boundary and inclined at about 30° to the shot line, is focused upon first.* This crack extends for about 0.75 mm (Figure 7). It is surrounded by fine grained material identified as a shear band

* The term crack is used in this report to connote fracture surface. No implication is made about the degree of brittleness or the applicability of a Griffith theory.
(Figure 8). This shear band continues beyond the tip of the crack. An enlargement of the crack tip region is contained in Figure 9. The four dark spheroidal regions in this figure are presumably either precipitates or cavities left by the removal of precipitates during polishing. A scanning electron micrograph of the same shear band at 3,700x magnification reveals its details (Figure 10). The band’s width is 6 μm. The martensitic laths adjacent to the band show some alignment with the band. Structure in the central portion of the band is very fine and difficult to resolve in Figure 10.

Crack #2 in Figure 5 is also inclined at about 30° to the shot line. This crack’s width varies greatly with distance along its length (Figure 11). It is not bounded by a fine-grained shear band, as was the first crack. However, a shear band is observed in the vicinity of this second crack’s tip.

Two additional shear bands within the RHA plate are now examined. Figure 12 contains a scanning electron micrograph of a shear band at a magnification similar to that of Figure 10. In contrast to that previous figure, in Figure 12 the structure within the shear band does not differ so sharply from that of the ambient martensite. Individual laths are seen to enter the shear band. Figure 13 shows a shear band for which one end terminates on a crack, while the other end fans out and blends into the surrounding structure.

Figure 14 shows a crack that has formed by the coalescence of three voids on the slice shown in Figure 5. These voids range in diameter from 1 to 3 μm. Note the local alignment of martensitic laths along the crack.

3.2 RHA Fragments from Rds. 4098, 4099, and 4100. The witness packs from Rds. 4098, 4099, and 4100 are disassembled following the experiment, and individual fragments are recovered. Figure 15 shows an RHA fragment from Rd. 4099 to be composed largely of lower bainite. This gives evidence that some RHA material near the path of the jet has undergone a change in microstructure from that of its original tempered martensite.

Figure 16 from Rd. 4098 shows a pattern that is familiar from Rd. 10771. A crack beginning at the fragment’s outer surface ends at a straight shear band. As in Figures 7 through 9, much of the crack’s boundary in Figure 16 is lined by "white"-etching material. This is probably evidence that the crack propagated into previously shear-banded material.
On the other hand, Figure 17 shows shear bands that are not straight, but instead meander around the cross section of this fragment from Rd. 4100. Two of these bands are continuous with a wider shear band that surrounds the fragment. Figure 18 from Rd. 4099 displays a shear band that both bifurcates and abruptly changes direction. The band thickens near its bifurcation point. This region is enlarged in Figure 19.

In Figure 20 from Rd. 4099, the fine-grained band near the fragment’s periphery includes a dendritic structure. Figure 21 contains an enlargement. Individual dendrites are oriented approximately orthogonally to the fragment’s local boundary. Vickers and Rockwell C hardness measurements are made across the fragment. Indentations from the measurements are visible in Figure 20. Table 2 contains the results. Here VHN and R_C denote Vickers and Rockwell C hardness measurements, respectively. In this table, points are numbered in the order of increasing distance from the fragment’s boundary. Vickers hardness is seen to increase from a level of about 350 in the ambient RHA to 483 within the whitened shear band. An intermediate value of 450 is found for the band of dendrites. The dimension of the indentation exceeds a dendrite’s width, so a spatial averaging of hardness has occurred in this last measurement. Figure 22 is a scanning electron micrograph of dendrites at 10,000x magnification.

Figure 23 shows a band of striations that follows the boundary of a fragment from Rd. 4099. The total width of the band is about 45 μm. This phenomenon appears to be distinct from both the shear banding and the dendritic structure that have been noted above.

Finally, a single copper fragment from the warhead’s liner is shown in Figure 24. This fragment from Rd. 4099 was etched for 10 seconds in a potassium dichromate solution. A variety of grain sizes and a large amount of twinning are both evident.

4. DISCUSSION

The observations in Section 3 have included shear bands, voids, cracks, precipitates, and evidence of changes in martensitic microstructure in RHA and twinning in OFHC copper. These features probably resulted directly from the target plate perforation, although it is possible that the witness pack itself inflicted further damage on some fragments. Each recovered fragment perforated one or more thin sheets of mild steel within the witness pack.
Cracks have been seen to occur in association with shear bands, as in Figures 7 through 9, 11 and 13, and with void coalescence, as in Figure 14. The mechanism for the association in the case of shear bands is not clear and is probably not consistent. One possibility is the increase in hardness within a shear band relative to that of the surrounding martensite, which was documented in AISI 4340 steel by Rogers and Shastry (1981). This hardness increase is presumably accompanied by an increase in brittleness, thereby lowering the local fracture toughness and predisposing the shear-banded material to fracture. The above scenario supposes that the shear band preceded the crack.

Various observations in Section 3 will now be placed in the context of some recent literature. Rogers and Shastry (1981) formed shear bands in 4340 steel and related alloys by means of impact with flat-nosed projectiles at the relatively low speeds of 0.030 to 0.076 mm/μs. Their observations on shear bands were qualitatively similar to those described above, which correspond to the much greater projectile velocity of 7.73 mm/μs. They called fine-structured shear bands that etch "white" in nital, such as the shear band in Figures 7 through 10, transformed bands. They hypothetized that the steel within such a band has undergone a sufficient temperature rise to cause re-austenitization, followed by re-quenching. Rogers and Shastry supported this hypothesis with measurements of increased microhardness within the band. In fact, they claimed the microhardness in transformed bands to be greater than that obtainable by a martensitic transformation brought on by conventional quench and tempering techniques. They attributed the additional increase in microhardness to the extreme reduction in grain size and the thorough dissolution of carbon into the hot austenite, followed by carbon precipitation.

This same paper by Rogers and Shastry called shear bands such as that in Figure 12 deformed bands. These "are more ill defined regions of high local shear strain with no comparable signature of temperature attained." Rogers and Shastry found microhardness to be much lower here than in the transformed bands. Moreover, they stated that frequently "deformed bands act as 'precursor bands' to transformed bands," on the basis of their observations of situations similar to that in Figure 13.

More recent work by Beatty et al. (1990) casts doubt on the assumption by Rogers and Shastry of local phase transformation within "white"-etching bands, however. Beatty and co-workers generated shear bands in a hat-shaped specimen of VAR 4340 steel by means of a split Hopkinson compression bar technique. By use of transmission electron microscopy (TEM), they obtained selected area diffraction patterns within "white"-etching bands and in the surrounding martensite. The diffraction pattern was found to vary
gradually with distance from the center of the shear band, with no clear discontinuity occurring at the band’s periphery. Also, they were unable to find remaining austenite within the bands.

Wittman et al. (1990) produced shear bands in a hollow cylinder of AISI 4340 steel by detonating an explosive charge along its axis. They reported observations similar to those in Beatty et al. (1990): a significant degree of similarity between TEM diffraction patterns inside and outside the shear band and an absence of austenite within the shear band. Furthermore, Wittman and co-workers provided a thermal analysis to suggest that re-austenization within a shear band is avoided because of short time duration (less than 1 ms) at the highest temperatures. Figure 6 of their paper indicates a "white"-etching shear band width of 6 μm, in agreement with Figure 10 of the present report. Also, their Figure 5 illustrates the phenomenon of shear band bifurcation and bears resemblance to Figure 18 of the present report.

Thus, results in Beatty et al. (1990) and Wittman et al. (1990) point to a negative answer to the question of whether or not re-austenization occurs within a "white"-etching shear band in RHA. The lower bainite found in the fragment shown in Figure 15 raises the related question of whether re-austenization occurs in fragmented RHA material that does not undergo shear banding.

Figure 23 shows striations along a boundary of an RHA fragment. The separation between adjacent striations is roughly 20 μm. The total width of the band of striations varies along the fragment’s boundary, with a typical value of 400 μm. This pattern of striations is reminiscent of the flow lines which according to Hertzberg (1976) are produced by the process of mechanical fibering during forging procedures. He defines mechanical fibering to be "the alignment of the grain structure in the direction of mechanical working." On the other hand, the pattern of striations in Figure 23 also bears resemblance to the reference bands that Moss (1981) observed in an RHA plate prior to impact. Moss stated that these striations "were planar chemical inhomogeneities that had been spread through the plate as it was rolled from an ingot. They were extraordinarily plane and parallel with the flat surfaces of the disc shaped sample." In fact, Moss used the rotation induced in these striations by penetration of his specimen by a punch as a measure of the shear strain field in the specimen. Thus, the question of whether the striations in Figure 23 were created by the deformation associated with perforation or instead were pre-existent in the plate prior to impact and merely distorted by the
deformation cannot be resolved at this time. However, in favor of the former possibility are the facts that the band of striations in Figure 23 only occurs along the boundary of the fragment shown and that no such pattern is observed in any other specimens prepared from the target plate of Rd. 10771 or recovered fragments from Rds. 4098, 4099, and 4100.

The evidence of spheroidal precipitates that has been noted in Figure 9 can perhaps be identified with the carbon-rich precipitates noted in Glass and Bruchey (1987). Honeycombe (1981) discusses "coarse spheroidized particles of Fe₃C" (cementite) that are found in martensite tempered at above 620 K. The rather large 5-μm dimension of these particles suggests that they more likely formed during the original tempering of the target plate rather than subsequently as a result of the plate’s penetration.

The twins observed in the copper specimen of Figure 24 appear to illustrate the phenomenon of annealing twins that is described in Meyers and Chawla (1984). There annealing twins are said to be common in FCC metals and are defined as twins that are "formed during heat treatment (recovery, recrystallization, and grain growth)," rather than as a direct result of mechanical shearing deformation. In the present context, the copper was subjected to intense temperature rise associated with the processes of liner collapse and target interaction, followed by quenching at ambient temperature.

This report has documented isolated observations of microstructural phenomena in RHA material that has undergone perforation by a shaped charge jet. The relevance to this problem of laboratory experiments performed at relatively low strain rates can be judged by determining whether similar phenomena are present. A complete overview of the likelihood of occurrence of shear banding, cracking, void formation, and phase transformation in a perforated plate as functions of position and time has yet to emerge, however. Such an overview on the micromechanical level would be very useful to those modelers attempting to treat this problem in detail.
Table 1. Round Descriptions

<table>
<thead>
<tr>
<th>Rd.</th>
<th>Date</th>
<th>Range</th>
<th>(d) (mm)</th>
<th>(BHN_{\text{ent.}})</th>
<th>(BHN_{\text{exit}})</th>
<th>X-sect. (mm²)</th>
<th>(S) (C.D.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4098</td>
<td>21/06/89</td>
<td>16</td>
<td>25.5</td>
<td>364</td>
<td>364</td>
<td>254x256</td>
<td>3.00</td>
</tr>
<tr>
<td>4099</td>
<td>22/06/89</td>
<td>16</td>
<td>12.5</td>
<td>364</td>
<td>340</td>
<td>251x252</td>
<td>3.00</td>
</tr>
<tr>
<td>4100</td>
<td>23/06/89</td>
<td>16</td>
<td>25.6</td>
<td>364</td>
<td>340</td>
<td>251x252</td>
<td>12.00</td>
</tr>
<tr>
<td>10771</td>
<td>9/11/88</td>
<td>7A</td>
<td>13.0</td>
<td>364</td>
<td>364</td>
<td>197x197</td>
<td>15.23</td>
</tr>
</tbody>
</table>

Table 2. Vickers and Rockwell C Hardness Measurements Across the RHA Fragment of Figures 20, 21, and 22
(100 g Load Used)

<table>
<thead>
<tr>
<th>Pt.</th>
<th>VHN</th>
<th>Rc</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>373</td>
<td>38.0</td>
<td>two-phase region</td>
</tr>
<tr>
<td>2</td>
<td>429</td>
<td>43.5</td>
<td>two-phase region</td>
</tr>
<tr>
<td>3</td>
<td>464</td>
<td>46.5</td>
<td>on white shear band</td>
</tr>
<tr>
<td>4</td>
<td>483</td>
<td>48.0</td>
<td>on white shear band</td>
</tr>
<tr>
<td>5</td>
<td>450</td>
<td>45.3</td>
<td>on dendrite arms</td>
</tr>
<tr>
<td>6</td>
<td>450</td>
<td>45.3</td>
<td>on dendrite arms</td>
</tr>
<tr>
<td>7</td>
<td>363</td>
<td>36.8</td>
<td>martensite matrix</td>
</tr>
<tr>
<td>8</td>
<td>363</td>
<td>36.8</td>
<td>martensite matrix</td>
</tr>
<tr>
<td>9</td>
<td>363</td>
<td>36.8</td>
<td>martensite matrix</td>
</tr>
<tr>
<td>10</td>
<td>345</td>
<td>35.0</td>
<td>martensite matrix</td>
</tr>
<tr>
<td>11</td>
<td>333</td>
<td>33.5</td>
<td>martensite matrix</td>
</tr>
<tr>
<td>12</td>
<td>351</td>
<td>35.6</td>
<td>martensite matrix</td>
</tr>
</tbody>
</table>
Figure 1. Setup for range firings.
Rds. 4099 & 4186. Times Relative to Time of Initial Impact

Figure 2. Pre-impact and post-perforation radiographs for a standoff of 3.00 C.D. and a target plate thickness of 13 mm.
Figure 3. Pre-impact radiograph from Rd. 4100.
Figure 4. Sectioning of perforated RHA target plate from Rd. 10771.
Figure 5. Slice of target plate from Rd. 10771 with two cracks emanating from perforation hole indicated.

Figure 6. Tempered martensite observed in perforated target plate.
Figure 7. Crack #1 in Figure 5 and adjoining shear band.

Figure 8. Enlargement of Figure 7 showing crack to be surrounded by a shear band.
Figure 9. Enlargement of Figure 7 showing relationship of crack tip to shear band.

Figure 10. Further enlargement of Figure 7 showing details of the shear band.
Rd. 10771

Optical micrograph, 2% nital etch, 500x.

Figure 11. Crack #2 in Figure 5 and adjoining shear band.
Figure 12. A shear band with a microstructure similar to that of surrounding martensite.
Figure 13. A shear band associated with a crack at one end and blending with the ambient martensite at the other.
Rd. 10771

Scanning electron micrograph. 2% nital etch. 4,000x.

Figure 14. Voids have coalesced to form a crack in RHA.
Figure 15. Lower bainite microstructure in RHA fragment.

Figure 16. Crack at boundary of RHA fragment and adjoining shear band.
Figure 17. Shear band that meanders into interior of RHA fragment.
Figure 18. Shear band that bifurcates and abruptly changes direction in an RHA fragment.

Figure 19. Enlargement of Figure 18 in region of shear band bifurcation.
Rd. 4099

Optical micrograph, 2% nital etch, 100x.

Note: Table 2 gives microhardness measurement at indentation points on fragment.

Figure 20. RHA fragment bounded by a band of dendritic structure.
Rd. 4099
Optical micrograph, 2% nitral etch. 250x.

Figure 21. Enlargement of Figure 20 with dendritic structure shown.
Figure 22. Further enlargement of dendritic structure in Figure 20.

Figure 23. Band of striations near RHA fragment's boundary.
Figure 24. Copper fragment with variety of grain sizes and evidence of twinning.
5. REFERENCES

INTENTIONALLY LEFT BLANK.
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 2 | Administrator
Defense Technical Info Center
ATTN: DTIC-DDA
Cameron Station
Alexandria, VA 22304-6145 |
| 1 | Commander
U.S. Army Materiel Command
ATTN: AMCAM
5001 Eisenhower Ave.
Alexandria, VA 22333-0001 |
| 1 | Director
U.S. Army Research Laboratory
ATTN: AMSRL-OP-CI-AD, Tech Publishing
2800 Powder Mill Rd.
Adelphi, MD 20783-1145 |
| 2 | Commander
U.S. Army Armament Research, Development, and Engineering Center
ATTN: SMCAR-IMI-I
Picatinny Arsenal, NJ 07806-5000 |
| 2 | Commander
U.S. Army Armament Research, Development, and Engineering Center
ATTN: SMCAR-TDC
Picatinny Arsenal, NJ 07806-5000 |
| 1 | Director
Benet Weapons Laboratory
U.S. Army Armament Research, Development, and Engineering Center
ATTN: SMCAR-CCB-TL
Watervliet, NY 12189-4050 |
| 1 | Commander
U.S. Army Rock Island Arsenal
ATTN: SMCRI-IMC-RT/Technical Library
Rock Island, IL 61299-5000 |
| 1 | Director
U.S. Army Aviation Research and Technology Activity
ATTN: SAVRT-R (Library)
M/S 219-3
Ames Research Center
Moffett Field, CA 94035-1000 |
| 1 | Commander
U.S. Army Missile Command
ATTN: AMSMI-RD-CS-R (DOC)
Redstone Arsenal, AL 35898-5010 |
| 1 | Commander
U.S. Army Tank-Automotive Command
ATTN: ASQNC-TAC-DIT (Technical Information Center)
Warren, MI 48397-5000 |
| 1 | Director
U.S. Army TRADOC Analysis Command
ATTN: ATRC-WSR
White Sands Missile Range, NM 88002-5502 |
| 1 | Commandant
U.S. Army Field Artillery School
ATTN: ATSF-CSI
 Ft. Sill, OK 73503-5000 |
| 1 | Commandant
U.S. Army Infantry School
ATTN: ATSH-CD (Security Mgr.)
Fort Benning, GA 31905-5660 |
| 1 | WL/MNOI
Eglin AFB, FL 32542-5000 |
| 2 | Dir. USAMSAA
ATTN: AMXSY-D
AMXSY-MP, H. Cohen |
| 1 | Cdr, USAECOM
ATTN: AMSTE-TC |
| 1 | Dir, ERDEC
ATTN: SCBRD-RT |
| 1 | Cdr, CBDA
ATTN: AMSCB-CI |
| 1 | Dir, USARL
ATTN: AMSRL-SL-I |
| 10 | Dir, USARL
ATTN: AMSRL-OP-CI-B (Tech Lib) |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Director U.S. Army Research Office ATTN: J. Chandra, J. Wu, K. Iyer, A. Crowson Technical Library P.O. Box 1211 Research Triangle Park, NC 27709-2211</td>
</tr>
<tr>
<td>1</td>
<td>Director U.S. Army Research Laboratory ATTN: AMSRL-D-TO, Clarence W. Kitchens, Jr. Adelphi, MD 20783-1145</td>
</tr>
<tr>
<td>1</td>
<td>Commander U.S. Army Research and Standardization Group (Europe) ATTN: F. Oertel P.O. Box 65 FPO NY 09510</td>
</tr>
<tr>
<td>1</td>
<td>Commander U.S. Army Tank-Automotive Command Armor Application Section ATTN: AMSTA-RSK, S. Goodman Warren, MI 48397-5000</td>
</tr>
<tr>
<td>3</td>
<td>Commander Naval Surface Warfare Center ATTN: Technical Library W. Mock W. H. Holt Dahlgren, VA 22448</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>5</td>
<td>Commander Naval Weapons Center
ATTN: Code 3266, R. Hoffmann
Code 3261, T. Gill
S. Finnegan
J. C. Schulz
Technical Library
China Lake, CA 93555-6001</td>
</tr>
<tr>
<td>5</td>
<td>Commander Naval Surface Warfare Center
ATTN: F. Zerilli
H. Chen, U12
H. Mair, R12
C. S. Coffey
Technical Library
Silver Spring, MD 20903-5000</td>
</tr>
<tr>
<td>1</td>
<td>Commander Naval Research Laboratory
ATTN: J. A. Nemes
Washington, DC 20375</td>
</tr>
<tr>
<td>1</td>
<td>Director Defense Advanced Research Projects
Agency
ATTN: J. Richardson
Armor/Antiarmor Joint Program Office
Rosslyn, VA 22209-2308</td>
</tr>
<tr>
<td>2</td>
<td>Director Defense Advanced Research Projects
Agency
ATTN: B. Wilcox
Tech. Info.
3701 North Fairfax Dr.
Arlington, VA 22203-1714</td>
</tr>
<tr>
<td>1</td>
<td>Director Defense Advanced Research Projects
Agency
Land Systems Office
ATTN: T. Phillips
3701 North Fairfax Dr.
Arlington, VA 22203-1714</td>
</tr>
<tr>
<td>1</td>
<td>Office of Munitions
ATTN: OUSD(A)/TWD/OM, A. Holt
Room 3B1060, The Pentagon
Washington, DC 20301</td>
</tr>
<tr>
<td>1</td>
<td>Commander Naval Postgraduate School
ATTN: Code 73, J. Sternberg
Monterey, CA 93943</td>
</tr>
<tr>
<td>12</td>
<td>Director Sandia National Laboratories
ATTN: D. Grady
M. Kipp
W. Herrmann
S. Passman
M. Forrestal
V. Luk
L. Davison
P. Yarrington
S. A. Silling
J. M. McGlaun
E. Hertel
M. M. Hightower
P.O. Box 5800
Albuquerque, NM 87185-5800</td>
</tr>
<tr>
<td>1</td>
<td>Director Sandia National Laboratories
ATTN: D. Baummann
Livermore, CA 94550</td>
</tr>
<tr>
<td>1</td>
<td>National Institute of Science and Technology
ATTN: T. Burns
Technology Building, Rm A151
Gaithersburg, MD 20899</td>
</tr>
<tr>
<td>11</td>
<td>Director Lawrence Livermore National Laboratory
ATTN: L-38, M. Finger
L-122, B. Bowman
L-35,
R. Couch
R. Tipton
D. Baum
D. Steinberg
J. Reaugh
L342, D. Lastila,
G. Goudreau
W. H. Gourdin
Technical Library
P.O. Box 808
Livermore, CA 94550</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>16</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>Los Alamos National Laboratory</td>
</tr>
<tr>
<td></td>
<td>ATTN: J. Chapyak</td>
</tr>
<tr>
<td></td>
<td>MS F663, J. Johnson</td>
</tr>
<tr>
<td></td>
<td>S. K. Shifferl</td>
</tr>
<tr>
<td></td>
<td>T. F. Adams</td>
</tr>
<tr>
<td></td>
<td>D. A. Mandell</td>
</tr>
<tr>
<td></td>
<td>P. Follansbee</td>
</tr>
<tr>
<td></td>
<td>MS J960, R. Karp</td>
</tr>
<tr>
<td></td>
<td>L. Hull</td>
</tr>
<tr>
<td></td>
<td>MS B216, J. W. Hopson</td>
</tr>
<tr>
<td></td>
<td>MS B295, K. Holian</td>
</tr>
<tr>
<td></td>
<td>G. T. Gray</td>
</tr>
<tr>
<td></td>
<td>MS K765, S. R. Chen</td>
</tr>
<tr>
<td></td>
<td>MS G787, G. E. Cort, J. Repa</td>
</tr>
<tr>
<td></td>
<td>A. K. Zurek</td>
</tr>
<tr>
<td></td>
<td>Technical Library</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 1663</td>
</tr>
<tr>
<td></td>
<td>Los Alamos, NM 87454</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Michigan Technological University</td>
</tr>
<tr>
<td></td>
<td>Dept. of Mechanical Engineering</td>
</tr>
<tr>
<td></td>
<td>ATTN: W. W. Predebon</td>
</tr>
<tr>
<td></td>
<td>1400 Townsend Dr.</td>
</tr>
<tr>
<td></td>
<td>Houghton, MI 49931-1295</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cornell University</td>
</tr>
<tr>
<td></td>
<td>Department of Theoretical and Applied Mechanics</td>
</tr>
<tr>
<td></td>
<td>ATTN: J. Jenkins</td>
</tr>
<tr>
<td></td>
<td>Ithaca, NY 14850</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Drexel University</td>
</tr>
<tr>
<td></td>
<td>Department of Materials Engineering</td>
</tr>
<tr>
<td></td>
<td>ATTN: H. Rogers</td>
</tr>
<tr>
<td></td>
<td>P. Chou</td>
</tr>
<tr>
<td></td>
<td>Philadelphia, PA 18104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Harvard University</td>
</tr>
<tr>
<td></td>
<td>Division of Engineering and Applied Physics</td>
</tr>
<tr>
<td></td>
<td>ATTN: J. Hutchinson</td>
</tr>
<tr>
<td></td>
<td>Cambridge, MA 02138</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>University of Illinois</td>
</tr>
<tr>
<td></td>
<td>Department of Theoretical and Applied Mechanics</td>
</tr>
<tr>
<td></td>
<td>ATTN: T. Shawki</td>
</tr>
<tr>
<td></td>
<td>Urbana, IL 61801</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>The Johns Hopkins University</td>
</tr>
<tr>
<td></td>
<td>Department of Mechanical Engineering</td>
</tr>
<tr>
<td></td>
<td>Latrobe Hall</td>
</tr>
<tr>
<td></td>
<td>ATTN: A. Douglas</td>
</tr>
<tr>
<td></td>
<td>K. Ramesh</td>
</tr>
<tr>
<td></td>
<td>W. Sharp</td>
</tr>
<tr>
<td></td>
<td>34th and Charles Streets</td>
</tr>
<tr>
<td></td>
<td>Baltimore, MD 21218</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>University of Maryland</td>
</tr>
<tr>
<td></td>
<td>Department of Mechanical Engineering</td>
</tr>
<tr>
<td></td>
<td>ATTN: R. Armstrong</td>
</tr>
<tr>
<td></td>
<td>J. Dally</td>
</tr>
<tr>
<td></td>
<td>College Park, MD 20742</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>University of Maryland Baltimore County</td>
</tr>
<tr>
<td></td>
<td>ATTN: A. Khan</td>
</tr>
<tr>
<td></td>
<td>Baltimore, MD 21228</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| 1 | Massachusetts Institute of Technology
Department of Mechanical Engineering
ATTN: L. Anand
Cambridge, MA 02139 |
| 1 | University of Missouri-Rolla
Department of ME, AE & EM
ATTN: R. Batra
Rolla, MO 65401-0249 |
| 1 | State University of New York
at Stony Brook
Department of Applied Mathematics and Statistics
ATTN: J. Glimm
Stony Brook, NY 11794 |
| 1 | North Carolina State University
Department of Mechanical and Aerospace Engineering
ATTN: M. Zikry
Raleigh, NC 27695 |
| 1 | Northwestern University
Department of Applied Mathematics
ATTN: W. Olmstead
Evanston, IL 60208 |
| 1 | Northwestern University
Department of Civil Engineering
ATTN: T. Belytschko
Evanston, IL 60208 |
| 1 | Rensselaer Polytechnic Institute
Department of Mechanical Engineering
ATTN: E. Krempf
Troy, NY 12181 |
| 1 | Rensselaer Polytechnic Institute
Department of Computer Science
ATTN: J. Flaherty
Troy, NY 12181 |
| 1 | University of Texas
Texas Institute for Comp. Mechanics
ATTN: J. Oden
Austin, TX 78712 |
| 1 | Texas A&M University
Aerospace Engineering Department
ATTN: T. Strouboulis
College Station, TX 77843-3141 |
| 1 | Washington State University
Department of Mechanical and Materials Engineering
ATTN: H. Zbib
Pullman, WA 99164 |
| 1 | Institute for Defense Analysis
ATTN: G. Mayer
1801 N. Beauregard Street
Alexandria, VA 22311 |
| 4 | SRI International
ATTN: D. Curran
R. Shockey
L. Seaman
H. Giovanola
333 Ravenswood Avenue
Menlo Park, CA 94025 |
| 3 | Southwest Research Institute
Department of Mechanical Sciences
ATTN: C. Anderson
J. Lankford
U. Lindholm
8500 Culebra Road
San Antonio, TX 02912 |
| 1 | Baltimore Gas and Electric Company
ATTN: Ms. Claire D. Krause
Fort Smallwood Road Complex
1000 Brandon Shores Road
Baltimore, MD 21226 |
| 1 | California Research and Technology, Inc.
ATTN: D. Orphal
5117 Johnson Dr.
Pleasanton, CA 94566 |
| 2 | General Research Corporation
ATTN: A. Charters
T. Menne
5383 Hollister Ave.
Santa Barbara, CA 93111 |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Alliant Techsystems, Inc.</td>
</tr>
<tr>
<td></td>
<td>ATTN: G. Johnson T. Holmquist C. L. Witman</td>
</tr>
<tr>
<td></td>
<td>7225 Northland Dr. Brooklyn Park, MN 55428</td>
</tr>
<tr>
<td>1</td>
<td>Research & Development Associates</td>
</tr>
<tr>
<td></td>
<td>ATTN: J. Furlong</td>
</tr>
<tr>
<td>2</td>
<td>E.I. DuPont de Nemours</td>
</tr>
<tr>
<td></td>
<td>ATTN: M. Bernhardt B. Scott</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 80702 Wilmington, DE 19880</td>
</tr>
<tr>
<td>1</td>
<td>Aluminum Company of America</td>
</tr>
<tr>
<td></td>
<td>ATTN: R. Stemler</td>
</tr>
<tr>
<td></td>
<td>ALCOA Center, PA 15069</td>
</tr>
<tr>
<td>2</td>
<td>General Dynamics Land Systems Division</td>
</tr>
<tr>
<td></td>
<td>ATTN: W. Burke</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 1800 Warren, MI 48090</td>
</tr>
<tr>
<td>2</td>
<td>Kaman Sciences Corporation</td>
</tr>
<tr>
<td></td>
<td>ATTN: J. May M. Normandia</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 7643 Colorado Springs, CO 80933</td>
</tr>
<tr>
<td>2</td>
<td>California Research and Technology, Inc. ARAP Group - A Titan Company</td>
</tr>
<tr>
<td></td>
<td>ATTN: R. Thorpe M. Majerus</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 2229 Princeton, NJ 08543-2229</td>
</tr>
<tr>
<td>1</td>
<td>Batelle Ordnance Systems and Technology Department</td>
</tr>
<tr>
<td></td>
<td>ATTN: D. Butz</td>
</tr>
<tr>
<td></td>
<td>505 King Ave. Columbus, OH 43201-2693</td>
</tr>
<tr>
<td>1</td>
<td>Orlando Technology, Inc.</td>
</tr>
<tr>
<td></td>
<td>ATTN: D. Matuska</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Denver Research Institute</td>
</tr>
<tr>
<td></td>
<td>ATTN: J. D. Yatteau</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 10127</td>
</tr>
<tr>
<td></td>
<td>Denver, CO 80210</td>
</tr>
<tr>
<td>1</td>
<td>Livermore Software Technology Corporation</td>
</tr>
<tr>
<td></td>
<td>ATTN: J. Hallquist</td>
</tr>
<tr>
<td></td>
<td>2876 Waverly Way</td>
</tr>
<tr>
<td></td>
<td>Livermore, CA 94550</td>
</tr>
<tr>
<td>1</td>
<td>University of Illinois</td>
</tr>
<tr>
<td></td>
<td>Dept. of Metallurgy and Mineral Engineering</td>
</tr>
<tr>
<td></td>
<td>ATTN: H.-r. Pak</td>
</tr>
<tr>
<td></td>
<td>Urbana, IL 61801</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| 1 | Ruhr-Universitat Bochum
ATTN: J. Kalthoff
Universitatstrasse 150
4360 Bochum 1, Postfach 102148
GERMANY |
| 1 | Condat GmbH
ATTN: K. Thoma
Maximilianstrasse 28
8069 Scheyern-Fernhag
GERMANY |
| 1 | IFAM
Materialforschung
ATTN: L. Meyer
Lesumer Heerstrasse 36
2820 Bremen 77
GERMANY |
| 2 | RARDE
ATTN: A. Cullis
Fort Halstead - Sevenoaks
TN14 7BP Kent
ENGLAND |
| 1 | Defence Research Establishment
Suffield
ATTN: C. Weickert
Ralston, Alberta, TOJ 2NO Ralston
CANADA |
| 1 | Defence Research Establishment
Valcartier
ATTN: N. Gass
P.O. Box 8800
Courcellette, PQ, GOA 1RO
CANADA |
| 1 | Canadian Arsenals, LTD
ATTN: P. Pelletier
5 Montee des Arsenaux
Villie de Gardeur, PQ, J5Z2
CANADA |
| 1 | Centre d'Etudes de Gramat
ATTN: G. Solve
46JO Gramat
FRANCE |
| 1 | Ernst-Mach Institut
ATTN: A. Sulip
Eckerstrasse 4
D-7800 Freiburg i. Br.
GERMANY |
| 1 | IABG
ATTN: H. Raatschen
Einsteinstrasse 20
D-8012 Otobrun B. Muenchen
GERMANY |
| 1 | Centre d'Etudes de Vajours
ATTN: PLOTARD J.-P.
Boite Postale No. 7
77181 Country
FRANCE |
| 1 | PRB S.A.
ATTN: M. Vansnick
Avenue de Tervueren 168, Bte. 7
Brussels, B-1150
BELGIUM |
| 1 | AB Bofors/Ammunition Division
ATTN: Jan Hasslid
Box 900
S-691 80 Bofors
SWEDEN |
| 1 | Materials Research Laboratories
ATTN: R. I. Woodword
P.O. Box 50
Ascent Vale
Victoria 3032
AUSTRALIA |
| 1 | E. Hirsch
MIL P.O. Box 02128
ISRAEL |
| 1 | Y. Kivity
Rafael Ballistics Center
Haifa
ISRAEL |

38
This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. ARL Report Number ______ Date of Report _________________

2. Date Report Received __________________________

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.)

Organization

CURRENT ADDRESS
Name
Street or P.O. Box No.
City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old or Incorrect address below.

Organization

OLD ADDRESS
Name
Street or P.O. Box No.
City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)

(DO NOT STAPLE)
Director
U.S. Army Research Laboratory
ATTN: AMSRL-OP-CI-B (Tech Lib)
Aberdeen Proving Ground, MD 21005-5066